TU Delft

Changing the Degrees of Freedom for a particle filter tracking algorithm based on
prior knowledge

Koen Snijder

Supervisors: Dr. R. R. V. Prasad, K. Kroep

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Koen Snijder
Final project course: CSE3000 Research Project
Thesis committee: Dr. R. R. V. Prasad, K. Kroep, M. Weinmann

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

The Tactile Internet (TI) aims to expand seamless
interaction over the Internet by providing a new
form of interaction through touch by providing hap-
tic feedback. To realize this, the TI is limited by a
round-trip latency of 1-10 ms, meaning that the TI
is limited by a physical distance of 1500 km. A
workaround to this requirement is the introduction
of local simulations. To keep track of moving ob-
jects in these simulations, a stable tracking algo-
rithm is needed. This algorithm is provided in the
form of a particle filter. The TI requires high track-
ing accuracy from this algorithm, but to achieve
that the algorithm becomes computationally expen-
sive. If the movement of the to-be-tracked object is
known a priori, however, the particle filter can be
adapted to focus only on that movement, neglect-
ing the other directions. This increases tracking
accuracy with an equal amount of samples, thus
requiring a lower amount of samples to achieve
the same accuracy, reducing computational power.
This paper explores how to achieve this adaptation
and analyses the increase in accuracy. By adapt-
ing the filter, the tracking accuracy is significantly
increased, even with a lower number of samples.
This results in gaining a speedup with a factor of
about 36, while having similar tracking accuracy.

1 Introduction

Online interaction is becoming more prevalent nowadays.
Calling a friend, video calling a loved one overseas, or even
following a lecture online are only a few examples of what
is possible. However, these interactions are limited to audio
and/or video only. The Tactile Internet (TI) aims to revolu-
tionize the online interaction scene by providing interaction
in the form of touch through haptic feedback. [9]. The TI
makes it possible for a user to physically interact with objects
remotely. The TI has various applications, for example, a sur-
geon could operate on a patient from their office [8], while the
patient is in a hospital kilometers away. This could save pre-
cious time that the surgeon otherwise would have to spend on
traveling.

The TI consists of a user controlling some device (the mas-
ter side) that captures the user’s movements (the controlled
side). These movements are sent over a network, where a
controlled device mimics the received movements. Doing
this over a network poses a challenge, as the latency must
be 1-10 ms [9]. If the latency is more than 1-10 ms, the user
might experience effects like motion sickness, or the oper-
ations might be disrupted [15]. Even considering an ideal
scenario, where the only limiting factor is the speed of light,
which is about 300 km/ms, the distance between the end-
points of a TI application can be a maximum of 150 km to
secure the latency constraint of 1 ms [12], which would in-
crease to about 1500 km if the latency requirement is 10 ms,
but this still is too limiting for the TI.

To circumvent the 1-10 ms delay, a solution has been
found in the form of Model-mediated teleoperation (MMT).

Imitate
Demonstrate

recorder imitation
w1 controller

CESlatoy robotic

device

Interactable
environment

physics *
simulation

Adjust

divergence
handler

observer

Figure 1: General depiction of an MMT system. A recorder records
the actions done by an operator in a physics simulation on the mas-
ter side (Demonstrate). These actions are sent over a network, where
they are imitated by a robotic device on the controlled side (Imitate).
The actions performed by the robotic device are observed and devi-
ations from the master side are updated in the simulation (Adjust).
Figure created by Kees Kroep.

It works by deploying simulations local simulations on the
user and master side. Instead of directly interacting with each
other, the user and master side now interact with these simu-
lations. To keep the simulations from diverging, only periodic
updates have to be sent over the network, eliminating the la-
tency requirement (see Fig. 1).

Constructing a local simulation comes with several chal-
lenges. One of the challenges that arises is that in a dy-
namic environment, objects interact with each other and move
around, making it vital to have a tracking system in place that
can keep track of the movement. To solve this problem, an
RGB-D camera is deployed, giving 3D representations of the
environment in the form of point cloud data. From this point
cloud data objects can be tracked.

The solution for tracking an object through a point cloud is
found through the use of particle filtering (see Sec. 3). With
particle filtering, the pose of the object is tracked in 6 Degrees
of Freedom (DoF) by approximating the state of an object
with randomly generated samples, also called particles [10].

