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a b s t r a c t 

A coupled description of flow and thermal-reactive transport is spanning a wide range of scales in space and 

time, which often introduces a significant complexity for the modelling of such processes. Subsurface reservoir 

heterogeneity with complex multi-scale features increases the modelling complexity even further. Traditional 

multiscale techniques are usually focused on the accuracy of the pressure solution and often ignore the transport. 

Improving the transport solution can however be quite significant for the performance of the simulation, espe- 

cially in complex applications related to thermal-compositional flow. The use of an Adaptive Mesh Refinement 

enables the grid to adapt dynamically during the simulation, which facilitates the efficient use of computational 

resources. This is especially important in applications with thermal flow and transport where the region requires 

high-resolution calculations as often localized in space. In this work, the aim is to develop an Adaptive Mesh 

Refinement framework for geothermal reservoir simulation. The approach uses a multi-level connection list and 

can be applied to fully unstructured grids. The adaptivity of the grid in the developed framework is based on a hi- 

erarchical connectivity list. First, the fine-scale model is constructed, which accurately approximates all reservoir 

heterogeneity. Next, a global flow-based upscaling is applied, where an unstructured partitioning of the original 

grid is created. Once the full hierarchy of levels is constructed, the simulation is started at the coarsest grid. Grid 

space refinement criteria is based on the local changes and can be adjusted for specific models and governing 

physics. The multi-level connectivity lists are redefined at each timestep and used as an input for the next. The 

developed Adaptive Mesh Refinement framework was implemented in Delft Advanced Research Terra Simulator 

which uses the Operator-Based Linearization technique. The performance of the proposed approach is illustrated 

for several challenging geothermal applications of practical interest. 
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. Introduction 

Production development of prospective reservoirs includes the use of

arious technologies that provide information at many different scales.

hese scales range from core plugs being a few centimeters in size

o well logs detecting properties a few meters around the well, and

o seismic imaging covering a significant volume with limited resolu-

ion (few meters vertically and 10’s of meters horizontally). However,

ime and capital limitations result in sparse direct sampling of reser-

oir rock and fluid properties. This is why the construction of reservoir

odels, through integration of these data using geostatistical reservoir

escription algorithms, has become a crucial step in resource develop-

ent ( Branets et al., 2009 ). These algorithms conventionally result in

ne-scale descriptions of reservoir properties (porosity, permeability)

n grids of tens of millions of cells ( Christie, 1996 ). 
∗ Corresponding author. 
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An issue of considerable importance is the risk and uncertainty as-

essment of reservoir performance. The uncertainty can be gauged by

imulating an ensemble of different geological realizations ( Chen et al.,

015 ). This may require to run thousands of simulations to cover a

ide range of parameter variation. It is however not computationally

easible or desirable to perform these simulations on the high-fidelity

fine-grid) model. Significantly upscaled models (i.e., the mapping of

ock and fluid properties to a coarser resolution) are therefore required,

here these models should ideally be even coarser than typical reservoir

imulators, which can handle on the order of 10 5 − 10 6 simulation cells

 Durlofsky, 2005 ). In the presence of more complex physics, excessive

pscaling may, however, result in non-satisfactory results, which neces-

itate the use of advanced algorithms and solvers to allow for higher

esolution grids to be employed ( Cusini et al., 2016 ). 

Traditional Multiscale techniques ( Jenny et al., 2003; Wang et al.,

014 ), developed to solve the elliptic (or parabolic) pressure equation

n sequentially coupled simulations, mainly focus on the pressure solu-
2021 
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2

ion and often ignore the transport. However, in complex applications

elated to chemical and compositional EOR (Enhanced Oil Recovery),

eservoir storage and geothermal industry, the number of conserved

hemical species can be large which makes any improvement in trans-

ort solution quite significant for the performance and robustness of the

imulation. A technique called Adaptive Mesh Refinement (AMR) provides

n effective means for adapting the resolution of a model to solution

equirements. This method is well developed in many areas of compu-

ational physics (e.g. fluid dynamics and solid mechanics) but is how-

ver not widely used for practical reservoir simulation ( Karimi-Fard and

urlofsky, 2014 ). 

In today’s literature, several researchers have developed and pro-

osed AMR procedures to capture the local nature of transport pro-

esses. Bahrainian and Dezfuli (2014) have developed a novel unstruc-

ured grid generation algorithm which considers the effect of geologi-

al features and well locations in the grid resolution. This strategy in-

olves the definition and construction of the initial grid based on the

eological model, geometry adaptation of geological features and grid

esolution control. Trangenstein (2002) used the combination of high-

esolution discretization methods with dynamically adaptive mesh re-

nement for a two-component single-phase model for miscible flood-

ng. Pau et al. (2012) proposed an AMR algorithm for compressible

wo-phase flow in porous media. The method is implemented within a

lock structured adaptive mesh refinement framework which allows the

rids to dynamically adapt to flow features and enables efficient paral-

elization of the algorithm. The coarse-scale permeability was obtained

y averaging the fine-scale permeability. Similar techniques have been

eveloped for compositional simulation ( Sammon et al., 2003 ), ther-

al problems ( Christensen et al., 2004 ), improved/enhanced oil recov-

ry processes ( Van Batenburg et al., 2011 ), Discrete Fracture Networks

 Berrone et al., 2019 ), and many more applications. 

In this work, the aim was to develop a dynamic AMR scheme using

n unstructured multi-level gridding framework, for geothermal sim-

lation in complex reservoirs. The focus lied particularly on thermal-

eactive flow and transport formulation which are required for a wide

ange of subsurface applications relevant to the energy transition in-

luding geothermal. Notice that heterogeneity plays a very important

ole in geothermal applications ( Shetty et al., 2018; Babaei and Nick,

019 ). The geothermal doublet lifetime and heat recovery rate usually

ary a lot with both reservoir parameters and operational management

here uncertainties due to heterogeneity are dominating ( Willems and

. Nick, 2019 ). Heterogeneity in flow path and shale facies play an im-

ortant role in water heat recharge which directly affects doublet per-

ormance at low net-to-gross ratio ( Crooijmans et al., 2016 ). Besides,

omplex heat extraction process and corresponding chemical interac-

ions can also amplify the effect of heterogeneity ( Cui et al., 2016; Kala

nd Voskov, 2020 ). 

As a starting point of our framework, a fine-scale geological model

as to be constructed accurately approximating all reservoir heterogene-

ty. In reservoir simulation, this model is often represented by an array

f volumes, depths and a connectivity list ( Lim et al., 1995 ) describing

ach control volume. Next, a global flow-based upscaling was applied

nd an unstructured partitioning of the original grid was constructed as

uggested in ( Karimi-Fard and Durlofsky, 2014 ). This partitioning pro-

ides coarser levels of the original model which is also described by an

rray of volumes, depths and a connectivity list. A coarser connectivity

ist includes connections between control volumes at the given level as

ell as interconnections between the levels. Once the full hierarchy of

evels is constructed, the simulation is started at the coarsest grid. Grid

pace refinement criterion is developed for particular applications. The

ulti-level connection list is reconstructed at each time step and used

or the simulation. The proposed approach was implemented in Delft Ad-

anced Research Terra Simulator (DARTS) ( Kala and Voskov, 2020; Wang

t al., 2020 ). 
 

v  

2 
. Methodology 

.1. Governing equations 

General-purpose reservoir simulation is based on the solution of gov-

rning equations which describe mass and energy transfer of various

pecies in the subsurface. The flow of mass and energy in a system

ith 𝑛 𝑝 phases and 𝑛 𝑐 components are described in this section. For this

eneral-purpose thermal-compositional model, 𝑛 𝑐 component mass con-

ervation equations and a single energy conservation equation need to

e solved ( Khait and Voskov, 2018b ). When chemical reactions occur in

he system, an additional term describing 𝑛 𝑘 kinetic reactions is added

o the mass conservation equation ( Kala and Voskov, 2020 ). These gov-

rning relations are described as: 

𝜕 

𝜕𝑡 

( 

𝜙

𝑛 𝑝 ∑
𝑝 =1 
𝑥 𝑐𝑝 𝜌𝑝 𝑠 𝑝 

) 

+ div 
𝑛 𝑝 ∑
𝑝 =1 
𝑥 𝑐𝑝 𝜌𝑝 ⃖⃖ ⃖⃗𝑢 𝑝 + 

𝑛 𝑝 ∑
𝑝 =1 
𝑥 𝑐𝑝 𝜌𝑝 ̃𝑞 𝑝 = 

𝑛 𝑘 ∑
𝑘 

𝑣 𝑐𝑘 𝑟 𝑘 , 

 = 1 , … , 𝑛 𝑐 , 𝑘 = 1 , … , 𝑛 𝑘 , (1) 

𝜕 

𝜕𝑡 

( 

𝜙

𝑛 𝑝 ∑
𝑝 =1 
𝜌𝑝 𝑠 𝑝 𝑈 𝑝 + (1 − 𝜙) 𝑈 𝑟 

) 

+ div 
𝑛 𝑝 ∑
𝑝 =1 
ℎ 𝑝 𝜌𝑝 ⃖⃖ ⃖⃗𝑢 𝑝 + div ( 𝜅∇ 𝑇 ) 

