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Abstract. Over recent decades, the global population has
been rapidly increasing and human activities have altered ter-
restrial water fluxes to an unprecedented extent. The phe-
nomenal growth of the human footprint has significantly
modified hydrological processes in various ways (e.g. irri-
gation, artificial dams, and water diversion) and at various
scales (from a watershed to the globe). During the early
1990s, awareness of the potential for increased water scarcity
led to the first detailed global water resource assessments.
Shortly thereafter, in order to analyse the human perturbation
on terrestrial water resources, the first generation of large-
scale hydrological models (LHMs) was produced. However,
at this early stage few models considered the interaction be-
tween terrestrial water fluxes and human activities, including
water use and reservoir regulation, and even fewer models
distinguished water use from surface water and groundwa-
ter resources. Since the early 2000s, a growing number of
LHMs have incorporated human impacts on the hydrological
cycle, yet the representation of human activities in hydrolog-
ical models remains challenging. In this paper we provide
a synthesis of progress in the development and application
of human impact modelling in LHMs. We highlight a num-
ber of key challenges and discuss possible improvements in
order to better represent the human–water interface in hydro-
logical models.

1 Introduction

The Earth’s surface has undergone drastic changes due to
the human-driven alteration of land use and vegetation pat-
terns and the management of surface water and groundwater
systems (Bondeau et al., 2007; Gerten et al., 2007; Rost et
al., 2008). Over the last century, the global population has
quadrupled and currently exceeds 7 billion, half of whom
live in urban areas. The rapidly growing population and ris-
ing food demands caused a drastic 6-fold expansion of global
irrigated areas during the 20th century (Siebert et al., 2015).
Human needs for water are ever-increasing, dominated cur-
rently by agricultural irrigation for food production world-
wide (> 70 %). However, rapid urbanization and economic
development are likely to be the main drivers of increasing
water demands worldwide (Wada et al., 2016c). Humans ex-
tract vast amounts of water from surface water and ground-
water resources (Siebert et al., 2010; Siebert and Döll, 2010;
Wisser et al., 2010; Konikow, 2011), and these amounts
have increased from ∼ 500 to ∼ 4000 km3 yr−1 over the last
100 years (Oki and Kanae, 2006; Hoekstra and Chapagain,
2007; Hanasaki et al., 2008a, b; Wada et al., 2014). Tens of

thousands of artificial dams have been built in major river
systems, with total storage capacities exceeding 8000 km3

worldwide (Nilsson et al., 2005; Lehner et al., 2011). These
are used to boost water supply, to provide flood control, and
to serve as a source of hydropower generation to supply the
energy needs of industries (Liu et al., 2015, 2016). How-
ever, regional and seasonal variations of water supply and
demand are large, causing water scarcity in various regions
of the world (Gleick, 2000, 2003; Vörösmarty et al., 2000;
Oki and Kanae, 2006; Kummu et al., 2010). In such regions,
groundwater is often intensively used to supplement the ex-
cess demand, often leading to groundwater depletion (Rodell
et al., 2009; Famiglietti et al., 2011; Konikow, 2011; Glee-
son et al., 2012; Scanlon et al., 2012; Taylor et al., 2013).
Climate change adds further pressure on the Earth’s water
resources and is likely to amplify human water demands due
to increasing temperatures over agricultural lands (Dirmeyer
et al., 2006, 2009, 2014; Wada et al., 2013a, b; Haddeland et
al., 2014; Schewe et al., 2014).

Terrestrial water fluxes have been affected by humans to
an unprecedented extent and the fingerprints that humans
have left on the Earth’s water resources are increasingly dis-
cernible in a diverse range of records that can be seen in both
surface freshwater and groundwater resources. The United
Nations alerts us that in water-scarce regions the shortage
of water is beginning to limit economic growth and create
large uncertainties for the sustainability of future water sup-
ply (World Water Assessment Programme, 2003). Given ris-
ing levels of human footprint, and the heavy dependence of
the world economy and livelihoods on water, human impacts
on land and water systems are pervasive (World Water As-
sessment Programme, 2016). Agriculture and urbanization
affect the delivery and quality of water to river and ground-
water systems (Siebert et al., 2010); many river flows are
regulated (Lehner et al., 2011) and threaten ecological flows
(Poff et al., 2010); water use, in particular for irrigation, can
be a dominant factor in the hydrological cycle, including ef-
fects on land–atmosphere feedbacks and precipitation (Wada
et al., 2016a) that can have substantial non-local impacts
(Dirmeyer et al., 2009; Tuinenburg et al., 2012; Wei et al.,
2013; Lo and Famiglietti, 2013). In an era now designated
as the Anthropocene (Steffen et al., 2011; Montanari et al.,
2013; Savenije et al., 2014), global hydrology must therefore
be treated as a coupled human–natural system.

During the early 1990s, awareness of the potential for
global water scarcity led to the first detailed global water re-
source assessments comparing water availability with water
use based on national statistics and observed climate infor-
mation (Falkenmark, 1989; Falkenmark et al., 1997). Shortly
thereafter, in order to analyse the human perturbation on wa-
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ter resources, the first generation of large-scale hydrological
models (LHMs) appeared (Bierkens, 2015). These models
solve the local water balance consistently across large scales
and calculate river discharge by accumulating gridded runoff
over a river network constructed from topographic informa-
tion (Vörösmarty et al., 1989). However, at this early stage
few models considered the interaction between terrestrial wa-
ter fluxes and human activities, including water use and reser-
voir regulation, and even fewer models distinguished water
use from surface water and groundwater resources (Nazemi
and Wheater, 2015a, b). The phenomenal growth of the hu-
man footprint has significantly modified hydrological pro-
cesses in various ways (e.g. land use, artificial dams, and
water diversion) and at various scales (from a watershed to
the globe) (Sivapalan et al., 2012; Sivapalan, 2015). The in-
creasing number of recent global and regional studies show
that human activities can no longer be neglected in hydrolog-
ical models, since otherwise the resulting assessments will
be biased towards the natural conditions in many parts of the
world. Since the early 2000s, a growing number of LHMs
have incorporated human impacts on the hydrological cycle;
however, human representations in hydrological models are
still rather simplistic.

In this paper, we review the evolution of modelling hu-
man impacts on global water resources. The paper provides
a synthesis of progress in the development and application
of LHMs that includes an explicit treatment of human–water
interactions, the lessons learned, challenges faced, and per-
spectives on future extensions. In this review, a number of
key challenges are identified and possible improvements are
discussed. This synthesis paper is an outcome of the Sym-
posium in Honor of Eric Wood: Observations and Modeling
across Scales, held 2–3 June 2016 in Princeton, New Jersey,
USA. The primary objective of this contribution is to discuss
the integration of human activities into process-based hydro-
logical modelling and to provide future directions.

2 Evolution of representing human impacts in
hydrological models

To analyse the impacts of human-induced changes on wa-
ter resources consistently across large scales, a number of
LHMs have been developed since the late 1990s (Sood and
Smakhtin, 2015). In the early stages, the surface water bal-
ance (e.g. runoff and evaporation) was primarily simulated
in LHMs and runoff was routed down the simulated river
systems (Vörösmarty et al., 1989). These calculations were
then compared to population and water use data to derive
the degree of human water exploitation or water scarcity pri-
marily at an annual temporal scale (e.g. Alcamo et al., 1997,
2003a, b; Arnell, 1999; Vörösmarty et al., 2000; Oki et al.,
2001). LHMs typically simulate the dynamics of soil mois-
ture due to precipitation and evapotranspiration, the genera-
tion of runoff, and the discharge through the river network on

a coarse grid (∼ 50–100 km). Most LHMs are based on the
water balance concept and track the flows of water through
a number of storages, including canopy, soil, and groundwa-
ter. Most LHMs are not fully calibrated, but in some cases
they are tuned with regional parameters (Widén-Nilsson et
al., 2007).

