DESIGNIN

Machine-Learning Assessment Tool for Evaluating Indoor Wayfinding Quality of Dementia Care Spaces

Feras Alsaggaf

MSc Architecture, Urbanism, and Building Sciences Building Technology Graduation Studio 2023-2024

P5 Presentation 4 July 2024

Introduction

Page 3 / 76 **TUDelft**

The Architectural Concept should be concluded and signed off at Stage 2, along with the **Project Brief**. The project should not proceed to Stage 3 if any **Spatial Requirements** or room adjacencies remain inconclusive. During Stage 3, **Change Control Procedures** should

Source: RIBA Plan of Works 2020

Introduction

Design Development

Building Operation

architect _____

Dementia care professionals

Existing facilities.

Outcome: Micro-interventions

Introduction

How can Al support the design of dementia-friendly architecture in the early stages?

Deep Learning Models for Spatial and Visual Connectivity

Source: Spatial and Visual Connectivity Surrogate Model (Tarabishy et al. 2020)

Outcome: Design changes Longer timelines Added cost

Objective

A Predictive Model Trained on Dementia Care Design Principles

Research Questions

Definition

What is Dementia?

Dementia is the loss of cognitive functioning – thinking, remembering, and reasoning – to such an extent that it interferes with a person's daily life and activities.

- Experiencing memory loss, poor judgment, and confusion
- Wandering and losing their way in a familiar environment

-National Institute of Aging

Image: @2015 - Rob Hobson. https://robhobson.co.uk/

Dementia Design Principles

Universal Design Guidelines

• Prolonging the person's ability to live independently in their own homes

Source: Universal Design Guidelines for Dementia-Friendly Dwellings

Understanding Wellbeing

BUILD

EVALUATE

Dementia Design Principles

Factors Influencing Sense of Home

- Psychological factors:
 - Autonomy and control
 - Sense of acknowledgement
 - Preservations of one's habits and values
- Social Factors
 - Engaging in meaningful activities
 - Interaction with other residents
- Built Environment
 - Shared spaces conducive for social interaction

Overview of factors composing a sense of home in nurs	ing homes
Psychological factors	
(1) Sense of acknowledgement	
(2) Preservation of one's habits and values	
(3) Autonomy and control	
(4) Coping	\sum
	Y
Social factors	
(5) Interaction and relationship with staff	(8) Interaction with pets
(6) Interaction with other residents	(9) Activities
(7) Interaction with family and friends	
RAPA	
The built environment	
(10) The private space	(13) Technology
(11) The (quasi-)public space	(14) Look and feel
(12) Personal belongings	(15) Outdoors and location

Factors influencing the sense of home. Source: Rijnaard et al. 2016

EVALUA

Environmental Assessment Tool

Source: Fleming & Bennett, 2017

ŤUDelft

Source: Quirke et al., 2023

Understanding Wellbeing

EVALUATE BUILD

Domestic Activity

Page 17 / 76

10 Key Design Principles and How to Assess Them

Understanding Wellbeing

DEFINE MEASURE

BUILD EVALUATE

ŤUDelft

10 Key Design Principles and How to Assess Them

Understanding Wellbeing

DEFINE MEASURE

BUILD EVALUATE

ŤUDelft

Page 19 / 76

Environmental Assessment Tool

Improvements in:-

wayfinding

- Eating behaviour
- Motor functions
- · Activities of daily living
- Self-help skills
- Mobility
- Pleasure
- Use of toilet
- Vitality
- Interaction between staff and residents/patients
- Independence in dressing
- Ease of supervision
- Likelihood of residents/patients
 making friends with one another
- Quality of life

3. ALLOW PEOPLE TO SEE AND BE SEEN

BUILD

MEASURE

To give them the **choice** where they want to go based on what they see. It can also give individual **confidence** to explore their environment.

5. MANAGE LEVELS OF STIMULATION - OPTIMISE HELPFUL STIMULATION

Enabling the person with dementia to see, **hear** and **smell** things that give them **cues** about where they are and what they can do... minimizing their confusion and uncertainty.