With particle filtering, more samples results in higher
tracking accuracy [6]. However, more particles also result in
a higher computational cost and a higher execution time [14].
Therefore, it is necessary to tune the number of particles used
to find a high enough accuracy with an acceptable execution
time. But, if with prior knowledge, the general movement of
the object is known, the filter can be tuned to only focus on
the direction(s) the object will move in. This results in being
able to obtain a higher tracking accuracy for the same amount
of particles, therefore needing fewer particles for a similar ac-
curacy, resulting in a massive speed-up in execution time.

This paper aims to answer the following question: “"How to
tune a particle filter based on prior knowledge of an object’s
movement?”.

This paper contributes the following:

* Show how to tune the importance density of a particle
filter to allow tracking for specific movement.

* Show that for a similar accuracy, the tuned particle filter
gains a decrease in execution time by a factor of at least

36.

This paper is structured as follows. First, it relates previ-
ously done work to the research done in this paper in Sec. 2.
This is followed by some theory explaining what a particle
filter is in Sec. 3 After that, the methodology is presented in
Sec. 4, where the method of research is explained and the
gained insights and results are explored. Third, the experi-
mental setup and results are in-depth explored in Sec. 5. A
discussion about the results is held in the following section
(Sec. 6). After the discussion, a reflection on ethical aspects
is done in Sec. 7. Following the responsible research is Sec. 8,
which discusses open issues and possible improvements. Fi-
nally, the paper concludes in Sec. 9

2 Related Works
2.1 Tactile Internet

The Tactile Internet comes with several challenges, but
the main challenge limiting the advancements of TI is the
requirement of 1-10 ms latency, or the Ultra Low Latency
(ULL) requirement [15]. Another critical challenge to solve
is a packet delivery reliability of 99.999 %, or the Ultra Re-
liability (UR) requirement. [9]. To meet these requirements,
ongoing research is focused on the possibilities of 5G [1]. As
5G has a broad range of capabilities, it will make for an im-
portant enabler for TI [13].

5G is currently on its own not enough to satisfy the ULL re-
quirement [2]. Therefore, this paper uses the MMT approach
to circumvent the 1-10 ms delay as mentioned in Sec. 1. The
breakthroughs of 5G could also be combined with the MMT
approach to further increase the responsiveness of MMT.

2.2 Object Tracking Methods

Dynamic object tracking with 3D-point clouds is an in-
tensively explored research area, from which various options
emerge. Options such as Monte Carlo approximations, like
particle filters, variations of a Kalman filter [11, 16] and the
use of Neural Networks [11] all appear promising.

In a linear system where the noise is Gaussian-distributed,
the Kalman filter is proven to be optimal. However, in prac-
tice, the Kalman filter is limited by the non-linearity and non-
Guassianity of the real world, even with its variations [3]. As
the simulation created in MTT is constructed to be as close
to the physical world as possible, a particle filter is a better
option, as a particle filter can track objects in a non-linear
setting [6].

As particle filters perform better in a physical world sce-
nario and as MSc student Kilian van Berlo has done extensive
research on particle filtering and created a base tracking sys-
tem (see [14]), this paper builds upon particle filtering. The
possibilities of object tracking using Neural Networks are not
explored in this paper.

3 Theoretical Background

This section gives a definition of particle filters and the
Kullback-Leibler Distance (KLD) particle filter variation.
Readers already familiar with these definitions can skip this
section.

2.0
1.5
1.0
0.5 1

0.0 LI

X2

—0.5 1

=1.01 . -)

=1.5 1

—-2.01

-20 -15 =10 -05 00 ©O5 10 15 20
X1

Figure 2: Set of 500 weighted samples (blue circles) estimating a
2D-zero mean Gaussian distribution. The radius of the samples is
proportional to their weights. Samples are drawn from a 2D uni-
form distribution, where the weights compensate for the difference
in the importance density and posterior. With the proper weights, the
weighted samples provide a reasonable estimate [6]. Figure created
by Jos Elfring et al.

