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We propose a two-dimensional (2-D) modal approach for spatial rehomogenization of nodal cross sec-
tions in light water reactor analysis. This algorithm aims to synthesize the variation in the 2-D intranodal
distributions of the few-group flux and directional net currents between the core environment and the
infinite-lattice approximation. Assembly discontinuity factors are also corrected. The method is validated
on a broad set of pressurized-water-reactor benchmark problems. Its accuracy is assessed on both nodal
quantities and the reconstructed pin-by-pin flux and power distributions. We show that the errors in the
effective multiplication factor and assembly-averaged fission power significantly decrease compared to
the calculation with infinite-medium homogenization parameters. In most cases, an improvement is also
found at the pin level. A thorough discussion follows, which addresses the use of the 2-D neutron current
information to compute the transverse-leakage distribution for the transverse-integrated nodal equa-
tions, the potential dual application of the method for rehomogenization and dehomogenization, and
the quantification of the contributions of various environmental effects (spatial, spectral, and cross
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energy-space) to homogenization errors.
© 2018 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The accuracy of two-group, coarse-mesh nodal diffusion calcu-
lations is hindered by spatial homogenization and energy conden-
sation errors in the infinite-medium cross sections and
discontinuity factors (Smith, 1994; Palmtag and Smith, 1998). This
aspect is a major drawback of the conventional two-step proce-
dure, which combines off-line single-assembly heterogeneous
transport calculations with the on-line simulation of the
assembly-homogenized core representation (Smith, 1986;
Sanchez, 2009). In previous work (Gamarino et al, 2018a;
Gamarino et al., 2018b), spectral rehomogenization was applied
successfully to improve the accuracy of nodal cross sections by
computing the variation in the neutron flux spectrum between
the core environment and the infinite-lattice approximation. In
this paper, we aim to correct the spatial component of single-
assembly cross-section defects.

Spatial homogenization errors are significant when highly
absorbing elements (such as control rods and burnable-poison
rods) are located at the assembly periphery, thus experiencing
steep flux gradients, as well as in the presence of strongly hetero-
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geneous fuel composition (such as in MOX assemblies). Several
methods have been proposed to incorporate spatial effects into
the nodal cross sections. Spatial heterogeneity due to non-
uniform intranodal depletion (i.e., gradients in the burn-up and
nuclide concentrations) and fuel temperature is commonly mod-
eled with a separable (along each coordinate axis) quadratic
expansion of the nodal cross sections (Wagner et al., 1981;
Forslund et al., 2001). A similar approach has been applied to rep-
resent design heterogeneity (Shatilla et al., 1996). However, these
methods do not correct the spatial homogenization error due to
deviations in the flux distribution between the environment and
the infinite lattice. One of the first spatial rehomogenization tech-
niques was proposed by Smith (1994). In his approach, the
transverse-integrated intranodal cross sections are spatially (re)
homogenized at each power iteration or thermal-feedback update
with the computed one-dimensional (1-D) heterogeneous flux
shape. This shape is obtained via superposition of the heteroge-
neous infinite-lattice transverse-integrated flux form function
and the homogeneous flux distribution from the transverse-
integrated nodal calculation. This method uses single-assembly-
generated rehomogenization coefficients and can be easily
incorporated into existing codes. However, it does not correct the
assembly discontinuity factors. A variant of it was later proposed
by Palmtag (1997). In Dall’'Osso (2014), the variation in the 1-D

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.anucene.2018.10.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.anucene.2018.10.012
http://creativecommons.org/licenses/by/4.0/
mailto:matteo.gamarino@gmail.com
https://doi.org/10.1016/j.anucene.2018.10.012
http://www.sciencedirect.com/science/journal/03064549
http://www.elsevier.com/locate/anucene

158 M. Gamarino et al./Annals of Nuclear Energy 125 (2019) 157-185

transverse-integrated flux between the real environment and the
infinite lattice is evaluated with a modal expansion. This approach
also corrects the discontinuity factors.

Another method for spatial rehomogenization is the 2-D sub-
mesh model that has been implemented in Studsvik’s nodal code
SIMULATE (Bahadir et al., 2005; Bahadir and Lindahl, 2009). In this
strategy, each radial node (i.e., fuel assembly or assembly quarter)
is subdivided into N x N homogeneous rectangular subnodes (typ-
ically with N =5). The 2-D diffusion equation is solved in every
subregion with the corresponding infinite-medium homogeniza-
tion parameters. The axial leakage (known from the global 3-D
solution) is converted into an equivalent absorption cross section.
The resulting intranodal flux distribution is used to rehomogenize
the single-assembly cross sections over the submeshes and to esti-
mate the environmental discontinuity factors at the assembly
outer edges. The 2-D submesh calculation is combined with an
axial homogenization model to handle axial heterogeneity.

Radial zoning of fuel-assembly homogenization can also be
used to reduce spatial errors. For example, EDF's core simulator
COCAGNE (Guillo et al., 2017) features a discretization of 2x2 sub-
regions in each assembly quarter. Non-uniform nodes are used to
model separately (i) the four fuel pins in every external corner of
the assembly, (ii) the outer and first inboard pin rows (at the
assembly periphery), and (iii) the remainder of the fuel bundle.
This meshing strategy has been chosen to minimize the level of
heterogeneity in each subregion that is homogenized. In spite of
their enhanced accuracy, refined-mesh approaches entail a some-
what higher computational effort than conventional nodal meth-
ods, which only use one or four nodes per fuel assembly.

Other methods do not specifically focus on spatial effects and
try to model the global environmental effect. For example, in
Rahnema and Nichita (1997), the corrections on the nodal cross
sections and discontinuity factors are tabulated in the standard
parameterized libraries versus the current-to-flux ratio (or other
albedo parameters) at the node surfaces. These corrections are
computed during the lattice calculation via parametric assembly
simulations with varying albedo boundary conditions. They are
interpolated during the nodal calculation just as the infinite-
lattice group constants. Recently, a variant of this approach has
been investigated (Kim et al., 2017). The drawback of this kind of
method is that it demands multiple single-assembly calculations
for each lattice state. Rahnema et al. (2002) developed high-order
cross-section homogenization, which does not require additional
lattice simulations. Using high-order boundary-condition pertur-
bation theory (McKinley and Rahnema, 2000), the environmental
homogenization parameters are expanded in terms of the surface
current-to-flux ratio. The expansion coefficients are evaluated
using the known unperturbed solution of the zero-leakage prob-
lem. This method requires two infinite-medium adjoint functions,
which are precomputed and stored as additional parameters in the
cross-section tables. Clarno and Adams (2005) proposed to capture
neighbor effects during the single-assembly calculation via spatial
superposition of typical four-assembly configurations. Recently,
Groenewald et al. (2017) developed a semi-heterogeneous
transport-embedded approach, in which the embedded transport
calculations are performed with a simplified handling of spatial
heterogeneity, energy discretization and solution operator. The
computational burden of transport-nodal iterations is thus
mitigated.

In this paper, we propose an extension of the spatial rehomog-
enization technique described in Dall’Osso (2014). This method
aims to compute on the fly the change in the intranodal flux shape
that is used for cross-section spatial homogenization when the
assembly is in the core environment. The rehomogenization prob-
lem is solved locally (namely, independently in each node) after

each power iteration, using as boundary conditions the estimates
of the volume-averaged fluxes, the surface-averaged fluxes and
currents, and the multiplication factor from the global (i.e., core-
wide) nodal calculation. Only radial heterogeneity is addressed.
The effect of axial heterogeneity is taken into account via axial
homogenization or control-rod cusping models (Dall’Osso, 2002).
Two significant approximations are made in the formulation pre-
sented in Dall'Osso (2014):

e The 2-D rehomogenization problem is simplified via transverse
integration into two 1-D problems, which are solved sequen-
tially in the x and y directions.

e The transverse-integrated fine-mesh cross sections (to be
weighted with the computed 1-D flux change) are obtained by
collapsing the 2-D pin-by-pin cross-section distributions with
the infinite-medium flux form function, instead of the environ-
mental flux shape.

In this work, the above assumptions are relaxed by developing a
full 2-D rehomogenization model, which retains the non-
separability of the flux variation in the x and y directions. In this
way, the 2-D distributions of the environmental flux and direc-
tional net currents can be estimated at the nodal flux iteration
level. Moving to a 2-D model is also motivated by the possibility
to use the so obtained 2-D information (i) to compute the
transverse-leakage distributions for the transverse-integrated
nodal equations, and (ii) to reconstruct the pin-by-pin flux and
power distributions directly (i.e., without the dehomogenization
phase).

This paper is structured as follows. The 2-D rehomogenization
method is described in Section 2. Section 3 shows the numerical
results of several Pressurized-Water-Reactor (PWR) multiassembly
configurations, in which the spatial effects of the environment are
important. The accuracy of the method is assessed on both nodal
and pin-by-pin quantities. A comparison with the simplified 1-D
approach is made. In Section 4, we discuss various aspects of inter-
est of spatial rehomogenization. These include the correction of
assembly discontinuity factors, the calculation of the transverse-
leakage shape with the information from the 2-D rehomogeniza-
tion, and the contributions of various environmental effects
(spatial, spectral, and mixed energy-space) to the deviations of
nodal cross sections from the single-assembly values. Concluding
remarks follow in Section 5.

2. Description of the method

We introduce a non-dimensional coordinate uy, where d stands
for x or y. The following change of variable is applied:

d 1 ude{—%,%}. (1)

“Ad 2
We define the 2-D intranodal distribution of the environmental
neutron flux density in the coarse energy group G as

(Denv,G (um uy) = (i)GQDOC‘G (um uy) + 5(1)6 (um uy), (2)

d, del0,Ad — g

where @ is the volume-averaged flux from the nodal calculation,
@..c(ux,uy) is the infinite-medium flux distribution (normalized
to unity) used for cross-section spatial homogenization in the lat-
tice calculation, and 6®g (uy, uy) is the flux spatial variation between
the environmental and infinite-medium conditions. The distribu-
tions q)env,c(ux,uy) and gomc(u)huy) are heterogeneous quantities,
whereas 6@ (ux, uy) is assumed to be a smoothly varying function.
The node-averaged value of 5 (ux, uy) is zero to satisfy the normal-
ization condition
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12 1/2 ~
/ du, duy @eny 6 (x, Uy) = Dg. (3)
-1/2 ~1/2

The flux change is approximated with a 2-D modal expansion:

Ny Ny
0Dc (U, Uy) = Zac‘x,iXPG‘ix (uy) + Zac.y.inG‘iy(uy)
i1 =1
Nx NY

+ Z Zacxy,fx.CyPC‘Cx (uX)PG.Cy (uy)- (4)

=1 ¢y=1
cx+ey<N¢

The non-separability of the flux variation is modeled with the cross
terms oGyyc,c,- In this work, for each coarse group we consider
directional expansions with four basis functions (i.e.,
Ny =N, =N =4) and we retain four cross terms (Ncss = 4). The
basis functions Pg;, (1) are the conventional polynomial and hyper-
bolic functions used for the 1-D transverse-integrated flux expan-
sion in the semi-analytic Nodal Expansion Method (NEM), with
the only exception of P, 4(uy):

Per(ug) =g (G=1,2); (5a)
Pgo(uq) = uj — 11—2 (G=1,2); (5b)
Py (Ug) = Ug (ug - %) P33(ug) = sinh(qug); (5¢)
Pratua) = (12 - ) (12 - 5).

