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Preface

In the beginning of my master programme, Electrical Engineering - Signal & Systems at
TU Delft, I understood the depth and sophistication of signal processing. Interested in acous-
tics and speech production, thanks to my father, I decided to follow courses on audio signal
processing. During Digital Audio and Speech Processing course at Technical University of
Delft in 2017, I was intrigued with the fact that sound production and perception is deeply
intertwined with human anatomy.

The curiosity led me to Dr. Ir. Richard Heusdens who talked about projects at Philips
Research, and I contacted him immediately. Thankfully, I got a response in short time from
Bert den Brinker and Koray Karakaya from Philips Research in Eindhoven on a project about
snoring. As snoring has been a part of my childhood, again thanks to my father, I was inter-
ested. Berts endeavour to guide me with his extensive knowledge throughout my work and
his never-ending patience towards me can not be appreciated enough here. Additionally,
Okke Ouweltjes’ assistance in acoustic theory and software aspects of the project helped me
a lot on understanding a topic that I do not have any background in. Richard Heusdens’ un-
derstanding and kind attention in all matters helped conducting my thesis at Philips Research
Eindhoven successfully. I will be grateful to my supervisors as their wisdom has inspired me
to achieve greatness. Consequently I want to thank Dr.ir. JCA van der Lubbe for being a part
of the thesis committee.

Foremost, I want to thank my partner, Asligul Keskin, my family and especially my par-
ents, for their never-ending support throughout this Master thesis.

The thesis at hand is structured into five chapters: The Introduction chapter gives a brief
summary of the state of art of snoring sound analysis and the anatomy of the upper air-
way. Furthermore the thesis objective is presented here. Chapter two explains the theoret-
ical background of speech production and linear prediction analysis and how this problem
relates to snoring sound production. The experiments and results section involves the appli-
cation of the theory and difference of models suggested in the previous section. Results and
limitations will be discussed in chapter four. The thesis ends up with a conclusion part and
proposals regarding the future work on the topic.
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1
Introduction

It is likely that man has found the snoring of others unpleasant since cave dwelling times,
but it was not until the second half of 20th century that effective medical and surgical treat-
ments were developed. Exact figures on the prevalence of snoring are difficult to give, as the
experimental results depend highly on the chosen population based on ethnic origin and
age. Despite studies show different prevalence, It is generally assumed that around 40% of
the adult population snore habitually [20][27][51][50][80][77].

The sound of snoring consists of a series of impulses caused by the rapid obstruction and
reopening of the upper airway. This cycle of closure and opening occurs in the region of 50 to
130 times per second during a snore event[47][12]. In most cases, loud snoring does not pose
any health threat although it is a frequent cause of marital disharmony. In 10% of habitual
snorers, complete collapse of the airway during sleep leads to the Obstructive Sleep Apnea
(OSA) [32]. Due to adverse effects on the cardiovascular system and daytime tiredness, this
disease has been linked with higher than average rates of death from both accidental and
natural causes. In the last twenty years there has been an increasing awareness of the prob-
lems of loud snoring and OSA. As a consequence, doctors have been seeing a much greater
demand for medical and surgical treatment.

Similarly, speech generation is enabled by opening and closing of the vocal cords in the
vocal tract and speech synthesis has always been a fundamental area in speech processing.
It refers to the process of producing an acoustic signal by controlling a model with a set of
parameters. Similar to speech, snoring sounds are produced by vibrating tissues within the
upper airway tract. By exploiting this similarity, we try to explain snoring sound production
using synthesis techniques that has been applied to speech.

1.1. Anatomy of Snoring Sound Production
In order to define different types of snoring, we have to be acquainted with anatomy of

the upper airway tract. Snoring occurs in sleep, during which the upper airway is in a passive
state. As most of the snoring sounds are produced during inhalation [68], the driving pres-
sure is directed towards the interior. These physiological differences should be kept in mind
when applying speech techniques to the acoustic analysis of snoring. In this section, we will
describe the inhalation process, and mention the tissues and organs that play a role on in-
halation.

By moving the thoracic diaphragm muscle, a suction effect is created at the lungs. Air
may either move through the mouth or the nose or through both simultaneously. The nose is
a rigid walled tube with bony walls and hence is not prone to collapse.

We will focus on the supra-glottal area, as it involves anatomical parts that are larger con-
tributors to snoring. These parts are soft tissues that tends to collapse during sedation and

1



2 1. Introduction

Figure 1.1: Sagittal View of the Upper Airway [65]

sleep. These four structures, described in Kezirian et al.’s study are Velum, Oropharyngeal
Walls, Tongue and Epiglottis i.e. VOTE structure.

First, the velopharyngeal area is the area that is located around the velum, which is a
soft tissue located at the back roof of the mouth. Attached to the velum, we have uvula and
around the velum, we have lateral velopharyngeal walls, which are similar to oropharyngeal
walls. Velum is also called the soft palate as it does not constitute a bone. Velum functions as
a flap or valve that closes off the nasal airway during swallowing to prevent the regurgitation
of food into the nose.

The oropharyngeal lateral walls are located around the palatine tonsils. Lateral collapse
of these tissues also induce sleep disordered breathing. While located in the same area as the
velum, the impact can be distinguished in both audio signals and endoscopic investigation
[53].

Another structure that can cause sleep disordered breathing is the tongue. Similar to
speech the tongue can change the cross sectional area of the structure by moving backwards
towards the anteroposterior wall, causing obstruction in the airway. This is caused by relax-
ation of the muscles during both sedation and several sleep phases such as Non-Rapid Eye
Movement (NREM)and Rapid Eye Movement (REM). This muscle tone relaxation, supported
by the impact of the gravity during supine sleeping position. As a result, the tongue moves to
the posterior region, causing the cross sectional area to decrease, and in turn enables snoring.

The upper airway tract also includes the epiglottis which is an elastic cartilage that is at-
tached to the entrance of the larynx. The epiglottis separates the trachea and the esophagus
and controls air and liquid intake during breathing and swallowing respectively. Epiglottis is
one of the possible contributors to snoring. It is found that epiglottis is an under-recognized
factor in sleep disordered breathing [53]. The epiglottis can collapse from two reasons: de-
creased rigidity of the structure and displacement to posterior wall.

The sub-glottal area consists of larynx, trachea and lungs. Larynx and trachea contain
a strong framework of cartilage and are not prone to collapse under normal circumstances.
Collapsing of the lungs (Pneumothorax) is a different problem that does not lead to snoring.

These four structures can have different levels of obstruction. Kezirian et al. [53] sug-
gested a scheme for diagnosing sleep disordered breathing in Table 1.1 on the next page in
2011. At the posterior side of the airway tract, we have posterior pharyngeal wall. One of
the collapsing mechanism is collapsing of the aforementioned regions to posterior wall. This
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mechanism is called antero-posterior collapse. Another mechanism is called lateral, which
refers to collapsing of the structures to the center of the airway. The last mechanism is called
concentric, which is combination of antero-posterior and lateral collapse.

Table 1.1: VOTE classification scheme suggested by Kezirian [53], Open boxes reflect potential degree of obstruc-
tion, shaded boxes reflect the fact that a specific structure-configuration cannot be observed

Structure Degree of Obstruction
Configuration

Antero-Posterior Lateral Concentric
Velum

Oropharynx Lateral Walls
Tongue Base

Epiglottis

Snoring is caused by the coupled oscillation of the walls of the airway with the airflow
travelling through it. From the point of view of mechanics, these are problems related to the
stability of flows over flexible structures. In the study of fluid-structure interactions, linear
analyses play a vital role, although quantitative results call for the inclusion of non-linear ef-
fects. Linear analysis investigates the behaviour of very small disturbances to an otherwise
steady state. As a result fluid dynamics is an alternative approach to modelling of the upper
airway and snoring problems, and is briefly mentioned in the next section.

1.2. Literature Review
This section will go over previous literature on snoring sound production and summarize

how these research contribute to current state of the art.

Huang et al.[47] investigated soft palate snoring in experimental settings in 1995. They
used an experimental model to simulate inspiratory flow through the pharynx. As a result,
they have found that below a critical flow speed, the soft palate remains still. Once the speed
is exceeded, the soft palate flaps back and forth, hitting the sides of the airway tract. Photo-
graphic evidence reveals that the flap of the soft palate starts as small-amplitude oscillations
which increase in size over several cycles until the tube wall is hit. This conforms with the
concept of flutter between the tongue and pharyngeal wall.

First, we go over approaches that involve sound features. It is mandatory to mention
that most of these studies and many others are focused on OSA classification and segmen-
tation of the sounds that are produced by humans during sleeping. Earliest research on
snoring sounds were conducted by Miyazaki et al. [59] in 1998. Recorded snoring sounds
have been analyzed and compared with intraluminal pressure measurement and dynamic
image recordings. The results show that sound recordings are good for screening or sup-
portive method to diagnose the site and grade of upper airway obstruction during sleep. In
2006, Duckitt et al. demonstrated that hidden Markov models and acoustic parameteriza-
tions, which are effective in speech recognition systems, are able to identify snores in audio
recordings with high accuracy [32].

