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Layman’s Abstract
A CT scan is a widely used medical imaging tool used by doctors all around the world. CT stands for
computed tomography and it gives a view of the inside of a patient. In this way, a doctor can diagnose
defects to internal organs or brain in a non-invasive way. This medical imaging technique involves a
lot of mathematics. Since the measurement does not give a direct image, it has to be derived from
the data. From this indirect measurement one has to extract only that information that is needed to
make the CT image, but this is not self-evident. The measurement may contain noise caused by the
machine. This additional information can make the CT image very blurry such that the subject is not
recognizable in the image. This unwanted problem can be overcome by using different mathematical
tools. These can enhance the CT image such that it is more accurate and that a doctor is able to make
a correct diagnosis based on the image. This thesis describes several of these mathematical tools.
They are derived and applied to CT measurements to make CT images. These results analyzed and
compared to each other.
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Abstract
This thesis aims at introducing the reader to the mathematical concepts behind the imaging technique
X-ray tomography, also known as a CT scan. It includes the derivation of the filtered and unfiltered
backprojection reconstruction methods for noise-free data. It was concluded that for noisy data, X-
ray tomography is an ill-posed, and therefore unstable, inverse problem that needs regularization in
order to produce adequate reconstructions. The methods of truncated singular value decomposition
regularization and Tikhonov regularization are derived, analyzed and compared using simulated as well
as real-life data. It was found that both methods can produce stable reconstructions, but that Tikhonov
regularization is less sensitive to parameter choice.
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1
Introduction

Figure 1.1: Hand mit Ringen,
print of Wilhelm Röntgen’s first
X-ray, of his wife’s hand, taken
on 22 December 1895.

Medical imaging is a fundamental part of modern medicine. It is
hard to imagine not being able to take an X-ray image of your
broken arm or have an ultrasound when pregnant. However, this
field of medicine is quite recent and started with the invention of X-
rays by Wilhelm Röntgen in 1895 [1]. This invention and the ap-
plication for all fields of medicine spread like wildfire among doc-
tors.Not even two months after Röntgen took the first X-ray im-
age of his wife’s hand, the first X-ray assisted surgery took place.
The years after, further specialised and more complicated techniques
entered the scope of medical imaging. Following the emergence
of computers, X-ray (computed) tomography was established in the
1970s. Often abbreviated with a CT scan, this type of scan works
by combining multiple 2D X-ray scans taken from different angles
to render a 3D view of the inside of a patient. These more de-
tailed scans have a strong foundation in mathematics and in or-
der to produce reconstructions lots of mathematical tools have to be
used.

The objective of this thesis is to give an introduction to the mathematical
fundamentals of X-ray tomography as an inverse problem, by showing dif-
ferent reconstruction methods and their mathematical derivations. The main topics in the thesis are
based on chapters 1-5 of the book by Mueller and Siltanen [2]. The reconstruction methods in this
thesis include filtered and unfiltered backprojection for perfect noise-free data, and minimum norm
least-squares, truncated singular value decomposition regularization and Tikhonov regularization for
noisy data. The described methods are shown and tested by making reconstructions of simulated data
and real life data using MATLAB. The simulated data arises from the Shepp-Logan phantom, which
is a commonly used standard test image that serves as the model of a human head, where one can
determine the resolution themselves [3]. The real life data used contains CT measurements of a wal-
nut of 82×82 pixels [4]. The produced reconstructed images will be analyzed on visual quality and error.

The thesis will be presented in the following structure. Chapter 2 provides an introduction to X-rays
and the physical properties relevant to X-ray tomography. It includes the derivation of the fundamental
attenuation law, which is the foundation of conventional reconstruction methods. In chapter 3 the case
of continuous X-ray tomography is discussed in a situation where we have perfect noise-free data. The
object that is measured is described by a continuous function and measurements can be done in a
continuous way. The Radon transform is used to obtain a reconstruction of measurement called back-
projection. A filtered version of this reconstruction, called filtered backprojection, is obtained with the
additional use of the Fourier transform. The more applicable case of discrete X-ray tomography is then
presented in chapter 4, from where noisy data is considered. Discrete measurements are taken, and
the reconstruction is based on pixels with constant values. The chapter introduces X-ray tomography
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2 1. Introduction

as a discrete linear ill-posed inverse problem. A reconstruction is done based on the minimum norm
solution and the pseudoinverse, after which the effects of ill-posedness are visibly shown. Finally, the
concept of inverse crime is introduced and it is explained how one can avoid inverse crime when us-
ing simulated data. Chapter 5 contains two regularization methods to overcome instability. The first
method is truncated singular value decomposition regularization, and the second method is Tikhonov
regularization. Regularized reconstructions of the two methods for both the data sets are discussed.
Finally, the two methods are compared. Lastly, the main takeaways and discussion points can be found
in chapter 6.



2
X-rays

2.1. Introduction
When studying X-ray tomography it is important to understand some physical concepts and properties
associated with X-rays as electromagnetic radiation. In this section the fundamental attenuation law will
be derived, that will later be used in several reconstruction methods. In section 2.2 I will explain what
electromagnetic radiation is and where X-rays fall on this spectrum. Sections 2.3 and 2.4 will go deeper
into the physics behind taking an X-ray image, but these sections will not be used extensively further
in the report. Finally section 2.5 describes the concept of attenuation and the fundamental attenuation
law will be derived. The content of this chapter is based on the book by Prince and Links [5]

2.2. Electromagnetic Radiation
X-rays are a form of electromagnetic radiation. Other types of electromagnetic radiation include radio
waves, microwaves, visible light and UV rays. Electromagnetic radiation can be considered a wave as
well as moving particles.

• When viewing electromagnetic radiation as a wave, this wave is called an electromagnetic wave,
where the frequency determines the type of electromagnetic radiation. Frequencies between
1.0×105−3.0×1010 Hz result in radio waves, while frequencies between 4.6×1014−7.5×1010
Hz make up visible light. X-rays used in medical imaging usually have frequencies between
3.0 × 1018 − 3.0 × 1019 Hz. The wavelength is given by

𝜆 = 𝑐
𝑣 ,

where 𝑐 is the speed of light, and 𝑣 is the frequency of the wave.

• When viewing electromagnetic radiation as a moving particle, it can be viewed as ’packets’ of
particles called photons. These photons have zero charge and zero mass, but carry energy. The
energy of a photon is given by

𝐸 = ℎ𝑣, (2.1)

where ℎ is Planck’s constant and 𝑣 is the frequency of the radiation in Hz, as mentioned above.
The energy of a photon is given in unit of electron volts (eV), where 1eV = 1.6 × 10−19J.

3



4 2. X-rays

Figure 2.1: The different types of electromagnetic radiation, https://www.britannica.com/science/
electromagnetic-spectrum.

2.3. Electron Binding Energy and Ionization
Electromagnetic radiation can interact with the material it is travelling through in multiple ways, includ-
ing ionization. When an atom is ionized, an electron is ejected from the atom, leaving a free electron
and an ion, which is an atom with positive charge. To understand how ionization affects an atom, one
must understand the structure of an atom.

An atom consists of a core, called the nucleus, and electrons orbiting the nucleus. The nucleus is
made up of neutrons and protons.

• Protons have positive charge and the number of protons defines which element the atom is.

• Neutrons are electrically neutral and there are approximately as many neutrons present in the
nucleus as protons.

• Electrons have a negative charge and orbit the nucleus.

A whole atom has neutral charge, so there are as many positively charged protons as negatively
charged electrons. The electrons orbit the nucleus in different orbits. The number of electrons that
can fit in orbit 𝑛, is 2𝑛2. This means that the first orbit has at most 2 electrons, the second has at most
8, the third at most18 and so on. In general, electrons first fill a lower orbit before moving on to the next
higher orbit.

The energy of an atom plus the energy of a free electron is more than when the electron binds in
an orbit of the atom. So when a free electron binds to an atom, there is remaining energy, called the
electron binding energy, measured in electron volts (eV). The electron binding energy depends on the
atom to which the electron binds and in which orbit the electron ends up. The electron binding energy
decreases when the orbit number increases. However, it is sufficient to take an average electron bind-
ing energy in a given element. Metals have a high electron binding energy. For example, lead has an
electron binding energy of about 1 keV, while air has an electron binding energy of about 34 eV. The
electron binding energy of a single electron in a hydrogen atom is 13.6 eV.

If radiation, such as electromagnetic radiation, transfers energy to an electron in an atom that is greater
than the electron binding energy, the electron is ejected. It becomes a free electron. This process is
called ionization. Generally, radiation with energy greater than 13.6 eV is considered ionizing. Since
high frequencies result in higher amounts of energies, only high-frequency electromagnetic radiation
is ionizing. X-rays and gamma rays, for example, are ionizing, while visible light is not.

2.4. The Photoelectric Effect and Compton Scatter
When a photon interacts with an atom, a free electron is ejected, usually from the first orbit. The pho-
ton will be absorbed as energy and the ejected electron is called a photo-electron. This is called the
photoelectric effect. Sometimes the missing electron in the orbit is filled up by an electron from a higher
orbit. This produces radiation that can be harmful. It is therefore important to study this phenomenon,
but this will not be included in this paper. For further reference, see

https://www.britannica.com/science/electromagnetic-spectrum
https://www.britannica.com/science/electromagnetic-spectrum


2.5. Attenuation 5

In Compton scatter the photon ejects an electron from one of the outer orbits of the atom. The photon is
not completely absorbed, but loses energy. Due to the collision, the trajectory of the photon changes.
The loss in energy depends on the scatter angle. The photon no longer travels in a straight line, which
can affect the measurements and reconstructions of the measurement.

2.5. Attenuation
Attenuation is the reduction of the intensity of an X-ray beam as it travels through a medium. Here we
consider an X-ray beam a short burst of X-rays. An X-ray beam has a strength, which is important to
determine for the later reconstruction of the measurement. We will only consider narrow beam geome-
try, opposed to broad beam geometry, as it can be viewed as an accurate assumption from an imaging
perspective.

When measuring the strength of an X-ray beam, one can consider mono-energetic or poly-energetic
photons. If all photons in the beam have the same energy, the X-ray source is mono-energetic. If pho-
tons have different energies, the source is called poly-energetic. In practical X-ray imaging a source is
always poly-energetic, due to the way the X-ray beam is produced. However, since the poly-energetic
case is more complicated and can be based on the mono-energetic case, in the following we will only
consider the mono-energetic case.

Consider the mono-energetic case. The photon fluence rate describes the number of photons 𝑁 per
unit area 𝐴 in a fixed interval Δ𝑡, defined by

𝜙 = 𝑁
𝐴Δ𝑡 .

The intensity of an X-ray beam is given by
𝐼 = 𝐸𝜙,

where 𝐸 is the energy of a photon, given by equation (2.1). If an X-ray beam of 𝑁 photons travels to a
detector through a vacuum, the detector should measure again 𝑁 photons. If now a thin slab is placed
between the source and the detector, we expect the detector to measure 𝑁′ ≤ 𝑁 photons. This loss in
photons and thus energy is the basic concept of attenuation. The number of lost photons is proportional
to both 𝑁 and Δ𝑥 [5], or mathematically

Δ𝑁 = −𝜇𝑁Δ𝑥,
where 𝜇 is called the linear attenuation coefficient. It can be rewritten as

𝜇 = −Δ𝑁/𝑁
Δ𝑥 . (2.2)

Letting the slab become very thin we get the differential equation

𝑑𝑁
𝑁 = −𝜇𝑑𝑥,

which gives
𝑁 = 𝑁0𝑒−𝜇Δ𝑥 , (2.3)

where 𝑁0 is the number of photons emitted from the beam at 𝑥 = 0. This equation is called the
fundamental attenuation law. In the mono-energetic case the intensity of the beam is a multiple of the
number of photons, so we can also write the intensity as

𝐼 = 𝐼0𝑒−𝜇Δ𝑥 .

Now suppose that our slab is not homogeneous, but that the attenuation coefficient depends on the
position x within the slab. This means that we should solve

𝑑𝑁
𝑁 = 𝜇(𝑥)𝑑𝑥.
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Integration gives that the number of photons at position 𝑥 is given by

𝑁(𝑥) = 𝑁0𝑒−∫
𝑥
0 𝜇(𝑥′)𝑑𝑥′ .

Again, since we are considering the mono-energetic case, the same holds for the intensity of the beam.

𝐼(𝑥) = 𝐼0𝑒−∫
𝑥
0 𝜇(𝑥′)𝑑𝑥′ ,

or equivalently

log(𝐼0) − log(𝐼(𝑥)) = ∫
𝑥

0
𝜇(𝑥′)𝑑𝑥′.

This equation is called the integral form of the fundamental attenuation law, equation (2.3).

Figure 2.2: Visual representation of the fundamental attenuation law. The rectangle serves as the attenuation coefficient 𝜇(𝑥, 𝑦).
The beams travel from 𝑥 = 0 to 𝑥 = 𝑥𝑑.

Suppose that we measure the beam intensity at a detector for a fixed 𝑥𝑑, say 𝐼𝑑. Then we have that

log(𝐼0) − log(𝐼𝑑) = ∫
𝑥𝑑

0
𝜇(𝑥)𝑑𝑥. (2.4)

This means that the difference in the log of the intensity is determined by the integral over the linear
attenuation coefficient. Since 𝐼0 and 𝐼𝑑 are known, we also know what the value of the integral is.
Note that the attenuation coefficient is a function inℝ2, so a point is given by (𝑥, 𝑦). However, expression
(2.4) only takes the integral over 𝑥, so we get

log(𝐼0) − log(𝐼𝑑) = ∫
𝑥𝑑

𝑥0
𝜇(𝑥, 𝑦)𝑑𝑥. (2.5)

This expression relates something that can be measured, the log difference in intensity, with something
that we would like to reconstruct in X-ray tomography, namely the attenuation coefficient 𝜇(𝑥, 𝑦). This
equation will form the basis of the X-ray tomography reconstruction methods dicussed further in this
report.



3
Continuous X-ray Tomography

3.1. Introduction
In X-ray tomography we want to reconstruct the inside of an object, based on measurements in dif-
ference in intensity of an X-ray beam that travels through the object. This section will consider the
reconstruction methods of unfiltered and filtered backprojection for perfect, noise-free data. The con-
tents of this chapter are based on chapter 2 of the book by Mueller and Siltanen [2]. In section 3.2
the Radon transform will be introduced and it is shown how this transform relates to the fundamental
attenuation law derived in Chapter 2. Section 3.3 described the first reconstruction method of unfiltered
backprojection, for noise-free data. Next, section 3.4 describes the Fourier transform that will be used
in filtered backprojection. The Fourier transform and Radon transform shown to be related in section
3.5 by the central slice theorem. Finally, section 3.6 combines the content of the previous sections for
the reconstruction method of filtered backprojection for noise-free data.

3.2. Radon Transform
In this section I will describe the definition of the Radon transform and how this relates to our derived
equation for the difference in beam intensity, equation (2.4).

We interpret the 𝜃 ∈ ℝ as an angle. We denote the unit vector with angle 𝜃 with respect to the x-

axis by ⃗⃗⃗𝜃 = [cos𝜃sin𝜃] ∈ ℝ
2. Also, take 𝑥𝑥𝑥 = [𝑥𝑦] ∈ ℝ

2.

Definition 3.2.1 (Radon transform). The Radon transform of the function 𝑓(𝑥, 𝑦) depends on the an-
gular parameter 𝜃 and on the linear parameter 𝑠 ∈ ℝ in the following way:

ℜ𝑓(𝑠, ⃗⃗⃗𝜃) = ∫
𝑥𝑥𝑥⋅⃗⃗𝜃=𝑠

𝑓(𝑥𝑥𝑥)𝑑𝑥𝑥𝑥. (3.1)

7



8 3. Continuous X-ray Tomography

Figure 3.1: A visual representation of the radon transform. The radon transform is the line integral over the red line of the blue
surface (𝑓(𝑥)), with angle 𝜃 and radius 𝑠.

A visual representation of the radon transform can be found in figure 3.1. An alternative notation
for the Radon transform, using that

𝑥(𝑧) = 𝑧 sin𝜃 + 𝑠 cos𝜃 (3.2)
𝑦(𝑧) = −𝑧 cos𝜃 + 𝑠 sin𝜃, (3.3)

along the line 𝐿(𝑠, 𝜃) = {(𝑥, 𝑦)|𝑥 cos𝜃 + 𝑦 sin𝜃 = 𝑠} for some 𝑧 ∈ ℝ, is given by:

ℜ𝑓(𝑠, 𝜃) = ∫
∞

−∞
𝑓(𝑥(𝑧), 𝑦(𝑧))𝑑𝑧

= ∫
∞

−∞
𝑓[(𝑧 sin𝜃 + 𝑠 cos𝜃), (−𝑧 cos𝜃 + 𝑠 sin𝜃)]𝑑𝑧.

The Radon transform is a line integral of function 𝑓(𝑥, 𝑦) along the line with angle 𝜃 and radius 𝑠. We can
compare the Radon transform of a function with derived equation (2.5). We can see that the difference
in beam intensity along a line due to attenuation, is the same as the expression of the Radon transform
of that attenuation coefficient. This can also be represented mathematically. If we take 𝜃 = 𝜋

2 , so that
the line we integrate over in the Radon transform is a line parallel to the x-axis, we get the following
expressions for 𝑥 and 𝑦:

𝑥(𝑧) = 𝑧 sin 𝜋2 + 𝑠 cos
𝜋
2 = 𝑧

𝑦(𝑧) = −𝑧 cos 𝜋2 + 𝑠 sin
𝜋
2 = 𝑠

Using these expressions in the expression of the Radon transform of attenuation coefficient 𝜇(𝑥, 𝑦) we
get:

ℜ𝜇(𝑠, ⃗⃗⃗𝜃) = ∫
𝑥𝑥𝑥⋅⃗⃗𝜃=𝑠

𝜇(𝑥𝑥𝑥)𝑑𝑥𝑥𝑥,

= ∫
∞

−∞
𝜇(𝑥(𝑧), 𝑦(𝑧))𝑑𝑧,

= ∫
∞

−∞
𝜇(𝑧, 𝑠)𝑑𝑧,

= ∫
∞

−∞
𝜇(𝑥, 𝑦)𝑑𝑥,

= ∫
𝑥𝑑

0
𝜇(𝑥, 𝑦)𝑑𝑥,

= log(𝐼0) − log(𝐼𝑑). (3.4)
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We used that it is known that the X-ray beam travels from the source at 𝑥0 = 0 to the detector at 𝑥𝑑. The
Radon transform of the linear attenuation coefficient equals the log-difference in beam intensity after the
ray traveled through the object. Since we know the value of log(𝐼0) − log(𝐼𝑑) through measurements,
we also know the value of ℜ𝜇(𝑠, ⃗⃗⃗𝜃) for a certain angle 𝜃 and radius 𝑠.

