
Splitting the Zones of Feasibility for a Given

Schedule

Kasper Wolsink
Supervisor: Eghonghon Eigbe

EEMCS, Delft University of Technology, The Netherlands

June 19, 2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

1

1 Abstract

Flexible manufacturing systems (FMS) such as large industrial print-
ers can be modeled as re-entrant flow-shops with a set of constraints
of processing times, setup times and relative due dates. This is a non-
deterministic system in which the actual values for these constraints
can be different from the ones originally estimated. Therefore, a way
to quickly determine the ranges of constraint values for which a given
schedule becomes feasible or infeasible can become highly useful. In
this paper, a heuristic algorithm is proposed that can efficiently split
the zones of feasibility for a given schedule. With the right settings,
an accuracy of 99.9% can be achieved with relatively few queries on
2-dimensional examples.

2 Introduction

An optimal schedule for a flexible manufacturing system (FMS) is a schedule
such that it has the minimal possible make-span. The make-span is defined as
the time of completion of the last executed operation. One such FMS in the
real world is a large industrial printer. This system can be modeled as a re-
entrant flow shop with machines, jobs, operations and a set of constraints [1].
In the case of a large industrial printer, this is a non-deterministic system. For
example, one of the printer components might make a slight error, which will
result in a longer setup time than originally anticipated. It might be the case
that a given schedule for this printer is optimal, but not robust; the schedule
easily becomes infeasible after due to a slight variance in constraint values. This
can be problematic as it can be computationally expensive to calculate a near-
optimal schedule for such an FMS due to this being an NP-complete problem
[2].

In this paper, we will not focus on finding schedules for an FMS itself.
Rather, we will explore the robustness of a given schedule by splitting the zones
of feasibility. The main research question we will be trying to answer are the
following:

• Can we find an efficient way to determine for any two constraints when a
given schedule becomes feasible/infeasible for any two arbitrary values for
these constraints?

• Can we generalize this method to n constraints?

• Can we make a trade-off between accuracy and running time for these
methods?

The paper is divided into the following sections: in section 2, a formal defini-
tion of the re-entrant flow shop and a schedule is given, along with their graph
representation. We also define the notion of the feasibility boundary in this
section. Next, in section 3 we discuss the related work in this field. In section 4

2

we introduce a heuristic algorithm that can be used to accurately estimate the
feasibility boundary. In section 5 we elaborate on the experimental setup used
and discuss the obtained results. Sections 6 and 7 are dedicated to responsible
research and future work respectively and we conclude in section 8.

3 Problem definition

In this section, the re-entrant flow shop is defined along with the definition of a
schedule. Next, a graph representation for this flow shop is introduced. Finally,
the notion of a feasibility boundary is defined.

3.1 Re-entrant flow shop definition

The re-entrant flow shop considered in this paper is very similar to the one
introduced in [1]. However, a slightly different notation is used in this paper.
Here, the re-entrant flow shop is defined by the tuple (M,J,O, ϕ, P, S,D) as
follows:

• Machines - M is a set of machines that execute the operations.

• Jobs - J is a set of jobs that have to be executed. Each job consists of a
set of operations. The number of operations for each job is equal.

• Operations - O is the set of operations. Each operation belongs to a
job and each job has an equal amount of operations. As in [1], the kth
operation of job j can be denoted as oj,k.

• Re-entrance vector The re-entrance vector ϕ is adapted from [1] without
modification.

• Processing times - P is a function defined as P : O → R

• Setup times - S is a function defined as S : O ×O → R. For a schedule
to be feasible, it must hold that for any two operations oi and oj such that
the start time of oj is greater than the start time of oi, the start time of
oj must at least be S(oi, oj) + P (oi) after the start time of operation oi if
S is defined for these operations. If S is not defined for these operations,
the start time of oj must be at least P (oi) after oi.

• Relative due dates - D is a function defined as D : O ×O → R. For a
schedule to be feasible, it must hold that for any two operations oi and oj
such that the start time of oj is greater than the start time of oi, the start
time of oj must at most be D(oi, oj) after the start time of operation oi if
D is defined for these operations. If D is not defined for these operations,
no such constraint exists.