3.1 Particle Filter

Particle filtering is a sequential Monte Carlo methodol-
ogy, where the idea is to approximate the probability distri-
bution of a state with discrete random measures, called par-
ticles. The posterior probability distribution is approximated
by these particles and a weight assigned to them [5]. The pos-
terior is modeled by a Markov Chain, stating that the posterior
only depends on the previous time step and is independent of
all other steps [6]. Given the posterior probability distribution
p(x), the approximation of p(z) is given by:

X = {wi7xé:t}ij\;11

where X is a set containing N samples (particles) and
weights. Each sample z{, is a representation of the possi-
ble state sequence. A weight w! is the relative importance of
all N samples z{, at time step ¢, and Zfil w! = 1. Samples
that are given a high weight are a closer representation of the
real sequence than samples that are given a lower weight [6].

This approach comes with a challenge, as the posterior is
unknown, hence sampling from it is not possible. There-
fore, samples must be taken from another distribution instead,
called the importance density. The weights compensate for
the fact that the samples are drawn from this importance den-
sity instead of the posterior distribution (see Fig. 2) [6].

The next step in the particle filter is determining the weight
of the samples given the importance density. This is done
by obtaining a posterior guess for each particle following the
Markov Chain, so the guess is based only on the prior. Then,
after receiving measurements, the precision of the guess is
computed using a likelihood function. From this likelihood
function, a weight is obtained and the current weight of a par-
ticle is updated to be the new weight. This is called Sequence
Importance Sampling (SIS).

If the particle filter keeps executing with only updating the
weights, the variance of the weights will increase, and a few
particles will hold most of the weight, while the other par-
ticles will hold a negligible weight. This problem is called
degeneracy [10]. To solve this problem, another step is in-
troduced in a particle filter, called resampling. Resampling
aims to prevent degeneracy by taking samples from the orig-
inal distribution X, to create a new distribution X, and re-
placing X; with X,. The sampling is done by taking samples
from X, based on the weights of the particles. This means
that particles with a high weight have a high probability to be
sampled, while particles with a low weight have a low prob-
ability to be sampled. Since the particles are not removed
after they are sampled once, X, will most likely hold parti-
cles with high weights, meaning that particles with negligible
weight are very likely to not be included in X, [10].

3.2 KLD-Sampling

The algorithm used for this paper is a variation of the par-
ticle filter algorithm using Kullback-Leibler Distance (KLD)
sampling. This variation adapts the number of samples used
over time, which increases the efficiency of particle filters.
This is done by determining the number of samples so that the
distance between the Maximum Likelihood Estimate (MLE)
and the true posterior does not exceed a threshold e. The dis-
tance between the posterior and the MLE is determined by
the KLD, hence the name of the algorithm [7].

4 Methodology

This section explores the methodology of the paper. It ex-
plains what has been done to answer the research question
and the rationale behind the choices made. It first presents
the insight gained into what a particle filter is, followed by the
possibilities of GPU acceleration for particle filtering. After
that, the transition in the research direction from GPU accel-
eration to the current research question is explained. Follow-
ing this is an overview of the contributions given to the de-
velopment of the tracking test bed used for the experiments.
Lastly, the experiments done are laid out.

4.1 Particle Filter

The first step in the research cycle was to consult the litera-
ture to find out what a particle filter exactly is. The first paper
read was an MSc thesis giving background about TI and the
use of a particle filter algorithm, as well as explaining the re-
sults of creating a first tracking test bed (see [14]). After that
other papers were consulted to find a more mathematical and
in-depth explanation of particle filters (see [3,5-7,10]). A
definition of particle filters can be found in Sec. 3 for readers
unfamiliar with this concept.

4.2 GPU Acceleration

Originally, the aim of this project was to find a way to
speed up the particle filter algorithm by GPU acceleration.
As particle filters have high computational costs, adopting
them for robotic uses for example has been limited. However,
particle filter algorithms are inherently parallelizable, as their
main bottleneck is the likelihood evaluation. If N particles

Figure 3: The Unity scene used to create point clouds of an object.
Rays are shot from the camera towards the far-clapping plan of the
camera. The rays that hit an object are colored red for debugging
purposes.