In 2007 Cavusoglu et al. suggested an algorithm that classifies sleep sound segments as
snores and non-snores according to their subband energy distributions [23]. As they ob-
served similarities between snoring energy distributions they used Principal Component Anal-
ysis (PCA) to classify the sleeping sounds in two dimensional space and compared the results
with Ear Nose Throat (ENT) experts classifications. They have found that below 500 Hz fre-
quency region is sufficient to classify snoring and non-snoring segments. In 2011, Azarbazin
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and Moussavi [8] used an unsupervised learning method, fuzzy clustering, which adjusts the
parameters for the algorithm adaptively and used a V-Box approach. In 2012, Ben-Israel
et al.[13] classified snore and non-snore using an acoustic-based system and proved inter-
snore properties can differentiate adult habitual snorers according to Apnea-Hypoapnea In-
dex (AHI). Doukas et al. [30] proposed a signal processing based approach and estimated
Sound to Noise Ratio (SNR) and noise level using Likelihood Ratio Testing (LRT) and clas-
sified sound frames as snore/non-snore. Similarly Dafna et al. [33] classified snoring using
variety of spectral and temporal measures and used a feature selection algorithm on the Re-
ceiver operating characteristic (ROC) curve to select most definitive features. Karunajeewa
[52], Alshaer [5], Flanagan [37] also suggested similar approach for detecting snoring sounds.
Alshaer[6] also focused on segmenting inspiration and expiration sounds. Most of these
methods were applied to patients in a silent room with recording equipment. Additionally,
the main focus of these studies are on the spectral features that has been driven directly from
the snoring sounds. Moreover, anatomical structure of the airway has not been incorporated
in the solution of the problem and the detecting where the problem has not been the objec-
tive of these studies.

More recently, the team in Passau University worked on data evaluated by ENT experts
based on classification suggested by Kezirian et al. [53]. The team worked mainly on classifi-
cation of different snore types obtained from different patients. Later, in the INTERSPEECH
2017 Computational Paralinguistics Challenge Snoring subchallenge [75], The Munich-Passau
Snore Sound Corpus (MPSSC) is introduced for classification of snore sounds by their excita-
tion location within the upper airways. Based on video and audio recordings from three dif-
ferent ENT centers taken during drug induced sleep endoscopy (DISE) examinations, snore
events have been identified and classified into four classes based on a simplified version of
the VOTE classification. The resulting dataset, MPSSC, contains 828 snore events from 219
subjects. While this dataset would be useful for our project, it was inaccessible throughout
the project duration. However, it shall be pointed that the recordings of this corpus are taken
in well controlled environment, with equipment, and observation and annotation of medical
experts which we lacked in our study.

It is necessary to mention that endoscopy is used in combination with sedation (Drug
Induced Sleep Endoscopy (DISE)) in most of the aforementioned studies. Agrawal et al.[2]
mentions that drugs can have an effect on tissue stiffness. Therefore, it is questionable to use
snoring sounds collected during DISE for studying typical everyday snoring conditions. In
our study, patients will not be sedated and will be emitting natural sounds during their sleep.

Another approach to snoring problem is investigating the airway structure in mechanical
domain. Aittokolio et al. [4] built a model to predict nasal flow profile that considers three
critical components which control the patency of the airway; stiffness of tissues, pump drive
and muscle support. Balint et al. [11] built a computational model to simulate the motion of
an arbitrarily deforming cantilevered flexible plate embedded in viscous plane-channel flow
to identify the mechanisms when breathing impairment occurs through snoring and sleep
apnea. Chouly et al.[26] proposed an in vitro experimental model in order to simulate be-
haviour of the airway structure and its interaction with flow. Lastly, Babbs [10] simulated
movement of the soft palate as a pendulum moving with varying pressure caused by the Ven-
turi effect in nasal and oral part of the airway. While these methods do stem from physical
phenomena and has the objective to find the flow patterns within the mouth, they do not
incorporate the sound emitted from the snorer. They mainly focus on the anatomical struc-
ture and the pressure pattern within the airway and model the flow patter for the vibration
during the inhalation. We, on the other hand, analyze real life snoring sounds, incorporating
the upper airway anatomical structure in the solution.

The study that is more in line with our theoretical model is conducted by Ng et al. [62] [63]
and [61] between 2006 and 2010, who worked on speech like analysis of snoring sounds. Ad-
ditionally, cross sectional areas of upper airway have been investigated [64]. He used inverse
filtering methods to find the source flow and later, used cross-sectional areas to synthesize
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snoring sounds. Later, he conducted a listening test and measured if narrowed airways can
create snoring sounds which are perceptually different. More recently, Saha et al.[73] worked
on developing a subject-specific acoustic model of the upper airway to investigate the im-
pacts of upper airway anatomy.

To summarize, many approaches have been used to alleviate snoring problems, assist
medical personnel for surgical diagnosis, help annotation of snoring sounds, create a reliable
physical model and many other problems related to snoring. Our objective will be explained
in the following section.

1.3. Goals of the Thesis
Many different approaches, ranging from sound feature based, to liquid flow modelling

has been used for snoring problems. Our main approach will stem from speech synthesis
theory. Therefore, the main objective of the present thesis is to answer the following ques-
tions.

1. Can acoustic tube modelling be used to analyze the upper airway tract and used to
locate the obstruction?

2. Are linear prediction coefficients reliable for reconstructing the upper airway dimen-
sions for snoring sounds?

3. Can excitation flow obtained from inverse filter be a significant indicator of which area
is obstructed in the upper airway?

4. Is it possible to identify the severity of obstruction in non-OSA patients using Source
Filter Model (SFM)?

5. Is it possible to identify the location of obstruction in non-OSA patients using Source
Filter Model (SFM)?

1.4. Outline
In this chapter we have explained the anatomy of snoring sound production and intro-

duced previous research on snoring sounds. Then, in Chapter 2 we will explain the theoreti-
cal background of speech production starting from the wave equations and build our models
based on transmission line theory and inverse filtering. The following Chapter 3, will be de-
voted to experiments and results for our models. Next, in Chapter 4 the results from the ex-
periments will be discussed and the limitations of the study will be described. Consequently,
Chapter 5 will discuss the conclusion and results for this study, and elaborate on future work.





2
Airway Tract Models and Inverse

Filtering

In this chapter we will introduce acoustic properties of tubes and how they are related to
our modelling for snoring sound production. First, wave equation and its relation to acoustic
theory will be demonstrated in section 2.1. Later, in section 2.1.6 and 2.1.7 we will investigate
the models for tube endings and demonstrate how they effect the linear prediction method.
Section 2.2 will introduce physical phenomena that is discarded in simple tube modelling.
Later, we will introduce two models for modelling the snore sound production 2.3. In section
2.4 we will link our model to linear prediction and lattice filters. The last section 2.5 will be
devoted to inverse filtering methods previously used to model glottal flow in speech produc-
tion.

2.1. Acoustic Transmission Line Model
In order to explain the theory behind the acoustic transmission line model, we have to

start with the traveling wave equation. Wave equations are represented by partial differential
equations that represent processes varying with time and space. Wave Equation is a simpli-
fication of Navier-Stokes equation for fluids. The simplification assumes that the medium is
linear and retains only first order terms linear in pressure. Linear medium guarantees that
waves of different frequencies do not interact with each other, which holds for pressure levels
below 140 dB[40]. This property is called superposition and will be used as n presumption for
the following chapters as natural sounds, produced by human tissues do not exceed 100 dB.

Wave equations for liquid flow are shown in Equation 2.4 on the following page. This
equation can be obtained from three properties: State Equation 2.1, which is the application
of Hooke’s law to fluids; Newton’s mass law 2.2, which takes the pressure difference as the
force that accelerates the medium inside the volume, and mass preservation law 2.3 which
states that what flows in and does not come out again will remain inside the volume since
mass does not vanish [15].

∂ρ = κρ∂p (2.1)

ρ
∂u(x, y, z, t )

∂t
=∇p(x, t ) (2.2)

1

ρc2

∂p(x, t )

∂t
=∇•u(x, y, z, t ) (2.3)

where ∇ indicates the gradient and ∇• the divergence and

7
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p(x, t ) = pressure at location x, time t
u(x, y, z, t ) = vector velocity of an air particle at location(x,y,z)

c = speed of sound in air
ρ = density of air inside the vocal tract
κ= volume compressibility

By combining two equations in 2.3 on the preceding page and 2.2 on the previous page,
we can obtain the general wave equation in 2.4

∆2Ψ (t )− 1

c2

∂2Ψ (t )

∂t 2 = 0 (2.4)

Ψ is a scalar quantity called velocity potential. Despite it has no physical significance, it’s
negative gradient is the field velocity. Hence, this representation is used to derive pressure
and volume velocity equations. If we use complex notation 2.5 and assume complex expo-
nential for time dependence and rewrite Equation 2.4, we obtain a simpler wave equation 2.6
which is a second order partial differential equation in a simpler form of Helmholtz Equation.

Ψ (t ) =Ψe jωt (2.5)

∆2Ψ (ω)−k2Ψ (ω) = 0 (2.6)

where k is ω/c wave number or phase coefficient in m−1. ∆2 is the Laplacian operator
that can be represented as Equation 2.7 in three dimensions for Cartesian coordinate system.
Solving the wave equation 2.4 with D’Alambert’s method we obtain the harmonic relation
equation and obtain k = ω

c =ω
p
ρκ .

∆2Ψ= ∂2Ψ

x2 + ∂2Ψ

y2 + ∂2Ψ

z2 (2.7)

Due to superposition property, ω will be discarded in the forthcoming notations. Solu-
tion of the wave equation can be evaluated in different coordinate systems, which are Carte-
sian, Cylindrical and Spherical. Spherical solutions constitute of Bessel and Henkel functions.
However, we will only be interested in Cartesian Coordinate system, as our interest will be on
one direction and the general solution for three dimensional systems can be obtained by su-
perimposing the one dimensional solution. As we restrict ourselves to the one dimensional
domain, we assume that the diameter of the tubes that we are interested in are much smaller
compared to the wavelength (d ≪ λ) which guarantees axial propagation. By investigating
the dimensions, we find:

λ4kH z =
c

F
= 340ms−1

4000Hz
= 8.5cm (2.8)

while diameter of the vocal tract is around 2-4 centimeters [60] [28]. This satisfies the
property that vocal tract tubes are much smaller than the compared wavelength.