+ 

𝑛 𝑝 ∑
𝑝 =1 
ℎ 𝑝 𝜌𝑝 ̃𝑞 𝑝 = 0 , (2) 

here 𝑡 is the time, 𝑣 𝑐𝑘 is the stoichiometric coefficient associated with

inetic reaction 𝑘 , 𝑟 𝑘 is the rate of kinetic reaction 𝑘 . The right-hand

ide of the mass conservation Eq. (1) is the kinetic term which describes

eactions. It is set to zero when no chemical processes are involved in the

ystem. The rest of the terms in the system can be described as functions

f spatial coordinate 𝝃 and/or physical state 𝝎 : 

𝜙( 𝝃, 𝝎 ) porosity, 

𝑥 𝑐𝑝 ( 𝝎 ) the mole fraction of component 𝑐 in phase 𝑝 , 

𝑠 𝑝 ( 𝝎 ) phase saturation, 

𝜌𝑝 ( 𝝎 ) phase molar density, 

⃖⃖⃖⃗𝑢 𝑝 ( 𝝃, 𝝎 ) phase velocity, 

𝑞 𝑝 ( 𝝃, 𝝎 , 𝐮 ) source of phase 𝑝 , 

U 𝑝 ( 𝝃) phase internal energy, 

U 𝑟 ( 𝝃) rock internal energy, 

ℎ 𝑝 ( 𝝃) phase enthalpy, 

𝜅( 𝝃, 𝝎 ) thermal conduction. 

An exception is the phase source term, which is also dependent on 𝐮
 well control variables. 

The rock internal energy and thermal conduction are assumed to

e spatially homogeneous for simplification of the problem, meaning

hat they are characterized as functions of the spatial coordinate 𝝃 only.

hase flow velocity ⃖⃖⃖⃗𝑢 𝑝 is assumed to follow Darcy’s law, expressed as: 

⃖⃖⃗ 𝑝 = − 

( 

𝐊 

𝑘 𝑟𝑝 

𝜇𝑝 

(
∇ 𝑃 𝑝 − ⃖⃗𝛾𝑝 ∇ 𝐷 

)) 

, 𝑝 = 1 , … , 𝑛 𝑝 , (3) 

here 

𝐊 ( 𝝃) permeability tensor, 

𝑘 𝑟𝑝 ( 𝝎 ) relative permeability of phase 𝑝 , 

𝜇𝑝 ( 𝝎 ) phase viscosity, 

𝑃 𝑝 ( 𝝎 ) pressure in phase 𝑝 , 

⃖⃗𝛾𝑝 ( 𝝎 ) gravity vector, 

𝐷( 𝝃) depth (backward oriented). 

The nonlinear unknowns in this system of equations are the pressure

 , the overall compositions 𝑧 𝑐 of each component and the enthalpy ℎ . 

.2. Modeling approach 

In order to solve the governing Eqs. (1) and 2 , we apply a finite-

olume discretization on a general unstructured mesh and perform a
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Fig. 1. 4x4 Cartesian grid denoting cell indexing and showing neighbouring 

connections. Indexing is based on a Cartesian structured mesh for simplicity. 

Table 1 

Connectivity list of the example grid from Fig. 1 . 

Dual connections 

Cell i 0 0 1 1 2 2 3 4 4 5 5 6 6 7 8 8 9 9 10 10 11 12 13 14 

Cell j 1 4 2 5 3 6 7 5 8 6 9 7 10 11 9 12 10 13 11 14 15 13 14 15 
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ackward Euler approximation in time to both equations, where the

hase velocities ⃖⃖⃖⃗𝑢 𝑝 are substituted by the Darcy relation (3) : 

 

⎡ ⎢ ⎢ ⎣ 
( 

𝜙

𝑛 𝑝 ∑
𝑝 =1 
𝑥 𝑐𝑝 𝜌𝑝 𝑠 𝑝 

) 𝑛 +1 

− 

( 

𝜙

𝑛 𝑝 ∑
𝑝 =1 
𝑥 𝑐𝑝 𝜌𝑝 𝑠 𝑝 

) 𝑛 ] 

− Δ𝑡 
∑
𝑙 

( 𝑛 𝑝 ∑
𝑝 =1 
𝑥 𝑙 𝑐𝑝 𝜌

𝑙 
𝑝 Γ
𝑙 
𝑝 Δ𝜓 

𝑙 

) 

+ Δ𝑡 
𝑛 𝑝 ∑
𝑝 =1 
𝜌𝑝 𝑥 𝑐𝑝 𝑞 𝑝 = 𝑉 Δ𝑡 

𝑛 𝑟 ∑
𝑘 

𝑣 𝑐𝑘 𝑟 𝑘 , 𝑐 = 1 , … , 𝑛 𝑐 , (4) 

 

⎡ ⎢ ⎢ ⎣ 
( 

𝜙

𝑛 𝑝 ∑
𝑝 =1 
𝜌𝑝 𝑠 𝑝 𝑈 𝑝 + (1 − 𝜙) 𝑈 𝑟 

) 𝑛 +1 

− 

( 

𝜙

𝑛 𝑝 ∑
𝑝 =1 
𝜌𝑝 𝑠 𝑝 𝑈 𝑝 + (1 − 𝜙) 𝑈 𝑟 

) 𝑛 ] 

− Δ𝑡 
∑
𝑙 

( 𝑛 𝑝 ∑
𝑝 =1 
ℎ 𝑙 𝑝 𝜌

𝑙 
𝑝 Γ
𝑙 
𝑝 Δ𝜓 

𝑙 + Γ𝑙 𝑐 Δ𝑇 
𝑙 

) 

+ Δ𝑡 
𝑛 𝑝 ∑
𝑝 =1 
ℎ 𝑝 𝜌𝑝 𝑞 𝑝 = 0 . (5) 

ere 𝑉 is the control volume for which the system is being solved,

 𝑝 = 𝑞 𝑝 𝑉 is a source of phase 𝑝 , 𝑛 is the previous time step whereas

 + 1 is the time step we want to solve for. Capillarity and gravity are ne-

lected in these equations, and a Two-Point Flux Approximation (TPFA)

ith an upstream weighting is applied. Δ𝜓 𝑙 , the phase potential, there-

ore simply becomes the difference in pressure between blocks con-

ected via interface 𝑙, while Δ𝑇 𝑙 is the temperature difference between

hese blocks; Γ𝑙 𝑝 = Γ𝑙 𝑘 𝑙 𝑟𝑝 ∕ 𝜇
𝑙 
𝑝 is a phase transmissibility, where Γ𝑙 is the

onstant geometrical part of the transmissibility (involving permeabil-

ty and geometry of the control volume). Finally Γ𝑙 𝑐 = Γ𝑙 𝜅 is the thermal

conductive) transmissibility ( Khait and Voskov, 2018b ). This system

f equations is solved for each mesh element in time, where the un-

nowns are the composition of the 𝑛 𝑐 components and the pressure for

he mass conservation Eq. (4) , and the pressure and enthalpy for the

nergy Eq. (5) . 

In general-purpose reservoir simulation, the solving process requires

he linearization of strongly nonlinear governing equations. In conven-

ional reservoir simulators, a Newton-Raphson based method is typically

sed for the linearization, which solves on each nonlinear iteration a lin-

ar system of equations in the following form: 

( 𝝎 

𝑛 )( 𝝎 

𝑛 +1 − 𝝎 

𝑛 ) = − 𝑟 ( 𝝎 

𝑛 ) , (6) 

here 𝑟 is the residual and 𝐽 is the Jacobian, which is the derivative

f the residual with respect to primary nonlinear unknowns, defined at

 nonlinear iteration 𝑛 . In this work, we use a recently-developed ap-

roach called Operator Based Linearization (OBL). The main idea of OBL

s to transform the discretized mass and energy conservation Eqs. (4) and

5) to an operator form, where space-dependent 𝛏 and state-dependent

 properties of governing equations are separated. This provides the

pportunity to approximate the representation of the exact physics of a

roblem through the discretization of the state-dependent properties.

he underlying methodology of OBL is explained in more details in

oskov (2017) and Khait and Voskov (2018a,b) . 

.3. Connectivity list 

The proposed AMR technique uses the Finite Volume Method (FVM)

or discretization. The implementation of the finite volume discretiza-

ion method to the mass conservation Eq. (1) requires the evaluation

f the flow between two adjacent control volumes in terms of the cell

ressures. Using a Two-Point Flux Approximation (TPFA), the flow rate

s defined as: 

 𝑖𝑗 = Γ𝑖𝑗 𝑝 ( 𝑃 𝑖 − 𝑃 𝑗 ) , (7) 

here: 

𝑄 𝑖𝑗 flow rate at interface of cells 𝑖 and 𝑗, 

Γ𝑖𝑗 𝑝 phase transmissibility at interface of cells 𝑖 and 𝑗, 

𝑃 𝑖 pressure of cell 𝑖 , 

𝑃 𝑗 pressure of cell 𝑗. 

i  

3 
Similarly, the heat flux between two adjacent control volumes is ex-

ressed in terms of thermal transmissibility Γ𝑐 and is, also using a TPFA,

efined as: 

 

ℎ 
𝑖𝑗 = Γ𝑖𝑗 𝑐 ( 𝑇 𝑖 − 𝑇 𝑗 ) , (8) 

here Γ𝑖𝑗 𝑐 is the thermal transmissibility at interface 𝑖𝑗, 𝑇 𝑖 and 𝑇 𝑗 are

he temperatures of cell 𝑖 and 𝑗 respectively, and 𝑄 

ℎ 
𝑖𝑗 

is the heat flux at

nterface 𝑖𝑗. 

