
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Real-Time Detection of
Restlessness Caused by Rapid

Eye Movement Sleep
Behaviour Disorder

Bachelor Graduation Thesis

Real-Time Detection
of Restlessness

Caused by Rapid Eye
Movement Sleep

Behaviour Disorder
by

Student Name Student Number

J.R. Post 5221498
K. Kandiyoor 5290996
P. Kremers 5344417

TU Delft Supervisor: Prof.dr. Paddy French
Momo Medical Supervisor: Ir. Thomas Bakker
Project Duration: April, 2023 - June, 2023
Faculty: Faculty of Electrical Engineering, Mathematics & Computer Science, Delft

Cover: Storyset Illustrations

Abstract

The objective of this project was to develop a real-time restlessness detection algorithm for Rapid Eye
Movement Sleep Behavior Disorder (RBD). This project was completed in collaboration with Momo
Medical, a fast-growing start-up, and developer of the BedSense device. Our project aimed to design
a system capable of detecting RBD episodes and bringing patients to a lighter sleep stage. To accom-
plish this, proprietary data and existing data from an RBD patient were collected through the BedSense
device. Additionally, data was extracted using a hardware system (developed by another subgroup)
from a non-RBD test subject. The collected data was utilized to design and implement a restlessness
detection algorithm. Given the limited data collected for this project, a classical detection algorithm
was developed instead of machine learning techniques. The software system demonstrated impres-
sive performance, achieving a balanced accuracy of 95.94%, an average sensitivity of 100%, and an
average specificity of 91.88%.

The results of this project were integrated with another project seeking to develop a sensor system
that brings an RBD patient to a lighter sleep stage. This project built a sock system with embedded
sensors and a vibration module to achieve this. The proof of concept of the final integrated system
demonstrated a non-invasive method of detecting and preventing episodes caused by RBD.

i

Preface

Rapid Eye Movement Sleep Behavior Disorder (RBD) is a neurological parasomnia disorder caused
by the absence of muscle paralysis during REM sleep, leading to individuals acting out their dreams
and potentially causing harm to themselves and others. The goal of this project was to design a non-
invasive and user-friendly system capable of detecting episodes caused by RBD and bringing patients
to a lighter sleep stage.

In order to achieve this goal, two subgroups were formed; one was responsible for developing a hard-
ware system, and another focused on designing a software system. This thesis focuses on the design
process, methodology, and results of the software subgroup, and highlights the collaborative integra-
tion of both hardware and software components to realize the final system.

The goal of the software subgroup was: to develop a real-time restlessness detection algorithm caused
by RBD. This project was completed in collaboration with Momo Medical, a fast-growing start-up, and
developer of the BedSense - a device placed under mattresses that tracks the sleep characteristics of
residents in nursing homes.

We would like to express our sincerest gratitude to the Momo Medical team: Thomas Bakker, Jeroen
Kant, Danny Eldering, and Karen van der Werff. We are particularly grateful for Thomas Bakker’s input
and guidance in helping us realize a successful project. Furthermore, the quick and thorough technical
support provided by Jeroen Kant was of great value. We would also like to extend our thanks to our
supervisor, Paddy French, for his mentorship and guidance. Lastly, our sincerest thanks to Bert Verzijl,
a patient diagnosed with RBD who graciously agreed to collaborate with us. His invaluable insights
have been of great help in the success of this project.

Lastly, a special thanks goes to Kerim Dzhumageldyev, Jan Kruize, and Tijn Schram, the members of
the hardware subgroup. It was a pleasure working with you to make this project a success.

Delft, June 2023
Jasper Post, Krishnan Kandiyoor, and Pepijn Kremers

ii

Contents

Abstract i

1 Introduction 1
1.1 Rapid-Eye Movement Sleep Behaviour Disorder . 1

1.1.1 Sleep Stages . 1
1.1.2 REM Sleep Behaviour Disorder . 2
1.1.3 Diagnosis . 2
1.1.4 Treatment for RBD . 2

1.2 State-of-the-Art Analysis . 3
1.3 Momo Medical BedSense . 3
1.4 Goal of the Project . 3
1.5 Structure of Thesis . 4

2 Program of Requirements 5
2.1 Requirements for the Entire System . 5
2.2 Requirements for the Software Group . 6

3 Data Collection 7
3.1 Momo Medical BedSense . 7
3.2 Hardware Module . 8
3.3 BedSense Data Collection . 9

3.3.1 Patient Data . 9
3.3.2 Proprietary Data . 9

3.4 Hardware Module Data . 11
3.4.1 Patient Data . 11
3.4.2 Proprietary Data . 12

4 Data Analysis 13
4.1 Data Cleaning . 13

4.1.1 Electrodermal Activity Data Filtering . 13
4.1.2 Photoplethysmogram Data Filtering . 13
4.1.3 Accelerometer Data Filtering . 14

4.2 Visual Data Analysis . 14

5 Algorithm Design 17
5.1 Approaches . 17
5.2 Algorithm Design . 18

5.2.1 Movement Detection using PE & FSR Data . 18
5.2.2 Movement Detection using Accelerometer Data 18
5.2.3 Out of Bed Detection using FSR Data . 18
5.2.4 Stress Detection using PPG Data . 19
5.2.5 Stress Detection using EDA Data . 19
5.2.6 Decision Making Process . 20

5.3 Total System . 21

6 Algorithm Implementation 22
6.1 Motion Module . 22
6.2 Stress Module . 23
6.3 Total System Integration . 23

7 Testing and Results 24
7.1 Testing and Verification . 24

iii

Contents iv

7.1.1 BedSense Testing Algorithm . 24
7.1.2 Testing Pipeline . 24

7.2 Results . 25
7.2.1 Anomalies . 25
7.2.2 BedSense Results . 25
7.2.3 BedSense Non-RBD Test Results . 26

8 Conclusion and Future Work 27
8.1 Discussion . 27
8.2 Conclusion . 27
8.3 Future Work . 28

References 30

A Data Collection on RBD Patient 32

B RBD Diagnostic Criteria 35
B.1 International Classification of Sleep Disorders, Third Edition 35
B.2 The American Academy of Sleep Medicine Manual for the Scoring of Sleep and Associ-

ated Events . 35
B.3 Diagnostic and Statistical Manual of Mental Disorders 36

C Patients Record of RBD Episodes 37

D Source Code 38
D.1 algorithmrealtime.py . 38
D.2 algorithm.py . 41
D.3 test_algorithm_episodes.py . 44
D.4 helper_episodes.py . 44
D.5 helper_test_functions.py . 45
D.6 NonRBDtest.py . 46
D.7 data_import.py . 48
D.8 data_main.py . 50
D.9 data_visualization.py . 51

1
Introduction

In this chapter, important concepts regarding Rapid Eye Movement Sleep Behaviour Disorder that are
used in the project will be explained. After that, the goal of the entire project will be defined and the task
division of the subgroups will be explained. Lastly, the structure of this thesis will briefly be described.

1.1. Rapid-Eye Movement Sleep Behaviour Disorder
Rapid Eye Movement (REM) Sleep Behavior Disorder (RBD) is a neurological parasomnia disorder
that affects muscle atonia during REM sleep [1]. To understand RBD, the sleep stages of humans will
briefly be explained.

1.1.1. Sleep Stages
Regular sleep consists of four stages: N1, N2, N3 and REM [2]. The N1, N2, and N3 stages are con-
sidered non-rapid eye movement (NREM) sleep, and roughly 75% of sleep is spent in these stages.
During a typical 8 hours of sleep, there are roughly 4 to 5 sleep cycles, where a sleep cycle follows the
following sleep stage progression: N1, N2, N3, REM. One sleep cycle typically lasts around 90 to 110
minutes, with the majority of the time spent in the N2 stage.

The first sleep stage is ’N1’, commonly referred to as ’light sleep’. During this stage, there is some
light muscle tone in the skeletal muscles and breathing tends to occur at a regular intervals [2]. Eye
movement, heart rate and body temperature all decrease. This sleep stage lasts around 1 to 5 minutes,
accounting for approximately 5% of the total sleep time [2]. As the night progresses, an uninterrupted
sleeper may spend even less time in this stage [3]. The next stages are N2 and N3, which are deep
sleep, and usually, it is quite difficult to wake people up in these stages [2]. They account for 45%
and 25% of total sleep respectively [2]. In these stages the body is the most relaxed. When a person
is woken up in one of these stages, they often feel groggy and they usually have diminished mental
performance for 30 minutes to an hour [2].

The last stage and the focus of this project is the REM stage. This is the stage where dreams occur
and brain waves are similar to a wakeful state [2]. However, all skeletal muscles, except for eyes and
breathing muscles, are atonic and without movement. In fact, this is the reason this sleep stage is
known as rapid eye movement, as the eyes may move much more during this stage compared with the
other stages. This stage initially lasts 10 minutes, but it gets longer in subsequent sleep cycles. After
this stage, the cycle starts again. Figure 1.1 illustrates an average night of sleep.

1

1.1. Rapid-Eye Movement Sleep Behaviour Disorder 2

Figure 1.1: An average night sleep with the sleep stages. [3]

1.1.2. REM Sleep Behaviour Disorder
Patients suffering from RBD do not experience any kind of muscle paralysis during the REM sleep
stage. This unfortunately leads to patients acting out their dreams, potentially resulting in dangerous
situations causing them to hurt themselves or their bedpartners [4]. Injuries that have been documented
include lacerations, dislocations, and hair pulling among many others [4]. The frequency of episodes
is highly variable, sometimes only occurring once every 2 weeks, but at other times occurring multiple
times a night for consecutive nights [4]. On top of that, RBD may be a precursor to neurodegenerative
diseases [5], like Parkinson’s disease and dementia [1]. Usually, the time between RBD diagnosis and
the onset of such diseases is 5 to 15 years [6].

1.1.3. Diagnosis
There are currently three different standards used to diagnose RBD (see Appendix B). Diagnosis is pri-
marily done using polysomnography (PSG), often accompanied by video recordings to visually verify
the results. A PSG is a sleep study used to diagnose many illnesses and disorders, and consists of an
extensive monitoring system that records electrical activity in the brain, muscles, and retina, as well as
respiration and heart rate [7]. The electrical activity is measured using electroencephalogram (EEG),
electromyography (EMG), and electrooculogram (EOG) techniques. With the information from these
sensors, the sleep stages can be determined, and combined with other data gathered during the study,
a diagnosis of RBD can be made.

Traditionally, it was thought that there was a gender disparity regarding the occurrence of RBD [4][5].
However, during a recent group study it was found that this was not the case [8]. Instead, males experi-
ence more issues from RBD because they usually have more aggressive dreams. This leads to males
seeking out medical help more often than females. Additionally, the same study found that approxi-
mately 1% of the general population has RBD [8]. The average age of patients suffering from RBD is
typically around 50 to 60 years old [1][9].

1.1.4. Treatment for RBD
There are currently no treatments specific for RBD, but the symptoms can be controlled by medication
[10]. Two commonly used medicines to suppress RBD symptoms are clonazepam and melatonin [11],

1.2. State-of-the-Art Analysis 3

although the effectiveness of these medicines is based upon case series, small clinical trials, and ex-
pert consensus [1]. So these medicines may not work for every patient and may introduce unwanted
side-effects. Another way to prevent injuries due to nightly movement is to use restraints or employ
safety measures such as a sleeping bag [10]. A simple albeit a crude solution, it is the easiest and
most cost-effective way to alleviate some of the struggles of RBD.

1.2. State-of-the-Art Analysis
As described, a lot of research has been done on the diagnosis of RBD. For instance, electromyog-
raphy (EMG) signals can be used for RBD diagnosis. In a study, these EMG signals were fed into a
machine learning algorithm with a random forest classifier, achieving an accuracy of 92% [12]. EMG
is also an effective measure for diagnosing RBD without a machine learning algorithm [13].

Less extensive research has been done on the real-time detection of RBD episodes. Research has
mainly been conducted on detection at a later stage when the patient has already left their bed [14].
This research used a pressure sensor to detect whether a patient had left the bed. When the pressure
sensor detected a sudden drop in pressure, meaning that the patient left the bed, a voice recording
plays. This was a voice recording of a family member that told the patient to go back to bed. In addition
to the pressure sensor, one patient used a bed exit monitor, that works with a tethering cord. When the
tethering cord is pulled, the voice recording played too. This research is a step in the right direction but
only measured the episode at a later stage. This research showed a decreasing number of episodes
after the system has been used for some time.

Furthermore, a study completed on in-bed motion detection and classification [15], showed that it was
possible to classify movements in bed with machine learning techniques. This study investigated pres-
sure sensor data and designed a machine-learning algorithm using a Support Vector Machine, Random
Forests, and XGBoost techniques to classify movements into one of 9 classes. This approach, how-
ever, would detect the movements only when they occur, which is too late for the prevention of RBD
episodes.

A proven method to monitor of real-time monitoring RBD patients is to make use of radio-frequency sig-
nals [16]. This research was approached by continuously monitoring RBD patients spatially. However,
with this approach, when patients show significant movement, timely intervention may be challenging
to achieve. Nevertheless, this approach demonstrates a high degree of non-intrusiveness.

1.3. Momo Medical BedSense
This project was completed in close collaboration with Momo Medical, a fast-growing start-up, and
developer of the BedSense - a device placed under mattresses that tracks the bed posture of residents
in nursing homes. The BedSense consists of piezoelectric and force-sensitive resistors and will be
used throughout this project for data collection (see Chapter 3).

1.4. Goal of the Project
As mentioned previously, there are currently no treatments that have been created for RBD patients
specifically. The state-of-the-art analysis has demonstrated effective novel methods for diagnosing
patients and detecting episodes. However, these methods primarily detect episodes at a later stage,
when the patient is already experiencing significant restlessness.

Therefore, the overall goal of this project is to design a complete system that is able to detect upcoming
episodes caused by RBD in an early stage and prevent such episodes. The system to be designed
must be non-invasive and user-friendly.

In order to realize the above-mentioned goal, two subgroups were formed; one was responsible for
developing a hardware system, and another focused on designing a software system (see Figure 1.2).

1.5. Structure of Thesis 4

The goal of the hardware group was to design and build a device capable of gathering biomedical sig-
nals related to RBD episodes and bringing the patient to a lighter sleep stage.

This thesis focuses on the design process, method, and results related to the goal of the software sub-
group, which was: To design and implement an algorithm that processes data from the hardware
group and the Momo Medical BedSense, detects restlessness leading up to episodes caused
by RBD, and subsequently makes a decision on whether or not to bring the patient to a lighter
sleep stage.

Figure 1.2: Overview of the project and subsystem goals

1.5. Structure of Thesis
The thesis is structured as follows: Chapter 2 describes the program of requirements for the entire
system and the software group specifically. In Chapter 3 the data collection process is discussed. In
Chapter 4 the data analysis process is described, which leads to the design choices of the algorithm in
Chapter 5. This chapter includes the various design choicesmade using visual and theoretical evidence.
The implementation of the algorithm will be discussed in Chapter 6. The results of the algorithm will
be discussed in Chapter 7. Finally, Chapter 8 includes a discussion, conclusion, and suggestions on
future work.

2
Program of Requirements

2.1. Requirements for the Entire System
As mentioned previously, the goal of the software was to design and implement an algorithm that pro-
cesses data from the hardware group and the Momo Medical BedSense, detects restlessness leading
up to episodes caused by RBD, and subsequently makes a decision on whether or not to bring the
patient to a lighter sleep stage.