One-dimensional propagation also means that all wave planes perpendicular to the axial
direction are planes of constant phase. Additionally, velocity is independent of location (y, z).
Here, we also define the volume velocity as:

v(x, t ) = S(x, t )u(x, t )
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Figure 2.1: Tube with steps in the area function. Taken from [15]

where S(x, t ) is the cross sectional area of the vocal tract. For airway geometry, the area
function is a non-constant function which changes with x, depth. The change between each
cross section will be assumed as a step difference, which can be seen in figure 2.1. If we
substitute volume velocity in equations 2.3 on page 7 and 2.2 on page 7 we get the following
results

−u(x, t )

∂x
= 1

ρc2

∂[p(x, t )S(x, t )]

∂t
+ ∂S(x, t )

∂t
(2.9)

−∂p(x, t )

∂x
= ρ

∂[u(x, t )/S(x, t )]

∂t
(2.10)

Figure 2.2: Cross-section of a horn, i.e. duct with gradually increasing cross area. Taken from [15]

To evaluate the wave equation, we first define the boundary conditions. Considering the
elementary volume between the cross areas at x and x +dx in Figure 2.2 we return back to
Euler’s continuity equation 2.9 which states the inflowing and outflowing mass should be the
same within a lossless tube.

S(x)+ dS(x)
2 is the average area of the horn. If we neglect the second-order differentials,

we obtain 2.11,

−ρ
(∂u

∂x
+ 1

S(x)

dS

dx
u

)
= ∂ρ

∂t
(2.11)

which is modified continuity equation. Using Equation 2.1 on page 7 we rewrite to get
field quantity instead ofρ, and later combining with state equation we obtain Webster’s Equa-
tion 2.13 that is used for conical and exponential horns.

−
(∂u

∂x
+ 1

S(x)

dS

dx
u

)
= κ

∂p

∂t
(2.12)

It is complementary to remind here that term 1
S(x)

dS
dx is identical to d[lnS(x)/dx]. As it

can be seen for constant area function, the equation reduces to one-dimensional wave equa-
tion 2.4 on the facing page

∂2p

∂x2 + 1

S(x)

dS

dx

∂p

∂x
= 1

c2

∂2p

∂t 2 (2.13)
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2.1.1. Characteristic Impedance
Here, we introduce the quantity characteristic impedance, which is sound pressure di-

vided by particle velocity. Using Euler’s equation 2.9 on the previous page and considering
only forward progressing wave (p(x) = −→p e− j kx and u(x) = −→u e− j kx ) we simplify the division
as follows.

Zw =
−→p e− j kx

−→u e− j kx
=−

←−p e− j kx

←−u e− j kx
= ρc (2.14)

Zw is real in no damping case, since sound pressure and particle velocity are in phase,
which generally holds for plane waves in lossless fluids. If damping would be included in the
equation k the wave number can be used as a complex number[40].

k = ω

c
(1+ jα) (2.15)

where α being the damping coefficient. However, for lossless tube model α= 0. Damping
effect can also be represented by resistance elements in the transmission line model. This
will be discussed in section 2.2.1 on page 19.

2.1.2. Transmission-Line Equations and Reflectance
We aim to find the transmission line equations for a single acoustic duct with non-varying

area in this section portrayed in Figure 2.3 on the next page. Hence, we take ∂S(x, t )/∂t = 0
and S(x, t ) = S and replace in Webster’s Equation 2.13 on the preceding page. Equations 2.9
on the previous page and 2.10 on the preceding page yields

−v(x, t )

∂x
= S

ρc2

∂[p(x, t )]

∂t

−∂p(x, t )

∂x
= ρ

S

∂[v(x, t )]

∂t

As these equations are linear constant coefficient differential equations, the steady-state
solution will have the form in Equation 2.16 which represents waves moving in both the pos-
itive and negative x directions

vn(xn , t ) =−→v (xn , t )+←−v (xn , t ) (2.16)

= Sn

ρc
[Ψ+

n (ω)e jωt e− jω(xn /c) −Ψ−
n (ω)e jωt e+ jω(xn /c)] (2.17)

pn(xn , t ) = p0 =−→p (xn , t )+←−p (xn , t ) (2.18)

=Ψ+
n (ω)e jωt e− jω(xn /c) +Ψ−

n (ω)e jωt e+ jω(xn /c) (2.19)

xn representing displacement along the tube n (i.e. 0 ≤ xn ≤ ln).

We also define delay as the time difference between the beginning of a tube and the end
of a tube.

τn = l

c
(2.20)
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Figure 2.3: Simple Tube Model at the boundary

2.1.3. Termination of Tubes
At this point, it is important to inspect the boundary conditions for an acoustic tube. For

this section we will assume the tube is excited by an exponential volume velocity with

v(0, t ) = vglottis(t ) = vglottis(ω)e jωt (2.21)

Additionally, for this section we will consider n = 1 as we will inspect wave equations in a
single tube.

Open Termination
For this case, the end of the tube is open, resulting in soft termination. We neglect the

radiation effect at the end of the tube and take the boundary conditions as

p(l , t ) = 0 (2.22)

Zl = 0 (2.23)

Using Equation 2.21 and Equation 2.22 we obtain

S

ρc

[
Ψ+(ω)−Ψ−(ω)

]= vglottis (2.24)

Ψ+
n (ω)e− jωτ+Ψ−

n (ω)e+ jωτ = 0 (2.25)

Solving the equations for Ψ+ and Ψ−

Ψ+
n (ω) = vglottis

ρc

S

[ e− jωτ

2cos(ωτ)

]
(2.26)

Ψ−
n (ω) =−vglottis

ρc

S

[ e− jωτ

2cos(ωτ)

]
(2.27)

and from Equation 2.16 on the facing page and (2.18) steady-state solutions for volume ve-
locity and pressure become

v(x, t ) = vglottis
[cos(ω(τ− x

c ))

cos(ωτ)

]
e− jωτ (2.28)

p(x, t ) = j
ρc

S
vglottis

[sin(ω(τ− x
c ))

cos(ωτ)

]
e− jωτ (2.29)

As an example for position at x = l , at the boundary, the solution becomes

v(l , t ) = Vglottis

cos(ωl/c)
e jωt =Vlips(ω)e jωt (2.30)
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Figure 2.4: Tube Transfer Function for an open ended tube with 17.5 cm length

In turn the transfer function of vocal tract becomes

H(ω) = 1

cos(ωl/c)

The resonant frequencies can be found by setting the denominator equal to zero. Since
ωi = 2πFi resonant frequencies occur at

Fi = c

4l
[2i −1] f or i = 1,2,3,4... (2.31)

As a result, transfer function for a tube of 17.5 cm and a speed of sound 343 m/sec reso-
nant frequencies occur around 500,1500,2500 Hz as seen in Figure 2.4
Closed Termination

We derive the solutions for a closed termination which is at distance x in a lossless tube
with length l . This representation has also been called as hard termination. It is achieved by
closing the surface with rigid materials and the waves are fully reflected.

v(l , t ) = 0

Zl =∞
Similarly to section 2.1.3.1 on the preceding page, open termination, we can compute pres-
sure and volume velocity.

v(x, t ) = vglottis
[sin(ω(τ− x

c ))

sin(ωτ)

]
e− jωτ

p(x, t ) = j
ρc

S
vglottis

[cos(ω(τ− x
c ))

sin(ωτ)

]
e− jωτ

Since the ratio of pressure and and volume velocity inside the tube is only dependent
on the terminating impedance of the tube, Z0 = p0/v0 , it is convenient to formulate the
solution of the wave equation in terms of the distance to the position of Z0. To this end, we
will substitute the coordinate x with −l shown in Figure 2.3 on the previous page.

Now, because of e− jωx
c = 1 at location x = 0, we have :

p0 =−→p +←−p (2.32)

u0 =−→u +←−u (2.33)
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Keeping in mind Equation 2.14 on page 10 we can obtain:

Zw v0 =−→p −←−p (2.34)
p0

Zw
=−→u −←−u (2.35)

Hence, we can follow with

−→p = 1

2

(
p0 +Zw u0

)
and ← p = 1

2

(
p0 −Zw u0

)
(2.36)

→ u = 1

2

( p0

Zw
+u0

)
and ← u =−1

2

( p0

Zw
−u0

)
(2.37)

For an arbitrary position l =−x we get the following equations

p(l ) = 1

2

(
p0 +Zw u0

)
e j kl + 1

2

(
p0 −Zw u0

)
e− j kl (2.38)

v(l ) = 1

2

( p0

Zw
+u0

)
e j kl − 1

2

( p0

Zw
−u0

)
e− j kl (2.39)

Using Euler’s identity e jα = cos(α)− j sin(α) we obtain the transmission-line equations.

p(l ) = p0 cos(kl )+ j Zw u0 sin(kl ) (2.40)

u(l ) = j
p0

Zw
sin(kl )+u0 cos(kl ) (2.41)

and T matrix for a specific duct becomes[
p1

u1

]
=

[
cos(kl ) j ZW sin(kl )

j 1
ZW

sin(kl ) cos(kl )

][
p2

u2

]
(2.42)

2.1.4. Electrical Analogy
This T-matrix multiplication in Equation 2.42 has been used in our model with electrical

circuit analogy, which can be represented by an L-C circuit. Here, it is essential to describe
electro-acoustic analogies that are commonly used in representation of acoustic phenomena
[17]. This analogy can be summarized in table 2.1 and table 2.2.