Conceptual models are often chosen as they are deemed
to be robust and parsimonious in their data requirements.
In fact, for water budget calculations supporting water re-
source assessments, these more parsimonious models can
be shown to yield similar annual and sub-annual estimates
to more complex models, especially in the context of the
lack of comprehensive and high-quality forcing data sets
(Federer et al., 1996, 2003). In recent developments, how-
ever, LHMs are becoming more physically based and pro-
cess oriented, with large-scale data more readily available,
and there is increasing incorporation of better hydrological
representations for various processes, including runoff gen-
eration, soil physics, and groundwater representation. For ex-
ample, water flows and water storages are calculated for indi-
vidual hydrological components such as rivers, lakes, reser-
voirs, and groundwater, among others (e.g. Döll et al., 2003;
Hanasaki et al., 2008a, b; Rost et al., 2008; Wada et al.,
2011a, b; Pokhrel et al., 2012). More sophisticated hydro-
logical schemes to consider seasonal difference such as in
runoff, snowmelt, soil moisture, and lake and dam regulation
have been implemented. Water use is now often subdivided
among these different water sources into specific sectors such
as irrigation, livestock, manufacturing, thermal power cool-
ing, municipalities, and the aquatic environment (Hanasaki,
2008a, b; Wada et al., 2011a, b; Flörke et al., 2013; Pastor
et al., 2014). Irrigation schemes to calculate the water de-
mand have also been improved from simply using the differ-
ence between potential and actual evapotranspiration to us-
ing a soil moisture deficit that is dynamically coupled with
hydrology. Nowadays, many LHMs consider the dynamic
feedback between hydrology and human water management
via irrigation–soil moisture dynamics, reservoir–streamflow
interaction, and water allocation–return flow (withdrawals
minus consumption) dynamics (Döll et al., 2012; Wada et
al., 2014; Pokhrel et al., 2015). Regional hydrological mod-
els (RHMs) consider even more complex feedback and co-
evolution of coupled human–water systems (Liu et al., 2014).
Many human activities, such as human-induced changes in
the surface and subsurface of a watershed, are not for the
purpose of changing the water cycle, but they indeed alter
the water cycle and water resources. These impacts are in-
creasingly accounted for in the current generation of LHMs
and RHMs.

LHMs have been developed primarily to assess water re-
source availability and use under human land-water manage-
ment practices (Arnell, 1999; Alcamo et al., 2003a, b; Döll
et al., 2009, 2012; Gosling and Arnell, 2016; van Beek et al.,
2011; Wada et al., 2011a, b, 2014; Wisser et al., 2010), but
they are typically water balance models that do not solve the
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land surface energy balance (Nazemi and Wheater, 2015b;
Overgaard et al., 2006), even though there were some at-
tempts to couple land surface models (LSMs) that consider
surface energy balance with global river routing models (Oki
and Sud, 1998) to estimate the availability of water resources
globally (Oki et al., 2001; Hanasaki et al., 2008a, b). The pri-
mary focus in their development remains the accurate simu-
lation of river discharge at relevant scales. To achieve this,
most LHMs typically employ a few parameters that can be
tuned to match the simulated discharge with observations
(e.g. Döll et al., 2003; Wisser et al., 2010). The underlying
assumption is commonly that since the models are tuned to
capture the observed discharge, other fluxes such as evapo-
transpiration (ET) are automatically simulated with reason-
able accuracy. However, it is well known that focussing on
a single criterion such as discharge does not guarantee good
performance for other fluxes (Hogue et al., 2006). LHMs are
designed to be used in an offline mode with given climate
information provided as an external input, and are not gener-
ally coupled with global climate models (GCMs).

However, some early LHMs were developed to be incor-
porated as LSMs into GCMs or Earth system models (ESMs)
(Yates, 1997), or as stand-alone hydrological models such as
VIC (Wood et al., 1992; Nijssen et al., 2001a, b) (see Ta-
ble 1 for classifications). In contrast to LHMs, LSMs have
been developed as the integral components of GCMs. The
development of LSMs can be traced back to early work by
Thornthwaite and Mather (1957) and Manabe (1969), who
developed a simple “bucket model” based on the concepts
of Budyko (1965). Early LSMs used simple parameteriza-
tions for solving surface energy and water balances without
explicitly simulating the influence of land use change and
human water management on surface hydrological processes
(Deardorff, 1978; Bonan, 1995). They are used to estimate
the exchange of energy, heat, and momentum between the
land surface and atmosphere in GCMs, and to close budgets.
Since terrestrial hydrological processes exert a profound in-
fluence on the overlying atmosphere (Shukla and Mintz,
1982; Koster et al., 2004), LSMs have advanced through in-
tensive improvements in the representation of vegetation, soil
moisture, and groundwater processes (e.g. Lawrence et al.,
2011) by both the atmospheric and hydrologic research com-
munities (Sellers et al., 1997).

As a growing body of literature highlights the need to rep-
resent human activities in GCMs, studies have begun to in-
corporate human factors into a number of LSMs. For exam-
ple, Pokhrel et al. (2012, 2015) incorporated a number of
human land-water management schemes, including reservoir
operation (Hanasaki et al., 2006), irrigation, and groundwater
pumping into the MATSIRO LSM (Takata et al., 2003), and
examined the human alteration of land surface water and en-
ergy balances. A number of other studies have incorporated
similar schemes in a variety of global land surface models,
including the Community Land Model (CLM; Leng et al.,
2014, 2015), the Organizing Carbon and Hydrology in Dy-

namic Ecosystems (ORCHIDEE) model (de Rosnay et al.,
2003), and the Noah LSM (Ozdogan et al., 2010). Apart from
these global studies, various regional-scale studies have also
developed human impact schemes to be incorporated into
GCMs (e.g. Voisin et al., 2013; Ferguson and Maxwell, 2012;
Condon and Maxwell, 2014).

In addition to simulating land surface hydrology, LSMs
provide the lower boundary conditions for atmospheric sim-
ulations in GCMs. They typically employ sub-hourly time
steps and solve the energy balance on land, which is vital
to the simulation of the diurnal patterns of surface and soil
temperature variations required by their parent climate mod-
els to facilitate a dynamic linkage between land and atmo-
sphere through continuous exchange of moisture, energy, and
momentum. Considering energy balances in LSMs is cru-
cial not only to provide the boundary fluxes to the atmo-
spheric models, but also to simulate alteration of land sur-
face energy partitioning due to human activities such as ir-
rigation (Ozdogan et al., 2010; Pokhrel et al., 2012), and
consequently to understand its climate impact (e.g. Boucher
et al., 2004; Lo and Famiglietti, 2013; Sacks et al., 2009;
Sorooshian et al., 2014). Furthermore, consideration of the
energy balance also makes these models suitable for coupling
with agronomy-based crop models to dynamically simulate
the changes in crop growth and productivity, including stage-
dependent heat stress change under climate change (e.g. Os-
borne et al., 2015).

Some large-scale dynamic vegetation models (DVMs) in-
clude land surface hydrology and human water management,
such as the LPJmL model and JULES, as an integrated com-
ponent of land use and vegetation dynamics including CO2
fertilization effects (Gerten et al., 2007; Clark et al., 2011;
Konzmann et al., 2013). Notwithstanding such growing so-
phistication, most of the current generation of LHMs, LSMs,
and DVMs still fall short of simulating the direct human in-
fluence on the terrestrial freshwater systems (Nazemi and
Wheater, 2015a, b; Pokhrel et al., 2016), leaving the task of
representing human land-water management activities within
these models, and consequently in GCMs and ESMs, as one
of the grand challenges for the hydrologic research commu-
nity (Wood et al., 2011).

