

Delft University of Technology

Quantum machine learning of graph-structured data

Beer, Kerstin; Khosla, Megha; Köhler, Julius; Osborne, Tobias J.; Zhao, Tianqi

DOI
10.1103/PhysRevA.108.012410
Publication date
2023
Document Version
Final published version
Published in
Physical Review A

Citation (APA)
Beer, K., Khosla, M., Köhler, J., Osborne, T. J., & Zhao, T. (2023). Quantum machine learning of graph-
structured data. Physical Review A, 108(1), Article 012410. https://doi.org/10.1103/PhysRevA.108.012410

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevA.108.012410
https://doi.org/10.1103/PhysRevA.108.012410

PHYSICAL REVIEW A 108, 012410 (2023)

Quantum machine learning of graph-structured data

Kerstin Beer ,1,2,* Megha Khosla ,3 Julius Köhler,1 Tobias J. Osborne ,1 and Tianqi Zhao 3

1Institut für Theoretische Physik, Leibniz Universität Hannover, 30167 Hannover, Germany
2School of Mathematical and Physical Sciences, Macquarie University, Sydney, New South Wales 2109, Australia

3Department of Intelligent Systems, Delft University of Technology, 2628 Delft, Netherlands

(Received 18 January 2023; accepted 21 June 2023; published 10 July 2023)

Graph structures are ubiquitous throughout the natural sciences. Here we develop an approach that exploits the
quantum source’s graph structure to improve learning via an arbitrary quantum neural network (QNN) ansatz.
In particular, we devise and optimize a self-supervised objective to capture the information-theoretic closeness
of the quantum states in the training of a QNN. Numerical simulations show that our approach improves the
learning efficiency and the generalization behavior of the base QNN. On a practical note, scalable quantum
implementations of the learning procedure described in this paper are likely feasible on the next generation of
quantum computing devices.

DOI: 10.1103/PhysRevA.108.012410

I. INTRODUCTION

Quantum machine learning (QML), whereby classical ma-
chine learning (ML) is generalized to the quantum realm,
has enjoyed a recent renaissance, leading to a dizzying array
of formulations and applications (see [1–3] and references
therein for a cross section). Broadly speaking, one has the
following taxonomy [4]: (i) quantum speedups for classical
ML [5–8], (ii) classical ML to characterize quantum systems
[9–11], or (iii) quantum devices to learn quantum data (full
QML) [12–22]. Our focus here is on the last category, as it
is this scenario where quantum speedups are not only most
likely, but also most urgently required owing to the aforemen-
tioned exponential difficulty of tomography [23].

A variety of quantum architectures for QML have been
considered, from variational quantum circuits [19,24] to quan-
tum analogs of artificial neural networks [15,17,18,20,21,25].
We believe that the quantum neural network (QNN) archi-
tecture introduced in [21] offers the most promising platform
for full QML. For example, such QNNs have been exploited
recently as quantum autoencoders to carry out the denoising
of entangled quantum states [26]. Additionally, these QNNs
appear to offer an architecture, when the quantum neurons
are sufficiently local and sparse [27], which might potentially
be exploited to avoid the “barren plateau” problem [28]. Fi-
nally, these QNNs have been found to reach the fundamental
information-theoretic limits on quantum learning [12,16,29–
31] imposed by the quantum no-free-lunch theorem [32–34],
a bound on the performance of quantum learning of generic
unstructured quantum data sources.

Quantum data sources will never be generic and un-
structured because the devices producing them always have
structure. Indeed, causal and spatial order manifest themselves
in correlations between the states produced by nearby local

*kerstin.beer@mq.edu.au

data sources. So it is that physics is even possible: Without
causal locality, we could never have characterized the laws of
physics. To quantify such correlations it is most convenient
to introduce a graph structure via a finite (or infinite) graph
G = (V, E), where V denotes the set of vertices and E the set
of edges.

There have already been several investigations exploiting
graph structure for QML [35,36]. Here the emphasis has
so far been on building the graph structure into the neural
network ansatz itself. However, a critical open challenge fac-
ing QML is to teach a complex QNN the a priori variable
graph structure of the quantum source itself. Here an approach
that includes the graph adjacency structure in the variational
network ansatz faces difficulties. It is the crucial challenge
of exploiting a quantum source’s graph structure to improve
QML with an arbitrary QNN, which we take aim at here: Our
main contribution is a general method to improve the learning
efficiency, as well as the generalization behavior, of QML via
an arbitrary QNN ansatz, by exploiting graph structure.

The archetypal problem we consider here is that of a dis-
tributed set of quantum information processors, associated
with the vertices of a graph G. A processor at a vertex or site
j takes as input a state ρ j . The edges E of the graph encode
the correlations induced between, e.g., by the spatial vicinity,
these processors. The goal is to optimally learn input-output
relations for this distributed set of processors: We are given
a training set {(ρ j, σ j) | j = 1, 2, . . . , S} of ideal outputs σ j

corresponding to an input ρ j for a processor at vertex or site
j. Such a scenario flexibly models a wide variety of physi-
cally relevant situations ranging from distributed networks of
atomic clocks to quantum NISQ device clusters.