To evaluate the flux between two adjacent control volumes, a so-

alled connectivity list is constructed, i.e. for each interface between two

eighbouring control volumes, the indices of these cells are listed to-

ether with the transmissibility ( Lim et al., 1995 ). The result is a list

ith all connection pairs present in the grid. A few important points to

e noted are: 

• Each connection consists of only two elements, 
• The connection pairs are not repetitive, 
• No-flow boundaries imply the absence of connections and are hence

not listed in the connectivity list. 

Fig. 1 shows a simple example of a 2D Cartesian structured grid, with

orresponding cell indexing. Table 1 shows its connectivity list. The list

s expressed as two arrays, cell 𝑖 and cell 𝑗, where each column represent

 connection pair. Each pair has an associated interface transmissibility

tored in the connectivity list. 

. Multi-level grid generation 

The adaptivity of the grid in the developed AMR scheme is based on

 hierarchical representation of connectivity list. The simulation grid

s composed of several predefined levels representing the same geologi-

al properties at different resolutions. We start with a fine-scale model

 static geological model ) which accurately represents all reservoir hetero-

eneity. This grid is defined as level 0 and represents our finest level.

he modeling grid is defined by a list of control volumes, depths, reser-

oir properties (all spatially distributed properties required to solve the

iscretized relations 4 and 5 ) for each mesh element, and a list of connec-

ivity with corresponding transmissibility between neighbouring cells. 

Next, level 1 is defined, where control volumes are constructed by ag-

regating fine grid cells. Upscaling is applied to redefine volume, depth

nd reservoir properties at a coarser level. A connectivity list, with cor-

esponding transmissibility, is constructed for this level and inter-level

onnections are defined in addition. Similarly, more levels of coarsen-

ng can be constructed. A control volume in grid-level 𝑛 always consists
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Fig. 2. 2D Multi-level grid with three pre- 

constructed grids (levels) with an example 

simulation grid which is constructed by ag- 

gregating control volumes from different 

levels. 
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f cells from grid-level ( 𝑛 − 1) , resulting in a hierarchical relationship

 Karimi-Fard and Durlofsky, 2014 ). The simulation grid is then obtained

y combining control volumes from grids of different levels. A schematic

epresentation of this procedure is illustrated in Fig. 2 . 

.1. Cell aggregation 

A mesh consists of a set of finite control volumes, each having ver-

ices with allocated coordinates. To conduct cell aggregation, the cen-

roid is first computed for each mesh element within the grid. Fig. 3

hows an example 2D unstructured grid to illustrate how cell aggrega-

ion is conducted. As can be seen, in this particular example, each cell

as 3 vertices, and a centroid (represented in red) with coordinates 𝑥 𝑐 
nd 𝑦 𝑐 defined as 

( 𝑥 1 + 𝑥 2 + 𝑥 3 
3 , 

𝑦 1 + 𝑦 2 + 𝑦 3 
3 

)
, where 𝑥 𝑖 and 𝑦 𝑖 are the coordi-

ates of the vertices. Each mesh element has an assigned index number.

Cell aggregation is then carried out by dividing the grid in the 𝑥 - and

 -direction (and in the 𝑧 -direction for 3D models) into equidistant inter-

als Δ𝑥 and Δ𝑦 using a predefined scaling factor. Each interval has co-

rdinates [ 𝑖, 𝑖 + Δ𝑥 ] in the 𝑥 -direction and [ 𝑗, 𝑗 + Δ𝑦 ] in the 𝑦 -direction.

entroids of cells whose coordinates are within a given 𝑥𝑦 -area are ag-

regated to form one coarse cell. To check whether a fine cell 𝑓 is within

 given plane which will form coarse cell 𝐹 , the following algorithm is

mplemented for the coordinates 𝑥 𝑐 𝑓 and 𝑦 𝑐 𝑓 of the centroid of fine cell
4 
: 

f 𝑖 ≤ 𝑥 𝑐 𝑓 < 𝑖 + Δ𝑥 and 𝑗 ≤ 𝑦 𝑐 𝑓 < 𝑗 + Δ𝑦, cell 𝑓 ∈ cell 𝐹 . (9) 

ig. 3 shows the range partitioning (illustrated by the white lines) for

 2D unstructured grid. The 𝑥 - and 𝑦 -range were divided in 5 and 3

quidistant intervals respectively. The yellow-highlighted 2D plane has

ange [ 𝑖, 𝑖 + Δ𝑥 ] in the 𝑥 -direction and [ 𝑗, 𝑗 + Δ𝑦 ] in the 𝑦 - direction. For

his given example, all cell centroids whose coordinates fall within this

lane, are aggregated to form one coarse cell. For example, cells 41, 46,

8, 77, 84, 92, 106, 111 and 118 form coarse cell 0. 

For the given 2D unstructured grid example in Fig. 3 , the so-called

evel 1 - i.e. the next level of coarsening - is shown in Fig. 4 . The numbers

epresent the assigned indices of the newly constructed coarse cells. If

ne wants to construct an additional level, the same procedure can be

ollowed with a larger 𝑥 - and 𝑦 -range partitioning, where grid cells of

evel 1 are aggregated to form level 2. 

For further steps into the generation of the levels, a list - ”fines in

oarse ” - is constructed where the corresponding indices of the aggre-

ated fine cells are listed for each coarse cell. Table 2 tabulates this

ist for the example above ( Figs. 3 to 4 ). This type of list is generated

or each coarse level (level > 0 ) in the hierarchical grid. These lists are

tored for the construction of the cell properties (e.g. volume, porosity)
Fig. 3. 2D unstructured grid with centroids and with 

range partitioning (represented by the white lines) in 

the x- and y-direction with Δ𝑥 and Δ𝑦 spacing respec- 

tively. Aggregation is carried out for cells whose cen- 

troid fall within a given x- ( [ 𝑖 ∶ 𝑖 + Δ𝑥 ] ) and y-range 

( [ 𝑗 ∶ 𝑗 + Δ𝑦 ] ). E.g., all cells whose centroids are found 

within the yellow-highlighted 2D range are aggregated 

to form one coarse cell. 
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Fig. 4. 2D unstructured grid of Fig. 3 after cell aggregation. 

This grid represents the next level of coarsening of the finest 

grid: level 1. 

Table 2 

”fines_in_coarse ” list of the example 2D unstructured grid of Figs. 3 - 4 . This list 

describes for each coarse cell, the aggregated fine cells of level 𝑛 − 1 to form the 

coarse cell of level 𝑛 . 

Coarse cell Fine cells 

0 41, 46, 68, 77, 84, 92, 106, 111, 118 

1 2, 4, 12, 51, 55, 65, 78, 122 

2 8, 25, 26, 27, 28, 29, 30 

3 3, 5, 13, 44, 52, 79 

4 16, 42, 45, 49, 74, 87, 90, 104, 114, 117 

5 21, 34, 37, 61, 63, 71, 73, 82 

6 15, 18, 56, 88, 96, 100, 102, 109, 110, 123 

7 23, 35, 57, 94, 97, 98, 99, 101, 107, 108 

8 14, 24, 64, 67, 89, 95, 115, 121 

9 20, 33, 38, 60, 62, 70, 72, 83 

10 17, 40, 47, 50, 75, 86, 91, 105, 113, 116 

11 1, 7, 11, 53, 58, 81 

12 9, 19, 22, 31, 32, 36, 39 

13 0, 6, 10, 54, 59, 69, 80, 120 

14 43, 48, 66, 76, 85, 93, 103, 112, 119 
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Table 3 

Interfaces 𝑙 contained in each cell 𝑖 for level 0. The interfaces are expressed as 

connection pairs, describing the faces for each cell i . 

Fine cell i Faces f 

0 (0, 1), (0, 4) 

1 (0, 1), (1, 2), (1, 5) 

2 (1, 2), (2, 3), (2, 6) 

3 (2, 3), (3, 7) 

4 (0, 4), (4, 5), (4, 8) 

5 (1, 5), (4, 5), (5, 6), (5, 9) 

6 (2, 6), (5, 6), (6, 7), (6, 10) 

7 (4, 7), (6, 7), (7, 8) 

8 (4, 8), (8, 9), (8, 12) 

9 (5, 9), (8, 9), (9, 10), (9, 13) 

10 (6, 10), (9, 10), (10, 11), (10, 14) 

11 (7, 11), (10, 11), (11, 15) 

12 (8, 12), (12, 13) 

13 (9, 13), (13, 14) 

14 (10, 14), (13, 14), (14, 15) 

15 (11, 15), (14, 15) 

Table 4 

List of faces (corresponding connection pairs) for each coarse cell in the coarse 

grid. 