3 Current challenges of modelling coupled
human–water interactions

3.1 Modelling human impacts on extremes

Hydrological extremes (i.e. drought and flood events) and
water scarcity have become more severe over the last decades
in multiple regions across the world (Hisdal et al., 2001;
Lins et al., 1999; Stahl et al., 2010; Jongman et al., 2012;
Di Baldassarre et al., 2017), which has led to substantial so-
cietal and economic impacts (Stahl et al., 2016; Wilhite et
al., 2007). Many large-scale studies focus on drought and
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Table 1. Types of models used to simulate global hydrology.

Large-scale hydrological models (LHMs)

– A detailed representation of terrestrial hydrological processes at long temporal (e.g. decades) but fine spatial resolutions
(e.g. 10–50 km)
– Inclusion of human-induced change (e.g. human water use and reservoir regulation)
e.g. H08 (Hanasaki et al., 2008a, b), PCR-GLOBWB (Van Beek et al., 2011; Wada et al., 2014, 2016), WADMOD-M
(Widén-Nilsson et al., 2007), WaterGAP (Alcamo et al., 2003a, b; Döll et al., 2003), WBMplus (Vörösmarty et al., 2000;
Wisser et al., 2010)

Land surface models (LSMs)

– A simplified treatment of the surface hydrology associated with human-induced change
– A focus on the interactions of the land–atmosphere for climatic simulations in global climate models (GCMs)
e.g. VIC (Wood et al., 1992), NOAH (Ek et al., 2003), MATSIRO (Pokhrel et al., 2012), JULES (Clark et al., 2011), DBH
(Tang et al., 2007)

Dynamic vegetation models (DVMs)

– A simplified treatment of the surface hydrology and human land use change
– A special treatment on the biosphere that enables quantitative assessment of transient changes in
vegetation and land surface hydrology in response to variations in climate and anthropogenic CO2 increase
e.g. LPJmL (Gerten et al., 2007; Konzmann et al., 2013), JULES (Clark et al., 2011)

flood induced by climate extremes (e.g. Milly et al., 2005;
Hirabayashi et al., 2013; Orlowsky and Seneviratne, 2013;
Dankers et al., 2014; Jongman et al., 2014; Prudhomme et
al., 2014; Sheffield and Wood, 2008; van Huijgevoort et al.,
2014; Wanders and van Lanen, 2015; Wanders and Wada,
2015b); however, human water management is found to be
an important factor affecting regional water supply and hy-
drological variability (Wada et al., 2013a, b; van Loon et al.,
2016; Di Baldassarre et al., 2017). Recent studies explicitly
model human interventions (e.g. human water use and reser-
voir regulation), which enables attribution of the impact of
droughts, floods, and water scarcity to natural and human
processes (Di Baldassarre et al., 2013a, b; Forzieri et al.,
2014; Haddeland et al., 2014; van Dijk et al., 2013; van Loon
and van Lanen, 2013; Veldkamp et al., 2015; Wada et al.,
2013a, b; Wanders and Wada, 2015a; He et al., 2017).

With that said, commonly used drought indicators such
as the Standardized Precipitation Index (SPI) and Standard-
ized Precipitation and Evapotranspiration Index (SPEI) are
not able to capture the human impacts that affect drought
in streamflow and groundwater. For example, we argue
that, instead of potential, actual evapotranspiration should
be used, which allows better quantification of the impact
of agricultural irrigation under increasing temperatures. Fig-
ure 1 demonstrates a significant difference in the duration of
droughts in California based on SPEI with potential and ac-
tual evapotranspiration under natural conditions (natural) and
human water management (human). Furthermore, the influ-
ence of artificial water storage such as reservoirs on hydro-
logical extremes including drought and flood events is ob-
vious in intensively managed agricultural regions. Without
considering human water management, modelling recent se-

vere droughts, such as the California drought, would yield a
very different picture, which may be misleading for devel-
oping adaptation measures. In California, drought impacts
were alleviated due to extra water available from reservoirs,
at least in the short term. Irrigation return flow to groundwa-
ter storage also works in a similar manner (Fig. 1). However,
water use dominated by groundwater pumping led to a sig-
nificant lowering of groundwater levels (Fig. 1, middle right
panel), emphasizing that these processes should be incor-
porated into state-of-the-art hydrological models. Modelling
flood events without human water management would also
yield a very different picture, particularly in developed coun-
tries where regional water storage and dikes are prevalent for
flood mitigation (Lauri et al., 2012; Mateo et al., 2014). With-
out considering these regional measures, flood events could
be largely overestimated in hydrological model simulations.

3.2 Human impact indicators

Over the last few decades numerous water resource assess-
ment indicators have been developed alongside the improve-
ment in human impact modelling frameworks. As overuse
of water resources emerged in various regions of the world,
Falkenmark (1989) pioneered the concept of the Water
Crowding Index (WCI) using a threshold value to describe
different degrees of water scarcity. This indicator defines per
country water stress based on the per capita annual renew-
able freshwater resources (∼ blue water). Annual renewable
freshwater resources of 1700 m3 yr−1 per capita are taken as
the threshold below which water scarcity occurs with dif-
ferent levels of severity, and 1000 m3 yr−1 per capita as a
general indication of a limitation to economic development
(Falkenmark et al., 1997). While this is still one of the most
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Figure 1. Area in drought (AID) in California (CA), USA, for the period 2010–2015. The PCR-GLOBWB global hydrological model
(Wada et al., 2013a, b, 2014) has been used to simulate actual evapotranspiration, soil moisture, groundwater, and river discharge at a
grid of 10 km by 10 km resolution. Groundwater is represented with a linear reservoir model only. We refer to Wada et al. (2014) for
the detailed descriptions of model parameters and simulation. The monthly Standardized Precipitation Index (SPI), monthly Standardized
Precipitation Evaporation Index with Potential Evapotranspiration (SPEI-PET), and SPEI with Actual Evapotranspiration under natural and
human influenced conditions (SPEI-AET natural, SPEI-AET human) were determined at the state level. The model simulations were used
to derive locally the 90th percentile variable threshold, which has been used to calculate the AID aggregated to the state level for each
hydrological variable of soil moisture, groundwater, and river discharge. The 90th percentile threshold has commonly been used in drought
identification (Wada et al., 2013a, b; Wanders et al., 2015, 2017) and this threshold was calculated separately for the natural situation and
for the human-affected simulation shown in the right panels. All thresholds are standardized by the annual mean threshold of the natural
situation.

commonly used indicators, this water scarcity metric has
evolved into a more comprehensive, spatially explicit, and
sector-specific index including agricultural (irrigation and
livestock) and industrial water needs (Alcamo et al., 1997,
2003a, b; Arnell, 1999; Vörösmarty et al., 2000; Oki et al.,
2001). Many recent studies compare total water withdrawals
or consumption (agriculture, industry, and households) to
water availability to express the fraction of the available wa-
ter taken up by demand at the finer grid level, since country-
based estimates hide substantial within-country variation of

water availability and demand (Hanasaki et al., 2008a, b;
Wada et al., 2011a, b). Focusing on the African continent,
Vörösmarty et al. (2005) emphasized the essential nature of
the topology of river networks to differentiate between cli-
matic and hydrologic water stress in macro-scale water re-
source assessments. In the current operational European wa-
ter management and policy, the Water Exploitation Index
(WEI) is used, reflecting both water consumption and with-
drawals divided by water availability (De Roo et al., 2012).
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Water availability is local renewable freshwater with incom-
ing streamflow from upstream parts of a river basin.