3.3. Backprojection
The difference in beam intensity of the X-ray after it has traveled through an object is not uniquely de-
termined. Lots of attenuation coefficients can result in the same value of log(𝐼0) − log(𝐼𝑑) for a certain
angle of measurement. A solution to this problem of non-uniqueness is to consider the measurement
from different angles 𝜃 and combine the results.

Let ℜ𝜇(𝑠, 𝜃) be the Radon transform of the linear attenuation coefficient 𝜇 and take a fixed angle 𝜃0,
see figure 3.2

ℜ𝜇(𝑠, 𝜃0) = ∫
𝑥𝑥𝑥⋅⃗⃗ ⃗⃗ ⃗𝜃0=𝑠

𝜇(𝑥𝑥𝑥)𝑑𝑥𝑥𝑥.

Figure 3.2: The Radon transform line integral for a fixed angle 𝜃0 but multiple radii 𝑠 though a rectangle with a hole. The darker
colours indicate lower valued measurements, and the white colours indicate higher value measurements.

This corresponds to the measurement of difference in beam intensity from an angle 𝜃0, as described
in section 3.2. We can reason that if the value ℜ𝜇(𝑠, 𝜃0) is large for a certain value 𝑠, then 𝜇 must be
large somewhere along the line 𝑥𝑥𝑥 ⋅ ⃗⃗⃗⃗⃗𝜃0 = 𝑠. We can fix 𝑠 at 𝑠0 and assign every point on the line
𝐿(𝑠0, 𝜃0) = {(𝑥, 𝑦)|𝑥 cos(𝜃0) + 𝑦 sin(𝜃0) = 𝑠0} the value of ℜ𝜇(𝑠0, 𝜃0). This means that the points
(𝑥(𝑧), 𝑦(𝑧)), as given in equation (3.2) get the value ℜ𝜇(𝑠0, 𝜃0) for all 𝑧. If this is done for all values of
𝑠 we get the backprojection image for angle 𝜃0:

𝑏𝜃0(𝑥, 𝑦) = ℜ𝜇(𝑠, 𝜃0).

The measurement with a fixed angle of a rectangle with a hole inside can be seen in figure 3.3a. The
backprojection image of this measurement is given in figure 3.3b.

(a) Measurements for a fixed angle and multiple radii 𝑠. The red line
represents measurement ℜ𝜇(𝑠, 𝜃0). (b) The backprojection image for angle 𝜃0.

Figure 3.3: The measurement for a fixed angle 𝜃0 and it’s corresponding backprojection image.
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If we do this for all angles 𝜃 from 0 to 𝜋 and overlay all obtained backprojection images by adding
them up by integral, we get the backprojection summation image

𝜇𝑏(𝑥, 𝑦) = ∫
𝜋

0
𝑏𝜃(𝑥, 𝑦)𝑑𝜃

= ∫
𝜋

0
ℜ𝜇(𝑠0, 𝜃)𝑑𝜃

= ∫
𝜋

0
log

𝐼0(𝑠0, ⃗⃗⃗𝜃)
𝐼𝑑(𝑠0, ⃗⃗⃗𝜃)

𝑑𝜃. (3.5)

In figure 3.4 one can see a second measurement for a different angle of the same rectangle with a
hole. The backprojection image of this second angled is combined with the backprojection image from
figure 3.3 to form a combined backprojection summation image.

(a) Measurement for a different fixed angle and multiple radii 𝑠. The red
line represents the measurement ℜ𝜇(𝑠, 𝜃0). (b) The backprojection image for a fixed angle.

(c) The combined backprojection summation images of two backprojec-
tion summation images.

Figure 3.4: The backprojection image for one fixed angle and the combined backprojection summation images for two different
angles.
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In figure 3.5 four different measurements of the rectangle with hole are combined to form a back-
projection summation image. In this simple reconstruction we can, although vaguely, recognize the
rectangle and the hole inside.

Figure 3.5: The backprojection summation image of the rectangle with a hole (see figure 3.2) for four different measurement
angles.

Here 𝜇𝑏(𝑥, 𝑦) is a reconstruction of the original attenuation function 𝜇(𝑥, 𝑦). In figure 3.6b one can
see the backprojection summation image of the Shepp-Logan phantom, compared to the original. One
can see that the backprojection image is quite blurry, which might cause a problem when analyzing
a patient’s brain. This blurriness is the result of the way unfiltered backprojection works. It takes the
measurements from one angle and spreads it out evenly in the reconstruction. If two points lie on
a line with the same angle as the measurement angle, then these two points will receive the same
reconstructed value for that angle, even if one point lies inside the object and the other not. As a result
it is difficult to have clear sharp borders, as points that lie close to the object will also cumulatively
receive a reconstruction value, while it should be zero.

(a) Original Shepp-Logan phantom. (b) Backprojection summation image.

Figure 3.6: The original Shepp-Logan phantom compared to the backprojection summation image.

3.4. Fourier Transform
The backprojection summation image found in equation (3.5) produces a reconstruction of the attenu-
ation of the measured object, but the image is quite blurry. A way to get rid of this blurriness is to apply
mathematical filters to the measured (noise-free) data. This can be done by a Fourier transform. In
this section I will give the definition of a Fourier transform and some of its properties, and explain the
process of how it can be applied in our case.
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Definition 3.4.1 (Fourier transform). The Fourier transform of a function 𝑓 defined on ℝ𝑛 is given by

𝔉𝑓(𝑥𝑥𝑥)(𝜉𝜉𝜉) = ̂𝑓(𝜉𝜉𝜉) = 1
(2𝜋)𝑛/2 ∫ℝ𝑛

𝑓(𝑥𝑥𝑥)𝑒−𝑖𝑥𝑥𝑥⋅𝜉𝜉𝜉𝑑𝑥𝑥𝑥.

Then the Fourier transfomrs in ℝ and ℝ2 are expressed as

In ℝ ∶ 𝔉𝑓(𝑥)(𝜉) = ̂𝑓(𝑥) = 1
√2𝜋

∫
∞

−∞
𝑓(𝑥)𝑒−𝑖𝑥𝜉𝑑𝑥

In ℝ𝟚 ∶ 𝔉𝑓(𝑥, 𝑦)(𝜉1, 𝜉2) = ̂𝑓(𝑥, 𝑦) = 1
2𝜋 ∫

∞

−∞
∫
∞

−∞
𝑓(𝑥, 𝑦)𝑒−𝑖(𝑥𝜉1+𝑦𝜉2)𝑑𝑦𝑑𝑥

Definition 3.4.2 (One-dimensional Fourier transform, scalar parameter). The one-dimensional Fourier
transform of a function in the scalar parameter, ℎ(𝑡, ⃗⃗⃗𝜃) is given by

𝔉ℎ(𝑡, ⃗⃗⃗𝜃)(𝑠) = ℎ̃(𝑠, ⃗⃗⃗𝜃) = 1
√2𝜋

∫
ℝ
ℎ(𝑡, ⃗⃗⃗𝜃)𝑒−𝑖𝑡𝑠𝑑𝑡.

The Fourier transform decomposes a function 𝑓 into complex exponentials. The transform gives
the amplitude that corresponds to sine and cosine waves with amplitude 𝜉. By decomposing the func-
tion 𝑓 into complex exponentials with frequencies 𝜉 it is easier to filter out frequencies that cause the
blurriness. By removing the blurring frequencies from the data, the reconstruction will be of a sharper,
less blurry quality.

One can also describe the inverse Fourier transform, or the Fourier inversion formula.

Definition 3.4.3 (Fourier Inversion Formula). Let 𝑓(𝑥𝑥𝑥) be a function in ℝ𝑛. The Fourier inversion
formula is given by

𝔉−1𝑓(𝜉𝜉𝜉)(𝑥𝑥𝑥) = ̂𝑓−1(𝑥𝑥𝑥) = 1
(2𝜋)𝑛/2 ∫ℝ𝑛

𝑓(𝜉𝜉𝜉)𝑒𝑖𝑥𝑥𝑥⋅𝜉𝜉𝜉𝑑𝜉𝜉𝜉.

Theorem 3.4.1 (Fourier Inversion Theorem). Let ̂𝑓(𝜉𝜉𝜉) be the Fourier transform of a function 𝑓(𝑥𝑥𝑥) in
ℝ𝑛, given by Definition 3.4.1. Then the Fourier inversion formula of a Fourier transform is again the
original function 𝑓(𝑥𝑥𝑥),

𝑓(𝑥𝑥𝑥) = 1
(2𝜋)𝑛/2 ∫ℝ𝑛

̂𝑓(𝜉𝜉𝜉)𝑒𝑖𝑥𝑥𝑥⋅𝜉𝜉𝜉𝑑𝜉𝜉𝜉,

that is
𝔉−1[𝔉𝑓(𝑥𝑥𝑥)(𝜉𝜉𝜉)](𝑥𝑥𝑥) = 𝔉−1 ̂𝑓(𝜉𝜉𝜉)(𝑥𝑥𝑥) = 𝑓(𝑥𝑥𝑥).

A proof of this theorem can be found in the text by Wong and Yam [6].

3.5. Central-slice Theorem
The Radon and Fourier transform are connected, known as the central-slice theorem. This theorem
states that the 1D Fourier transform of the Radon transform of a function 𝑓 equals a slice from the 2D
Fourier transform of the same function 𝑓. The 1D Fourier transform equals a line passing through the
origin of the 2D Fourier transform of the object the angle corresponding to the Radon transform.

I will first state the central-slice theorem and give a proof. After that I will derive an expression to
reconstruct the attenuation coefficient based only on measurable information.

Theorem 3.5.1 (Central-slice Theorem). Let f be an absolutely integrable function defined on the whole
real line. For any real number 𝑟 and unit vector ⃗⃗⃗𝜃, we have the identity

ℜ̃𝑓(𝑟, ⃗⃗⃗𝜃) = ̂𝑓(𝑟 ⃗⃗⃗𝜃).
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Proof. Let f be an absolutely integrable function defined in the whole real line. Then from Definition
3.4.2 we get

ℜ̃𝑓(𝑟, ⃗⃗⃗𝜃) = 1
√2𝜋

∫
∞

−∞
ℜ𝑓(𝑠, ⃗⃗⃗𝜃)𝑒−𝑖𝑠𝑟𝑑𝑠,

= 1
√2𝜋

∫
∞

−∞
[∫
𝑥𝑥𝑥⋅⃗⃗𝜃=𝑠

𝑓(𝑥𝑥𝑥)𝑑𝑥𝑥𝑥]𝑒−𝑖𝑠𝑟𝑑𝑠,

= 1
√2𝜋

∫
∞

−∞
[∫

∞

−∞
𝑓(𝑥(𝑧), 𝑦(𝑧))𝑑𝑧]𝑒−𝑖𝑠𝑟𝑑𝑠,

= 1
√2𝜋

∫
∞

−∞
∫
∞

−∞
𝑓(𝑥(𝑧), 𝑦(𝑧))𝑒−𝑖𝑠𝑟𝑑𝑧𝑑𝑠,

where we used the definition of the Radon transform, equation 3.1. We can now change the integration
variables 𝑧 and 𝑠 to 𝑥 and 𝑦 by a variable transformation. We have to calculate the Jacobian:

𝑥 = 𝑧 sin𝜃 + 𝑠 cos𝜃 ⇒ 𝜕𝑥
𝜕𝑧 = sin𝜃, 𝜕𝑥𝜕𝑠 = cos𝜃,

𝑦 = −𝑧 cos𝜃 + 𝑠 sin𝜃 ⇒ 𝜕𝑦
𝜕𝑧 = − cos𝜃,

𝜕𝑦
𝜕𝑠 = sin𝜃,

𝐽 = |(sin𝜃)2 − (− cos𝜃)2| = 1.
This change of variables gives

ℜ̃𝑓(𝑟, ⃗⃗⃗𝜃) = 1
√2𝜋

∫
∞

−∞
∫
∞

−∞
𝑓(𝑥(𝑧), 𝑦(𝑧))𝑒−𝑖𝑠𝑟𝑑𝑧𝑑𝑠

= 1
√2𝜋

∫
∞

−∞
∫
∞

−∞
𝑓(𝑥, 𝑦)𝑒−𝑖(𝑥 cos𝜃+𝑦 sin𝜃)𝑟𝑑𝑦𝑑𝑥

= 1
√2𝜋

∫
∞

−∞
∫
∞

−∞
𝑓(𝑥, 𝑦)𝑒−𝑖(𝑥𝑟 cos𝜃+𝑦𝑟 sin𝜃)𝑑𝑥𝑑𝑦

= ̂𝑓(𝑟 cos𝜃, 𝑟 sin𝜃)
= ̂𝑓(𝑟 ⃗⃗⃗𝜃).

Thus the central slice theorem says that if we put a Fourier transform on our Radon transform, which
equals our measurement data in case of the attenuation coefficient, this is the same as the line 𝑟⃗⃗⃗𝜃 in
the 2D Fourier transform of the attenuation coefficient.

It is useful to obtain an expression of 𝑓(𝑥, 𝑦), or 𝜇(𝑥, 𝑦) in case of the attenuation coefficient, in terms
of the measurable quantities including a filter by means of a Fourier transform. Note that the measure-
ment data is perfect, meaning that it does not include noise. This is a way to write 𝑓(𝑥, 𝑦) given perfect
data.

Theorem 3.5.2 (Radon inversion formula). If 𝑓 is an absolutely integrable function defined on the real
line and ̂𝑓 is absolutely integrable, then

𝑓(𝑥𝑥𝑥) = 1
√2𝜋

∫
𝜋

0
∫
∞

−∞
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃|𝑠|𝑑𝑠𝑑𝜃. (3.6)

Before we prove this theorem, I state two lemmas and their proofs.

Lemma 3.5.3. Denote the Radon transform of a function 𝑓(𝑥, 𝑦) in ℝ2 as ℜ𝑓(𝑠, ⃗⃗⃗𝜃), then

ℜ𝑓(𝑠, ⃗⃗⃗𝜃) = ℜ𝑓(−𝑠,−⃗⃗⃗𝜃).
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Proof. The Radon transform of a function 𝑓(𝑥, 𝑦), which is denoted by ℛ𝑓(𝑠, ⃗⃗⃗𝜃), can be written as

ℜ𝑓(𝑠, ⃗⃗⃗𝜃) = ∫
𝑥𝑥𝑥⋅⃗⃗𝜃=𝑠

𝑓(𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 = ∫
∞

−∞
𝑓(𝑥(𝑧), 𝑦(𝑧))𝑑𝑧, (3.7)

where 𝑥(𝑧) = 𝑧 sin𝜃 + 𝑠 cos𝜃 and 𝑦(𝑧) = −𝑧 cos𝜃 + 𝑠 sin𝜃. Now again take the Radon transform,
but with −𝑠 and −⃗⃗⃗𝜃,

ℜ𝑓(−𝑠,−⃗⃗⃗𝜃) = ∫
𝑥𝑥𝑥⋅−⃗⃗𝜃=−𝑠

𝑓(𝑥𝑥𝑥)𝑑𝑥𝑥𝑥 = ∫
∞

−∞
𝑓(�̄�(𝑧), �̄�(𝑧))𝑑𝑧, (3.8)

where

�̄�(𝑧) = 𝑧(− sin𝜃) + (−𝑠)(− cos𝜃) = −𝑧 sin𝜃 + 𝑠 cos𝜃
�̄�(𝑧) = −𝑧(− cos𝜃) + (−𝑠)(− sin𝜃) = 𝑧 cos𝜃 + 𝑠 sin𝜃.

Note that

�̄�(−𝑧) = −(−𝑧) sin𝜃 + 𝑠 cos𝜃 = 𝑧 sin𝜃 + 𝑠 cos𝜃 = 𝑥(𝑧)
�̄�(−𝑧) = (−𝑧) cos𝜃 + 𝑠 sin𝜃 = −𝑧 cos𝜃 + 𝑠 sin𝜃 = 𝑦(𝑧).

A substitution of 𝑧 = −𝑢 into equation (3.8), using the properties mentioned above, we get

ℜ𝑓(−𝑠,−⃗⃗⃗𝜃) = ∫
𝑥𝑥𝑥⋅−⃗⃗𝜃−𝑠

𝑓(𝑥𝑥𝑥)𝑑𝑥𝑥𝑥

= ∫
∞

−∞
𝑓(�̄�(𝑧), �̄�(𝑧))𝑑𝑧

= ∫
−∞

∞
𝑓(�̄�(−𝑢), �̄�(−𝑢))(−1)𝑑𝑢

= ∫
∞

−∞
𝑓(𝑥(𝑢), 𝑦(𝑢))𝑑𝑢

= ℜ𝑓(𝑠, ⃗⃗⃗𝜃),
as equation (3.7). Thus we conclude that

ℜ𝑓(𝑠, ⃗⃗⃗𝜃) = ℜ𝑓(−𝑠,−⃗⃗⃗𝜃).

Lemma 3.5.4. Denote the Radon transform of a function 𝑓(𝑥, 𝑦) in ℝ2 as ℜ𝑓(𝑠, ⃗⃗⃗𝜃), and the Fourier
transform of this radon transform as ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃). Then

ℜ̃𝑓(−𝑠,−⃗⃗⃗𝜃) = ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃).
Proof. Using Lemma 3.5.3 and applying a change of variables with 𝑢 = −𝑡, and thus 𝑑𝑢 = −𝑑𝑡, we
get

ℜ̃𝑓(−𝑠,−⃗⃗⃗𝜃) = 1
√2𝜋

∫
∞

−∞
ℜ𝑓(𝑡, −⃗⃗⃗𝜃)𝑒−𝑖𝑡(−𝑠)𝑑𝑡

= 1
√2𝜋

∫
∞

−∞
ℜ𝑓(𝑡, −⃗⃗⃗𝜃)𝑒−𝑖(−𝑡)𝑠𝑑𝑡

= 1
√2𝜋

∫
−∞

∞
ℜ𝑓(−𝑢,−⃗⃗⃗𝜃)𝑒−𝑖𝑢𝑠(−1)𝑑𝑢

= 1
√2𝜋

∫
∞

−∞
ℜ𝑓(−𝑢,−⃗⃗⃗𝜃)𝑒−𝑖𝑢𝑠𝑑𝑢

= 1
√2𝜋

∫
∞

−∞
ℜ𝑓(𝑢, ⃗⃗⃗𝜃)𝑒−𝑖𝑢𝑠𝑑𝑢

= ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃).
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Now we can prove Theorem 3.5.2.