Py4(utg) = cosh(nug) — %sinh(g). (5d)

In Egs. (5¢) and (5d), the coefficient # is chosen so that the hyper-
bolic functions sinh(nuq) and cosh(nuy) are particular solutions of
the 1-D homogeneous diffusion equation in the thermal group:

) P Y
7= Ad a2 252:1 52-G (6)

The basis functions of Eq. (5) proved to accurately reconstruct the 1-D
transverse-integrated flux variation (Dall’Osso, 2014) and have been
also used in this work for their generality. The above modes have zero
average value in the interval [-1/2,1/2], thus satisfying Eq. (3). The
four cross terms in Eq. (4) only have polynomial components, with
global order up to 4 (i.e., N, = 4) and directional order up to 2.

The spatial distribution of the directional net neutron current
Jenvca(Ux, 1y) is defined as

.]env,G,d (le, uy) = (I)G]x,c,d (um uy) + 5]G,d (UX, uy), (7)
with

Dg (uy, tty) 0
ea(ux ty) = 7G(Tdy) ﬁémc(ux,uy). (8)

In Eq. (7), scaling to the volume-averaged flux ®; ensues from the
application of Fick’s law to Eq. (2). In Eq. (8), Dg(ux, uy) is the spa-
tially dependent diffusion coefficient (in units of cm). We define

-env

the environmental discontinuity factors f,, at the node surfaces as
env 00 o

cds =fcas T fcass 9)

where f¢,, denotes the single-assembly discontinuity factor, and

the signs =+ refer to the interfaces along the positive and negative
directions of the d axis.

The following nodal unknowns must be found for each coarse
group [Egs. (4) and (9)]: the directional modal coefficients ogg;,
(4 unknowns per direction), the cross modal coefficients oy c,.,
(4 unknowns), and the discontinuity-factor corrections dfgq. (2
unknowns per direction). With the aforementioned choice of N
and N,, the number of unknowns per coarse group is 16. In order
to solve for them, we identify a set of equations for the following
quantities:

e the environmental surface-averaged fluxes (2 equations per
direction, per group);

o the environmental surface-averaged net currents (2 equations
per direction, per group);

o the environmental corner-point fluxes (4 equations per group).

The remaining four (or [(Nx+ Ny + Newss) — 8] in a more general
framework) equations per group are found applying a standard
weighted-residual technique to the 2-D few-group balance equa-
tion in the environmental conditions. The procedure used to derive
the aforementioned equations is explained below.

2.1. Equations for the environmental surface-averaged flux

The surface-averaged heterogeneous (i.e., continuous) flux in
the environmental conditions (I)‘ge; . can be written, for the x direc-
tion, as

1/2
het env rhom
Dgye = /]/2 duy(Denv,G(”XvuyHuX:i% = fcarPc s (10)

hom

where @), denotes the homogeneous (i.e., discontinuous) surface-

averaged flux from the nodal calculation. Introducing Egs. (2) and
(9) into Eq. (10) yields

_ 1/2 1/2
D¢ duy @, ¢ (tx, ) |y 1 + duy 6D (1, Uy ) |, 11
-1/2 2 ~1/2 2
= (fs + O s ) DL (1)

Using the definition of single-assembly discontinuity factor and tak-
ing into account that the volume-averaged value of ¢ (ux, uy) is
unity, we rewrite the first term on the left-hand side of Eq. (11) as

_ 1/2 _
O¢ . duy@, ¢ (ux, uy) ‘uxzi% =Ocf gy (12)

After substituting Egs. (4) and (12) into Eq. (11), we obtain

Ny 1 . ~

foc,x,ixPG,ix (i i) = <f?;c_xi + 5fG,xi>®Giri _fzo,xiq)c- (13)
=1

In Eq. (13), the transverse-direction (i.e., y-directional) and cross
components of the surface-averaged flux variation vanish because,
by definition,

-1/2

duyPc;, (uy) = 0. (14)
~1/2

An equation analogous to Eq. (13) holds for the y direction.
2.2. Equations for the environmental surface-averaged current
We consider the simple case with homogeneous diffusion coef-

ficient [i.e., D¢(ux,uy) = Dg]. Using Egs. (7) and (8), the surface-
averaged directional net current reads (for the x axis)
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1/2 De [ 9
du}’]env.c.x (ux$uy) ‘u,(:i% = E /1 P duJ’aTé(DG (le, uY) ‘ux:i%
_ X

“172
Y dPg;
|:Z GXix 3.7 GX uX)luX:i% . (15)

In Eq. (15), we have used the fact that the infinite-medium current
at the assembly surface is zero, namely

.]oo,G,x (uX7 ”y) ‘u,(:i% =0 (16)

Eq. (16) is valid at the assembly outer edges and, when considering
four nodes per fuel assembly, at the internal surfaces of fully
symmetrically-loaded fuel bundles (i.e., with octant or quadrant
symmetry).

The sought equation is found equating Eq. (15) to the surface-
averaged directional net current J;,., from the nodal calculation:

Z GX,ix ~ ..

dP
W)y | = Joxs (17)

2.3. Equations for the environmental corner-point flux

The heterogeneous (i.e., continuous) flux at a nodal corner point is
het
(I)G.c = (Denv‘G (UX, uy) |ux — u;
Uy = ug
= 0. ¢ (Ux, Uy)ly, —u + 0@ (ux, Uy ) |y, = uS (18)
Uy =ug Uy = u

where ug and uj denote the corner-point coordinates within the
node. Introducing the single-assembly corner discontinuity factor
f¢. and substituting Eq. (4), Eq. (18) becomes

Ny Ny Ne Ny
> Oexi Poi (Uy) + Zac.y,inG i, (Uy) + Z ZOCG .00y P60 (U)Pa.c, (1)
=1 iy=1 cx=1¢y=1
cx+Cy<Nc
het & oo
:(DG.ec 7(I)Gf?.c‘ (19)

An estimate of @ must be found to use Eq. (19) in the spatial reho-
mogenization algorithm. For this purpose, we use two different
approaches:

e a combination of Smith’s method (Rempe et al., 1989) and the
Method of Successive Smoothing (MSS) (Bder and Finnemann,
1992);

e a Corner Point Balance (CPB) condition (Chang et al., 1989).

The above methods are commonly used in the context of fuel-
assembly dehomogenization (Joo et al., 2009). Their application
in the framework of our work is briefly explained in the following.

2.3.1. Smith’s method and the Method of Successive Smoothing

In Smith’s method, the intranodal flux distribution is considered
as separable in the x and y directions. The homogeneous flux at a
given node vertex is approximated using the volume-averaged flux
in the node and the surface-averaged flux at the nodal edges cross-
ing the corner. For instance, using the nodal coordinate system of

hom

Fig. 1, the flux in the north-east corner ®}y; reads

(Dhom (I)hom
gy = — (20)
G
The MSS is based on the assumption that the flux varies linearly in
the neighborhood of a corner point. The homogeneous flux at a

het het het
(I)G NW ('.y+ q)G.,NE
_11 11
272 272
Uy

het het

P 7,r— Uy P 7,2+
1 _1 1 _1
2 2 27 2

het het het
(I)G,SW P Y- (I)G,SE

Fig. 1. Corner-point coordinate system in a generic node. The corner and surface-
averaged fluxes are highlighted.

nodal vertex is estimated with a linear extrapolation in terms of
the surface-averaged and volume-averaged fluxes:

h h h =
Dei = gyt + D! — Do (1)
The heterogeneous corner flux in the environment is related to its

homogeneous counterpart ®™°™ via the corner discontinuit
G,c
factor:

e = foy D™ (22)

Using Eqs. (20) or (21) and Eq. (22), four estimates of G)‘(}ect are avail-
able for a given corner point, one from each node surrounding the
corner. The heterogeneous corner flux is thus approximated with
the arithmetic average of the available estimates:

1

h
(Dcért 4

hom cenv hom -env hom env. hom -env
<(D661 Geij +(DG c,i+1 G,c.i+1j cc:)+1fc Cij+1 +(DCAcAi+1j+1fGAc.i+1j+1)7
(23)

where we have denoted with i and j the coordinates (along the x
and y axes, respectively) of the four nodes sharing the corner c.
In the real environment, the corner discontinuity factors also
change compared to their infinite-lattice estimates. An environ-
mental correction on this parameter (6f;.) should therefore be
introduced for each node vertex. In order not to increase the num-
ber of unknowns and equations of the rehomogenization problem,
we use an approximate relation to evaluate this correction. We
assume that of . is proportional to the corrections on the discon-
tinuity factors of the x- and y-directional surfaces crossing the
corner (9f gy, of ), namely
fEOC +(Sf(;_c env +fenv
e _ (24)
fG.c fG,x +fGy

where f¢ and f¢) are the environmental discontinuity factors esti-
mated with Eq. (9) at the previous rehomogenization iteration.

Previous work showed that the MSS generally performs better
than Smith’s method, in which spatial cross effects are neglected
(F. Khoshahval et al., 2014). On the other hand, Eq. (21) may lead
to a negative corner flux (especially at the first nodal iterations,
when the surface-averaged flux estimates are not yet accurate
enough). For this reason, we use Eq. (21) as a default option and
switch to Eq. (20) in case of negative corner-flux values from the
MSS. Despite the ease of implementation, this approach may fail
to provide accurate estimates of the corner fluxes if the flux distri-
bution exhibits strong spatial gradients (Rempe et al., 1989; Joo
et al., 2009).

2.3.2. The Corner Point Balance approach
The Corner Point Balance (Chang et al., 1989) is a neutron bal-
ance equation imposing the absence of net source conditions at
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the corner points (i.e., no accumulation of neutrons within an
infinitesimally small volume). With this method, continuity of
the neutron current at the vertices of a node is preserved.

We briefly review this approach with an analogy to the simple
case of 1-D problem (Joo et al., 2009). From diffusion theory, the
heterogeneous surface-averaged flux at the interface s between

two adjacents node k and [ is related to the inlet (]icrfs) and outlet

&%) partial currents as

Dy = 2( + 10‘“) (25)
where

; 1 1 1 1

lc?.s = Zq)G,S + j]G,sv ?;l,]st = Z(DG.S - j.]c_y (26)

If no continuity of the net current J; is imposed, the estimates of ]

computed for the nodes k and [ will be different (i.e., J& =J..).
Inserting Eq. (26) into Eq. (25) yields

(Das = cDG-,S + ( ’é.s _JIG.5>' (27)

Eq. (27) defines an iterative algorithm, in which a new estimate of
the surface flux @ is obtained from the previous one and the dif-
ference in the computed net currents, which will eventually con-
verge to zero.