In this paper we initiate the study of graph-structured
quantum data sources. Our emphasis is on learning and char-
acterizing the graph structure of noisy and unreliable quantum
data sources. Section II provides a brief overview of related
works. We commence in Sec. III with a general discussion
of quantum sources with graph structure and the design of

2469-9926/2023/108(1)/012410(9) 012410-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3189-8322
https://orcid.org/0000-0002-0319-3181
https://orcid.org/0000-0002-0688-2345
https://orcid.org/0000-0001-7178-586X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.108.012410&domain=pdf&date_stamp=2023-07-10
https://doi.org/10.1103/PhysRevA.108.012410

KERSTIN BEER et al. PHYSICAL REVIEW A 108, 012410 (2023)

appropriate loss functions for their characterization. This dis-
cussion is then followed in Sec. IV with the description of a
training algorithm for a quantum neural network ansatz. The
results of this algorithm’s numerical investigations are then
presented in Sec. V. The main contributions of this paper
are (i) the design of an information-theoretic loss function to
capture the graph structure of quantum data sources, (ii) the
development of a (quantum) training algorithm applicable to
QNNs to optimize the loss function as mentioned earlier, and
(iii) proof-of-principle numerical simulations of the training
algorithm developed.

II. RELATED WORK

Here we briefly review classical and quantum machine
learning approaches for learning graph-structured data. The
key challenge in this area is to encode graph structure into
continuous low-dimensional representations, or embeddings,
in order to exploit classical machine learning techniques.
Unsupervised methods [37–40] train vertex representations
or embeddings while preserving the topological structure
of the graph. These representations are then exploited for
downstream tasks such as missing link, or vertex label, pre-
diction. Initial investigations of graph-based semisupervised
learning [41,42] considered the addition of explicit graph-
based regularizations such as Laplacian regularization to the
supervised loss term. Recently semisupervised approaches
based on graph-convolution networks [43–46] have exhibited
state-of-the-art performance for node classification and graph
classification tasks. Instead of using an additional graph reg-
ularization term in the loss function, these methods encode
graph structure directly in the latent representations using
neighborhood aggregation techniques. For a comprehensive
overview and comparison of unsupervised and semisuper-
vised techniques for graph-structured data, we refer the
interested reader to [47,48].

There has already been a variety of investigations of QML
for graph-structured classical and quantum data. First, quan-
tum algorithms for classical graph-structured data using a
quantum generalization of the random walk were presented
in [49]. Semantic knowledge graphs were the subject of
[50], where a sampling-based quantum algorithm was pro-
posed. Another direction where graph structure has played
a crucial role is in quantum generalizations of convolu-
tional neural networks [29,35]. Here tensor networks with
a hierarchical structure have been used to study many-body
systems. The approach of incorporating a graph structure into
a neural-network ansatz was also explored in [36], leading
to generalizations of recurrent neural networks and convolu-
tional neural networks.

III. GRAPH-STRUCTURED QUANTUM DATA

Correlations, both spatial and temporal, are ubiquitous
throughout the natural sciences. Capturing the relationships
implied by correlations is most naturally achieved in terms of
graph structure. This section introduces the notion of graph-
structured quantum data, which is the central object of study
in this paper.

We commence by introducing some notation. We assume
that we have access to a quantum system whose kinematics
are characterized by a Hilbert space H. There is no harm
in assuming that H is finite dimensional and comprised of
a collection of m qubits, i.e., H ∼= (C2)⊗m. The extension to
infinite dimensions does not present too many difficulties. We
imagine that we have some source, for example, a quantum
device from an (untrusted) commercial purveyor, of quantum
states for the quantum system: The source produces an (un-
characterized or untrusted) quantum state ρ on demand. The
quantum state produced by the device is assumed to be dis-
tributed according to some probability distribution over a set
S = {ρv1 , ρv2 , . . . , ρvn} of possible quantum states. Thus we
write {(pv j , ρv j)}n

j=1 for the source. So far, this is completely
general and characterizes both unstructured and structured
quantum data.

To go further we introduce a graph structure on the quan-
tum data as follows. Suppose that the quantum states ρv are
associated with the nodes of a graph G = (V, E), i.e., we
introduce a map

ρ : V → D(H)

from the vertices or nodes of the graph G to the set of density
operators on H. The connectivity structure of the data is
captured by the edge set E and quantifies the information-
theoretic closeness, or correlations, between neighboring
states. More precisely, two states ρv and ρw are neighboring
with corresponding edge (v,w) ∈ E if they are close accord-
ing to an information metric, i.e., d (ρv, ρw) � ε. Note that we
assume we are given a kind of graph structure of the data, i.e.,
we know which pairs of states are close. Information about
the underling metric of closeness is not needed to apply the
presented algorithm.