Coarse cell I Faces 

0 (1, 2), (4, 8), (5, 6), (5, 9) 

1 (1, 2), (5, 6), (6, 10), (7, 11) 

2 (4, 8), (5, 9), (9, 10), (13, 14) 

3 (6, 10), (7, 11), (9, 10), (13, 14) 

l  

i  

s  

f

 

s  

𝑖  

g

 

c  

T  

t  

i  

i

 

T  

f  
f the coarse levels, where the cell data from the fine level is needed

uring upscaling. 

Note that cell aggregation can also be conducted while taking care

f highlighting geological features (e.g. fractures) and different facies in

he model. For example, cell aggregation can be conducted by group-

ng domains with the same facies together into one coarse cell, or, in

ractured reservoirs, by aggregating cells by isobar contours similar to

arimi-Fard and Durlofsky (2014) . 

After cell aggregation is conducted, the connectivity list is then con-

tructed describing all connections within each level and the inter-level

onnections. To illustrate the methodology, we use the simple struc-

ured grid from Fig. 1 , where cell aggregation was performed to form

ne coarse level. 

In the proposed AMR scheme, the connectivity list of each level is de-

ermined systematically. Each mesh element consists of a set of vertices

. E.g. a triangular mesh element comprises 3 vertices, and a Cartesian

rid comprises 4 vertices. These vertices are numbered uniquely. The

ertices 𝐱 comprised in a cell 𝑖 are stored in a list; this is done for each

esh element in level 0. To determine whether two control volumes 𝑖

nd 𝑗 are adjacent, we take the intersection of both sets of vertices. That

s: 

 𝐱|𝐱 ∈ 𝑖 } ∩ { 𝐱|𝐱 ∈ 𝑗} . (10) 

ach geometry has a different criterion. For 2D shaped mesh elements,

he interface is a line; for 3D shaped cells, the interface is a plane. Hence

he criterion is that the intersection length should equal 2 for 2D shapes

nd 3 or more for 3D shapes. This methodology is applied to the finest
5 
evel of refinement - level 0. The result is a connectivity list represent-

ng all the unique connection pairs within level 0. The interface area is

ubsequently computed (and stored for transmissibility computation in

urther steps) for each connection. 

For the construction of the coarse level connectivity list, we first

tore for each cell 𝑖 , connection pairs (interfaces) which consist of cell

 , describing its faces. Table 3 illustrates this methodology for the fine

rid in Fig. 1 . 

A similar list is constructed for coarser levels (level > 0 ), which is

onstructed by aggregating the faces f of the fine grid cells 𝑖 (listed in

able 3 in this example) contained in each coarse cell 𝐼 . Inner fine in-

erfaces are unaccounted for, as they are not contained in the coarse

nterface. For the example above ( Fig. 5 ), this results in the list shown

n Table 4 . 

Next, the common faces between each coarse cell are determined.

his is implemented by evaluating the intersection between the set of

aces 𝐟 belonging to coarse cell 𝐼 and the set of faces 𝐟 forming coarse
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Fig. 5. 4x4 Cartesian grid showing cell aggregation, re- 

sulting in four coarse grid cells. 
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ell 𝐽 . This is expressed as: 

 𝐟 |𝐟 ∈ 𝐼} ∩ { 𝐟 |𝐟 ∈ 𝐽} . (11) 

f a given coarse cell 𝐼 has one or multiple common faces 𝑓 with another

oarse cell 𝐽 , these two cells form neighbouring blocks. For transmissi-

ility computation in further steps, the area of the connecting interface

s stored, which is here expressed as the sum of the intersecting fine grid

aces. 

For inter-level connections, a similar method is implemented. For

ach coarse cell 𝐼 in level 𝑛 , the intersection of its set of faces 𝐟 with

he set of faces 𝐟 of a given fine cell 𝑖 is determined. This operation is

onducted for every fine cell 𝑖 in level ( 𝑛 − 1) , except for the fine cells

omprised in the evaluated coarse cell 𝐼 ( 𝑖 ∈ 𝐼). This is expressed math-

matically as follows: 

 𝐟 |𝐟 ∈ 𝐼} ∩ { 𝐟 |𝐟 ∈ 𝑖 } , where { 𝑖 |𝑖 ∉ 𝐼} (12) 

imilarly, if a given coarse cell 𝐼 has a common face with a fine cell 𝑖 ,

he two cells are connected. This procedure is applied between all levels

 and ( 𝑛 − 1) . The result is a list of connections within level 0, a list of

onnections for each level 𝑛 , and an inter-level connectivity list, which

escribe the full hierarchical grid. 

.2. Transmissibility and upscaling 

In this work, the AMR method is implemented for unstructured grids

f any geometry. The definition of the transmissibility for unstructured

rids is expressed as: 

12 
𝑝 = Γ12 𝜆 with Γ12 = 

( 

𝛼1 𝛼2 
𝛼1 + 𝛼2 

) 

and 𝛼𝑖 = 𝐴 
𝑘 𝑖 

𝐷 𝑖 

𝑛 ⋅ 𝑑 𝑖 , (13) 

here: 

Γ12 
𝑝 

transmissibility between cells 1 and 2, 

Γ12 constant geometrical part of the transmissibility, 

𝜆 mobility of a given phase 𝑝 , 

𝐴 interface area, 

𝑘 𝑖 permeability of cell 𝑖 , 

𝐷 𝑖 distance between centroid of cell 𝑖 to interface area 𝐴 , 

𝑛 unit vector normal to the interface, 

𝑑 𝑖 unit vector along the line joining centroid of cell 𝑖 to the center 

of interface A. 

Here, the directional permeability of each cell is expressed as the

agnitude of the cell’s [ 𝑘 𝑥 , 𝑘 𝑦 , 𝑘 𝑧 ] coordinates multiplied by the unit

ector 𝑑 𝑖 . 

To solve the mass conservation Eq. (1) , the flow rate must be com-

uted for the interface of every neighbouring cells. It is therefore nec-

ssary to compute the transmissibility for each dual connection listed

n the connectivity list. The result is a list consisting of all connections,

ith their corresponding transmissibility. This methodology is applied

t the finest level of refinement, level 0. 

For thermal problems, another type of transmissibility Γ𝑙 𝑐 must be

omputed to approximate thermal conductive flux in the energy Eq. (2) .
6 
ince thermal rock conduction is not as heterogeneous as permeability,

he thermal transmissibility is defined as the geometric coefficient, that

s, the area of the interface 𝑙 divided by the sum of the distances 𝐷 1 and

 2 from centroids to interface 𝑙, multiplied by the average conduction

12 : 

12 
𝑐 = 𝜅12 

𝐴 

𝐷 1 + 𝐷 2 
. (14) 

s mentioned earlier, level 0 is represented by an array of volumes,

epths and reservoir properties which are derived from the static geo-

ogical model. Once the hierarchical grid is constructed, all cell proper-

ies must be redefined for the coarser levels (level > 0 ). This is done by

pscaling the properties of the corresponding fine grid cells. The volume

s upscaled by simply summing the volumes of the aggregated fine grid

ells 𝜈𝑖 ; 

 𝐼 = 

∑
𝑖 ∈𝐼 
𝜈𝑖 . (15) 

epth upscaling is done by taking the average of the fine scale depths.

he porosity, thermal conductivity, and rock heat capacity are upscaled

sing a volumetric averaging. For example, the sum of the porosity 𝜙𝑖 
ultiplied by the corresponding cell volume 𝜈𝑖 of each fine cell 𝑖 is taken

ver the total volume of the coarse cell 𝑉 𝐼 ; 

̄
𝐼 = 

1 
𝑉 𝐼 

∑
𝑖 ∈𝐼 
𝜈𝑖 𝜙𝑖 . (16) 

n this study, for the upscaling of permeability, we use the flow-

ased upscaling technique developed by Karimi-Fard et al. (2006) ;

ong et al. (2008) ; Karimi-Fard and Durlofsky (2012) . This technique

ses the pressure solution when the system has reached steady-state to

ompute the flow across each interface. The transmissibility can then

e derived by rearranging the flow Eq. (7) . These approaches can be

pplied to unstructured coarse grids with generally-shaped control vol-

mes ( Karimi-Fard and Durlofsky, 2014 ). The coarsening technique de-

nes the coarse transmissibility Γ𝐼𝐽 𝑝 between two adjacent control vol-

mes 𝐼 and 𝐽 . This is expressed as: 

𝐼𝐽 
𝑝 = 

||| 𝑄 𝐼𝐽 

𝑃 𝐼 − 𝑃 𝐽 

|||. (17) 

The coarse-grid average pressures 𝑃 𝐼 and 𝑃 𝐽 , and the coarse-grid

ow rate 𝑄 𝐼𝐽 , are computed using a fine-grid pressure solution. These

uantities are given by: 

𝑃 𝐼 = 

1 
𝑉 𝐼 

∑
𝑖 ∈𝐼 
𝜈𝑖 𝑝 𝑖 , 𝑃 𝐽 = 

1 
𝑉 𝐽 

∑
𝑗∈𝐽 
𝜈𝑗 𝑝 𝑗 , 

 𝐼𝐽 = 

∑
( 𝑖 ∈𝐼,𝑗∈𝐽 ) 

𝑄 𝑖𝑗 = 

∑
( 𝑖 ∈𝐼,𝑗∈𝐽 ) 

Γ𝑖𝑗 𝑝 ( 𝑝 𝑖 − 𝑝 𝑗 ) , (18) 

here 𝑝 𝑖 and 𝑝 𝑗 define the fine-scale pressures in the corresponding

oarse blocks. In the flow rate expression 𝑄 𝑖𝑗 , 𝑖𝑗 indicates the interface

etween fine cells 𝑖 and 𝑗 and Γ𝑖𝑗 𝑝 denotes the transmissibility for this

nterface. This 𝑖𝑗 interface comprises a portion of the interface between

oarse blocks 𝐼 and 𝐽 . For inter-level connections, a similar approach is
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Fig. 6. Example of a Cartesian structured 3- 

level hierarchical grid with global indexing. 