3

3.2 Schedule definition

Next, a schedule is defined as a mapping of operations to start times. For each
operation o, T (o) 7→ R gives the start time of that operation. A schedule is said
to be feasible if it obeys the following constraints:

• The start times for each operation do not violate the constraints intro-
duced by the processing times, setup times and relative due dates.

• Operations within a job must be done in order. This means that if l > k,
T (oj, l) > T (oj, k) must hold.

• The equivalent operations across jobs must be done in order. This means
that if i > j, T (oi, k) > T (oj, k) must hold.

3.3 Graph representation of the re-entrant flow shop

The re-entrant flow shop defined above can be represented as a weighted directed
graph. Not only does this give us a clear visual representation of the model, but
it also allows us to determine the feasibility of a schedule by detecting negative
cycles using the Bellman-Ford algorithm [3, 4].

The graph representation is as follows. Each operation can be represented as
a node. Let n(oi) be the node that represents oi. For each setup time S(oi, oj),
an edge (oi, oj) is added with a weight of S(oi, oj). For each relative due date
D(oi, oj) an edge (oj, oi) is added with weight −D(oi, oj). A given schedule can
then be added to the graph as follows. If oj is the first operation to start after
oi, an edge (n(oi), n(oj)) will be added with a weight equal to P (oi), or if there
already exists an edge (n(oi), n(oj), its weight will be incremented by P (oi).
This will be done for all operations in the order dictated by the given schedule.

3.4 Feasibility border

The processing times, relative due dates and setup times are all constraints
defined by some mapping of operations to a positive real value. We can treat
these constraints as variable values which we can either increment or decrement
as we desire. Consider a subset of these constraints of a given system defined
as C. Now consider an |C|-dimensional Euclidean space X. We can now take
any arbitrary vector v = {v1, v2, ..., v|C|} within X and define v such that it
represents a configuration of values for the constraints in C where vi represents
the value of the ith constraint of that vector. Since X is a continuous space
and the constraints in C take on continuous values, there is an infinite amount
of such vectors in X. We can now label each of these vectors either True or
False to denote the feasibility of this vector by taking its configuration and
deciding the feasibility of the system under this configuration by some oracle B.
B can be any algorithm that can verify the feasibility of a schedule under a set
of constraints. In this research, the Bellman-Ford algorithm was used for this
purpose [3, 4]. This results in an infinite labeled vector space.

4

Since the re-entrant flow shop considered in this paper is a system of linear
constraints, the feasible zones of a schedule can be separated from the infeasible
zones in such a Euclidean space by one or more |C|-dimensional-hyperplane
segments as demonstrated in [5]. These hyperplane segments together form the
feasibility border (also referred to as the feasibility boundary) for that particular
schedule. A vector lies on the feasibility boundary if and only if the vector is
labeled True and there exists at least one vector entry vi such that constraint Ci

can not be made any tighter than vi without the schedule becoming infeasible.
The goal of this paper is to find a close estimate of this feasibility boundary for
a given schedule in a reasonable amount of time.

4 Related work

As mentioned before, we are looking at scheduling problems specifically for
flexible manufacturing systems such as large industrial printers. The authors of
[1] touch upon this exact problem and give a formal definition of this system
that is similar to the one proposed in this paper. Additionally, a heuristic
scheduler is proposed by the authors which can generate a schedule for a given
flexible manufacturing system. Many such heuristics exist. For example, the
one proposed in [6].

Once such a schedule has been generated, its feasibility of it can be deter-
mined by the Bellman-Ford algorithm [3, 4]. The Bellman-Ford algorithm can
detect if a given schedule and re-entrant flow-shop model produces negative (or
positive depending on notation) cycles in which case a schedule is deemed to be
infeasible.