To gain some intuition for this definition, we consider three
examples. The first concerns a quantum simulation device
which is claimed to simulate some interesting quantum sys-
tem with Hamiltonian H ∈ B(H) for some period of time
t ∈ {0, ε, 2ε, . . . , (n − 1)ε}, that is, we have quantum states
|ψt 〉 ≡ eitH |0〉, where |0〉 ∈ H is some fiducial initial state.
Here we associate the path graph Pn on n vertices with this
data set; the vertices label the time associated with |ψt 〉. The
second example also concerns many-body physics: Here we
presume a commercial vendor has produced a quantum de-
vice that can supposedly prepare a many-body system into
a state with a particle localized at a given position in a
lattice (the picture to have in mind here is that of a scan-
ning tunneling microscope). Now the output states ρv are
labeled by locations on a lattice graph G. The third exam-
ple pertains to irregular graphs with a distribution of vertex
degrees and connectivity, namely, a quantum device which
emits low-energy eigenstates of disordered quantum systems
such as Sachdev-Ye-Kitaev–type models, which have recently
received considerable attention in the high-energy physics
literature in the context of holography [51].

Given graph-structured quantum data {(pv, ρv)}v∈V , where
ρv occurs with probability pv , we turn to the goal of learning
and modeling the (network of) quantum information proces-
sors. Note that our graph-based loss functions can be used
with many kinds of graph structure. The structure can, for
example, only describe the input states of the network or the

012410-2

QUANTUM MACHINE LEARNING OF GRAPH-STRUCTURED … PHYSICAL REVIEW A 108, 012410 (2023)

desired outputs. We use the latter case in our numerics in
Sec. V. We assume that the uncharacterized quantum infor-
mation processor(s) are described by a completely general
completely positive (CP) map F (this CP map provides the
complete description of the entire network of processors). The
graph structure manifests itself on the outputs of the proces-
sor(s) σv = F (ρv). Because two inputs ρv and ρw which are
physically close (i.e., associated with neighboring vertices)
should lead to correlated results when processed by F , we as-
sume that the output states are information-theoretically close,
written σv ∼ σw. Quantifying and exploiting this information-
theoretic closeness is the main goal of this paper.

Putting aside the precise learning architecture [be it a.
quantum approximate optimization algorithm (QAOA) or
QNN or something completely different] for the moment, we
focus first on motivating and defining physically meaningful
success metrics. To begin this discussion, we simply assume
that our learning architecture is described by a variational
class V of CP maps E : D(Hin) → D(Hout) which take a
quantum state ρ associated with a vertex and process it into
some posterior output state E (ρ). We explain the loss func-
tions we use to train and, after training, test our network in the
following sections.

A. Supervised loss

At first we focus on how to subject a subset of the vertices
of the graph to supervision. To simplify the description of
the loss function in this case, we assume that the supervised
vertices are required to be pure states (this restriction can be
lifted with a little work). The full set of data (whereof subsets
are used for training and testing) is

{(
ρ1,

∣∣φsv
1

〉 〈
φsv

1

∣∣), . . . ,
(
ρS,

∣∣φsv
S

〉 〈
φsv

S

∣∣),
(
ρS+1,

∣∣φtest
S+1

〉 〈
φtest

S+1

∣∣), . . . ,
(
ρN ,

∣∣φtest
N

〉 〈
φtest

N

∣∣)}. (1)

where, without loss of generality, we have listed the S
supervised (labeled) vertices first followed by the N − S un-
supervised (unlabeled) vertices. For the supervised training
process we use only the first S training pairs.

The key operational input required to build a meaningful
success metric, or loss function, is a way to measure the
information distance between two arbitrary quantum states
ρ and σ . Here the fidelity F (ρ, σ) ≡ tr(

√√
ρσ

√
ρ) is the

natural choice [23]. The supervised part of our loss function
is then

Lsv ≡ 1

S

S∑

u=1

〈
φsv

u

∣∣ E
(
ρ in

u

) ∣∣φsv
u

〉
.

B. Graph-based self-supervised loss

The supervised states are pure; however, the output states
of our network are in general mixed. Although the fidelity
is also defined for mixed states, the excessive computational
complexity required to evaluate it metric means that it is often
convenient to instead exploit the Hilbert-Schmidt distance

dHS(ρ, σ) ≡ tr[(ρ − σ)2].

We assume that, additionally to the quantum data described in
Eq. (1), we are given an adjacency matrix A describing the

graph structure G of the problem. To say that the learning
architecture E has correctly captured the graph structure G
of the source and supplied us with a faithful embedding, we
introduce the loss function

LG ≡
∑

v,w∈V

[A]vwdHS(E (ρv), E (ρw)),

where [A]vw denotes the matrix element of A corresponding
to vertices v and w. This loss function is minimized precisely
when the processed output states of neighboring vertices in
the graph are mapped to informationally close states.

C. Training loss

The full loss function is now specified as the combination
of supervised and graph-based loss, with the graph part con-
trolled by a factor γ :

Lsv+G = Lsv + γLG. (2)

The training task is thus to maximize Lsv+G with γ � 0.
Recall that two quantum states are closest when the fidelity
F (ρ, σ) is maximum. Generically, the maximum depends on
γ . In particular, by tuning γ , one can weight the importance
of the graph structure.

It is important here to stress the role played by the graph-
based loss LG: In a semisupervised learning setting LG

provides the core mechanism which allows the QNN to in-
terpolate between supervised vertices. If LG were not present,
then the QNN would have no mechanism to exploit the graph
structure to interpolate the action of E on unobserved vertices.