Proof Theorem 3.5.2. By the Fourier inversion theorem, Theorem 3.4.1 we know that for 𝑥𝑥𝑥 ∈ ℝ2

𝑓(𝑥𝑥𝑥) = 1
(2𝜋)𝑛/2 ∫ℝ𝑛

̂𝑓(𝜉𝜉𝜉)𝑒𝑖𝑥𝑥𝑥⋅𝜉𝜉𝜉𝑑𝜉𝜉𝜉,

where 𝑥𝑥𝑥 = [𝑥𝑦] and 𝜉𝜉𝜉 = [
𝜉1
𝜉2]. We can now do a change of variables, from 𝜉𝜉𝜉 to polar coordinates 𝑠 and

𝜃, by using that 𝜉𝜉𝜉 = (𝑠 cos𝜃, 𝑠 sin𝜃). This gives

𝑓(𝑥, 𝑦) = 1
2𝜋 ∫

2𝜋

0
∫
∞

0
̂𝑓(𝑠 ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃.

We can now recognize the term ̂𝑓(𝑠 ⃗⃗⃗𝜃) from Theorem 3.5.1, the central slice theorem and can therefore
replace the term by the 1D Fourier transform of the Radon transform of 𝑓, ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃).

𝑓(𝑥, 𝑦) = 1
2𝜋 ∫

2𝜋

0
∫
∞

0
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃.

Although this equation is correct, in X-ray computed tomography we usually take 𝜃 ∈ [0, 𝜋], so we
would also like to have this in our integral expression for 𝑓. We can split the integral into a part where
we integrate 𝜃 from 0 to 𝜋, and into a part where we integrate 𝜃 from 𝜋 to 2𝜋. Note that sin(𝜃 − 2𝜋) =
sin(𝜃) and cos(𝜃 − 2𝜋) = cos(𝜃), so we can replace the second part by an integral that integrates 𝜃
from −𝜋 to 0. Now we can apply Lemma 3.5.4 and use the even property.

𝑓(𝑥, 𝑦) = 1
2𝜋 ∫

2𝜋

0
∫
∞

0
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃,

= 1
2𝜋 ∫

𝜋

0
∫
∞

0
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃 + 1

2𝜋 ∫
2𝜋

𝜋
∫
∞

0
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃

= 1
2𝜋 ∫

𝜋

0
∫
∞

0
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃 + 1

2𝜋 ∫
0

−𝜋
∫
∞

0
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃

= 1
2𝜋 ∫

𝜋

0
∫
∞

0
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃 + 1

2𝜋 ∫
𝜋

0
∫
0

−∞
ℜ̃𝑓(−𝑟𝑠, −⃗⃗⃗𝜃)𝑒−𝑖𝑠𝑥𝑥𝑥⋅−⃗⃗𝜃(−𝑠)𝑑𝑠𝑑𝜃

= 1
2𝜋 ∫

𝜋

0
∫
∞

0
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃𝑠𝑑𝑠𝑑𝜃 + 1

2𝜋 ∫
𝜋

0
∫
0

−∞
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃(−𝑠)𝑑𝑠𝑑𝜃

= 1
2𝜋 ∫

𝜋

0
∫
∞

−∞
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃|𝑠|𝑑𝑠𝑑𝜃. (3.9)

From the above we have established a filter, which we will denote by

𝔊ℜ𝑓(𝑡, ⃗⃗⃗𝜃) = 1
2𝜋 ∫

∞

−∞
ℜ̃𝑓(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑡|𝑠|𝑑𝑠. (3.10)

One can see that low frequencies are oppressed by the term |𝑠|, while high frequencies are ampli-
fied. Since we integrate using polar coordinates, the information for 𝑠 small, is measured more than
information for 𝑠 large. In the reconstruction method of backprojection in section 3.3 we add up all the
measured values by means of an integral, so the middle of the reconstructed image is sharper than the
outer edges of the reconstructed image. Equation (3.10) gives a filter that, by oppressing and ampli-
fying certain frequencies, ensures that the reconstructed image is of the same sharpness throughout.
Note that we consider perfect, noiseless data. In case of noisy data, the noise for high frequencies will
also be amplified.
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3.6. Filtered Backprojection
Equation (3.9) gives us a filtered reconstruction of a function 𝑓(𝑥, 𝑦). If we now apply this to the linear
attenuation coefficient 𝜇(𝑥, 𝑦) we get the filtered backprojection summation image

𝜇𝑓𝑏(𝑥, 𝑦) =
1
√2𝜋

∫
𝜋

0
∫
∞

−∞
ℜ̃𝜇(𝑠, ⃗⃗⃗𝜃)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃|𝑠|𝑑𝑠𝑑𝜃. (3.11)

From equation (3.4), we know that ℜ𝜇(𝑠, ⃗⃗⃗𝜃) is an expression for our measurement result log 𝐼0(𝑠,⃗⃗𝜃)
𝐼𝑑(𝑠,⃗⃗𝜃)

.
Replacing in equation (3.11) gives the filtered backprojection summation image in terms of the mea-
surement:

𝜇𝑓𝑏(𝑥, 𝑦) =
1
√2𝜋

∫
𝜋

0
∫
∞

−∞
l̃og( 𝐼0(𝑠,

⃗⃗⃗𝜃)
𝐼𝑑(𝑠, ⃗⃗⃗𝜃)

)𝑒𝑖𝑠𝑥𝑥𝑥⋅⃗⃗𝜃|𝑠|𝑑𝑠𝑑𝜃.

In figure 3.7 one can see the difference in the unfiltered backprojection summation image compared
to the filtered one. The filtered backprojection gives a perfect reconstruction, as the data contains no
noise.

(a) Original Shepp-Logan phantom. (b) Unfiltered backprojection. (c) Filtered backprojection.

Figure 3.7: The original Shepp-Logan phantom compared to the unfiltered and filtered backprojection summation images.



4
X-ray Tomography as a Discrete Linear

Inverse Problem

4.1. Introduction
In this chapter I will derive X-ray tomography as a discrete linear inverse problem where the data is
assumed to contain noise. The problem will be derived by introducing linear inverse problems in section
4.2 and ill-posedness of those problems in section 4.3. Next, the general method of naive inversion is
considered, together with the downsides of this method. In section 4.5 singular value decomposition
is explained, as this is needed in section 4.6, where the least-squares solution, commonly used for
naive reconstruction, is derived. Finally, section 4.7 covers inverse crime that can occur when solving
linear inverse problems with simulated data. Solutions to X-ray tomography with noisy data as a linear
inverse problem will be covered in chapter 5.

4.2. Linear Inverse Problems
An inverse problem is always related to a direct problem. In a direct problem we have a given cause
and are want to predict the effect. In an inverse problem we know the effect and the event, but are
interested in predicting the cause.

As an example, suppose we take a photograph of a building. In this direct problem, the building it-
self is the cause, which we call 𝜇. The taking a picture is the event, which is given by 𝐴. The resulting
image of the building is the effect, 𝑚. If we know all the details about the building, and know the mech-
anism with which the camera takes a picture, we can determine what the image will look like. That is,
if we have 𝐴 and 𝜇, we can calculate 𝑚 by𝑚 = 𝐴𝜇. Now suppose that we take the picture, but the lens
was not completely focused. Then the image will be out of focus and thus blurry. Then the event of
taking a picture is given by a new �̃�. If we know how unfocused the lens was, we can determine the
blurriness of the image, without having to see the blurry image. We known the cause, the building, and
know the event, the unfocused lens taking a picture, and can thus determine the effect, which is the
blurry image. We know �̃� and 𝜇, and can thus calculate𝑚, by𝑚 = �̃�𝜇. We will now consider the inverse
problem corresponding to the direct problem of the unfocused image of the building. If we know of the
event, the unfocused lens taking a picture, and know the effect, the blurry image of a building, can we
determine the cause, which is the building? So if we have 𝑚 and �̃�, can we recover 𝜇 by 𝑚 = �̃�𝜇?

X-ray computed tomography can also be viewed as a linear inverse problem. In this case we have
an event, the CT scan which is modelled by 𝐴, that transforms a cause, for example the brain of a
patient 𝜇, into an effect, the CT image of the brain 𝑚. The direct problem is

Given the details of a patient’s brain and the CT machine, produce measurements resulting
in the CT image of the brain.

We know all about the cause and the event, and can thus theoretically determine the effect. Now
consider the inverse problem:

17
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Given the CT machine and the measurements, reconstruct the patient’s brain.

As this inverse problem results in a minimally-invasive way to look into a patient’s brain to determine
possible injuries of illness, it is a very important inverse problem to consider.

We will now consider a mathematical expression of the direct and inverse problem for X-ray tomogra-
phy. I will not consider the continuous case, but will directly work with the discrete case, since realistic
X-ray computed tomography can only be done in the discrete case.

Cause: Attenuation coefficient First we want to find a mathematical expression for the cause. In
the case of X-ray tomography this is what we want to measure, for example the tissue density in a
patient’s brain. A patient’s brain is a 3-dimensional object, but we will consider only 2D slices. We
say that this tissue density is related to the attenuation coefficient 𝜇(𝑥, 𝑦), a function in ℝ2. As said
before, we cannot realistically reconstruct 𝜇(𝑥, 𝑦) as a continuous function, due to limitation of the CT
scanning machine and the computational reconstruction. Therefore, we need to determine a grid for
the relevant domain of 𝜇(𝑥, 𝑦). We need to divide this area into pixels and as an effect the value of
𝜇(𝑥, 𝑦) is constant within that pixel. The more pixels one chooses, the more details the reconstruction
can show. The detail in the image also depends on the number of measurements taken. The more
pixels one chooses, the more computing power is needed to make the reconstruction. We have to split
the relevant area within the domain of 𝜇(𝑥, 𝑦) inℝ2 into pixels. We will divide the x-axis into 𝑏𝑥 intervals,
and do the same for the y-axis, dividing it into 𝑏𝑦 intervals. It is convenient to make the grid symmetric,
thus taking 𝑏𝑥 = 𝑏𝑦. For convenience, the grids used in this report are symmetric. The total number
of pixel is given by 𝐵 = 𝑏𝑥 × 𝑏𝑦. As a result of this discretization the attenuation coefficient 𝜇(𝑥, 𝑦) is
constant within a pixel, and we denote this value as 𝜇𝑏, where 1 ≤ 𝑏 ≤ 𝐵.

Thus the cause in our X-ray tomography problem is given by 𝜇𝜇𝜇 1, which is a vector in ℝ𝐵, where the B
is determined by the chosen size of the grid. The entries of the vector 𝜇𝜇𝜇 are 𝜇𝑏, the constant value of
the attenuation coefficient within pixel 𝑏.

Effect: Measurements Next we need to mathematically express the effect, which is the measure-
ments as a result of the CT scan. In the case of continuous X-ray tomography we measure by sending
X-ray beams through the patient’s head and measure the difference in intensity. We do this for beams
with different angles 𝜃 and radii 𝑠. The discretization of the angles and radii is determined by the CT
machine taking the measurements. Let 𝜃 be sampled with equidistant steps over the half circle:

𝜃𝑗 =
𝑗 − 1
𝐽 𝜋, where 1 ≤ 𝑗 ≤ 𝐽.

𝐽 is the total number of steps. Let 𝑠 be sampled with with equidistant steps over an interval from −𝑆 to
𝑆:

𝑠𝜈 = −𝑆 + 2𝑆
𝜈 − 1
𝑁 , where 1 ≤ 𝜈 ≤ 𝑁.

𝑁 is the total number of steps. If we measure from 𝐽 different angles, and for each angle measure
from 𝑁 different distances to the origin, there are a total of 𝐾 = 𝐽 × 𝑁 measurements taken. Since
we take 𝐾 measurements, the resulting mathematical expression is a vector of 𝐾 entries, one for each
measurement.

Thus the effect in our X-ray tomography is given by𝑚𝑚𝑚, which is a vector in ℝ𝐾, where 𝐾 is determined
by the chosen number of measurements.

1The bold notation 𝜇𝜇𝜇 refers to the discretized version of the continuous attenuation coefficient, denoted with a non-bold 𝜇(𝑥, 𝑦).
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Figure 4.1: Two discrete measurements of a rectangle with a hole in the middle.

Event: CT scan Next we need to mathematically express the event, which is the modelling of the
CT machine taking the measurements. As described before, the event will transform the object into
a measurement. Our object is the continuous attenuation coefficient 𝜇(𝑥, 𝑦). The mapping 𝐴 is also
continuous, but naturally discrete due to the measurement device. In order to compute reconstructions
using a computer, 𝐴, just as 𝜇(𝑥, 𝑦), has to be further discretised. The measurement is given by the
𝐾×1 vector𝑚𝑚𝑚. If we want to find a mathematical expression that transforms 𝜇𝜇𝜇 into𝑚𝑚𝑚, we need a 𝐾×𝐵
matrix 𝐴. Each row of this matrix will give the values with which the attenuation coefficient in each
pixel is transformed. The sum of all these transformations will result in the measurement. But how do
we determine the entries of this matrix 𝐴? In the continuous case, we determined the log difference in
intensity by summing over the attenuation coefficient times an infinitesimally small distance, resulting in
the integral. In the discrete case, we can do the same, but will not let the distance become very small.
We thus consider the attenuation coefficient times the distance, summing over all distance intervals,
the pixels in this case. So, for one measurement, the entries of the row of the matrix 𝐴 are given by
the distance that beam travels through a pixel. If that row is multiplied by the values in 𝜇𝜇𝜇, we get the
sum of the distance in each pixel, times the attenuation coefficient in that pixel, which is exactly what
we wanted. Mathematically this is given by

𝑚𝑠𝜈 ,𝜃𝑗 =
𝐵

∑
𝑏=1

𝑎𝑏,(𝜃𝑗 ,𝑠𝜈)𝜇𝑏 .

Thus the event in our X-ray tomography case is given by the 𝐾 × 𝐵 matrix 𝐴, where the entries are
determined by the distance an X-ray beam with angle 𝜃𝑗 and radius 𝑠𝜈 travels through pixel 𝑏.

Figure 4.2: The inside of a tomography machine, https://oncologymedicalphysics.com/
ct-design-and-operation/.

Error For each measurement there is an error. This can either be caused by the calibration of the
machine, or physical events such as Compton scatter. Since we have an error term for each measure-

https://oncologymedicalphysics.com/ct-design-and-operation/
https://oncologymedicalphysics.com/ct-design-and-operation/
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ment, the error vector containing the individual errors will be a vector in ℝ𝐾.

X-ray tomography in matrix form Combining the results from above we get the following discrete
mathematical form of the problem of X-ray tomography.

𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖, (4.1)

or in complete matrix form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑚1,1
𝑚1,2
𝑚1,3
⋮
𝑚𝐽,1
⋮

𝑚𝐽,𝑁−1
𝑚𝐽,𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎1,(1,1) 𝑎2,(1,1) 𝑎3,(1,1) ⋯ 𝑎𝐵−1,(1,1) 𝑎𝐵,(1,1)
𝑎1,(1,2) 𝑎2,(1,2) 𝑎3,(1,2) ⋯ 𝑎𝐵−1,(1,2) 𝑎𝐵,(1,2)
𝑎1,(1,3) 𝑎2,(1,3) 𝑎3,(1,3) ⋯ 𝑎𝐵−1,(1,3) 𝑎𝐵,(1,3)
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎1,(𝐽,1) 𝑎2,(𝐽,1) 𝑎3,(𝐽,1) ⋯ 𝑎𝐵−1,(𝐽,1) 𝑎𝐵,(𝐽,1)
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑎1,(𝐽,𝑁−1) 𝑎2,(𝐽,𝑁−1) 𝑎3,(𝐽,𝑁−1) ⋯ 𝑎𝐵−1,(𝐽,𝑁−1) 𝑎𝐵,(𝐽,𝑁−1)
𝑎1,(𝐽,𝑁) 𝑎2,(𝐽,𝑁) 𝑎3,(𝐽,𝑁) ⋯ 𝑎𝐵−1,(𝐽,𝑁) 𝑎𝐵,(𝐽,𝑁)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜇1
𝜇2
𝜇3
⋮

𝜇𝐵−1
𝜇𝐵

⎤
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜖1,1
𝜖1,2
𝜖1,3
⋮
𝜖𝐽,1
⋮

𝜖𝐽,𝑁−1
𝜖𝐽,𝑁

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Remember that the inverse problem of X-ray tomography is given by

Given the CT machine and the measurements, reconstruct the patient’s brain.

Now that we have determined a mathematical expression for our problem, given by equation (4.1), we
can mathematically write down the inverse problem as:

Given𝑚𝑚𝑚 by𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖, determine 𝜇𝜇𝜇.
The MATLAB code by Mueller and Siltanen [7] can be used to compute the matrix 𝐴. The number

of pixels 𝐵 can be chosen, and the number of measurement angles is set to √𝐵. The number of lines
per measurement, the radii, is determined by the radon function of MATLAB and cannot be chosen. In
figure 4.3 one can see a visual representations of the computed matrices A for 4, 8, 16 and 32 pixels.
In the captions the sizes of the matrices are given. One can see that even for a relatively small pixel
grid of 32×32 the matrix becomes very large. For 64×64 or more pixels the computation of 𝐴 becomes
computationally demanding.

4.3. Well-posed and ill-posed problems
Remember our derived model for the linear discrete inverse problem of X-ray tomography, where we
had

𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖.
• 𝑚𝑚𝑚 ∈ ℝ𝐾 is the vector of measurements. 𝐾 is the number of measurements.

• 𝜇𝜇𝜇 ∈ ℝ𝐵 is the vector of constant attenuation coefficients in pixels of our measurement area. 𝐵 is
the number of pixels, determined by 𝑏𝑥 × 𝑏𝑦.

• 𝐴 ∈ ℝ𝐾×𝐵 is the matrix that transforms the attenuation coefficients into measurements.

• 𝜖𝜖𝜖 ∈ ℝ𝐾 is the vector containing the error per measurement.

Before we talk about well-posed and ill-posed problems, we need to write down some more information
about the matrix 𝐴. It is a linear operator that maps from its domain, 𝒟(𝐴) in the model space ℝ𝐵, to
the image 𝐴(𝒟(𝐴)) in the data space ℝ𝐾. A visual representation can be seen in image.

𝐴 ∶ 𝒟(𝐴) ⊂ ℝ𝐵 → 𝐴(𝒟(𝐴)) ⊂ ℝ𝐾

Although the error term is random, it might be possible to estimate an upper bound, so

‖𝜖‖ℝ𝐾 ≤ 𝛿,

where 𝛿 is the upper bound. This upper bound can be based on conclusions from calibration tests of
the CT machine. When working with real-life data it is best to not to make any assumptions on the
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(a) 4 × 4 = 16 pixels and 6 × 9 = 36 measurements. (b) 8 × 8 = 64 pixels and 8 × 15 = 120 measurements.