Finding the values of constraints for which a schedule remains valid can be
thought of as finding the feasible zones for said schedule. This has been done
before, for example in [5] a method is proposed to find the feasible hyperplanes
of a schedule for different values of constraints. This method can handle pa-
rameterized tasks such as the ones present in the scheduling problem discussed
[1], but may not terminate in a feasible amount of time. In [7] the authors also
concern themselves with finding the feasible zones of schedules but they focus
on a slightly different problem. Here, performance characterization is addressed
rather than just the feasibility of a schedule, resulting in a set of performance
regions for different schedules rather than feasible and infeasible regions. The
approach only takes into account deterministic systems, which do not fit the
description of the re-entrant flow-shop considered here.

5 Splitting the zones of feasibility for a given schedule

In this section, we will introduce the EstimateBorder algorithm that can
estimate the feasibility boundary for a given configuration. The algorithm first
constructs a |C|-dimensional grid graph where each node represents an unlabeled
vector as defined in section 3.4. Then the set of cut-edges is extracted from this

5

graph through the S2 algorithm [8] which has a very efficient implementation
for grid graphs.

We note that the feasibility boundary can be thought of as a set of hyperplane
segments as demonstrated in [5]. We estimate these segments by interpolating
between points that lie on the cut-edges to construct a set of |C|-dimensional
hyperplanes that together form an estimate of the feasibility boundary.

The algorithms reliably works for |C| = 2. The algorithm has also been
implemented for |C| = 3, but produces unpredictable results. Implementations
for |C| > 3 are left for future work due to the geometric complexity quickly
rising in higher dimensional configurations.

Algorithm 1 EstimateBorder: estimation of the feasibility boundary

1: function EstimateBorder(configuration, resolution, budget, bs depth)
2: G← GridGraph(resolution)
3: B ← CreateOracle(configuration)
4: cut edges← S2(G,B, budget)
5: return Interpolate(cut edges,B, bs depth)
6: end function

The EstimateBorder algorithm is shown in Algorithm 1 and accepts
four arguments:

• configuration: The configuration to run the algorithm on. This includes
a flow-shop, a schedule, a subset of constraints and the domains for each
constraint. The algorithm will estimate the feasibility boundary over the
predefined domain of each constraint. The range for the domain is deter-
mined either through expert knowledge or extracted from the data itself.

• resolution: This is the resolution of the constructed grid graph. A resolution×
resolution grid graph is said to have resolution of resolution.

• budget: This is the budget of the S2 subroutine as described in [8].

• bs depth: This is the maximum depth of the BinarySearchBoundary
subroutine.

On line 2, we construct a grid graph G. On line 3 we define the oracle
B for this specific configuration. In this example, we use the Bellman-Ford
algorithm [3, 4] as an oracle. On line 4 we make a call to the S2 subroutine
resulting in a set of cut-edges (subsection 5.1). We then interpolate over this
set on line 5 and return the result (subsection 5.2).

5.1 The S2 subroutine

In this subsection, we will take a look at the S2 subroutine of this algorithm
as described in Algorithm 2. This algorithm is a slightly modified version
of [8]. It accepts three arguments: the grid graph G, the oracle B and the

6

budget budget. The algorithm differs from [8] in that it returns the set of cut-
edges instead of the set of all queried nodes. It also separates the queried nodes
by their labels in feasible and infeasible. This is done because the MSSP
subroutine called in line 19 needs these sets separated. The MSSP subroutine
calculates the shortest-shortest path and bisects it as described in [8]. Since G
is a grid graph, an efficient implementation of the MSSP subroutine was used
as seen in the appendix.

Algorithm 2 S2: shortest shortest path [8]

1: function S2(G,B, budget)
2: feasible← ∅
3: infeasible← ∅
4: cut edges← ∅
5: while True do
6: x← Randomly chosen unlabeled vertex
7: do
8: feasibility ← B(x)
9: if feasibility then

10: Add x to feasible
11: else
12: Add x to infeasible
13: end if
14: budget = budget+ 1
15: Remove from G all edges whose two ends have different labels and

add them to cut edges
16: if |L| >= budget then
17: return cut edges
18: end if
19: while x←MSSP(G, feasible, infeasible) exists
20: end while
21: end function

5.2 The Interpolate subroutine

In this subsection, we will take a look at the Interpolate subroutine as shown
in Algorithm 3.