A crucial feature of our loss function is that it is agnostic of
the QNN architecture E : It applies equally to any variational
ansatz from a QAOA to dissipative QNNs.

D. Testing loss

The testing data set is supplied as a complete list of input
and output states, containing both the supervised output states
and the output states which were so far hidden from the QNN:

{(
ρS+1,

∣∣φtest
S+1

〉 〈
φtest

S+1

∣∣), . . . ,
(
ρN ,

∣∣φtest
N

〉 〈
φtest

N

∣∣)}.
After training the network with the loss function (2), it is
important to check how well the network generalizes, and this
means how well it predicts the unsupervised outcomes. We
use the following testing loss for this task:

Lusv = 1

N − S

N∑

u=S+1

〈
φtest

u

∣∣E
(
ρ in

u

)∣∣φtest
u

〉
.

IV. QUANTUM NEURAL NETWORK ANSATZ TO LEARN
GRAPH-STRUCTURED QUANTUM DATA

We are particularly interested in scenarios where the input
and output Hilbert spaces have different dimensions, which
captures scenarios from classification to device character-
ization. This is most flexibly modeled via the dissipative
variational quantum neural network ansatz based on [21].
Note that this QNN ansatz is universal for quantum computa-
tion so that it can equally model unitary processes along with
general CP maps. A more detailed description can be found in
the Supplemental Material [52].

012410-3

KERSTIN BEER et al. PHYSICAL REVIEW A 108, 012410 (2023)

FIG. 1. Graph and QNN. Illustration of the semisupervised learning of a graph-structured quantum source (supervised nodes are shaded)
via a quantum feedforward neural network (QNN). Neighboring vertices in the graph are associated with similar output states ρsv

x or ρ test
x .

The QNN consists of input, an output, and L hidden layers. The order of application of the perceptron unitaries is indicated with over- or
undercrossings.

The QNN ansatz is built from quantum perceptrons, which
are general unitary operators U acting simultaneously on the
input and output qubits. The input qubits are assumed in a
state ρ in and the output qubits in a product state |0 · · · 0〉. The
output of one layer of perceptrons is then

ρout = trin[Uin,out (ρ
in ⊗ |0 · · · 0〉out〈0 · · · 0|)U †

in,out],

where Uin,out is the product of all unitaries in that layer. We
concentrate, for simplicity, on the case where the quantum
perceptrons act on several input qubits and only a single
output qubit. The general QNN is then described as follows: It
consists of an input layer, L hidden layers, and an output layer.
See Fig. 1 for an illustration. The QNN is a special class of
quantum circuit comprised only of quantum perceptrons: The
output state of the QNN with L hidden layers is then given by

ρout = trin,hid[U outU L · · ·U 1(ρ in ⊗ |0 · · · 0〉hid,out〈0 · · · 0|)
× U 1† · · ·U L†

U out†
],

where U l are the layer unitaries, which are comprised of a
product of quantum perceptrons acting on the qubits in layer
l − 1 and l ,

U l = U l
ml

U l
ml −1 · · ·U l

1,

where ml is the number of qubits in layer l .
Since a quantum perceptron is an arbitrary unitary operator,

the perceptrons do not in general commute. This is indicated
in the figures with over- and undercrossings. Nevertheless,
QNNs still inherit many of the crucial properties of classi-
cal neural networks. Most particularly, the network output is
given by the composition of a sequence of CP layer-to-layer
transition maps E l ,

ρout
x = Eout

s

(
EL

(· · · E2
(
E1

(
ρ in

x

)) · · ·)),
with the channel going from layer l − 1 to l being

E l (X l−1) = trl−1
[
U l

ml
· · ·U l

1 (X l−1 ⊗ |0 · · · 0〉l〈0 · · · 0|)
× U l

1
† · · ·U l†

ml

]
,

where ml is the number of perceptrons in layer l .
With the loss functions and QNN ansatz in hand, we

can explain how training proceeds. To optimize the loss
function, we exploit gradient descent by allowing the per-
ceptron unitaries to depend on a parameter s. We then
update the component unitaries of the QNN by the following
procedure:

U l
j (s + ε) = eiεKl

j (s)U l
j (s).

Here Kl
j (s) are Hermitian matrices that are chosen to optimize

the loss function. The update matrix for a QNN trained with
pure states |φsv

u 〉 as supervised vertices (and without using any
known graph structure) is

Kl
j (s) = η2ml−1 i

S

∑

u

trrest
[
Ml

j{u}(s)
]
,

where

Ml
j{u}(s) = [

U l
j (s)U l

j−1(s) · · ·U 1
1 (s)

(
ρ in

u ⊗ |0 · · · 0〉1〈0 · · · 0|)

× U 1
1

†
(s) · · ·U l

j−1
†
(s)U l

j
†
(s),U l

j+1
†
(s) · · ·U out

mout

†
(s)

× (
Iin,hid ⊗ ∣∣φsv

u

〉〈
φsv

u

∣∣)U out
mout

(s) · · ·U l
j+1(s)

]
.