A similar scheme can be applied in the neighborhood of a corner
point. As illustrated in Fig. 2, four sets of directional net currents
exist at a given nodal vertex (one for each adjacent node): j;_yc
and J; . for node 1,J2, and j;_c for node 2, etc. The currents along
a certain direction must have the same value (i.e.,
])1<,c :Jic? .]):jc :]j,cv J;/c :];cv and ]ﬁc :];.c) to ensure a zero-net-
leakage balance in an infinitesimally small volume containing the
corner point. However, since no condition on the corner current
continuity is imposed in the nodal calculation, they may be differ-
ent. Using Eq. (27), four new estimates of the heterogeneous corner
flux are obtained (one for each node). Taking the average of them
yields

=gt g [(eJ2) + (BeJ) + (e —Fp) + (e —J0)]
(28)

This iterative scheme converges as the sum of the differences in
the net currents (i.e., the term within brackets on the right-
hand side of Eq. (28)) vanishes. Assuming that Eq. (2) is the exact
solution of the neutron balance equation in the nodes sharing the
corner, an estimate of the net currents at the corner itself is
obtained from Eq. (7). For instance, the following expression is
derived for ];,c in node 1 (we use the nodal coordinate system
of Fig. 1):

1 1 dP aPg;,
J)lc.c :Jénv.c.x <§7 - 7) = (Z GX,ix o )|ux:1/2
Nx N}'

dP dPgc, 1
+Z Z G.Xy.Cx.Cy c ( X)‘ule/sz,Cy <_i>> (29)

=1 ¢y=
Cx+Cy<Nc

Eq. (29) ensues from the fact that the infinite-medium net current
in a corner point is zero.

With the CPB approach, a new estimate @ of the heteroge-

neous corner flux ® is found at the end of each rehomogeniza-
tion iteration (namely, after sweeping all the nodes) with the

1 2
gl J2 :
(:—L‘ T, CH
1 V72
']y.( ! Py *']y,c
J3. Jy e

A
@ T,C
3 4

Fig. 2. Scheme of net currents in the neighborhood of a nodal corner point. The
corner is shared by four nodes of two different types in a checkerboard layout.

computed flux-variation modal coefficients. This new estimate is
to be used as a known term on the right-hand side of Eq. (19) in
the following rehomogenization update. At the first iteration, in
which no estimate of the o coefficients is available, we use Eq.
(20) or Eq. (21).

Compared to Smith’s method and the MSS, the CPB approach
has a physical foundation. Moreover, it does not involve the corner
discontinuity factors, so an environmental correction on these
parameters is not necessary. No further approximation is intro-
duced when solving the rehomogenization problem. On the other
hand, as it will be shown in Section 3, this strategy causes a slower
convergence rate of the rehomogenization algorithm due to its
non-linearity. This is because the heterogeneous corner fluxes
depend on the flux-variation modal coefficients, which are the
unknowns of the rehomogenization linear system.

2.4. Weighted-residual balance equations

The 2-D multigroup neutron balance equation in the real envi-
ronment is

l 8]env,G,x (uX’ uy) l 8.Ienv,Gy (uXv u)’)
Ax Ol Ay ouy
+ 2:t.G (ux; uy)q)env,G (um uy)

Ne /v (ux,u
= Z (%"ffﬂ VEf o (U ty) + Zo o (U, uy)> ey (U, Uy).
G'=1 e

(30)

The symbols in Eq. (30) correspond to conventional notation in
reactor physics literature (Stacey, 2007). Following the example
of spectral rehomogenization (Gamarino et al., 2018a; Gamarino
et al.,, 2018b), we project Eq. (30) over a set of weighting func-
tions Wg;(ux,uy) (with j = 1,...4) and integrate it in the two
directions. The cross-section projection term for the generic reac-
tion rate r is

1/2 1/2
/ dux duywcj(ux,uy)zr,c(um uy)q)env.G(ux, uy)
1/2 ~1/2

X
7(DGhRI'G1]+ Zzacdltherld,/"" Z Z O‘nycxctherycxcyp

d=xyiz= cx=Nx cy=Ny
cx+ey<Nc

31)
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where the rehomogenization coefficients are defined as

12 12
hR.r.G.j = / duy dunGJ (ux, uy)zr,G (um uy)(ﬂx_c (um uy)v

“1)2 ~1)2
(32a)
12 12
hvrcai= dugPe;, (uq) duWe;(ug, ue)Zrc(Ug, ur), (32b)
-2 -2
/2

1/2
duXPGCX (Uy / duy P, (uy ) W (U, Uy ) Zr g (U, Uy ).

(32¢)

hV,r,G,xy.cx.CyJ =

In Eq. (32b), the subscript t refers to the direction transverse
to d.

The projection of the x-directional current divergence term
yields (we assume again that the diffusion coefficient is spatially
constant within the node)

12 12 P U
[t [t s 0)
_12 ~1)2 Ux

Nx
= (I)GtheachJ AX ZquudeGmu + Z Zacxycx cyhdwX GXxy.Cx.Cyj | »

=1 ¢y=1
cx+cy<Nc
(33)
with the following definitions:
~ 1/2 1/2 8]ac Uy, U
hR leak,Gxj — / dux dunCJ (u)ﬁ uY) % ) (34&)
-1/2 -1/2 X
172 2 172
haiv G xici = / duy— P (Ux) / du, W (uy, uy), (34b)
J-172 du;, J-172
1/2 & 1/2
hdiuX.G.xy,cX.cyj = dux PG \Cx (ux) duyPG,cy (uy)WG,j (ux7 uy) .

“1/2 du 2 -1/2

(34¢)

Similar equations can be written for the divergence of the y-
directional current. The rehomogenization parameter detailed in
Eq. (34a) is determined for the two directions from the projection
of the 2-D balance equation in the infinite medium:

N¢
(D
hx

Rleak,Gyj — Z

e}
hR leak,G. XJ

(;{CG hRf GjT hgs, G'HG,}) —hregj,
(35)

where the spectral ratio ®%/®z is computed solving the
single-assembly zero-dimensional (i.e., node-averaged) neutron
balance equation. In a two-group framework and with neutron
emission from fission only in the fast group (y, =1,y, =0),
this reads

Oy 5 +E5 ., + DB 36)
oy DR ’

where B® denotes a buckling coefficient. We set B> = B2, if the
nodal cross sections are generated with the critical-spectrum cor-
rection (Hebert, 2009), or B> = 0 otherwise.

To summarize, with the above definitions the j-th weighted-

residual equation is
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d=xy d=xyiz=1
Ny N
X J hdiyd,G,xy‘cx,cy‘j
+ Z ZaG,xy,cx.cy hV.[.G,xy.cX.cy.j —D¢ Z — s
cx=1¢y=1 d=x,y Ad
Cx+Cy<Nc
Ne
5 [ X
= Z |:(DG’ ( I ey j+hrse—c;
& Keff
+ZZ<X Lo oarith
G dig k Vf.G digj V.s,G'—Gdigj
d=xyig=1

Ny Xc
*Z 12 1nycXCy<k hVJ,G’.xy.cx.Cy-f+thG’~nycXCyJ>

Cx+Cy<Nc¢

(37)

Using Eq. (37), we make the assumption that the nodal estimates ®¢
and ke satisfy the neutron balance in space [Eq. (30)] in a
weighted-integral sense.

The choice of the weighting functions W¢;(ux, u,) is, in princi-
ple, arbitrary. However, these modes must be selected carefully
to avoid ill-conditioning of the rehomogenization linear system
that ensues from the set of equations defined above [Egs. (13),
(17), (19), and (37)]. Using Galerkin projection, the lowest condi-
tion number of the solving matrix has been achieved with the fol-
lowing set of test functions in one variable:

W] (UX) = P] (UX), Wz (Uy) = P] (Uy), W3(UX)
=P, (ux)7 Wy (uy) =P, (uy). (38)

With this choice, the weighting operators do not depend on the
energy group.

2.5. Summary of the procedure

At the end of a non-linear flux iteration, the nodes are swept to
solve the spatial rehomogenization problem. The rehomogeniza-
tion linear system is set up independently for each node with
Egs. (13), (17), (19) and (37). In Eq. (19), the corner flux is deter-
mined using (i) Eqs. (20)-(24), or (ii) Eqs. (28) and (29) with the
flux-variation modal coefficients from the previous rehomogeniza-
tion update. After solving the system, the new estimates of the
environmental discontinuity factors at the node surfaces are deter-
mined with Eq. (9). The spatial cross-section correction for reaction
r is computed as

1 1/2 1/2
0%rg==— duy duy 2, ¢ (ux, uy) 6Dc (Uy, Uy)
O 71/2 Jop
Nx y
= Zzacdltherld o+ Z Zacxycx ctherycX cy.05 (39)
d=xyig= =1 ¢y=

fx+Cy<Nc

where the index j =0 refers to the unitary weighting function
[We¢o(uq) = 1]. When the CPB condition is applied, as the corner
fluxes converge, the corrections df; 4. and 6, also converge, and
so do the effective multiplication factor and the nodal variables
g, CDE(E, and J. 4, (which are the input quantities of the rehomog-
enization algorithm).

We exploit the information on the 2-D directional net current
distributions [Eq. (7)] to compute the few-group transverse-
leakage shape for the NEM (or the Analytic Nodal Method) equa-
tions. This approach replaces the approximation commonly
adopted in industrial nodal codes, which is based on a three-
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node quadratic fit along the direction of interest (Lawrence, 1986).
This approximation lacks a theoretical justification and introduces
an inconsistency in the solution of the nodal equations, because it
uses information from the adjacent nodes in the direction under
consideration to determine the internodal leakage in the trans-
verse direction. For the 1-D transverse-integrated problem along
the x direction, the transverse leakage is formulated as

Lenv,Gy (uX) = Ay [Ienv Gy (ux uy) |uy .]env Gy (uX7 ”y) |u ———] (40)

Introducing Eqgs. (4), (7) and (8) into Eq. (40), after some algebraic
manipulation we obtain

Nx y
Ay2 Z focxy Cxs CybG CyPGCx (uX) (41)

=1 ¢y=
Cx+fy<Nc

Lenv Gy(ux = G,y

where L, is the node-averaged leakage in the y direction (i.e., the
transverse direction), and bg,, is a constant term defined as

dPg,, dPc,,

bee, = Tdu, I du,

(1) ]y 3 (42)

Setting N, = 4 and limiting the order of the directional polynomial
basis functions in the cross terms to 2, we obtain bg; =0 and
bc, = 2. Eq. (41) becomes thus

2D &

Lenv,G,y(ux) = zG.y Ayz Z(xG XY.Cx, ZPCX (ux) (43)

The transverse leakage detailed in Eq. (43) is still a quadratic poly-
nomial. However, its shape retains some information on the 2-D
node-to-node leakage distribution (i.e., information from the trans-
verse direction) via the cross coefficients oy, . In this way, the
unphysical feature of the standard approximation discussed above
is removed.

3. Numerical results

We validate the method on the same colorset (i.e., four-
assembly) configurations considered in Gamarino et al. (2018b):
(i) a UO, colorset with burnable-absorber (Pyrex) rods, (ii) a UO,
colorset with AIC-type control rods, (iii) a UO, colorset with
gadolinium-bearing fuel pins, and (iz) a UO,/MOX colorset.
Reflective boundary conditions are set at the assembly centerlines.
Two-group nodal simulations are performed with the TU Delft in—
house-developed BRISINGR nodal code (Gamarino et al., 2018b),
which combines the conventional Coarse Mesh Finite Difference
(CMFD) and NEM solution strategies. The infinite-medium homog-
enization parameters are generated with the APOLLO2-A deter-
ministic lattice transport code (Martinolli et al., 2010). Since in
this work we do not apply spectral rehomogenization, the
critical-buckling correction (which is a default option in advanced
nodal codes) is applied to the nodal cross sections (Hebert, 2009;
Gamarino et al., 2018a). All the test cases are simulated in critical
conditions (keg=1), which are determined with a critical-boron
search, and at zero burn-up. Isothermal conditions (i.e., no ther-
mal-hydraulic feedback) during nominal operation are considered.
We use a spatial discretization of one node per assembly quarter.
We present the results of the calculations with:

e single-assembly cross sections and discontinuity factors (calcu-
lation a);

e 2-D spatial rehomogenization of cross sections and discontinu-
ity factors, using the CPB approach (calculation b) and the MSS/
Smith’s method (calculation c) to determine the corner fluxes;

e 1-D spatial rehomogenization of cross sections and discontinu-
ity factors (calculation d).