The requirements created establish measurable criteria that the respective system must meet in order
to achieve the project goal. The functional requirements refer to what the system must do, while the
non-functional and safety requirements refer to peripheral aspects that need to be addressed. The
functional requirements are outlined as follows:

1.1 The system must be applicable to multiple patients, it should not only work for the patient with
RBD who is involved in the design of the system.

1.2 The system must work continuously for at least 10 hours, in order to ensure operation throughout
the duration of a patient’s sleep.

1.3 The system must provide real-time episode detection. This means that data should be collected
and processed locally, rather than via a server.

1.4 The time elapsed between an RBD episode onset and bringing a patient to a lighter sleep stage
should be less than 15 seconds.

The non-functional requirements are as follows:

2.1 The system should be non-invasive.
2.2 The system should be stand-alone. This means that it should work without any external products

or applications.
2.3 The system should be user-friendly. People should be able to use the system without having any

prerequisite/technical knowledge.
2.4 The system should be wireless, to allow the patient to move freely in their sleep.

The safety requirements are as follows:

3.1 The system must not cause harm to the patient.

5

2.2. Requirements for the Software Group 6

2.2. Requirements for the Software Group
The following requirements have been derived from those of the entire system, and are applicable to
the software system. The functional requirements of the software system are as follows:

A.1 The algorithm must detect at least 80% of all episodes in a given time frame. This means that if
a patient has 5 episodes throughout the night, 4 of them should be detected.

A.2 The algorithm must have a specificity of at least 99%. This means that in an arbitrary time frame,
the algorithm can only incorrectly detect an episode 1% of the time.

A.3 The software system must be capable of communicating through Bluetooth Low Energy with the
hardware module.

A.4 The software system must read and process data, as well as make a decision in real time.
A.5 The algorithm must make a decision on whether to bring the patient to a lighter sleep stage or not

within 10 seconds.

The non-functional requirements of the software system are as follows

B.1 The algorithm must be written in Python.
B.2 All personal and medical data of patients must be processed locally, due to privacy requirements.
B.3 PEP-8 programming standards must be adhered to when writing Python programs for the soft-

ware system.

3
Data Collection

Prior to the design, implementation, and testing of the algorithm, an extensive data collection process
was undertaken. Data collection served as the foundational step in algorithm development, providing
the necessary data to design, validate, and tune the algorithm’s performance. Data was collected both
internally and through a patient diagnosed with RBD. This data was extracted from the Momo Medical
BedSense and the system designed by the hardware subgroup. This chapter describes the data col-
lection process, and how it contributed to the final software system design.

3.1. Momo Medical BedSense
The BedSense consists of six piezoelectric (PE) sensors, four force sensing resistors (FSR), and an
accelerometer, used to measure vibrations, force on the bed, and the angle of the bed respectively.
The PE sensors are sampled at 120 Hz, and both the FSR and accelerometer are sampled at 10 Hz.
The BedSense operates optimally when placed beneath the mattress at chest height. Figure 3.1 de-
picts the Momo Medical Bedsense.

Figure 3.1: Momo Medical BedSense [17]

Piezoelectric sensors measure changes in pressure, acceleration, temperature, strain, or force by con-
verting them to an electrical charge. There are six piezoelectric sensors on the BedSense spread out
along the length of the board. In the measurements of these sensors, vibrations, and thus movement

7

3.2. Hardware Module 8

coming from the patient can be seen.

On the other hand, the resistance of FSRs change when pressure is applied. There are four FSRs
present on the BedSense, and similar to the piezoelectric sensors, the sensors are spread out over the
BedSense to record as much information as possible.

An accelerometer is a specialized sensor designed to detect and measure acceleration. In the context
of the BedSense, the accelerometer is used to determine the angle of the bed in three axes. The ac-
celerometer explained measures the angle of a bed. Therefore, it was decided that this data was not
relevant to the context of this project.

3.2. Hardware Module
The hardware module designed by the hardware subgroup consists of a sock with sensors and a vi-
bration module embedded in it. This sock system has two main uses; to complement the data from
the BedSense to design a more robust algorithm (through sensors), and to bring the patient to a lighter
sleep stage (through the vibration module). The sensors on the sock consist of two photoplethysmog-
raphy sensors (PPG), an accelerometer, and an electrodermal activity sensor (EDA).

The PPG sensors measure blood oxygen saturation and blood volume, and the EDA sensor measures
skin conductivity. This information can be used to detect stress in a patient. This is relevant within
the context of this project, as stress has been proven to be an early indicator of episodes caused by
RBD. The accelerometer has the function of measuring physical movement below the waist and com-
plements the data collected from the BedSense. Figure 3.2 shows a prototype of the hardware system
[18].

Figure 3.2: Prototype of Sock System

3.3. BedSense Data Collection 9

3.3. BedSense Data Collection
3.3.1. Patient Data
Given that the algorithm had to incorporate data from the BedSense, Momo Medical had already gath-
ered data from an RBD patient using the BedSense for this project. The test subject was a male in his
late 50s. This was the starting point of the data collection. Based on the visualization of this data, the
final algorithm was designed.

The data provided covered the time period between November 2022 to April 2023, but more data was
continuously collected throughout the project. The data provided included; PE, FSR, and accelerome-
ter data. The patient also kept track of when episodes happened, their intensity, and if they woke up.
Table 3.1 shows part of this data, the complete data can be found in Appendix C.

Table 3.1: Part of the Episode Information Provided by Patient

Date Timestamp episode Woke up Woken up Comments
21-2-2023 to 22-2-2023 00:22 Yes No –
1-3-2023 to 2-3-2023 03:38 Yes No –
3-3-2023 to 4-3-2023 01:57 Yes Yes Kicking and punching

The BedSense data was provided using CSV files. Each file contained 24-hour data from noon till noon
of the next day. Each row contained the sensor data and a timestamp. The time between each row was
0.1 seconds. Since the PE data was sampled at 120 Hz, each row contained 12 data points for each
PE sensor. Given that the patient had labeled when their episodes occurred, it was decided that this
BedSense data would be used in designing the algorithm. This decision was taken in alignment with
requirements A.1 and A.2 that pertain to the software system’s performance. Designing the algorithm
based on high-quality data increased the likelihood of a better-performing software system.

3.3.2. Proprietary Data
In order to improve the algorithm design, proprietary data from BedSense was collected. This was
completed to investigate whether ’standard’ movements below the waist could be distinguished from
the BedSense data alone. If these movements could be distinguished, the data could be labeled and
incorporated into the algorithm, making it easier to detect whether a patient is moving their legs.

An individual without RBD lay on a mattress with a BedSense located underneath it and performed limb
movements with varying degrees of severity. For example ’moving left leg up and down slowly’ and
’aggressively kicking with right leg’. The results of the PE sensors, when the individual kicked with their
left and right legs, are shown in Figure 3.3.

3.3. BedSense Data Collection 10

Figure 3.3: PE Sensor Results from Proprietary Data Generation

As can be seen in Figure 3.3, the PE sensors clip after reaching an amplitude of 15000. This is due to
the fact that the PE sensors are extremely sensitive, and can pick up even the slightest of vibrations.
Between approximately 11:00 and 11:05, the test subject is lying down with (almost) no movement.
However, at other times, when kicking or punching started, the sensitivity of the PE sensors resulted in
clipping. As a result, it was not possible to clearly distinguish and label kicking from this data. However,
it was decided that general movement could still be detected by the PE sensors, so this data was used
in the design and implementation of the algorithm. This decision was also taken in line with require-
ments A.1 and A.2, pertaining to the performance of the software system.

Similarly, the FSR data showed that kicking could not be differentiated through the BedSense alone.
However, rolling around could clearly be distinguished from the BedSense data. This was an expected
result given that the BedSense is placed around the chest height of a subject. Figure 3.4 shows the
result of the FSR sensors from the proprietary data collection when a subject was kicking with their
right and left legs.

3.4. Hardware Module Data 11

Figure 3.4: FSR Sensor Results from Proprietary Data Generation

The test subject kicked with their left and right legs between 11:08:30 and 11:09:00. These kicks only
resulted in (very) slight peaks in the FSR data, meaning that it would not have been useful to label
and use this data as there was no clear indication of a kick from the BedSense. The larger spike at
approximately 11:08:15 is due to the subject rolling, given that this can easily be picked up by sensors
at chest height.

To conclude, the approach of labeling and using data collected internally through the BedSense to dis-
tinguish movements below the chest was not taken. This was because these movements could not
be distinguished. The results of this attempted approach justified the need for a hardware module that
is below chest height, to be able to detect leg movements. Ultimately, this design choice helped fulfill
requirements A.1 and A.2, relating to the performance of the algorithm.

3.4. Hardware Module Data
Following collection of data through the BedSense, data was collected through the hardware module
(explained in Section 3.2). The intended outcome of this collection was to provide complementary data
to the BedSense, that is more relevant to the context of this project.

3.4.1. Patient Data
The intention of collecting RBD patient data through the sock system was to aid in the design of the
algorithm. Given that the sock system provides complementary data to the BedSense, collecting this
data and designing the algorithm around it would improve the performance of the overall software sys-
tem. The sock is capable of indicating stress levels through EDA and PPG sensors, given that stress
is difficult to simulate, this data had to be collected from an RBD patient. Furthermore, even though
motion data can be collected internally (through kicking with a sock on), it is more useful to collect this
data from an RBD patient to understand the exact movements made. Finally, if an episode was caught
using the sock system, the final software system could be tested on this data.

Unfortunately, due to a complex internet network in the patient’s apartment complex, it was not possi-
ble to initiate and maintain a stable Wi-Fi connection between the PC and the sock. As a result, no
extensive data was collected from the patient with the sock system [18]. For preliminary data collection
on an RBD patient, see apendix A.

3.4. Hardware Module Data 12

3.4.2. Proprietary Data
On the other hand, proprietary data through the accelerometers were collected through the sock sys-
tem. A test subject without RBD lay down on a mattress while wearing the sock system. The test
subject made kicking movements with their left and right leg, the results of the accelerometer on the
sock sensor can be seen in Figure 3.5. It is important to note that for this experiment, the subject wore
the sock on their right foot.

Figure 3.5: Accelerometer Results from Proprietary Data Generation

Figure 3.5 shows that the kicks can clearly be distinguished through the accelerometers on the sock.
At approximately 83 seconds, there are clear spikes in all directions (x, y, and z) that show the kicking.
These spikes are also present later in time when the test subject was kicking again. It was decided
that the accelerometer data from the sock system would be very helpful in designing the algorithm,
given that lower body movements could clearly be distinguished. This decision was taken as it was
hypothesized that it would improve the performance of the software system. Ultimately, this decision
aided in fulfilling requirements A.1 and A.2.

As mentioned earlier, PPG and EDA data was not collected from the test subject, given that stress
leading up to an RBD episode would be extremely hard to simulate. However, as mentioned earlier
this was not possible. Therefore, the data collected from the sock system only consisted of proprietary
data, which helped in designing the motion module of the algorithm (see chapter 5).

4
Data Analysis

After completing the data collection phase, the acquired data was subject to cleaning and processing
to ensure its reliability and consistency. Subsequently, the data was visualized using appropriate tools
and techniques to gain meaningful insights. This chapter focuses on the analysis of the collected data,
specifically targeting the extraction of important information pertaining to sleep restlessness exhibited
by RBD patients. The outcomes of this data analysis served as a starting point for exploring multiple
avenues in the final algorithm design.

4.1. Data Cleaning
Before useful data can be visualized, the data had to be cleaned. This meant that any irregularities in
the data needed to be looked at and possibly replaced or removed. The data also had to be filtered to
make sure that there was no power line interference (PLI) or any other noise. Power line interference
refers to the noise caused by electromagnetic fields of nearby powerlines and other devices [19]. This
noise has a frequency of 50 or 60 Hz, depending on the country. The historical data Momo Medical
provided had already been filtered and no PLI was present. The data also did not contain any values
such as infinity or NaN. On the other hand, data from the EDA, PPG, and accelerometer needs to be
filtered.

4.1.1. Electrodermal Activity Data Filtering
The frequency spectrum of electrodermal activity signals is not clearly defined, however, most re-
searchers agree that it is between 0 - 2Hz [20] [21]. A low-pass filter with a cut-off frequency of 2
Hz was deemed sufficient to filter out all the high-frequency noise, including the PLI. Additionally, the
electrodermal activity consists of two distinct components, phasic and tonic [22]. The tonic response is
the slow-moving baseline, while the phasic response is the event-related fast-moving component [21].
Due to the fact that the purpose of the EDA signal is to determine stress, it was determined that the
use of the phasic component of the EDA signal was sufficient. The phasic component was assumed
to be data with a spectrum above 0.05 Hz [23]. A simple highpass filter could be used to retrieve the
phasic component, however, advanced and better-performing filtering algorithms have been proposed
in a research context, such as cvxEDA [23].

4.1.2. Photoplethysmogram Data Filtering
The photoplethysmogram (PPG) is used to determine if a patient is stressed. This is done by determin-
ing the heart rate from the PPG data, and the heart rate is related to stress. To accurately capture all
possible heart rates and remove all other noise, the PPG data was filtered with a 4th-order Butterworth
band-pass filter with cutoff frequencies of 0.4 Hz and 4 Hz [24]. This frequency spectrum covers a heart
rate of 24 - 240 bpm, which is relatively wide considering the average heart rate is between 60 - 100
bpm.

13

4.2. Visual Data Analysis 14

4.1.3. Accelerometer Data Filtering
The accelerometer on the sock is not used to determine stress but provides complementary movement
data alongside the BedSense. The only noise that needs to be removed is power line interference,
which can be done using a notch filter at 50/60 Hz.

4.2. Visual Data Analysis
The algorithm needs to incorporate movement-based data from the BedSense and accelerometer from
the sock, and stress-based data from the EDA and PPG data. In order to devise an approach for the
algorithm, indicators that differentiate baseline and episode data need to be found. This step is not
required for the EDA and PPG data, since their indicators have already been determined. However,
the data of the accelerometer and BedSense need to be analyzed for indicators. It was decided that
the most appropriate method to detect indicators of episodes was through visualization. Therefore the
data was visualized in a number of ways.

First of all, the time-amplitude relation of the sensors was plotted. Figure 4.1 shows the time-amplitude
relation of the average of the 6 piezoelectric sensors of the BedSense. The red vertical line is the
timestamp provided by the patient as being the start of the episode. A few minutes before the red line,
the amplitude of the data points abruptly increases and stays high for a few minutes. This shows that
the restlessness of the patient increased in that timeframe, thus suggesting that there was an episode
caused by RBD. However, the start timestamp of the episode seemed to be slightly off, since the rest-
lessness was already present before the red line. This was the case for other episodes too, so an
estimation (green line) was added to properly convey the actual start of an episode.

Figure 4.1: Time-amplitude relation of the 6 piezoelectric sensors averaged.

Figure 4.1 shows that the episode lasted less than 5 minutes, and also that there were periods when
the patient was not restless. An episode was thus concluded to not be a continuous period of time of
pure restlessness, but bursts of restlessness over a period of a couple minutes. Furthermore, at the
end of the episode, the amplitude of the PE sensors approaches 0 and stays there for a few minutes.
This means there were no vibrations, so it is possible the patient woke up and decided to get out of
bed. The moment the patient got back into bed is also clearly visible.