Movement about x-axis over number of frames processed

2.0 1
—— Actual movement over x-axis
—— Predicted movement over x-axis

1.84 == generated movement over x-axis
%)
% 1.6 1
°
x
)
=3
2 1.4
©
o
c
[
51.2-
>
o
=

1.0 A

0.8

T T T T T
0 200 400 600 800 1000

Number of frames processed

Figure 4: Graph of a cube translating along the x-axis. The red
line is the movement of the cube as generated by unity, the actual
movement. The dashed green line is the movement as generated by
the point cloud, the mismatched movement. The blue line is the
movement predicted by the particle filter algorithm. The movement
is in meters.

are used, N identical and independent likelihood evaluations
are performed at each iteration. Since these evaluations are
independent of each other, they can be parallelized. Since
a Graphics Processing Unit (GPU) provides massive paral-
lel power, it is ideal for a particle filter to enable fast object
tracking [4].

To show the speed up a GPU-accelerated particle filter can
provide, the average execution time per frame of a particle fil-
ter algorithm without GPU acceleration was measured with a
varying number of particles. However, before the implemen-
tation of GPU acceleration was attempted and experiments
were done with the upgraded algorithm, it was decided to
switch from GPU acceleration to the current research topic,
as this was expected to yield more interesting results and be
more useful for the Embedded System and Network System
group this research was conducted with.

4.3 Improving the Test Bed

Group mate Yue Chen created a particle filter tracking test
bed as part of their research. In order to perform experiments
for this paper, the tracking test bed had to be fully functioning

first. Therefore, help with debugging/improving the code was
given to proceed with further testing and experiments.
Movement Mismatch In a real-world TI scene, an RGB
depth camera will record the scene, from which a point cloud
is created. To mimic this depth camera, Yue Chen created a
virtual depth camera in Unity, which can record objects and
create a point cloud out of partial object view. This is done by
shooting a ray from the near-clipping plane of the camera to
the far-clipping plane of the camera for each height and width
pixel of resolution of the camera. This resolution can be man-
ually set. If a ray hits an object, the hit-point is calculated and
saved as a point in the point cloud, as can be seen in Fig. 3.
From the Unity scene, the objects can be made to move in
any desired direction. This movement is then recorded by the
camera and can be run for a set amount of frames, where a
new point cloud of the object is created for each frame. These
point clouds can then be fed into the tracking algorithm to
track the wanted object.

However, the movement generation and point cloud gen-
eration were mismatched, as the point cloud generation was
controlled from the camera object, but the movement was
controlled from the desired object that is to be tracked, caus-
ing the mismatch. This resulted in the particle filter algorithm
tracking the object based on the mismatched movement, caus-
ing tracking error, as shown in Fig. 4. Even though the parti-
cle filter closely matches the mismatched movement, it is far
from the actual movement. To fix this, the movement of the
object is controlled by the camera, instead of directly from
the object itself. This means that the object will always move
after a point cloud of a frame has been created, thus causing
the movement of the point cloud to be exactly the movement
of the object.

Other improvements made to the test bed had to do with
being able to obtain results. This includes being able to mea-
sure execution time, writing movement to a file directly from
the Unity scene, instead of only using the movement from the
generated point cloud, and being able to plot various results.
Help was also provided with doing various tests to tune the
particle filter algorithm.

4.4 Performing Experiments

The final step was to perform the experiments to measure
the accuracy of a standard particle filter algorithm and a par-
ticle filter algorithm tuned to be optimized for specific move-
ment based on prior knowledge.

To test this, three situations were defined. The first situa-
tion is a cube translating over only the z-axis following a si-
nusoidal movement while keeping the y-axis, the z-axis, and
the rotation constant (1 DoF). The second situation is trans-
lating the same cube again over the z-axis following a sinu-
soidal movement, but also translating the cube over the z-axis
following a cosine with a slightly different frequency, causing
the cube to move in a spiral. The rotation and y-axis are kept
constant (2 DoF). The last situation is the same as the second
one, but letting the cube rotate about the y-axis. Translation
over the y-axis and the other two rotational axes are kept con-
stant (3 DoF) (see Fig. 5). These three situations were chosen
as similar situations will be performed during a real-life demo
presenting the possibilities of the TI.

Figure 5: The axis system in Unity. The red arrow is the x-axis
(rotation about this axis is called roll), the green arrow is the y-axis
(rotation about this axis is called pitch) and the blue arrow is the z-
axis (rotation about this axis is called yaw).