For the sake of convenience, from now on we will refer to the
hybrid MSS/Smith’s method simply as MSS. In calculations b and
¢, the spatial rehomogenization coefficients [Eqgs. (32) and (34)]
are computed with the infinite-medium cell-homogenized cross
sections and flux distribution.

The reference calculations are performed with APOLLO2-A. We
test the accuracy of spatial rehomogenization on the main nodal
parameters and on the pin-by-pin flux and fission-power distribu-
tions. In all the calculations, the 2-D heterogeneous intranodal flux
is reconstructed with the dehomogenization method described in
Joo et al. (2009). This approach is based on a 2-D, fourth-order
Legendre-polynomial expansion of the neutron source distribution,
which results in a semi-analytic solution of the 2-D, group-
decoupled neutron diffusion equation. In calculations b and c, the
corner fluxes computed with the 2-D rehomogenization are used
as boundary conditions for the pin-flux reconstruction. The pin-
power Root-Mean-Square (RMS) deviations are expressed in terms
of the relative error (RMSp,) and of the power-weighted absolute
error (RMSp.,), namely

1 Ng Pgalc _ Pl_'ef 2
_ i i i 0
RMSp, = foC i; (P;Ef ) 100%, (44a)
Npe I £\~ Pl
S () E
RMSp e = : -100%, (44b)
’ plef
cs

where Ny, is the number of fuel cells, P?' and P are the computed
and reference (i.e., from APOLLO2-A) values of the fission power in
the i-th cell, and P is the reference average power in the colorset.
With Eq. (44b), the errors in the hot spots (i.e., the fuel cells having
the highest thermal load) have more weight in the accuracy assess-
ment. We also use Eq. (44a) to compute the RMS deviation in the
two-group flux distribution (RMSq, ;).

3.1. Example 1: UO, colorset with burnable-absorber (Pyrex) rods

The first colorset is made of four 17 x 17 PWR fuel assemblies of
fresh UO,. Two of these have 1.8% enrichment, whereas the other
two have 3.1% enrichment and host 16 burnable-poison rods made
of borosilicate glass (Pyrex). The colorset layout is depicted in
Fig. 3.

The critical boron concentration is 1465 ppm. The reference val-
ues of the normalized fission power are 0.92 in the 1.8%-enriched
assembly and 1.08 in the 3.1%-enriched poisoned assembly. For
the sake of completeness, we report here the reference absorption
and production cross sections (condensed and homogenized
in the colorset environment) computed in APOLLO2-A: X,; =
0.00873cm™',%,,=0.0686cm™!,vX;; =0.00483cm™!, and VX, =
0.0811 cm™! in the 1.8%-enriched assembly; X,; = 0.0101 cm™ !,
Y2 =0.104cm~!, v, ; = 0.00657 cm~!, and VvZ;; =0.131 cm™!
in the 3.1%-enriched assembly with Pyrex.

Fig. 4 depicts the reference variation in the 2-D flux distribution
between the real environment and the infinite lattice in the two
fuel assemblies. The percent values are computed with respect to
the node-averaged flux. Fig. 5 shows the flux variation computed
with the 2-D spatial rehomogenization, combined with the CPB
approach for the corner-point fluxes. The result of the MSS
approach is not presented because the differences are small.
Rehomogenization captures the overall flux variation reasonably
well. The main differences between the reference and computed
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(b)
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(c)

Fig. 3. (a) Assembly set of Example 1. Layout of the UO, fuel assemblies: (b) with 1.8% enrichment, (c) with 3.1% enrichment and 16 burnable-poison rods. The two bundles
host 24 and 8 empty guide tubes, respectively, which are made of the Zircaloy-4 alloy. An empty instrumentation tube is present at the center of both assemblies.
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Fig. 4. Example 1: reference variation (in percentage) in the 2-D pin-by-pin flux between the environmental and infinite-lattice conditions in the neighboring quarters of the
two dissimilar assemblies. The top and bottom plots depict the variations in the fast and thermal groups, respectively. The plots on the left side refer to the 1.8%-enriched
assembly quarter, whereas those on the right side refer to the 3.1%-enriched assembly quarter. The coordinates [0,0] (in cm) correspond to the assembly centers. The abscissas
10.1 cm in the 1.8%-enriched assembly and —10.1 cm in the assembly with Pyrex denote the centers of the corresponding outer pin rows (the water gap is not shown).

distributions are observed in the outer pin rows of both assemblies.
In the 1.8%-enriched bundle, the magnitude of the thermal flux
change is overestimated at the assembly edges and underesti-
mated in the external-corner fuel cell. The opposite is found in
the assembly with Pyrex rods. Fig. 6 shows the variation in the
transverse-integrated flux ®¢,(x) computed with the 1-D reho-
mogenization. For the sake of comparison, we also plot the 1-D
curves obtained by transverse integration of the 2-D distributions
of Fig. 5. The deviations between the 1-D and 2-D approaches are

not significant. They are more evident in the fast group, especially
in the assembly with Pyrex.

Table 1 reports the number of non-linear flux iterations (Njer)
and the errors in the integral parameters and main nodal cross
sections (the errors in the discontinuity factors will be addressed
in Section 4.2). Compared to the calculation with infinite-
medium cross sections and discontinuity factors, both the 2-D
and 1-D models give a significantly more accurate prediction of
the multiplication factor and fission power. Much of this
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Fig. 5. Example 1: variation (in percentage) in the 2-D flux distribution in the neighboring quarters of the two assemblies, as computed with the CPB-based 2-D
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rehomogenization. The results are plotted with the same scale as in Fig. 4 to ease the comparison between the reference and computed variations.
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Fig. 6. Example 1: variation (in percentage) in the transverse-integrated flux distribution in the neighboring quarters of the two assemblies. The computed variation in the

water gap is also depicted.
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Table 1
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Example 1: (a) number of non-linear flux iterations and errors in the integral parameters, and (b) errors in the absorption and production nodal cross sections. The values of the

power error within parentheses refer to the fast- and thermal-group power.

(a)

U0, 1.8% UO; 3.1% + 16 b.p. rods
Simulation Niter Akegr [pem] APgigs (%) APgs (%)
No rehom. (a) 9 —189 0.85 (0.86, 0.85) —-0.72 (-0.60, —0.76)
2-D rehom. - CPB (b) 15 26 0.19 (0.74, 0.06) —0.16 (-0.52, —0.05)
2-D rehom. - MSS (c) 12 30 0.22 (0.78, 0.08) —0.18 (—-0.55, —0.07)
1-D rehom. (d) 13 —-18 0.39 (0.87, 0.28) -0.33 (-0.61, —0.25)

(b)
U0, 1.8% UO; 3.1% + 16 b.p. rods
Errors (%)
Simulation AXq1 AZq2 AvZg, AVZf, AZqq AXgo AvZs, AV,
No rehom. (a) -0.04 0.69 0.51 0.81 0.10 -0.50 -0.33 -1.03
2-D rehom. - CPB (b) -0.02 0.64 0.53 0.71 0.11 -0.92 -0.34 -0.90
2-D rehom. - MSS (c) —-0.02 0.64 0.53 0.71 0.11 -0.93 -0.34 -0.90
1-D rehom. (d) —-0.03 0.64 0.53 0.70 0.11 -0.85 -0.34 -0.93
Table 2
Example 1: errors in the absorption and production cross sections rehomogenized with the reference 2-D flux variation and with a least-squares best fit of it.
U0, 1.8% U0, 3.1% + 16 b.p. rods
Errors (%)

Flux variation (2-D) AZqq AZq> AvZs, AV, AZqq AZq> AvZs, AVZs,
Reference —0.01 0.53 0.55 0.50 0.09 -0.68 -0.35 -0.71
Best fit -0.02 0.62 0.53 0.67 0.11 -0.84 -0.34 —-0.86

improvement comes from the correction of the thermal absorp-
tion cross section in the assembly with burnable poison, even if
the corresponding error becomes higher than that of the single-
assembly estimate. The increase in the error in this cross section
is because of the exclusion of spectral effects, which go in the
opposite direction to spatial ones (see Section 4.4). The improve-
ment in the power is more apparent with the 2-D rehomogeniza-
tion. The differences between the CPB and MSS strategies are
negligible.

Table 2 compares the errors in the cross sections rehomoge-
nized with (i) the reference 2-D flux change (Fig. 4) and (ii) a
least-squares best fit of it. The best fit has been computed with
the basis functions defined in Eq. (5), using the same number of
directional and cross terms as in the modal reconstruction [Eq.
(4)]. Since these two sets of cross sections do not account for the
spectral effects of the environment, they can be considered as a ref-
erence to assess the accuracy of spatial rehomogenization. Com-
paring Tables 1 and 2, it turns out that the cross-section
corrections computed with the 2-D rehomogenization go in the
right direction and are very close to those obtained with a best
fit of the 2-D reference. The inaccuracy in the flux-change recon-
struction observed in Fig. 5 is therefore ascribable to the limited
fitting capability of the 1-D basis functions [Eq. (5)] rather than
to a deficiency of the method. We have verified that increasing
the number of cross terms in the best fit from four to six or eight
improves the computed corrections only slightly. Rehomogeniza-
tion underestimates the corrections on X, and vZs, in the 1.8%-
enriched assembly and on vX;, in the assembly with Pyrex (see
Tables 1(b) and 2). It overcorrects X, in the latter. This overcorrec-
tion is due to an overly negative estimate of the flux variation in
the center of the assembly, where the Pyrex rods are located and
thermal absorption is higher. This mismatch is smaller with the
1-D model. The flux spatial variation has no effect on the fast-
group cross sections. The same has been observed in fast-to-

thermal scattering and in the diffusion coefficients of both energy
groups, which are not reported in the previous tables. For these
quantities, both the reference and computed corrections are
negligible.

Fig. 7 compares the relative errors in the thermal-flux pin-by-
pin distribution of the 1.8%-enriched assembly, as computed with
calculations a and b. A general improvement is observed, especially
in the fuel cells surrounding the assembly external vertex. The ref-
erence fission-power distribution and the corresponding relative
errors are in Figs. 8 and 9, respectively. Table 3 shows the RMS
errors in the two-group flux and total power. The reduction in
the RMS deviations is apparent in the poison-free bundle, whereas
it is less evident in the assembly with Pyrex. The error in the fuel
cell with the highest power (i.e., the external-corner cell in the
assembly with Pyrex) increases from —0.64% to —1.71% when the
2-D rehomogenization is applied (Fig. 9).