EVALUAT

ÍUDelft

Source: Effects of well-designed environments (Fleming & Bennett, 2017)

DEFINE

Understanding Wellbeing

Source: Part 1: Key Design Principles (Fleming & Bennett, 2017)

Page 20 / 76

Definition

Wayfinding Definition

- **Wayfinding** is the ability to know one's position while planning and following a route
- **Visual Access** is the ability to see your surroundings. It is associated with improved wayfinding for people living with dementia.

EVALUATE

Image: New York Times

Why Wayfinding?

Critical Decisions Made by the Designer During Early Stages

DECISION

EFFECT

Understanding Wellbeing

DEFINE MEASURE

BUILD EVALUATE

Understanding Wellbeing

EVALUATE

Page 23 / 76

Ideal

Visually-Connected Kitchen gives autonomy to individuals

Visually-Connected Kitchen provides sense of community

Ideal

Audio stimulation is high. Acoustic wayfinding cues are discenerable

EVALUATE

MEASURE

DEFINE

BUILD

ŤUDelft

Page 24 / 76

Understanding Wellbeing

Understanding Wellbeing

Page 25 / 76

Personal Autonomy

• A spatial layout that gives the individual autonomy and control over their environment.

EVALUATE BUILD

Sense of Connection

• Individual have easy access to other spaces and can see what other residents are doing in different parts of the building and also be seen by others.

EVALUATE

Understanding Wellbeing

BUILD

Balanced Stimulation

• Measuring how household stimuli can affect wayfinding abilities.

EVALUATE

ŤUDelft

Page 28 / 76

Accessibility

• Toilet rooms are in distinct places and within reach.

EVALUATE

Data Collection Scope Boundary

Understanding Wellbeing

ŤUDelft

Isovist Method

Source: Lessons Learned from Three Australian Dementia Support Facilities. Hing-wah et al. 2018

EVALUATE

Wayfinding Quality

BUILD

TUDelft

Isovist Grid Points

Lounge visible from Kitchen?

Visual access score:

'yes' points / total points

Wayfinding Quality

BUILD) (EVALUATE

Are the sightlines too short or too long?

Is the visibility consistent in space?

Average Ray Length

15m

GOOD

BUILD

30m

POOR

Visibility Distribution

Avg. Distance of Points

Page 34 / 76

ŤUDelft

Wayfinding Quality

DEFINE MEASURE

5m

POOR

EVALUATE

Acoustic Wayfinding Cues

Limitation of Wayfinding Quality

Wayfinding Quality

Machine Learning

Source: most common machine learning algorithms (Ross et al. 2023).

Building the Model

BUILD

EVALUAT

Building the Machine Learning Model

Multi-Output Multiclass Classification

Classify the Type of Apple

Building the ModelDEFINEMEASURE

EVALUATE

MEASURE

BUILD

DEFINE

Building the Model

EVALUATE

Random Forest Ensemble

f1 = 7 cm f2 = 2.95 pH **Predicting Class Labels** f3 = 60.73 g f4 = 1.35 • A collection of decision trees trained on a subset of the data. 2 **ŤU**Delft DEFINE **MEASURE** EVALUATE BUILD Page 52 / 76

Feature Selection

Building Features?

• Individual measurable property, usually numeric.

Room Boundary

Numeric Representation

POLYGON ((-7.5220084330555963 2.1634921360940984, -7.7033628169541171 1.7828672356764850, -5.2128560162917577 0.5962283007732738, -5.1849553418458321 0.6547859777605991, -4.3669533927243158 0.2650368064689772, -4.3948540671702432 0.2064791294816519, -3.9849503282589644 0.0111744083601675))