This is shown in [21].
To explain how the QNN treats graph-structured quantum

data and processes, see Fig. 1, where we have depicted the
graph structure on the left (a path graph on three vertices) and
the QNN on the right. Note, particularly, that the topology of
the QNN need not have anything to do with the graph structure
of the source. Here the source states are all input states for
the QNN and belong to the set of density operators on two
qubits. Supervised vertices (in this case one) are shaded and
the corresponding supervised input and output are displayed
as a pair (ρ in

i , ρsv
i).

Theorem. The update matrix for a QNN trained with a
graph structure between output states {ρout

v , ρout
w } encoded in a

adjacency matrix [A]vw (and without any task supervision) is

Kl
j (s) = η2ml−1+1i

∑

v∼w

[A]vwtrrest
[
Ml

j{v,w}(s)
]
,

012410-4

QUANTUM MACHINE LEARNING OF GRAPH-STRUCTURED … PHYSICAL REVIEW A 108, 012410 (2023)

where

Ml
j{v,w}(s) = {

U l
j (s)U l

j−1(s) · · ·U 1
1 (s)

× [(
ρ in

v − ρ in
w

) ⊗ |0 · · · 0〉1〈0 · · · 0|]U 1
1

†
(s) · · ·

× U l
j−1

†
(s)U l

j
†
(s),U l

j+1
†
(s) · · ·U out

mout

†
(s)

× [
Iin,hid ⊗ (

ρout
v − ρout

w

)]
U out

mout
(s) · · ·U l

j+1(s)
}
.

See the Supplemental Material [52] for the proof.
Corollary. For a QNN trained with supervised vertices, as

well as with graph structure, the update matrix is

Kl
j (s) = η2ml−1 i

S

∑

u

trrest
[
Ml

j{u}(s)
]

+ γ η2ml−1+1i
∑

v∼w

[A]vwtrrest
[
Ml

j{v,w}(s)
]
.

The expression for the update matrices is involved; how-
ever, the matrices exhibit a particularly striking structure: One
can calculate the updates iteratively, layer by layer, retain-
ing only the reduced state for two layers at a time. This is
reminiscent of the update rules arising in the backpropagation
algorithm for classical feedforward neural networks.

V. RESULTS AND DISCUSSION

This section describes the results of numerical pilot studies
for the semisupervised learning of graph-structured quantum
sources on QNNs, with and without the use of graph structure.
To use the proposed algorithm, we always assume we have
access to training data in the form of input and output pairs
and an adjacency matrix describing the graph structure of
the problem. With this information we optimize a quantum
neural network in a way that it provides correct output data
for unseen input data.

Note that the scenario described here is a so-called trans-
ductive learning setting, where the same graph is used for
training and testing. Some of the labels are hidden during
the training and aimed to be predicted using the algorithm.
In contrast, using an inductive learning setting aims to trans-
fer the knowledge extracted from one graph to another, and
learning and testing is done on different graphs. We leave the
construction of a suiting algorithm for inductive learning on
graph-structured quantum data as an open problem for future
research.

The aim of the following three examples is to demonstrate
that there are cases where the usage of the graph information
in the transductive learning setting leads to better training of
the QNN. These pilot studies were carried out using an exact
simulation of the quantum systems on a classical computer.
Due to the exponential scaling of the Hilbert space dimension
with qubit number, we were limited to small quantum sys-
tems. Note, however, that the learning algorithms described
here give rise to scalable quantum algorithms suitable for ex-
ecution on the next generation of quantum computing devices
described in [53].

A. Example I: Connected clusters

For the first numerical study, we construct a graph of N = 8
pairs of quantum states in the form of two connected clusters.
The resulting structure is depicted in Fig. 2. The evolution of
the testing loss during the training is depicted in Fig. 3(a). One
can easily observe that the network performs better during
the testing procedure, where the graph structure was exploited
during training.

In the first experiment in Fig. 3(a), three of the eight ver-
tices were supervised (used for training). We study how the
number of supervised (labeled) vertices affects the training
process. We repeat our experiments 30 times with a randomly
chosen train-test split. In particular, we randomly choose
S < N of the N = 8 training pairs to be supervised before

every run and trained the network for 1000 training
epochs. (The symbol describes a QNN with a three-qubit
input, no hidden layers, and a one-qubit outcome.) After 30 in-
dependent runs for randomly sampled training-test splits, we
build the mean of the loss value after training. These testing
loss means are displayed against S ∈ {0, N} in Fig. 3(b).

As may be readily observed from the figures, the QNN is
able to interpolate the action of the learned operation on un-
observed vertices. One can observe that the test loss is higher
when Lsv+G was optimized during the training compared to
when Lsv was optimized. This shows that using the additional
information about the graph structure of the problem leads to
better results. The code used for all numerical examples in this
work is available on Github [54].

B. Example II: Line

For the second example we choose N = 10 pairs of quan-
tum states so that the correlation structure is encoded in a line
graph (see Fig. 4). As in example I, we plot the testing loss for
one training in Fig. 5(a). We also vary the number of super-
vised states S < 10. The results are displayed in Fig. 5(b).

In this example, one observes that one can achieve a testing
loss of over 0.6 with only five of ten supervised vertices
when the graph structure is exploited. These numerical results
demonstrate that graph-structure information provides power-
ful side information for training.