3.2. Example 2: UO, colorset with AIC-type control rods

In this test case, two banks of twenty-four black control rods
each are inserted into two of the four fuel assemblies. The type
of the control elements is AIC (silver-indium-cadmium), with the
following mass percent composition: 80% 4’Ag, 15% “8Cd, and 5%
“*In. The 23°U enrichment is 1.8% in the unrodded assembly and
2.4% in the rodded one. The colorset layout is shown in Fig. 10.
The critical configuration is achieved with a boron concentration
of 222 ppm. The reference values of the normalized fission power
are 1.12 in the unrodded assembly and 0.88 in the rodded one.
The reference cross sections are: X,; =0.00833cm™!, X, =
0.0573 cm™!,vX;; = 0.00483 cm™!, and VvX;; =0.0828 cm™! in
the unrodded assembly; X,; =0.0119cm™!, Z,; = 0.0942 cm™,
VX1 =0.00554cm™!, and vXZ;; =0.109cm™' in the rodded
assembly.
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Fig. 7. Example 1: relative error (in percentage) in the pin-by-pin thermal flux in the 1.8%-enriched assembly quarter. The plots refer to the calculations (a) without

rehomogenization and (b) with the CPB-based 2-D rehomogenization.
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The reference and computed 2-D flux variations are in Figs. 11
and 12. The prediction is quite accurate in the unrodded assembly.
In the rodded bundle, the magnitude of the flux change is underes-
timated around the external corner, where it is positive, and over-
estimated in the control-rod cells closer to the assembly center
(i.e., at the coordinates [-3.79, 0], [-3.79, 3.79] and [0, 3.79] cm),
where it is negative. The decrease in thermal absorption in the
environment is therefore overestimated (see Tables 4 and 5). The
variation in the transverse-integrated flux is shown in Fig. 13. In
the thermal group of the rodded assembly, the 1-D curve from
the 2-D model approximates the reference better in the neighbor-
hood of the coordinate —3.79 cm, which spans three rodded cells
along the y direction (see Figs. 10(c) and 11). However, it provides
a less accurate estimate at the periphery.

Tables 4 and 5 report the errors in the nodal quantities. Also in
this case, an improvement in ke and in the fission power is
observed, particularly with the 1-D rehomogenization. Calcula-
tions b, ¢ and d mainly differ in the prediction of the correction
624, in the rodded assembly, which is overestimated to a different
extent in the three cases (see Tables 4(b) and 5). As in the example

U0, 3.1% + 16 b.p. rods
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y [cm]
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Fig. 8. Example 1: reference pin power (normalized to the colorset-averaged value) in (a) the 1.8%-enriched assembly and (b) the 3.1%-enriched assembly with Pyrex rods.

with Pyrex rods, the 2-D model reproduces faithfully the correc-
tions computed with a best fit of the reference flux change. There-
fore, the overestimation of 4Z,, is mostly because the basis
functions cannot reconstruct the dip in 6®,(x,y) in the inner rod-
ded cells.

The relative errors in the pin-by-pin thermal flux in the unrod-
ded assembly and in the power distribution are depicted in Figs. 14
and 16. The reference fission power is in Fig. 15. Table 6 summa-
rizes the RMS deviations. With the 2-D model, a general improve-
ment is only found in the unrodded bundle, even though not in the
cells with higher power. Since in this assembly the 2-D rehomog-
enization provides a better intranodal flux distribution than calcu-
lation a (see Fig. 14), the observed increase in RMSp ., is probably
due in part to the inaccuracy in the infinite-medium pin-by-pin fis-
sion cross sections. With the 1-D approach, the improvement is
negligible in both assemblies. The highest power (126% of the
colorset-averaged value) is found in the external-corner cell of
the rodded assembly and in the two cells adjacent to the empty
instrumentation tube at the center of the unrodded bundle (i.e.,
at [0,0] cm). With the 2-D rehomogenization, the power error
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Fig. 9. Example 1: relative error (in percentage) in the pin-power distribution computed with calculations a and b.

Table 3
Example 1: RMS deviations (in percentage) in the pin-by-pin two-group flux and total fission power.

U0, 1.8% U0, 3.1% + 16 b.p. rods

Simulation RMSy, , RMS, , RMSp, RMSp g RMSy, , RMS, , RMSp, RMSp g
No rehom. (a) 0.11 058 0.94 0.94 0.20 0.45 0.77 125
2-D rehom. - CPB (b) 0.14 036 0.77 0.66 027 0.43 091 1.06
1-D rehom. (d) 0.08 051 0.85 0.73 022 034 0.81 0.98

U0, U0,

2.4% + AIC 1.8%
U0, U0,
1.8% 2.4% + AIC

(a)

(b)

Fig. 10. (a) Assembly set of Example 2. Layout of the UO, fuel assemblies: (b) unrodded, and (c¢) rodded. The former hosts 24 empty guide tubes, whereas in the latter only the
central instrumentation tube is free of control elements.
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Fig. 11. Example 2: reference variation (in percentage) in the 2-D flux distribution.

decreases (in absolute value) from 3.38% to —1.0% in the former
and increases (in absolute value) from —0.70% to —0.76% in the
latter.

3.3. Example 3: UO; colorset with gadolinium-bearing fuel pins

This example (Fig. 17) is made of two 17 x 17 UO, assemblies
with 1.8% enrichment and two 17 x 17 UO, assemblies with 3.9%
enrichment and 12 gadolinium-bearing fuel rods. The poisoned
pins have 0.25% 23°U enrichment and 8% mass content of gadolin-
ium oxide (Gd,03), with the isotopic composition of naturally
occurring gadolinium. They are located at the periphery of the
assemblies, in the outer and first inboard pin rows. The concentra-
tion of soluble boron in the moderator is 1830 ppm. The reference
normalized fission power and cross sections are: Pgs = 0.81,
.1 = 0.00889 cm™!, Xy, = 0.0723 cm~!, vX;; = 0.00483 cm!,
and vX;, =0.0803 cm~! in the 1.8%-enriched assembly; Pres =
1.19, X, =0.0103cm ', %,; =0.118 cm™',vE;; = 0.00738 cm~!, and
VX, = 0.151 cm™! in the assembly with gadolinium-bearing fuel pins.

The reference and computed flux changes are shown in Figs. 18-
20. The nodal errors are in Tables 7 and 8. With the 2-D model, the
computed 6%, in the 3.9%-enriched assembly is higher than the
expected value. This is because the thermal-flux variation is over-
estimated in the gadolinium-bearing fuel pins located in the outer
rows (at the coordinates [-2.53, 10.78] and [-10.78, 2.53] cm). In
these cells the reference flux change is 8.12%, whereas the com-
puted one is 13.4%. In the same fuel bundle, the correction on
v, goes in the wrong direction because of the combined under-
estimation and overestimation of the magnitude of @, (x,y) in the

neighborhood of the assembly vertex and in the assembly center,
respectively. Despite the above mismatches, the 2-D model signif-
icantly improves the ke and nodal-power estimates compared to
the calculation without rehomogenization. These parameters
improve less with the 1-D model. Figs. 21 and 22 show the refer-
ence fission-power distribution and the corresponding relative
errors. Table 9 summarizes the RMS deviations. Rehomogenization
better predicts the fission power in the center of the gadolinium-
bearing assembly quarter (where the power is higher), which
results in a reduction in RMSp .

3.4. Example 4: UO,/MOX colorset

This colorset is made of two 18 x 18 UO, assemblies and two
18 x 18 MOX assemblies. The 2>°U enrichment in the UO, assem-
blies is 2.1%. The MOX bundle contains three different types of fuel
pins: with low plutonium content (1.78% 23°Pu, 0.22% 23°U) at the
assembly corners, with intermediate plutonium content (2.53%
239py, 0.21% 23°U) along the assembly outer edges, and with high
plutonium content (3.86% 23°Pu, 0.20% 23°U) in the remainder of
the fuel bundle. The colorset and assembly layouts are shown in
Fig. 23. The concentration of diluted boron in the moderator is
2907 ppm. The reference normalized fission power and cross sec-
tions are: P = 0.85, X5 =0.00924 cm!,%,, = 0.0887 cm ™!,
vZ;; =0.00543 cm~!, and VX, =0.0974cm~! in the UO,
assembly; Pgss = 1.15, £1=0.0143cm™',%,,=0.258cm ™, vZ;; =
0.00994 cm™!, and vX;, = 0.372 cm™! in the MOX assembly.

Figs. 24-26 compare the results of rehomogenization with the
reference flux spatial deformations. Tables 10 and 11 show the
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Fig. 12. Example 2: variation (in percentage) in the 2-D flux distribution, as computed with the CPB-based 2-D rehomogenization.

Table 4
Example 2: (a) number of non-linear flux iterations and errors in the integral parameters, and (b) errors in the absorption and production nodal cross sections.

(a)

U0, 1.8% U0, 2.4% + 24 AIC rods
Simulation Niter Akegr [pem] APges (%) AP (%)
No rehom. (a) 10 —608 1.41 (0.69, 1.57) ~1.79 (-0.66, —2.15)
2-D rehom. - CPB (b) 18 -18 —0.72 (-0.41, -0.78) 0.92 (0.40, 1.07)
2-D rehom. - MSS (¢) 16 -21 ~0.96 (—0.64, —1.02) 1.23 (0.61, 1.40)
1-D rehom. (d) 16 -72 0.10 (0.21, 0.08) —~0.12 (-0.20, —0.11)

(b)
U0, 1.8% U0, 2.4% + 24 AIC rods
Errors (%)

Simulation AZqq AZq>n AVEpy AVEp, AZq4 AZq; AVEpy AVY,
No rehom. (a) -0.72 0.66 0.11 0.72 131 0.63 0.10 -1.21
2-D rehom. - CPB (b) -0.75 0.54 0.06 0.58 1.09 —-1.42 0.16 —-0.98
2-D rehom. - MSS (c) -0.75 0.55 0.07 0.59 1.08 -1.51 0.16 —-0.98
1-D rehom. (d) -0.75 0.53 0.06 0.56 1.02 —-1.02 0.18 —1.08

:I.ila)rlljpsle 2: errors in the absorption and production cross sections rehomogenized with the reference 2-D flux variation and with a least-squares best fit of it.
U0, 1.8% U0, 2.4% + 24 AIC rods
Errors (%)
Flux variation (2-D) AZqq AZq AvZs, AvZs, AZqq AZq5 AV, AVZs,
Reference —0.80 0.35 0.01 0.33 1.08 —-0.62 0.23 -0.81

Best fit -0.76 0.51 0.06 0.53 1.04 -1.45 0.19 -0.91
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Fig. 13. Example 2: variation in the transverse-integrated flux distribution.
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Fig. 14. Example 2: relative error (in percentage) in the pin-by-pin thermal flux in the unrodded-assembly quarter. The plots refer to the calculations (a) without

rehomogenization and (b) with the CPB-based 2-D rehomogenization.

nodal errors. The 2-D model overestimates the absolute value of
the flux change (which is negative) in the center of the MOX
assembly. Here the plutonium content is higher (see Fig. 23(c)),
and so are the thermal-group absorption and production pin-by-
pin cross sections. The corrections on the thermal cross sections
are thus considerably higher than those computed with the refer-
ence flux variation and, in this case, also with a least-squares best
fit of it. The error in k. increases, whereas the errors in the fission
power still decrease significantly.