Due to the fact that other movements apart from the episode were also visible, only looking at the
amplitude of the PE sensors was not enough to determine if there was an episode. Therefore the time-
amplitude relation of the force sensing resistors was also analysed. Figure 4.2 shows this relation of the
average of the FSR. The episode is more difficult to distinguish using the FSR data. There are some
minor amplitude differences at the beginning of the data, but it mostly stays constant. It is, however,
visible when the patient gets in and out of bed.

4.2. Visual Data Analysis 15

Figure 4.2: Time-amplitude relation of the 4 force sensing resistors averaged.

The averages of the sensors show some interesting things, but looking at the individual sensors uncov-
ers some interesting phenomena. Figure 4.3 and 4.4 show the data of PE sensors 0 and 5 respectively,
which are located on opposite sides of the BedSense. The amplitude of the data points of PE sensor 5
is much higher before and during the episode compared to PE sensor 0. It may be due to the fact that
the patient was lying on the side where PE sensor 5 is located. After the patient got back into bed, the
amplitude is roughly the same, so the patient would lie in the middle of the bed.

Figure 4.3: Time-amplitude relation of piezoelectric sensor 0.

Figure 4.4: Time-amplitude relation of piezoelectric sensor 5.

Figure 4.5 and 4.6 show the data of FSR 0 and 3 respectfully, where FSR 0 is located on the same side
as PE sensor 0 and FSR 3 on the same side as PE 5. From this data, it is also clear that the patient
was lying on one side of the bed before and during the episode. So, from this, it can be concluded that
the algorithm needs to look at all sensors, not just a few.

Figure 4.5: Time-amplitude relation of force sensing resistor 0.

4.2. Visual Data Analysis 16

Figure 4.6: Time-amplitude relation of force sensing resistor 3.

The restlessness during an episode created a lot of vibrations. Therefore, the next step taken was to
plot the time-frequency spectra of the PE data of the episodes. Figure 4.7 shows a time-frequency
plot of the average of PE sensors of the same episode as the above graphs, however, the yellow line
now depicts the estimated start of the episode. Figure 4.7 shows that the amplitude of the frequency
components increases if there is an episode. Unfortunately, this is also the case when other movements
occur, such as getting in and out of bed.

Figure 4.7: Time-frequency relation of the average PE data.

Additionally, individual frequency components were not explored further as a way to determine if an
RBD episode occurs, since not every episode is the same. Therefore, the sum of the amplitude of the
frequency components was calculated and plotted, see Figure 4.8. The episode is clearly visible in
the graph between 02:18 and 02:21. Before the episode, the amplitude is very low, which indicates
that there is no restlessness. After the episode, the moments the patient got out and in bed are again
visible.

Figure 4.8: Sum of the frequency bands of the average PE data.

5
Algorithm Design

This chapter describes the choices made during the design of the algorithm. Each of these choices
needed to be aligned with the Program of Requirements, and they were justified while keeping the
main goal of the algorithm in mind, which was detecting a period of abnormal, excessive, and poten-
tially harmful movement during sleep. To reach this goal multiple approaches were considered. These
will be discussed in this chapter, as well as the final approach.

5.1. Approaches
In the state-of-the-art analysis (Section 1.2), it was mentioned that machine learning has been proven
to be an effective approach to in-bed movement detection and classification, i.e. to enable abnormal
movement detection. Machine learning algorithms are capable of detecting patterns that humans could
never see. However, a downside of machine learning algorithms is that they need a lot of diverse data,
or else there is a significant risk of the algorithm becoming biased. The available data at the start of
the project consisted of a single patient with 15 episodes in a time period of half a year. This is too little
and non-diverse. A machine learning algorithm would be very biased and not usable by other patients.
Requirement 1.1 states that the system, and thus the algorithm should be versatile; usable for multiple
patients. Therefore, it was decided to not use machine learning.

Thus, it was decided that the algorithm would have to be a classical algorithm. This typically consists
of step-by-step instructions processing an input, resulting in the desired respective output. To design
a classical algorithm, first, available data needs to be analysed, which can be seen in Chapter 4. The
design choices can be made, motivated by logic and human observations.

In the data analysis, the frequency of the PE sensor data was analysed. It was hypothesised that a
higher frequency of vibrations could indicate more movement. This approach was not chosen. There
was no clear presence of large amplitudes of specific frequency components during episodes, as the
PE sensors had been filtered for any frequencies above 13 Hz. It was concluded that this does not
leave enough information in the frequency domain to distinguish certain movements.

It was further hypothesized that setting thresholds on the amplitude of the PE signals could have been
another approach. However, given that the PE signal clips quite quickly, this approach also does not
provide enough information for detection.

As is visible in Figure 4.8, the total amplitude of the frequency spectrum of a period of measurements
is an indicator of an episode. This relates to the energy in the original signal, as mentioned below
in section 5.2. As the goal is the detection of a period of excessive movements, it was deduced that
it is logical to use the energy of a period of the FSR and PE signals as an indicator. The increased
movement would likely cause increased activity in the energy of the FSR and PE signals.

17

5.2. Algorithm Design 18

5.2. Algorithm Design
After the data visualization, a strategy for the algorithm was devised. It was clear that multiple sensors
would have to be used in tandem to accurately determine the occurrence of RBD episodes. The algo-
rithm consisted of several components, each focusing on a single sensor or a group of sensors. The
following subsections will explain the design and operation of the various algorithm components.

5.2.1. Movement Detection using PE & FSR Data
In Chapter 4, it was determined that the sum of the amplitude of the frequency components of the PE
sensors was a good indicator of when an episode occurs. During the data analysis stage, this was
simply calculated as the sum of frequency components. This was sufficient for visualizing the data,
but for a real-time algorithm, it is quite slow. The square of the amplitude of frequency components
represents the power within that frequency band, and considering that power is directly related to energy
with:

P =
E

t
(5.1)

whereP ,E and t are power, energy and time respectively. If t is kept constant, by using a sliding window
of constant width, for example, energy instead of power can be used to determine if an episode occurs.
According to Parseval’s theorem [25], shown in Equation 5.2 in which x[n] is defined as a discrete-time
signal and X[k] is its equivalent in the frequency domain, the total energy of a signal is conserved
when going from the time domain to the frequency domain and vice versa. This removed the need
for the Fast Fourier transform and made the energy calculation much quicker and less computationally
intensive. As a result, the algorithmic implementation without the Fast Fourier transform helps achieve
requirement A.5, relating to the time frame in which the algorithm must make a decision.

E =

N−1∑
n=0

|x[n]|2 =
1

N

N−1∑
k=0

|X[k]|2 (5.2)

5.2.2. Movement Detection using Accelerometer Data
The accelerometer in the sock complemented the BedSense with regard to motion detection. To de-
termine the amount of movement, the absolute values of the three axes, in the x, y, and z directions
were summed and the sample standard deviation of the sum was calculated. A high standard deviation
indicates there is a lot of movement. The formula for the standard deviation is

s =

√√√√√ N∑
i=1

(xi − x̄)2

N − 1
(5.3)

where N is the number of samples, xi the i-th sample and x̄ the mean of the samples.

5.2.3. Out of Bed Detection using FSR Data
As was determined during the data visualization, the energy of the vibrations was not enough to ac-
curately determine if an episode occurs. Other movements, such as getting in and out of bed, also
produce enough energy to make it seem like an episode. It takes the average person roughly 60 to
90 minutes to reach the REM sleep stage [26], so the algorithm only needs to start detecting episodes
an hour after a person got into bed. This would eliminate the false positives that occur when a person
gets into bed. The FSR data can be used to detect if a patient is in bed or not.

Figure 5.1 shows the design of the out-of-bed detection component of the algorithm. If the FSR signal
is higher than a certain baseline, there is a patient in bed. The baseline is not equal to 0, since there
is always a mattress on top of the BedSense, which produces a positive non-zero force. This baseline
value may therefore also be different for differing sleeping conditions. If a patient is detected, a timer
is slowly decremented. Once the timer reaches 0 or lower and a patient is still in bed, the output is 1,

5.2. Algorithm Design 19

else the output is 0.

Figure 5.1: Out of Bed Flowchart

5.2.4. Stress Detection using PPG Data
The PPG data is used to determine the heart rate which is related to the stress response of the patient.
An ideal PPG signal is shown in Figure 5.2. The heart rate is equal to the difference between consecu-
tive systolic peaks [27]. After filtering (described in Section 4.1.2), the systolic peaks of the PPG data
need to be found. This required a peak finding algorithm. Given the complexity of implementing such
an algorithm, an already tested and implemented algorithm was used (see Section 6.2). Once the sys-
tolic peaks have been determined, the heart rate is simply the average difference between consecutive
peaks:

bpm =
60 · fs
(N − 1)

N−1∑
i=0

(xi+1 − xi) (5.4)

where fs is the sample rate, N the number of systolic peaks and xi the sample index of the i-th systolic
peak.

Figure 5.2: Ideal photoplethysmogram signal [28]

5.2.5. Stress Detection using EDA Data
The EDA sensor measures the conductivity of the skin which is related to stress response of the patient.
After filtering (described in section 4.1), only the phasic component of the EDA is left. Figure 5.3 shows
a typical phasic signal and some of the features that can be extracted from it. The average amplitude
and average rise time will be used to determine if a person is stressed. This requires an algorithm that

5.2. Algorithm Design 20

can determine onsets and peaks. An already implemented algorithm will be used (see Section 6.2).
The average rise time and average amplitude are then:

T̄rise =
1

N

1

fs

N∑
i=1

(pi − oi)

Ā =
1

N

N∑
i=1

(y[pi]− y[oi])

(5.5)

where N is the number of peaks, fs the sample rate, pi and oi the indexes of the i-th peak and onset
respectively, and y the phasic EDA signal.

Figure 5.3: Typical skin conductance response [29]

5.2.6. Decision Making Process
The decision making process will use all the indicators described in the previous sections. At the
start, it will be split up into two components, motion activity and stress response. The motion activity
component incorporates the indicators from PE, FSR and accelerometer in the sock, and determines
if there is a lot of motion. The stress response component uses the data from the PPG and EDA
sensors to determine the stress level of the patient. If there is both high motion activity and a high
stress response, an episode has been detected. If not, there is no episode. The entire process can be
seen in Figure 5.4.

5.3. Total System 21

Figure 5.4: Flowchart of the decision making process

5.3. Total System
Figure 5.5 shows the complete block diagram of the algorithm design, and in Chapter 6 the implemen-
tation of the system will be discussed. As can be seen, all the data on which the decision is based is
gathered together. From this, the stress response, as well as the motion activity, can be analysed, and
a well-informed decision is made.

Figure 5.5: Block diagram of the algorithm design

6
Algorithm Implementation

The complete software system consisted of two modules combined into one algorithm, this can be seen
in Figure 6.1. The motion module processed the data from the BedSense and the accelerometer in the
sock. The stress module processed the PPG and EDA data from the sock. This design choice was
made given that the data from the sock was only available at a later stage of this project. The division
of the algorithm also made it possible to assess the individual performance of both modules, in terms
of how well they can detect RBD episodes. The sock system has been designed to be complemen-
tary to the BedSense, so when the two modules are combined the results should improve. The final
implementation of the algorithm is a Python class called: DetectionRealTime. The DetectionRealTime class
is the main class that contains all the functions needed in the algorithm. These are incorporated as
methods of the class. Each instance of the DetectionRealTime class also holds class variables that may
be accessed by any method of the class. This chapter will further elaborate on how the algorithm was
implemented. The source code can be found in Appendix D.

Figure 6.1: Block diagram showing the total system integration

6.1. Motion Module
The motion module consists of three methods: signal_energy, filter_acc, and process_acc. The method
signal_energy processes all FSR and PE signals, and stores their power in separate class variables.
The calculation is done using the formula discussed in Section 5.2.1. The accelerometer data is initially

22

6.2. Stress Module 23

filtered using the filter_acc method and is subsequently processed using the process_acc method. The
filtering is done using the SciPy [30] package. The processing is done as discussed in Section 5.2.2.

6.2. Stress Module
The stress module uses the EDA and PPG data to predict if an RBD episode occurs. The module con-
sists of two methods: process_eda and process_ppg which process the EDA and PPG data respectively.
The Python packages Neurokit2 [31] and HeartPy [27] were used to efficiently extract RBD episode indi-
cators. Neurokit2 can automatically filter and analyze the EDA data. It filters the data using a 4th order
Butterworth filter with a cutoff frequency of 3 Hz. The cutoff frequency is slightly higher than discussed
in Section 4.1.1, but during testing, the performance was not negatively impacted. To extract the phasic
component, the cleaned signal is passed through a median value smoothing filter to remove areas of
rapid change. The phasic signal is obtained by subtracting the smoothed signal from the original signal.
This approach performed better than a high-pass filter or the cvxEDA algorithm described in Section
4.1.1. Once the phasic component is extracted, Neurokit2 can analyze the signal and determine var-
ious features, which can then be used to determine the average rise time and average amplitude as
discussed in Section 5.2.5.

The method process_ppg uses the HeartPy package to filter the PPG signal and extract the heart rate.
The signal is filtered using a 4th order Butterworth bandpass filter with cutoff frequencies 0.4 and 4 Hz
as discussed in Section 4.1.2. After filtering the cleaned signal is analysed and the peaks are extracted,
and from these peaks, the heart rate is determined.

6.3. Total System Integration
Finally, the motion module and stress module were combined. The code can be seen in Appendix
D.1. As can be seen in Figure 5.5 all the information from both the BedSense and the Sock have been
gathered for the decision. The decision also takes into account if the patient has recently been out of
bed or not. The method decision then determines if there is an episode or not. Figure 5.4 shows a
flowchart of this process. In order to make the algorithm quick, extensive use of the Numpy [32] and
Pandas [33] packages for efficient data processing were used.

For the proof of concept, the system accesses the BedSense data using API requests to the Momo
Medical database. This is incorporated into the method importdata_Bedsense. For a finished product, it
would be ideal to retrieve this data straight from the BedSense using Bluetooth, because when using
API requests there is a delay of about 5 seconds, which is not desirable as it increases the response
time of the algorithm. The data from the sock system is sent to a laptop with Bluetooth and then im-
ported to the algorithm by the method importdata_Sock. The algorithm processes about 5 seconds worth
of data every second. The 5 seconds of data is necessary to get an accurate heart rate from the PPG
signal.

7
Testing and Results

This chapter will go over the results of the system, or to be more specific part of the system. Due to
technical issues, no measurements were made using the sock system. Therefore there are no results
of the stress module and the total system. There are months worth of patient data recorded by a Bed-
Sense, which enabled the testing of the motion module excluding the accelerometer data. Therefore,
results presented for the ’motion module’ throughout this chapter exclude the accelerometer.

7.1. Testing and Verification
Originally, the intention was to first test both the stress and motion modules individually. Following
this, the entire system (integration of both modules) was to be verified and tested. However, due to
unforeseen circumstances mentioned above, only the algorithm that uses data from the BedSense was
tested. For this purpose, a testing environment/pipeline was created, see Appendix D.3 for the code.