Features

DEFINE

f1 = Number of control points

BUILD

EVALUATE

- f2 = Connected rooms
- f3 = Number of doors
- f4 = Area compactness

MEASURE

f5 = Width to depth ratio

Feature Selection

Choosing the Right Features

• Step-by-step approach to narrowing down the possible feature set combinations

DEFINE

MEASURE

BUILD

EVALUATE

Page 55 / 76

TUDelft

Feature Pool \rightarrow Feature Set

Swiss Dwellings Features

DEFINE

MEASURE

layout_compactness layout mean walllengths layout_std_walllengths layout number of doors layout_has_entrance_door layout_perimeter layout door perimeter layout_connects_to_private_outdoor layout_biggest_rectangle_length layout_biggest_rectangle_width view isovist max view isovist mean view_isovist_median view isovist min view isovist p20 view isovist p80 view_isovist_stddev connectivity eigen centrality max connectivity eigen centrality mean connectivity_eigen_centrality_median connectivity eigen centrality min connectivity_eigen_centrality_p20 connectivity_eigen_centrality_p80 connectivity_eigen_centrality_stddev connectivity_entrance_door_distance_max connectivity_entrance_door_distance_mean connectivity_entrance_door_distance_median connectivity_entrance_door_distance_min connectivity_entrance_door_distance_p20 connectivity_entrance_door_distance_p80

BUILD

EVALUATE

connectivity_entrance_door_distance_stddev connectivity betweenness centrality max connectivity_betweenness_centrality_mean connectivity betweenness centrality median connectivity_betweenness_centrality_min connectivity_betweenness_centrality_p20 connectivity betweenness centrality p80 connectivity_betweenness_centrality_stddev connectivity_closeness_centrality_max connectivity_closeness_centrality_mean connectivity closeness centrality median connectivity closeness centrality min connectivity_closeness_centrality_p20 connectivity closeness centrality p80 connectivity closeness centrality stddev connectivity bathroom distance max connectivity_bathroom_distance_mean connectivity bathroom distance median connectivity bathroom distance min connectivity_bathroom_distance_p20 connectivity bathroom distance p80 connectivity_bathroom_distance_stddev connectivity_kitchen_distance_max connectivity_kitchen_distance_mean connectivity_kitchen_distance_median connectivity_kitchen_distance_min connectivity kitchen distance p20 connectivity_kitchen_distance_p80 connectivity_kitchen_distance_stddev

Page 56 / 76

Feature Set → Feature Subset

Sequential Feature Selector

Round 1 Round 2 f1 ---> Train classifier ---> Get Performance Train classifier ---- Get Performance f2 \longrightarrow Train classifier \longrightarrow Get Performance f2 f2 → Train classifier → Get Performance → Train classifier →→ Get Performance f3 f2 f3 Select best → Train classifier →→ Get Performance → Train classifier → Get Performance feature

MEASURE

DEFINE

f2 f4

18 17 16 15 14 13 12 11 10

EVALUATE

9

Number of Features

8 7

Page 58 / 76

6 5 4 3 2 1

ŤUDelft

Feature Set \rightarrow Feature Subset

layout_biggest_rectangle_length connectivity bathroom distance p80 connectivity_closeness_centrality_p20 connectivity_closeness_centrality_p80 connectivity betweenness centrality p80 layout compactness layout std walllengths layout door perimeter

MEASURE

BUILD

DEFINE

connectivity kitchen distance p80

connectivity kitchen distance p20

layout_perimeter

layout_biggest_rectangle_width

connectivity_bathroom_distance_p20

connectivity_entrance_door_distance_p80

layout_biggest_rectangle_length

connectivity_bathroom_distance_p80

Number of trees in the forest = 100 to 500 at 25 intervals Maximum depth = none, 10, 20, 30, 40 Min sample split = 2, 5, 10 Min sample leaf = 1, 2, 3

Fitting 5 folds for each of 1620 candidates, totaling 8100 fits

Image source: Wikipedia: 'Simple Fractles.png'

Building the Model

....