(c) 16 × 16 = 256 pixels and 16 × 27 = 432 measurements. (d) 32 × 32 = 1024 pixels and 32 × 49 = 1568 measurements.

Figure 4.3: The nonzero elements of matrix 𝐴 for different numbers of pixels (columns) and measurements (rows). ’Nz’ indicates
the number of nonzero elements.

level of noise incorporated in the measurement without basing them on tests. In this section, the upper
bound for the error is used to mathematically and visually explain that noise can cause ill-posedness,
particularly instability, regardless of the size of the noise.

Due to the error and the upper bound for the error, we know that the measurement vector𝑚𝑚𝑚 lies within
𝐵(𝐴𝜇𝜇𝜇)𝛿, the sphere or circle in ℝ𝐾 with center point 𝐴𝜇𝜇𝜇 and radius 𝛿, as can be seen in figure 4.4. If
we consider this argument the other way around, we know that the real value 𝐴𝜇𝜇𝜇 lies within 𝐵(𝑚𝑚𝑚)𝛿, the
sphere or circle in ℝ𝐾 with center point 𝑚𝑚𝑚 and radius 𝛿, since the maximum distance between 𝑚𝑚𝑚 and
𝐴𝜇𝜇𝜇 is at most 𝛿.

Figure 4.4: Visual representation of the linear operator A.
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Now that we know more about the matrix 𝐴 and the error, we can define when a problem is well-posed
or ill-posed.

Definition 4.3.1 (Well-posed). A solution method is called well-posed if the following three conditions
are satisfied:

• H1 Existence: There should be at least one solution.

• H2 Uniqueness: There should be at most one solution.

• H3 Stability: The solution must depend continuously on data.

If one of these conditions is not satisfied, the problem or solution method is called ill-posed.

In practice, equation (4.1) is ill-posed, mainly because of instability of 𝐴. Note that even though 𝐴−1 can
exist, it could be that the eigenvalues are so small, that a small addition of noise can lead to a totally
different reconstruction. This effect can be seen in figure 4.7. As this is undesirable for a reconstruc-
tion, it is important to study ill-posedness closely.

I will show how discrete X-ray tomography can fail to fulfill the conditions in Definition 4.3.1.

H1: A solution does not exist. By definition, 𝐴𝜇𝜇𝜇 ∈ 𝐴(𝒟(𝐴)), since 𝜇𝜇𝜇 ∈ 𝒟(𝐴), but it could be that

𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖 ∉ 𝐴(𝒟(𝐴)).
This means that there is no solution to the inverse problem. 𝐴−1𝑚𝑚𝑚 is not defined, since𝑚𝑚𝑚 ∉ 𝐴(𝒟(𝐴)),
see figure 4.5a. Note that if an element in ℝ𝐾 is not in Range(𝐴), it is in Coker(𝐴). Thus when checking
whether a solution exists, one can check whether Coker(𝐴) = 𝐴(𝒟(𝐴)) is empty.

For X-ray tomography this means that the reconstruction will contain empty spots for the parts where
𝐴−1𝑚𝑚𝑚 is not defined.

H2: There is no unique solution. This condition fails if there are two elements 𝜇𝜇𝜇,𝜆𝜆𝜆 ∈ 𝒟(𝐴) such that

𝐴𝜇𝜇𝜇 = 𝐴𝜆𝜆𝜆,
which means that the solution is not unique. This can occur when there exists a 𝜇𝜇𝜇0 ∈ Ker(𝐴) such that
𝜇𝜇𝜇0 ≠ 000. Then for𝑚𝑚𝑚 ∈ Range(𝐴) we have 𝐴(𝐴−1(𝑚𝑚𝑚)) = 𝑚𝑚𝑚 = 𝐴(𝐴−1(𝑚𝑚𝑚) + 𝜇𝜇𝜇0). Both 𝐴−1(𝑚𝑚𝑚) ∈ ℝ𝐵 and
𝐴−1(𝑚𝑚𝑚) + 𝜇𝜇𝜇0 ∈ ℝ𝐵 give the same value 𝑚𝑚𝑚 ∈ ℝ𝐾, so the solution is not unique. See figure 4.5b. Thus
when checking whether the solution is unique, one can check whether Ker(𝐴) only contains 000.

For X-ray tomography this means that if we want to reconstruct from the measurement, the chosen
values could be off (by 𝜇𝜇𝜇0), which makes the reconstruction less accurate for those parts.

H3: The solution is not stable. A solution is stable when the solution depends on the data continu-
ously. Simply said, two points that lie close inℝ𝐾, must also lie close inℝ𝐵 and thus a small perturbation
in ℝ𝐾 should not result in a drastically different reconstruction in ℝ𝐵. See figure 4.5c. A problem can
be unstable when the matrix A has small eigenvalues. Then even a small amount of noise added to
the measurement can lead to a totally different reconstruction, which is undesirable. A tool to see how
big the difference between the eigenvalues is, is called the condition number.

Definition 4.3.2 (Condition number). The condition number of an invertible matrix 𝐴 is given by

Cond(𝐴) ∶= 𝑑1
𝑑𝐾
,

where 𝑑1 is the largest singular value and 𝑑𝐾 > 0 is the smallest singular value.

If there is a large difference in size of the singular values, Cond(𝐴) will be very big. So using the
condition number, we can make an estimate on the stability of the matrix 𝐴. Note that when a matrix is
not invertible and thus has a singular value zero, then the condition number is not defined.
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(a) Visual representation of a failure of H1, there is no solution.

(b) Visual representation of failure of H2, there is no unique solution.

(c) Visual representation of failure of H3, the solution is unstable.

Figure 4.5: Visual representation of ill-posed solution methods

4.4. Naive reconstruction
Wewill now consider a method to solve this inverse problem, called naive inversion. As the namemight
suggest, this method might seem intuitive at first, but comes with some big problems. I will first explain
the solution method and will then state some of its relevant problems. I will do this only considering the
X-ray tomography case.

If 𝐴 is an invertible matrix, we can recover 𝜇𝜇𝜇 in the following way, called naive reconstruction:

𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖,
𝐴−1𝑚𝑚𝑚 = 𝐴−1𝐴𝜇𝜇𝜇 + 𝐴−1𝜖𝜖𝜖,
𝐴−1𝑚𝑚𝑚 = 𝜇𝜇𝜇 + 𝐴−1𝜖𝜖𝜖,

𝜇𝜇𝜇 = 𝐴−1𝑚𝑚𝑚 − 𝐴−1𝜖𝜖𝜖. (4.2)
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When 𝐴 is not invertible, one would look for the least-squares solution, which is obtained by minimising
‖𝐴𝜇𝜇𝜇 −𝑚𝑚𝑚‖2. More on the least-squares solution can be read in section 4.6

Error In equation (4.2) one can see that we not only apply the inverse 𝐴 to the measurement, but
also the vector containing all errors. It could be that ‖𝐴−1‖ is very large, so even though ‖𝜖𝜖𝜖‖ might
not be large, the total term ‖𝐴−1𝜖𝜖𝜖‖ can be large. Due to this instability, the reconstruction might not be
accurate.

Inverse In the naive reconstruction we are taking the inverse of the matrix 𝐴. Of course, this inverse
does not always exist. Remember that we can only take the inverse of a square matrix, so we can
only take the inverse when the number of pixels of the measurement area is the same as the number
of measurements we are doing. Also, if the rows or columns of 𝐴 are not linearly dependent or if 0 is
an eigenvalue, the inverse does not exist. As was already stated above, even when the inverse of 𝐴
exists, it can be very unstable due to very small eigenvalues. A little bit of noise can already result in a
totally different reconstruction.

4.5. Singular Value Decomposition
Before considering the general method used for naive inversion, called the minimum norm least-
squares solution, we need to take a closer look at the unstable matrix 𝐴. We will consider a well-known
method of extracting information from a matrix, called singular value decomposition. Using this method
we can draw some more conclusions on the ill-posedness of the matrix. The definitions and theorems
used in this section are based on the text by Yanai, Takeuchi and Takane [8].

Consider the following matrices

𝑈[𝑟] = [𝑢𝑢𝑢1, 𝑢𝑢𝑢2, … ,𝑢𝑢𝑢𝑟],𝑢𝑢𝑢1, ..., 𝑢𝑢𝑢𝑟 ∈ ℝ𝐾 ,
𝑉[𝑟] = [𝑣𝑣𝑣1, 𝑣𝑣𝑣2, … ,𝑣𝑣𝑣𝑟],𝑣𝑣𝑣1, ..., 𝑣𝑣𝑣𝑟 ∈ ℝ𝐵 ,

Δ[𝑟] =
⎡
⎢
⎢
⎣

𝑑1 0 … 0
0 𝑑2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑑𝑟

⎤
⎥
⎥
⎦
.

Theorem 4.5.1 (Matrix Decomposition). A 𝐾 × 𝐵 matrix 𝐴 of rank 𝑟 can be decomposed as

𝐴 = 𝑑1𝑢𝑢𝑢1𝑣𝑣𝑣𝑇1 + 𝑑2𝑢𝑢𝑢2𝑣𝑣𝑣𝑇2 +⋯+ 𝑑𝑟𝑢𝑢𝑢𝑟𝑣𝑣𝑣𝑇𝑟 ,
= 𝑈[𝑟]Δ[𝑟]𝑉𝑇[𝑟],

where 𝑑𝑗 , 𝑗 = 1,… , 𝑟 are nonzero singular values of 𝐴𝑇𝐴.
Definition 4.5.1 (Compact Singular Value Decomposition). The matrix decomposition (as given in the-
orem 4.5.1), is called the compact singular value decomposition of the matrix 𝐴, where 𝑑𝑗 indicates the
𝑗-th largest singular value of 𝐴.

Now let 𝑈[0] be a 𝐵×(𝐵−𝑟) columnwise orthogonal matrix, that is also orthogonal to 𝑈[𝑟]. Similarly,
let 𝑉[0] be a 𝐾 × (𝐾 − 𝑟) columnwise orthogonal matrix, that is also orthogonal to 𝑉[𝑟].
Definition 4.5.2 (Complete Singular Value Decomposition). A complete form of singular value decom-
position of the 𝐾 × 𝐵 matrix 𝐴 is expressed as

𝐴 = 𝑈𝐷𝑉𝑇 , (4.3)

where we define

𝑈 = [𝑈[𝑟], 𝑈[0]], (4.4)
𝑉 = [𝑉[𝑟], 𝑉[0]], (4.5)

𝐷 = [Δ[𝑟] 0
0 0] , (4.6)
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using 𝑈[𝑟], 𝑉[𝑟] and Δ[𝑟] as defined in Definition 4.5.1. 𝑈 and 𝑉 are both fully orthogonal, giving 𝑈𝑇𝑈 =
𝑈𝑈𝑇 = 𝐼𝐵 and 𝑉𝑇𝑉 = 𝑉𝑉𝑇 = 𝐼𝐾.

To understand SVD more intuitively, consider the following. The columns of both 𝑈 and 𝑉, as well
as the singular values in 𝐷, are arranged in a hierarchical manner, indicating that 𝑢𝑢𝑢1, 𝑣𝑣𝑣1 and 𝑑1 are
somehow more important than 𝑢𝑢𝑢2, 𝑣𝑣𝑣2 and 𝑑2. The SVD can be seen as a way to decompose a matrix
and arrange the terms in a such way that the first term explains most of the variation seen in the rows/-
columns of 𝐴. Thus if we want to express 𝐴 in one term, the term 𝑑1𝑢𝑢𝑢1𝑣𝑣𝑣𝑇1 gives the best approximation
out of all combinations. The term 𝑑2𝑢𝑢𝑢2𝑣𝑣𝑣𝑇2 is the second best approximation, and so on.

Using singular value decomposition we can also determine that a matrix with a singular value equal to
zero is not invertible. Let 𝐴 be a matrix of arbitrary size. Then Definition 4.5.2 says that we can write
𝐴 = 𝑈𝐷𝑉𝑇, where 𝑈,𝐷, 𝑉 are as defined in Definition 4.5.2. If we take the inverse of 𝐴, we should also
take the inverse of 𝑈𝐷𝑉𝑇. Using that 𝑈 and 𝑉 are fully orthogonal we get

𝐴−1 = (𝑈𝐷𝑉𝑇)−1
= (𝑉𝑇)−1𝐷−1𝑈−1
= 𝑉𝐷−1𝑈𝑇 ,

where

𝐷−1 = diag( 1𝑑1
, … , 1𝑑𝐾

),

with 𝑑1 the biggest singular value and 𝑑𝐾 the smallest singular value. Since zero is a singular value,
there is at least one 𝑑𝑖 = 0, 1 ≤ 𝑖 ≤ 𝐾, with 1

𝑑𝑖
not defined. Thus we conclude that 𝐷−1, and conse-

quently also 𝐴−1, does not exist.

The MATLAB code by Mueller and Siltanen [7] can be used to compute the SVD of a matrix 𝐴. It
also plots the diagonal of 𝐷, containing the order singular values of 𝐴.

In figure 4.6 one can see a logarithmic plot of the singular values of the matrix 𝐴 for different num-
bers of pixels. Note that each of the logarithmic plots has a singular value after which the magnitude of
the following singular values decrease more rapidly. This principle can be used in truncated singular
value decomposition regularization in section 5.4.

(a) Singular values for 32 × 32 pixels. (b) Singular values for 64 × 64 pixels.

Figure 4.6: A logarithmic plot of the singular values of the matrix 𝐴, for different numbers of pixels.

4.6. Minimum norm solution and pseudoinverse
If 𝐴 is not (known to be) invertible, one can look for the minimum norm least-squares solution as naive
reconstruction. The definitions and theorem in this section are based on chapter 4 of the book by
Mueller and Siltanen [2].
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Definition 4.6.1 (Minimum norm solution). A vector ℒ(𝑚𝑚𝑚) ∈ ℝ𝐵 is called a least-squares solution of
the equation 𝐴𝜇𝜇𝜇 = 𝑚𝑚𝑚, where 𝜇𝜇𝜇 ∈ ℝ𝐵 and𝑚𝑚𝑚 ∈ ℝ𝐾, if

‖𝐴ℒ(𝑚𝑚𝑚) −𝑚𝑚𝑚‖ = min
z∈ℝ𝐵

‖𝐴z−𝑚𝑚𝑚‖. (4.7)

Furthermore, ℒ(𝑚𝑚𝑚) is called the minimum norm solution if

‖ℒ(𝑚𝑚𝑚)‖ = inf{‖z‖ ∶ z is a least squares solution of 𝐴𝜇𝜇𝜇 = 𝑚𝑚𝑚}. (4.8)

In equation (4.7) we are looking for a alternative solution, ℒ(𝑚𝑚𝑚) as an approximation of 𝜇𝜇𝜇, such that
the distance between 𝐴ℒ(𝑚𝑚𝑚), the approximation of 𝑚𝑚𝑚, and the real known 𝑚𝑚𝑚, is as small as possible.
Since we are minimizing over the distance, there could be multiple solutions for ℒ(𝑚𝑚𝑚), that are different,
but have the same distance to 𝑚𝑚𝑚. This can occur when the column and/or rows of 𝐴 do not span ℝ𝐵
and/orℝ𝐵 respectively. Therefore we need equation (4.8). Of all options given by equation (4.7), it takes
the one that has the shortest length. This ensures that the ℒ(𝑚𝑚𝑚) is unique, satisfying well-posedness
condition H2.
Definition 4.6.2 (Pseudoinverse). Let 𝐴 be a 𝐾×𝐵 matrix and denote by 𝐴 = 𝑈𝐷𝑉𝑇 the singular value
decomposition of 𝐴. Let 𝑟 be the largest index for which the corresponding singular value is nonzero:
𝑟 =max1≤𝑗≤min(𝐾,𝐵){𝑗|𝑑𝑗 > 0}. Then the matrix 𝐴+ = 𝑉𝐷+𝑈𝑇 is called the pseudoinverse of 𝐴, with

𝐷+ = diag( 1𝑑1
, 1𝑑2

, … , 1𝑑𝑟
, 0, … , 0) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑑1

0 ⋯ ⋯ 0
0 1

𝑑2
⋮

⋮ ⋱
1
𝑑𝑟

0
⋮ ⋱ ⋮
0 ⋯ ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ ℝ𝐵×𝐾 .

If zero is a singular value of the matrix 𝐴, then the matrix is not invertible, but the pseudoinverse
does exist. By only considering the nonzero singular values, 1

𝑑𝑗
is always defined, ensuring that the

pseudoinverse always exists.

We can now relate the minimum norm least-squares solution and the pseudoinverse via the follow-
ing theorem.
Theorem 4.6.1. Let 𝐴 be a 𝐾×𝐵 matrix and denote by 𝐴 = 𝑈𝐷𝑉𝑇 the singular value decomposition of
𝐴. The minimum norm solution of the equation 𝐴𝜇𝜇𝜇 = 𝑚𝑚𝑚 is given by 𝐴+𝑚𝑚𝑚, where 𝐴+ is the pseudoinverse
of 𝐴.
Proof. In Definition 4.5.2 the matrix 𝑉 was defined to be fully orthogonal, so its column vectors form an
orthonormal basis for ℝ𝐵. This means that any vector in ℝ𝐵 can be written as a linear combination of
the column vectors of 𝑉, thus

𝑓𝑓𝑓 = 𝑎1𝑣𝑣𝑣1 + 𝑎2𝑣𝑣𝑣2 +⋯+ 𝑎𝐵𝑣𝑣𝑣𝐵 =
𝐵

∑
𝑗=1
𝑎𝑗𝑣𝑗𝑣𝑗𝑣𝑗 = 𝑉𝑎𝑎𝑎.

We want to find 𝑎𝑎𝑎 such that 𝑓𝑓𝑓 becomes the minimum norm solution. It will follow that 𝑎𝑎𝑎 = 𝐷+𝑈𝑇.
To find the least-squares solution 𝑓𝑓𝑓 we need to calculate ‖𝐴𝑓𝑓𝑓 −𝑚𝑚𝑚‖. We will compute this minimum
using the squared norm, as it gives the same minimum, but makes the computation easier. First we
will use that 𝐴 = 𝑈𝐷𝑉𝑇 and 𝑓𝑓𝑓 = 𝑉𝑎𝑎𝑎. We will also make use of the fact that 𝑈 is a unitary orthogonal
matrix, meaning that 𝐼𝐾 = 𝑈𝑈𝑇, and ‖𝑈𝑥𝑥𝑥‖ = ‖𝑥𝑥𝑥‖ for any matrix 𝑥𝑥𝑥 ∈ ℝ𝐾.