7.1.1. BedSense Testing Algorithm
To test at least part of the algorithm, an implementation of the motion module using only the FSR and PE
signals was made. See the code in Appendix D.2. The main method of the Detection class is algorithm
(self, df: list[pd.DataFrame]). The input of this method is a list with pandas DataFrame objects, which
consists of sensor data from the Bedsense. The output of the algorithm is a list containing either a zero
or one, which are generated every second. A zero represents no episode, whereas a one represents
an episode. The motion module itself, without the accelerometer data, should provide a good estimate
of if there is an episode or not.

7.1.2. Testing Pipeline
For testing the motion module, data from the BedSense was used. The data was collected from an
RBD patient 3. This data was also labeled with timestamps indicating when episodes start and end. In
order to effectively test the algorithm, it was run on entire nights of data with episodes present. Follow-
ing this, the output of the algorithm was compared to the optimal outcome. See Appendix D.3 for the
respective code.

To define the ’optimal outcome’ the goal of the project had to be considered. As mentioned in Section
1.4, the goal of the project is: ’to detect restlessness leading up to episodes caused by RBD, and
subsequently make a decision on whether or not to bring the patient to a lighter sleep stage’. RBD
episodes need to be prevented, so the desired output cannot be defined as positive during episodes
and negative otherwise. For this reason, the definition of the metric sensitivity was altered.

Sensitivity (or true positive rate), indicates how well the system correctly identifies positive instances. It
gives a ratio of the proportion of actual positives that are correctly classified as positives. See Equation

24

7.2. Results 25

7.1

Sensitivity =
True Positives

True Positives+ False Negatives
(7.1)

For the scope of this project, it was decided that sensitivity per night will be defined as the number of
episodes, during which the first 10 seconds the algorithm outputs a positive, divided by the total amount
of episodes. See Equation 7.2.

Sensitivity =
Nr episodes detected within 10 seconds

Nr total episodes
(7.2)

7.2. Results
For the results of tests that were run on the motion module, different metrics will be considered. Sen-
sitivity, specificity, and balanced accuracy. See the respective code in Appendix D.5 Sensitivity has
already been discussed, and defined above.

Specificity is the ability of the system to correctly identify true negative instances. See equation 7.3.

Specificity =
True Negatives

True Negatives+ False Positives
(7.3)

Balanced accuracy is a metric that takes into account both sensitivity and specificity to evaluate the
performance of an algorithm on imbalanced data. It provides a balanced assessment of the algorithm’s
ability to correctly estimate both positive and negative instances, irrespective of the output distribution.
In the case of RBD episode detection, the output is not well distributed when looking at positive and
negative outputs. This uneven distribution is caused by episodes only taking a couple of minutes
throughout the night. See equation 7.4 for the balanced accuracy formula.

Balanced Accuracy =
Sensitivity+ Specificity

2
(7.4)

7.2.1. Anomalies
It was expected that a large number of false negatives would be present in the testing results. This
is because the motion module only takes movement into account. With just the BedSense data, it is
very hard to distinguish between different movements as well as the severity of the movement (see
Chapter 3). It is designed for nursing homes; to give an estimate on low/medium/high activity over a
longer period. Therefore, the motion module might see a small movement during sleep as an episode,
causing a lot of false negatives.

Given that the available data is labeled by the patient themselves, it cannot be guaranteed that the
labeling is flawless. For example, certain episodes might have been missed or the algorithm could
have been set off by their bed partner. This may also have caused some anomalies.

The patient has recorded video footage synchronous with the measurements taken from the BedSense.
Some of the footage was analysed to investigate the cause of certain false positives in the results. The
conclusion was that most false positives were caused by minor movements. These minor movements
do not justify the decision to bring the patient to a lighter sleep stage, and this shows the limited effec-
tiveness of the motion module on its own.

7.2.2. BedSense Results
These are the results of the motion module without the accelerometer of the sock. As expected (due
to the false positives) the specificity is lower than requirement A.2.

7.2. Results 26

Table 7.1: Test Results of BedSense Algorithm

Date Balanced Accuracy [%] Sensitivity [%] Specificity [%]
22-02-2023 96.65 100 93.30
02-03-2023 95.06 100 90.11
04-03-2023 96.68 100 93.35
05-04-2023 96.79 100 93.57
11-04-2023 96.92 100 93.84
16-04-2023 95.45 100 90.90
26-04-2023 95.71 100 91.43
28-04-2023 95.17 100 90.35
05-05-2023 96.34 100 92.68
07-05-2023 96.23 100 92.46
13-05-2023 94.21 100 88.42
19-05-2023 94.22 100 88.44
20-05-2023 97.86 100 95.71
24-05-2023 95.85 100 91.69
Average 95.94% 100% 91.88%

These results mean that all episodes have been detected within 10 seconds. This also conveys that
in 100 minutes, the motion module gives a false positive for a total of approximately 8 minutes. This
does not fulfill requirement A.2. However, these results reflect an algorithm in which accelerometer
data, and maybe, more importantly, the stress module data are not present. Stress is a big indicator
of RBD episodes, as the dreams that are enacted during an RBD episode are mostly nightmares. The
information on whether or not the patient is stressed will enable the algorithm to filter out a lot of false
positives caused by small movements.

7.2.3. BedSense Non-RBD Test Results
To put the results of the patient into context, the motion module was tested on a large dataset collected
from non-RBD patients. See Appendix D.6 for the corresponding code. The sensitivity is now not an
insightful metric, as desirably the algorithm should not go off at all. Specificity will therefore be consid-
ered. Momo Medical provided 5 nights worth of anonymous BedSense data from 7 random residents
of nursing homes. The resulting average specificity that was found was 97.04%. As expected this
was higher than the specificity found when running tests on the RBD patient, as RBD patients move
more during their sleep. There could be multiple reasons why the algorithm went off for non-RBD pa-
tients. First of all, there is no information on the nursing home residents from which this data came, so
they themselves might have medical sleep issues. Furthermore, the motion module does not consider
stress levels, it only looks at movement. Therefore, it can be set off by a lot of movements, for exam-
ple: the residents laying awake in bed at night, the residents turning or the residents waking up from a
nightmare.

8
Conclusion and Future Work

8.1. Discussion
As seen in Figure 6.1, the sock system and BedSense feed data to the algorithm which runs on a laptop.
The algorithm then takes and sends a decision on whether or not to activate the vibration module on
the sock. A more fitting implementation of the final design would have been to flash the algorithm on
the BedSense or the sock system. However, due to time constraints, it was decided that this was the
most appropriate implementation of the system, that sufficed for a proof of concept.

Table 7.1 shows the results of the motion module of the final algorithm. As can be seen, the average
balanced accuracy was 95.94%, which fulfills requirement A.1. Furthermore, the average specificity
was 91.88%. This meant that requirement A.2 was not fulfilled, since it was listed that the specificity
should be 99%. However, it is important to note that these results only reflect the motion module of the
algorithm. Due to technical difficulties, it was not possible to record an RBD episode with the patient
wearing the sock and sleeping on the BedSense. Therefore, no data was collected from the patient
through the sock system. If this was the case, threshold values could have been determined for the
stress module, and the entire software system could have been fully implemented and tested.

Furthermore, in the design of this algorithm, data was only collected (through the BedSense) from one
patient with RBD. However, ideally, the data would have been collected from multiple patients, aligning
with requirement 1.1. Due to time constraints and a lack of contact with other RBD patients, this was not
possible. However, to contextualize the results of the algorithm based on one patient, the motion mod-
ule was tested on non-RBD patients. The results showed that the algorithm performed with a 97.05%
specificity. This increase in specificity can be attributed to the fact that non-RBD patients make fewer
erratic movements in their sleep.

Lastly, the performance metrics of the algorithm could have been substantially improved if machine
learning were to be used. However, due to the limited and non-diverse data available at the start of
the project, using machine learning algorithms posed a risk of bias. Since the requirement was for a
versatile algorithm applicable to multiple patients, the decision was made to exclude machine learning
from the approach.

8.2. Conclusion
The goal of this project was; to design and implement an algorithm that processes data from the sock
system and the MomoMedical BedSense, detects restlessness leading up to episodes caused by RBD,
and subsequently makes a decision on whether or not to bring the patient to a lighter sleep stage. In
order to achieve this goal, various requirements were set in collaboration with the subgroup responsible
for the sock system.

27

8.3. Future Work 28

The requirements (and therefore the goal) were achieved by first collecting relevant data from vari-
ous sources, such as the BedSense and the sock system developed by the hardware subgroup. The
BedSense data provided useful information on the movement of a patient, whereas the sock system
allowed for the extraction of biosignals such as PPG and EDA data, as well as complementary mo-
tion data. Following this, the data was pre-processed and visually analysed. As a result, indicators of
upcoming RBD episodes were extracted. Finally, the algorithm was designed and implemented with;
movement, out-of-bed, and stress detection components.

The average balanced accuracy of the software system was 95.94%, the average sensitivity was 100%,
and the average specificity was 91.88%. These results mean that requirement A.1 was met, however,
A.2 was not met. This is due to the fact that data was not collected from the sock system during an
RBD episode, and thus the stress module has not been fully implemented yet. An attempt was made to
collect data from the RBD patient; however, due to the complex WiFi network of the patient’s apartment
complex, it was not possible to collect data. Therefore, more data should be collected with the sock to
potentially further develop it for use on patients.

Furthermore, requirement A.3 was not met, given that the hardware subgroup concluded that Low En-
ergy Bluetooth did not have enough bandwidth for the system. Instead, WiFi communication was used
for communication between the software system and the sock. The software system communicates
in real-time with the BedSense through API requests, fulfilling requirement A.4. Requirement A.5 was
also met, as the algorithm makes a decision every second and the WiFi connection with the sock has
low latency.

Nevertheless, the software system demonstrated its ability to detect RBD episodes and make a deci-
sion on whether to bring a patient to a lighter sleep stage.

8.3. Future Work
The result of the designed algorithm seems promising. The algorithm can always accurately detect
episodes. A finished product however would need to have improvements in both its design and imple-
mentation.

Enhancing Efficiency and Locality
The first aspect that would need to be improved is the fact that the algorithm is run on a laptop. This
means that a laptop needs to be on for the whole night. Furthermore, the algorithm currently gets the
BedSense data from Momo Medical servers using an API request. This is quite slow and results in a
delay of roughly 5 seconds. It is possible to send the data from the BedSense directly to the laptop,
but that would require a modified BedSense. It would be better if the algorithm could be run locally on
either the BedSense, on the system the hardware group designed, or both.

Optimizing Algorithm Execution and Security
Running the algorithm on any of these devices would require it to be rewritten in a language that can
be run on a microcontroller. This could be Cython or C++ among other programming languages. While
not difficult per se, it would require some time. However, it would solve the issues mentioned above. A
laptop would no longer be needed and the delay is greatly reduced, since the data no longer needs to
be retrieved from a server, but can instead be received from the BedSense directly. Additionally, this
would make the whole system more secure and private, since the data would not need to leave the
device.

Improving Algorithm Generalization and Customizability
Another aspect that would need to be improved is that the algorithm is based on data from a single test
subject. This has likely introduced some bias and therefore the algorithm may not work as well for other

8.3. Future Work 29

patients, since the threshold values are based on one patient. In order to improve this, data of multiple
patients in different situations should be collected and the algorithm should be tested on it. Due to the
different sleeping arrangements of patients, it seems likely that the algorithm will not work well in other
situations. A system should be implemented that either automatically adjusts the threshold values or
lets users customize the threshold values themselves (similar to a patient in the loop system). This
should be done in such a way that it is user-friendly.

Machine Learning Algorithm
Ultimately, it may be concluded that a classic algorithm based on data from the BedSense does not
work well enough to solve the issue. If that is the case, a machine learning algorithm should be tested.
Machine learning algorithms can detect patterns in data that humans could never see. Therefore, these
algorithms may provide higher accuracies than the algorithm described in this thesis. However, this
would require a complete overhaul of many systems designed in this thesis and more diverse data.

References

[1] C. H. Schenck, B. Högl, and A. Videnovic,Rapid-Eye-Movement Sleep Behavior Disorder, 1st ed.
Cham: Springer, 2019.

[2] A. K. Patel, V. Reddy, K. R. Shumway, and J. F. Araujo, Physiology, Sleep Stages. StatPearls
Publishing, 2022.

[3] E. Suni and N. Vyas, Stages of sleep: What happens in a sleep cycle, May 2023. [Online]. Avail-
able: https://www.sleepfoundation.org/stages-of-sleep.

[4] L. Ferini-Strambi andM. Zucconi, “Rem sleep behavior disorder,”Clinical Neurophysiology, vol. 111,
S136–S140, 2000, Sleep and Epilepsy Supplement, ISSN: 1388-2457.

[5] J. F. Gagnon, M. A. Bédard, M. L. Fantini, et al., “Rem sleep behavior disorder and rem sleep
without atonia in parkinson’s disease,” Neurology, vol. 59, no. 4, pp. 585–589, 2002, ISSN: 0028-
3878.

[6] I. Arnulf, “Rem sleep behavior disorder: Motor manifestations and pathophysiology,” Movement
Disorders, vol. 27, no. 6, pp. 677–689, 2012.

[7] J. V. Rundo and R. Downey, “Chapter 25 - polysomnography,” in Clinical Neurophysiology: Basis
and Technical Aspects, ser. Handbook of Clinical Neurology, K. H. Levin and P. Chauvel, Eds.,
vol. 160, Elsevier, 2019, pp. 381–392.

[8] E. K. St Louis and B. F. Boeve, “Rem sleep behavior disorder: Diagnosis, clinical implications,
and future directions,” Mayo Clinic Proceedings, vol. 92, no. 11, pp. 1723–1736, 2017.

[9] B. F. Boeve, “Rem sleep behavior disorder,” Annals of the New York Academy of Sciences,
vol. 1184, no. 1, pp. 15–54, 2010.

[10] R. N. Aurora, R. S. Zak, R. K. Maganti, et al., “Best practice guide for the treatment of rem sleep
behavior disorder (rbd),” Journal of Clinical Sleep Medicine, vol. 06, no. 01, pp. 85–95, 2010.

[11] A. Roguski, D. Rayment, A. L. Whone, M. W. Jones, and M. Rolinski, “A neurologist’s guide to
rem sleep behavior disorder,” Frontiers in Neurology, vol. 11, Jul. 2020.

[12] N. Cooray et al., “Enabling automated rem sleep behaviour disorder detection,” The 40th Inter-
national Conference of the IEEE, EMBC, Jul. 2018.

[13] A. B. Neikrug and S. Ancoli-Israel, “Diagnostic tools for rem sleep behavior disorder,” Sleep
Medicine Reviews, vol. 16, no. 5, pp. 415–429, Oct. 2012.

[14] M. J. Howell, P. A. Arneson, and C. H. Schenck, “A novel therapy for rem sleep behavior disorder
(rbd),” Journal of Clinical Sleep Medicine, vol. 7, no. 6, pp. 639–644, Dec. 2011.

[15] M. Alaziz, Z. Jia, R. Howard, X. Lin, and Y. Zhang, “In-bed bodymotion detection and classification
system,” ACM Transactions on Sensor Networks, vol. 16, no. 2, Jan. 2020.

[16] X. Yang et al., “Monitoring of patients suffering from rem sleep behavior disorder,” IEEE Journal
of Electromagnetics, RF and Microwaves in Medicine and Biology, vol. 2, no. 2, pp. 138–143,
Jun. 2018.