Model Evaluation

MEASURE

BUILD

DEFINE

Accuracy for LI	V BATH bin:	0.805194805	1948052		
Classification	Report for	LIV BATH bin			
	precision	<u>recall f</u>	1-score	support	
<pre>0_insufficient</pre>	0.82	0.79	0.81	39	
1_sufficient	0.79	0.82	0.81	38	
accuracy			0.81	77	
macro avg	0.81	0.81	0.81	77	
weighted avg	0.81	0.81	0.81	77	

EVALUATE

Evaluating the Model

Current Model

MEASURE

BUILD

EVALUATE

DEFINE

Evaluating the Model

Page 61 / 76

Early-Stage Design Process

Digital Tool Integration

DEPLOYMENT IN ARCHITECTURAL DESIGN

Design Tool Integration

Digital Model Analytics

Hand-Sketch to Geometry

Vectorized

Source: DesignExplorer - <u>https://design-explorer.epfl.ch/</u>

Digital Tool Integration

DEPLOYMENT IN ARCHITECTURAL DESIGN

Page 64 / 76

Role of AI in Architectural Design

Al as a design specialist to bridge the gap between expert validation and early stages of concept design

Digital Tool Integration

DEPLOYMENT IN ARCHITECTURAL DESIGN

[in conclusion]

Potential Research Recommendations

Roadmap: Testing New Feature Sets

[More] Assessment

AUTONOMY

STIMULATION

CONNECTION A

Spatial Design Features the Architect

from

Dementia Design Principles Assessment by Care Professional

Architect Features					
Feature Name	Feature Categpry	Feature Description			
f1	Distance-based features	Distance between test area to all doors			
f2		Angle between test area to all doors			
f3		Route length between test area to target area			
f4	Wall-to-Opening Ratio	Solid vs void amount in the test area			
f5	Area Ratios	Test area divided by target area			
f6		Test area divided by layout total area			
f7		Test area divided by corridor areas			
f8	Nearest Distance	Shortest path to a toilet			
f9	Shape Complexity	Corridor moments of decisions			
f10	Perimeter Length	Perimeter length			
f11		Perimeter number of control points			
f12	Compactness	Test area compactness			
f13		Test area compactness / target area compactness			
f14	Doors Positioning	Number of doors along the corridor			
f15		Number of doors between test and target areas			
f16	Occupancy Density	Test area size divided by number of users			

Dementia Care Professional Features					
Feature Name	Feature Categpry	Feature Description			
a1	Sightlines	Visual sightlines between entrance and living			
a2		Visual sightlines between living and corridor			
a3		Visual sightlines between sanitary room from the bed			
a4	Landmark Positions				
a5	Path of Travel	Sequence of spaces			
a6		Location of entance door			
а7		Location of living room			
a8		Length of route between bedroom to living room			
a9		Acticity space at the end of the corridor			
a10	Corridor Properties	Number of doors along the corridor			
a11		Corridor width			
a12		Shape of the corridor			
a13		Moments of decisions along the corridor			
a14	Natural daylight access	Daylight access along the corridor			

Roadmap: Expand the Dataset

Research Question Answers

How can Al support the design of dementiafriendly architecture?

Answers

- By **identifying relevant decisions** in early stages with **high impact** on DDP compliance.
 - Ease of wayfinding promotes autonomy and sense of connection.
- **Collecting** a dataset of floor plans and performing an assessment to **numerically describe DDP**
 - Isovist-based tests for visual access, set of criteria by the EAT checklist
- **Selecting the right features** for the classification model and validate the performance of the model
 - Floor plan geometry, assessment results, geometry features.
- By **testing the model** with an **unseen-before floor plans** and analysing the results
 - Using both individual class and multi-output evaluation metrics.

Discussion

Limitations of Study

- Only 2 performance indicator
 - 1. Living \rightarrow Kitchen sightlines
 - 2. Living \rightarrow Bathroom sightlines
- Limited size and typology of the training set
- Limited feature pool and feature set
Discussion

Potential Research Recommendations

- Expanding our understanding on the relationship between visual access and environmental stimuli on the effect ease of wayfinding for people living with dementia.
- Measuring non-visual wayfinding quality indicators and their effect on ease of navigation
- Feature extraction and selection on expanded models
- Sourcing more floor plan data

Reflection

Objectives

- **Research** state-of-the-art of **dementia care** and narrowing the **scope of criteria** that is most relevant for early stages.
- Develop a **computational tool to measure dementia design principles** for data collection.
- Develop the code environment to test ML models using the collected dataset.
- Evaluate the performance of the model