Table 2.1: Source Analogy for Acoustic - Electrical Circuits

Type Mechanical Variable Configuration

Power Conjugate Pair
Effort Variable Pressure Voltage
Flow Variable Volume Flow Rate Current

Hamiltonian Variables
Effort Hamiltonian Pressure-Momentum Flux Linkage
Flow Hamiltonian Volume Charge

Table 2.2: Impedance Analogy for Acoustic - Electrical Circuits

Acoustic Property Analogous Electrical Property
Acoustic Resistance Resistance

Acoustic Mass Inductance
Acoustic Compliance Capacitance
Acoustic Impedance Electrical Impedance

These idealized equations mentioned in this section are different than a real physical
medium. For these idealized equations to be used as they are, numerous conditions has to
be satisfied:
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1. The medium is homogeneous and does not crack, meaning that there are no inclusions
of vacuum as might be caused by cavitation

2. Thermal conductivity is zero, which assumes adiabatic compression

3. Inner friction is zero meaning that there are no energy losses and no viscosity

4. The medium has defined mass and elasticity

Given that these conditions are satisfied, we can represent our tube model as a simple LC
circuit. Two port theory says that [16]

Z1 = j
Zw

S
tan

kl

2
(2.43)

Z2 =− j
Zw

S

1

sinkl
(2.44)

For sections of small lengths, that is d ≪λ, the following approximations apply

tan
kl

2
= kl

2
and

1

sinkl
= 1

kl
(2.45)

This can be seen in Figure 2.5. We concatenate multiple LC circuits to represent the vocal
tract. This model corresponds to Kelly Lochbaum Lattice Filter, which will be mentioned in
section 2.1.5.

L = kl Zw

S
(2.46)

C = Zw

kl S
(2.47)

Figure 2.5: Simple Electrical equivalent T-Network circuits of vocal-tract section

2.1.5. Stepped Ducts and Lattice Filter
In order to determine the interaction of traveling waves between tubes, consider what

happens at the juncture between the kth and (k+1)st tubes. Since sound wave propagation in
a tube obeys the law of continuity, sound pressure and volume velocity must be continuous in
both time and space everywhere along the tube model. Now, if we take boundary conditions
as taking total volume velocity Sv , and pressure p as continuous at the the tube junction, i.e.

p1 = p2 (2.48)

v1 = S1u1 = S2u2 = v2 (2.49)

we get a reflected wave. As in characteristic impedance equation 2.14 on page 10 we
obtain equation below from Equation 2.48
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p(x, t ) =−→p1 +←−p1 =−→p2 (2.50)

S1

( −→p1

Zw
−

←−p1

Zw

)
= S2

−→p2

Zw
(2.51)

we define reflectance as proportion of pressure of backward propagating wave to pressure of
forward propagating wave. As a result, we get Equation 2.52

r =
←−p1
−→p2

= S1 −S2

S1 +S2
(2.52)

As our characteristic impedance is defined as Zw =−→p /←−p we have to find the new tube equa-
tions. Now keeping in mind Equation 2.36 on page 13 we can find ZL as

ZL = Zw

S
= ρc

S
(2.53)

As a result, T-matrix from equation 2.42 on page 13 becomes[
p1

v1

]
=

[
cos(kl ) j ZL sin(kl )

j 1
ZL

sin(kl ) cos(kl )

][
p2

v2

]
(2.54)

Now keeping in mind Equation 2.48 on the preceding page we can incorporate reflection coef-
ficients into our equation. It is easier and useful to model the tube with reflection coefficients.
However, one has to keep in mind that reflection coefficients can model two tubes with a fo-
cus on the area change between two tubes while acoustic tube T-matrix in equation 2.42 on
page 13 models a single tube. Hence, concatenating T-matrices gives the same result as the
reflection coefficient model if the ideal conditions in section 2.1.4 on page 13 are satisfied.
This hypotheses is tested in section 3.1 on page 27.

Thus from Equations 2.48 on the preceding page, 2.32 on page 12, 2.14 on page 10 we can
rewrite the equations as transfer function between the volume velocities

−→v1 +←−v1 =−→v2 +←−v2 (2.55)

ZL(−→v1 −←−v1) = ZL(−→v2 −←−v2) (2.56)

From here, with a algebraic manipulation and using characteristic impedance equation 2.14
on page 10 we can get

−→v2 = 2S2

S1 +S2

−→v1 + S2 −S1

S1 +S2

←−v2 (2.57)

←−v1 = S2 −S1

S1 +S2

−→v1 + 2S2

S1 +S2

←−v2 (2.58)

From this equation we make an important physical assumption by equating the negative
travelling wave in the second tube to zero. We obtain the following relation.

−→v2 = 2S2

S1 +S2

−→v1 (2.59)

←−v1 = S2 −S1

S1 +S2

−→v1 (2.60)

Here we can define transmission coefficients and reflection coefficients , respectively, as
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Γ+
n =

−→v2
−→v1

= 2S2

S1 +S2
(2.61)

Γ−
n =

←−v1
−→v1

= S1 −S2

S1 +S2
= Γ+

n −1 (2.62)

we take Γ= Γ−
n as the reflection coefficients. One has to keep in mind that area functions

are always positive, reflection coefficients are bounded in magnitude by one.

−1 ≤ Γ≤ 1

We now rewrite the Equations 2.57 on the previous page and 2.58 on the preceding page
with reflection coefficient formulation in 2.62. Here, we also incorporate delay, τ in our for-
mulation.

−→v2(t ) = (1+Γ)−→v1(t −τ)+ (Γ)←−v2(t ) (2.63)
←−v1(t +τ) = (−Γ)−→v1(t −τ)+ (1−Γ)←−v2(t ) (2.64)

These equations are called Kelly-Lochbaum equations. We can now represent our model
with a signal flow graph for a single tube junction.

Figure 2.6: Kelly-Lochbaum Lattice Filter

and equivalently, taking z-transform for z = e jω2τ

−→v2(z) = z−1(1+Γ)−→v1(z) + Γ←−v2(z) (2.65)

←−v2(z) = 1

1−Γ
−→v1(z) + Γz−1

1− r
←−v1(z) (2.66)

These equations are useful as we discover in section 2.4 on page 21 there are methods
in signal processing to solve these equations with O(n2) complexity compared to O(n3) in
Gaussian Elimination [46].

2.1.6. Lips
If we consider the junction between the last vocal tract tube and the area beyond the lips,

we can say that the junction can be modeled by an infinite baffle. In ideal situations the sound
wave radiates outward, which signifies that backward travelling sound wave, v(N+1)← should
be zero. Hence impedance for a half infinite tube with cross-sectional area SN+1 becomes

ZLi ps = ρc

SN+1
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Accordingly, from backward travelling sound wave and Equation 2.65 on the preceding page
we can find

←−vN (t +τ) =−Γl i ps
−→vN (t −τ) (2.67)

As an alternative approach, in many of the electrical models of the vocal tract, the radia-
tion impedance of the mouth is represented by a serial connection of acoustic resistance and
reactance. We need to approximate the radiation impedance to be relatively simple for math-
ematical calculation. Radiation resistance represents energy radiated away from the mouth.
The reactance represents effective mass of the vibrating air between the lips.

However, we can create a better model for lip radiation. As air between the lips oscillates
in the same way a piston does; the entire surface oscillates in phase. This is why radiation
from a rigid circular piston can be taken as a basic model of mouth aperture’s radiation. The
ideal way to simulate a speaker’s mouth is to use a circular piston set in a spherical baffle.
However, as this solution is computationally expensive, it is beneficial to use a piston set in
an infinite plane baffle. Equation for a piston set in an infinite baffle is

Zp = ρc

S

[
(1− J1(2kr )

kr
)+ j

H1(2kr )

kr

]
(2.68)

with wavelength k, radius r . J1(x) is the Bessel Function of the first kind and H1(x) is the
Struve function. Here we use five different approximations. First one being, Fant’s estimation
with infinite baffle [66]

Z = ρc

S

[ (kr )2

2
+ j

8kr

3π

]
(2.69)

and equates to

R = 128
ρc

9π2S
(2.70)

L = 8
ρ

3π
p
πS

(2.71)

The Fant model in Equation 2.69 can be improved by taking one more term of the infinite
series, thus increasing the accuracy of the correction functions in Chalker et al.[24]. In that
case, the radiation impedance of the mouth aperture is given by the expression

Z = ρc

S

{
(kr )2

2

[
1− (kr )2

6

]
+ j

8kr

3π

[
1− 2(kr )2

15

]}
(2.72)

and lastly we used Wakita and Fant’s proposed expression for radiation impedance

K (ω) =
{

1.6; (w ≥ 2π1600)
0.6ω

(2π1600) +1; (0 ≤ω≤ 2π1600)
(2.73)

Z = ρc

S

[ (kr )2

4
K (ω)+ j 0.8kr

]
(2.74)

Lastly, we use an Approximation of the Struve function H1 occurring in impedance calcula-
tions from Aarts et al.[1]

Z = ρcπr 2
[

1− 2J1(2kr )

2kr
+2 j

H1(2kr )

2kr

]
; (2.75)

H1(z) = 2

π
− J0(z)+

(16

π
−5

)sin z

z
+

(
12− 36

π

)1−cos z

z2 (2.76)

The results can be seen in Figure 2.7 on the next page
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Figure 2.7: Lip Radiation in Linear and Logarithmic Scale

It can be seen that lip radiation models have a very small impact under frequencies below
10.000 Hertz. This means that the models that will be chosen will have a negligible impact for
the lower frequency range, which we are interested in.