7

Algorithm 3 Linear interpolation

1: function Interpolate(cut edges,B, bs depth)
2: cut edges← SortSS(cut edges)
3: segments← ∅
4: base points← ∅
5: hyperplane← null
6: while Not every cut-edge is marked as interpolated do
7: for all edge in cut edges do
8: if edge is marked as interpolated then
9: continue

10: end if
11: if length(base points) < |C| then
12: Mark edge as interpolated
13: border point← BinarySearchBoundary(edge, bs depth,B)
14: if border point is not co-linear with the other points in

base points then
15: Add border point to base points
16: if length(base points == |C|) then
17: hyperplane ← Hyperplane constructed through the

points in base points
18: end if
19: end if
20: continue
21: end if
22: intersection← Intersection of hyperplane and edge
23: if intersection exists then
24: Mark edge as interpolated
25: end if
26: end for
27: Add hyperplane to segments
28: base points← ∅
29: hyperplane← null
30: end while
31: return segments
32: end function

The core idea behind this subroutine is that it very accurately calculates
the feasibility boundary for a select few points, and can then constructs a |C|-
dimensional hyperplane by interpolating between these points. This hyperplane
then accurately estimates the feasibility boundary for some of the other cut-
edges, without needing further calculations.

To do this when |C| = 2, we sort the set of cut-edges by one of their nodes
in a way that the order represents a permutation such that the shortest path
from the node of the first edge to the node of the last edge passes through all
the nodes of all the edges in between only once. An intuitive way to think about

8

this is that the edges are ordered in such a way that you can draw a continuous
line from the first edge to the last edge while crossing every edge in between only
once. This sorting is done by the SortSS subroutine in line 2 of Algorithm 3
where we create a 2-nearest-neighbor graph of the set of cut-edges and for each
node we generate a depth-first-search pre-ordered permutation of the graph. We
then pick the permutation such that the length of the path through all nodes is
minimal, resulting in the correct order. This subroutine is shown in Algorithm
4.

Algorithm 4 SortSS: Sorting mechanism for |C| = 2

1: function SortSS(cut edges)
2: nodes← Either the positive or negative nodes of cut edges
3: nn graph← 2-NN Graph of nodes
4: preorderings← ∅
5: for all n in nn graph do
6: p← Calculate DFS-preorder from nn graph starting from n
7: Add p to preorderings
8: end for
9: permutation← pre-order from preordrings with the shortest path

10: sort cut edges according to permutation
11: end function

The ordering described above does not reliably lead to the correct result for
|C| > 2 and is the main reason the current algorithm can not be generalized
to higher dimensions. Finding an algorithm that correctly orders the set of
cut edges for n dimensions is left for future work and is further discussed in
section 8.

Figure 1: The BinarysearchBoundary subroutine visualised.

After we have sorted the set of cut edges, we iterate through it. We accu-
rately calculate the point where the feasibility boundary intersects the current
edge through binary search. This is done by bisecting the edge and querying its
label through B. This then creates a new interval within which the feasibility
border must lie (Figure 1). We repeat this bs depth times which results in an

9

accurate estimate of the feasibility border. We then do this for the first |C|
edges such that the resulting points are non-co-linear and we construct a hyper-
plane through these points as seen in lines 14 to 17 in Algorithm 3. We then
calculate the intersection of this hyperplane with each of the remaining edges
and if this intersection exists, we assume the respective edge belongs to the
same border segment and label it as interpolated as seen in lines 22 to 25. We
then repeat this entire ordeal and generate new hyperplanes until all edges are
marked as interpolated. The resulting set of hyperplane segments is denoted
as segments and returned in line 31. These hyperplanes together accurately
estimate the feasibility boundary.

6 Experimental setup and results

In this section, we will discuss the experiments conducted. We will later mention
the results and provide some analysis of our findings. For the main set of
experiments, we only consider |C| = 2 as higher dimensions currently produce
unreliable results. Additional experiments were conducted for |C| = 3 and the
results are briefly discussed in the appendix.