Numbering starts at the coarsest level and 

finishes at the finest level of refinement. 

u  

u  

c  

w

 

h  

l  

u  

o  

𝐷  

c

3

 

a  

a  

c  

c  

t  

i  

d  

s

 

n  

l  

2  

t  

l  

t  

l  

c  

t  

g  

i  

w  

r  

e  

i  

t  

a

4

 

m  

u  

s  

t  

t  

i  

F  

Fig. 7. Schematic representation of a 2-level hierarchical grid, with illustrated 

the adaptivity procedure and the redefinition of the active blocks for the simu- 

lation grid of the next time step 𝑡 𝑛 +1 . 
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sed. For a given fine cell 𝑖 and coarse cell 𝐽 with interface 𝑖𝐽 , Eq. (18) is

sed with 𝑃 𝐼 = 𝑝 𝑖 , the pressure of fine cell 𝑖 , and 𝑃 𝐽 the pressure of coarse

ell 𝐽 . This procedure is conducted for each inter-level connection found

ithin the hierarchical grid. 

For thermal problems, a similar method can be implemented, but is

owever not computationally efficient as temperature takes significantly

onger to reach a steady state. We therefore use Eq. (14) to compute the

pscaled thermal transmissibility, where the area is expressed as the sum

f the fine-scale faces which compose interface 𝐼𝐽 , and the distances

 𝐼 and 𝐷 𝐽 represent the distances between the cell centroid and the

entroid of the coarse interface. 

.2.1. Global indexing 

Once all needed parameters at every hierarchical level are evalu-

ted, which include cell properties and a connectivity list with associ-

ted transmissibility for each level and between levels, it is necessary to

ombine the levels in order to form a global hierarchical set of grids. To

ombine the levels, it is however necessary to assign a unique indexing

o each and every mesh element contained in the multi-level grid. This

s where global indexing plays a role. For convenience, indexing is or-

ered starting from the coarsest level. An example of global indexing is

hown in Fig. 6 . 

The procedure used to assign global indexing is to simply add the

umber of cells of the previous level(s) to the current level. E.g., for

evel 1 from Fig. 6 , numbering starts at the total number of cells of level

 𝑛 2 ; for level 0, numbering starts at 𝑛 2 + 𝑛 1 . This procedure is applied

o the bookkeeping lists such as ”fines in coarse ” and to the connectivity

ist of the corresponding levels. After the global indexing is applied to

he connectivity lists, the connectivity list at each level and the inter-

evel connection lists are combined into one list. This is conducted by

oncatenating these lists to form one list describing all existing connec-

ions within the hierarchical grid. Regarding the array of cell properties,

lobal indexing is applied by simply concatenating the arrays together

n the right order, i.e. from the coarsest level to the finest level. This

ay, indexing is done in the same order as the global indexing. The

esult is a global array of volumes, depths and relevant reservoir prop-

rties describing each mesh element within the hierarchical grid. Hav-

ng constructed the hierarchical grid and assigned it global indexing,

he pre-processing stage is complete and the simulation with dynamic

daptivity can be performed. 

. Dynamic adaptivity framework 

To determine whether grid adaptivity is necessary, we define refine-

ent and coarsening criteria, which are dependent on the application

sed. In this study, we adopted an approach where the difference in

olution variable is analysed between neighbouring blocks. Therefore,

he difference in the solution variable of interest 𝑋 is computed be-

ween each pair of cells active in the simulation grid. If this difference

s higher than a given threshold, both neighbouring blocks are refined.

or the coarsening of a set of fine cells, belonging to a given coarse cell,
7 
he difference between all the corresponding fine cells and their neigh-

ouring cells is computed; if each and every one of these connections

ave a difference in solution variable below a given threshold, the fine

ells are coarsened to the next consecutive level. 

For cells marked for refinement, the corresponding fine cells from

he level below are added to the array of active blocks, which is used

or implementation of the next time step, while the indices of the coarse

ells in question are suppressed. Similarly, the cells marked for coarsen-

ng are suppressed from the active cells, and the corresponding coarse

locks are added. Fig. 7 shows an example of a two-level hierarchical

rid. The current time step simulation grid is represented on the bot-

om left. After a check for adaptivity was conducted, cells 1 and 2 were

arked for refinement. Hence as explained above, the cell indices 1 and

 are suppressed from the array of active blocks, and their correspond-

ng fine cell indices are added (6, 7, 10 and 11 for coarse cell 1, and 12,

3, 16 and 17 for coarse cell 2). The scheme at the bottom right of the

gure shows the simulation grid which will be used for the next time

tep. As can be seen cell adaptivity results in an unstructured indexing..

Once the simulation grid is redefined and the array of active cells is

pdated, the connectivity list and corresponding transmissibility must

e redefined. This is done by copying the list of connections for the

hole hierarchical grid, where only the connections and corresponding

ransmissibility involving the active cells are kept, while connections

nvolving non-active cells and their corresponding transmissibility are

uppressed. Similarly, the same holds for the array of volume, depth
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Fig. 8. Schematic representation of the 

prolongation and restriction for the exam- 

ple in Fig. 7 . 
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nd relevant properties. Only the cell properties of the active blocks are

tored. 

For computation of the next time step solution 𝑋 𝑛 +1 , the solution of

he previous time step 𝑋 𝑛 is required (see Eqs. (4) and (5) ). However,

 𝑛 doesn’t have the same grid configuration as the next time step 𝑡 𝑛 +1 .

t is therefore necessary to convert the grid of solution 𝑋 𝑛 to the same

onfiguration as the simulation grid at 𝑡 𝑛 +1 . To do so, we use simple

apping techniques. A prolongation operator is firstly used to redefine

he solution variable 𝑋 at each cell of the finest level of refinement (level

). A so-called constant prolongation is implemented; i.e., all sub-domain

alues 𝑋 𝑖 are set to the coarse value solution variable 𝑋 𝐼 : 

 𝑖 = 𝑋 𝐼 , ∀𝑖 ∈ 𝐼. (19) 

ubsequently, restriction to the new simulation grid is conducted on the

rolongated solution; i.e., for cells already at the finest level, the solu-

ion stays the same; when several control volumes are grouped into a

ingle coarser control volume, the coarse value 𝑋 𝐼 is set to the volume-

eighted average of all sub-domain values 𝑋 𝑖 ( Karimi-Fard and Durlof-

ky, 2014 ): 

 𝐼 = 

1 
𝑉 𝐼 

∑
𝑖 ∈𝐼 
𝜈𝑖 𝑋 𝑖 . (20) 

 schematic representation of this procedure for the 2-level hierarchical

rid and for the new simulation grid of Fig. 7 ( 𝑡 𝑛 +1 ) is shown in Fig. 8 . 

The model, however, necessitates sequential numbering for mesh

eneration. It can be seen in Fig. 7 that indexing is non-consecutive

hen grid adaptivity is applied. This is where local indexing comes in

lay. That is, the active blocks indices are re-numbered in a sequen-

ial order to prevent undefined indices in the mesh. The global index-

ng is stored in a so-called Global to Local array for conversion back to

he global indices for adaptivity check in the next time step. The de-

cribed procedure, which redefines the grid configuration for the next

imulation, is repeated at each time 𝑡 . It is also important to note that

ll previously computed operators in the OBL method are re-used after

ach successive timestep. This is possible since the parameter space for

ach state dependent operator in the OBL method is decoupled from any

patial property or discretization. This provides a significant speeds-up

f the computation especially when simulation property is expensive to

valuate. 

In the synthetic examples used to illustrate the performance of the

MR framework, the first time step simulation is started at the coarsest

evel. For improved accuracy, the cells containing the wells are kept at

he finest level of refinement, level 0. 

. Applications for geothermal reservoirs 

Geothermal technology has recently received substantial attention

s an alternative source of energy. However, geothermal production

ystems have a relatively low return on investment, where uncertain-

ies related to lack of detailed information about subsurface formations

an significantly affect the quantification of the economic planning and

easibility of geothermal projects ( Willems, 2017 ). It is therefore im-

ortant to reduce the uncertainty and produce a high accuracy solu-

ion while keeping the computational costs low. Geothermal systems
8 
herefore represent a good candidate for implementation of our AMR

ramework since it keeps the accuracy of simulation process close to the

ne-scale while the performance is close to coarse-scale models. 

Simulation of geothermal reservoirs implicates the solution of both

ass (1) and energy (2) conservation equations where pressure and en-

halpy are the solution variables. We are mostly interested in the ac-

urate prediction of the temperature displacement front and resulting

hermal breakthrough time. Dynamic adaptivity will be illustrated for 2

ynthetic geothermal examples: 

• A homogeneous reservoir with unstructured meshing, 
• A heterogeneous fluvial system from Shetty et al. (2018) with low

net-to-gross ratio. 