To tune the particle filter, the covariance matrix can be
changed based on the experiment. The importance density
used for the experiments is a Gaussian distribution with its
mean at the center of the cube, which was centered at the
origin for all the experiments. The covariance o of the distri-
bution, which can be manually set in the algorithm, indicates
the spread of the area in which the particles are sampled. The
covariance matrix is then given by:

Oy 0
Oy
(e

0 Oya

where the covariance on the diagonal is for the x-axis, y-axis,
z-axis, roll, pitch and yaw respectively. For each diagonal,
a factor can be set to multiply the covariance to indicate the
spread needed on the specific axis. If it is known that an ob-
ject is not going to move or rotate about certain axes, the fac-
tor can be set to 0. This results in the same amount of particles
being sampled in a smaller area, thus increasing the accuracy
for the axes that the object is known to move or rotate about
while neglecting the axis that the object isn’t going to move
or rotate about. This effectively means that the particle fil-
ter can be changed from a tracking algorithm that tracks in 6
DoF to a tracking algorithm that only tracks in the relevant
DoF. This method was hypothesized based on the definition
of a particle filter explored by reading literature.

After the method of tuning was found, the experiments
were each run once to indicate if the hypothesized method
was giving results. After the first two experiments, the results
for translation only looked promising, when doing the third
experiment however, it was noted that the rotational data was
not saved anywhere, meaning that the accuracy of rotation
could not be evaluated. After fixing this, the rotational accu-
racy of the algorithm while tracking in 6 DoF turned out to
be very poor. Due to time constraints, this issue could not
be fixed, therefore the experiments will only include experi-
ments where the cube is not rotated.

Movement of cube about x-axis over number of frames processed
2.01

— —
o ot
L s

<
ot

Movement about x-axis (in metres)

o
o
N

0 100 200 300 400 500
Number of frames processed

(a) Movement of the cube along the z-axis

Movement of the cube about z-axis over number of frames processed

1.0

Movement about z-axis (in metres)

0 100 200 300 400 500
Number of frames processed

(b) Movement of the cube along the z-axis

Figure 6: Movement of the cube along the = and z-axis

5 Results

5.1 Experimental Setup

For all experiments, a cube of 1 x 1 x 1 m is used as the
object that is tracked by the particle filter algorithm. All vari-
ables of the particle filter are kept constant throughout all ex-
periments, except for the covariance matrix, which will be
either tuned for 6 DoF, 1 DoF, or 2 DoF. The number of par-
ticles used will also be changed to get an indication of the ac-
curacy improvement with different amounts of samples. The
number of particles used is 50, 100, 200, 500, 1000, and 2000
to show the trade-off between accuracy and execution time of
a particle filter algorithm. The algorithm is for each amount
of particles run for 500 frames, where the algorithm has to
finish tracking one frame before moving to the next.

As mentioned in Sec. 4, the cube will translate only along
the z-axis in the first experiment, which can be seen in
Fig. 6a. During the second test, the cube will translate along
the x-axis in the same manner as during experiment one, but
now the cube will also translate along the z-axis, which can
be seen in Fig. 6b. The difference in frequency between the z
and z movement causes the cube to move in a spiral, instead

RMSE of a particle filter when resampling for 6 DoF and 1 DoF

—— 6 DoF

7 0.201 —— 1DoF
e
kot
g
£0.151
%
g
g
S 0.104
L0
g
3
= 0.051
2]
=
= LN(

0.00 T r r :

500 1000 1500 2000

Amount of particles used

Figure 7: Root Mean Square Error (RMSE) when tuning the particle
filter algorithm for 6 DoF and 1 DoF for a various amount of parti-

cles

Amount of Parti- | Average exe- | Average exe-

cles cution time per | cution time per
frame for 6 DoF | frame for 1 DoF
(ms) (ms)

50 182.94 134.23

100 351.08 258.64

200 695.46 352.03

500 1705.79 352.87

1000 3199.71 388.32

2000 4885.41 413.99

Table 1: Average execution time per frame of translating a cube over
the z-axis for 6 DoF and 1 DoF for a different amount of particles

of a circle.

5.2 Performance Analysis

In this section, the results are presented. First, the results
of tuning the particle filter algorithm to 1 DoF are presented,
then the results of tuning a particle filter to 2 DoF are pre-
sented.

1 DoF For each amount of particles, the algorithm was
run in 6 DoF and 1 DoF, and the Root Mean Square Error
(RMSE) was calculated. The results can be seen in Fig. 7.
The average execution time per frame can be seen in Table. 1.