‖𝐴𝑓𝑓𝑓 −𝑚𝑚𝑚‖2 = ‖(𝑈𝐷𝑉𝑇)(𝑉𝑎𝑎𝑎) − (𝑈𝑈𝑇)𝑚𝑚𝑚‖2

= ‖𝑈𝐷𝑎𝑎𝑎 − 𝑈𝑈𝑇𝑚𝑚𝑚‖2

= ‖𝑈(𝐷𝑎𝑎𝑎 − 𝑈𝑇𝑚𝑚𝑚)‖2

= ‖𝐷𝑎𝑎𝑎 − 𝑈𝑇𝑚𝑚𝑚‖2
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Using the definition of the squared norm, we can now write out the norm, and get

‖𝐷𝑎𝑎𝑎 − 𝑈𝑇𝑚𝑚𝑚‖2 =
𝐾

∑
𝑗=1
[(𝐷𝑎𝑎𝑎)𝑗 − (𝑈𝑇𝑚𝑚𝑚)𝑗]

2
,

=
𝐾

∑
𝑗=1
[𝑑𝑗𝑎𝑗 − (𝑈𝑇𝑚𝑚𝑚)𝑗]

2,

=
𝑟

∑
𝑗=1
[𝑑𝑗𝑎𝑗 − (𝑈𝑇𝑚𝑚𝑚)𝑗]

2 +
𝐾

∑
𝑗=𝑟+1

[(𝑈𝑇𝑚𝑚𝑚)𝑗]
2,

using that 𝑑𝑗 = 0 for 𝑗 ≥ 𝑟. Since 𝐷,𝑈𝑇 and𝑚𝑚𝑚 are fixed, this expression is minimized by the choice of
the 𝑎𝑗. The expression is minimized if for every 𝑗 ≤ 𝑟 we have 𝑑𝑗𝑎𝑗 = (𝑈𝑇𝑚𝑚𝑚)𝑗, thus

𝑎𝑗 =
1
𝑑𝑗
(𝑈𝑇𝑚𝑚𝑚)𝑗 , 𝑗 ≤ 𝑟.

From this we get the following least-squares solution 𝑓𝑓𝑓

𝑓𝑓𝑓 = 𝑉𝑎𝑎𝑎 = 𝑉

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑑1
(𝑈𝑇𝑚𝑚𝑚)1

1
𝑑2
(𝑈𝑇𝑚𝑚𝑚)2
⋮

1
𝑑𝑟
(𝑈𝑇𝑚𝑚𝑚)𝑟
𝑎𝑟+1
⋮
𝑎𝐵

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

𝑓𝑓𝑓 is called the minimum norm solution when equation (4.8) holds. The smallest norm ‖𝑓𝑓𝑓‖ is given by
taking 𝑎𝑗 = 0 for 𝑗 > 𝑟. This means that the minimum norm solution is given by

𝑓𝑓𝑓 = 𝑉𝑎𝑎𝑎 = 𝑉

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑑1
(𝑈𝑇𝑚𝑚𝑚)1

1
𝑑2
(𝑈𝑇𝑚𝑚𝑚)2
⋮

1
𝑑𝑟
(𝑈𝑇𝑚𝑚𝑚)𝑟
0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝑉𝐷+𝑈𝑇𝑚𝑚𝑚,

where we recognize the pseudoinverse 𝐴+ of 𝐴.
Thus we conclude that the minimum norm least-squares solution is given by the pseudoinverse 𝐴+ =
𝑉𝐷+𝑈𝑇.

Now that we have found the minimum norm least-squares solution for the problem𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇, we can
check whether it is well-posed.

Existence To check whether there always exists a solution using the pseudoinverse we take a look
at Coker(𝐴). Suppose that there exists𝑚𝑚𝑚𝐴 ∈ Coker(𝐴). Then 𝐴+ maps𝑚𝑚𝑚𝐴 to zero. Thus there always
exists a solution.

Uniqueness As already mentioned before, by definition of the minimum norm solution, we always
choose the least-squares solution of the shortest length, ensuring that the solution is always unique.



28 4. X-ray Tomography as a Discrete Linear Inverse Problem

Stability The condition number Cond(𝐴+) = 𝑑1
𝑑𝑟
= Cond(𝐴) does not change when using the pseu-

doinverse instead of the regular inverse of 𝐴. This means that, even when 𝐴 is invertible and the
solution exists and is unique, the reconstruction can still be quite unstable. This means that condition
H3 is generally not met by using the pseudoinverse as the minimum norm least-squares solution.

Now that we know about the principle of naive inversion and that this reconstruction is usually com-
puted using the minimum norm least-squares solution, we can produce such images and see the effect
of the instability. In figure 4.7 one can see minimum norm least-squares reconstructions for the 32×32
Shepp-Logan phantom, compared to the original. Note that figure 4.7a is a perfect reconstruction,
since no noise was added. In figure 4.7b noise was added to the simulated measurement before re-
construction. One can see that the Shepp-Logan phantom is not recognizable in this reconstruction.
This is a result of the instability of the reconstruction method used.

4.7. Inverse Crime
Inverse crime refers to when the same model is used to generate, as well as to invert, synthetic data
[9]. In practice, inverse crimes arise when [10]:

• The numerically produced simulated data is produced by the same model that is used to invert
the data,

• The discretization in the numerical solution is the same as the one used in the inversion.

In simulated discrete X-ray tomography, inverse crime is often committed by using the same grid for
simulating the Shepp-Logan phantom and reconstruction of the same Shepp-Logan phantom using
naive reconstruction. A way to avoid this, is by using a different grid for the simulation than for the
reconstruction.

The MATLAB code by Mueller and Siltanen [7] can be used to used to reconstruct the Shepp-Logan
phantom using least-squares for naive inversion. It produces a reconstruction committing inverse crime,
with and without noisy data, and a reconstruction where inverse crime is avoided, also one with and
one without noisy data. For the 32 × 32 Shepp-Logan phatom, these reconstructed images can be
seen in figure 4.7.

Figure 4.7a is a very good reconstruction, as the relative error is 0%, but it is no realistic. It involves
inverse crime and no noise in the data. This naive reconstruction method therefore does not work in
reality.

Figure 4.7b is the reconstruction where random noise was added to the data, but where inverse crime
was still committed. The noisy data contains 0.1% noise. The noise was added by adding a vector of
the same size of the noise-free measurement, containing random scalars from the normal distribution
with mean 0 and standard deviation equal to the maximum absolute number of the noise-free mea-
surement vector. The relative error is 860% and the reconstruction is therefore not accurate at all, as
can also be concluded from looking at the image. This large relative error comes from the instability.
As concluded before, adding a bit of noise to the measurement can produce a drastically different re-
construction, due to instability.

Figures 4.7c and 4.7d are constructed without inverse crime. They are therefore more realistic for
real-life applications, but this comes with a larger relative error. Note that even without adding noise,
the reconstruction is not accurate, emphasizing how important it is to avoid inverse crime when inves-
tigating reconstruction methods.
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(a) Naive reconstruction with inverse crime and no noise
added, relative error: 0%.

(b) Naive reconstruction with inverse crime and noisy data,
relative error: 860%.

(c) Naive reconstruction without inverse crime and no noise
added, relative error: 7030%.

(d) Naive reconstruction without inverse crime and noisy
data, relative error: 9105%.

(e) Original 32 × 32 Shepp-Logan phantom.

Figure 4.7: Naive reconstruction of the Shepp-Logan phantom using least-squares, with and without inverse crime and with and
without noisy data.





5
Regularization methods

5.1. Introduction
In this chapter I will consider some solution methods for X-ray tomography as a discrete linear inverse
problem that can overcome the instability of the original problem, as concluded in chapter 4. First,
section 5.2 will explain what such a regularization method consists of and what the general idea behind
it is. In the following section 5.3 will describe how we can test the well-posedness, and thus stability, of
such a regularization method, based on section 4.3. Sections 5.4 and 5.6 will briefly cover the regular-
ization methods of truncated singular value decomposition and Tikhonov regularization, respectively.
Sections 5.5 and 5.7 contain the reconstructions obtained after applying TSVD and Tikhonov regu-
larization, respectively. Comments on the quality of the reconstruction are given. In the last section,
section 5.8, I will compare the methods using MATLAB code.

5.2. General regularization methods
To overcome the instability of X-ray tomography with noisy data, regularization methods have to be
used to obtain a stable approximate solution. This can be done by replacing the ill-posed X-ray tomog-
raphy by a similar auxiliary well-posed problem. A regularization parameter 𝛼 > 0 controls the trade-off
between the similarity to the original X-ray tomography problem, given by small values of 𝛼, and high
stability of the auxiliary problem, given by large values of 𝛼 [11].

This definition is based on the text by Chengg and Hofmann [11] and chapter 3 of the book by Mueller
and Siltanen [2].

Definition 5.2.1 (Regularization method). Let 𝐴 ∶ ℝ𝐵 → ℝ𝐾 be an injective bounded linear operator.
Consider the measurement 𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖. A family of linear maps ℛ𝛼 ∶ ℝ𝐾 → ℝ𝐵 parameterized by
0 < 𝛼 < ∞ is called a regularization method if

lim
𝛼→0

ℛ𝛼𝐴𝜇𝜇𝜇 = 𝜇𝜇𝜇, (5.1)

for every 𝜇𝜇𝜇 ∈ ℝ𝐵.
Further, assume we are given a noise level 𝛿 > 0 so that ‖𝑚𝑚𝑚 − 𝐴𝜇𝜇𝜇‖ ≤ 𝛿. A choice of regularization
parameter 𝛼 = 𝛼(𝛿) as a function of 𝛿 is admissible if

• 𝛼(𝛿) → 0 as 𝛿 → 0,

• sup𝑚𝑚𝑚{‖ℛ𝛼(𝛿)𝑚𝑚𝑚 −𝜇𝜇𝜇‖ ∶ ‖𝐴𝜇𝜇𝜇 −𝑚𝑚𝑚‖ ≤ 𝛿} → 0 as 𝛿 → 0 for every 𝜇𝜇𝜇 ∈ ℝ𝐵.

In search for a regularization method we are essentially looking for a map, called ℛ𝛼 in this case,
that is an approximate for 𝐴−1, since this inverse either does not exist, or does not lead to stable so-
lutions. As said before, the regularization parameter 𝛼 determines the trade-off between the similarity
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to the original problem and the stability of the auxiliary problem. This can also be seen in equation
(5.1). As the regularization parameter 𝛼 converges to zero, the auxiliary problem should converge to
the original problem, giving that ℛ𝛼𝐴𝜇𝜇𝜇 = 𝜇𝜇𝜇 exactly.

The first admissibility condition given in Definition 5.2.1 says that if the error becomes so small such
that it converges to zero, the regularization parameter as a function of 𝛿 should also converge to zero.
If there is no error in our measurement 𝑚𝑚𝑚 anymore, the auxiliary problem should equal the original
problem, as it becomes stable without an error term. The similarity between the auxiliary and origi-
nal problem is indicated by a small regularization parameter 𝛼. Thus if there is no error and the two
problems are the same, the regularization parameter should be zero. Thus when the norm of the error
converges to zero, so should the regularization parameter.

The second admissibility condition states that when the norm of the error converges to zero, the largest
distance between a reconstructed point ℛ𝛼(𝛿)𝑚𝑚𝑚, for a certain ℛ𝛼(𝛿), and the real point 𝜇𝜇𝜇 should con-
verge to zero, for every point 𝜇𝜇𝜇 in ℝ𝐵. Again, when the size of the error is zero, the auxiliary problem
should equal the original problem and should thus result in a perfect reconstruction where ℛ𝛼(𝛿)𝑚𝑚𝑚 = 𝜇𝜇𝜇.

Once a regularization method ℛ𝛼 is determined, naive reconstruction using this regularization method,
instead of the inverse 𝐴−1, becomes

𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖,
ℛ𝛼𝑚𝑚𝑚 = ℛ𝛼𝐴𝜇𝜇𝜇 + ℛ𝛼𝜖𝜖𝜖,
ℛ𝛼𝑚𝑚𝑚 = 𝜇𝜇𝜇𝑎𝑝𝑝 +ℛ𝛼𝜖𝜖𝜖,
𝜇𝜇𝜇𝑎𝑝𝑝 = ℛ𝛼𝑚𝑚𝑚 −ℛ𝛼𝜖𝜖𝜖, (5.2)

where 𝜇𝜇𝜇𝑎𝑝𝑝 = ℛ𝛼𝐴𝜇𝜇𝜇 is the approximation of the original 𝜇𝜇𝜇.

5.3. Well-posedness of a regularization method
Before continuing to regularization methods, we take a step back and consider how we can determine
when a regularization method is well-posed, as defined in section 4.3. So in the coming section where
we study the regularization methods, we should check the three well-posedness conditions each time.
Based on the conclusions in section 4.3 I will summarize methods to easily check whether a regular-
ization method is well-posed or not.

Existence If the matrix 𝐴 is not square and 𝐾 > 𝐵, then there are certain points in ℝ𝐾 that cannot
be reached by 𝐴𝜇𝜇𝜇. By definition, Rank(𝐴) ≤ 𝐵 < 𝐾, so there exists at least one 𝑚𝑚𝑚0 ∈ Coker(𝐴). Just
as described in section 4.3, it can then occur that although 𝐴𝜇𝜇𝜇 ∈ Range(𝐴), 𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖 ∈ Coker(𝐴),
leading to a non-existing solution.

Thus when checking whether a solution exists, one can look at Coker(𝐴). If Coker(𝐴) is nontrivial
and there exists an𝑚𝑚𝑚0 ∈ Coker(𝐴), one should check ℛ𝛼𝑚𝑚𝑚0 to see if it exists.

Uniqueness If the matrix 𝐴 is not squared and 𝐵 < 𝐾, then dim(Ker(A)) > 0 so we can choose a
𝜇𝜇𝜇0 ∈ Ker(𝐴), such that for an 𝑚𝑚𝑚 ∈ Range(𝐴) it holds that 𝐴(𝐴−1(𝑚𝑚𝑚)) = 𝑚𝑚𝑚 = 𝐴(𝐴−1(𝑚𝑚𝑚) + 𝜇𝜇𝜇0). Two
elements inℝ𝐵 map to the same element inℝ𝐾, giving an nonunique solution, as we also saw in section
4.3.

Thus when checking whether a solution is unique, one can look at Ker(𝐴). If Ker(𝐴) is nontrivial and
there exists 𝜇𝜇𝜇0 ∈ Ker(𝐴), one should check ℛ𝛼(𝐴𝜇𝜇𝜇0) to see if it is unique.

Stability By Definition 4.3.2, we can estimate whether a matrix is stable or unstable by comparing
the largest and smallest nonzero singular values of the matrix.

Thus when checking whether a solution method is stable, one can look at Cond(ℛ𝛼) and check if
it is not too small.
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5.4. Truncated Singular Value Decomposition Regularization
The first regularization method we will consider is truncated singular value decomposition regulariza-
tion, abbreviated by TSVD regularization. As the name indicates, it uses the singular value decom-
position described in section 4.5, but truncates at a certain point to only keep some of the matrix 𝐴,
determined by the SVD, in return for a more stable solution. The regularization parameter 𝛼 determines
the trade-off between stability of the auxiliary problem and similarity to the original problem. First I will
state the definition of the TSVD regularization solution, after which I will give the expression that satis-
fies the definition. The definitions and theorem in this section are based on chapter 4 of the book by
Mueller and Siltanen [2].

Definition 5.4.1 (Truncated Singular Value Decomposition Regularized solution). The truncated sin-
gular value decomposition regularized solution of equation 𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖 is the 𝛼-dependent vector
ℒ𝛼(𝑚𝑚𝑚) ∈ ℝ𝐵 that minimizes the expression

‖𝐴ℒ𝛼(𝑚𝑚𝑚) −𝑚𝑚𝑚‖, (5.3)

such that
‖ℒ𝛼(𝑚𝑚𝑚)‖ = inf{‖z‖ ∶ z minimizes ‖𝐴ℒ𝛼(𝑚𝑚𝑚) −𝑚𝑚𝑚‖}, (5.4)

where 𝛼 > 0 is the regularization parameter.

In equation (5.3) we are looking for the least-squares solution, taking the regularization parameter
𝛼 into consideration. Of course, like in Definition 4.6.1, taking 𝛼 = 0 produces the best least-squares
solution, but since 𝛼 = 0 means that the problem is unstable, this is not desirable. When there are
multiple solutions satisfying equation (5.3), equation (5.4) ensures the TSVD regularized solution is
unique, by taking the solution with the shortest norm.

Theorem 5.4.1 will show that the TSVD regularized solution is given by the inverse of the truncated
singular value decomposition of matrix 𝐴. Before this theorem is considered, the TSVD of 𝐴 is defined.

Definition 5.4.2 (Truncated Singular Value Decomposition). Let 𝐴 be a 𝐾 × 𝐵 matrix and denote by
𝐴 = 𝑈𝐷𝑉𝑇 the singular value decomposition of 𝐴. Let 𝑟𝛼 be the largest index for which the corresponding
singular value is greater than 𝛼, 𝑟𝛼 = max1≤𝑗≤min(𝐾,𝐵){𝑗|𝑑𝑗 > 𝛼}. For any 𝛼 > 0, define the truncated
singular value decomposition by

𝐴+𝛼 = 𝑉𝐷+𝛼𝑈𝑇 ,
where

𝐷+𝛼 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
𝑑1

0 ⋯ ⋯ 0
0 1

𝑑2
⋮

⋮ ⋱
1
𝑑𝑟𝛼

0
⋮ ⋱ ⋮
0 ⋯ ⋯ 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now that the TSVD 𝐴+𝛼 of a matrix 𝐴 is defined, the following theorem will show that the TSVD
regularized solution ℒ𝛼(𝑚𝑚𝑚) is given by 𝐴+𝛼𝑚𝑚𝑚.

Theorem 5.4.1. Let 𝐴 be a 𝐾 × 𝐵 matrix and denote by 𝐴+𝛼 = 𝑉𝐷+𝛼𝑈𝑇 the TSVD of 𝐴 (see Definition
5.4.2). The TSVD regularized solution of equation𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖 is given by

𝐴+𝛼𝑚𝑚𝑚 = 𝑉𝐷+𝛼𝑈𝑇𝑚𝑚𝑚.

The proof of this theorem follows the same structure as the proof of Theorem 4.6.1.

Now that we have an expression for the TSVD regularized solution of 𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖, we can check
whether it is well-posed.
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Existence In paragraph 5.3 we concluded that in order to check existence, one should check whether
Coker(𝐴) is nontrivial and what happens when ℒ𝛼 is applied to an element in Coker(𝐴).
Suppose that there is a nontrivial 𝑚𝑚𝑚0 ∈ Coker(𝐴). If 𝑈𝐷𝑉𝑇 is the SVD of 𝐴, then 𝑈 and 𝑉 are defined
to span the Range(𝐴), and are filled with zero vector to make them square. Due to these added zero
vectors, any𝑚𝑚𝑚0 ∈ Coker(𝐴) will be mapped to 0, so ℒ𝛼𝑚𝑚𝑚0 = 0. Thus using TSVD regularization, there
always exists a solution.