[17] Zorggroep Oude en Nieuwe Land. “Slimme sensor verbetert de nachtrust bij bewoners ’t Kom-
pas.” (2019), [Online]. Available: https://zorggroep-onl.nl/slimme-sensor-verbetert-de-
nachtrust-bij-bewoners-t-kompas (visited on 06/01/2023).

[18] J. Kruize, T. Schram, and K. Dzhumageldyev, “Non-Invasive Monitoring and Prevention of RBD
Episodes,” 2023, The thesis of the hardware subgroup.

[19] L. Sörnmo and P. Laguna, “Chapter 3 - eeg signal processing,” in Bioelectrical Signal Processing
in Cardiac and Neurological Applications, ser. Biomedical Engineering, L. Sörnmo and P. Laguna,
Eds., Burlington: Academic Press, 2005, pp. 55–179, ISBN: 978-0-12-437552-9.

30

https://www.sleepfoundation.org/stages-of-sleep
https://zorggroep-onl.nl/slimme-sensor-verbetert-de-nachtrust-bij-bewoners-t-kompas
https://zorggroep-onl.nl/slimme-sensor-verbetert-de-nachtrust-bij-bewoners-t-kompas

References 31

[20] H. F. Posada-Quintero and K. H. Chon, “Innovations in electrodermal activity data collection and
signal processing: A systematic review,” Sensors, vol. 20, no. 2, 2020, ISSN: 1424-8220.

[21] A. Greco, G. Valenza, J. Lázaro, et al., “Acute stress state classification based on electrodermal
activity modeling,” IEEE Transactions on Affective Computing, vol. 14, no. 1, pp. 788–799, 2023.

[22] W. Boucsein, Electrodermal activity. Springer Science & Business Media, 2012.
[23] A. Greco, G. Valenza, A. Lanata, E. P. Scilingo, and L. Citi, “Cvxeda: A convex optimization

approach to electrodermal activity processing,” IEEE Transactions on Biomedical Engineering,
vol. 63, no. 4, pp. 797–804, 2016.

[24] A. Temko, “Accurate heart rate monitoring during physical exercises using ppg,” IEEE Transac-
tions on Biomedical Engineering, vol. 64, no. 9, pp. 2016–2024, 2017.

[25] J. Proakis and D. Manolakis, Digital signal processing, principle, algorithms and applications, 4th
edition (Pearson international edition). Pearson prentice hall, 2000.

[26] J. Feriante and J. F. Araujo, Physiology, REM Sleep. StatPerals Publishing, 2023.
[27] P. van Gent, H. Farah, N. Nes, and B. Arem, “Analysing noisy driver physiology real-time using

off-the-shelf sensors: Heart rate analysis software from the taking the fast lane project.,” Nov.
2018.

[28] T. Athaya and S. Choi, “An efficient fingertip photoplethysmographic signal artifact detection
method: A machine learning approach,” Journal of Sensors, vol. 2021, pp. 1–18, Oct. 2021.

[29] G. Giannakakis, D. Grigoriadis, K. Giannakaki, O. Simantiraki, A. Roniotis, and M. Tsiknakis, “Re-
view on psychological stress detection using biosignals,” IEEE Transactions on Affective Com-
puting, vol. PP, pp. 1–1, Jul. 2019.

[30] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python,” Nature Methods, vol. 17, pp. 261–272, 2020. DOI: 10.1038/s41592-019-
0686-2.

[31] D. Makowski, T. Pham, Z. J. Lau, et al., “NeuroKit2: A python toolbox for neurophysiological signal
processing,” Behavior Research Methods, vol. 53, no. 4, pp. 1689–1696, Feb. 2021.

[32] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming with NumPy,” Nature,
vol. 585, no. 7825, pp. 357–362, Sep. 2020. DOI: 10 . 1038 / s41586 - 020 - 2649 - 2. [Online].
Available: https://doi.org/10.1038/s41586-020-2649-2.

[33] T. pandas development team, Pandas-dev/pandas: Pandas, version latest, Feb. 2020. DOI: 10.
5281/zenodo.3509134. [Online]. Available: https://doi.org/10.5281/zenodo.3509134.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

A
Data Collection on RBD Patient

Measurements have been taken with the sock on an RBD patient. This appendix consists of the result-
ing sock and BedSense measurements. The period from 02:25 to 02:40 will be discussed, because the
patient noticed some slight arm movements at 02:29 and leg movements at 02:35. The PE measure-
ments seen in Figure A.1 show vibrations around 02:29, which can be explained as the armmovements.
The vibrations after 02:35 could be caused by the leg movements. The FSR data, shown in Figure A.2,
indicates a fluctuating pressure around 02:36.

Figure A.1: PE data from the BedSense

Figure A.2: FSR data from the BedSense

Looking at the accelerometer data from the sock in Figure A.3, both the leg and arm movements can
be seen. There is a small peak around 02:29, concurrent with the arm movements. After 02:35 a
bigger peak occurs, which shows leg movement. When comparing the accelerometer data with the
BedSense data seen in Figures A.1 and A.2, it can be concluded that the sock does indeed provide
more information on leg movement.

32

33

Figure A.3: Data from the accelerometer

In Figure A.4, the raw PPG data is presented. This has been processed and turned into an estimated
heart rate, shown in Figure A.5. It shows no abnormalities around the time of the arm movements, but
at the same time of the leg movement the heart rate does seem to be higher for a while. After the leg
movements the estimated heart rate reaches around 140 bpm, this is likely to be a false outlier.

Figure A.4: Data from the PPG sensor

Figure A.5: Extracted heart rate

The EDA data can be seen in Figure A.6. At the same time of the leg movement the value of the raw
EDA data drops suddenly, this could be caused by the sensors being moved. But after EDA values
gradually start increasing, which could be an indicator of stress.

34

Figure A.6: Data from the EDA sensor

B
RBD Diagnostic Criteria

B.1. International Classification of Sleep Disorders, Third Edition

Table B.1: International Classification of Sleep Disorders, Third Edition (ICSD-3). REM Sleep Behavior Disorder Diagnostic
Criteria [1].

Criteria A-D must be met

A. Repeated episodes of sleep-related vocalization and/or complex motor behaviors

B. These behaviors are documented by polysomnography to occur during REM sleep or, based
on clinical history of dream enactment, are presumed to occur during REM sleep

C. Polysomnographic recording demonstrates REM sleep without atonia (RWA)

D. The disturbance is not better explained by another sleep disorder, mental disorder, medication
or substance use

B.2. The American Academy of Sleep Medicine Manual for the Scor-
ing of Sleep and Associated Events

Table B.2: The American Academy of Sleep Medicine (AASM) Manual for the Scoring of Sleep and Associated Events.
Scoring Polysomnographic Features of REM Sleep Behavior Disorder (RBD) [1].

1. Score in accordance with the following definitions

Sustained muscle activity (tonic activity) in REM sleep:
An epoch of REM sleep with at least 50% of the duration of the epoch having a chin EMG
amplitude greater than the minimum amplitude demonstrated in NREM sleep

Excessive transient muscle activity (phasic activity) in REM sleep:
In a 30 s epoch of REM sleep divided into ten sequential 3 s mini-epochs, at least five
(50%) of the mini-epochs contain bursts of transient muscle activity. In RBD, excessive
transient muscle activity bursts are 0.1-5.0 s in duration and at least four times as high in
amplitude as the background EMG activity

2. The polysomnographic characteristics of RBD are characterized by EITHER or BOTH of
the following features:

(a) Sustained muscle activity in REM sleep in the chin EMG

(b) Excessive transient muscle activity during REM in the chin or limb EMG

35

B.3. Diagnostic and Statistical Manual of Mental Disorders 36

B.3. Diagnostic and Statistical Manual of Mental Disorders

Table B.3: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). Rapid Eye Movement sleep Behavior
Disorder Diagnostic Criteria (Only the Core Features are Reported) [1].

A. Repeated episodes of arousal during sleep associated with vocalization and/or complex
motor behaviors

B. These behaviors arise during rapid eyemovement (REM) sleep and therefore usually occur
more than 90 min after sleep onset, are more frequent during the later portions of the sleep
period and uncommonly occur during daytime naps

C. Upon awakening from these periods, the individual is completely awake, alert and not
confused or disoriented

D. Either of the following:

1. REM sleep without atonia in polysomnographic recording

2. A history suggestive of REM sleep behavior disorder and established synucleinopathy di-
agnosis (e.g. Parkinson’s disease, multiple system atrophy)

C
Patients Record of RBD Episodes

Table C.1: Excel sheet with information on episodes kept by patient

Date Timestamp episode Woke up Woken up Comments

21-02-2023 to 22-02-2023 00:22 Yes No –

01-03-2023 to 02-03-2023 03:38 Yes No –

03-03-2023 to 04-03-2023 01:57 Yes Yes Kicking and punching

04-04-2023 to 05-04-2023 02:24 No No –

04-04-2023 to 05-04-2023 03:17 No No –

10-04-2023 to 11-04-2023 03:46 No No No notification in bedsense

15-04-2023 to 16-04-2023 01:12 No No –

25-04-2023 to 26-04-2023 02:53 No No –

27-04-2023 to 28-04-2023 01:42 No No –

04-05-2023 to 05-05-2023 01:26 No No –

04-05-2023 to 05-05-2023 04:48 No No –

06-05-2023 to 07-05-2023 01:04 No No –

12-05-2023 to 13-05-2023 05:16 No No –

18-05-2023 to 19-05-2023 02:34 No No –

18-05-2023 to 19-05-2023 02:51 No No –

19-05-2023 to 20-05-2023 03:00 No No –

23-05-2023 to 24-05-2023 04:05 No No –

25-05-2023 to 26-05-2023 01:37 No No –

37

D
Source Code

D.1. algorithmrealtime.py
This is the final algorithm for real time detection.

1 import heartpy as hp
2 import neurokit2 as nk2
3 import numpy as np
4 import pandas as pd
5 import time
6 import pytz
7 import datetime
8

9 from scipy.signal import iirnotch, filtfilt
10 from software.MomoAPI.tsdb import MomoTSDB
11

12 # Class for the entire detection mechanism. Main method is algorithm().
13 class DetectionRealTime:
14

15 # Initialization method
16 def __init__(self, state):
17 # Parameters of algorithm
18 self.time_length = 1
19 self.round = 0.4
20 self.countdown = 0 # amount of time length fragments for out of bed cooldown
21 self.state = state
22

23 # Constants
24 self.fsr_fs = 10
25 self.pe_fs = 120
26 self.eda_fs = 25
27 self.ppg_fs = 50
28 self.acc_fs = 50
29

30 # Thresholds
31 self.a = 1
32 self.b = 1
33 self.c = 1
34 self.d = 1
35 self.e = 1
36

37 self.fsr_power = None
38 self.pe_power = None
39 self.acc_std = None
40

41 self.heart_rate = None
42 self.eda_onset_time = None
43 self.eda_onset_amplitude = None
44

45 self.out_of_bed_status = False
46 self.tsdb = MomoTSDB(env="develop")
47

38

D.1. algorithmrealtime.py 39

48 # Importing the Bedsense data
49 def importdata_Bedsense(self) -> list:
50

51 # Initializing datetime objects for API request
52 begin = (datetime.datetime.strptime(
53 (datetime.datetime.now() - datetime.timedelta(seconds=7)).strftime('%Y-%m-%d %H:%

M:%S'),
54 '%Y-%m-%d %H:%M:%S'))
55 end = (datetime.datetime.strptime(
56 (datetime.datetime.now() - datetime.timedelta(seconds=2)).strftime('%Y-%m-%d %H:%

M:%S'),
57 '%Y-%m-%d %H:%M:%S'))
58

59 # API request
60 df = self.tsdb.load_range(begin, end, device_id="11025036", tz=pytz.timezone("Europe/

Amsterdam"),
61 measurement="sensorOpt")
62

63 df_fsr = df[["time", "fsr_0", "fsr_1", "fsr_2", "fsr_3"]].copy()
64

65 # Initialize a new dataframe
66 df_pe_raw = pd.DataFrame()
67

68 # Merge the raw pe data into 6 lists, each corresponding to one sensor
69 for i in range(6):
70 df_pe_raw[f"pe_{i}"] = df.values[:, i * 12 + 9:(i + 1) * 12 + 9].tolist()
71

72 # Explode the dataframe, such that the data in the lists are put into new rows.
73 df_pe_raw = df_pe_raw.explode(["pe_0", "pe_1", "pe_2", "pe_3", "pe_4", "pe_5"],

ignore_index=True)
74

75 return [df_fsr, df_pe_raw]
76

77 #Importing the sock data
78 def importdata_Sock(self):
79

80 return
81

82 # Run the live algorithm
83 def run(self) -> None:
84 last_time = time.time()
85

86 while True:
87 if time.time() - last_time >= 1:
88 if self.out_of_bed_status:
89 self.countdown = 1200
90 elif self.countdown > 0:
91 self.countdown -= 1
92

93 bs_df = self.importdata_Bedsense()
94 if self.state == 'total':
95 sock_df = self.importdata_Sock()
96 else:
97 sock_df = []
98 output = self.algorithm(bs_df, sock_df)
99 if output == 1:

100 print("bzzzt")
101 else:
102 print("negative")
103

104 last_time = time.time()
105

106 # Algorithm method
107 def algorithm(self, bs_df: list[pd.DataFrame], sock_df: list[pd.DataFrame]) -> int:
108 fsr_df = bs_df[0]
109 pe_df = bs_df[1]
110

111 self.signal_energy(fsr_df, pe_df)
112 if self.state == 'total':
113 eda_df = sock_df[0]
114 ppg_df = sock_df[1]

D.1. algorithmrealtime.py 40

115 acc_df = sock_df[2]
116 self.process_acc(acc_df)
117 self.process_eda(eda_df)
118 self.process_ppg(ppg_df)
119

120 return self.decision()
121

122 # Final decision method
123 def decision(self) -> int:
124 if self.state == 'bedsense':
125 if self.fsr_power > self.a and self.pe_power > self.b:
126 return 1
127 else:
128 return 0
129

130 speed = self.eda_onset_amplitude / self.eda_onset_time
131

132 if self.countdown == 0:
133 if self.fsr_power > self.a and self.pe_power > self.b and self.acc_std > self.c:
134 if speed > self.d and self.heart_rate > self.e:
135 return 1
136

137 return 0
138

139 # out of bed detection method
140 def out_of_bed(self, fsr_data: pd.DataFrame) -> None:
141 average = 0
142

143 for j in range(4):
144 f = fsr_data[f"fsr_{j}"]
145 average += np.average(f)
146

147 self.out_of_bed_status = bool((average/4 < 100))
148

149 return
150

151 # function calculates signal_energy of all sensors
152 def signal_energy(self, fsr_df: pd.DataFrame, pe_df: pd.DataFrame) -> None:
153 fsr_temp = 0
154 pe_temp = 0
155

156 for j in range(4):
157 fsr_temp += sum(fsr_df[f"fsr_{j}"][-121:-1] ** 2)
158 for j in range(6):
159 pe_temp += sum(pe_df[f"pe_{j}"][-121:-1] ** 2)
160

161 self.fsr_power = fsr_temp
162 self.pe_power = pe_temp
163

164 return
165

166 # rounding methods
167 def rounding(self, value: float) -> int:
168 if value > self.round:
169 return 1
170 else:
171 return 0
172

173 # processing methods
174 def process_eda(self, eda_df: pd.DataFrame) -> None:
175

176 signals, info = nk2.eda_process(eda_df, self.eda_fs, method_phasic="smoothmedian")
177

178 # Calculating onset time and onset amplitude
179 onset_indices = []
180 peak_indices = []
181

182 for i, v in enumerate(signals["SCR_Onsets"]):
183 if v == 1:
184 onset_indices.append(i)
185

D.2. algorithm.py 41

186 for i, v in enumerate(signals["SCR_Peaks"]):
187 if v == 1:
188 peak_indices.append(i)
189

190 # Calculate average onset time
191 self.eda_onset_time = np.diff([onset_indices, peak_indices], axis=0) / len(

onset_indices)
192

193 phasic_data = signals["EDA_Phasic"]
194 total = 0
195

196 for i in range(len(onset_indices)):
197 peak = peak_indices[i]
198 onset = onset_indices[i]
199

200 total += phasic_data[peak] - phasic_data[onset]
201

202 self.eda_onset_amplitude = total / len(onset_indices)
203

204 def process_ppg(self, ppg_df: pd.DataFrame) -> None:
205 # Filter the window
206 filtered_window = hp.filter_signal(ppg_df, cutoff=[0.4, 4], sample_rate=self.ppg_fs,

order=4,
207 filtertype="bandpass")
208 # Extract data from the filtered window
209 _, measures = hp.process(filtered_window, self.ppg_fs)
210

211 self.heart_rate = measures["bpm"]
212

213 def process_acc(self, acc_df: pd.DataFrame) -> None:
214 data = [None, None, None]
215

216 data[0] = self.filter_acc(acc_df["acc_x"])
217 data[1] = self.filter_acc(acc_df["acc_y"])
218 data[2] = self.filter_acc(acc_df["acc_z"])
219

220 total = np.sum(data, axis=0)
221

222 self.acc_std = np.std(total)
223

224 return
225

226 def filter_acc(self, data: pd.DataFrame) -> np.ndarray:
227 b, a = iirnotch(50, 30, self.acc_fs)
228

229 return filtfilt(b, a, data)

D.2. algorithm.py
This is an adaptation of the algorithm, not including the accelerometer, PPG, and EDA signal. Made
for testing purposes.