The pin-by-pin errors are shown in Figs. 27-30 and in Table 12.
In spite of the limited accuracy in the prediction of the flux varia-

tion, the flux and power distributions in the MOX assembly
improve with the 2-D rehomogenization. An increase in the error
is only found around the four nodal vertices, particularly in the
two cells surrouding the central water-carrying instrumentation
tube (in the SW corner of the quadrant). These observations are
confirmed by the RMS deviations, which also decrease appreciably.
The improvement is more significant in the UO, assembly with the
2-D model.

In this test case, the CPB-based 2-D rehomogenization has a
considerably slower convergence rate than the MSS approach
and the 1-D rehomogenization (Table 10).
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Fig. 15. Example 2: reference pin power (normalized to the colorset-averaged value) in the (a) unrodded and (b) rodded assemblies.
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Fig. 16. Example 2: relative error (in percentage) in the pin-power distribution computed with calculations a and b.
Table 6
Example 2: RMS deviations (in percentage) in the pin-by-pin two-group flux and total fission power.
U0, 1.8% UO, 2.4% + 24 AIC rods
Simulation RMSo, RMSa, RMSp, RMSp q RMSo, » RMSa, RMSp,, RMSp yq
No rehom. (a) 0.20 0.78 0.96 1.28 0.43 1.31 1.25 1.50
2-D rehom. - CPB (b) 0.18 0.33 0.68 1.81 0.54 1.45 1.60 1.75
1-D rehom. (d) 0.14 0.72 0.90 1.23 0.34 1.30 1.35 1.37
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Fig. 17. (a) Assembly set of Example 3. Layout of the UO, fuel assemblies: (b) with 1.8% enrichment, (c) with 3.9% enrichment and 12 gadolinium-bearing fuel rods at the
periphery. Both assemblies host 24 empty guide tubes and an empty instrumentation tube at the center.
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Fig. 18. Example 3: reference variation (in percentage) in the 2-D flux distribution.

4. Discussion
4.1. On the transverse-leakage approximation

As mentioned in Section 2.5, the conventional three-node quad-
ratic fit for the approximation of the transverse-leakage distribu-
tion is a non-consistent feature of nodal calculations (Lawrence,
1986). Various methods can be found in the literature to relax this
approximation (Prinsloo et al., 2014). In this section, we compare
the transverse-leakage distributions computed with the aforemen-
tioned standard approach and with the quadratic approximation

ensuing from the 2-D rehomogenization [Eq. (43)]. The impact of
these two strategies on the nodal simulations is also addressed.

Fig. 31 shows the transverse-leakage shape L, (x) in the 1.8%-
enriched UO, assembly of Example 1. The curves of calculations
a and d have been computed with the three-node parabolic fit,
whereas the curves of calculation b have been determined with
Eq. (43). The distributions obtained with the 2-D rehomogeniza-
tion differ significantly from those of the standard approximation,
especially in the thermal group.

We have found that, when spatial rehomogenization is applied,
the nodal calculation becomes insensitive to the transverse-
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Fig. 19. Example 3: variation (in percentage) in the 2-D flux distribution, as computed with the CPB-based 2-D rehomogenization.
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Fig. 20. Example 3: variation in the transverse-integrated flux distribution.
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Table 7

Example 3: (a) number of non-linear flux iterations and errors in the integral parameters, and (b) errors in the absorption and production nodal cross sections.

U0, 1.8% UO; 3.9% + 12 Gd pins
Simulation Niter Akesr [pem] AT)ﬁSS (%) AT)ﬁss (%)
No rehom. (a) 9 757 ~0.48 (0.58, —0.78) 0.33 (~0.34, 0.56)
2-D rehom. - CPB (b) 15 ~105 0.24 (0.74, 0.11) ~0.16 (—0.43, —0.08)
2-D rehom. - MSS (c) 13 —136 0.41 (0.93, 0.28) —0.28 (—0.54, —0.20)
1-D rehom. (d) 16 358 ~0.37 (0.47, —0.60) 0.26 (—0.27, 0.43)

U0, 1.8% U0, 3.9% + 12 Gd pins
Errors (%)
Simulation AZqq AZqo AvZs, AVZs, AZgq AXgo AvZs, AVZs)
No rehom. (a) 0.03 1.11 0.67 1.35 -0.11 —2.45 —0.48 —0.95
2-D rehom. - CPB (b) 0.07 0.98 0.73 1.10 -0.20 —0.88 —0.47 -1.23
2-D rehom. - MSS (c) 0.07 0.99 0.72 1.10 -0.19 —0.84 —0.46 -1.24
1-D rehom. (d) 0.07 0.99 0.73 1.10 -0.19 -1.62 —0.48 -0.97
Table 8
Example 3: errors in the absorption and production cross sections rehomogenized with the reference 2-D flux variation and with a least-squares best fit of it.
U0, 1.8% U0, 3.9% + 12 Gd pins
Errors (%)

Flux variation (2-D) AZqq AZgo AvZs, AvZs, AZqq AXqo AVZs, AVZs)
Reference 0.08 0.89 0.74 0.91 -0.20 -1.27 —0.48 —0.86
Best fit 0.06 0.98 0.72 1.07 -0.18 -1.22 —0.47 -1.11
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Fig. 21. Example 3: reference pin power (normalized to the colorset-averaged value) in the assemblies (a) without and (b) with gadolinium-bearing fuel pins.

leakage approximation. We have observed convergence to the
same solution (in terms of kes, the nodal-flux distribution @,
and the cross-section corrections 6%, ¢) irrespective of the intran-
odal shape assumed for L, (x) and L¢x(y). This finding is related
to the corrections on the assembly-surface discontinuity factors
dfcq. and can be explained as follows. The transverse-leakage

m

approximation affects the nodal estimates of ®X% and J 4., which
are input quantities to the spatial rehomogenization algorithm (see
Section 2). However, the corrections df 4, vary in such a way that
the modal coefficients of the flux spatial perturbation [Eq. (4)] con-
verge to the same values obtained with other transverse-leakage
approximations. Eventually, also the heterogeneous quantities

(fﬁfdi +5fc,di)‘1’2f’ﬂ and J;,. converge to the same values. The

discontinuity-factor correction acts thus as a free parameter that
enables convergence to the unique solution of the coupled nodal
(i.e., CMFD +NEM) and rehomogenization fields.

For Example 1, Table 13 shows the corrections df¢,. deter-
mined with calculation b and three different transverse-leakage
distributions: the flat-leakage approximation (in which the
intranodal shape is considered as uniform and equal to the
node-averaged value of the transverse leakage), the standard
three-node quadratic fit, and the quadratic shape from Eq. (43).
The flat-leakage approximation leads to the highest variations in
Of c 41, Whereas Eq. (43) leads to the smallest.

The insensitivity to the transverse-leakage approach has also
been observed with the 1-D rehomogenization. More investigation
is needed to find a mathematical justification of this behavior.
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Fig. 22. Example 3: relative error (in percentage) in the pin-power distribution computed with calculations a and b.
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Table 9
Example 3: RMS deviations (in percentage) in the pin-by-pin two-group flux and total fission power.
U0, 1.8% U0, 3.9% + 12 Gd pins
Simulation RMSq, RMSe, - RMSp, RMSp RMSq, RMSo, - RMSp, RMSp
No rehom. (a) 0.37 1.24 1.55 1.05 0.51 1.38 1.61 2.11
2-D rehom. - CPB (b) 0.34 1.18 147 1.04 0.22 1.20 1.29 1.76
1-D rehom. (d) 0.34 1.23 1.56 1.03 0.34 1.23 1.42 1.86

(a) (b)

Fig. 23. (a) Assembly set of Example 4. Layout of the (b) UO, and (c) MOX fuel assemblies.




M. Gamarino et al./Annals of Nuclear Energy 125 (2019) 157-185 177

MOX, 67 (x,y)

(%)

y [cm]

o 2 4 6 8 10
x [cm)]

MOX, 6,7 (x,y)

y [cm]

0 2 4 6 8 10
x [cm]

U0, 2.1%, 8977 (x,y)

y [cm]

-0 -8 -6 -4 -2 0
x [cm]

U0, 2.1%, 8057 (x,y)

y [cm]

-0 -8 -6 -4 -2 0
x [cm)]

Fig. 24. Example 4: reference variation (in percentage) in the 2-D flux distribution.

4.2. Analysis on the discontinuity factors

In Section 3, we have only assessed the accuracy of the cross-
section corrections. We now make a similar analysis on the discon-
tinuity factors.

We evaluate the reference environmental discontinuity factors

emvrel with a nodal-equivalence approach applied to the colorset

transport calculation. We define the homogeneous transverse-
integrated neutron flux in the real environment with a quartic
expansion, as in the conventional NEM equations:

hom.ref
(Dc.d

=orf ¢ Zagd,PG, Ug), (45)

where @' is the node-averaged flux from the reference transport
simulation. The basis functions Pg;(u4) are those defined in Eq.
(5). The directional modal coefficients aif; in a given node are
determined with a linear system of four equations per group: (i)
the conservation of the reference directional net current at the left
boundary of the node (]ref ); (ii) the conservation of the reference

directional net current at the right boundary of the node (]Gd+)'
the projection of the transverse-integrated, two-group nodal diffu-
sion equation in the environment over the (iii) first- and (iv) second-
order NEM basis functions [Egs. (5a) and (5b)].

We exploit the symmetry of the four-assembly configurations
considered in this work and determine the reference surface-
averaged currents with the two-group nodal balance in the
colorset:

ref Ad Zref ref
Gd+! — t.G G
eff G= G=1

ref Zv LD — Z):‘ef/ G(bfef). (46)

The cross sections in Eq. (46) have been condensed and homoge-
nized with the neutron flux energy spectrum and spatial distribu-
tion of the colorset environment.

The j™-order (with j = 1, 2) 1-D homogeneous equation is

f
12 du.P; d rGe-,d(u ) ref hom ref ref -
aPi(ua) | =g —+ ZecPea (Ua) = Sca(ua)| =0, (47)
-1/2 Uy

where the source term sfgg(u,,) includes the scattering and fission

operators and the transverse leakage:

ref

ref 2 2
S )~ VSO ) Y S 0 ) L)
ket &1 =1

(48)

In Eq. (48), the transverse leakage Lg(ul4) is approximated with the
conventional quadratic fit over the node under consideration and
the two adjacent nodes along the direction d. The leakage expansion
coefficients are computed preserving the reference volume-
averaged transverse leakage Lf (evaluated with Eq. (46)) in the
three nodes.