2.1.7. Glottis and Lower Respiratory Tract
Glottis can also be modeled in different ways. A simpler model, that is used in LP analysis

is a resistance and impedance connected parallel to the current source, i.e. volume veloc-
ity. If we use a first order linear approximation for impedance we can use a time-invariant
impedance as

Zg lot t i s(ω) = Rg lot t i s + jωLg lot t i s

This works as a current divider, and the forward traveling sound wave at the boundary −→v1

becomes

−→v1 =
1+Γg lot t i s

2
uglottis(t )+Γg lot t i s

←−v1 (2.77)

where glottal reflection coefficient is

Γg lot t i s =
Zg lot t i s −ρc/S

Zg lot t i s +ρc/S
(2.78)

In z-transfer domain we find

Vglottis(z) =
[

2
1+rg lot t i s

−2Γg lot t i s

1+Γg lot t i s

][−→v1←−v1

]
(2.79)

This glottis model has been used in linear prediction model in Section 2.4 on page 21.

2.2. Additional Parameters
In section 2.1.4 on page 13 it has been mentioned that the lattice filter can only represent

a T-network circuit with a capacitance and inductance which correspond to acoustic iner-
tance and acoustic compliance. However, as mentioned by Flanagan [38] and Ishizaka [48],
vocal tract can be better modeled by additional parameters. This section will be devoted to
give a comprehensive understanding of how these parameters impact the inverse filter re-
construction with linear prediction coefficients. Later, the impact on transfer function of the
vocal tract and cross-sectional area reconstruction with linear prediction will be discussed in
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Chapter 3 on page 27. The additional parameters that will be investigated in this section can
be seen in Figure 2.8

L/2

C

R/2

G

R/2
 

Rw
  

Lw
 

Cw

L/2

Figure 2.8: Electrical equivalent T-Network circuits of vocal-tract section

Parameter SI unit Value
air density ρ kgm−3 1.14

dynamic viscosity µ Pas 1.85×10−5

thermal conductivity λ Wm−1 K−1 0.0263
adiabatic compression / ratio specific heats γ - 1.402

speed of sound c ms−1 353
Table 2.3: Parameters for the physical properties of air in upper airway [79]

2.2.1. Resistance
The acoustic resistance R represents a power loss proportional to volume velocity and is

the power dissipated in viscous friction at the tube wall. The easiest way to put in evidence
this equivalent surface resistance is to consider the situation in which the tube wall is a plane
surface, and moving sinusoidally in the x-direction with a velocity. The air particles that flow
nearby the wall are under effect of a force caused by the shear viscosity, µ, of the medium.
The power that was dissipated per unit length, l , can be calculated by determining the total
power dragging the air with the plate. Detailed explanation of the Equation 2.80 can be found
in Flanagan [38].

R = 2

πr 3

√
ρµω

2
(2.80)

where r is the radius of the tube, ω the angular frequency, ρ the density of air.

2.2.2. Wall Parameters
Up until now it has been assumed that the walls of the airway tract to be smooth and rigid.

The dissipative elements of concern are then the radiation resistance, the glottal resistance,
and the viscous and heat conduction losses at the cavity walls. In reality, vocal tract is not
hard-walled, and it’s surface impedance is finite. We aim to estimate this effect using previous
research on wall parameters.
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As our medium is not ideal we include wall parameters to our equation in parallel. These
parameters have been used in [66] [82]. It is suggested that these wall parameters are con-
nected as serially connected to each other and parallel to the lumped model as seen in Fig-
ure 2.8 on the previous page. There are no values that are agreed upon wall parameters.
Ishizaka et al [48] measured the mechanical impedance of the cheek under relaxed and tensed
conditions. Fant et al. [48] measured impedance using resonance characteristics of the vocal
tract under the closed tract condition and proposed using lumped wall impedance, indepen-
dent of vocal tract configurations. In section 3.2 on page 29 response for these additional
parameters are investigated.

One has to keep in mind that in Ishizaka et al. [48] the calculation is done for per-unit
wall areas. Hence, the impedance formula becomes

Zw = B + j (ωM −K /ω)

2πr l
(2.81)

The other formulation for wall impedance is given in Harper et al.[44]. The measurements for
the tissue have been investigated in Habib et al. [43], Capper et al. [22]. As a result impedance
becomes

Zw (ω) = h

2πr 3

[
ν(ω)+ jω

[
ρr 2 − E(ω)

ω2

]]
(2.82)

Parameter Value Units

Resistance Rw (ω) = hν(ω)
2πr 3l

kg
m4s

Inertance Lw (ω) = hρ
2πr l

kg
m4

Compliance Cw (ω) = 2πr 3l
hEw (ω)

m4s2

kg

Table 2.4: Nonrigid Wall , Lumped Parameters For A Segment Of Length l

2.2.3. Conductance
The analogous shunt conductance provides a power loss proportional to the square of the

local sound pressure. Such a loss arises from heat conduction at the walls of the tube. The
per-unit-length conductance can be deduced in a manner similar to that for the viscous loss.
The derivation can be found in [38].

G = 2πr l (γ−1)

ρc2

√
λw

2cpρ
(2.83)

2.3. Snoring Models
In this section, we will define the two models that we suggest to model the acoustic vocal

tract, with an excitation located within the tube.

2.3.1. Model 1: Anechoic Termination at Excitation Location
This model suggests that at the location of the excitation signal, the tube is terminated

with a characteristic impedance of ρc/SE , where E being the depth of the excitation location.
As we assume that the tube ends at the excitation location, the linear prediction or Levinson-
Durbin recursion finds that the rest of the tube has Γ= 0, i.e.

Γ j = 0 f or j = E +1,E +2..., N

This model is assumed to be the supporting model for inverse filtering methods in section 2.5
on page 24. It shall be noted that, many of the excitation locations are in the middle of the
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airway tract for snoring sound production. For that reason, the order for linear prediction
method in inverse filtering has to be halved.

Figure 2.9: Circuit Diagram for Model 1

2.3.2. Model 2: Anechoic Termination At Glottis
In this model, we say that excitation location is independent of the tube ending. We

move our current source within the tube, without changing the tube length. As a result, the
schematic can be seen in figure 2.10. The lower part of the respiratory tract works as a current
divider. We calculate the input impedance of the lower tract and add this impedance in par-
allel to upper part of the respiratory tract. Again, we have a current source, that is analogous
to volume velocity source.

Figure 2.10: Circuit Diagram for Model 2

These models will be investigated in the Experiments and Results chapter.

2.4. Linear Prediction Analysis Method
The preceding lattice filter in section Equation 2.1.5 on page 14 has a close relation with

linear prediction analysis. We can take Equation 2.65 on page 16 and concatenate N tubes. If
we assume that last correlation coefficient, ΓN , as the junction between the lips and the last
tube we can find the lip radiation relation given in 2.67 on page 17 in z-domain as

VN+1(z) =
[−−→

Vl i p←−−
Vl i p

]
z−1/2 =

[−−→
Vl i p

0

]
(2.84)
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And Kelly-Lochbaum equations for N tubes become

[−→
Vk←−
Vk

]
= z

1+Γk

[
1 −Γk

−Γk z−1 z−1

][−−−→
Vk+1←−−−
Vk+1

]
(2.85)

Combining Equations 2.79 on page 18, 2.84 on the previous page, and 2.85, transfer function
becomes

H(z) = Vlips(z)

Vglottis(z)
= 1+Γg lot t i s

2

z−N /2
N∏

k=1
1+Γk

[
1 −Γg lot t i s

] N∏
k=1

[
1 −Γk

−Γk z−1 z−1

][
1
0

] (2.86)

As it can be seen, the transfer function is an all-pole model, that can be modeled by Kelly-
Lochbaum lattice filter. Moreover, as a result, if we expand the denominator we find the
Autoregressive (AR) filter as below

D(z) = 1−
N∑

k=1
ak z−1 (2.87)

The Levinson-Durbin recursion is an algorithm for finding an all-pole IIR filter with a
prescribed deterministic autocorrelation sequence. The filter that Levinson produces is min-
imum phase which means that all of the poles and zeroes are inside the unit circle. The filter,
in turn, becomes a stable and causal filter. This property is also useful as the inverse, 1/H(z),
is also stable and causal.