6.1 Experimental setup

The goal of these experiments is twofold. First of all, we want to verify that the
algorithm introduced in section 5 performs well on a wide range of configura-
tions. If we succeed in doing this, we will gain some confidence in the correctness
of the algorithm. Secondly, we want to test the possibility of trading off accuracy
for an improved running time.

In these experiments, we will estimate the feasibility boundary using the
algorithm introduced in section 5 for different 2-dimensional constraint configu-
rations. Different types of constraints are expected to generate different shapes
of feasibility boundaries. By verifying the algorithm works on different configu-
rations, we can make some assumptions about its effectiveness and robustness.

The experiments are conducted as follows: the set of constraints C will be
initialized by arbitrarily picking some constraints of different types. Let i be the
initial value of a constraint, then the feasibility border will be estimated over
domain [i− 30%, i+ 30%] for each constraint.

Then, 300 random samples will be generated over the same range and we will
classify them using the estimated feasibility boundary. This is done by checking
on which side each sample lies for every border segment in segments. If the
sample lies on the feasible side of every segment, we will classify it as feasible.
Otherwise, we will classify it as infeasible. We will assume each border segment
extends out infinitely on both sides, although this is not shown in the graphs.
After this, we will query the actual label for each sample through our oracle
B, allowing us to calculate the accuracy score which is simply defined as the
amount of correctly labeled samples divided by the total amount of samples.

Alongside the accuracy, we can measure the running time of the algorithm

10

and the number of times oracle B was queried. The oracle used in this example,
is the Bellman-Ford algorithm [3, 4]. The worst-case running time of this algo-
rithm is O(|E||V |) where |E| and |V | are the number of edges and vertices in
the problem respectively [9]. Therefore, for configurations with large amounts
of edges and vertices, it becomes crucial we query B as few times as possible.

Finally we would like to note that the amount of feasible and infeasible sam-
ples over the range of constraint values might be heavily skewed towards either
one of the labels. Therefore, it is entirely possible that the algorithm achieves
a high accuracy score while actually incorrectly estimating much of the border
segments. This means that an accuracy score significantly below 100% should
be seen as a faulty estimation of the feasibility boundary.

For the experiments we will introduce the following variables:

• C: The subset of constraints C we run the algorithm on. The exact values
of these sets can be found in the appendix (Table 2).

• b: The budget parameter.

• d: The bs depth parameter.

• q: The amount of time the oracle B is queried.

• t: The running time of the algorithm (in ms). Note that these experiments
were conducted on consumer hardware. The running time of a configura-
tion relative to other configurations is of interest, rather than the absolute
running time.

• Acc: The accuracy of the estimated feasibility boundary.

• FS X: A flow shop of X jobs and its corresponding schedule. The full
configurations are attached in the Appendix.

Note that we chose not to vary the resolution parameter, as it would gener-
ate exponentially more results that could not be fitted inside this paper. The
resolution parameter was set to a constant value of 10. A full parameter sweep
is left for future work.

11

6.2 Results

Parameters FS 20 FS 50 FS 100
C b d q t Acc q t Acc q t Acc
1 10 1 12.4 128.2 ms 76.9% 15.3 178.4 ms 73.4 % 12.0 390.4 ms 74.4%

10 30.0 164.2 ms 74.8% 37.5 342.5 ms 75.6 % 38.0 1112.6 ms 79.9 %
100 237.5 533.3 ms 76.2% 220.0 1509.4 ms 74.3 % 210.0 5474.8 ms 74.1 %

30 1 36.0 508.5 ms 96.7 % 36.4 651.1 ms 97.0 % 34.0 1258.3 ms 97.4 %
10 70.0 581.6 ms 100 % 74.0 936.1 ms 100 % 74.0 2301.0 ms 100 %
100 430.0 1344.5 ms 100 % 430.0 3276.5 ms 100% 430.0 11332.9 ms 100 %