Uniqueness In paragraph 5.3 we concluded that in order to check uniqueness, one should check
whether Ker(𝐴) is nontrivial and what happens when ℒ𝛼 is applied to an element in 𝐴(Ker(𝐴)).
Suppose that there is a nontrivial 𝜇𝜇𝜇0 ∈ Ker(𝐴). Consider 𝐴(ℒ𝛼𝑚𝑚𝑚) compared to 𝐴(ℒ𝛼𝑚𝑚𝑚 + 𝜇𝜇𝜇0). Since
𝜇𝜇𝜇0 ∈ Ker(𝐴), 𝐴(ℒ𝛼𝑚𝑚𝑚+𝜇𝜇𝜇0) = 𝐴ℒ𝛼𝑚𝑚𝑚+𝐴𝜇𝜇𝜇0 = 𝐴ℒ𝛼𝑚𝑚𝑚, suggesting that the solution is not unique. However,
in the definition of the TSVD regularization method, we also have equation (5.4). In case of multiple
elements mapping to the same answer, it chooses the one with the smallest norm, ensuring that the
solution is always unique. So either ℒ𝛼𝑚𝑚𝑚 +𝜇𝜇𝜇0 or ℒ𝛼𝑚𝑚𝑚 is the solution, never both.

Stability In paragraph 5.3 we concluded that in order to check for stability, one should check the
magnitude of the condition number, which in this case is Cond((𝐴+𝛼)−1) =

𝑑1
𝑑𝑟𝛼

. This number depends
on the regularization parameter 𝛼 and thus 𝛼 can be chosen such that problem becomes stable.

All three conditions hold, meaning that TSVD regularization, the map ℒ𝛼 ∶ ℝ𝐾 → ℝ𝐵 is a well-posed
regularization method to our ill-posed initial problem.

In the TSVD regularized solution it is clear how the regularization parameter 𝛼 determines the trade-off
between similarity and stability. In TSVD, the 𝑟𝛼 determines until what value singular values to take
into account. The more singular values in 𝐷+𝛼 , the more similar 𝑉𝐷+𝛼𝑈𝑇 is to 𝐴, but the bigger the con-
dition number Cond((𝐴+𝛼)−1) =

𝑑1
𝑑𝑟𝛼

becomes. So a small 𝛼 gives similarity to the original problem, but
instability, and a large 𝛼 gives stability, but might be unsimilar to the original problem.

Initially, naive reconstruction using the regular inverse 𝐴−1, as in equation (4.2), failed, because this
inverse either did not exist, or the problem was too unstable. If we now repeat with TSVD regularization
ℒ𝛼 instead of 𝐴−1, as in equation (5.2), we get

𝜇𝜇𝜇𝑎𝑝𝑝 = ℒ𝛼𝐴𝜇𝜇𝜇,
= ℒ𝛼𝑚𝑚𝑚 − ℒ𝛼𝜖𝜖𝜖,
= 𝑉𝐷+𝛼𝑈𝑇𝑚𝑚𝑚 − 𝑉𝐷+𝛼𝑈𝑇𝜖𝜖𝜖.

In naive inversion using the regular inverse, the norm ‖𝐴−1‖ could become very large due to instability.
Now we get

‖ℒ𝛼𝜖𝜖𝜖‖ = ‖𝑉𝐷+𝛼𝑈𝑇𝜖𝜖𝜖‖,
≤ ‖𝑉‖‖𝐷+𝛼 ‖‖𝑈𝑇‖‖𝜖𝜖𝜖‖,
= ‖𝐷+𝛼 ‖‖𝜖𝜖𝜖‖,
= 𝑑−1𝑟𝛼 ‖𝜖𝜖𝜖‖,
≤ 𝑑−1𝑟𝛼 𝛿.

We used ‖𝑈𝑇‖ = 1 and ‖𝑉‖ = 1 due to orthogonality, ‖𝐷+𝛼 ‖ = 𝑑−1𝑟𝛼 since the norm of a diagonal matrix
is its largest entry, and that we approximate and upper bound for the error, ‖𝜖𝜖𝜖‖ ≤ 𝛿. In an unstable
problem the error term can be magnified, causing an inaccurate reconstruction. Now that we have
a stable problem, we can determine an approximated upper bound for the total error term using the
regularization parameter 𝛼.

5.5. TSVD regularized reconstructions
We will now consider several figures of TSVD regularized reconstructions for the 32 × 32 and 64 × 64
Shepp-Logan phantomswith an added noise level of 0.1% as random draws from the normal distribution
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with mean 0 and standard deviation equal to the largest absolute entry of the noise-free simulated
measurement vector. We will also consider reconstructions from real-life walnut data [4], where the
noise level is unknown. The MATLAB code used to generate the reconstructions was based on the
MATLAB code by Mueller and Siltanen [7] and can be found in appendix A.1.

Figure 5.1: TSVD regularized reconstructions for different values of 𝛼 for the 32 × 32 Shepp-Logan phantom. For each figure,
the 𝛼, relative error percentage and number of singular values used for the reconstruction is given.

In figure 5.1 one can see the TSVD regularized reconstructions for the 32×32 Shepp-Logan phan-
tom, for several increasing values of regularization parameter 𝛼. Above each reconstruction one can
see the value of 𝛼, the relative error percentage and the number of singular values that is used in the re-
construction (based on 𝛼). In the top row, for low values of 𝛼 one can see that the reconstruction is still
too unstable, as noise blurs the reconstruction. In the bottom row, for higher values of 𝛼 one can see
that the problem is stable, as there is no visible noise effect, but that the reconstruction is too distinct
to the original problem since there are only a few singular values used in this reconstruction. In figure
5.2 one can again see the TSVD regularized reconstruction, but this time for the 64×64 Shepp-Logan
phantom. Finally, in figure 5.3 one can see the TSVD regularized reconstructions of the real-life walnut
measurement data. Here the same pattern can be seen as for the simulated data. In the first row, the
solution is still too unstable due to the noise. In the middle row one can clearly see the reconstruction
of the inside of the walnut, but the different 𝛼 values do give different resolutions of reconstructions. In
the last row, the reconstruction takes into account too little singular values, so it is too distinct from the
original.

The question now remains on what value of regularization parameter 𝛼 should be used to get the
best results. In order to answer this question, one first needs to decide on what a ’good’ reconstruction
looks like in terms of the image or in terms of error or condition number. Below I will describe several
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ways on how I analyzed the problem to give an estimate of choice of the 𝛼 value. Each time I will
comment on the visual quality of the reconstruction.

Figure 5.2: TSVD regularized reconstructions for different values of 𝛼 for the 32 × 32 Shepp-Logan phantom. For each figure,
the 𝛼, relative error percentage and number of singular values used for the reconstruction is given.

Lowest relative error Since the Shepp-Logan phantom is simulated data, the reconstruction can be
compared to the original phantom. This way, one can calculate the relative error percentage, given by

‖𝜇𝜇𝜇𝑎𝑝𝑝 −𝜇𝜇𝜇‖
‖𝜇𝜇𝜇‖ × 100%.

In figure 5.4a one can see the plot of the relative error percentage against the values of 𝛼 between 0 and
10. The two dotted red lines indicate the lowest and highest 𝛼 value respectively that give the lowest
relative error, which is 64% for the 32 × 32 phantom (see table 5.1). In this graph one can see that the
relative errors are quite large for small 𝛼 values, but also for large 𝛼 values, with a minimum in between.
This is because the 𝛼 determines the trade-off between stability and similarity. For low 𝛼 values the
reconstruction is unstable, hence the high relative error percentage. For high 𝛼 values the problem is
too distinct from the original that it is compared with, hence the high relative error percentage. If one
wants a reconstruction with the lowest relative error, I would conclude that for the 32 × 32 phantom an
alpha value between [2.35, 3.07] would result in the best reconstruction. In figure 5.4b the same plot
was generated for the 64 × 64 Shepp-Logan phantom. Here, the lowest error is given for 𝛼 between
[3.76, 3.81], with a relative error percentage of 46%. Both these ranges for 𝛼 give visually good looking
reconstructions. A problem with basing 𝛼 on the relative error percentage is that this can only be done
with simulated data where one has the original of what has to be reconstructed. In reality this is not the
case, like for the real-life walnut data (data taken from [4]).
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Figure 5.3: TSVD regularized reconstructions for different values of 𝛼 for the real-life walnut data. For each figure, the 𝛼 and
number of singular values used for the reconstruction is given.

(a) The relative errors corresponding to the TSVD regularized recon-
structions with 𝛼 from 0 to 10 for the 32 × 32 Shepp-Logan phantom,
only including relative errors smaller than 100%.

(b) The relative errors corresponding to the TSVD regularized recon-
structions with 𝛼 from 0 to 10 for the 64 × 64 Shepp-Logan phantom,
only including relative errors smaller than 100%.

Figure 5.4: The relative errors for the 32 × 32 and 64 × 64 Shepp-Logan phantom for 𝛼 between 0 and 10. The lowest relative
errors are indicated with a red dot and dashed line.
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32 × 32 phantom 64 × 64 phantom
Lowest relative error 64% 46%

Corresponding 𝛼-values 2.35 - 3.07 3.76 - 3.81

Table 5.1: Lowest relative error percentages for TSVD regularization with the corresponding 𝛼 values for the 32×32 and 64×64
Shepp-Logan phantom.

Relative reconstruction error Instead of taking the relative error, one can also calculate the relative
reconstruction error, given by

‖𝐴𝜇𝜇𝜇𝑎𝑝𝑝 −𝑚𝑚𝑚‖
‖𝑚𝑚𝑚‖ × 100%.

After calculating 𝜇𝜇𝜇𝑎𝑝𝑝 you now multiply with 𝐴 to get what the measurement would be, so the recon-
structed measurement, and compare this with the original measurement. This error is different com-
pared to the relative error as described before, as it only takes the similarity to the original measurement
into account. In figure 5.5 one can see the relative reconstruction errors plotted against values of 𝛼
for the 32 × 32 and 64 × 64 Shepp-Logan phantoms and the real-life walnut data. Since low 𝛼 values
mean that the reconstruction is more similar to the original, the lowest relative reconstruction errors can
be found for the lowest 𝛼 values. Both plots can be divided into two linear parts, one for low 𝛼 values
and one for high 𝛼 values. This inflection point can be taken into consideration when deciding on an 𝛼
value. Note that the inflection point occurs for a higher value of 𝛼 for the real-life walnut data than for
the two phantoms, and it is not as clearly visible. The order of the relative reconstruction errors for the
32 × 32 phantom is about twice as high as the order of relative reconstruction errors for the 64 × 64
phantom and the real-life walnut data.

(a) 32 × 32 Shepp-Logan phantom. (b) 64 × 64 Shepp-Logan phantom. (c) Real-life walnut data.

Figure 5.5: The relative reconstruction errors for the 32 × 32 and 64 × 64 Shepp-Logan phantom and the real-life walnut data
for 𝛼 between 0 and 10. The lowest relative reconstruction error is indicated with a red dot and dashed line.

Condition number In figure 5.6 one can see the plots of the condition number against 𝛼 for the
32 × 32 and 64 × 64 Shepp-Logan phantoms and the real-life walnut data. From the definition of the
condition number 4.3.2 the shape of the plot makes sense, as it is defined as a fraction with constant
numerator. The shape of the three plots is roughly the same and the maximum and minimum values
seems to roughly match in all three plots.

(a) 32 × 32 Shepp-Logan phantom. (b) 64 × 64 Shepp-Logan phantom. (c) Real-life walnut data.

Figure 5.6: The condition numbers smaller than 50 for the 32 × 32 and 64 × 64 Shepp-Logan phantom and the real-life walnut
data for 𝛼 between 0 and 10.
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Comparing condition number and relative reconstruction error Since 𝛼 should give a good trade-
off between similarity and stability, I decided to compare a measure of similarity, the relative reconstruc-
tion error, and a measure of stability, the condition number. In figure 5.7 one can find the two-sided
plots of the condition number and relative reconstruction error for the 32×32 and 64×64 Shepp-Logan
phantoms and the real-life walnut data. In these plots one could be tempted to consider the alpha
corresponding to the intersection of these two lines as this point should be a balance between the two,
but one should keep in mind that the right y-axis do not have the same scale in each plot. However,
these reconstructions are included in figure 5.7. Comparing these reconstructions with figures 5.1, 5.2
and 5.3 one can see that each they are not as good visually as they could be. Each time the 𝛼 value is
taken too high, causing the reconstruction to be too distinct from the original. Despite that, the 𝛼 given
by this intersection might be a good starting point to search for a (lower) 𝛼 value that gives a visually
better reconstruction.

(a) 32 × 32 Shepp-Logan phantom.
(b) Reconstruction with 𝛼 = 3.69 for the
32 × 32 Shepp-Logan phantom.

(c) 64 × 64 Shepp-Logan phantom.
(d) Reconstruction with 𝛼 = 5.60 for the
64 × 64 Shepp-Logan phantom.

(e) Real-life walnut data.
(f) Reconstruction with 𝛼 = 6.4 for the real-
life walnut data.

Figure 5.7: Two-sided plot with the condition number on the left y-axis and the relative reconstruction error on the right y-axis
plotted against 𝛼 between 0 and 10 for the 32 × 32 and 64 × 64 Shepp-Logan phantoms and the real-life walnut data.

5.6. Tikhonov Regularization
The second regularization method to consider is Tikhonov regularization. First I will state the definition
of the Tikhonov regularized solution, after which I will give the expression that satisfies the definition.
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The definitions and theorem in this section are based on chapter 5 from the book byMueller and Siltanen
[2]

Definition 5.6.1 (Tikhonov Regularized Solution). The Tikhonov regularized solution of equation𝑚𝑚𝑚 =
𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖 is the vector 𝑇𝛼(𝑚𝑚𝑚) ∈ ℝ𝐵 that minimizes the expression

‖𝐴𝑇𝛼(𝑚𝑚𝑚) −𝑚𝑚𝑚‖
2 + 𝛼‖𝑇𝛼(𝑚𝑚𝑚)‖

2, (5.5)

where 𝛼 > 0 is the regularization parameter.

Where in the definition for TSVD regularization, 5.4.1, two expressions were needed to ensure a
unique solution, with Tikhonov regularization that is not necessary, due to the second term in equation
(5.5). When there are multiple vectors minimizing the first part, the second part is only minimized by
the vector with the smallest 𝐿2-norm, thus the total expression (5.5) will be uniquely minimized by one
vector.

I will describe two expressions that minimize equation (5.5) and are equivalent, but determined in a
different way. Method one is based on singular value decomposition while the second method equates
the derivative to zero. One can use the SVD-based method to easily compare the expression of TSVD
and Tikhonov regularization. However, since SVD can be computationally demanding, for higher di-
mensional problems this method is not desirable. Therefore one would use differential method, as it is
computationally less demanding while giving the same results.

Tikhonov regularization computed using SVD

Theorem 5.6.1. Let 𝐴 be a 𝐾 × 𝐵 matrix. The Tikhonov regularized solution for equation 𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖
is given by

𝑇𝛼(𝑚𝑚𝑚) = 𝑉𝒟+𝛼𝑈𝑇𝑚𝑚𝑚,
where 𝐴 = 𝑈𝐷𝑉𝑇 is the SVD of 𝐴, and

𝒟+𝛼 = diag( 𝑑1
𝑑21 + 𝛼

,… ,
𝑑min(𝐾,𝐵)

𝑑2min(𝐾,𝐵) + 𝛼
) ∈ ℝ𝐵×𝐾 .

The proof of this theorem follows the same structure as the proof of Theorem 4.6.1, and can be
found as the proof of Theorem 5.1 in Chapter 5 of the book by Mueller and Siltanen [2].

Tikhonov regularization computed without SVD Let 𝐴 be a 𝐾×𝐵matrix. The Tikhonov regularized
solution for equation𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖 is given by

𝑇𝛼(𝑚𝑚𝑚) = (𝐴𝑇𝐴 + 𝛼𝐼)−1𝐴𝑇𝑚𝑚𝑚.

The proof of this theorem is based on finding the minimum using the derivative and equating it to 0.
The proof can be found in Section 5.2 in Chapter 5 of the book by Mueller and Siltanen [2].

Note that the expressions given above for 𝑇𝛼(𝑚𝑚𝑚) are equivalent.

Now that we have an expression for the Tikhonov regularized solution of 𝑚𝑚𝑚 = 𝐴𝜇𝜇𝜇 + 𝜖𝜖𝜖, we can check
whether it is well-posed. I will show this using the SVD-based expression for 𝑇𝛼(𝑚𝑚𝑚).

Existence In paragraph 5.3 we concluded that in order to check existence, one should check whether
Coker(𝐴) is nontrivial and what happens when 𝑇𝛼 is applied to an element in Coker(𝐴). The argumen-
tation for Tikhonov is similar to that of TSVD.

Suppose that there is a nontrivial 𝑚𝑚𝑚0 ∈ Coker(𝐴). If 𝑈𝐷𝑉𝑇 is the SVD of A, then 𝑈 and 𝑉 are de-
fined to span the Range(𝐴), and are fill with zero vectors to make them square, if necessary. Due to
these added zero vectors, any𝑚𝑚𝑚0 ∈ Coker(𝐴) will now be mapped to zero, 𝑇𝛼(𝑚𝑚𝑚)0 = 0 instead of the
solution not being defined. Thus using Tikhonov regularization, there always exists a solution.
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Uniqueness By looking at the definition of the Tikhonov regularized solution, Definition 5.6.1, one
can already conclude that the term 𝑎‖𝑇𝛼(𝑚𝑚𝑚)‖ ensures that when there are multiple solutions possible,
the one with the shortest norm is chosen, ensuring a unique solution. In paragraph 5.3 we concluded
that in order to check uniqueness, one should check whether Ker(𝐴) is nontrivial and what happens
when 𝑇𝛼(𝑚𝑚𝑚) is applied to an element in 𝐴Ker(𝐴).