After solving for the modal coefficients ai*!,,, the reference dis-
continuity factor is estimated as

q)het ref
envref Gd+ (49)
Gd+ — q)hom,ref(:tl ’
ca (£2)
where ®¢%!*" is the heterogeneous surface-averaged flux from the

reference transport calculation. Since this quantity is not among
the edits of APOLLO2-A, we make the following assumption:
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Fig. 25. Example 4: variation (in percentage) in the 2-D flux distribution, as computed with the CPB-based 2-D rehomogenization.
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Fig. 26. Example 4: variation in the transverse-integrated flux distribution.
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Table 10
Example 4: (a) number of non-linear flux iterations and errors in the integral parameters, and (b) errors in the absorption and production nodal cross sections.
(a)
U0, 2.1% MOX
Simulation Nier Akegr [pem] APy (%) APy (%)
No rehom. (a) 11 199 1.94 (0.81, 2.24) —1.44 (-0.46, —1.86)
2-D rehom. - CPB (b) 29 276 0.38 (0.70, 0.22) ~0.28 (039, —0.19)
2-D rehom. - MSS (c) 17 273 0.48 (0.89, 0.29) —0.36 (-0.50, —0.24)
1-D rehom. (d) 17 286 0.22 (0.48, 0.10) -0.17 (-0.27, —0.09)
(b)
U0, 2.1% MOX
Errors (%)
Simulation AZqq AZq; AvZs, AVZs, AZgq AXgo AvZs, AVZs)
No rehom. (a) 0.54 1.18 0.61 1.35 -1.05 0.31 —0.52 0.45
2-D rehom. - CPB (b) 0.54 117 0.62 1.31 -1.01 -1.28 —-0.43 -1.40
2-D rehom. - MSS (c) 0.55 1.16 0.62 1.30 -1.0 -1.27 -0.44 -1.39
1-D rehom. (d) 0.54 1.16 0.62 1.29 -1.0 -1.19 —0.41 -1.30
Table 11
Example 4: errors in the absorption and production cross sections rehomogenized with the reference 2-D flux variation and with a least-squares best fit of it.
U0, 2.1% MOX
Errors (%)
Flux variation (2-D) AZqq AZgo AvZs, AvZs, AXqq AZgo AVZs, AVZs)
Reference 0.59 0.88 0.68 0.68 -1.05 —0.06 —0.49 0.07
Best fit 0.55 1.11 0.63 117 —1.04 -0.71 —0.48 -0.74

UO0s 2.1% - no rehom.

0 2 4 6 8
X [cml]

(a)

U0y 2.1% - 2-D rehom.

x [cm]

(b)

Fig. 27. Example 4: relative error (in percentage) in the pin-by-pin thermal flux in the UO, assembly. The plots refer to the calculations (a) without rehomogenization and (b)

with the CPB-based 2-D rehomogenization.

hetref _ ref
(I)G,di "'(DG,wg’

(50)
where d>{ff,vg denotes the spatially averaged value of the water-gap
flux from the reference calculation.

Table 14 reports the relative differences (in percentage) between
the discontinuity-factor estimates of calculations a, b and d and the
reference values determined with Eq. (49). The improvement in the
discontinuity factors is less apparent than that observed in the cross
sectionsin Section 3. In particular, in the UO, and MOX assemblies of
Example 4 (Table 14(d)) the corrected values have significantly
higher errors than the infinite-medium ones. We remark that the
reference quantities in Eqs. (46)-(49) (cross sections, node-
averaged fluxes, surface-averaged fluxes and currents) come from

the solution of the 281-group transport equation in the real environ-
ment, with successive collapsing to two groups. These quantities
incorporate not only the spatial effects of the environment but also
the spectral ones, which are not taken into account by spatial reho-
mogenization. The discontinuity factors computed with Eq. (49),
which we consider here as reference values, are therefore not fully
consistent with our spatial rehomogenization approach. A more
rigorous assessment should be made computing them with a refer-
ence solution that excludes the spectral effects (namely, solving the
transport equation in the colorset environment directly in a two-
group structure, without energy condensation).

To conclude the analysis on the discontinuity factors, we assess
the impact of the reference df;,,. on the nodal estimates of the
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Fig. 28. Example 4: relative error (in percentage) in the pin-by-pin thermal flux in the MOX assembly. The plots refer to the calculations (a) without rehomogenization and

(b) with the CPB-based 2-D rehomogenization.

MOX

0 2 4 6 8 10
x [cm]

(a)

Fig. 29. Example 4: reference pin power (normalized to the

multiplication factor and fission power. For this purpose, we run two
nodal calculations with the cross sections rehomogenized by the ref-
erence 2-D flux variation (see Tables 2, 5, 8 and 11). The first of these
uses the infinite-medium discontinuity factors fZ,,, whereas the

env,ref

second uses the reference discontinuity factors f;,:~ from Eq.
(49). The results are shown in Table 15. Whilst the discontinuity-
factor corrections have a mild impact on the nodal simulations of
Examples 1 and 4, their effect is substantial in Examples 2 and 3.
Comparing the errors in ket and Pges shown in Table 15 with those
resulting from rehomogenization (Tables 1, 4, 7 and 10), the follow-
ing conclusions can be drawn for the various test cases:

e In Example 1, both the 1-D and 2-D models overestimate the
corrections on keg and on the fission power (especially the 2-
D one).

e In Example 2, similar considerations apply to the 2-D model,
whereas the 1-D approach provides a very accurate result.

e In Example 3, the correction on k. is overestimated with the 2-
D model and underestimated with the 1-D one; both
approaches underestimate the corrections on Py (particularly
the 1-D model).

U0, 2.1%
12
10
1
—_ 0.8
:
= 0.6
i)
0.4
0.2
0
10
X [cm]
(b)

colorset-averaged value) in the (a) MOX and (b) UO, assemblies.

o In Example 4, the computed corrections on ke and Py g0 in the
wrong direction. The spatial effects have negligible impact on
the assembly-averaged fission power.

4.3. Numerical features and implementation

As spectral rehomogenization, spatial rehomogenization also
translates into an additional level of feedback in the global core
calculation (Gamarino et al., 2018a). In a two-group framework
with four basis functions per direction and four cross terms (see
Section 2), the rank of the 2-D rehomogenization linear system is
32. Since the rehomogenization problem is solved independently
in each node after updating the corner-point flux distribution
[Eq. (23) or (28)], the corresponding computational cost can be
mitigated via parallelization of the algorithm.

In the present work, the rehomogenization coefficients [Egs. (32
and (34)] have been computed post-processing the APOLLO2-A
single-assembly cell-homogenized cross sections and flux distribu-
tion. Better modeling may be achieved incorporating their calcula-
tion into the lattice-code routines, thus accounting for within-cell
heterogeneity. As in the case of spectral rehomogenization, an
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X [cm)]

U0, 2.1% - 2-D rehom.
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Fig. 30. Example 4: relative error (in percentage) in the pin-power distribution computed with calculations a and b.

Table 12
Example 4: RMS deviations (in percentage) in the pin-by-pin two-group flux and total fission power.
U0, 2.1% MOX
Simulation RMSq, RMSq, r RMSp RMSp wa RMSo, RMSq, RMSp RMSp wq
No rehom. (a) 0.35 3.0 3.1 2.68 0.73 2.10 2.59 4.09
2-D rehom. - CPB (b) 0.45 0.89 1.51 1.21 0.70 1.25 1.97 2.64
1-D rehom. (d) 0.45 2.40 248 1.73 0.77 1.17 1.86 2.50

approximation is made in the formulation of the weighted-residual
equations [Eq. (37)]. Eq. (30) is valid in the real environment,
whereas in practice we use the pin-by-pin cross sections of the
infinite medium. In order to verify the impact of this approxima-
tion, we have repeated the calculations of Section 3 computing
the rehomogenization coefficients of Eq. (32) with the colorset
cell-homogenized cross sections. For Examples 2 and 4, Table 16
shows the errors of calculation b with these improved rehomoge-
nization parameters. Comparing Tables 16(a) and 4, we observe
that the differences in the results are negligible in the colorset with
control rods. In the UO,/MOX colorset (Tables 16(b) and 10), the
differences are more tangible. Whilst the error in ke increases of
about 40 pcm compared to the case with standard rehomogeniza-
tion coefficients (i.e., computed with the infinite-medium pin-by-
pin cross sections), the errors in the fission power are halved.
However, in both cases the power errors are significantly smaller
than those of calculation a. Moreover, the improvement in the
nodal cross sections of the MOX assembly observed with the
environmental coefficients is small if compared to the reference
estimates (see Table 11). We have verified that the impact of the
aforementioned approximation on the rehomogenization parame-

ters is marginal also in the test cases with Pyrex rods and
gadolinium-bearing fuel pins. It can therefore be concluded that
using the infinite-medium fine-mesh cross sections in Eq. (32) does
not significantly affect the performance of the method. Intranodal
depletion effects can be easily incorporated into the rehomoge-
nization coefficients via the conventional within-assembly cross-
section polynomial expansions (Wagner et al., 1981; Forslund
et al., 2001).

The memory requirement for the storage of the rehomogeniza-
tion parameters in the cross-section libraries is minimized
exploiting the symmetry of the fuel-assembly internal layout.
These additional coefficients are only computed and stored for an
assembly quarter. During the nodal calculation, their sign is deter-
mined based on the orientation of the node within the fuel
assembly.

As observed for spectral rehomogenization (Gamarino et al.,
2018a), convergence of the algorithm benefits from under-
relaxation, which dampens numerical oscillations. Convergence
difficulties have never been encountered. Except for the CPB
approach in the UO,/MOX benchmark problem (Table 10), the
increase in the number of power iterations of the eigenvalue
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Fig. 31. (a) Thermal- and (b) fast-group transverse-leakage distributions in the 1.8%-enriched UO, assembly of Example 1. The abbreviation ‘std.’ stands for ‘standard’ and
refers to the three-node quadratic fit. In both groups, the curves are normalized to the node-averaged transverse leakage from the nodal calculation. Units are in [neutrons/
(cubic centimeter - second)].

Table 13

Example 1: corrections (in percentage) on the assembly-surface discontinuity factors computed with calculation b and different transverse-leakage approximations.

U0, 1.8% U0, 3.1% + 16 b.p. rods
Leakage approximation Sf1 (%) Sfy (%) of1 (%) Sf5 (%)
Flat -0.15 1.64 0.21 —2.87
Quadratic (standard) 0.05 0.44 0.03 -1.87
Quadratic (2-D rehom.) -0.04 0.23 0.12 -1.70

Table 14

Relative differences (in percentage) between the environmental assembly discontinuity factors computed with rehomogenization and with a nodal equivalence applied to the

reference data from APOLLO2-A.

(a)

Example 1 U0, 1.8% U0, 3.1% + 16 b.p. rods

Simulation AFS™ (%) AFS™ (%) AFS™ (%) AFS™ (%)

No rehom. (a) 0.11 1.41 0.68 —0.69

2-D rehom. - CPB (b) 0.07 1.64 0.80 -2.38

1-D rehom. (d) 0.08 1.72 0.83 -2.15
(b)

Example 2 U0, 1.8% U0, 2.4% + 24 AIC rods

Simulation AfTY (%) Af3" (%) AT (%) Af3™ (%)

No rehom. (a) 0.14 0.10 0.81 3.52

2-D rehom. - CPB (b) 0.12 0.36 0.33 -1.68

1-D rehom. (d) 0.13 0.44 0.55 -0.56
(©)

Example 3 U0, 1.8% U0, 3.9% + 12 Gd pins

Simulation AR (%) AR (%) AR (%) AR (%)

No rehom. (a) 0.41 2.95 0.66 —4.47

2-D rehom. - CPB (b) 0.31 2.97 0.27 -4.14

1-D rehom. (d) 0.34 3.22 0.22 —4.18
(d)

Example 4 U0, 2.1% MOX

Simulation AR (%) AR (%) AR (%) AR (%)

No rehom. (a) 0.23 5.90 0.34 2.86

2-D rehom. - CPB (b) 0.21 8.76 0.33 -10.7

1-D rehom. (d) 0.21 8.71 0.24 -9.86
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Table 15
Errors in the multiplication factor and assembly-averaged fission power estimated
with the reference spatial cross-section corrections (SZ2"') and the infinite-

medium (f3,. ) or reference (f<"y") discontinuity factors.