C. Example III: Synthetic graphs with nonrandom inputs

Based on the multilabel graph generator model developed
in [55], which is inspired by the social distance attachment
model in [56], we construct a synthetic graph such that the
node features and the graph structure are correlated with the
label outputs. We start by randomly assigning labels to nodes
such that the average number of labels per node is a constant.

Here d (xi, x j) denotes the hamming distance between the
label vectors for nodes i and j, α denotes the level of ho-
mophily, and b is the characteristic distance. Then we generate
an edge between two nodes i and j with the probability

pi j = 1

1 + [b−1d (xi, x j)]α
.

Note that the higher α is, the higher the chance would
be that nodes with similar labels are connected. Then

012410-5

KERSTIN BEER et al. PHYSICAL REVIEW A 108, 012410 (2023)

FIG. 2. Connected clusters. The output states of this training data set comprise a graph with two clusters. The states are chosen in a way
such that v1, . . . , v4 form one cluster, v8 connects the two clusters, and the three remaining vertices form the second cluster. The coefficients
are only recorded to three decimal places. Note that only S of these states are used for training. In the figure S = 3 example supervised vertices
are shaded. The input states are generally taken to be unstructured. In our case the states |φin

i 〉 are random three-qubit states built via a normal
(Gaussian) distribution.

b is the characteristic distance between the node la-
bels at which the connection probability for the nodes
is 0.5

The graph contains 32 nodes, and every node can be as-
signed to one or more labels. We fix the total number of
possible labels to 8. The average number of labels per node
is 3. Further, every vertex is assigned to an embedding vector

e = {α, β, γ , δ}. The embedding vector is computed using
DeepWalk [37] using walks of length 1 and the number of
walks per vertex as 10. These embedding vectors will be used
to construct input quantum states. By construction, the input
states are informative of the graph structure and therefore the
output labels or states.

We now construct the corresponding quantum data,
namely, the quantum input and output states of the vertices.
We adopt the graph structure and change the labels in the
following way. Every node is assigned to a pair of quantum
states: a two-qubit state |φE

i 〉 based on the embeddings and
a three-qubit state |φL

i 〉 build based on the labels. Here |φE
i 〉

is the normalized superposition α |00〉 + β |01〉 + γ |10〉 +
δ |11〉. To build |φL

i 〉 we link the states {|000〉 , . . . , |111〉}
to the eight possible labels. The output state assigned to a

specific vertex is now built as the superposition of these basis
states assigned to the vertex labels. If, for example, a vertex
has the labels 2, 3, and 8, the output state would be a superpo-
sition of |001〉, |010〉, and |111〉.

The generalization analysis in Fig. 6 shows that for every
number of supervised vertices S the training including the
graph structure leads to better results.

VI. CONCLUSION

In this paper we have considered the learning of graph-
structured quantum sources using dissipative QNNs. We have
explained how to exploit the graph structure by designing
information-theoretic loss functions. The optimization of the
loss functions via QNNs was described, leading to analytic
formulas for the update rules. Finally, proof-of-principle nu-
merical simulations of the developed training algorithms were
carried out, demonstrating the remarkable ability of trained
QNNs to interpolate between supervised vertices and infer
unobserved vertex labels.

(a) (b)

FIG. 3. Numerical results: connected clusters. We trained a network with three supervised training pairs from Fig. 2 and the graph
structure presented there. (a) Testing loss during 1000 training epochs (ε = 0.01) optimizing γ = 0 supervised (blue circles) and γ = −0.5
supervised plus graph-based unsupervised objectives (red circles). (b) Testing loss after 1000 training epochs with the same data and parameters
as in (a) but averaged over 30 random initializations and randomly chosen train-test splits plotted for different supervised pairs S. The error
bars represent one standard error of the mean.

012410-6

QUANTUM MACHINE LEARNING OF GRAPH-STRUCTURED … PHYSICAL REVIEW A 108, 012410 (2023)

FIG. 4. Line. The output states of this training data set form a line graph. The states were chosen to be, according to the fidelity, evenly
spaced along a line between the states |0〉 and |1〉 associated with the endpoints. Again, note that only S of these states are used for training.
(Here S = 3 example vertices are shaded.) The input states are again unstructured: |φin

i 〉 are random three-qubit states built from a normal
(Gaussian) distribution.

(a) (b)

FIG. 5. Numerical results: line. We trained a network with three supervised training pairs from Fig. 4 and the graph structure
presented there. (a) Testing loss during 1000 epoches of training (ε = 0.01) with γ = 0 semisupervised (blue) and γ = −1 semisupervised
plus graph information (red). (b) Testing loss after 1000 epochs of training with the same data and parameters as in (a) but averaged over 30
shots plotted for different S (supervised pairs). The error bars represent one standard error of the mean.

FIG. 6. Numerical results: synthetic graph with nonrandom input states. The plot describes the generalization behavior of a
dissipative QNN (2000 training epochs ε = 0.01) trained without (blue) and with (red) using the graph structure of a graph with 32
vertices produced by a classical deep walk. Each data point demonstrates an average over ten independent training attempts. The error bars
represent one standard error of the mean.