In general, a region is considered to experience water
scarcity when the ratio of water withdrawal to availability is
higher than 0.4 (0.2 in the case of water consumption), con-
sidering the sustainability of renewable water resources. In
order to track the volume of water used to produce a com-
modity, good, or service along the various steps of produc-
tion and in international trade, Hoekstra (2009) and Hoek-
stra and Mekonnen (2012) pioneered the water footprint con-
cept, which classifies and quantifies the water source but
does not assess the impact of human water use on natural
stocks and flows, because it generally focuses on the vol-
umes of water required without quantifying the volume of
water available in the region. A few studies (Oki and Kanae,
2004; Oki et al., 2017) demonstrated how importing water-
intensive commodities such as crops and meat virtually re-
duces water scarcity in water-crowded nations and their re-
lationship with the economic situation of the nations. There
have been recent attempts to integrate both water quantity
and quality into water scarcity assessment (e.g. Liu et al,
2016; Zeng et al., 2013), and water quality including water
temperature is closely linked to human interactions with wa-
ter systems. In recent years, various new water resource as-
sessment indicators have been developed (Liu et al., 2017),
including the Blue Water Sustainability Indicator (BlWSI;
Wada and Bierkens, 2015) that considers both renewable
and non-renewable groundwater resources, and environmen-
tal flow requirements. Soil moisture (∼ green water) stress
is still rarely assessed in the context of human water needs
(Schyns et al., 2015), even though soil moisture is the major
water source for global food production (∼ 80 %) (Kummu
et al., 2014).

When considering water resource assessment indicators
for water scarcity and drought, classical non-transient thresh-
olds for a baseline period (e.g. 1980–2010) are often as-
sumed for future assessments. This may not be meaningful
for considering the coming decades, when humans and na-
ture may gradually adapt to a new hydrological state arising
from either climate (Wanders et al., 2015) or other more di-
rect drivers (Vörösmarty et al., 2010). This indicates an ur-
gent need to develop more socially and ecologically relevant
indicators that connect water science to the international so-
ciety. This development should be addressed within the hy-
drological community.

3.3 Modelling human impacts on groundwater
resources

The first assessments of global water resources (Falkenmark,
1989; Falkenmark et al., 1997; Alcamo et al., 2003a, b, 2007;
Vörösmarty et al., 2000) were mostly focused on blue wa-
ter demand and availability, where the latter was assumed
to be equal to streamflow. No distinction was made between
groundwater and surface water use. This distinction was un-

necessary because these analyses were limited to renewable
water resources and long-term averages, where streamflow
also includes baseflow and it makes no difference for the
budget calculations whether water is withdrawn directly from
the river or from shallow groundwater pools that are in dy-
namic equilibrium with climate forcings. In later analyses,
groundwater use was estimated implicitly (e.g. Wisser et
al., 2008; Rost et al., 2008). These and subsequent assess-
ments of groundwater use have evolved from assessments of
groundwater use without hydrological feedbacks into those
with feedbacks between the groundwater and surface wa-
ter systems, for example, via agricultural irrigation where
groundwater is supplied over irrigated areas, thereby affect-
ing the surface water balance.

In the early developments, water demand is estimated first.
Next, total water demand is attributed to available surface
water and groundwater resources, leading to estimates of
groundwater and surface water consumption, after subtract-
ing return flows. As stated above, no specific feedbacks to
the hydrological system are included. Instead, in order to
obtain cell-specific blue water availability, for each model
cell total upstream water consumption (groundwater plus
surface water) is abstracted from the natural streamflow in
post-process. Note that between these studies, very differ-
ent assumptions were made about the allocation of water de-
mand to surface water and groundwater. For example, in H08
(Hanasaki, 2008a, b, 2010), surface water is preferentially
abstracted over groundwater, whereas in WBMplus (Wisser
et al., 2008), water from reservoirs and groundwater is pref-
erentially abstracted. In LPJmL (Rost et al., 2008), irriga-
tion demand is attributed to surface water and groundwa-
ter resources using temporally invariant fractions, while in
WaterGAP (Döll et al., 2012) groundwater abstractions are
calculated with temporally invariant but sector- and country-
specific fractions of total water demand. In PCR-GLOBWB
(van Beek et al., 2011; Wada et al., 2011a, b) local (cell-
specific) groundwater abstractions are calculated by down-
scaling country-specific reported abstraction rates with local
water demand and surface water availability.

Irrespective of the attribution approach used, these mod-
els have to deal with regions where both surface water and
groundwater are insufficient to satisfy demand. The resulting
water gap is either reported or is assumed to be satisfied from
non-local or non-renewable water sources (Rost et al., 2008;
Hanasaki et al., 2010; Vörösmarty et al., 2010), i.e. ground-
water depletion or water diversions respectively. Wada et
al. (2010) explicitly calculated groundwater depletion (non-
renewable groundwater abstraction) using downscaled ab-
straction data from the International Groundwater Resources
Assessment Centre (IGRAC; https://www.un-igrac.org) and
simulated recharge. The problem with this approach, how-
ever, is that it does not correct for increased capture when
calculating depletion, resulting in an overestimation of de-
pletion rates (Konikow, 2011). De Graaf et al. (2014) at-
tempted to dynamically include groundwater abstraction in
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a global hydrological model. Here, attribution of ground-
water abstraction is dynamic and based on the ratio of
recharge to river discharge (groundwater to surface water
availability). Abstractions are actually taken from ground-
water reservoirs and affect surface water–groundwater inter-
action through baseflow and river infiltration. Return flows
from irrigation and domestic and industrial water abstrac-
tions are included as well. Similar schemes were developed
by Wada et al. (2014) and Döll et al. (2014). Although these
schemes are able to mimic the interaction between ground-
water pumping and hydrology, they lack the groundwater dy-
namics needed to represent the non-linear relationship be-
tween groundwater pumping and groundwater–surface wa-
ter interaction. Building on a previously developed global
hydrogeological schematization (De Graaf et al., 2015), De
Graaf et al. (2017) recently calculated groundwater depletion
with a two-layer transient global groundwater model cou-
pled to the PCR-GLOBWB global hydrological model. In
this study, they were able to account for increased capture
leading to global depletion rates that are smaller than previ-
ously calculated by Wada et al. (2010) and are slightly larger
than estimated by Konikow (2011).

Recently, groundwater use has also been incorporated
into LSMs within climate models. A notable example is
from a study by Wada et al. (2016a) where the contribution
of groundwater depletion to sea-level change was assessed
by including groundwater withdrawal and consumption in
the Community Earth System Model (CESM). Pokhrel et
al. (2015) incorporated a water table dynamics scheme and
a pumping scheme into the LSM called the Minimal Ad-
vanced Treatment of Surface Interaction and Runoff (MAT-
SIRO; Takata et al., 2003) to explicitly quantify the natural
and human-induced groundwater storage change. These de-
velopments provide evidence that groundwater dynamics and
groundwater use are slowly but surely being incorporated
into the global modelling of human impacts on the terres-
trial hydrological cycle. However, it should also be recog-
nized that available global hydrogeological schematizations
(e.g. Gleeson et al., 2014; De Graaf et al., 2015, 2017) are
grossly over-simplified, and a joint effort is urgently needed
from the hydrogeological and land surface modelling com-
munities to improve these relatively simplistic models. Oth-
erwise, further progress on groundwater use modelling will
be seriously hampered.

3.4 Incorporating regional water management

It is important to note that although the influence may not
be large at the global scale, urban and rural water supply in-
frastructure is much more diverse and regulated in many de-
veloped countries, which is not realistically accounted for in
existing modelling frameworks. Seawater desalination, wa-
ter diversions, and reclaimed water infrastructure are often
developed to expand water supply in water-scarce regions,
but these human interventions in water systems are weakly

integrated in LHMs. For example, given ever-increasing wa-
ter scarcity, desalination is becoming a practical and estab-
lished technique to produce freshwater from saline water
in coastal arid regions in the world, typically countries in
the Middle East (Voutchkov, 2012). All major coastal Aus-
tralian cities now also have desalination options to intermit-
tently or permanently supplement insufficient conventional
supplies. It is reported that seawater desalination contributes
almost 100 % of the water supply for some cities, including
Makkah in Saudi Arabia (KICP, 2011). Due to the rapid de-
velopment of seawater desalination plants in recent years, to-
tal capacity has been expanded from 3.52 km3 yr−1 in 1990
to 19.16 km3 yr−1 in 2014 (DesalData; http://www.desaldata.
com).