1 import numpy as np
2 import pandas as pd
3 from software.detection.classic_algorithm.data_windowing import data_window
4

5

6 # Class for the entire detection mechanism. Main method is algorithm().
7 class Detection:
8

9 # Initialization method
10 def __init__(self) -> None:
11 # Parameters of algorithm
12 self.time_length = 1
13 self.moving_size = 10
14 self.round = 0.7
15 self.countdown = 2400 # amount of time length fragments for out of bed cooldown
16 self.bed = 100
17

18 # Constants

D.2. algorithm.py 42

19 self.fsr_fs = 10
20 self.pe_fs = 120
21 self.fsr_n_points = int(self.fsr_fs * self.time_length)
22 self.pe_n_points = int(self.pe_fs * self.time_length)
23

24 # To be used
25 self.pe_results = []
26 self.fsr_results = []
27 self.power = []
28

29 self.fsr_window = None
30 self.pe_window = None
31

32 # Algorithm method
33 def algorithm(self, df: list[pd.DataFrame]) -> list[int]:
34 fsr_df = df[0]
35 pe_df = df[2]
36

37 # window is iterable with values
38 self.fsr_window = self.data_window(fsr_df, 'fsr')
39 self.pe_window = self.data_window(pe_df, 'pe')
40

41 # processing pe and fsr
42 self.signalpower()
43

44 # Checking the processing outputs
45 if len(self.pe_results) != len(self.fsr_results):
46 raise ValueError("lengths not the same")
47

48 # Averaging the processing results and rounding them to a 0 or a 1
49 final = [self.rounding(i) for i in np.divide(self.power, 2)]
50

51 # out of bed detection applied
52 output = self.out_of_bed_filter(final, self.fsr_window)
53

54 return self.moving_average(output)
55

56 # moving average method
57 def moving_average(self, output: list) -> list[int]:
58 new_output = []
59 average = []
60

61 for bit in output:
62 if len(average) < self.moving_size:
63 average.append(bit)
64 new_output.append(0)
65 elif len(average) == self.moving_size:
66 average = average[1::]
67 average.append(bit)
68 if average.count(1) >= 2:
69 new_output.append(1)
70 else:
71 new_output.append(0)
72

73 return new_output
74

75 # out of bed detection method
76 def out_of_bed(self, fsr_data: data_window) -> list[int]:
77 output = []
78

79 for frame in fsr_data:
80 average = 0
81

82 for j in range(4):
83 f = frame[f"fsr_{j}"]
84 average += np.average(f)
85

86 output.append(average / 4)
87 return [1 if x < self.bed else 0 for x in output]
88

89 # out of bed filter: filters the output to give 0 when recently out of bed

D.2. algorithm.py 43

90 def out_of_bed_filter(self, data: list[int], fsr_window: data_window) -> list[int]:
91 n = len(data)
92

93 bedstate = self.out_of_bed(fsr_window)
94

95 indeces = [i for i, element in enumerate(bedstate) if element == 1]
96 count = 0
97

98 for i, index in enumerate(indeces):
99 if i == 0:

100 count += 1
101

102 if (indeces[i-1] + 1) != index:
103 count += 1
104

105 print("seconds of out of bed: " + str(len(indeces)))
106 print("amount of out of bed: " + str(count))
107

108 for index in indeces:
109 for i in range(-self.countdown, self.countdown+1):
110 if -1 < index + i < n - 1:
111 data[index + i] = 0
112

113 if n != len(data):
114 raise ValueError("length changed!!")
115

116 return data
117

118 #function calculates average signal energy of PE and FSR sensors
119 def signal_energy(self) -> None:
120 min = 99999
121

122 for value_fsr, value_pe in zip(self.fsr_window, self.pe_window):
123 temp = 0
124 temp2 = 0
125

126 for j in range(4):
127 temp2 += np.average(value_fsr[f"fsr_{j}"])
128 temp += sum(np.abs(value_fsr[f"fsr_{j}"]) ** 2)
129 self.fsr_results.append(temp)
130 temp = 0
131

132 if (temp2/4) < min:
133 min = temp2/4
134

135 for j in range(6):
136 temp += sum(np.abs(value_pe[f"pe_{j}"]) ** 2)
137 self.pe_results.append(temp)
138

139 self.pe_results = np.divide(self.pe_results, max(self.pe_results))
140 self.fsr_results = np.divide(self.fsr_results, max(self.fsr_results))
141 self.power = [element + self.fsr_results[n] for n, element in enumerate(self.

pe_results)]
142

143 #self.bed = min + 15
144 return
145

146

147 # Creating objects of class data window
148 def data_window(self, data: pd.DataFrame, control: str) -> data_window:
149 if control == 'fsr':
150 return data_window(data, self.fsr_n_points)
151 elif control == 'pe':
152 return data_window(data, self.pe_n_points)
153

154 # Rounding function
155 def rounding(self, value: float) -> int:
156 if value > self.round:
157 return 1
158 else:
159 return 0

D.3. test_algorithm_episodes.py 44

D.3. test_algorithm_episodes.py
This code was used to test the motion module (without the accelerometer). For clarity only one of the
tests has been shown, the other tests are the same but run different data.

1 import unittest
2 from software.data_analysis.helper_episodes import episodes
3 from software.data_analysis.data_import import import_data
4 from software.TestingScripts.helper_test_functions import comparelists_episode , helper_list
5 from software.detection.classic_algorithm.Algorithm import Detection
6 import numpy as np
7

8

9 class TestSuite(unittest.TestCase):
10 time_length = 1
11 # Runs data of 10 episodes (20-40 min segments)
12 strive_percentage = (100, 100, 100)
13 detection = Detection()
14

15 # tests the percentage of 1's that are not in the period
16 def test_specific_episode_1_1(self):
17 episode = episodes[0]
18 data = import_data(episode[0], episode[1], "00:15", "06:00")
19 detection = Detection()
20 output = detection.algorithm(data[1:])
21 del detection
22 del data
23 strive_output = helper_list(TestSuite.time_length, "00:15", "06:00", episode[0],

episodes)
24 if len(output) <= len(strive_output):
25 output = np.append(output, np.zeros(len(strive_output) - len(output)))
26 else:
27 output = output[:len(strive_output)]
28 self.assertEqual(len(output), len(strive_output))
29 percentage = comparelists_episode(output, strive_output)
30 print(percentage)
31 self.assertGreater(percentage, TestSuite.strive_percentage)

D.4. helper_episodes.py
This is the labelling that matches specific csv files of Bedsense data.

1 #format: startdate, enddate, starttime, endtime, Bert's Timestamp, Our Estimate, endep
2 episodes = [("20230221", "20230222", "00:05", "00:27", "00:22:00", "00:22:00", "00:24:30"),
3 ("20230301", "20230302", "03:25", "03:43", "03:38:00", "03:38:00", "03:42:00"),
4 ("20230303", "20230304", "01:43", "02:03", "01:57:00", "01:57:00", "02:01:00"),
5 ("20230404", "20230405", "02:10", "02:30", "02:20:00", "02:18:40", "02:20:30"),
6 ("20230404", "20230405", "03:00", "03:23", "03:18:00", "03:16:00", "03:19:00"),
7 ("20230410", "20230411", "03:30", "03:50", "03:46:00", "03:41:20", "03:44:40"),
8 ("20230415", "20230416", "00:55", "01:17", "01:12:00", "01:12:00", "01:15:00"),
9 ("20230425", "20230426", "02:40", "02:58", "02:53:00", "02:53:00", "02:56:00"),

10 ("20230427", "20230428", "01:30", "01:48", "01:42:00", "01:42:00", "01:46:00"),
11 ("20230504", "20230505", "01:10", "01:31", "01:26:00", "01:24:50", "01:25:30"),
12 #("20230504", "20230505", "03:00", "03:21", "03:16:00", "03:16:00", "03:17:00"),
13 ("20230504", "20230505", "04:30", "04:53", "04:48:00", "04:47:30", "04:53:00"),
14 ("20230506", "20230507", "00:44", "01:09", "01:04:00", "00:59:00", "01:02:00"),
15 ("20230512", "20230513", "05:00", "05:20", "05:16:00", "05:15:10", "05:20:00"),
16 ("20230518", "20230519", "02:25", "02:40", "02:34:00", "02:34:10", "02:34:10"),
17 ("20230518", "20230519", "02:44", "02:56", "02:51:00", "02:51:10", "02:51:30"),
18 ("20230519", "20230520", "02:50", "03:05", "03:00:00", "03:00:00", "03:00:40"),
19 #("20230522", "20230523", "04:30", "04:44", "04:39:00", "04:39:00", "01:02:00"),
20 ("20230523", "20230524", "04:00", "04:10", "04:05:00", "04:05:10", "04:05:35"),
21 ("20230525", "20230526", "01:30", "01:42", "01:37:00", "01:36:40", "01:37:45")]
22 #("20230531", "20230601", "04:00", "04:18", "04:13:00", "04:13:00", "01:02:00"),
23 #("20230601", "20230602", "01:50", "02:03", "01:57:00", "01:57:00", "01:02:00")]
24

25 baselines = [("20230220", "20230221", "00:00", "00:30", None, None),
26 ("20230220", "20230221", "00:30", "01:00", None, None),
27 ("20230220", "20230221", "01:30", "02:00", None, None),
28 ("20230220", "20230221", "02:30", "03:00", None, None),
29 ("20230220", "20230221", "03:30", "04:00", None, None)]

D.5. helper_test_functions.py 45

D.5. helper_test_functions.py
These functions are supporting functions for the testing environment.

1

2 # Metrics function
3 def comparelists_episode(predicted: list[int], expected: list[int]) -> tuple[float, float |

int, float]:
4 TP = 0
5 FP = 0
6 TN = 0
7 FN = 0
8 episodes = []
9 episode = False

10

11 for n, elem in enumerate(predicted):
12 if expected[n] == 2:
13 episode = False
14 if expected[n] == 1 and episode is False:
15 print("added")
16 episodes.append(0)
17 episode = True
18

19 if elem == 1:
20 if expected[n] == 1:
21 episodes[len(episodes)-1] = 1 #True positive
22 elif expected[n] != 2:
23 FP += 1
24 else:
25 if expected[n] == 1:
26 FN += 1
27 elif expected[n] != 2:
28 TN += 1
29

30 # Sensitivity
31 # TPR = TP / (TP + FN)
32 if len(episodes) > 0:
33 TPR = sum(episodes)/len(episodes)
34 else:
35 TPR = 0
36

37 # Specificity
38 TNR = TN / (TN + FP)
39

40 # Balanced accuracy
41 Accuracy = ((TPR + TNR) / 2) * 100
42

43 return round(Accuracy, 2), TPR, round(TNR*100, 2)
44

45

46 # Calculates length of output
47 def len_baseline(time_length: float, starttime: str, endtime: str) -> int:
48 hourdif = int(endtime[0:2]) - int(starttime[0:2])
49 mindif = int(endtime[3:5]) - int(starttime[3:5])
50 secdif = 0
51

52 secdif += (hourdif * 3600) + (mindif * 60)
53

54 length = int(secdif / time_length)
55

56 return length
57

58 # creates desired output
59 def helper_list(time_length: int, starttime: str, endtime: str, startdate: str, episodes:

list) -> list[int]:
60 # timelength is seconds.
61 startep = []
62 endep = []
63

64 for episode in episodes:
65 if episode[0] == startdate:

D.6. NonRBDtest.py 46

66 startep.append(episode[5])
67 endep.append(episode[6])
68

69 hourdif = int(endtime[0:2]) - int(starttime[0:2])
70 mindif = int(endtime[3:5]) - int(starttime[3:5])
71 secdif = 0
72

73 secdif += (hourdif * 3600) + (mindif * 60)
74

75 totlength = int(secdif / time_length)
76

77 time = []
78 hour = int(starttime[0:2])
79 minute = int(starttime[3:5])
80 second = 0
81 logic = 0
82 output = []
83 count = 0
84

85 for n in range(totlength):
86 if (f"{hour:02}" + ':' + f"{minute:02}" + ':' + f"{second:02}") in startep:
87 logic = 1
88 elif (f"{hour:02}" + ':' + f"{minute:02}" + ':' + f"{second:02}") in endep:
89 logic = 0
90 count = 0
91

92 if n != 0:
93 second += time_length
94

95 if second == 60:
96 second = 0
97 minute += 1
98 elif second > 60:
99 second = second % 60

100 minute += 1
101

102 if minute == 60:
103 minute = 0
104 hour += 1
105 elif minute > 60:
106 minute = minute % 60
107 hour += 1
108

109 if hour == 24:
110 hour = 0
111

112 time.append((hour, minute, second))
113

114 if count == 10:
115 logic = 2 #two means dont care
116 count = 0
117

118 if logic == 1:
119 count += 1
120

121

122

123 output.append(logic)
124

125 return output

D.6. NonRBDtest.py
This script has been used to test the algorithm, seen in Appendix D.2, on data from non-RBD patients.