Suppose that there is a nontrivial 𝜇𝜇𝜇0 ∈ Ker(𝐴). Consider 𝐴(𝑇𝛼(𝑚𝑚𝑚)) compared to 𝐴(𝑇𝛼(𝑚𝑚𝑚) +𝜇𝜇𝜇0). Since
𝜇𝜇𝜇0 ∈ Ker(𝐴), 𝐴(𝑇𝛼(𝑚𝑚𝑚) + 𝜇𝜇𝜇0) = 𝐴𝑇𝛼(𝑚𝑚𝑚) + 𝐴𝜇𝜇𝜇0 = 𝐴𝑇𝛼(𝑚𝑚𝑚), suggesting that the solution is not unique.
However, if we fill the two possibilities in into equation (5.5), we get

𝑇𝛼(𝑚𝑚𝑚) ∶ ‖𝐴𝑇𝛼(𝑚𝑚𝑚)‖
2 + 𝛼‖𝑇𝛼(𝑚𝑚𝑚)‖

2,

𝑇𝛼(𝑚𝑚𝑚) +𝜇𝜇𝜇0 ∶ ‖𝐴(𝑇𝛼(𝑚𝑚𝑚) +𝜇𝜇𝜇0)‖
2 + 𝛼‖𝑇𝛼(𝑚𝑚𝑚) +𝜇𝜇𝜇0‖

2 ≤ ‖𝐴𝑇𝛼(𝑚𝑚𝑚)‖
2 + 𝛼‖𝑇𝛼(𝑚𝑚𝑚)‖

2 + 𝛼‖𝜇𝜇𝜇0‖
2

If 𝜇𝜇𝜇0 = 0, then the two solutions are equivalent. However, when 𝜇𝜇𝜇0 ≠ 0, then ‖𝜇𝜇𝜇0‖ > 0 and 𝑇𝛼(𝑚𝑚𝑚) is
the expression that minimizes. So the solution is unique.

Stability In paragraph 5.3 we concluded that in order to check for stability, one should check the
magnitude of the condition number. In this case that is

Cond((𝑉𝒟+𝛼𝑈𝑇)−1) = Cond(𝑈(𝒟+𝛼 )−1𝑉𝑇) = Cond((𝒟+𝛼 )−1) =
(𝑑21 + 𝛼)𝑑min(𝐾,𝐵)
𝑑1(𝑑2min(𝐾,𝐵) + 𝛼)

.

All three conditions hold, meaning that Tikhonov regularization, the map 𝑇𝛼(𝑚𝑚𝑚) ∶ ℝ𝐾 → ℝ𝐵 is a well-
posed regularization method to our ill-posed initial problem.

Where with TSVD regularization the parameter 𝛼 determined the number of singular values taken into
account, there the 𝛼 is used in a different way to regularize. Here, 𝛼 puts a weight on singular values.
By increasing 𝛼, less weight is placed on the small singular values, which again are the one causing
most of the instability of the original problem. Note that when 𝛼 becomes very small, 𝑇𝛼(𝑚𝑚𝑚) effectively
becomes the same as the pseudoinverse seen in 4.6.2.

Initially, naive reconstruction using the regular inverse 𝐴−1 failed, because this inverse either did not
exist, or the problem was too unstable. If we now repeat with Tikhonov regularization 𝑇𝛼(𝑚𝑚𝑚) instead of
𝐴−1, we get

𝜇𝜇𝜇𝑎𝑝𝑝 = 𝑇𝛼(𝑚𝑚𝑚)𝐴𝜇𝜇𝜇,
= 𝑇𝛼(𝑚𝑚𝑚) − 𝑇𝛼(𝜖𝜖𝜖),
= 𝑉𝒟+𝛼𝑈𝑇𝑚𝑚𝑚 + 𝑉𝒟+𝛼𝑈𝑇𝜖𝜖𝜖.

In naive inversion using the regular inverse, the norm ‖𝐴−1‖ could become very large due to instability.
Now we get

‖𝑇𝛼(𝜖𝜖𝜖)‖ = ‖𝑉𝒟+𝛼𝑈𝑇𝜖𝜖𝜖‖,
≤ ‖𝑉‖‖𝒟+𝛼‖‖𝑈𝑇‖‖𝜖𝜖𝜖‖,
= ‖𝒟+𝛼‖‖𝜖𝜖𝜖‖,

=
𝑑2min(𝐾,𝐵) + 𝛼
𝑑min(𝐾,𝐵)

‖𝜖𝜖𝜖‖,

≤
𝑑2min(𝐾,𝐵) + 𝛼
𝑑min(𝐾,𝐵)

𝛿.

We used ‖𝑈𝑇‖ = 1 and ‖𝑉‖ = 1 due to orthogonality, ‖𝒟+𝛼‖ =
𝑑2min(𝐾,𝐵)+𝛼
𝑑min(𝐾,𝐵)

since the norm of a diagonal
matrix is its largest entry, and that we approximate and upper bound for the error, ‖𝜖𝜖𝜖‖ ≤ 𝛿.
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5.7. Tikhonov regularized reconstructions
Wewill now consider several figures of Tikhonov regularized reconstructions for the 32×32 and 64×64
Shepp-Logan phantoms with an added noise level of 0.1% as random draws from the normal distribu-
tion with mean 0 and standard deviation equal to the largest absolute entry of the noise-free simulated
measurement vector. We will also consider reconstructions from real-life walnut data, where the noise
level is unknown [4]. The MATLAB code used to generate the reconstructions was based on the MAT-
LAB code by Mueller and Siltanen [7] and [4] and can be found in appendices A.2 and A.3.

Figure 5.8: Tikhonov regularized reconstructions for different values of 𝛼 for the 32×32 Shepp-Logan phantom. For each figure,
the 𝛼 and the relative error percentage are given.

In figures 5.8. 5.9 and 5.10 one can see Tikhonov regularized solutions for the 32 × 32 Shepp-
Logan phantom, 64 × 64 Shepp-Logan phantom and real-life walnut data, respectively. Just as for
TSVD regularization, low values of 𝛼 give noisy, unrecognizable reconstructions. However, higher
values of 𝛼 do not seem to make the reconstruction too distinct from the original, as the reconstructions
for high 𝛼 appear to be quite good. This difference can be explained by the definition of Tikhonov
regularization, where the 𝛼 parameter determines a weight put on the low singular values that cause
instability. Since all singular values are taken into account with a weight instead of just some, the
Tikhonov regularized reconstruction will always be more similar to the original problem than the TSVD
regularized reconstruction for large values of 𝛼. For the reconstruction of the walnut data one can see
that the parameter choice for 𝛼 does not appear to make much of a difference. If one looks closely they
can see that the plot for the 𝛼 = 30 appears to have more contrast than the plot for 𝛼 = 0, but in both
the walnut is clearly visible.
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Figure 5.9: Tikhonov regularized reconstructions for different values of 𝛼 for the 64×64 Shepp-Logan phantom. For each figure,
the 𝛼 and the relative error percentage are given.

Lowest relative error Just as for TSVD regularized solutions, we can compare the reconstruction
with the original for the 2 Shepp-Logan phantoms by calculating the relative error. The plots for these
errors can be found in figure 5.11. The red dots and dashed lines indicate the 𝛼 values corresponding
to the lowest relative errors. These results can also be found in table 5.2. Again the problem arises
that this relative error cannot be computed for the real-life walnut data, so we have to consider another
analysis. Note that the range of 𝛼 values is quite broad and that the reconstruction seems to not so
dependent on the 𝛼 value.

32 × 32 phantom 64 × 64 phantom
Lowest relative error 58% 39%

Corresponding 𝛼-values 4.9 - 13.5 8.8 - 20.1

Table 5.2: Lowest relative error percentages for Tikhonov regularization with the corresponding 𝛼 values for the 32 × 32 and
64 × 64 Shepp-Logan phantom.



44 5. Regularization methods

Figure 5.10: Tikhonov regularized reconstructions for different values of 𝛼 for the real-life walnut data. For each figure, the 𝛼 is
given.

(a) 32 × 32 Shepp-Logan phantom. (b) 64 × 64 Shepp-Logan phantom.

Figure 5.11: The relative errors for the Tikhonov regularized solutions for the 32 × 32 and 64 × 64 Shepp-Logan phantom for 𝛼
between 0 and 10. The lowest relative errors are indicated with a red dot and dashed line.
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Relative reconstruction error Instead of taking the relative error, one can also calculate the relative
reconstruction error, given by

‖𝐴𝜇𝜇𝜇𝑎𝑝𝑝 −𝑚𝑚𝑚‖
‖𝑚𝑚𝑚‖ × 100%.

In figure 5.12 the relative reconstruction errors are plotted for both the Shepp-Logan phantoms and
the real-life walnut data. Since the reconstruction is compared with the noisy measurement and not
with the original, 𝛼 = 0 gives the lowest relative reconstruction error. This makes it difficult to draw
conclusions based on these plots. There is a difference between the relative reconstruction errors
for the Shepp-Logan phantoms and the real-life walnut data. The plots for the simulated data appear
roughly linear, while the real-life walnut data appears convex. An explanation for this difference could
be the difference in simulated data versus real-life data, or a noise difference in the measurement.
Further research is necessary to determine the exact cause of the shape of the plots for the relative
reconstruction errors.

(a) 32 × 32 Shepp-Logan phantom. (b) 64 × 64 Shepp-Logan phantom. (c) Real-life walnut data.

Figure 5.12: The relative reconstruction errors for the 32 × 32 and 64 × 64 Shepp-Logan phantom and the real-life walnut data
for 𝛼 between 0 and 20. The lowest relative reconstruction error is indicated with a red dot and dashed line.

L-curve method A method to obtain an 𝛼 for Tikhonov regularization is the L-curve method, see
chapter 5 of the book by Mueller and Siltanen [2]. In this method one plots ‖𝐴𝜇𝜇𝜇𝑎𝑝𝑝 −𝑚𝑚𝑚‖ on the x-axis
against ‖𝜇𝜇𝜇𝑎𝑝𝑝‖ on the y-axis. Since the aim of Tikhonov regularization is to minimize the sum of these
expressions, the far left corner of this plot should give a good 𝛼 value. In figure 5.13 one can see the
L-curves corresponding to the 32×32 and 64×64 Shepp-Logan phantom and the real-life walnut data.
The red circle indicates the point that lies closest to the origin. The 𝛼 corresponding to this point is the
chosen 𝛼 value resulting from the L-curve method. The reconstruction with the determined 𝛼 is also
shown in figure 5.13. Note that the L-curve for the real-life walnut data looks different than the L-curves
of the simulated Shepp-Logan phantoms. Note that it seems that the minimum point in the L-curve is
reached earlier for the real-life walnut data, but the corresponding 𝛼 value is 1, which is higher than for
both the phantoms. The relative error percentages for the Shepp-Logan phantoms are both higher than
the lowest relative error percentage found in table 5.2. If the best 𝛼 is the one generating the lowest
relative error, the L-curve method does not result in the best 𝛼. However, when visually comparing the
reconstruction that has the lowest relative error with the L-curve based reconstruction, there are no
large visual differences.

32 × 32 64 × 64 Walnut data
𝛼 0.3 0.4 1.0

Relative error 75% 59% -

Table 5.3: Determined 𝛼 value from the L-curve method and relative error percentage.
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(a) 32 × 32 Shepp-Logan phantom. (b) Reconstruction with 𝛼 = 0.3 for the 32 × 32 Shepp-Logan phantom.

(c) 64 × 64 Shepp-Logan phantom. (d) Reconstruction with 𝛼 = 0.4 for the 64 × 64 Shepp-Logan phantom.

(e) Real-life walnut data. (f) Reconstruction with 𝛼 = 1 for the real-life walnut data.

Figure 5.13: The L-curves and corresponding Tikhonov regularized reconstructions for the 32 × 32 and 64 × 64 Shepp-Logan
phantom and the real-life walnut data for 𝛼 between 0 and 10. The chosen 𝛼 is indicated with a red circle.
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5.8. Regularization method comparison
In this section I will compare the two discussed regularization methods, TSVD and Tikhonov regular-
ization, for the Shepp-Logan phantom of different resolution as well as for the real-life walnut data.

Simulated Shepp-Logan Phantom data Since the data for the Shepp-Logan phantom is simulated
data, it is easy to compare the reconstruction with the original. For both TSVD and Tikhonov we were
therefore able to calculate the relative error. An overview of the lowest relative errors for both methods
and the corresponding values of regularization parameter 𝛼 can be found in table 5.4.

Method 32 × 32 64 × 64
TSVD Lowest relative error 64% 46%

𝛼 2.35 - 3.07 3.76 - 3.81

Tikhonov Lowest relative error 58% 39%
𝛼 4.9 - 13.5 8.8 - 20.1

Table 5.4: The lowest relative errors and corresponding range of 𝛼 values for the 32× 32 and 64× 64 Shepp-Logan phantoms,
for TSVD regularization and Tikhonov regularization.

From here one can see that the 64×64 Shepp-Logan phantom gives lower errors than the 32×32
phantom. This is to be expected, since a higher resolution phantom can be more precise in the re-
construction. The lowest relative errors found using Tikhonov regularization are lower than the lowest
relative errors resulting from TSVD regularization. This can be explained by the different approached
used for TSVD and Tikhonov regularization. In TSVD each singular value has the same weight, while
in Tikhonov regularization the singular values causing the instability have a lower weight than the rest
of the singular values. Therefore one can be more precise in the regularization process, with lower rel-
ative errors as a result. However, it is not clear whether this minimum of relative error is always lower
for Tikhonov regularization. This has to be tested for more (different) simulated data tests in order to
conclude.

Also note that the range of values of 𝛼 is higher for the Tikhonov regularized solutions than for the
TSVD regularized solutions. This indicates that the TSVD regularized solutions are more sensitive to
the choice of parameter 𝛼 than the Tikhonov regularized solutions. This sensitivity can also be noticed
visually when comparing the TSVD reconstruction figures 5.1 and 5.2 with the Tikhonov reconstruction
figures 5.8 and figures 5.9. The difference among the reconstructions for TSVD regularized solutions
is more noticeable than for the Tikhonov regularized solutions, especially for higher 𝛼 values. This
difference is again a result of the difference in approach of the two regularization methods. Increas-
ing the 𝛼 in Tikhonov regularization decreases the weight of the lower singular values but has little
effect on the higher singular values. Increasing the 𝛼 in TSVD regularization decreases the number
of singular values taken into account for the reconstruction. At some point there are too little singular
values considered, resulting in a too general reconstruction. In a situation with real-life data where it is
difficult to calculate relative errors, it might be easier to use Tikhonov regularization instead of TSVD
regularization, since the choice of 𝛼 has less influence on the final reconstruction.

Real-life walnut data Since the data for the walnut is real-life data it is not possible to calculate
relative errors to determine the quality of the reconstruction, which makes a comparison between regu-
larization methods more complicated. However, a visible judgement on the quality of the reconstruction
is possible. Comparing the reconstructions for the two methods, figures 5.3 and 5.10 there are note-
worthy differences.

From the 9 chosen reconstructions for TSVD regularization, only the middle 3 can be deemed ac-
ceptable reconstructions, with a preference for the middle reconstruction, for 𝛼 = 3. For the 9 chosen
Tikhonov regularized reconstructions the opposite holds. When one studies the reconstructions, some
differences can be spotted, the main one being the difference in contrast for the lowest and highest 𝛼
values. Based on these reconstructions alone, it is not really possible to choose a preferred 𝛼 value.
This may sound undesirable, but it does not have to be, since it can be to our advantage that we
know that for any 𝛼 the reconstruction will be good, unlike for the TSVD regularized reconstructions.
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Therefore it might be preferred to use Tikhonov regularization over TSVD regularization, as Tikhonov
regularization is more likely to give visually accurate looking reconstructions for a broad scope of 𝛼
values than TSVD regularized reconstrucions.

Difference between the simulated and real-life data A method to determine an appropriate 𝛼 for
the real-life data is to find a method for the simulated Shepp-Logan phantoms and to apply this to the
real-life walnut data. This was already done in sections 5.4 and 5.6, but an overview of the findings will
be presented here.

Based on the fact that Tikhonov regularization is less sensitive the the choice of 𝛼, it is also more
difficult to determine when an 𝛼 value results in a good reconstruction. The determination of 𝛼 using
the L-curve method for Tikhonov regularization found in figure 5.13 gives visually correct looking recon-
structions of the phantoms and the walnut. However, as concluded in the previous paragraph, noticing
differences in reconstructions for the real-life walnut data of Tikhonov regularized solution is difficult.
These differences are more noticeable for the Shepp-Logan phantoms. One can also see a difference
in the shapes of the L-curve and relative reconstruction error for the Shepp-Logan phantoms and the
real-life walnut data (figures 5.13 and 5.12). It could be that these differences occur as a result of differ-
ences between simulated and real-life data, or differences in the resolution (grid) of the reconstruction.
Further research using a wider scope of simulated and real-life data is needed to determine the cause
of these differences.

The TSVD regularized solutions from the real-life walnut data seem to be more similar to the Shepp-
Logan phantom reconstructions than is the case for Tikhonov regularization. The reconstructions looks
visually more similar, and the plots for the condition number have the same shape. The biggest differ-
ence is spotted in the plot for the relative reconstruction error, just as for Tikhonov regularization. The
results for real-life and simulated data are more the same for TSVD regularization than for Tikhonov
regularization, likely because TSVD regularization is a more restrictive regularization method, leaving
less room for visual differences between the two types of data sets.
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Conclusion and discussion

The purpose of this thesis was to provide an introduction to the mathematical fundamentals of X-ray
tomography as an inverse problem, by showing different reconstructionmethods and their mathematical
derivations. The main considered methods were unfiltered and filtered backprojection for perfect noise-
free data, and minimum norm least-squares, truncated singular value decomposition regularization and
Tikhonov regularization for noisy data. Thesemethods were described and visualized by reconstruction
of simulated data resulting from Shepp-Logan phantoms and real-life data of the CT measurements of
a walnut. Each reconstruction method was analyzed on visual quality and error.

Filtered and unfiltered backprojection Filtered and unfiltered backprojection reconstruction was
applied to noise-free data only. The unfiltered backprojection image contains a blur as a result of
backprojecting evenly throughout the reconstruction. Filtered backprojection gives a completely ac-
curate reconstruction of the noise-free data. High frequencies are amplified and low frequencies are
oppressed, removing the blur found in unfiltered backprojection.

Ill-posedness and theminimumnorm least-squares solution It was concluded that practical X-ray
tomography is an ill-posed linear inverse problem. This means that either the solution does not always
exist, the solution is not always unique, or the solution is unstable. It was also determined that instability
immensely deteriorates the reconstruction of the simulated Shepp-Logan phantoms after random noise
of 0.1% was added. The naive reconstruction by means of the minimum norm least-squares solution
of the 32 × 32 Shepp-Logan phantom resulted in a relative error of 9105%.