Seawater desalination was seldom included in earlier
simulation-based global water resource assessments, as it in-
volves the production of freshwater that is unlimited by pre-
cipitation. In order to improve the accuracy of water use
amounts globally, Oki et al. (2001) subtracted the equiva-
lent volume of desalination water reported in AQUASTAT of
the Food and Agriculture Organization of the United Nations
(FAO) from water uses (withdrawals) in their assessments.
Wada et al. (2011) spatially distributed national statistics of
desalination water along the grid cells nearby the seashore.
Recently, Hanasaki et al. (2016) proposed a novel method to
include desalination in LHMs. They first identified the ge-
ographical distribution of areas utilizing seawater desalina-
tion (AUSD) from empirical rules utilizing global maps of
aridity, GDP per capita, and distance from the coast. They
then estimated the volume of desalination water production
by combining the map of AUSD and a simulated water deficit
(i.e. the difference between the water requirement and wa-
ter availability of conventional sources). They succeeded in
reproducing the spatial extent of where major seawater de-
salination plants exist and the volumes of past production
for major countries. Their future projections report that the
production of desalination water in 2041–2070 would ex-
pand to 6.7–17.3 times the current rates under various socio-
economic scenarios. Numerous challenges remain for bet-
ter representation of seawater desalination. For example, re-
cently major desalination plants have been installed in semi-
arid and humid climates, which is not well explained by the
model of Hanasaki et al. (2016).

Other examples are long-distance and cross-basin wa-
ter diversions that provide additional water supplies. Some
information is available, e.g. the Periyar Project (maxi-
mum capacity: 40 m3 s−1) and Kurnool Cudappah Canal
(maximum capacity: 85 m3 s−1) in India, and the Irtysh-
Karaganda Canal (maximum capacity: 75 m3 s−1 in cen-
tral Asia (World Bank; http://www.worldbank.org/; UNDP;
http://www.undp.org). Recently, the world’s largest inter-
basin transfer scheme, the South-to-North Water Diversion
(SNWD) project, became operational, and Beijing began to
receive freshwater from the Yangtze River in China’s south,
which covers a distance of more than 1000 km (Barnett et
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al., 2015). These water diversions play a role in mitigating
regional water scarcity, but also influence water balances in
source and destination basins (Zhao et al., 2015). However,
artificial diversion networks and the actual amount of water
transferred are difficult to parameterize, and are not repre-
sented in the current generation of modelling frameworks.
Extensive urban water supplies and waste water networks are
also important aspects given that half the world’s population
currently lives in urban areas. Further efforts are needed not
only for modelling, but also for comprehensive data collec-
tion of global seawater desalination, water diversion, and ur-
ban water network development.

Although desalination and inter-basin water transfer are
emerging examples and likely more important in the near fu-
ture, regional water management is much more complicated.
Current LHMs also lack dynamic trade-offs among irrigation
water supply, flooding control and hydropower production,
water competitions between upstream and downstream users
(Munia et al., 2016; Veldkamp et al., 2017), and deficit irri-
gation and rainwater harvest (Döll et al., 2014). These pro-
cesses are increasingly important for regional hydrological
model simulation. For example, considering regional deficit
irrigation practice can reduce the water demand by 30 %
(Döll et al., 2014), while current LHMs predominantly use
optimal irrigation practice in their model simulation. This is
similar to the need to account for return flows from industry
and households after water withdrawals. Water recycling and
waste water treatments are becoming important mitigation
measures for regional water scarcity. Modelling water recy-
cling and waste water treatments should be combined with
local water quality information, which can provide more ac-
curate information on the absolute availability of usable wa-
ter for different purposes such as drinking water, industry,
and agriculture.

3.5 Representing land use change and rapid
urbanization

Humans have transformed natural vegetation to anthro-
pogenic land cover such as agricultural lands and pasture
over 40 % of the global land area (Klein Goldewijk et al.,
2011; Sterling et al., 2013). Human-induced land use change
has profound impacts on global and regional hydrological cy-
cles by changing the rate of evapotranspiration, runoff, and
groundwater recharge, which in turn affects regional precip-
itation patterns and inflows to oceans (Gordon et al., 2005;
Halder et al., 2016; Puma and Cook, 2010; Renner et al.,
2014). Human transformation of global land cover (exclud-
ing irrigated agriculture) generally decreases evapotranspira-
tion and increases runoff (Gordon et al., 2005). Many LHMs
include the impacts of land use change; however, the land use
representation in the model tends to be statically prescribed
as an input parameter, while dynamic change in historical
land use is a lesser focus. Compared to LHMs or LSMs,

DVMs have better representation of land cover change, while
land surface hydrology is treated rather simply.

Among different land use changes, urbanization is of spe-
cific interest in recent impact studies, e.g. with the focus on
flood risks, hazards, and vulnerability (Güneralp et al., 2015;
Muis et al., 2015; Sampson et al., 2015; Tanoue et al., 2016;
Winsemius et al., 2013). At present, more than half of the
world’s population lives in urban areas and rapid urbaniza-
tion is taking place in many developed and developing re-
gions of the world (Klein Goldewijk et al., 2011). Neverthe-
less, urban areas and their impact on the hydrological cy-
cle (e.g. Jacobson, 2011) are not well represented in LHMs,
mostly due to their small proportion of the global land area
(Wood et al., 2011). Although the impact of urban areas on
the water cycle may be local, the distribution of such areas is
of high importance, e.g. for heat island and urban flood mod-
elling (Yang et al., 2011). Among LHMs, WaterGAP uses a
static input map with the percentage of impervious areas at a
grid and assumes that 50 % of precipitation over those areas
directly reaches the surface water bodies (Müller Schmied et
al., 2014). The LISFLOOD water resource model (De Roo et
al., 2000) uses sub-grid fractions of urban, forest, open wa-
ter, and several other land usages within the 0.1◦ (global) or
5 km by 5 km grid scale (for Europe) to represent the effects
of land use. Several (soil) hydrological processes are conse-
quently simulated separately (De Roo et al., 2012). Figure 2
shows the percentage of urban area at a 0.5◦ grid based on
MODIS urban land cover classification for the year 2003.
However, scale issues arise for urban land cover due to the
fact that the effect of limited urban areas on the water cycle
can be diminished at a large grid cell (Warburton et al., 2012)
and coherent scaling relationships are missing (Reyes et al.,
2016). However, satellite mapping of urban or impervious ar-
eas has improved recently (Lopez and Maxwell, 2016; Wohl-
fart et al., 2016; Yang et al., 2003) using the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) satellite images
(Schneider et al., 2009).

A recent study shows the challenges of including small-
scale urban hydrological modelling (Reyes et al., 2016).
However, representing urban areas as sub-grid variability and
upscaling the effect of urban areas to the larger hydrolog-
ical cycle may be possible (Krebs et al., 2014). For exam-
ple, model simulation with and without urban areas and as-
sociated hydrological balance can be compared in urbanized
catchments to see the impacts and their validation with avail-
able observations (e.g. runoff and evapotranspiration). Here,
the percentage of runoff that is generated over the impervious
areas may be validated and tuned to generalize the concept.

In order to better represent urban impacts on the regional
hydrological cycle, more accurate assessments of urban wa-
ter withdrawals and consumption are vital (Flörke et al.,
2013; Wada et al., 2016b, c). Finer spatial-scale population
and socio-economic data are required worldwide; however,
these data are typically provided at a country scale or a 0.5◦

grid. This leads urban water demands and supply to be geo-

www.hydrol-earth-syst-sci.net/21/4169/2017/ Hydrol. Earth Syst. Sci., 21, 4169–4193, 2017



4178 Y. Wada et al.: Human–water interface in hydrological modelling

Figure 2. MODIS urban land cover as percentages of a 0.5◦ grid cell for the year 2003 (IGBP classification system, class 13). The calculation
was done with a resampled land cover type of 0.025◦ tiles (2.7× 2.7 km at the Equator) for technical reasons. Hence, urban land cover has
to be dominant in a sub-grid in order to be taken into account for a 0.5◦ grid urban percentage. The assessment of the whole time series of
MODIS land cover data (yearly data 2003–2013) shows a very robust classification, implying that during that decade and using the resampled
information, not much change is detected (the maximum difference is 1.2 % among the years).

graphically mismatched in current large-scale water resource
assessments, and associated water scarcity and groundwater
depletion are not well represented (e.g. Döll et al., 2014;
Wada et al., 2014). McDonald et al. (2014) included the
source of urban water supply, which led to improved water
scarcity assessments. Considering a rapidly increasing urban
population, the model representation of urban hydrology and
water management needs to be urgently considered.