In DARTS , the enthalpy is used as nonlinear unknown instead of

he temperature. The adaptivity criteria are therefore applied to the en-

halpy solution where the difference in enthalpy between two adjacent

ontrol volumes is analysed. This is done for each pair of connection

ithin the simulation grid. Here, we applied the following adaptivity

riteria: 
 

if Δℎ 𝑖𝑗 > 70 𝑘𝐽 , mark cells i and j for refinement, 

if Δℎ 𝑙 < 40 𝑘𝐽 , ∀𝑙 ∈ 𝐼, mark cells {∀𝑖 ∈ 𝐼} for coarsening. 
(21) 

his adaptivity criteria is a simple heuristic and serves a practical pur-

ose in this work. The proposed AMR method would greatly benefit from

 more sophisticated criteria, for example, a criteria based on a posteri-

ri error estimates similar to Vohralík and Wheeler (2013) ; Vohralík and

ousef (2018) . 

The geothermal examples are illustrated by showing the fine-scale

olution at different time steps versus the AMR solution and the coarse-

cale solution. Each synthetic example was analyzed quantitatively by

onducting an error analysis where the error of both AMR and coarse

olution are computed relative to the fine-scale solution. Both the L2

orm and L-infinity norm were calculated for each time step throughout

he simulation. Moreover, to define the performance of the AMR method

n terms of computational resources, the percentage of grid cells utilized

n the simulation using the AMR grid, relative to the total number of cells

n the fine-scale model was plotted for each example. 

.1. Case 1: homogeneous model 

The first model is a simple 2D homogeneous reservoir (constant per-

eability) with unstructured triangular mesh. We consider a single in-

ector (I) and a single producer (P) configuration. A two-level hierar-

hical grid is used, with 1420 cells in level 0 and 75 cells in level 1.

ig. 9 illustrates both levels, along with the permeability field (constant

ermeability of 2000 mD), and the well locations. The simulation pa-

ameters for this model are specified in Tables 6 and 7 in the Appendix.

The level 1 is illustrated in Fig. 9 where each color represents a coarse

ell. As can be seen, cell aggregation was conducted by dividing the x-

nd y- axes into 5 and 15 equidistant intervals. The cells at the well

ocations are kept fine at all times. The simulation was conducted for a

eriod of 5500 days. The temperature solution at three different times

s shown in Fig. 10 . Figure (a) represents the temperature solution at

ne scale, figure (b) the solution on the AMR grid, figure (c) shows the
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Fig. 9. Hierarchical grid of the unstructured homogeneous 

model. Left figure: permeability field with reservoir dimensions 

and well locations; middle figure: level 0, the finest level of re- 

finement, with unstructured gridding; right figure: coarser level, 

level 1 where each color represents a coarse cell. 

Fig. 10. Temperature solution of the homogeneous reservoir with unstructured gridding at 𝑡 𝐷 = 0.01, 0.3 and 1. (a) represents the fine-scale solution; (b) represents 

the AMR solution; (c) is the coarse-scale solution; (d) is the node distribution of the AMR grid. 
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oarse-scale solution, and figure (d) shows the node distribution for the

MR simulation run. 

The solution on the AMR grid demonstrates a particularly good

atch with the fine-scale solution. The node distribution shows high

oncentration along the front and at the well locations, and low con-

entration behind and ahead of the front, where no significant changes

re observed. This considerably lowers the computational time as com-

ared to running the fine-scale model. The coarse-scale solution differs

otably from the AMR and fine-scale solution, with a faster cold front
9 
ropagation at the coarse grid which is more pronounced in comparison

t late times 𝑡 𝐷 = 0 . 3 and 1. 

The relative error of the AMR solution is significantly lower than

he coarse solution in both the L2 and L-infinity norm ( Fig. 11 ). More-

ver, the number of cells is considerably reduced (see Fig. 12 ), ranging

rom 8 to 60%. The trend shows an overall increase as the front prop-

gates, and a decrease when the cold front has reached the producing

ell, which results in coarsening at locations where no more thermal

ariations are detected. This considerably improves the performance of



S.d. Hoop, E. Jones and D. Voskov Advances in Water Resources 154 (2021) 103977 

Fig. 11. L2 norm (left) and L-infinity norm (right) 

of the difference between the coarse model and the 

fine model, and between the AMR model and the fine 

model, both relative to the fine-scale solution, for 

the homogeneous model with unstructured gridding 

from Figs. 9 to 10 . 

Fig. 12. Percentage of mesh elements used during the simulation of the AMR 

model, relative to the total number of cells in the fine-scale model in time for 

the homogeneous model from Figs. 9 to 10 . 
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imulation since the AMR approach is much more favourable in terms

f efficient use of computational resources (see Table 5 in section 6). 

.2. Case 2: sugar-cube shale model 

Shales are often neglected in conventional reservoir simulation as

he convective flow is never acquired in shales due to low permeability.

or geothermal applications, they represent an important source of heat

or thermal recharge of the cold water front. Modelling of the shales

owever significantly increases computational time since shales often

ccupy a significant amount of computational grid. Here, we test an

pplication of our AMR approach to a sugar-cube model where cubes

epresents shale bodies and space between them fluvial channels. We use

 simple 2D setup, with in total, a 5 by 6 shale block configuration. Shale

locks have a permeability of 10 −2 mD while the sand bodies have a

ermeability of 10 3 mD. The injector and producer are placed at opposite

orners of the reservoir as shown in the Fig. 13 . Level 0 consists of 4588

ne cells. Level 1 is constructed differently from the conventional AMR

pproach with the sand channels kept at fine level, and only the shale

locks are coarsened by a ratio of 100 ( 10 × 10 ). The coarse grid, level

, contains 1618 cells. The simulation parameters for this model are

pecified in Tables 6 and 7 in the Appendix. 

Fig. 14 depicts the temperature solution at three different times

hroughout the simulation: 𝑡 𝐷 = 0.1, 0.3 and 0.7. Similarly to the pre-

ious example, the solution is shown for (a) the fine grid, (b) the AMR

rid and (c) the coarse grid. 
10 
As can be seen on the AMR figure (b), the grid refines as soon as

he cold front arrives at proximity to a shale body. The cold front is

ccurately represented on the AMR grid and there are no differences

ompared to the fine grid. On the coarse grid however, the cold front

ropagates further than for the fine and AMR model, which is clearly

isible at the late time recording 𝑡 𝐷 = 0 . 7 . When the cold front passes

art of the shales blocks and these have cooled down, coarsening occurs

s observed at 𝑡 𝐷 = 0 . 7 . 
Fig. 15 depicts the error distribution through time of both the AMR

nd coarse model relative to the fine model. 

As can be seen in Fig. 15 , the error of the coarse model is signifi-

antly larger than for the AMR model, where the error is close to zero.

he high frequency changes in the error, especially observed in the 𝐿 ∞
orm, seem to correlate with refinement and coarsening of the mesh in

etween timesteps, similar to what was observed in Berrone (2010) . The

ercentage of cells used in the AMR grid relative to the number of cells

sed in the fine grid is shown in Fig. 16 . As can be seen, the percentage

f cells ranges from roughly 35% to around 90% halfway through the

imulation, when the cold front reaches the producing well, and then

owers to 65% when shale blocks proximal to the injector wells have

ooled down to injection temperature, and hence coarsening occurs. 

As observed, the computational time and effort was considerably re-

uced throughout the simulation, and the AMR solution outcome shows

 very accurate representation of the fine-scale model (see Table 5 in

ection 6). 

.3. Case 3: fluvial heterogeneous model 

Our AMR framework was tested for a heterogeneous reservoir with a

ow net-to-gross ratio (N/G = 35%). The permeability field ranges from

 to 3400 mD with a significant amount of shale regions present. The hi-

rarchical grid for this example is a structured grid and it comprises two

evels. The finest grid, level 0, consists of 2400 grid cells with 40 cells

n the x-direction and 60 cells in the y-direction. Level 1 was reduced to

50 mesh elements, where aggregation was done using 4x4 fine mesh

lements, resulting in 10 grid cells in the x-direction and 15 grid cells in

he y-direction. The permeability field along with the hierarchical grid

or this example is shown in Fig. 17 . The location of the injector (I) and

roducer (P) are depicted in yellow on the permeability distribution.

he simulation parameters for this model are specified in Tables 6 and

 in the Appendix. 

The simulation was conducted until cold water breakthrough

eached the producing well. Fig. 18 illustrates the temperature solution

t different times throughout the simulation. For each time shown, fig-

re (a) represents the fine-scale solution, figure (b) is the AMR solution,

nd figure (c) is the coarse-scale solution. The grid is kept at its finest

evel at well locations. 

The AMR mesh exhibits a significant improvement in temperature so-

ution compared to the solution on the coarse grid. Refinement is mainly
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Fig. 13. Hierarchical grid of the model with shale blocks. Left figure: permeability field with reservoir dimensions and well locations; middle figure: level 0; right 

figure: coarser level, level 1. 

Fig. 14. Temperature solution of the shale blocks model at three different times: 𝑡 𝐷 = 0.1, 0.3 and 0.7. (a) is the fine-scale solution (level 0); (b) is the AMR solution; 

(c) is the coarse-scale solution (level 1). 