012410-7

KERSTIN BEER et al. PHYSICAL REVIEW A 108, 012410 (2023)

ACKNOWLEDGMENTS

Helpful correspondence and discussions with D. Bon-
darenko, T. Farrelly, P. Feldmann, A. Hahn, G. Müller, J.
Hendrik Pfau, R. Salzmann, D. Scheiermann, V. Schmiesing,
M. Schwiering, C. Struckmann, and R. Wolf are gratefully

acknowledged. This work was supported in part by the
Quantum Valley Lower Saxony, the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) through
SFB 1227 (DQ-mat), the RTG 1991, and DFG under Ger-
many’s Excellence Strategy EXC-2123 QuantumFrontiers
Grant No. 390837967.

[1] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Nature (London) 549, 195 (2017).

[2] C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A.
Rocchetto, S. Severini, and L. Wossnig, Proc. R. Soc. A 474,
20170551 (2018).

[3] M. Schuld, I. Sinayskiy, and F. Petruccione, Contemp. Phys. 56,
172 (2015).

[4] E. Aïmeur, G. Brassard, and S. Gambs, in Advances in Artificial
Intelligence, edited by L. Lamontagne and M. Marchand, Lec-
ture Notes in Computer Science Vol. 4013 (Springer, Berlin,
2006), pp. 431–442.

[5] E. Aïmeur, G. Brassard, and S. Gambs, Mach. Learn. 90, 261
(2013).

[6] G. D. Paparo, V. Dunjko, A. Makmal, M. A. Martin-Delgado,
and H. J. Briegel, Phys. Rev. X 4, 031002 (2014).

[7] M. Schuld, I. Sinayskiy, and F. Petruccione, Quantum Inf.
Process. 13, 2567 (2014).

[8] N. Wiebe, A. Kapooor, and K. M. Svore, in Advances in Neu-
ral Information Processing Systems 29, edited by D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Curran, Red
Hook, 2016).

[9] N. B. Lovett, C. Crosnier, M. Perarnau-Llobet, and B. C.
Sanders, Phys. Rev. Lett. 110, 220501 (2013).

[10] G. Carleo and M. Troyer, Science 355, 602 (2017).
[11] M. Tiersch, E. J. Ganahl, and H. J. Briegel, Sci. Rep. 5, 12874

(2015).
[12] M. Sasaki and A. Carlini, Phys. Rev. A 66, 022303 (2002).
[13] S. Gambs, arXiv:0809.0444.
[14] G. Sentís, J. Calsamiglia, R. Muñoz-Tapia, and E. Bagan, Sci.

Rep. 2, 708 (2012).
[15] V. Dunjko, J. M. Taylor, and H. J. Briegel, Phys. Rev. Lett. 117,

130501 (2016).
[16] A. Monràs, G. Sentís, and P. Wittek, Phys. Rev. Lett. 118,

190503 (2017).
[17] U. Alvarez-Rodriguez, L. Lamata, P. Escandell-Montero, J. D.

Martín-Guerrero, and E. Solano, Sci. Rep. 7, 13645 (2017).
[18] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R.

Melko, Phys. Rev. X 8, 021050 (2018).
[19] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, Phys. Rev. Res. 2,

033125 (2020).
[20] G. Sentís, A. Monràs, R. Muñoz-Tapia, J. Calsamiglia, and E.

Bagan, Phys. Rev. X 9, 041029 (2019).
[21] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R.

Salzmann, D. Scheiermann, and R. Wolf, Nat. Commun. 11,
808 (2020).

[22] G. Verdon, J. Pye, and M. Broughton, arXiv:1806.09729.
[23] M. A. Nielsen and I. L. Chuang, Quantum Computation

and Quantum Information (Cambridge University Press, Cam-
bridge, 2000).

[24] E. Farhi, J. Goldstone, S. Gutmann, and H. Neven,
arXiv:1703.06199.

[25] V. Dunjko and H. J. Briegel, Rep. Prog. Phys. 81, 074001
(2018).

[26] D. Bondarenko and P. Feldmann, Phys. Rev. Lett. 124, 130502
(2020).

[27] K. Sharma, M. Cerezo, L. Cincio, and P. J. Coles, Phys. Rev.
Lett. 128, 180505 (2022).

[28] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Nat. Commun. 9, 4812 (2018).

[29] S. Arunachalam and R. de Wolf, SIGACT News 48, 41 (2017).
[30] S. Gammelmark and K. Mølmer, New J. Phys. 11, 033017

(2009).
[31] M. Sasaki, A. Carlini, and R. Jozsa, Phys. Rev. A 64, 022317

(2001).
[32] K. Poland, K. Beer, and T. J. Osborne, arXiv:2003.14103.
[33] K. Sharma, M. Cerezo, Z. Holmes, L. Cincio, A. Sornborger,

and P. J. Coles, Phys. Rev. Lett. 128, 070501 (2022).
[34] A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, and P.