4 A look forward

4.1 Modelling human activities at multiple spatial
scales

Local human behaviour is an important part of the hydrolog-
ical system as humans are not just external drivers or bound-
ary conditions in hydrological systems (Sivapalan, 2012,
2015; Montanari et al., 2013; Troy et al., 2015a, b; van Loon
et al., 2016). The field of socio-hydrology is focused on un-
derstanding the processes that link humans and water in a
coupled hydrological–social system (Sivapalan et al., 2012,
2014). Socio-hydrology has emerged relatively recently as
a discipline that addresses the intersection between human
and natural systems (e.g. Sivapalan et al., 2012; Gober and
Wheater, 2015). The basic concepts of socio-hydrology align
well with the mainstream of coupled human and natural
large-scale modelling efforts that have rapidly developed
since the late 1990s, as discussed earlier in this paper (e.g.

Alcamo et al., 1997; Vörösmarty et al., 2000; Oki et al.,
2001; Döll et al., 2003). However, a main difference of socio-
hydrology from the large-scale human impact modelling is to
link bi-directional feedbacks between hydrological processes
and local human behaviour, similar to agent-based modelling
(ABM). Thus, socio-hydrology can be seen as a new devel-
opment in human impact modelling but, so far, is primarily
focused on a local to regional scale, and still requires more
detailed parameterizations of human behaviour and process-
oriented modelling frameworks.

Socio-hydrological studies can be divided into (1) his-
torical studies, (2) comparative studies, and (3) process-
based studies. For example, as a historical study, Pande
and Ertsen (2014) investigated complex cooperative agree-
ments from ancient societies, and found that it was in fact
water scarcity that triggered cooperation. For a more re-
cent example, Kandasamy et al. (2014) revealed a “pendu-
lum” swing in the Murrumbidgee River basin, where pop-
ulation first increased, driven by agricultural development,
and later decreased, driven by environmental restoration be-
ing more favoured over agriculture. In recent years sev-
eral socio-hydrological models have been developed (Blair
and Buytaert, 2016; Troy et al., 2015a). Di Baldassarre et
al. (2013a, b) and Viglione et al. (2014) developed a con-
ceptual “toy model” that explores the dynamics of a flood-
plain as a coupled human–water system. They demonstrated
the relationships between the hydrological and social cy-
cles, as human settlements in floodplains are threatened by
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flooding. Based on this it was revealed how societal mem-
ory of historical floods determines the (re)settling rate, and
whether a society is economically growing or recessing. Sev-
eral large river basins have been studied extensively, such as
the Murrumbigee River basin (van Emmerik et al., 2014), the
Kissimmee River basin (Chen et al., 2016), and the Tarim
basin (Liu et al., 2014), yielding new insights into the gov-
erning hydro-social processes and relations that operate in
these coupled systems. To go beyond single case studies,
Elshafei et al. (2014) developed a generic framework for
socio-hydrological modelling of agricultural catchments. Al-
though the application to two Australian catchments was in-
sightful, it remains challenging to link human and hydro-
logical processes across multiple spatial scales over differ-
ent geographies. The launch of socio-hydrology offers a new
paradigm that enables us to evaluate the co-evolution of hu-
man activities and hydrology, driven by two-way feedbacks
between humans and water systems over long time horizons,
which was not fully addressed in the large-scale human im-
pact modelling efforts.

Besides new opportunities and new insights, socio-
hydrology can also be seen as a wicked problem (Levy et
al., 2016). Human reactions to hydrological extremes can be
contrasting (Loucks, 2015), and there are no widely accepted
laws yet for human behaviour in coupled systems (Siva-
palan and Blöschl, 2015; Levy et al., 2016). This leads to
model developers deriving relations and identifying govern-
ing processes individually for each case study. Many socio-
hydrological models consist of coupled differential equations
that capture the dynamics of the studied system. However, it
is unclear whether this is because of over-parameterization
or mathematical correctness (Troy et al., 2015a; Mount et al.,
2016). Either way, it is time for socio-hydrology to move be-
yond individual case studies and find generalized but locally
relevant descriptions of changes in the (large-scale) human–
water system (McMillan et al., 2016). Importantly, a recent
study has presented a generalized socio-hydrology model of
water resources and trade (Dang et al., 2016), which also
highlights the opposite challenge in socio-hydrology model
development, e.g. no explicit spatial representation in many
economics models.

Ways forward for socio-hydrology include testing model
structures and frameworks in multiple case studies, or up-
scaling their model boundaries and increasing the modelled
system scale, and using new data, information sources, and
modelling environments. Here lies the confluence where
socio-hydrology models and global (hyper-)resolution mod-
els (Wood et al., 2011) might benefit from each other. Many
LHMs nowadays incorporate human water management, but
as discussed earlier, large uncertainties remain in model sim-
ulations (Döll et al., 2016). However, it should be noted that
many recent studies report that including human influences
in regional hydrology improves model performance in sim-
ulating river discharge or groundwater storage (Wada et al.,
2015; Wanders and Wada, 2015a, b). For example, Yin et

al. (2017) applied an ensemble of global model outputs with
regional water management practices in the Yellow River
basin, which yielded better surface water availability among
the sub-river basins. This type of offline coupling of global
models with regional water management information will fa-
cilitate the use of global models for regional application. In
addition, further improvement in modelling human impact
processes is crucial for realistic hydrological predictions.

Implementing local socio-hydrology models in large-scale
hydrological models should be done with care, as it is im-
portant to be mindful of the temporal and spatial scales used.
Human decision making is generally modelled on a yearly
basis or lumped together as collective social structures. Inte-
grated assessment models (IAMs) such as the Global Change
Assessment Model (GCAM) which combine economy, en-
ergy, agriculture, climate, and water resource assessment
with long-term policy development can also provide a good
opportunity for studying the intersection between human
and natural systems in a large-scale system (Hejazi et al.,
2013a, b, 2014). Socio-hydrological modelling should be
done either on the smallest scale (Pande and Ertsen, 2014)
or on the largest societal and environmental scale (society
and climate) (Ertsen et al., 2014). This is also crucial for
later calibration and validation, as these should keep pace
with the increase in spatial model resolution to resolve the
relevant processes (Melsen et al., 2016). There should be
a coordinated way forward for socio-hydrology and global
(hyper-)resolution modelling efforts. Incorporating human
activities globally as an endogenous factor will provide mate-
rial for comparative studies for the socio-hydrological com-
munities, increased model realism in LHMs, and better pre-
dictions of the co-evolution of the coupled human–water sys-
tem.

4.2 Global models for regional use

Global models are specially designed for application to the
global domain. They use boundary conditions and parame-
ters that can be derived only from globally available data sets
and use a limited number of robust parameters that can be
used without formal parameter calibration. However, global
models have recently been used for many regional applica-
tions, which requires careful attention to how to set up global
models for specific regional case studies. A straightforward
approach is to run a global model for the global domain with
a standard setting and focus on analysis of the results for
some specific regions. Biemans et al. (2013) used the LPJmL
model (Biemans et al., 2011; Rost et al., 2008) to study fu-
ture irrigation and food production in the Indian subcontinent
under climate change. In their simulations, the basic settings
were identical to the global simulation (e.g. the spatial reso-
lution was 0.5◦ by 0.5◦ or 50 by 50 km at the Equator). Ear-
lier work by Vörösmarty et al. (1998) highlighted problems
of re-scaling global water balance models to sub-global do-
mains, using the data-rich United States as an example, re-
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vealing the numerical “penalties” of data incongruities and
model formulations that would eventually be encountered in
fully global-scale analysis.