Levinson filter finds the coefficients of a leng th(r )−1 order AR linear process which has
r as its a real or complex deterministic autocorrelation sequence. The denominator polyno-
mial A(z); that is, a = [1 a(2) ... a(n+1)]. The filter coefficients are ordered in descending
powers of z−1. We can also calculate reflection coefficients, Γ with a step-down recursion.

input : autocorrelation values r of length p
output: reflection coefficients Γ and coefficients of the all-pole model a(k)

1 a0(0) = 1;
2 ϵ0 = rx (0);
3 for j=0:p-1 do

4 γ j = rx ( j +1)+∑ j
i=1 a j (i )rx ( j − i +1);

5 Γ j+1 = γ j /ϵ j ;
6 for i=1:j do
7 a j+1(i ) = a j (i )+Γ j+1a∗

j ( j − i +1);

8 end
9 a j+1( j +1) = Γ j+1;

10 ϵ j+1 = ϵ j [1− | γ j+1 |2];

11 end

Algorithm 1: Levinson-Durbin Recursion

As it can be seen in algorithm at line 7, relation between reflection coefficients and filter
coefficients are coupled. If we flip the filter coefficients vector and take the reciprocal, we
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find the following

aR
j =



a∗
j ( j )

a∗
j ( j −1)

a∗
j ( j −2)

...
a∗

j (1)

1


(2.88)

aR
j (i ) = a∗

j ( j − i ) (2.89)

AR
j (z) = z− j A∗

j (1/z∗) (2.90)

now, we can rewrite line 7 on the facing page in Z domain as

a j+1(i ) = a j (i )+Γ j+1aR
j (i −1) (2.91)

A j+1(z) = A j (z)+ z−1Γ j+1 AR
j (z) (2.92)

and conversely, if we take complex conjugate of both sides, we find

AR
j+1(z) = z−1 AR

j (z)+Γ∗
j+1 A j (z) (2.93)

Combining Equation 2.92 and Equation 2.93 results in an almost identical relation be-
tween forward and backward going waves in Equation 2.85 on the preceding page with an
exception for some scaling and a delay.[

A j+1(z)
AR

j+1(z)

]
=

[
1 z−1Γ j+1

Γ∗
j+1 z−1

][
A j (z)
AR

j (z)

]
(2.94)

Figure 2.11: Illustration of source filter model. Rows respectively
exhibit the following signals: the glottal flow derivative (top), the

vocal tract response (middle), and the resulting speech signal
(bottom). Columns represent time domain (first column),

amplitude spectrum (second column). Image taken from [31]

As these relations are identi-
cal for the acoustic tube and lat-
tice sections, given the follow-
ing boundary conditions are satis-
fied, the reflection coefficients and
cross sectional areas can be found
using equation 2.62 on page 16.
There can be two cases to intro-
duce boundary conditions:

1. Case 1: Front-end of the
tube is short circuited(open
termination)(ΓM = 1) and
back end of the tube is ter-
minated with anechoic end-
ing or wave match(1 < Γg lot t i s <
0). This means that impedance
of the ending is the charac-
teristic impedance of the last
tube. The tube is excited by a
volume velocity.

2. Case 2: Front end of the
tube is terminated with ane-
choic ending(1 < ΓGlot t i s <
0) and back end is com-
pletely closed(Γg lot t i s = 1).
Tube is excited by forward going volume velocity at the back end.
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Figure 2.12: Comparison of Snore Excitation and Speech Glottal Flow Spectra

For Linear Prediction Analysis to estimate the cross-sectional areas, we have to implement
the Case 1 [78].

2.5. Inverse Filtering
In our models, we assume that we have a biomechanical oscillator at the location of ob-

struction and acts as the excitation source. Similar to speech production theory, source flow
will be called excitation flow in the following sections. In order to find the excitation flow, we
will ground our model to source filter theory. Source filter theory assumes that source and the
airway are linearly separable and excitation flow is filtered by airway transfer function and lip
radiation transfer function. As mentioned in section 2.3.1 on page 20, theory of estimating
cross sectional area of the airway using linear prediction assumes that ending of the tube is
anechoic ending[78].

First, Direct Inverse Filtering (DIF) method will be mentioned. Then, Iterative Adaptive
Inverse Filtering (IAIF) will be introduced. We will also discuss how an average waveform for
flow models are found. Consequently, the results will be compared.

2.5.1. Direct Inverse Filtering
First, we filter the original signal to eliminate low-frequency fluctuations captured by the

microphone. We will use a linear phase FIR filter with a cut-off frequency lower than the
fundamental frequency of the snoring signal. For our model we used a model with passband
frequency 60 Hz as we expect our fundamental frequency to be higher than 80 Hz for snoring
signals.

Second, as lip radiation effect is assumed to be a derivative, we integrate the high-pass
filtered signal to cancel this effect.

The glottal excitation, having a quasi-periodic structure, possesses a spectrum exhibiting
a harmonic structure. The amplitudes of the harmonic components are traditionally con-
sidered to decrease monotonically at a rate of 12 dB/octave [35]. Here, we mention that the
voice source for speech signals creates a spectrum slope of approximately -12dB/octave. It
has been found that similar characteristics hold for snoring signals as seem in Figure 2.12.
Later, we inverse filter this effect.

We now have a signal that represent the vocal tract filter excited with and impulse train.
Here pth order model for the vocal tract is estimated. We then inverse filter this model and
acquire a final estimate for glottal flow.
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Figure 2.13: Direct Inverse Filter

2.5.2. Iterative Adaptive Inverse Filtering
Iterative Adaptive inverse filtering is an advanced method compared to direct inverse

filtering[3]. Building blocks from 1 to 6 give the same result as direct inverse filtering. Hence
blocks from 7 to 12 will be discussed in this section. At block seven, we estimate the contribu-
tion of excitation flow to snore spectrum, Hg 2(z) with a linear prediction order of 5 from first
estimation of excitation flow. Then, we cancel this contribution from the input signal. This
gives us a signal that constitutes Vocal tract and lip radiation. By integrating, lip radiation is
removed in block 9. Finally, in block 10 a new vocal tract model, Hv t2(z) is estimated with
linear prediction.

Figure 2.14: Iterative Adaptive Inverse Filter





3
Experiments and Results

This chapter will be devoted to explore the models suggested in Chapter 2 and analyze
snoring sound signals from overnight recordings. First, in Section 3.2 impact of the additional
parameters for airway tract model and reconstruction from the resulting transfer function
with Linear Prediction analysis will be investigated. This is required to validate our model
and investigate if the use of linear prediction is adequate for speech production and snoring
sound production. In section 3.3, we will also investigate how changes in excitation location
impacts the spectrum in both of the models mentioned in section 2.3 on page 20. Later, in
section 3.4 we will validate our model by synthesizing vowels from inverse filtered real sound
files, and convolving the resulting glottal flow with our spectrum from airway tract models.
This section is essential to compare the transfer function from inverse filtering and the airway
tract models. Last section 3.5 will be on analyzing and synthesizing real life snoring sounds.
An estimation for excitation flow will be found using inverse filtering, and then will be used
for synthesizing snoring sounds. We will also compare the two models introduced in sec-
tion 2.3 on page 20 with spectrum of the transfer functions obtained from inverse filtering
methods. Consequently, we will try to find a significant difference within the average excita-
tion flows of different participants, which are impacted by different devices that alleviate the
snoring problem.

For the default cross sectional area, we used the study of Mohsenin et al. [60] which is a
study that measures differences of upper airway collapsibility based on gender. Subjects were
encouraged to sleep on their backs (supine) as well as on their sides (non-supine) during the
sleep study. The pharyngeal cross-sectional area was measured using an acoustic reflection
technique. Previous study of Marshall et al. [57] shows that acoustically measured pharyn-
geal dimensions and those obtained through magnetic resonance imaging shows remarkable
concordance. It shall be mentioned that the cross-sectional area is varying between patients,
ages, BMI, gender, RDI and positions. We have taken the mean of the resting mandibular
position among all patients. The results that we draw shall be taken cautiously as the cross
sectional are changes based on the aforementioned factors.

Consequently, it is complementary to mention the findings of Dalmasso et al. [29] as the
greater part of the energy content in snoring sounds is below 5,000 Hz and the main compo-
nents lie in the low frequency range, at about 130 Hz and in the medium frequency range, at
about 1000, 2200 and 3500 Hz. For our study we will also focus on lower frequencies.

3.1. Matching Models
In this section, our objective is to match reflection coefficient transfer matrix eq:TFreflection

with concatenation of two ported T-network, namely tube model in Equation 2.42 on page 13
with an open end termination at the front end and terminated with a characteristic impedance
of ρc/S0 at the back end. This is the case defined in Case 1 in section 2.4 on page 21. We will
also demonstrate impact of Γg lot t i s for Case 1, as the value will be important for validating

27
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the vocal tract transfer function in speech analysis in section 3.4.2 on page 38. We will later
demonstrate the transfer response for second model mentioned in Section 2.3.2 on page 21.

3.1.1. Reflection coefficient of Glottis

Reflection coefficient of glottis, Γg lot t i s , has a significant impact on the transfer function
of the vocal tract in terms of amplitude of formant frequencies. However, as mentioned in
Wakita et al. [78], reconstruction is not impacted by the changes in Γg lot t i s for

{Γ | ΓN ∈Z,0 < Γ< 1}

For the transfer function generation we used model 1, and did not include lip radiation or the
additional parameters. Exclusion of lip radiation corresponds to open end termination, i.e.
ΓM = 1. We see that for varying reflection coefficient we have a very peaked transferred and
for decreasing Γg lot t i s , the peaks are rounded. Realistic values for the glottis parameters are
assumed to be in the range of 0.6-0.8. We have taken 0.7 in the further analysis.

For the sampling frequency, we have taken 16000 Hz, same with our audio samples. If we
define T as twice the time needed for a wave to propagate through a single section T = 2l

c and
the relation between sampling frequency fs = 1/T , number of sections and model order as P
the relationship becomes.

P =
⌈

2 fsL

c

⌉
(3.1)

The order of the inverse filter has been determined by Equation 3.1, which corresponds to
15-16 orders for normal upper airway length (16cm-19cm). For reflection coefficients. re-
construction has been done assuming that area at the mouth is 1 and relationship between
cross-sectional areas are found Using 2.62 on page 16. This can be observed in Figures 3.1
and 3.2 on the next page .
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Figure 3.1: Transfer Function for changing Γg lot t i s
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Figure 3.2: Effect of varying Γg lot t i s on reconstruction. Blue line is the cross-sectional area function, that is given
as an input for tube model.

As it can be seen, reconstructed area of the airway tract closely follows the input area
function with an exception of Γg lot t i s = 1 = Γl i ps . This also shows that under ideal circum-
stances mentioned in 2.1.4 on page 13, linear prediction closely approximates the cross-
sectional area.