50 1 54.0 571.8 ms 97.3 % 54.4 788.5 ms 97.8 % 54.0 1796.1 ms 98.3 %
10 94.0 630.0 ms 100 % 90.0 1027.7 ms 99.9% 90.0 2743.4 ms 100%
100 450.0 1281.4 ms 100 % 562.5 3404.8 ms 100 % 450.0 11783.6 ms 100 %

2 10 1 18.7 164.5 ms 95.3 % 14.5 234.2 ms 95.5% 16.7 2502.6 ms 89.2 %
10 36.7 244.6 ms 100 % 30.0 596.9 ms 100 % 40.0 7185.8 ms 92.1%
100 210 1085.8 ms 100 % 210.0 4497.7 ms 100% 212.5 9482.5 ms 92.3 %

30 1 35.6 486.4 ms 95.9 % 34.0 765.1 94.6% 36.0 6321.2 ms 95.9 %
10 50.0 608.4 ms 100 % 50.0 1389.9 ms 100% 70.0 12321.2 ms 97.6 %
100 230.0 1584.4 ms 100 % 230.0 6262.1 ms 100% 430.0 54487.4 ms 98.0 %

50 1 54.0 585.5 ms 96.3 % 54.0 948.0 ms 96.2 % 56.0 7926.0 ms 95.3 %
10 70.0 724.0 ms 100 % 70.0 1397.2 ms 100% 90.0 14801.5 ms 97.1 %
100 250.0 1385.6 ms 100 % 250.0 9242.6 ms 100% 450.0 53707.1 ms 97.3 %

Table 1: Results for a 2-dimensional configuration

As seen in Table 1, the EstimateBorder algorithm can reliably estimate the
feasibility boundary with close to 100% accuracy given the correct values for
the parameters. For each configuration, the setup that resulted in the highest
accuracy with the lowest running time is shown in bold.

First, we take a closer look at the budget parameter b. Table 1 shows that
setting b too low can result in a faulty border estimation. This can be seen
when C = 1 for all flow-shop configurations. When the budget is set too low,
the S2 subroutine (Algorithm 2) does not produce enough cut-edges such that
it reliably captures all segments of the feasibility boundary. Increasing b solves
this issue but also increases the running time significantly.

It should also be noted that for some configurations a low budget reliably
produces an accurate result. This can be seen in the configuration where C = 2
of both FS 20 and FS 50. In these configurations, the actual feasibility boundary
only consists of one straight segment. Therefore, we technically need only two
cut edges to correctly interpolate the entire feasibility boundary. Contrary, in a
configuration where C = 1 for example, the actual feasibility boundary consists
of more than 1 segment. As a result, a low budget b is not sufficient. We
can therefore conclude that underlying domain knowledge is required to set the
budget b as low as possible - since it minimizes run time - while still setting
it sufficiently high enough that it correctly captures the underlying segments of

12

Figure 2: Exponential decrease of uncertainty visualised

the feasibility boundary.
Next, we zoom in on the bs depth parameter d. This parameter determines

how accurately we estimate the actual feasibility boundary when we interpolate
between cut-edges. Based on the results of Table 1, we can state that increasing
d generally increases the accuracy up to a certain point if the b is sufficient.
There is a significant increase in accuracy from d = 1 to d = 10, but a barely
noticeable one from d = 10 to d = 100. This is to be expected though, as each
iteration of the BinarySearchBoundary subroutine exponentially decreases
the uncertainty of the feasibility boundary estimate on a certain cut-edge by
halving it. In Figure 2 we can see that even starting from an uncertainty of
10000, it quickly approaches 0 after only a few iterations. We can quickly
calculate the optimal value for d with the following formula: m > length of
the current cut edge ∗ 0.5d where m is the maximum amount of uncertainty we
are willing to tolerate. The length of the current cut edge is the uncertainty
we start with, as we know the actual feasibility boundary passes somewhere
through this edge. Calculating this value is important as increasing d any
further significantly increases the number of queries and the running time while
no longer improving accuracy.