1 from software.detection.classic_algorithm.Algorithm import Detection
2 from software.TestingScripts.helper_test_functions import comparelists_episode , helper_list
3 import numpy as np
4 from datetime import datetime
5 import os

D.6. NonRBDtest.py 47

6 import pandas as pd
7 import time
8 from datetime import timedelta
9

10 def import_data(start_date: str, end_date: str, patient_nr: int, start_time="22:00", end_time
="10:00") -> list[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:

11 """
12 Imports data from a specific day, possibly within a specified hour range.
13 Default hour range is 22:00 to 10:00, this may be changed depending on the
14 sleep schedule of the patient.
15

16 TODO change start_time and end_time according to the sleep schedule of the
17 patient, using the 'in bed' function from MOMO.
18

19 Arguments:
20 date : str
21 Determines which day of data is imported. Format: ymd
22 start_time : str, optional
23 Determines the start time of the data that is imported. Default is "22:00".
24 end_time : str, optional
25 Determines the end time of the data that is imported. Default is "10:00".
26

27 Returns:
28 df_angle : pd.Dataframe
29 Dataframe with angle and time data
30 df_fsr : pd.Dataframe
31 Dataframe with fsr and time data
32 df_pe_std : pd.Dataframe
33 Dataframe with pe_std and time data
34 df_pe_raw : pd.Dataframe
35 Dataframe with pe_raw and time data
36 """
37

38 # print(__file__)
39 # print(os.path.join(os.path.dirname(__file__), "../../data.csv"))
40 path = os.path.join(os.path.dirname(__file__), f"../../data/nonrbd/{patient_nr}/{

start_date}_{end_date}.csv")
41 # path = f"../../data/Momo_Medical_R&D_Bert_Verzijl_{start_date}_{end_date}.csv"
42

43 #Same day? Or two days?
44 start = start_time.replace(':', '')
45 end = end_time.replace(':', '')
46 if (int(start) < int(end)):
47 start_date = str(int(start_date) + 1)
48

49

50

51 df = pd.read_csv(path)
52

53 start = round(time.mktime((datetime.strptime(start_date, "%Y%m%d") + timedelta(hours=int(
start_time[:2]), minutes=int(start_time[3:5]))).timetuple()) * 1000)

54 end = round(time.mktime((datetime.strptime(end_date, "%Y%m%d") + timedelta(hours=int(
end_time[:2]), minutes=int(end_time[3:5]))).timetuple()) * 1000)

55

56 # print(start)
57 # print(type(pd.to_datetime(start * 1000000)))
58 # print(end)
59 # print(pd.to_datetime(end * 1000000))
60

61 # Drop rows when the timestamp is outside the defined time range
62 df.drop(df[(df.time < np.float64(start)) | (df.time > np.float64(end))].index, inplace=

True)
63 df.reset_index(drop=True, inplace=True)
64

65 # Create new dataframes with only the angle, fsr and pe_std data
66 df_angle = df[["time", "angle_0", "angle_1", "angle_2"]].copy()
67 df_fsr = df[["time", "fsr_0", "fsr_1", "fsr_2", "fsr_3"]].copy()
68 df_pe_std = df[["time", "pe_std_0", "pe_std_1", "pe_std_2", "pe_std_3", "pe_std_4", "

pe_std_5"]].copy()
69

70 # Initialize a new dataframe

D.7. data_import.py 48

71 df_pe_raw = pd.DataFrame()
72

73 # Merge the raw pe data into 6 lists, each corresponding to one sensor
74 for i in range(6):
75 df_pe_raw[f"pe_{i}"] = df.values[:, i * 12 + 9:(i + 1) * 12 + 9].tolist()
76

77 # Explode the dataframe, such that the data in the lists are put into new rows.
78 df_pe_raw = df_pe_raw.explode(["pe_0", "pe_1", "pe_2", "pe_3", "pe_4", "pe_5"],

ignore_index=True)
79

80 # Get first and last timestamp from the dataframe
81 t0 = df["time"][0]
82 t1 = df["time"].iloc[-1]
83

84 # Create the timestamps for the new upsampled dataframe
85 time_col = np.linspace(t0, t1, num=len(df_pe_raw.index)).astype(np.int64)
86

87 # Add the new timestamps to the dataframe
88 df_pe_raw["time"] = time_col.tolist()
89

90

91 return [df_angle, df_fsr, df_pe_std, df_pe_raw]
92

93 episodes = (("20230607", "20230608"),
94 ("20230608", "20230609"),
95 ("20230609", "20230610"),
96 ("20230610", "20230611"),
97 ("20230611", "20230612"))
98 save = []
99

100 for number in range(7):
101 print(f"======================PATIENT {number}=====================")
102 for episode in episodes:
103 detection = Detection()
104

105

106 time_length = 1
107 i = 15
108 data = import_data(episode[0], episode[1], number, "00:15", "06:00")
109 output = detection.algorithm(data[1:])
110 strive_output = [0]*len(output)
111 del data
112

113 percentage = comparelists_episode(output, strive_output)
114 print("specificity " + f"({episode[1]}):" + str(percentage[2]))
115 save.append(percentage[2])
116

117 print(f"average specificity ({number}): " + str(sum(save)/len(save)))
118 print("\n\n")

D.7. data_import.py
This function was used to extract data out of csv files.

1 import os
2 import time
3 import numpy as np
4 import pandas as pd
5 from datetime import timedelta
6

7 import seaborn as sns
8 import matplotlib.pyplot as plt
9 import matplotlib.dates as dates

10

11 from datetime import datetime
12

13 def import_data(start_date: str, end_date: str, start_time="22:00", end_time="10:00") -> list
[pd.DataFrame, pd.DataFrame, pd.DataFrame, pd.DataFrame]:

14 """
15 Imports data from a specific day, possibly within a specified hour range.

D.7. data_import.py 49

16 Default hour range is 22:00 to 10:00, this may be changed depending on the
17 sleep schedule of the patient.
18

19 TODO change start_time and end_time according to the sleep schedule of the
20 patient, using the 'in bed' function from MOMO.
21

22 Arguments:
23 date : str
24 Determines which day of data is imported. Format: ymd
25 start_time : str, optional
26 Determines the start time of the data that is imported. Default is "22:00".
27 end_time : str, optional
28 Determines the end time of the data that is imported. Default is "10:00".
29

30 Returns:
31 df_angle : pd.Dataframe
32 Dataframe with angle and time data
33 df_fsr : pd.Dataframe
34 Dataframe with fsr and time data
35 df_pe_std : pd.Dataframe
36 Dataframe with pe_std and time data
37 df_pe_raw : pd.Dataframe
38 Dataframe with pe_raw and time data
39 """
40

41 # print(__file__)
42 # print(os.path.join(os.path.dirname(__file__), "../../data.csv"))
43 path = os.path.join(os.path.dirname(__file__), f"../../data/Momo_Medical_R&

D_Bert_Verzijl_{start_date}_{end_date}.csv")
44 # path = f"../../data/Momo_Medical_R&D_Bert_Verzijl_{start_date}_{end_date}.csv"
45

46 #Same day? Or two days?
47 start = start_time.replace(':', '')
48 end = end_time.replace(':', '')
49 if (int(start) < int(end)):
50 start_date = str(int(start_date) + 1)
51

52

53

54 df = pd.read_csv(path)
55

56 start = round(time.mktime((datetime.strptime(start_date, "%Y%m%d") + timedelta(hours=int(
start_time[:2]), minutes=int(start_time[3:5]))).timetuple()) * 1000)

57 end = round(time.mktime((datetime.strptime(end_date, "%Y%m%d") + timedelta(hours=int(
end_time[:2]), minutes=int(end_time[3:5]))).timetuple()) * 1000)

58

59 # print(start)
60 # print(type(pd.to_datetime(start * 1000000)))
61 # print(end)
62 # print(pd.to_datetime(end * 1000000))
63

64 # Drop rows when the timestamp is outside the defined time range
65 df.drop(df[(df.time < np.float64(start)) | (df.time > np.float64(end))].index, inplace=

True)
66 df.reset_index(drop=True, inplace=True)
67

68 # Create new dataframes with only the angle, fsr and pe_std data
69 df_angle = df[["time", "angle_0", "angle_1", "angle_2"]].copy()
70 df_fsr = df[["time", "fsr_0", "fsr_1", "fsr_2", "fsr_3"]].copy()
71 df_pe_std = df[["time", "pe_std_0", "pe_std_1", "pe_std_2", "pe_std_3", "pe_std_4", "

pe_std_5"]].copy()
72

73 # Initialize a new dataframe
74 df_pe_raw = pd.DataFrame()
75

76 # Merge the raw pe data into 6 lists, each corresponding to one sensor
77 for i in range(6):
78 df_pe_raw[f"pe_{i}"] = df.values[:, i * 12 + 9:(i + 1) * 12 + 9].tolist()
79

80 # Explode the dataframe, such that the data in the lists are put into new rows.

D.8. data_main.py 50

81 df_pe_raw = df_pe_raw.explode(["pe_0", "pe_1", "pe_2", "pe_3", "pe_4", "pe_5"],
ignore_index=True)

82

83 # Get first and last timestamp from the dataframe
84 t0 = df["time"][0]
85 t1 = df["time"].iloc[-1]
86

87 # Create the timestamps for the new upsampled dataframe
88 time_col = np.linspace(t0, t1, num=len(df_pe_raw.index)).astype(np.int64)
89

90 # Add the new timestamps to the dataframe
91 df_pe_raw["time"] = time_col.tolist()
92

93

94 return [df_angle, df_fsr, df_pe_std, df_pe_raw]
95

96 data = import_data("20230220", "20230221", "00:20", "00:23")

D.8. data_main.py
This script runs the visualization of the data.

1 from data_visualization import visualize_data
2 from helper_episodes import baselines, episodes
3

4 def plot_episodes():
5 for i, ep in enumerate(episodes):
6 print(f"Processing episode {i}")
7

8 start_date = ep[0]
9 end_date = ep[1]

10 start_time = ep[2]
11 end_time = ep[3]
12 ep_time = [ep[4], ep[5]]
13

14 visualize_data(start_date, end_date, ep_time,
15 ("fsr", "time", "average", "std"),
16 ("fsr", "time_freq", "average"),
17 ("fsr", "freq_sum"),
18 ("pe", "time", "average", "std"),
19 ("pe", "time_freq", "average"),
20 ("pe", "freq_sum", "average"),
21 start_time=start_time, end_time=end_time)
22

23 print(f"Finished processing episode {i}")
24

25 def plot_baselines():
26 for i, ba in enumerate(baselines):
27 print(f"Processing baseline {i}")
28

29 start_date = ba[0]
30 end_date = ba[1]
31 start_time = ba[2]
32 end_time = ba[3]
33 ep_time = [ba[4], ba[5]]
34

35 visualize_data(start_date, end_date, ep_time,
36 ("fsr", "time", "average", "std"),
37 ("fsr", "time_freq", "average"),
38 ("fsr", "freq_sum"),
39 ("fsr", "power_spec"),
40 ("pe", "time", "average", "std"),
41 ("pe", "time_freq", "average"),
42 ("pe", "freq_sum"),
43 ("pe", "power_spec"),
44 start_time=start_time, end_time=end_time)
45

46 print(f"Finished processing episode {i}")
47

48

D.9. data_visualization.py 51

49

50 if __name__ == "__main__":
51 plot_episodes()
52 # plot_baselines()

D.9. data_visualization.py
This script contains all functions related to the visualization of data.

1 import os
2

3 import numpy as np
4 import pandas as pd
5 import seaborn as sns
6 import matplotlib.pyplot as plt
7 import matplotlib.dates as dates
8

9 from datetime import datetime
10 from scipy import signal
11

12 from data_import import import_data
13 from helper_episodes import episodes
14

15 def visualize_data(start_date: str, end_date: str, ep_time: list[str], *plot_options, **
time_options) -> None:

16 # Check if start_time and/or end_time is/are defined, else use default times
17 start_time = time_options["start_time"] if "start_time" in time_options else "22:00"
18 end_time = time_options["end_time"] if "end_time" in time_options else "10:00"
19

20 # Import data
21 df = import_data(start_date, end_date, start_time=start_time, end_time=end_time)
22

23 angle_df = df[0]
24 fsr_df = df[1]
25 pe_std_df = df[2]
26 pe_raw_df = df[3]
27

28 if ep_time[0] is not None:
29 for i, t in enumerate(ep_time):
30 # Get day depending on the hour
31 day = end_date if int(t[:2]) < 12 else start_date
32

33 # Put the date and time into a single string
34 dt = f"{day} {t}"
35

36 ep_time[i] = datetime.strptime(dt, "%Y%m%d %H:%M:%S")
37

38 sensor_data = {"angle": angle_df, "fsr": fsr_df, "pe_std": pe_std_df, "pe": pe_raw_df}
39

40 functions = {"time": plot_time, "time_freq": plot_time_freq, "freq_sum": plot_freq_sum,
41 "power_spec": plot_power_spec_dens , "distribution": plot_distribution}
42

43 if len(plot_options) == 0:
44 raise ValueError("No plot options defined.")
45 else:
46 for sensor, func, *options in plot_options:
47 functions[func](sensor_data[sensor], sensor, ep_time, options)
48

49 def plot_time(data: pd.DataFrame, sensor: str, ep_time: list[datetime], options) -> None:
50 """
51 Produce a time plot of a specified sensor and save it as a svg
52

53 Arguments:
54 data : pd.DataFrame
55 Data to be plotted.
56 sensor : str
57 The name of the sensor.
58 ep_time : list
59 options : tuple
60 Plot options, used to for example plot the average or

D.9. data_visualization.py 52

61 the standard deviation.
62 """
63

64 # Calculate time axis
65 time = [datetime.fromtimestamp(int(x) / 1000) for i, x in enumerate(data['time'])]
66

67 # Get date from time axis
68 date = str(pd.to_datetime(time[0]))[:10]
69 ep = str(ep_time[1])[11:]
70

71 # Create the directory in which the plots will be saved
72 dir = make_dir(date, ep, sensor, "time")
73

74 # Create a list of the sensor columns
75 sensors = [f"{sensor}_{i}" for i in range(len(data.columns) - 1)]
76

77 for i, label in enumerate(sensors):
78 # Initialize the plot and its size
79 plt.figure(figsize=(15, 3))
80 # Plot the data of the sensor
81 plt.plot(time, data[sensors[i]])
82

83 if ep_time[1] != ep_time[0]:
84 # Plot the estimated start of the episode
85 plt.axvline(x=ep_time[1], color="green", linestyle=":", linewidth="2", label="

Estimation")
86 if ep_time[0] is not None:
87 # Plot the timestamp of the patient
88 plt.axvline(x=ep_time[0], color="red", linestyle=":", linewidth="2", label="

Timestamp Patient")
89

90 # Limit the x-axis
91 plt.xlim(time[0], time[-1])
92

93 # Limit the y-axis depending on the sensor type
94 if sensor == "pe":
95 plt.ylim(-15000, 15000)
96 elif sensor == "fsr":
97 plt.ylim(0, 2500)
98

99 # Label the axis
100 plt.xlabel("Date and Time [d h:m]")
101 plt.ylabel("Amplitude")
102 plt.title(f"{sensor.upper()}_{i} Data from episode on {date} at {ep}")
103

104 # Add a legend if required
105 if ep_time[0] is not None:
106 plt.legend(loc="upper right")
107

108 # Save the figure
109 plt.tight_layout()
110 plt.savefig(f"{dir}/{sensor}_{i}.svg")
111 plt.close()
112