TSVD regularization Using truncated singular value decomposition regularization the quality of the
reconstruction visually improved from the minimum norm least-squares reconstruction. For the 32×32
Shepp-Logan phantom the lowest relative error percentage was 64% for regularization parameter 𝛼
between 2.35 − 3.07, and for the 64 × 64 Shepp-Logan phantom this was 46% for 𝛼 between 3.76 −
3.81. It was concluded that these 𝛼 ranges give visually good-looking reconstructions. In order to also
determine an appropriate 𝛼 value for real-life data another method was considered, where the condition
number was compared with the relative reconstruction error. It was concluded that these 𝛼 values
give a visually adequate reconstruction, but slightly lower values of 𝛼 give a visually better looking
reconstruction. The 𝛼 following from this method could function as a starting point when determining a
regularization parameter 𝛼 that results in the visually best looking reconstruction.

Tikhonov regularization Using Tikhonov regularization the quality of the reconstructions visually
improved compared to the minimum norm least-squared reconstructions. For the 32×32 Shepp-Logan
phantom the lowest relative error percentage was 58% for regularization paramter 𝛼 between 4.9−13.5,
and for the 64×64 Shepp-Logan phantom this was 39% for 𝛼 between 8.8−20.1. It was concluded that
these 𝛼 ranges give visually good-looking reconstructions. In order to also determine an appropriate 𝛼
value for real-life data the L-curve method was applied. The 𝛼 values generated with this method were
lower for both the Shepp-Logan phantoms, namely 𝛼 = 0.3 for the 32 × 32 phantom and 𝛼 = 0.4 for
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the 64 × 64 phantom. However, there were no large visual differences for the reconstructions with the
𝛼 based on the lowest relative error compared to the 𝛼 based on the L-curve method.

Regularization method comparison The two regularization methods were compared by means of
comparing the reconstructions of the 32× 32 and 64× 64 Shepp-Logan phantoms and real-life data of
a walnut. It was concluded that TSVD regularization is more sensitive to the choice of the 𝛼 parameter
value than Tikhonov regularization. Therefore, when handling real-life data that cannot be compared to
an original, a Tikhonov approach is preferred, since Tikhonov regularized solutions for a broad scope
of 𝛼 values are more likely to be of good visual quality than TSVD regularized solutions. The Tikhonov
regularized solutions from the simulated data result in lower relative reconstruction errors than the
TSVD regularized solutions, implying that Tikhonov regularization is preferred when one has the goal
to minimize the relative error. During the analysis of the reconstructions of the simulated data, as well
as the real-life data, it was concluded that there are some differences between the two types of data
sets, but the reason behind these differences was not determined.

(a) 32 × 32 Shepp-Logan phantom. (b) 64 × 64 Shepp-Logan phantom. (c) Real-life walnut data.

Figure 6.1: Visually good looking reconstructions using Tikhonov regularization for the 32 × 32 and 64 × 64 Shepp-Logan
phantoms and the real-life walnut data.

Recommendations for further research This report considered simulated data from the Shepp-
Logan phantom and real-life data of CT scan measurements of a walnut. The differences between two
regularization methods and the two data sets were compared. However, since only one real-life data
set was considered it is not possible to draw strong conclusions about generalized the findings from
the simulated data to the real-life data. Therefore it is recommended to consider more and different
real-life data sets for TSVD and Tikhonov regularization. The conclusions from this report can be tested
for other real-life data sets to determine whether these methods and conclusions also hold for more
real-life data sets.

A considered method to determine a value for the regularization parameter 𝛼 for TSVD regulariza-
tion was comparing the condition number and relative reconstruction error. A different version of this
approach can be further investigated, where one does not look for an intersection point, but plots the
two values against each other and looks for the value with the shortest distance to the origin. This idea
is similar to the L-curve method.

The resolutions of the reconstructions considered in this report were 32 × 32 and 64 × 64 for the
simulated Shepp-Logan phantoms and 82 × 82 for the real-life walnut data. These resolutions were
chosen partially based on computational limits. In further research higher order resolution reconstruc-
tions could be computed by reviewing the used code or by investigating different algorithms to use.
These higher order resolution reconstructions can be compared to the lower resolution reconstruc-
tions to determine whether there are any differences or similarities in for example relative errors and
regularization parameter choice.



A
Matlab code

A.1. Truncated Singular Value Decomposition Regularization
This MATLAB code was adjusted from [7] and used in section 5.5 for generating the reconstructions
and images for the Shepp-Logan phantoms. After a minor changes in parameter notation, this code
also works for the real-life walnut data.

% Compute the TSVD reconstruction for the phantom with chosen alpha
% Needed: XRME_SVD_comp.m and XRMC_NoCrimeData_comp.m

% Choose resolution
N = 32;

% % Choose alpha
alpha_u = 10;
alpha_l = 0;
step = 0.1;
alpha_r = [alpha_l:step:alpha_u];
L = length(alpha_r);

% Load noise measurement without inverse crime
eval(['load XRMC_NoCrime', num2str(N), ' N mnc mncn']);
mn = mncn;

% Load singular value decomposition of the measurement matrix
eval(['load XRME_SVD', num2str(N), ' U D V A measang target N P Nang']);

% Make empty matrices
[row,col] = size(D.');
svals = diag(D);
relerr_all = [];
reconTSVD_all = sparse(N^2,length(alpha_r));
ral_all = [];
err_all = [];
d_min = [];
d_1 = [];

figure(1);

for aaa = 1:L
alpha = alpha_r(aaa);
Dplus = sparse(row,col);
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for iii = 1:length(diag(D))
if svals(iii) > alpha

Dplus(iii,iii) = 1/svals(iii);
ral = iii;
d_min(aaa) = svals(iii);

end
end
ral_all(aaa) = ral;
reconTSVD = V*Dplus*U.'*mn(:);
reconTSVD_all(:,aaa) = reconTSVD;
err = norm(A*reconTSVD(:)-mn(:))/norm(mn(:));
err_all(aaa) = err;
d_1 = Dplus(1,1);
relerr = round(norm(reconTSVD(:)-target(:))/norm(target(:))*100);
relerr_all(aaa) = relerr;
% Plot the reconstruction in one large plot for all alpha
subplot(ceil(L/ceil(sqrt(L))),ceil(sqrt(L)),aaa);
imagesc(reshape(reconTSVD,N,N));
title(['\alpha = ', num2str(alpha), ', E = ', num2str(relerr), ' , #SV

= ',num2str(ral)]);
colormap gray
axis square
axis off
disp(aaa);

end

% calculate all condition numbers
cond = (1./d_1)./d_min;

% Plot the singular values (log y)
XRME_SVD_plot(N)

% Plot the relative errors, for errors smaller than 100
minrerr = min(relerr_all);
minrerr_r = find(relerr_all == minrerr);
ind_e = min(find(relerr_all < 100));

figure(2);
clf
plot(alpha_r(ind_e:L), relerr_all(ind_e:L), 'k','linewidth',2);
title('Relative errors smaller than 100');
xlabel('\alpha');
ylabel('Error');
ylim([minrerr-5 max(relerr_all(ind_e:L))])
hold on
plot(alpha_r(min(minrerr_r)),minrerr, 'r.');
plot(alpha_r(max(minrerr_r)),minrerr, 'r.');
plot([alpha_r(min(minrerr_r)) alpha_r(min(minrerr_r))], [minrerr minrerr

-5], 'r--');
plot([alpha_r(max(minrerr_r)) alpha_r(max(minrerr_r))], [minrerr minrerr

-5], 'r--');

% Plot the relative reconstruction errors
minerr = min(err_all);
minerr_r = find(err_all == minerr);
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figure(3);
clf
plot(alpha_r, err_all, 'k','linewidth',2);
title('Relative reconstruction errors');
xlabel('\alpha');
ylabel('Error');
hold on
plot(alpha_r(min(minerr_r)),minerr, 'r.');
plot(alpha_r(max(minerr_r)),minerr, 'r.');
plot([alpha_r(min(minerr_r)) alpha_r(min(minerr_r))], [minerr 0], 'r--');
plot([alpha_r(max(minerr_r)) alpha_r(max(minerr_r))], [minerr 0], 'r--');

% Plot the condition numbers
ind_con50 = min(find(cond<50));

figure(4);
clf
plot(alpha_r(ind_con50:L),cond(ind_con50:L), 'k','linewidth',2);
title('Condition number');
xlabel('\alpha');
ylabel('Condition number');
hold on
plot(alpha_r(ind_con50:L),ral_all(ind_con50:L)/10);

% Plot rescaled sum of condition number and relative reconstruction errors
conlim = 20;
ind_con20 = min(find(cond < conlim));
cond_re = rescale(cond(ind_con20:L),0,1);
err_all_re = rescale(err_all(ind_con20:L),0,1);
intersec = min(find(cond_re <= err_all_re));

figure(5);
clf
plot(alpha_r(ind_con20:L), (cond_re+err_all_re), 'k','linewidth',2);
title(['Condition number (smaller than ',num2str(conlim), ') plus relative

reconstruction error, scaled between 0 and 1']);
xlabel('\alpha');
ylabel('Condition number plus relative reconstruction error');
hold on
plot(alpha_r(ind_con20:L),cond_re,'b', 'linewidth', 1);
plot(alpha_r(ind_con20:L),err_all_re, 'r','linewidth', 1);
plot(alpha_r(intersec+ind_con20-1), cond_re(intersec), 'ko','linewidth',

2);
plot([alpha_r(intersec+ind_con20-1) alpha_r(intersec+ind_con20-1)], [

cond_re(intersec) 0], 'k--');
plot([alpha_r(intersec+ind_con20-1) 1], [cond_re(intersec) cond_re(

intersec)], 'k--');
plot(alpha_r(intersec+ind_con20-2), cond_re(intersec-1), 'ko','linewidth',

2);
plot([alpha_r(intersec+ind_con20-2) alpha_r(intersec+ind_con20-2)], [

cond_re(intersec-1) 0], 'k--');
plot([alpha_r(intersec+ind_con20-2) 1], [cond_re(intersec-1) cond_re(

intersec-1)], 'k--');
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legend('Sum condition number and relative reconstruction error', '
Condition number', 'Relative reconstruction error');

figure(6);
clf
yyaxis left
title(['Condition number (smaller than 20) and relative reconstruction

error']);
% Plot the condition number with left y-axis
xlabel('\alpha');
hold on
ylabel('Condition number');
plot(alpha_r(ind_con20:L),cond(ind_con20:L),'b','linewidth', 2);
% Plot the relative reconstruction error with right y-axis
hold on
yyaxis right
ylabel('Relative reconstruction error');
plot(alpha_r(ind_con20:L),err_all(ind_con20:L),'r','linewidth', 2);
legend('Condition number','Relative reconstruction error');

A.2. Tikhonov Regularization for Shepp-Logan Phantoms
This MATLAB code was adjusted from [7] and used in section 5.7 for generating the reconstructions
and images for the Shepp-Logan phantoms.

% Choose resolution
N = 32;

% Choose alpha range
alpha_l = 0;
alpha_u = 20;
step = 0.1;
alpha_r = [alpha_l:step:alpha_u];
L = length(alpha_r);

tic

% Load measurement matrix A
eval(['load RadonMatrix', num2str(N), ' A measang target N P Nang']);

% Load noise measurement without inverse crime
eval(['load XRMC_NoCrime', num2str(N), ' N mnc mncn']);
mn = mncn;

% A transpose times measurement
b = A.'*mn(:);

% Make empty matrices
relerr_all = [];
err_all = [];
reconTi_all = [];
lognormdiff = [];
lognormrecon = [];

figure(1);
clf
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for aaa = 1:L
K = 400; % Number of iterations
x = b;
rho = zeros(K,1);
alpha = alpha_r(aaa);
Hx = (A.')*(A*x) + alpha*x;
r = b - Hx;
rho(1) = r.'*r;

% Start iteration
for kkk = 1:K

if kkk==1
p = r;

else
beta = rho(kkk)/rho(kkk-1);
p = r + beta*p;

end
w = (A.')*(A*p) + alpha*p;
a = rho(kkk)/(p.'*w);
x = x + a*p;
r = r - a*w;
rho(kkk+1) = r.'*r;
disp([kkk K]);

end
% Calculate reconstruction
recn = reshape(x,N,N);
reconTi_all(:,aaa) = x;
% Calculate relative error
relerr = round(norm(recn(:)-target(:))/norm(target(:))*100);
relerr_all(aaa) = relerr;
% Calculate norms for L-curve
lognormdiff(aaa) = log(norm(A*x-mn(:)));
lognormrecon(aaa) = log(norm(x));
% Calculate relative reconstruction errors
err = norm(A*recn(:)-mn(:))/norm(mn(:));
err_all(aaa) = err;
% Plot reconstruction
subplot(ceil(L/ceil(sqrt(L))),ceil(sqrt(L)),aaa);=
imagesc(recn);
title(['\alpha = ', num2str(alpha), ', E = ', num2str(relerr)]);
colormap gray
axis square
axis off
disp(aaa);

end

% Plot the relative errors, for errors smaller than 100
minrerr = min(relerr_all);
minrerr_r = find(relerr_all == minrerr);
ind_e = min(find(relerr_all < 100));

figure(2);
clf
plot(alpha_r(ind_e:L), relerr_all(ind_e:L), 'k','linewidth',2);
title('Relative errors smaller than 100');



56 A. Matlab code

xlabel('\alpha');
ylabel('Error');
ylim([minrerr-5 max(relerr_all(ind_e:L))])
hold on
plot(alpha_r(min(minrerr_r)),minrerr, 'r.');
plot(alpha_r(max(minrerr_r)),minrerr, 'r.');
plot([alpha_r(min(minrerr_r)) alpha_r(min(minrerr_r))], [minrerr minrerr

-5], 'r--');
plot([alpha_r(max(minrerr_r)) alpha_r(max(minrerr_r))], [minrerr minrerr

-5], 'r--');

% Plot the relative reconstruction errors
minerr = min(err_all);
minerr_r = find(err_all == minerr);

figure(3);
clf
plot(alpha_r, err_all, 'k','linewidth',2);
title('Relative reconstruction errors');
xlabel('\alpha');
ylabel('Error');
hold on
plot(alpha_r(min(minerr_r)),minerr, 'r.');
plot(alpha_r(max(minerr_r)),minerr, 'r.');
plot([alpha_r(min(minerr_r)) alpha_r(min(minerr_r))], [minerr 0], 'r--');
plot([alpha_r(max(minerr_r)) alpha_r(max(minerr_r))], [minerr 0], 'r--');

% Plot the L-currve
figure(5);
clf

minx = min(lognormdiff);
miny = min(lognormrecon);
maxx = max(lognormdiff);
maxy = max(lognormrecon);

dis2 = [];
dis3 = [];
for bbb=1:L

dis2(bbb) = norm([lognormdiff(bbb),lognormrecon(bbb)] - [minx,miny]);
dis3(bbb) = norm([lognormdiff(bbb),lognormrecon(bbb)]);

end

min(dis3);
a3 = find(dis3 == min(dis3));
alpha_r(a3)
disp(['L-cuve alpha value = ', num2str(alpha_r(a3))]);

plot(lognormdiff,lognormrecon,'k', 'linewidth',2);
title(['L-curve plot for \alpha = ', num2str(alpha_l),' to ', num2str(

alpha_u)])
axis([minx maxx miny maxy]);
axis square
xlabel('|| A*\mu_{app} - m||');
ylabel('|| \mu_{app} ||');
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hold on
plot(lognormdiff(a3),lognormrecon(a3),'ro');
plot([lognormdiff(a3) lognormdiff(a3)],[lognormrecon(a3) miny],'r--');
plot([lognormdiff(a3) minx],[lognormrecon(a3) lognormrecon(a3)],'r--');

toc

A.3. Tikhonov Regularization for real-life walnut data
This MATLAB code was adjusted from [4] and [7] and used in section 5.7 for generating the reconstruc-
tions and images for the real-life walnut data.

% Choose resolution
N = 82;

% Choose range of regularization parameter
alpha_u = 20;
alpha_l = 0;
step = 0.1;
alpha_r = [alpha_l:step:alpha_u];
L = length(alpha_r);

% Load measurement and A
eval(['load Data', num2str(N)]);

% Empty matrices
reconTi_all = [];
err_all = [];
lognormdiff = [];
lognormrecon = [];

figure(1);
clf

for aaa = 1:L
alpha = alpha_r(aaa);
fun = @(x) A.'*(A*x)+alpha*x;
b = A.'*m(:);
x = pcg(fun,b);
reconTi_all(:,aaa) = x;
recon = reshape(x,N,N);
lognormdiff(aaa) = log(norm(A*x - m(:)));
lognormrecon(aaa) = log(norm(x));
err = norm(A*recon(:)-m(:))/norm(m(:));
err_all(aaa) = err;
subplot(ceil(L/ceil(sqrt(L))),ceil(sqrt(L)),aaa);
imagesc(recon);
title(['\alpha = ', num2str(alpha)]);
colormap gray
axis square
axis off
disp(aaa);

end

% Plot the relative reconstruction errors
figure(2);
clf
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minerr = min(err_all);
minerr_r = find(err_all == minerr);

plot(alpha_r, err_all, 'k','linewidth',2);
title('Relative reconstruction errors');
xlabel('\alpha');
ylabel('Error');
hold on
plot(alpha_r(min(minerr_r)),minerr, 'r.');
plot(alpha_r(max(minerr_r)),minerr, 'r.');
plot([alpha_r(min(minerr_r)) alpha_r(min(minerr_r))], [minerr 0.02], 'r--'

);
plot([alpha_r(max(minerr_r)) alpha_r(max(minerr_r))], [minerr 0.02], 'r--'

);

% Plot the L-curve
figure(3);
clf

minx = min(lognormdiff);
miny = min(lognormrecon);
maxx = max(lognormdiff);
maxy = max(lognormrecon);

dis2 = [];
dis3 = [];
for bbb=1:L

dis2(bbb) = norm([lognormdiff(bbb),lognormrecon(bbb)] - [minx,miny]);
dis3(bbb) = norm([lognormdiff(bbb),lognormrecon(bbb)]);

end

min(dis3);
a3 = find(dis3 == min(dis3));
alpha_r(a3)
disp(['L-cuve alpha value = ', num2str(alpha_r(a3))]);

plot(lognormdiff,lognormrecon,'k', 'linewidth',2);
title(['L-curve plot for \alpha = ', num2str(alpha_l),' to ', num2str(

alpha_u)])
axis([minx maxx miny maxy]);
axis square
xlabel('|| A*\mu_{app} - m||');
ylabel('|| \mu_{app} ||');
hold on
plot(lognormdiff(a3),lognormrecon(a3),'ro');
plot([lognormdiff(a3) lognormdiff(a3)],[lognormrecon(a3) miny],'r--');
plot([lognormdiff(a3) minx],[lognormrecon(a3) lognormrecon(a3)],'r--');
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