Finally, we look at the running times for different flow-shops. We can see
that as the number of jobs increases, the running time grows exponentially. This
is because the Bellman-Ford algorithm [3, 4] used as our oracle has a worst-case
run-time of O(|V ||E|) [9]. As the number of jobs in the flow shop increase, so
do both |V | and |E|. Therefore, it becomes increasingly important to optimally
tune the b and d parameters to minimize the amount of queries as the number
of jobs increases.

13

(a) The nodes of the cut-edges produced by the S2 algorithm. The border is interpo-
lated through the edges and is shown as a line.

(b) The predicted border is evaluated by generating 300 random samples and compar-
ing their true label to their predicted one.

Figure 3: Graphs for FS 20, C=1, b=30, d=10. The border is accurately
estimated.

14

(a) b=10, d=10. Not all border segments are captured.

(b) b=30, d=1. All border segments are captured but inaccurately.

Figure 4: Graphs for FS 20, C=1 with incorrect border estimations.

7 Responsible research

To ensure reproducibility of the conducted experiments, the configurations of
flow-shops are attached in the appendix. Additionally, pseudo-code for the
proposed algorithms is provided.

Some outliers were found after conducting the experiments. However, it
was quickly concluded that these outliers were not caused by an exceptional
configuration, rather they were caused by either an incorrect setup or a bug in
the implementation of the algorithms. Therefore, the decision was made to not
include these results.

The algorithms proposed in this paper are heuristic by nature. Therefore
it is likely not guaranteed that the correct results will be produced for every
configuration. During this research, a wide range of configurations were tested.
Not all of these results are shown in this paper, as there are too many of them.
The results in this paper are randomly selected from all the obtained results
and are not cherry picked to fit the narrative.

15

Since no sensitive data was used during the entirety of this research, we see
no other ethical pitfalls that need to be discussed in this section.

8 Future work

In this section, we will discuss the current limits of our findings and propose
subjects for future research.

Although the proposed algorithm shows promising results for a 2-dimensional
case, the current implementation does not yet lend itself to higher dimensions.
Currently, we can not reliably interpolate the correct hyperplanes through the
cut-edges when |C| > 2. In the Interpolate subroutine (Algorithm 3), we
sort the cut-edges according to the SortSS subroutine (Algorithm 4), and
then iterate through them in order and construct a hyperplane through the
first |C| edges that are not co-linear. If we are able to sort the cut-edges by
the hyperplane segment they belong to in the actual feasibility boundary, the
Interpolate subroutine will correctly construct accurate estimates of these
hyperplanes. The SortSS subroutine reliably succeeds in sorting the edges
correctly for a 2-dimensional case but does not generalize to higher dimen-
sions. Therefore, finding an algorithm that correctly sorts the cut-edges for n
dimensions will likely mean we can generalize the Interpolate subroutine to
n dimensions.

Next, we note that we have not performed a full sweep for the parameters of
the EstimateBorder method (Algorithm 1) in this paper. We have decided
not to vary the resolution parameter, and have only considered a limited range
of possible values for each constraint. A more complete parameter sweep could
be conducted in the future.

9 Conclusions

The algorithm proposed in this paper can accurately determine the feasibility
boundary for two arbitrary constraints of a given flow shop and schedule. With
the right configuration, a classification accuracy of 99.9% can be achieved over
the predetermined range with relatively few queries.

This means that both the first and third research questions posed are an-
swered (section 2). The second research question is partly answered. A way to
generalize the algorithm to higher dimensions is proposed but not successfully
implemented. If an implementation of this is realized, we can reliably estimate
when any schedule for any flow-shop might break for any subset of constraints.
This might prove the be useful in real-world applications such as the scheduling
of a large-scale FMS.

16

References

[1] Joost Van Pinxten et al. “Online scheduling of 2-re-entrant flexible man-
ufacturing systems”. In: ACM Transactions on Embedded Computing Sys-
tems (TECS) 16.5s (2017).

[2] Michael R Garey, David S Johnson, and Ravi Sethi. “The complexity of
flowshop and jobshop scheduling”. In: Mathematics of operations research
1.2 (1976).