3.2. Impact of Additional Parameters
In this section, we will investigate the additional parameters introduced in Section 2.2

on page 18. As mentioned in section 2.1.4 on page 13 these reflect physical properties of
airway tract that can not be represented by a lattice filter. Our objective is to find how these
additional parameters alter the reconstruction of cross-sectional area of the upper airway.

3.2.1. Resistance

As mentioned in 2.2.1 on page 19 resistance represents the power loss within the tube. We
have used the values in Table 2.3 on page 19 to calculate the resistance. The transfer function
and the reconstruction for given values can be found in 3.3 and 3.4 on the following page,
respectively.
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Figure 3.3: Effect of Resistance in T-network to Transfer Function



30 3. Experiments and Results

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Distance From Teeth(cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 C
ro

ss
 S

ec
tio

na
l A

re
a

Input
No Resitance
With Resitance

Figure 3.4: Effect of Resistance in T-network to Reconstructive Inverse Filtering

It can be seen that resistance decreases the amplitude of peak frequencies in the transfer
function. Most of the spectrum is not impacted by the resistance and the formant frequencies
stay the same. As a result, reconstruction is almost identical in cases with resistance and
without resistance.

3.2.2. Wall Parameters

Wall impedance values are measured by Ishizaka, French and Flanagan [48]. Ishizaka et
a1. made direct measurements of the vocal tract wall impedance of the cheek and the neck
in vivo setting. The parameters that have been found can be seen in Table 3.1.

M (kg /m2) B (kg /m2s) K (kg /m2s2)
Cheek, Relaxed 21 800 84.5×104

Cheek, Tense 15 1060 33.3×104

Neck 24 2320 491×104

Table 3.1: M,B,K wall parameters given in [48]

Additionally, Harper et al. [44] used measurements from studies of Suki et al.[76] on wall
impedance of calf trachea in 1993 and Habib et al.[43] in 1994 on humans, in his model for
sub-glottal impedance calculations. The list of the used parameters can be seen in Table 3.2.

Tissue Density ρ, (kg /m3) Viscosity ν, (kg /ms) Elasticity E , (g /ms2)
Value 1060 160 39200

Table 3.2: Default wall parameters given in [76],[44] and [43]

In Figure 3.5, the transfer functions of the vocal tract with reflection coefficient of glottis,
Γg lot t i s = 0.7 are shown for the different additional parameters as presented in Tables 3.1 and
3.1 with different formulations mention in Section 2.2.2.
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Figure 3.5: Effect of Wall Parameters in T-network to Transfer Function

In Figure 3.6 we have the results from the reconstruction procedure explained in 3.1.1
with the same aforementioned settings for model order. We see large differences in the re-
constructed cross sectional areas.
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Figure 3.6: Effect of Wall Parameters in T-network to Reconstructive Inverse Filtering

As a result, it can be said that the model that can fully reconstruct the airway tract with
linear prediction is the one suggested in Harper et al.[44][45]. The other models significantly
alter the transfer function and in turn disrupt the reconstruction. Hence, for our models,
we rather chose to select the model with wall parameters in Table 3.2 on the preceding page
as the research is recent[76], and the methods are experimentally validated in various other
studies [45] [44] [76].

3.2.3. Conductance

Conductance, caused by the the heat conduction within a duct can be modeled as a shunt
resistor as defined in Section 2.2 on page 18. In Figure 3.7 we have plotted the vocal tract
transfer function spectrum with and without conductance element. Tube is assumed to be
open ended and reflection coefficient of glottis is taken as 0.7.
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Figure 3.7: Effect of Conductance in T-network to Transfer Function

The reconstruction of the cross-sectional areas has been done using LPC with settings
defined in section 3.1.1. We see the results in Figure 3.8.
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Figure 3.8: Effect of Conductance in T-network to Reconstructive Inverse Filtering

The results show that conductance has a small impact on the transfer function and the
reconstruction is not significantly altered.

To conclude the matching of the tube model with linear prediction we state that under
ideal conditions mentioned in 2.1.4 linear prediction can be used to estimate change in cross-
sectional areas. However, these conditions are not ideal for tube airway for resistance, con-
ductance and wall parameters. In this section we have seen that despite non-ideal conditions
reconstruction is accurate concerning the formant frequencies, bandwidth, and error in re-
constructed cross-sectional area.

3.3. Obstruction and Transfer Function
The main objective of our study is to find the impacts of obstruction on the transfer func-

tion and to establish if certain characteristics in the spectrum can be used to classify or detect
an obstruction in the airway. To that end, we will impose different types of obstruction in the
airway. This section will demonstrate how the transfer function is impacted by changes in
cross-sectional area and changes of location of excitation. It shall be noted that location of
obstruction and the location of excitation might be different sites, as they have different def-
initions [69]. These sites may or may not coincide in individual patients. In this study, we
exclusively focus on the impact caused by the site of excitation. It is assumed for this study
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that, excitation is caused by the vibration of the narrowest regions in the airway.

In order to impose different obstructions as smoothly as possible, the obstruction area,
surrounding obstruction location, has been divided to 4 equally distributed sections. The
segment boundaries are taken as the points where the tube is constricted. Rest of the points
within the obstruction area are interpolated. The resulting interpolated points are chosen
as narrowed cross-sectional area function. This can be better understood in Figure 3.10a on
page 35.

3.3.1. Location Of Obstruction

In this section we change the obstruction location from glottis to upper parts of the airway
tract without changing the cross-sectional area profile. The experiment results can be seen in
Figure 3.9 on the following page. The vertical lines represent the excitation location applied
to the specified model. The response to the excitation location is color coded according to
excitation location.

The model that has been taken into account in the following figures are the tube models
mentioned in Section 2.3 on page 20. Lip Radiation has not been taken into account in or-
der to observe the effect of linear prediction performance on the spectra created by the tube
models. Reflection coefficient has been taken as 0.7 and additional parameters have been
ignored to solely observe the singular effect of excitation location.
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(b) Transfer Functions for Changing Excitation
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(d) Transfer Functions for Changing Excitation
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Figure 3.9: Impact of change of excitation location(top) for Model 1(Second Row) and for Model 2(Third Row)

It is also complementary to mention that, moving the excitation location to the ending of
the tube results in a higher fundamental frequency for Model 1. This can be followed from
Equation 2.31 on page 12 as decreasing the tube length results in higher formant frequencies.
It can be seen in Figure 3.9c that for Model 1, reflection coefficients are close to 0 for locations
behind the excitation location due to the way the model has been built. And in return, recon-
structed airway is not changing behind the excitation location. It is evidently questionable
to make this modelling operation for noisy measurements, as spectrum estimation is not as
detailed for ideal tube modelling we present here.

As a result, it is possible to estimate the excitation location by observing the reconstructed
cross-sectional area, or reflection coefficients. However, for the second model, as impedance
behind the excitation location is taken into account, we can not reconstruct the cross-sectional
area of the upper airway. This result shows clearly that inverse filtering can be plausible if and
only if we assume that the obstructing source can be taken as an anechoic ending.

It should also be mentioned that since we do not know the excitation location, we have



3.3. Obstruction and Transfer Function 35

determined the order of the linear prediction using the order defined in Equation 3.1 on
page 28. The selection of the order is a causality dilemma, as order can not be determined
for unknown obstruction location. Hence, if the model 2 is closer to reality, and is the deter-
mining model for transfer function for the upper airway tract during snoring, determining
cross-sectional areas from LP is not an option.

3.3.2. Obstruction Severity
The severity of the obstruction can impact the transfer function, and in turn, the recon-

struction of cross-sectional areas. In this subsection, we increase the obstruction severity of
the airway tract and observe the spectrum change with increased intensity. We have chosen
the narrowest part of the airway tract and decreased the cross-sectional are for the surround-
ing anatomical region. The results for Model 1 and Model 2 can be seen in Figure 3.10.
The inverse modelling has been done using the same order in section 3.1.1. Again, we come
across causality dilemma mentioned in the previous section.
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(a) Varying Cross-Sectional Areas for different obstruction severity
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(d) Transfer Functions for Changing Excita-
tion Location(vertical line) for Model 2
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Figure 3.10: Impact of change of Obstruction Severity(top) for Model 1(Second Row) and for Model 2(Third Row)

Results in Figure 3.10 can be expected from equation 2.54 on page 15. As it can be seen
from T-matrix, the frequencies are mainly impacted by the length of the tube, l . However,
magnitude of the peaks are impacted by the cross-sectional area of the tube, S. As a result,
main impact of obstruction severity is increase of magnitude of resonant frequencies. This
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points that it is not possible to measure the degree of severity of the obstruction from spectral
characteristics, as the experiments are not precise due to nature of sound recording. A slight
decrease in the resonant frequencies is observable for Model 2.

Consequently, LP is not an adequate way to detect the severity of the obstruction even if
we assume that Model 1 is the model that reflects the physical reality.

3.3.3. Velum, Oropharynx, Tongue, Epiglottis Snoring Simulation

Figure 3.11: Upper airway cross sectional
area during sleep using acoustic reflectome-
try, from Mohsenin et al.[60]

Here, we will introduce the configurations men-
tioned in Kezirian et al. [53] applied to cross-sectional
area findings obtained from Mohsenin et al. [60].
While the definition of Kezirian et al. for regions that
may include constriction depends on movement of
these tissues in three dimensions, our configuration
is bounded by movement in two dimensions.

We in turn created four different profiles for dif-
ferent regions mentioned in section 1.1 in the study
of Kezirian et al. [53]. From Figure 3.11, it is evident
that even though different excitation locations are ef-
fective at snoring sound production, they are located
very close to each other within the upper airway.