(a)

Example 1 Uo0, 1.8% U0, 3.1% + 16 b.p. rods
Akegr [pem] AP (%) APgigs (%)
P -36 0.51(0.81,043)  —0.43 (-0.57, —0.39)
(;Ef_?catref_’ f?_ﬁ'ff —43 0.65 (0.54, 0.68) —0.55 (-0.38, —0.61)
(b)
Example 2 U0, 1.8% U0, 2.4% + 24 AIC rods
Akegr [pem] APgigs (%) APgig (%)
sspaueel px 33 0.76 (0.38,0.84)  —0.97 (-0.36, —1.15)
52?%“«!‘6& f?;r_glff -141 0.07 (—0.03, 0.095) —0.09 (0.02, —-0.13)
(©)
Example 3 U0, 1.8% U0, 3.9% + 12 Gd pins
Akesr [pem] APy (%) APgigs (%)

~0.24 (0.71, —0.50)
0.95 (0.74, 1.0)

0.17 (~0.42, 0.36)
~0.65 (—0.43, —0.72)

(3Z,S_Pc'at“-ef, féd;t 210

spat;ref  cenv.ref 137
52r.G ’ f Gd+

(d)

Example 4 U0, 2.1% MOX
Akege [pcm] APgigs (%) APjis (%)
52?[?(\1'&1 . 97 1.70 (0.76, 1.96) -1.27 (-0.43, -1.62)
(;Zsp;t.ref envref 61 2.01 (0.74, 2.37) —1.49 (-0.42, —1.96)
T,

»JGd+

calculation is below a factor of 1.8 and, therefore, acceptable. In
coupled calculations (namely, with thermal feedback), the addi-
tional level of non-linearity introduced by the cross-section and
discontinuity-factor updates would be nested in the thermal-
hydraulic iterations, thus alleviating the observed increase in the
number of power iterations and computing time.

To conclude, the 2-D rehomogenization method presented in this
work can also be viewed as an original dehomogenization approach.
IfEq.(2)is used, the assumption is made that the 2-D flux variation s
a smooth function of the x and y coordinates and is not affected by
intranodal heterogeneity. The impact of this approximation on the
reconstruction of the pin-by-pin flux and power distributions
should be assessed. A successful application of the 2-D rehomoge-
nization for assembly dehomogenization as well would increase
the attractiveness of the method and largely compensate for its
higher computational cost compared to the 1-D model.

4.4. Complementarity between the spatial and spectral effects of the
environment

We briefly address the complementarity of the various environ-
mental effects on the nodal cross sections. For the benchmark

problems analyzed in Section 3, Table 17 shows: (i) the reference

Table 16

spectral corrections 52?’6“”, computed with the reference spec-
trum variation (Gamarino et al., 2018a; Gamarino et al., 2018b);
(ii) the reference spatial corrections §XF2"" computed with the
reference 2-D flux spatial change; and (iii) the cross (i.e., mixed

energy-space) corrections §X;2°°, which have been estimated as

o f ) N ref N Jref
ST — Bl _ . _ specrel _ syspatrel (51)

where =™ is the cross section condensed and homogenized in the
colorset configuration, thus taking into account the global environ-
mental effect. Even if the cross corrections are generally smaller
than the spectral and spatial ones, they are not negligible, especially
in the assemblies with the strongest heterogeneity. In particular, in
the MOX assembly of Example 4 [Table 17(d)], the thermal absorp-
tion and production cross terms have magnitude comparable to or
larger than the spectral and spatial ones, which have opposite sign
and roughly cancel each other. One of the reasons of this behavior is
that the flux spectrum deformation varies significantly with the dis-
tance from the assembly outer edge, whereas the correction
62?";““ is computed with an average deformation in the assembly
(Gamarino et al., 2018a). Taking into account the cross corrections
is therefore important for an accurate prediction of the global
cross-section variation.

From Table 17, some general features of the cross-section cor-
rections can be observed:

e The spatial effects are only relevant in the thermal group,
whereas the spectral ones are significant in both energy groups.
There is no clear pattern for cross effects.

o In the heterogeneous assemblies, the sign and magnitude of the
spatial corrections depend on the position of the main sources
of heterogeneity within the fuel bundle.

Separating the various effects on the discontinuity factors is not
equally straightforward for the reasons discussed in Section 4.2.

5. Conclusions

In this paper, we have developed a first-principle modal method
to estimate the variation in the 2-D few-group flux distribution
between the core environment and the infinite lattice. This method
relaxes the main approximations of the original 1-D transverse-
integrated rehomogenization.

Numerical results show that the errors in the multiplication fac-
tor and assembly-averaged fission power significantly decrease
compared to the calculation with infinite-medium homogenization
parameters. The cross-section corrections computed by the 2-D
model always go in the right direction. In most cases they match
the corrections determined with a least-squares best fit of the ref-
erence flux change, but they are higher than the reference values.
One of the reasons of this outcome is that the polynomial and
hyperbolic basis functions used for the modal expansion cannot

Results of the CPB-based 2-D rehomogenization with environmental rehomogenization coefficients (i.e., computed with the colorset pin-by-pin cross sections).

(@)

Example 2 U0, 1.8% UO; 2.4% + 24 AIC rods
Akest [pem] AP (%) AZq> (%) AVvEg; (%) APgs (%) AZq; (%) AV, (%)
-32 —0.76 (—0.37,-0.84) 0.57 0.61 0.97 (0.36,1.14) -1.34 —0.94

(b)
Example 4 U0, 2.1% MOX
Akgr [pem] APy, (%) AZq) (%) AVEp, (%) APr (%) AZ,) (%) AVEp, (%)
317 0.19 (0.66,—0.001) 1.27 1.44 —0.14 (-0.38,0.001) -1.08 -1.18
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Table 17

Cross-section changes due to the various types of environmental effects: spectral, spatial, and cross (i.e., mixed energy-space). The variations have been computed with respect to
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the infinite-medium values by using the reference data from APOLLO2-A.

(a)

Example 1 U0, 1.8% U0, 3.1% + 16 b.p. rods
Variation (%)
Type of effect a1 0242 Vs 4 Vs, X512 6%q1 6242 Vs Vs, 62512
Spectral 0.074 -0.55 -0.34 -0.57 -0.58 -0.13 0.77 0.19 0.84 0.45
Spatial 0.028 -0.16 0.034 -0.30 -0.025 —0.007 -0.18 —-0.026 0.33 0.005
Cross —0.065 0.025 -0.15 0.067 0.045 0.034 —0.090 0.12 -0.12 -0.017
Global 0.037 -0.69 —-0.46 -0.80 -0.56 -0.10 0.50 0.28 1.04 0.44
(b)
Example 2 U0, 1.8% U0, 2.4% + 24 AIC rods
Variation (%)
Type of effect 0%a1 0542 OVEf oVZp, %512 0%a1 5542 OVZf oVZp, %512
Spectral 0.78 -0.44 0.056 -0.46 0.61 -0.96 0.82 -0.23 1.12 -0.53
Spatial —-0.09 -0.31 -0.10 -0.39 0.072 -0.23 -1.24 0.13 041 0.062
Cross 0.034 0.098 —-0.008 0.13 —-0.043 —-0.10 -0.20 —-0.048 -0.29 —0.026
Global 0.72 —-0.65 —-0.055 -0.72 0.64 -1.29 -0.62 -0.15 1.23 —0.49
(©)
Example 3 U0, 1.8% U0, 3.9% + 12 Gd pins
Variation (%)
Type of effect 0Za1 0Za2 Vs AP 6251 2 0Za1 0Zao VX q DI 6%s1 2
Spectral 0.0 -0.85 -0.44 -0.88 -0.92 0.082 0.80 0.32 0.84 0.98
Spatial 0.056 -0.21 0.072 -043 —0.056 -0.09 1.20 —0.005 0.084 0.038
Cross —-0.083 —0.030 -0.24 -0.019 0.08 0.12 0.51 0.13 0.036 —-0.063
Global -0.03 -1.09 -0.61 -1.33 -0.90 0.11 2.51 0.45 0.96 0.95
(d)
Example 4 U0, 2.1% MOX
Variation (%)
Type of effect 0Zq1 0242 OV Vs, 0Z51..2 0%q1 042 OV Vs 0Xs12
Spectral -0.43 -0.98 -0.41 -1.0 -3.43 0.92 0.47 0.34 0.50 2.46
Spatial 0.05 -0.30 0.066 —-0.66 —-0.035 —-0.002 -0.37 0.033 -0.37 0.02
Cross -0.15 0.11 -0.35 0.33 0.10 0.13 -0.41 0.17 -0.57 —-0.095
Global -0.53 -1.17 -0.70 -1.33 -3.36 1.06 -0.31 0.54 -0.44 239

reproduce to a high degree of accuracy the flux variation dip in the
cells hosting absorbing elements (burnable-poison rods and
control rods). In the 1-D approach, the flux change dip in these cells
is smoothed out by the transverse integration and is therefore
better fitted by the basis functions. When applying spatial and
spectral rehomogenization sequentially, the overestimation of
the spatial corrections in the thermal group may affect the
accuracy of the global results.

The differences between the CPB-based and MSS-based
approaches are small, with the former usually performing slightly
better. An apparent superiority of the 2-D model over the 1-D
model has not been observed. Except for the test case with
gadolinium-bearing fuel pins in which the 2-D method is more
accurate, the discrepancies between the two approaches are not
significant. In general, the 1-D model overestimates the cross-
section corrections to a lesser extent.

At the pin-by-pin level, on average better results are found
when rehomogenization is applied. Nevertheless, the improve-
ment in the heterogeneous flux and fission-power distributions is
often not fully generalized, but limited to certain subregions of
the fuel assemblies. Therefore, the accuracy of the computed fis-
sion power in the hot spots (that is, the fuel cells with the highest
thermal load) is tied to their location within the fuel bundles.

We have observed that when 1-D or 2-D spatial rehomogeniza-
tion is applied, the type of the transverse-leakage approximation
does not affect the accuracy of the nodal calculation. An analysis

on the complementarity of the various environmental corrections
revealed that mixed energy-space effects cannot be neglected,
especially in UO,/MOX configurations.

The accuracy of the 2-D spatial rehomogenization might be
improved by searching basis functions that better fit the intranodal
flux spatial variation. Based on the satisfactory outcome of Proper
Orthogonal Decomposition (POD) in the framework of spectral
rehomogenization (Gamarino et al, 2018a; Gamarino et al,
2018b), this modal approach could be extended to the spatial prob-
lem as well. This strategy would allow the direct calculation of
two-dimensional basis functions in the domain of space, thus dis-
carding the separation of the directional and cross components of
the modal expansion with one-dimensional modes.

In core configurations with strong heterogeneity in the axial
direction (such as enrichment and gadolinium-concentration
zoning in boiling water reactors), the 2-D rehomogenization in
the x and y coordinates may be combined with the 1-D rehomog-
enization along the z axis. With this approach, modeling of axial
heterogeneity could be improved while retaining coarse axial
meshes for both 3-D assembly homogenization (Schneider et al.,
2016), when applicable, and the on-line nodal calculation.
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