[3] Richard Bellman. “On a routing problem”. In: Quarterly of applied math-
ematics 16.1 (1958).

[4] Lester R Ford Jr. Network flow theory. Tech. rep. Rand Corp Santa Monica
Ca, 1956.

[5] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. “Symbolic com-
putation of schedulability regions using parametric timed automata”. In:
2008 Real-Time Systems Symposium. IEEE. 2008, pp. 80–89.

[6] Caixia Jing, Wanzhen Huang, and Guochun Tang. “Minimizing total com-
pletion time for re-entrant flow shop scheduling problems”. In: Theoretical
Computer Science 412.48 (2011).

[7] Joost Van Pinxten, Marc Geilen, and Twan Basten. “Parametric scheduler
characterization”. In: ACM Transactions on Embedded Computing Systems
(TECS) 18.5s (2019).

[8] Gautam Dasarathy, Robert Nowak, and Xiaojin Zhu. “S2: An efficient
graph based active learning algorithm with application to nonparametric
classification”. In: Conference on Learning Theory. PMLR. 2015, pp. 503–
522.

[9] Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms
and applications. Springer Science & Business Media, 2008, pp. 55–78.

17

A Appendix

A.1 MSSP subroutine

Algorithm 5 MSSP [8]: Optimized for grid graphs.

1: function MSSP(G, feasible, infeasible)
2: deque feasible ← new Deque
3: deque infeasible ← new Deque
4: visited feasible ← ∅
5: visited infeasible ← ∅
6: for all n in feasible do
7: Append (n,G.Neighbours(n)) to deque feasible
8: Add n to visited feasible
9: end for

10: for all n in infeasible do
11: Append (n,G.Neighbours(n)) to deque infeasible
12: Add n to visited infeasible
13: end for
14: while deque feasible and deque infeasible do
15: n, neighbours← deque infeasible.popleft()
16: for all neighbour in neighbours do
17: if neighbour not in visited feasible then
18: Add neighbour to visited feasible
19: Append (neighbour, G.Neighbours(neighbour)) to

deque feasible
20: if neighbour in visited infeasible and neighbour not in infea-

sible then
21: return neighbour
22: end if
23: end if
24: end for
25: n, neighbours← deque feasible.popleft()
26: for all neighbour in neighbours do
27: if neighbour not in visited infeasible then
28: Add neighbour to visited infeasible
29: Append (neighbour,G.Neighbours(neighbour)) to

deque infeasible
30: if neighbour in visited feasible and neighbour not in feasible

then
31: return neighbour
32: end if
33: end if
34: end for
35: end while
36: end function

18

A.2 Configurations used for results

C
1 [P (o0,0), P (o0,1)]
2 [S(o3,1, o3,2), D(o3,1, o3,2)]

Table 2: Constraint sets for C

The configurations of FS 20, FS 50 and FS 100 mentioned in chapter 6.2 can be
found at https://github.com/kwolsink/Feasibility_bound_schedules. A
parser for these configurations is included. The constraint sets used for C can
be seen in Table 2.

A.3 Results for |C| = 3

As stated in section 5, the EstimateBorder algorithm only reliably works
when |C| = 2. However, an implementation for |C| = 3 was realised. This
version of the algorithm does not produce the correct result reliably. This
is mainly due to the fact that the SortSS subroutine (Algorithm 4) does
not produce the correct ordering of cut-edges every time. This is because the
SortSS may produce many permutations in a 3-dimensional example of which
some will lead to a correct result while others will lead to an incorrect result.
Therefore, running the EstimateBorder algorithm multiple times on a 3-
dimensional configuration will produce different results each time, of which some
are correct while others are incorrect. This is shown in Figure 5.

19

(a) A correct example.

(b) An incorrect example.

Figure 5: Both a correct and incorrect example for |C| = 3. Both trials were con-
ducted under the exact same settings, showing the unreliability of this method.
The planes are displayed as colored points.

If an algorithm were to be developed for |C| = n like SortSS is for |C| = 2,
we might be able to generalize the algorithm to any dimension.

20