Perinotti, Phys. Rev. A 81, 032324 (2010).
[35] I. Cong, S. Choi, and M. D. Lukin, Nat. Phys. 15, 1273 (2019).
[36] G. Verdon, T. McCourt, E. Luzhnica, V. Singh, S. Leichenauer,

and J. Hidary, arXiv:1909.12264.
[37] B. Perozzi, R. Al-Rfou, and S. Skiena, Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (Association for Computing Machinery,
New York, 2014), pp. 701–710.

[38] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, Proceed-
ings of the Eleventh ACM International Conference on Web
Search and Data Mining (Association for Computing Machin-
ery, New York, 2018), pp. 459–467.

[39] S. Liu, M. F. Demirel, and Y. Liang, in Advances in Neural
Information Processing Systems 32, edited by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.
Garnett (Curran, Red Hook, 2019), pp. 8466–8478.

[40] M. Khosla, J. Leonhardt, W. Nejdl, and A. Anand, in Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases, edited by U. Brefeld, E. Fromont,
A. Hotho, A. Knobbe, M. Maathuis, and C. Robardet, Lec-
ture Notes in Computer Science (Springer, Cham, 2019), Vol.
11906, pp. 395–411.

[41] X. Zhu, Z. Ghahramani, and J. Lafferty, Proceedings of the
Twentieth International Conference on International Confer-
ence on Machine Learning (AAAI, Washington, DC, 2003),
pp. 912–919.

[42] M. Belkin, P. Niyogi, and V. Sindhwani, J. Mach. Learn. Res. 7,
2399 (2006).

[43] T. N. Kipf and M. Welling, Fifth International Conference on
Learning Representations, Toulon, 2017 (ICLR, La Jolla, 2017).

[44] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò,
and Y. Bengio, in Sixth International Conference on Learning
Representations Vancouver, 2018, edited by Y. Bengio and Y.
LeCun (ICLR, La Jolla, 2018).

012410-8

https://doi.org/10.1038/nature23474
https://doi.org/10.1098/rspa.2017.0551
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1007/s10994-012-5316-5
https://doi.org/10.1103/PhysRevX.4.031002
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1103/PhysRevLett.110.220501
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1038/srep12874
https://doi.org/10.1103/PhysRevA.66.022303
http://arxiv.org/abs/arXiv:0809.0444
https://doi.org/10.1038/srep00708
https://doi.org/10.1103/PhysRevLett.117.130501
https://doi.org/10.1103/PhysRevLett.118.190503
https://doi.org/10.1038/s41598-017-13378-0
https://doi.org/10.1103/PhysRevX.8.021050
https://doi.org/10.1103/PhysRevResearch.2.033125
https://doi.org/10.1103/PhysRevX.9.041029
https://doi.org/10.1038/s41467-020-14454-2
http://arxiv.org/abs/arXiv:1806.09729
http://arxiv.org/abs/arXiv:1703.06199
https://doi.org/10.1088/1361-6633/aab406
https://doi.org/10.1103/PhysRevLett.124.130502
https://doi.org/10.1103/PhysRevLett.128.180505
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1145/3106700.3106710
https://doi.org/10.1088/1367-2630/11/3/033017
https://doi.org/10.1103/PhysRevA.64.022317
http://arxiv.org/abs/arXiv:2003.14103
https://doi.org/10.1103/PhysRevLett.128.070501
https://doi.org/10.1103/PhysRevA.81.032324
https://doi.org/10.1038/s41567-019-0648-8
http://arxiv.org/abs/arXiv:1909.12264

QUANTUM MACHINE LEARNING OF GRAPH-STRUCTURED … PHYSICAL REVIEW A 108, 012410 (2023)

[45] W. L. Hamilton, R. Ying, and J. Leskovec, in Advances in
Neural Information Processing Systems 30, edited by I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (Curran, Red Hook, 2017).

[46] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, Seventh Interna-
tional Conference on Learning Representations, New Orleans,
2019 (ICLR, La Jolla, 2019).

[47] M. Khosla, V. Setty, and A. Anand, IEEE Trans. Knowl. Data
Eng. 33, 1807 (2019).

[48] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and
P. S. Yu, IEEE Trans. Neural Netw. Learn. Syst. 32, 4
(2021).

[49] S. Dernbach, A. Mohseni-Kabir, S. Pal, M. Gepner, and D.
Towsley, Appl. Netw. Sci. 4, 76 (2019).

[50] Y. Ma and V. Tresp, Assoc. Comput. Mach. 2, 2643 (2021).
[51] J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016).
[52] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.108.012410 for details.
[53] K. Beer, D. List, G. Müller, T. J. Osborne, and C. Struckmann,

arXiv:2104.06081.
[54] https://github.com/qigitphannover/QNN_GraphStructuredData.
[55] T. Zhao, N. T. Dong, A. Hanjalic, and M. Khosla,

arXiv:2304.10398.
[56] S. Talaga and A. Nowak, JASSS 23, 6 (2020).

012410-9

https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1007/s41109-019-0188-2
https://doi.org/10.1103/PhysRevD.94.106002
http://link.aps.org/supplemental/10.1103/PhysRevA.108.012410
http://arxiv.org/abs/arXiv:2104.06081
https://github.com/qigitphannover/QNN_GraphStructuredData
http://arxiv.org/abs/arXiv:2304.10398
https://doi.org/10.18564/jasss.4252