THANK YOU

Main Mentor: Michela Turrin | Second Mentor: Martijn Lugten Advisors: Lisa-Marie Mueller, Nadja Gaudilliere-Jami, Tangram Architekten Student: Feras Alsaggaf - 5591031

Model Training and Test Split Method

Early-Stage Soft Design Criteria Scoring System

Dementia Design Principle Performance Indicators

Appendix A: Soft Criteria Performance Indicators

	Criteria Name Cr.ID	Method	Weight	Not Sufficient	Sufficient	Preferred	Notes
PERSONAL AGENCY	Lounge to Bedroom Door Visibility 1.1 Clear line of sight between bedrooms and lounge areas 1	lsovist grid	1	0 - 0.35	0.35 - 0.75	>0.75	not sufficient = 0 points sufficient = 1 point preferred = 2 points
	Bedroom to Lounge Visibility 1.2 The lounge room is identifiable when leaving the bedroom 1.2	lsovist grid	1	0 - 0.35	0.35 - 0.75	>0.75	
	Bedroom to Dining Visibility 1.3 The dining is identifiable when leaving the bedroom 1.3	lsovist grid	1	0 - 0.35	0.35 - 0.75	>0.75	
	Lounge to Garden Exit Visibility 1.4 Clear lines of sight to outside areas / door from lounge 1.4	lsovist grid	1	0 - 0.35	0.35 - 0.75	>0.75	
	Criteria Name Cr.ID	Method	Weight	Not Sufficient	Sufficient	Preferred	Notes
SENSE OF CONNECTION	Lounge between Dining Visibility (both ways) 2.1 Clear lines of sight to from dining to lounge room 2.1	lsovist grid	1	0 - 0.35	0.35 - 0.75	>0.75	not sufficient = 0 points sufficient = 1 point preferred = 2 points
	Lounge between Kitchen Visibility (both ways) 2.2 Clear lines of sight to from lounge room to kitchen 2	lsovist grid	1	0 - 0.35	0.35 - 0.75	>0.75	
	Dining between Kitchen Visibility (both ways) 2.3 Clear lines of path to from dining room to kitchen 2.3	lsovist grid	1	0 - 0.35	0.35 - 0.75	>0.75	
	Corridor to Lounge Visibility 2.4 Visual connection between corridor to lounge	lsovist grid	1	0 - 0.35	0.35 - 0.75	>0.75	
	Criteria Name Cr.ID	Method	Weight	Under-Stimulated	Balanced	Over-Stimulated	Notes
BALANCED STIMULATION	Sound Separation between vibrant and quiet areas 3.1 Can the noise from kitchen reach the private areas?	Distance of public to private	1	<0	0	>0	Estimates the degree of sound separation from living to bedroom. It takes into acount the centroid distances of both areas and number of intersecting walls.
	Acoustic Wayfinding Cues 3.2 Can resident kitchen acitivies be heard from bedrooms?	Received Sound	1	<20 dBA	20 - 30 dBA	>30 dBA	Estimates the presence of sound eminating from kitchen spaces received from the corridor
	Criteria Name Cr.ID	Method	Weight		No	Yes	Notes
ACCESSIBILITY	Dining to Toilet Visibility 4.1 Clear lines of path to from dining room to private toilet 1	Centered Isovist	1		0	1	
	Lounge to Toilet Visibility 4.2 Clear lines of path to from living room room to private toilet	Centered Isovist	1		0	1	
	Toilet Door to Toilet Seat 4.3 Visual connection between staff location to lounge 1	Centered Isovist	1		0	1	

Score Tally	Points possible	Not Sufficient	Fulfills All Criteria	Ideal
Personal Agency	10	0 - 3	4	0 - 8
Sense of Connection	14	0 - 3	4	0 - 8
Accessibility	3	0-2	3	

Balanced Stimulation		Points possible	Under-Stimulated	Balanced	Over-Stimulated	
		-2 to 2	<-1	0	>1	

Building the Machine Learning Model

Machine Learning Framework

Exploratory Data Analysis

Swiss Dwellings Simulation Data

• Initial feature pool for consideration

Model Training Framework

Random Forest Feature Importance Ranking

Feature Importances

Model Objective

Visual Access

Appendix