Fig. 15. L2 norm (left) and L-infinity norm (right) 

of the difference between the coarse model and the 

fine model, and between the AMR model and the fine 

model, both relative to the fine-scale solution, for the 

shale blocks model from Figs. 13 to 14 . 
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ocused at the front and slightly beyond the front, while areas where in-

ignificant changes occur remain coarse. Important details, such as fin-

ering effects at the cold water front, which are neglected on the coarse

rid, are clearly visible in both fine and AMR solutions, which results in

 more accurate representation of this physical phenomenon. 

The relative error throughout the simulation run was recorded,

here the fine model is taken as reference solution, for comparison be-
11 
ween the coarse and AMR model. Fig. 19 shows the L2 norm and the

-infinity norm error in time. 

As can be seen, the marked improvement is also recorded in the error

nalysis, where the error between the coarse and fine model is notably

arger than the error between the AMR and fine model. The L2 norm

emains relatively constant for the AMR solution whereas it increases

lightly in time for the coarse solution. 
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Fig. 16. Percentage of mesh elements used during the simulation of the AMR 

model, relative to the total number of cells in the fine-scale model in time for 

the shale blocks model from Figs. 13 to 14 . 
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The number of grid-cells used in the simulation ranges from 8 to

0% throughout the simulation (see Fig. 20 ). This represents a signifi-

ant improvement in computational effort and time, while still capturing

mportant features (see Table 5 in section 6). 

.4. Case 4: reactive transport 

Carbonate reservoirs host a major part of the world’s hydrocarbon

eserves. But besides hydrocarbon reserves, the ongoing energy transi-

ion has resulted in an increase interest in geothermal systems where

any are hosted by carbonate rocks. These reservoirs can have heavily

ractured and karstified intervals, resulting in unforeseen hazards during

rilling. Furthermore, naturally fractured carbonate reservoirs contain

 large uncertainty in flow response due to the poor ability to predict

he spatial distribution of discontinuity networks at reservoir-scale. An-

ther important process related to dissolution is well acidization used to

ncrease the production. This process involves the dissolution of reser-

oir rock to stimulate flow towards the wells. These chemical reactions

re localized and form important features for accurate representation

f the flow response. Furthermore, reaction rates which occur during

issolution are high, resulting in a sharp front in the flow response. 
ig. 17. Hierarchical grid of the heterogeneous model with low net-to-gross ratio. Lef

gure: level 0, the finest level of refinement; right figure: coarser level, level 1. 

12 
Moreover, during dissolution, formation and development of an un-

table dissolution front with multiple wormholes can occur and its mod-

ling is quite sensitive to the resolution ( Shaik et al., 2018 ). In near-

ell acidization processes, the regime which forms a single dominating

ormhole is the most preferable. It is therefore important to accurately

redict this unstable dissolution while keeping the computational time

easonable. AMR is therefore a good solution to model these reservoirs

nd chemical processes to solution requirements. 

In the flow example analyzed in this study, dissolution involves the

ollowing simple reaction where carbonate is dissolved: 

aCO 3 ( 𝑠 ) − > Ca 2+ + CO 3 2− , (22) 

he kinetic reaction rate for this reaction is 

 𝑘 = 𝐴𝐾 𝑘 (1 − 

𝑄 

𝐾 𝑠𝑝 

) 𝑠 𝑠 , (23) 

here 𝐴 is the mineral surface area, 𝐾 𝑘 is the kinetic reaction constant,

 is the ion activity product, 𝐾 𝑠𝑝 is the equilibrium product, and 𝑠 𝑠 is the

olid saturation. Permeability is updated using a power-law relationship

efined as follows 

 = 𝑘 0 

( 𝜙
𝜙0 

)𝑛 
, (24) 

here 𝑘 0 and 𝜙0 are the initial permeability and porosity, and 𝑛 is the

ower-law exponent. 

The proposed model simulates the phenomenon of unstable worm-

ole formation triggered by small perturbations in permeability. On

ne side of the reservoir, an injector well is placed which is perforated

hroughout the whole thickness. On the other side, the producer well is

laced, also spanning the entire thickness of the reservoir. The model de-

cribed in this example has dimensions of 100 by 100 meters. A constant

ermeability of 1 mD is used with 5% of random noise. The left illustra-

ion in Fig. 21 shows the well locations, along with the permeability of

he reservoir. The hierarchical grid consists of two levels, where level 0

s an unstructured grid containing 2194 triangular cells. Cell aggrega-

ion was conducted to construct level 1, where the x- and y- axes were

ivided in 10 equidistant intervals, resulting in a grid with only 100

ells. Level 0 and 1 are shown in Fig. 21 . The simulation parameters for

his model are specified in Tables 8 and 9 in the Appendix. 

The AMR simulation was started at the coarse level, while keeping

he well cells at the finest level throughout the entire simulation run. For

his application, the adaptivity criterion is based on the solid composi-

ion, 𝑥 [ 𝐶 𝑎𝐶 𝑂 3 ] . The adaptivity criteria used in this example are defined
t figure: permeability field with reservoir dimensions and well locations; middle 
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Fig. 18. Temperature solution of the heterogeneous model with low net-to-gross ratio at three different times: at 𝑡 𝐷 = 0.1, 0.3 and 1. (a) is the fine-scale solution 

(level 0); (b) is the AMR solution; (c) is the coarse-scale solution (level 1). 

Fig. 19. L2 norm (left) and L-infinity norm (right) 

of the difference between the coarse model and the 

fine model, and between the AMR model and the 

fine model, both relative to the fine-scale solution, 

for the heterogeneous model with low net-to-gross 

ratio from Figs. 17 to 18 . 

Fig. 20. Percentage of mesh elements used during the simulation of the AMR 

model, relative to the total number of cells in the fine-scale model in time for 

the heterogeneous model with low net-to-gross ratio from Figs. 17 to 18 . 
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13 
s follows: 

 

if Δ𝑥 [ 𝐶 𝑎𝐶 𝑂 3 ] 𝑖𝑗 > 0 . 02 , mark cells i and j for refinement, 

if Δ𝑥 [ 𝐶 𝑎𝐶 𝑂 3 ] 𝑙 < 0 . 01 , ∀𝑙 ∈ 𝐼, mark cells {∀𝑖 ∈ 𝐼} for coarsening, 

(25) 

here Δ𝑥 [ 𝐶 𝑎𝐶 𝑂 3 ] is the difference in composition of the calcium car-

onate 𝐶 𝑎𝐶 𝑂 3 component. 

The simulation was recorded at three different times: 0.13, 0.25 and

t the final time (expressed in dimensionless time). Fig. 22 depicts the

olid composition - the composition of 𝐶 𝑎𝐶 𝑂 3 - in time, where figure

a) is the fine-scale solution, figure (b) is the AMR solution, figure (c) is

he coarse-scale solution, and figure (d) represents the node distribution

f the AMR grid. 

As can be seen, the AMR solution is considerably more accurate than

he coarse-scale solution. The far-propagating wormhole (at 𝑡 𝐷 = 1),

hich is present in both the fine-scale solution and the AMR solution, is

ot well represented on the coarse-scale solution, where two extensive

ormholes are present. The AMR solution however shows a very good

epresentation of the fine-scale solution throughout time. The most ex-

ensive wormhole exhibits slight differences in thickness and some mi-
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Fig. 21. Hierarchical grid of the wormhole model. Left figure: permeability field with reservoir dimensions and well locations; middle figure: level 0, the finest level 

of refinement; right figure: coarser level, level 1. 

Fig. 22. Solid composition solution of the wormhole model at three different times. (a) is the fine-scale solution (level 0); (b) is the AMR solution; (c) is the 

coarse-scale solution (level 1). 
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or variations are observed at the other smaller wormholes. The node

istribution follows the front, which is in this example quite dispersed,

esulting in refinement spanning a wide area, especially at the last time

tep. However, considerable computational resources are saved at the

arly stage of the simulation. 

To quantify the differences between fine-scale , AMR and coarse-

cale solutions, an error analysis was conducted. Here again, both the

2 norm and the L-infinity norm were computed for the AMR and coarse

odel, relative to the fine-scale solution. The graphs in Fig. 23 depict the

utcome. As can be seen, the AMR error is once more significantly less

han the coarse model, for both norms. For the L2 norm, the coarse-fine

elative error is three times greater than the AMR-fine error at the final

ime step. The L-infinity norm of the coarse-fine error starts low at the

rst time step, where no extensive propagation is observed and where
14 
he model is close to the initial conditions, but then rapidly increases to

.8 and remains more or less constant throughout. The L-infinity norm

f the AMR-fine error seems to increase in time. This is due to the prop-

gation of initially small errors in the solution. Note however that the

elatively big error for both the AMR and coarse-scale model are not rep-

esentative for this example and are related to another type of instability

n the solution. 

Similarly to the previous example, we have analyzed the total num-

er of cells used in the AMR model, relative to the total number of cells

ontained in the fine-scale grid. The graph in Fig. 24 shows this quantity

xpressed in percentage. 

