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Abstract: We show enhanced single-photon emission from artificial atoms in silicon by

coupling them to cavities with high quality factors and small mode volumes, thus enabling

enhanced light-matter interactions which are crucial for quantum technologies.

1. Introduction & Background

Although the realization of scalable quantum computation still poses significant challenges, advances in emerg-

ing quantum technologies are making this goal more and more feasible. In the context of photonic platforms,

promising candidates are solid-state artificial atoms, which hold potential to ease scalable quantum information

processing [1]. A key component in this scenario is enhanced light-matter interaction, which can be realized by

coupling artificial atoms to optical cavities [2]. Such interactions have largely been explored using artificial atoms

in diamond. However, diamond-based platforms face some limitations – e.g. in operation wavelength and fabrica-

tion – thus posing the need for a more convenient platform that would be better-suited for long-distance quantum

information processing along with being easy to fabricate and integrate. Artificial atoms in silicon meet these

requirements. Conveniently, they exhibit emission into the telecommunications O-band (thus obviating the need

for frequency conversion) and may be readily integrated within existing commercial silicon platforms. In order

to realize enhanced light-matter interaction, we therefore couple artificial atoms – such as the carbon-related G

centers [3,4] – in silicon to photonic crystal cavities with high quality factor Q and small mode volume V and show

enhancement of the zero-phonon emission from a single G center. The latter point is confirmed by a second-order

autocorrelation measurement g(2)(0)< 0.5, which confirms genuine single-photon emission.

2. Experimental Details

Our experimental setup consists of a confocal microscope (with NA of 0.65) to both excite and collect fluorescence

from G centers in silicon. The setup is built such that the artificial atoms can be excited with either continuous-

wave green light at 532 nm or with infrared light. The light collected from the emitters is in the telecom O-band

and is detected with superconducting nanowire single-photon detectors (with an efficiency of ∼ 20% in the O-

band) for second-order autocorrelation measurements or sent to a spectrometer for obtaining the emitters’ spectra.

The G centers are fabricated starting from a commercial silicon on insulator (SOI) wafer consisting of 220 nm

silicon on 2 μm silicon dioxide. The wafer was first cleaved and implanted with 12C with a dose of 2 x 1014

ions/cm2 at 36 keV energy, and then annealed at 1000 ◦C for 20 s. The sample was then electron-beam patterned

and etched in a foundry (Applied NanoTools), thus realizing silicon cavities with SiO2 bottom cladding and air as

top cladding. Finally, the sample was under-etched for 2 minutes in a 49% solution of hydrofluoric acid and then

dried with a critical point dryer. We designed and fabricated L3-, L5- and L7-type photonic crystal cavities with

high Q and small V , in order to enable an enhancement in the spontaneous emission rate of the quantum emitter

(the well-known Purcell enhancement [5]).

3. Measurements & Results

We analyze a single G center coupled to an L3-type cavity mode by exciting the emitter with light at 532 nm

(at a power of 7 μW) and collecting its emission spectrum with a spectrometer (integration time of 60 s). At

a temperature of 4 K, the zero-phonon line (ZPL) of the quantum emitter is shown in Fig.1a (blue curve). We

observe a ZPL at 1279.85 nm, typical of G centers. To characterize the cavity, we measure its reflectivity (using
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Fig. 1. (a) ZPL measured at a temperature of 4 K (blue curve) and 24 K (green curve). (b) Cavity

reflectivity measurement at 4 K (blue curve) and 24 K (green curve). (c) SEM image of an L3-type

photonic crystal cavity. (d) Simulation showing the electric field distribution for the fundamental

cavity mode. (e) Lifetime measurement. (f) Second-order autocorrelation measurement g(2)(t).

a tunable infrared laser) in cross-polarization, meaning that the excitation and the collection paths are orthogonal

to each other. The cavity reflectivity measurement is reported in Fig.1b (blue curve) and shows a Q of 3729±54

and a resonance center wavelength of (1279.747±0.002) nm, very similar to the ZPL wavelength of the emitter

which is therefore resonant to the cavity mode. A way to detune the cavity from the emitter such that the resonance

condition would be lost is to change the cryostat chamber’s temperature. We therefore warmed up to 24 K and

re-measured the emitter’s ZPL and cavity reflectivity (see green curves in Fig.1a and b, respectively). We observe

a shift of the cavity resonant mode – now at (1279.057± 0.001) nm – and therefore a detuning of the emitter

from the cavity. By integrating the intensity of the ZPL curves for the on- and off-resonance cases and taking

the ratio of the integrals, we observe a spectrally-resolved enhancement of ∼5 when the emitter matches the

resonant cavity mode, compared to the off-resonance case. This is to be attributed to the Purcell enhancement of

the zero-phonon spontaneous emission into the resonant mode. Fig.1c and d show a SEM image of an L3-type

cavity and the simulated electric field distribution for the fundamental cavity mode, respectively. Moreover, at

the temperature of 4 K, we performed a lifetime measurement (Fig.1e, from which an excited state lifetime of

(5.92± 0.05) ns is extracted from the fit) and a second-order autocorrelation measurement, which led to a fitted

value of g(2)(0) = 0.18±0.03 (see Fig.1f). The fact that g(2)(0)< 0.5 is a signature of single-photon emission.

4. Conclusion

We have shown enhancement of the zero-phonon emission from a single G center in silicon by coupling the emitter

to a cavity with a high Q/V . This may represent a crucial step towards the development of integrated single-photon

sources as well as of scalable quantum computation based on enhanced light-matter interaction.
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