An advanced approach is to increase the spatial resolu-
tion of global models to better represent the regional de-
tails. Wada et al. (2016b) applied the PCR-GLOBWB model
at a spatial resolution of 0.1◦ by 0.1◦. Some models allow
users to set the spatial domain and resolution freely. Mateo et
al. (2014) applied the H08 model (Hanasaki et al., 2008a, b)
to the Chao Phraya River in Thailand at a spatial resolu-
tion of 5′ by 5′. Unlike the above-mentioned global studies,
they tuned several important hydrological parameters at ma-
jor river gauging stations by collecting historical meteorolog-
ical and hydrological data. They succeeded in reproducing
the historical long-term river discharge of the basin, includ-
ing the operation of two major reservoirs and the areal expan-
sion of inundation for a large flood event in 2011. Hanasaki
et al. (2014) extended their model to quasi-real-time sim-
ulation for possible application for flood monitoring in the
Chao Phraya River. Masood et al. (2015) applied the model
to the Ganges, Brahmaputra, and Megna rivers in South Asia.
The Australian Water Resources Assessment (AWRA) sys-
tem (van Dijk and Renzullo, 2011) couples daily time-step
catchment and groundwater balance models at 0.05◦ res-
olution with a (regulated) river and reservoir model. It is
used operationally by the Bureau of Meteorology to pro-
duce regular water resource assessments and water accounts
(http://www.bom.gov.au/water/). Gosling et al. (2017) com-
pared the simulated results of river runoff for eight large river
basins in the world by using an ensemble of global to conti-
nental LHMs and an ensemble of regional catchment-scale
hydrological models. The two types of model at different
spatial scales showed similar trends for the effects of global
warming, indicating the possible application of LHMs for re-
gional use. Either way, i.e. increasing spatial resolution of
global models or applying global models for a specific re-
gion or catchment with fine resolution, potentially removes
the barriers between regional and global models (Hattermann
et al., 2017). However, ongoing efforts towards better repre-
sentation of regional details are required, which would even-
tually improve both global models and fine-scale simulation.

4.3 Need for model intercomparison

Modelling human behaviour is highly uncertain, but the use
of a single hydrological model is still valuable to test a hy-
pothesis, provided it is succeeded by a multi-model anal-
ysis to examine the full range of possible human impacts
and model uncertainties (Tallaksen and Stahl, 2014; van
Huijgevoort et al., 2013, 2014). A number of model inter-
comparison projects on large-scale models have been per-
formed (e.g. GSWP1, GSWP2, WaterMIP, and ISIMIP), and
the strengths, weaknesses, and characteristics of individual
models have been compared. The focus has been on the his-
torical energy and water balances over land (Dirmeyer et

al., 2006; Douglas et al., 2006), water balance and river dis-
charge of the past (Oki et al., 1999; Haddeland et al., 2011)
and future (Hagemann et al., 2013; Schewe et al., 2014), as
well as water use (Wada et al., 2013a, b, 2016c).

One of the model components that inter-comparisons have
not addressed is the operation of dams. About 50 000 dams
have been constructed globally (Lehner et al., 2011) and
some models explicitly simulate the operation of major dams
in the world (Hanasaki et al., 2006; Biemans et al., 2011;
Wada et al., 2011). Masaki et al. (2017) were the first to
compare the simulation results of reservoir operations of five
large-scale hydrological models. They used the retrospective
multi-model simulation data set of the ISIMIP 2a project
(https://www.isimip.org/) and focused on the reservoirs of
the Missouri and Colorado rivers in the USA. Although all
of the models adopted similar algorithms of reservoir op-
eration and used harmonized meteorological and geographi-
cal data, there were considerable differences between them.
They analysed the results of only two rivers in the USA; a
more systematic inter-comparison is needed that covers other
regions of the world. It should also be noted that for valida-
tion of reservoir operations, data including inflow, outflow,
and actual reservoir volume are not readily available world-
wide, often due to political sensitivity.

4.4 Observing and sharing information on human
water management

As mentioned several times throughout this paper and else-
where (Lawford et al., 2013; Harding et al., 2014; Fekete
et al., 2015), there is a serious lack of comprehensive data
required to adequately constrain and evaluate hydrological
models over continental to global scales. The data gaps limit
our ability to fully assess model accuracy for the past, and
hence to develop reliable models to predict the future. While
relatively more reliable data for some hydrologic variables,
such as precipitation, air temperature, and river discharge,
are available for many regions, data on groundwater and hu-
man water use are particularly lacking. Regional groundwa-
ter data sets are now becoming increasingly available (e.g.
Scanlon et al., 2006; Fan et al., 2013), but significant chal-
lenges still remain in collecting and synthesizing data with
global coverage because even the available data for most re-
gions are not easily accessible (e.g. Hannah et al., 2011). Vast
amounts of soil and aquifer analyses, including hydrogeo-
logical frameworks and measurements, have been made, but
the data remain dispersed and unstructured in the scientific
literature, government archives, and online repositories. It is
therefore essential to make community-driven efforts to com-
pile these scattered data sets into a comprehensive hydrogeo-
logical information system easily accessible to the modelling
community (Fan et al., 2015). Some of the available global
data sets include FAO AQUASTAT for water use databases,
IGRAC groundwater data, the Global Runoff Data Centre
(GRDC) for river flow, and the International Commission on
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Large Dams (ICOLD) reservoir data, but data often require
substantial re-vetting and interpretation to be used for mod-
elling studies (Lehner et al., 2011), and commonly lack infor-
mation on operating rules. The hydrologic modelling com-
munity has benefitted considerably from coordinated data
collection and distribution efforts in the past, but it is time
to revise these data sets to meet the growing need for more
comprehensive, spatially explicit, time-varying data on hu-
man interactions with the hydrological cycle (Gleick et al.,
2013).

Recently, use of remote sensing has provided an un-
precedented opportunity to fill the spatial and temporal
gaps in ground-based observations for large-scale modelling.
For example, the data obtained from the Advanced Very
High Resolution Radiometer (AVHRR), the Landsat mis-
sion, and the Moderate-Resolution Imaging Spectroradiome-
ter (MODIS) have provided a unique opportunity to de-
rive human-transformed land use information. For example,
MODIS data have been utilized to derive global ET at very
high spatial resolutions (Mu et al., 2011; Tang et al., 2009;
Zhang et al., 2010), which can be used for the evaluation of
global and regional irrigation impacts. The Shuttle Radar To-
pography Mission (SRTM) provides high-resolution topog-
raphy data useful for global and regional water transport and
groundwater modelling. Satellite radar altimetry and laser
altimetry have provided measurements that can be used to
derive water surface elevation of lakes and man-made reser-
voirs (Gao, 2015). The Tropical Rainfall Monitoring Mission
(TRMM) delivers high-resolution rainfall data for mid- and
low-latitude regions for climate forcing.

In recent decades, satellite observations, such as by the
Gravity Recovery and Climate Experiment (GRACE) satel-
lite mission (Tapley et al., 2004), have further advanced our
ability to better monitor the continually evolving surface
and groundwater systems especially in relation to the chang-
ing climate and growing human interventions (Famiglietti et
al., 2015; Lettenmaier and Famiglietti, 2006). GRACE data
have been used to infer the changes in terrestrial water stor-
age over large regions and have been widely used to study
human-induced changes in surface and groundwater storages
(Rodell et al., 2009; Strassberg et al., 2009; Scanlon et al.,
2012; Longuevergne et al., 2010; Famiglietti et al., 2011;
van Dijk et al., 2014). The Global Precipitation Measurement
(GPM), Soil Moisture Active Passive (SMAP), and Surface
Water and Ocean Topography (SWOT) mission are expected
to provide better information on how human activities affect
terrestrial water fluxes.