113 for option in options:
114 i += 1
115

116 plt.figure(figsize=(15, 3))
117

118 if option == "average":
119 # Calculate the average
120 average = data[sensors].mean(axis=1)
121

122 # Plot the average and add a title
123 plt.plot(time, average)
124 plt.title(f"Average of {sensor.upper()} Data from episode on {date} at {ep}")
125 elif option == "std":
126 # Calculate the standard deviation
127 std = data[sensors].std(axis=1)
128

129 # Plot the standard deviation and add a title

D.9. data_visualization.py 53

130 plt.plot(time, std)
131 plt.title(f"Standard Deviation of {sensor.upper()} Data from episode on {date} at

{ep}")
132 else:
133 raise ValueError(f"The given option: {option} is not allowed.")
134

135 if ep_time[1] != ep_time[0]:
136 # Plot the estimated start of the episode
137 plt.axvline(x=ep_time[1], color="green", linestyle=":", linewidth="2", label="

Estimation")
138 if ep_time[0] is not None:
139 # Plot the timestamp of the patient
140 plt.axvline(x=ep_time[0], color="red", linestyle=":", linewidth="2", label="

Timestamp Patient")
141

142 # Limit the x-axis
143 plt.xlim(time[0], time[-1])
144

145 # Limit the y-axis depending on the sensor type
146 if sensor == "pe":
147 plt.ylim(-15000, 15000)
148 elif sensor == "fsr":
149 plt.ylim(0, 2500)
150

151 # Label the axis
152 plt.xlabel("Date and Time [d h:m]")
153 plt.ylabel("Amplitude")
154

155 # Add a legend if required
156 if ep_time[0] is not None:
157 plt.legend(loc="upper right")
158

159 # Save the figure
160 plt.tight_layout()
161 plt.savefig(f"{dir}/{option}.svg")
162 plt.close()
163

164

165 def plot_time_freq(data: pd.DataFrame, sensor: str, ep_time: list[datetime], options) -> None
:

166 """
167 Produce a time-frequency plot of a specified sensor and save it as a svg
168

169 Arguments:
170 data : pd.DataFrame
171 Data to be plotted.
172 sensor : str
173 The name of the sensor.
174 ep_time : list
175 options : tuple
176 Plot options, used to for example plot the average or
177 the standard deviation.
178 """
179

180 # Calculate time axis
181 time = [datetime.fromtimestamp(int(x) / 1000) for i, x in enumerate(data['time'])]
182

183 # Get date from time axis
184 date = str(pd.to_datetime(time[0]))[:10]
185 ep = str(ep_time[1])[11:]
186

187 # Determine sample frequency
188 fs = 120 if sensor == "pe" else 10
189

190 # Create the directory in which the plots will be saved
191 dir = make_dir(date, ep, sensor, "time_freq")
192

193 # Create a list of the sensor columns
194 sensors = [f"{sensor}_{i}" for i in range(len(data.columns) - 1)]
195

196 sxx_list = []

D.9. data_visualization.py 54

197

198 for i, label in enumerate(sensors):
199 # Initialize the plot and its size
200 plt.figure(figsize=(10,5))
201

202 # Calculate time-frequency
203 f, _, Sxx = signal.spectrogram(data[label], fs, mode="magnitude")
204 Sxx = Sxx.astype("float64")
205 sxx_list.append(Sxx)
206

207 # Calculating correct time axis
208 if i == 0:
209 t = pd.date_range(time[0], time[-1], len(Sxx[0]))
210

211 # Plot the data
212 plt.pcolormesh(t, f, Sxx, cmap="viridis", edgecolors=None, rasterized=True)
213

214 if ep_time[1] != ep_time[0]:
215 # Plot the estimated start of the episode
216 plt.axvline(x=ep_time[1], color="yellow", linestyle=":", linewidth="1", label="

Estimation")
217 if ep_time[0] is not None:
218 # Plot the timestamp of the patient
219 plt.axvline(x=ep_time[0], color="red", linestyle=":", linewidth="1", label="

Timestamp Patient")
220

221 # Limit the y-axis depending on the sensor type
222 if sensor == "pe":
223 plt.ylim(0, 20)
224

225 # Label the axis
226 plt.xlabel("Date and Time [d h:m]")
227 plt.ylabel("Frequency [Hz]")
228 plt.title(f"{sensor.upper()}_{i} Data from Episode on {date} at {ep}")
229

230 # Add a legend if required
231 if ep_time[0] is not None:
232 plt.legend(loc="upper right")
233

234 # Save the figure
235 plt.tight_layout()
236 plt.savefig(f"{dir}/{sensor}_{i}.svg")
237 plt.close()
238

239 for option in options:
240 # Initialize the plot and its size
241 plt.figure(figsize=(10,5))
242

243 if option == "average":
244 # Calculate the average
245 average = np.sum(np.array(sxx_list), axis=0) / len(sensors)
246

247 # Plot the average and add a title
248 plt.pcolormesh(t, f, average, cmap="viridis", edgecolors=None, rasterized=True)
249 plt.title(f"Average of {sensor.upper()} Data from Episode on {date} at {ep}")
250 else:
251 raise ValueError(f"The given option: {option} is not allowed.")
252

253 if ep_time[1] != ep_time[0]:
254 # Plot the estimated start of the episode
255 plt.axvline(x=ep_time[1], color="yellow", linestyle=":", linewidth="1", label="

Estimation")
256 if ep_time[0] is not None:
257 # Plot the timestamp of the patient
258 plt.axvline(x=ep_time[0], color="red", linestyle=":", linewidth="1", label="

Timestamp Patient")
259

260 # Limit the y-axis depending on the sensor type
261 if sensor == "pe":
262 plt.ylim(0, 20)
263

D.9. data_visualization.py 55

264 # Label the axis
265 plt.xlabel("Date and Time [d h:m]")
266 plt.ylabel("Frequency [Hz]")
267

268 # Add a legend if required
269 if ep_time[0] is not None:
270 plt.legend(loc="upper right")
271

272 # Save the figure
273 plt.tight_layout()
274 plt.savefig(f"{dir}/{option}.svg")
275 plt.close()
276

277 def plot_freq_sum(data: pd.DataFrame, sensor: str, ep_time: list[datetime], options) -> None:
278 """
279 Produce a frequency sum plot of a specified sensor and save it as a svg
280

281 Arguments:
282 data : pd.DataFrame
283 Data to be plotted.
284 sensor : str
285 The name of the sensor.
286 ep_time : list
287 options : tuple
288 Plot options, used to for example plot the average or
289 the standard deviation.
290 """
291

292 # Calculate time axis
293 time = [datetime.fromtimestamp(int(x) / 1000) for i, x in enumerate(data['time'])]
294

295 # Get date from time axis
296 date = str(pd.to_datetime(time[0]))[:10]
297 ep = str(ep_time[1])[11:]
298

299 # Determine sample frequency
300 fs = 120 if sensor == "pe" else 10
301

302 # Create the directory in which the plots will be saved
303 dir = make_dir(date, ep, sensor, "freq_sum")
304

305 # Create a list of the sensor columns
306 sensors = [f"{sensor}_{i}" for i in range(len(data.columns) - 1)]
307

308 sum_list = []
309

310 for i, label in enumerate(sensors):
311 # Initialize the plot and its size
312 plt.figure(figsize=(15, 3))
313

314 # Calculate time-frequency
315 _, __, Sxx = signal.spectrogram(data[label], fs, mode="magnitude")
316 Sxx = Sxx.astype("float64")
317

318 # Sum the frequency components
319 f_sum = Sxx.sum(axis=0)
320 sum_list.append(f_sum)
321

322 # Calculating correct time axis
323 if i == 0:
324 t = pd.date_range(time[0], time[-1], len(Sxx[0]))
325

326 plt.plot(t, f_sum)
327

328 if ep_time[1] != ep_time[0]:
329 # Plot the estimated start of the episode
330 plt.axvline(x=ep_time[1], color="green", linestyle=":", linewidth="2", label="

Estimation")
331 if ep_time[0] is not None:
332 # Plot the timestamp of the patient

D.9. data_visualization.py 56

333 plt.axvline(x=ep_time[0], color="red", linestyle=":", linewidth="2", label="
Timestamp Patient")

334

335 # Limit the x-axis
336 plt.xlim(time[0], time[-1])
337

338 # Label the axis
339 plt.xlabel("Date and Time [d h:m]")
340 plt.ylabel("Amplitude")
341 plt.title(f"{sensor.upper()}_{i} Data from Episode on {date} at {ep}")
342

343 # Add a legend if required
344 if ep_time[0] is not None:
345 plt.legend(loc="upper right")
346

347 # Save the figure
348 plt.tight_layout()
349 plt.savefig(f"{dir}/{sensor}_{i}.svg")
350 plt.close()
351

352 for option in options:
353 # Initialize the figure and its size
354 plt.figure(figsize=(15, 3))
355

356 if option == "average":
357 # Calculate the average
358 average = np.sum(np.array(sum_list), axis=0) / len(sensors)
359

360 # Plot the average and add a title
361 plt.plot(t, average)
362 plt.title(f"Average of {sensor.upper()} Data from Episode on {date} at {ep}")
363 else:
364 raise ValueError(f"The given option: {option} is not allowed.")
365

366 if ep_time[1] != ep_time[0]:
367 # Plot the estimated start of the episode
368 plt.axvline(x=ep_time[1], color="green", linestyle=":", linewidth="2", label="

Estimation")
369 if ep_time[0] is not None:
370 # Plot the timestamp of the patient
371 plt.axvline(x=ep_time[0], color="red", linestyle=":", linewidth="2", label="

Timestamp Patient")
372

373 # Limit the x-axis
374 plt.xlim(time[0], time[-1])
375

376 # Label the axis
377 plt.xlabel("Date and Time [d h:m]")
378 plt.ylabel("Frequency [Hz]")
379

380 # Add a legend if required
381 if ep_time[0] is not None:
382 plt.legend(loc="upper right")
383

384 # Save the figure
385 plt.tight_layout()
386 plt.savefig(f"{dir}/{option}.svg")
387 plt.close()
388

389 # ----------- Currently not used ----------- #
390

391 def plot_power_spec_dens(data: pd.DataFrame, sensor: str, ep_time: list[datetime], options)
-> None:

392 # Calculate time axis
393 time = [datetime.fromtimestamp(int(x) / 1000) for i, x in enumerate(data['time'])]
394

395 # Get date from time axis
396 date = str(pd.to_datetime(time[0]))[:10]
397

398 # Determine sample frequency
399 fs = 120 if sensor == "pe" else 10

D.9. data_visualization.py 57

400

401 # Determine the number of graphs
402 n_graphs = len(data.columns) - 1
403 n_graphs += len(options)
404

405 cols = 2
406 rows = int(np.ceil(n_graphs / cols))
407

408 sensors = [f"{sensor}_{i}" for i in range(len(data.columns) - 1)]
409

410 fig, ax = plt.subplots(rows, cols, figsize=(5 * cols + 2.5, 5 * rows))
411

412 sum_list = []
413

414 for i, label in enumerate(sensors):
415 row = i // 2
416 col = i % 2
417

418 f, p_dens = signal.welch(data[label], fs)
419 p_dens = np.abs(p_dens).astype("float64")
420

421 sum_list.append(p_dens)
422

423 ax[row, col].plot(f, 10 * np.log10(p_dens))
424 ax[row, col].set_title(label.upper(), fontsize=20)
425

426 for option in options:
427 if col == 1:
428 col = 0
429 row += 1
430 else:
431 col = 1
432

433 if option == "average":
434 average = np.sum(np.array(sum_list), axis=0) / len(sensors)
435

436 ax[row, col].plot(f, 10 * np.log10(average))
437 ax[row, col].set_title(f"Average of {sensor.upper()}", fontsize=20)
438 else:
439 raise ValueError(f"The given option: {option} is not allowed.")
440

441 if ep_time[0] is None:
442 dir = "baseline"
443 else:
444 dir = "episode"
445

446 fig.supxlabel("Frequency [Hz]")
447 fig.supylabel("Power Spectral Density [dBW/Hz]")
448 fig.suptitle(f"Power Spectral Density of {sensor.upper()} Data from {date}", fontsize=30)
449

450 plt.tight_layout()
451 plt.savefig(f"figures/{dir}/power_spec_{sensor}_{date}_min-{str(ep_time[1])[14:16]}.svg")
452 plt.close()
453

454 # ----------- Currently not used ----------- #
455

456 def plot_distribution(data: pd.DataFrame, sensor: str, ep_time: list[datetime], options) ->
None:

457 sensors = [f"{sensor}_{i}" for i in range(len(data.columns) - 1)]
458

459 for i, label in enumerate(sensors):
460 sns.violinplot(data[label])
461 plt.xlabel("")
462 plt.ylabel("")
463 plt.title(f"Distribution of {sensor}_{i}")
464

465 plt.savefig()
466

467 plt.show()
468

469

D.9. data_visualization.py 58

470 def make_dir(date: str, ep_time: str, sensor: str, plot_type: str) -> str:
471 """
472 Function that makes a directory if it does not exist yet
473

474 Arguments:
475 date : str
476 ep_time : str
477 sensor : str
478 plot_type : str
479

480 Returns:
481 dir : str
482 """
483 ep = ep_time.replace(":", "")
484

485 dir = f"figures/{date}/{ep}/{sensor}/{plot_type}"
486

487 if not os.path.exists(dir):
488 os.makedirs(dir)
489

490 return dir

	Abstract
	Introduction
	Rapid-Eye Movement Sleep Behaviour Disorder
	Sleep Stages
	REM Sleep Behaviour Disorder
	Diagnosis
	Treatment for RBD

	State-of-the-Art Analysis
	Momo Medical BedSense
	Goal of the Project
	Structure of Thesis

	Program of Requirements
	Requirements for the Entire System
	Requirements for the Software Group

	Data Collection
	Momo Medical BedSense
	Hardware Module
	BedSense Data Collection
	Patient Data
	Proprietary Data

	Hardware Module Data
	Patient Data
	Proprietary Data

	Data Analysis
	Data Cleaning
	Electrodermal Activity Data Filtering
	Photoplethysmogram Data Filtering
	Accelerometer Data Filtering

	Visual Data Analysis

	Algorithm Design
	Approaches
	Algorithm Design
	Movement Detection using PE & FSR Data
	Movement Detection using Accelerometer Data
	Out of Bed Detection using FSR Data
	Stress Detection using PPG Data
	Stress Detection using EDA Data
	Decision Making Process

	Total System

	Algorithm Implementation
	Motion Module
	Stress Module
	Total System Integration

	Testing and Results
	Testing and Verification
	BedSense Testing Algorithm
	Testing Pipeline

	Results
	Anomalies
	BedSense Results
	BedSense Non-RBD Test Results

	Conclusion and Future Work
	Discussion
	Conclusion
	Future Work

	References
	Data Collection on RBD Patient
	RBD Diagnostic Criteria
	International Classification of Sleep Disorders, Third Edition
	The American Academy of Sleep Medicine Manual for the Scoring of Sleep and Associated Events
	Diagnostic and Statistical Manual of Mental Disorders

	Patients Record of RBD Episodes
	Source Code
	algorithmrealtime.py
	algorithm.py
	test_algorithm_episodes.py
	helper_episodes.py
	helper_test_functions.py
	NonRBDtest.py
	data_import.py
	data_main.py
	data_visualization.py