As can be seen, the number of cells used during the AMR simulation

s overall less than the number of cells present in the fine-scale model.

nitially, the number of cells starts at 20%, which represents the use of
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Fig. 23. L2 norm and L-infinity norm of 

the difference between the coarse model 

and the fine model, and between the AMR 

model and the fine model, both relative to 

the fine-scale solution, for the wormhole 

model from Figs. 21 to 22 . 

Fig. 24. Percentage of mesh elements used during the simulation of the AMR 

model, relative to the total number of cells in the fine-scale model in time for 

the wormhole model from Figs. 21 to 22 . 
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Table 5 

Computational effort. 

CPU Time Case 1 [s] Case 2 [s] Case 3 [s] Case 4 [s] 

Runtime Coarse 1.28 1.70 1.60 13.61 

Runtime Fine 12.33 4.35 21.73 167.33 

Runtime AMR 5.94 3.06 8.87 91.85 

Overhead AMR 9.03 36.33 15.54 321.86 
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t  
he coarsest level, with both left and right boundaries kept at the finest

evel. It then increases, fairly steeply, to around 95% due to the high in-

ection velocity which corresponds to the dominating wormhole regime.

round the end of the simulation, the number of cells starts to decrease,

hich indicates coarsening at some locations. See Table 5 in the next

ection for the actual computational time. Although almost 100% of the

ells is used at two thirds of the simulation, which is computationally

xpensive, considerable resources are saved in the beginning. Moreover,

his problem is sensitive to the resolution which requires refinement at

any locations in order to accurately capture the wormhole propaga-

ion. 

. Discussion 

In the results section, all computational speed-up was indicated in

erms of % of active cells w.r.t. fine-scale. In this section, the actual CPU

imes are highlighted for all cases. In order to have a fair comparison,

he same nonlinear solver (Newton’s based update with a fixed number

f iterations), linear solver (direct one) and time-stepping strategy is

sed for the fine, coarse, and AMR runs. All these results are shown in

able 5 . 

Even though the overhead of the AMR method is substantial, this can

asily be explained by the non-vectorized Python implementation of the

MR procedure vs highly optimized Python and C++ implementation

f the conventional simulation used in the coarse and fine simulation.

ince the scope of this work is a proof of concept of the proposed AMR

rocedure prototyped outside of the simulation loop, our AMR code has
15 
ot been optimized yet. This can be solved by either an application of

umba (just-in-time compiler for Python) or rewriting the procedure in

++. An expected speed-up, in our experience, is around two orders

f magnitude when compared to the original Python implementation,

hereby reducing the overhead to around 1.5% of the runtime of the

MR method and making it a viable strategy for geoscience applications.

The framework presented in this paper is developed in the DARTS

latform which can be used for a more general set of applications related

o the energy transition. However, it is important to note the major dif-

erences in various energy applications. For example, in two types of

pplications shown in this study (geothermal and chemical dissolution

ases), the coarser representation is still capable of accurately capturing

mportant features of the geothermal dynamic behaviour. The coarse-

cale simulation in chemical dissolution, however, completely fails to

epresent the same dynamic behaviour (dissolution pattern) and effec-

ive characterization of the process (e.g. effective rock dissolution). It is

herefore evident, as is also pointed out in the literature, that problems

ontained localized sharp gradients can greatly benefit from the AMR

echnique. 

. Conclusions 

This study aimed at developing an Adaptive Mesh Refinement

AMR) technique in Delft Advanced Research Terra Simulator (DARTS) for

eneral-purpose reservoir simulation. The developed AMR framework

onsists of a multi-level hierarchical grid, where levels are constructed

hrough a mesh partitioning of the fine-scale model - the static geologi-

al model - which is represented by an array of properties (e.g. volume

nd porosity). The framework consists of the construction of the coarse

evels through cell aggregation of the next consecutive fine level at the

re-processing stage. The method used to aggregate fine cells includes

he grouping of subdomains whose centroids are found within a prede-

ned 3D domain. In this study, domains are grouped by the partitioning

f the x-, y- and z- axes into equidistant intervals. However, this strategy

an easily be changed and improved. 

The aggregation of the subdomains to form a coarser level is stored

s an array of indices for the next stages, which consists of the indices of

he fine cells comprised in its coarse control volume for each coarse cell.
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Table 6 

Boundary conditions geothermal models (section 5.1, 5.2, and 5.3). 

Parameter Value 

Rock heat conduction, 𝜅𝑟 [kJ/m/day/K] 200 

Rock heat capacity, 𝐶 𝑟 [kJ/m 

3 /K] 2500 

Initial pressure, 𝑝 0 [bar] 100 

Initial temperature, 𝑇 0 [K] 348.15 

Injection pressure, 𝑝 𝑖𝑛𝑗 [bar] 150 

Injection temperature, 𝑇 𝑖𝑛𝑗 [K] 308.15 

Production pressure, 𝑝 𝑝𝑟𝑜𝑑 [bar] 60 

Table 7 

Reservoir and simulation parameters geothermal models (section 5.1, 5.2, and 

5.3). 

Parameter Value (5.1) Value (5.2) Value (5.3) 

Sand permeability, 𝑘 𝑠𝑎 [mD] 2000 1000 3000 ± 12.5% 

Sand porosity, 𝜙𝑠𝑎 [-] 0.25 0.25 0.3 ± 12.5% 

Shale permeability, 𝑘 𝑠ℎ [mD] N/A 1e −2 5 

Shale porosity, 𝜙𝑠ℎ [-] N/A 0.001 0.1 

Length domain, 𝐿 𝑥 [m] 1000 600 1200 

Width domain, 𝐿 𝑦 [m] 3000 700 1800 

Simulation time, 𝑡 [days] 5500 1200 7600 

Control volumes level 0 [-] 1420 4588 2400 

Control volumes level 1 [-] 75 1618 150 

Table 8 

Boundary conditions chemical model (section 5.4). 

Parameter Value 

Mineral surface area, 𝐴 [m 

2 ] 1 

Kinetic reaction constant, 𝐾 𝑘 [kmole/day] 1e −3 
Equilbrium product, 𝐾 𝑠𝑝 [-] 0.24 

Power-law exponent, 𝑛 [-] 3 

Initial pressure, 𝑝 0 [bar] 95 

Initial composition, 𝑧 𝑐, 0 [ Ca 
2+ + CO 2− 3 , CaCO 3 , H 2 O ] [0.24, 0.75, 0.01] 

Injection rate, 𝑞 𝑖𝑛𝑗 [m 

3 /day] 0.05 

Injection composition, 𝑧 𝑐,𝑖𝑛𝑗 [ Ca 
2+ + CO 2− 3 , CaCO 3 , H 2 O] [0.01, 0.0, 0.99] 

Production pressure, 𝑝 𝑝𝑟𝑜𝑑 [bar] 65 

Table 9 

Reservoir and simulation parameters chemical model (section 5.4). 

Parameter Value 

Initial permeability, 𝑘 0 [mD] 1 ± 5% 

Initial porosity, 𝜙0 [-] 0.26 

Length domain, 𝐿 𝑥 [m] 100 

Width domain, 𝐿 𝑦 [m] 100 

Simulation time, 𝑡 [days] 2e6 
Control volumes level 0 [-] 2194 

Control volumes level 1 [-] 100 
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C  
ext, in order to solve the relevant governing equations, the flow must

e computed at each interface present in the mesh. We, therefore, gen-

rate a list - called a connectivity list - describing all neighbouring cells

ithin each level and between levels. The fine-scale transmissibility is

hen computed using the permeability field. Hereafter, a flow-based up-

caling is applied in order to acquire the transmissibility of coarser lev-

ls and the inter-level transmissibility. Each control volume has defined

arameters that are relevant for solving the system (volume, porosity,

epth etc). 

Once the hierarchy of levels is complete, the simulation can be

tarted. Adaptivity check is performed at every time step, using crite-

ia specific to the application. Once the regions for coarsening and re-

nement are defined, the solution is prolongated to the finest meshing

evel, and subsequently restricted from fine to the adaptive simulation

rid. A new connection list and grid properties are constructed for the

ew coarsened schema. Once it is completed, the simulation runs for the

ext time step using the constructed simulation model. 

The accuracy of the method was demonstrated for geothermal ap-

lications. Two models were tested, including a homogeneous model

ith unstructured gridding, a synthetic sugar-cube-like model with high

ermeability channels surrounded by shale blocks and a heterogeneous

uvial system model with a low net-to-gross ratio. High levels of solu-

ion accuracy relative to the reference fine-scale results are observed for

oth cases. An error analysis was conducted to record the differences

etween the AMR and the coarse solution relative to the reference fine-

cale solution. The error resulting from the AMR model is significantly

ower than for the coarse model, for all tested problems. The overall

ercentage of grid cells used in the AMR model relative to the fine-scale

odel is considerably decreased for most problems. 

To conclude, the developed AMR method shows high levels of ac-

uracy for both homogeneous and heterogeneous models and can be

sed for geothermal applications as well as for other applications imple-

ented in DARTS. The number of cells in the AMR simulation, relative

o the total number of cells of the finest level, is considerably reduced,

hich is very favourable in terms of efficient use of computational re-

ources. The framework is applicable to two- and three-dimensional

odels and for unstructured as well as structured meshes. The applica-

ility of the method to unstructured grids provides an effective means

or solving complex geological systems. 
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