Satellite observations have enabled us to better con-
strain and evaluate human activities in hydrological models
(Famiglietti et al., 2015). This is of particular interest for
less-gauged basins where conventional data are scarce. Sev-
eral studies have demonstrated the use of combinations of
available remote sensing products to force, calibrate, and/or
validate hydrological models to increase understanding of the
hydrological behaviour and the influence of human activi-

ties (e.g. Winsemius et al., 2009). However, there are inher-
ent uncertainties and limitations in satellite-derived products
(Fekete et al., 2015). Satellite data usually provide global
coverage filling the spatial gap in ground-based observations,
but their temporal coverage may be limited. In addition,
satellite-derived products can contain significant uncertain-
ties because certain algorithms have to be used to derive the
desired geophysical product since satellites typically mea-
sure the surface characteristics of the Earth rather than the
geophysical variables themselves. Therefore, it is important
to maintain ground-based observational networks in paral-
lel with the advancements in remote sensing technology be-
cause the satellite-derived products need to be verified with
independent observations (Famiglietti et al., 2015). In fact,
the TRMM Multi-satellite Precipitation Analysis (TMPA)
combines products from multiple satellite and ground ob-
servations from the Global Precipitation Climatology Centre
(GPCC) (Huffman et al., 2007). Recent studies also evalu-
ated the consistency between the pure satellite-based mea-
surements (TRMM) and TMPA at regional scale (e.g. Villar-
ini, 2010) and global scales (e.g. Zhou et al., 2014).

4.5 Linking human impact modelling to policy
development

Given that human impacts on land and water systems are per-
vasive, a basic requirement for hydrological science to sup-
port local, regional, and global policies is to deliver “real-
world” ESMs that incorporate the more important physi-
cal controls associated with human influences, e.g. land use,
dams, and irrigation (Wheater and Gober, 2015). These are
needed to support decision making at multiple scales, from
local-scale impacts of agricultural land management and ur-
banization to global-scale analysis and prediction of Earth
system change, including land–atmosphere feedbacks and
land–ocean freshwater delivery. Human impacts are most
readily understood and represented in local-scale models,
where for example process-based models have access to local
information on physical infrastructure, water demands, and
allocation rules. However, important challenges remain at
that scale, for example representation of impacts of agricul-
ture on runoff and water quality (e.g. nutrition, salinity, and
pesticides). At larger spatial domains, including large river
basins and transboundary waters, representing even these
basic effects of human activities becomes challenging (De
Lange et al., 2014). For example, data on physical infrastruc-
ture are limited at these scales, operational rules are often
unknown, and while information on water allocations may
or may not be available, actual water use generally has to be
estimated. Nazemi and Wheater (2015a, b) discuss the needs
for new data, satellite observational tools, models, and com-
parative analyses, as well as enhanced global coordination, to
address these issues. It is evident, however, that the represen-
tation of human impacts includes not only data on physical
infrastructure, but also societal and cultural behaviour.
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To take a simple example, operational policies for water
infrastructure may not be known to downstream users, yet
may have a large impact on downstream flows, and water
use (as opposed to allocations) will depend on governance
structures and user decisions. It therefore follows that there
is a set of more complex needs for management and policy,
which includes societal behaviour. It is perhaps obvious that
societal behaviour is an integral aspect of both policy and op-
erational water management, but it is also important to rec-
ognize that, just as geomorphological processes influence the
long-term evolution of the water environment, so do human
actions. As described earlier in the case of the Murrumbidgee
River basin, co-evolution of human–water systems led to a
government action that bought back water rights for the en-
vironment, invested in improved water use efficiency, and
increased environmental protection, so that environmental
health is returning and water use is retreating downstream.
The authors ask – could this have been predicted – and state
that “prediction of water cycle dynamics over long timescales
is not feasible without including the interactions and feed-
backs with human systems” (Wheater and Gober, 2015). So,
for example, as society attempts to manage uncertain risks
from environmental change, recognizing the non-stationarity
of climate (Milly et al., 2008), it is equally important to ad-
dress the non-stationarities associated with land and water
management.

As we expand to larger spatial scales, many water-scarce
regions start to rely on external water transfers, including wa-
ter diverted from other basins and virtual water from other
regions via international trade, to alleviate local water prob-
lems (Hejazi et al., 2014; Zhao et al., 2015). Globalization,
water diversion, and virtual water also have far-reaching ef-
fects on regional water use and hydrological cycles (Pande
and Sivapalan, 2016). Hydrological models do not thus far
have the capacity to capture the role of these tele-coupling
water management systems. Coupled hydro-economic mod-
els are therefore needed to understand the effects of human
behaviour in one place on the water systems in another place.

As a final point in this discussion of the importance of hu-
man impact modelling for policy, we suggest that a further
dimension of coupled human and water systems (Gober and
Wheater, 2015) concerns communication and stakeholder
engagements. In commenting on the flood-plain example,
Gober and Wheater (2015) note that “The concept of so-
cial memory does not, however, adequately capture the so-
cial processes whereby public perceptions are translated into
policy action, including the pivotal role played by the me-
dia in intensifying or attenuating perceived flood risk, the
success of policy entrepreneurs in keeping flood hazard on
the public agenda during short windows of opportunity for
policy action, and different societal approaches to managing
flood risk that derive from cultural values and economic in-
terests.” This limited example illustrates that there is a rich
agenda to better understand human–water interactions as a
guide to policy development and implementation. More gen-

erally, Gober and Wheater (2015) note the general failure to
link science with policy and associated needs for two-way it-
erative engagement between producers and users of scientific
information to build trust and better understand the needs of
policy makers and other users, and what scientists can pro-
vide to assist policy making. This could include public en-
gagement; for example, public attitudes can be an important
factor in political decisions relating to societal values associ-
ated with water management, such as the trade-offs between
human water use and environmental flows.

5 Conclusions

This paper builds upon contributions from previous mod-
elling efforts aimed at incorporating human activities in hy-
drology and in large-scale water resource assessments, and
has tried to highlight the need for further improvements,
including a number of key unsolved questions. To further
advance the current generation of hydrological models, we
have explored the possibility of including different mod-
elling aspects of coupling human–water systems to hydro-
logical models. The outstanding issues and shortcomings
of previous large-scale water resource assessments can be
grouped into five major themes: (1) issues related to current
human impact modelling and associated indicators, (2) is-
sues related to the limitations in representing regional wa-
ter management, (3) issues related to the need to model the
co-evolution of human–water systems, including land use
and climate interaction, (4) issues related to the need for a
nested approach integrating human behaviour (bottom–up)
into large-scale modelling (top–down), and (5) issues re-
lated to the lack of human water management information.
These five themes make up the current major challenges for
the human–water interface in hydrological modelling that
need substantial progress in the coming years. Despite the
various limitations identified, current modelling frameworks
have advanced significantly beyond earlier modelling work
by accounting more realistically for human activities and the
associated impacts on the terrestrial water system. Further
progress in the modelling of coupled human–water systems
at a range of spatial scales will be important milestones not
only for the hydrological science community, but also for the
climate and Earth system science communities. The future
of human impact modelling as outlined in this paper offers a
valuable opportunity for the hydrologic research community
to become a more truly interdisciplinary and influential Earth
science than ever before.

Data availability. The data and model simulation used to produce
Fig. 1 are available at https://doi.org/hdl:10411/GP5PKK (Wanders
et al., 2017).

The global hydrological model PCR-GLOBWB used to produce
the data in Fig. 1 is an open-source hydrological model that can be
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obtained from Utrecht University (http://www.globalhydrology.nl/
models/pcr-globwb-2-0/, Hydrology Group, 2017).
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