From Fig. 7 it can be seen that the RMSE is lower for track-

ing in 1 DoF than it is for tracking in 6 DoF for all particle
amounts. From Table. 1, it can be seen that the average exe-
cution time per frame is also lower for tracking in 1 DoF than
tracking in 6 DoF for all particle amounts.
Inference 1: Tracking in 1 DoF gains over tracking in 6 DoF
for each amount of particles a significant increase in accuracy
while simultaneously gaining a significant decrease in execu-
tion time.

From Fig. 7 it can be seen that the RMSE when tracking
in 6 DoF with 2000 particles comes closest to tracking in 1
DoF with 50 particles, where the RMSE of tracking in 1 DoF

RMSE of a particle filter when resampling for 6 DoF and 2 DoF

0.20 A —*— 6 DoF
z —— 2 DoF
=
5
= 0.15
ré%
< 0.101
(=]

i}
@ 0.05 1
2]
a Pl v
~
0.00 T T r :
0 500 1000 1500 2000

Amount of particles used

Figure 8: Root Mean Square Error (RMSE) when tuning the particle
filter algorithm for 6 DoF and 2 DoF for a various amount of parti-

cles

Amount of Parti- | Average exe- | Average exe-

cles cution time per | cution time per
frame for 6 DoF | frame for 2 DoF
(ms) (ms)

50 132.58 133.93

100 272.50 259.46

200 487.33 503.87

500 1165.57 1191.07

1000 2613.64 1963.42

2000 4963.51 1820.59

Table 2: Average execution time per frame of translating a cube over
the z-axis for 6 DoF and 2 DoF for a different amount of particles

with 50 particles is lower by a factor of approximately 1.5.
However, tracking in 1 DoF is about 36.4 times faster than
tracking in 6 DoF with 2000 particles.

Inference 2: Tracking in 1 DoF with a lower amount of sam-
ples has a similar or higher accuracy than tracking with a high
amount of samples in 6 DoF while gaining a significant de-
crease in execution time.

2DoF For each amount of particles, the algorithm was run
in 6 DoF and 2 DoF, and the RMSE was calculated. The re-
sults of be seen in Fig. 8. The average execution time per
frame can be seen in Table. 2.

From Fig.8 it can be seen that for all particle amounts, the
RMSE is lower for tracking in 2 DoF than tracking in 6 DoF.
From Table. 2, it can be seen that the average execution time
per frame is only significantly lower in 1 DoF for 1000 and
2000 particles, but similar for the other amounts.

Inference 3: Tracking in 2 DoF gains over tracking in 6 DoF
for each amount of particles a significant increase in accuracy
while not compromising on execution time.

From Fig. 7 it can be seen that the RMSE when tracking in
6 DoF with 2000 particles comes closest to tracking in 2 DoF
with 50 particles. Tracking in 2 DoF has a lower RMSE by
a factor of roughly 1.9. However, tracking in 2 DoF is faster

Movement about y-axis over number of frames processed

==+ Actual movement

— 0.06 Predicted movement with 6 DoF
< —— Predicted movement with 2 DoF
<
2 004
é 0.02 '
2 A l}ll LTI 0T DL YA
<
2 —0.02 I ’
<
3 —0.04
=

0 100 200 300 400 500

Number of frames processed

Figure 9: Example of the particle filter algorithm predicting the
movement about the y-axis with an offset. As can be seen, track-
ing in both 2 DoF (the black line) and 6 DoF(the blue line) predict
the true movement about the y-axis (dashed red line) with an offset.

with a factor of approximately 37 than tracking in 2 DoF with
2000 particles.

Inference 4: Tracking in 2 DoF with a lower amount of sam-
ples has a similar or higher accuracy than tracking with a high
amount of samples in 6 DoF while gaining a significant de-
crease in execution time.

Limitations The results presented have some limitations.
The first and major is that the experiments have only been
performed once. This means that the results are not an av-
erage taken from multiple runs, thus the results are likely to
have outliers. This would very likely explain why in Fig. 7
the tracking is most accurate for 100 particles, instead of for
a higher particle amount.

Another limitation is that the particle filter randomly pre-
dicts the movement about an axis with an offset on that axis
(see Fig. 9). This then causes the error to be higher than ex-
pected. This seems to happen for each axis, and the cause of
this is currently unknown.

6 Discussion

This section outlines the main takeaways resulting from
this research project. It explains the things that were learned
and the things that would be done differently.

As mentioned in Sec. 4, the first step taken was reading
literature to understand what a particle filter is and how it
works mathematically. In order to understand the principle
of operation of particle filters and to be sure to be able to
correctly interpret results, significant time has been spent on
reading literature and figuring out the math behind it. It might
have been more efficient to spend less time reading and more
on studying the actual code, for a better intuition of how the
code functions and to start earlier with aiding Yue Chen in
setting up the test bed.

As also mentioned in Sec. 4, the research question was
changed during the research phase. As this can be a natural
event during research, this was an opportunity to learn how to

handle changes in the research topic during research and how
to continue with the new topic. This went smoothly and thus
switching research question did not cause a significant loss of
time.

7 Responsible Research

For this paper, the experiments were conducted without hu-
man participants nor was any personal data used. Therefore,
all responsibility related to the results and integrity of the pa-
per falls on the author. To preserve the integrity of the paper,
all sources used are listed and the results weren’t altered.

However, the experiments were performed with a test bed
created and largely set up by group mate Yue Chen. Even
though help was given with debugging the test bed, all credit
for creating this and setting this up is given to Yue Chen by
the author.

A critical aspect to maintain scientific integrity and uphold
a researcher’s ethos is conducting experiments and obtain-
ing reproducible results. Therefore, the methodology, experi-
ments, and results are carefully explained, and all parameters
used are given. The code for tracking and point cloud cre-
ation will be made available as well. It is important to note
that a particle filter is a tracking method involving probability.
Therefore, when recreating the experiments, slight deviations
in results are to be expected.

8 Future Work

With further development, errors could be fixed in the
tracking test bed for more representative results. The first ma-
jor error that currently exists is that the generated point cloud
randomly has offset to the origin of the axes. When this hap-
pens, the particle filter performs worse on the specific axis
than expected, thus increasing the tracking error. The cause
of the error is unknown, but fixing this error would stabilize
the performance of the algorithm. The second major error is
that the tracking algorithm performs poorly when an object
is rotated. This likely is because the covariance for the roll,
pitch, and yaw aren’t properly tuned. Fixing this would mean
that experiments could be performed to indicate how well a
tuned particle filter handles rotations.

Another future improvement is performing the presented
experiments multiple times to obtain an average tracking er-
ror. This would be more representative than the current re-
sults from only one iteration of experiments, as the particle
filter predicts the next state of an object with a certain prob-
ability. This means that the results will be slightly different
each time, and results can have outliers. This uncertainty in
results would be eliminated by taking an average of a certain
amount of experiment iterations.

Finally, the execution time of the algorithm could be fur-
ther reduced by deploying an upgrade using GPU accelera-
tion, or the tracking accuracy could be improved using Neural
Networks.

9 Conclusions

The Tactile Internet aims to revolutionize online interaction
by enabling interaction through touch. It is however limited

by the Ultra Low Latency requirement. To circumvent this re-
quirement, a solution has been proposed in the form of inter-
acting with simulations. One challenge that comes with these
simulations is the need for object tracking. To track objects,
a particle filter algorithm is used, however, this algorithm is
computationally expensive.

This paper aimed to find a method to tune a particle filter
based on prior knowledge of an object’s movement to obtain
a similar accuracy while gaining a massive decrease in exe-
cution time. To achieve this, the tracking error of a standard
particle filter was measured with different amounts of sam-
ples, and compared to the tracking error of a particle filter
tuned for specific object movement. To tune the particle fil-
ter the covariance matrix of the importance density Gaussian
distribution was changed to focus only on the direction of
movement. This leads to that while having a similar accuracy
for the original and tuned particle filter, the tuned filter has a
decrease in accuracy by a factor of approximately 36, 4 for 1
DoF and 37 for 2 DoF. Therefore, it is recommended to tune
a particle filter if the movement of an object is a priori known,
to gain a massive decrease in execution time.

References

[1] Konstantinos Antonakoglou, Xiao Xu, Eckehard Stein-
bach, Toktam Mahmoodi, and Mischa Dohler. To-
ward haptic communications over the 5g tactile in-
ternet. [EEE Communications Surveys & Tutorials,
20(4):3034-3059, 2018.

[2] Abdelhamied A Ateya, Ammar Muthanna, Anastasia
Vybornova, Irina Gudkova, Yuliya Gaidamaka, Ab-
delrahman Abuarqoub, Abeer D Algarni, and Andrey
Koucheryavy. Model mediation to overcome light limi-
tations—toward a secure tactile internet system. Journal
of Sensor and Actuator Networks, 8(1):6, 2019.

[3] Zhe Chen. Bayesian filtering: From kalman filters to
particle filters, and beyond. Statistics, 182(1):1-69,
2003.

[4] Changhyun Choi and Henrik I Christensen. Rgb-d ob-
ject tracking: A particle filter approach on gpu. In
2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1084—-1091. IEEE, 2013.

[5] Petar M Djuric, Jayesh H Kotecha, Jianqui Zhang,
Yufei Huang, Tadesse Ghirmai, Moénica F Bugallo, and
Joaquin Miguez. Particle filtering. IEEE signal process-
ing magazine, 20(5):19-38, 2003.

[6] Jos Elfring, Elena Torta, and René van de Molengraft.
Particle filters: A hands-on tutorial. Sensors, 21(2):438,
2021.

[7] Dieter Fox. Kld-sampling: Adaptive particle filters. In
T. Dietterich, S. Becker, and Z. Ghahramani, editors,
Advances in Neural Information Processing Systems,
volume 14. MIT Press, 2001.

[8] Vineet Gokhale, Mohamad Eid, Kees Kroep,
R Venkatesha Prasad, and Vijay S Rao. Toward en-
abling high-five over wifi: A tactile internet paradigm.
IEEE Communications Magazine, 59(12):90-96, 2021.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Kees Kroep, Vineet Gokhale, Ashutosh Simbha,
R Venkatesha Prasad, and Vijay S Rao. Tim: A novel
quality of service metric for tactile internet. In Proceed-
ings of the ACM/IEEE 14th International Conference
on Cyber-Physical Systems (with CPS-IoT Week 2023),
pages 199-208, 2023.

Tiancheng Li, Miodrag Bolic, and Petar M Djuric. Re-
sampling methods for particle filtering: classification,
implementation, and strategies. IEEE Signal processing
magazine, 32(3):70-86, 2015.

Peter Morton, Bertrand Douillard, and James Under-
wood. An evaluation of dynamic object tracking with
3d lidar. In Proc. of the Australasian Conference on
Robotics & Automation (ACRA), page 38, 2011.

Nattakorn Promwongsa, Amin Ebrahimzadeh, Diala
Naboulsi, Somayeh Kianpisheh, Fatna Belgasmi, Roch
Glitho, Noel Crespi, and Omar Alfandi. A comprehen-
sive survey of the tactile internet: State-of-the-art and
research directions. IEEE Communications Surveys &
Tutorials, 23(1):472-523, 2021.

Meryem Simsek, Adnan Aijaz, Mischa Dohler, Joachim
Sachs, and Gerhard Fettweis. S5g-enabled tactile inter-
net. I[EEE Journal on selected areas in communications,
34(3):460-473, 2016.

Kilian van Berlo. Capturing real-time dynamic environ-
ments for tactile internet, Nov 2022.

Daniél Van Den Berg, Rebecca Glans, Dorian De Kon-
ing, Fernando A. Kuipers, Jochem Lugtenburg, Kurian
Polachan, Prabhakar T. Venkata, Chandramani Singh,
Belma Turkovic, and Bryan Van Wijk. Challenges in
haptic communications over the tactile internet. /IEEE
Access, 5:23502-23518, 2017.

Jonathan Vincent, Mathieu Labbé, Jean-Samuel Lau-
zon, Francois Grondin, Pier-Marc Comtois-Rivet, and
Francois Michaud. Dynamic object tracking and mask-
ing for visual slam. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 4974-4979. IEEE, 2020.

	Introduction
	Related Works
	Tactile Internet
	Object Tracking Methods

	Theoretical Background
	Particle Filter
	KLD-Sampling

	Methodology
	Particle Filter
	GPU Acceleration
	Improving the Test Bed
	Performing Experiments

	Results
	Experimental Setup
	Performance Analysis

	Discussion
	Responsible Research
	Future Work
	Conclusions