In Figure 3.12 we see these profiles that corre-
spond to Epiglottis, Velum, Tongue, Oropharyngeal
Walls color coded from light to dark. The spectra of
the transfer functions can be seen in Figures 3.13 3.14.
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Figure 3.12: Cross-Sectional Area for VOTE classification. It is assumed that the effected structures are (from left
to right vertical lines) Epiglottis, Velum, Tongue, Oropharyngeal Walls
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Figure 3.13: Transfer Function of Tube Model 1

It can be seen in Figure 3.14 that spectra for model
2 has fundamental frequencies below 500 Hz. This is in accordance with the research on
acoustic properties of snoring [29] [70] [12] [1] [10].

3.4. Synthetic Speech
We first aim to synthesize clear speech sounds in order to validate our model and soft-

ware. Later, we will use the same framework to synthesize snoring sounds.We are going to
analyze speech using inverse filtering on real life pronounced speech signals from TIMIT
Acoustic-Phonetic Continuous Speech Corpus [39] in section 3.4.1. From phonetic list in
TIMIT, we have selected the vowels that were used in [78] which are shown in Table 3.3.

Table 3.3: Vowels inspected in TIMIT with their ARPABET correspondence

2 Letter ARPABET International Phonetic Alphabet Examples
IY i beat

EH E bet
AA A balm, bot
AO O bought
UW u boot

From the inverse filtering method, we will extract the vocal tract transfer function and
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Figure 3.14: Transfer Function of Tube Model 2 for excitation locations in Figure 3.12 on the facing page
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Figure 3.15: Inverse Filtering Model Comparison for A
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Figure 3.16: Comparison of two inverse filtering methods and respective transfer functions of the vocal tract

compare it with the tube model transfer function in section 3.4.2.

3.4.1. Inverse Filtering
As mentioned in section 2.5 we applied two different inverse filtering methods to find

the excitation flow waveform for snoring. First, sound files with orthography "She had your
dark suit in greasy wash water all year." has been selected to extract phonemes introduced in
Table 3.3 on the preceding page. Then, for each vowel, both of the inverse filtering techniques
mentioned in section 2.5 on page 24 has been executed. The results for a sound excerpt of A

can be seen in Figure 3.15. Comparison for the other vowels can be found in Appendix A
Form Figure 3.15, it can be said that waveform for IAIF and DIF are almost identical. As

a result, transfer functions for the vocal tract are also identical as seen in Figure 3.16, with
a little difference in lower frequency region. Hence, we will rely on the simpler method, i.e.
direct inverse filtering for our further calculations.

3.4.2. Vocal Tract Transfer Function
Here, we will discuss how we obtained the vocal tract transfer function from the cross-

sectional areas. This section does not include lip radiation or the effect of the glottis. The
cross sectional areas of the airway are obtained from Mermelstein et al. [58], which include
Russian and American vowels and Wakita et al. [78]. As a result, for Model 1, we expect to find
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the same results in aforementioned studies. Cross sectional areas and the resulting transfer
function spectrum of vocal tract for vowel A has been given in Figure 3.18. The cross sectional
areas are different for multiple reasons: Study of Fant [34] is conducted with X-ray techniques
to directly determine the human vocal tract shape. Mermelstein found that using first six for-
mant frequencies is sufficient to determine the shape of the vocal tract using asymmetric
approximation. Wakita’s cross sectional functions are derived from sound files using lattice
filter LP model, and it has been discussed that these are found to be ’reasonable’ compared
to Fant’s results.
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(a) American Vowels from Mermelstein et al.[58]

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Distance from glottis(m)

0

2

4

6

C
ro

ss
 S

ec
tio

na
l A

re
a 

(m
2
)

10-4

A
E
I
U
O

(b) Russian Vowels from Fant [34]

As mentioned in Section 2.3 on page 20, there are two models that can be selected to
model the vocal tract. In this section, as our objective is to confirm the validity of the created
software and the previous studies on the vocal tract and speech production, we used Model
1 to create the transfer function spectrum, without including the lip radiation. Transfer func-
tions for other vowels can be found in Appendix C on page 69. For all the vowels, the transfer
functions do match the aforementioned studies.
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Figure 3.18: (left) Cross-sectional Areas; (right) Transfer Function for vowel A

As the next step, we will compare the results from acoustic transfer function with trans-
fer function obtained from the linear prediction coefficients estimated in the inverse filter.
We chose three different segments within a vowel; start of the vowel sound (the first frame),
center of the vowel sound (middle frame), and end of the vowel sound(last frame). Cross-
sectional areas for Russian vowels in [58] has been discarded in figures below, as the TIMIT
database constitutes of American vowels. The figures below are taken from a set of vowel
segments and averaged per frequency.
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Figure 3.19: Comparison of Vocal Tract Transfer functions from Inverse Filter vs Tube Model for vowel A

It can be seen that there exists rough correspondence between start, middle and end
frames for a vowel sound. The higher frequencies are less congruent. Correspondence be-
tween Wakita and Mermelstein on American vowel sounds is significant for lower frequency
range, f < 3000. Higher formant frequencies are located differently. Bandwidth of the for-
mant frequencies are also similar. However, we see that despite cancelling the combined
effect of the glottal flow and the lip radiation through inverse filtering we see that there is still
a decrease in amplitude for increasing frequency.

Here, it shall also be noted that vocal tract length of the specific subject has a high impact
on the shape of the spectrum. Essentially, longer vocal tract results in lower resonant frequen-
cies according to Equation 2.31 on page 12. Additionally, dialect can impact the shape of the
spectrum due to different intonation of the vowels. As mentioned in Story et al.[9] these voice
qualities change the vocal tract shape. It can be seen in Figure 3.19 that formant frequency in
the lower frequency range f < 5000H z do match for tube model and inverse filter. However,
precision in higher frequencies is lower.

3.4.3. Pitch Estimation

In order to find an average waveform, pitch of the sound signal has to be estimated. YIN
pitch estimator [25], has been selected due to it simplicity, no parameter requirement, and
low latency, in addition to resilience to low SNR[25]. It forms the scalar product between two
windows that shift symmetrically in time with respect to the analysis point and uses auto-
correlation method and tweaks it with modifications to avoid estimation errors. The window
size was 40 ms, the threshold parameter was 0.1, and the F0 search range was 25 Hz to one
quarter the sampling rate which is 4 kHz for our database. The window shift was same with
window size, i.e. 40 ms.

3.4.4. Peak Finding

A simple peak finding algorithm from Imperial College Voicebox [21] has been used in
order to sync the peaks for a vowel sound between different pitch periods. These peaks are
used to extract pitch periods for a certain vowel. Later, we take the median for each sample
to find a waveform estimate for a specific vowel.
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Figure 3.20: Peaks and Pitch Period for a glottal flow signal analyzed from A

In figure 3.20 we can see that peak finding algorithm works well in speech signals as the
peaks and the valley are marked with red and yellow circles respectively. Additionally, ex-
tracted pitch frequency reflects the well-known declining trend of F0 in speech [25]. As a re-
sult, the glottal waveform and the glottal derivatives can be determined with relatively small
confidence intervals 3.21, 3.22 on the next page.
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Figure 3.21: Glottal Waveform for A
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Figure 3.22: Glottal Derivative Waveform for A

As shown in Figure 3.21 on the preceding page, 3.22 we obtain a robust result for glottal
flow and glottal flow derivative. The error spread is low and it matches the previous literature
on glottal signals[61].

3.4.5. Lip Radiation
As mentioned in section 2.1.6 on page 16 lip radiation has an impact in the higher fre-

quencies of the spectrum. We can compare the impact of differentiation and complex mod-
els mentioned in the Lip Radiation section as seen in Figure 3.23. The model that has been
chosen for lip radiation for speech synthesis, has a minimal differential impact compared to
a differentiation besides gain difference. Here, we used glottal flow derivative in order to dis-
regard the lip radiation effect, as lip radiation is commonly modeled as derivation in Source
Filter Model.

3.4.6. Overlap-Add
In order to synthesize a speech signal, after finding an average flow waveform for an aver-

age pitch period, we used a simple overlap-add method to synthesize a longer, audible vowel
sound. Pseudocode for overlap add is given in Algorithm 2 on the next page.
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Figure 3.23: Lip Radiation with Derivation and Struve Function approximation [1]
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input : Single waveform x,length of window wi nLen,
shift,i.e. pitch frequency, wi nShi f t

output: Overlap added signal y

1 wi n = hanni ng (wi nLen);
2 while stop <= leng th(g ) do
3 // Overlap and add
4 y(st ar t : stop) = y(st ar t : stop)+x ∗wi n;
5 // Increment
6 st ar t = st ar t +wi nLen −1;
7 stop = st ar t +wi nShi f t −1;

8 end

Algorithm 2: Overlap-Add with Windowing

3.4.7. Synthetic Speech Evaluation
Speech signals have been synthesized from the average glottal flow derivative signals and

convolved with impulse response of the transfer functions of the vocal tracts in Figure 3.18
on page 39 and ones presented in Appendix. The results from the previous sections has been
evaluated by speech expert in Koninklijke Philips N.V. Research Department. The results were
found to be satisfactory considering the following factors in speech production method:

1. Pitch Jitter: The signal has been synthesized with constant pitch period as an ensemble
average for multiple pitch period has been calculated. As the real flow signal is quasi-
periodic, synthesized signal does not sound as natural as the real life signal. This can
be compensated by adding randomness to window shift in overlap-add methods. How-
ever, as there hasn’t been a study for pitch jitter distribution, this modification has been
disregarded for our study.

2. Amplitude Shimmer: Amplitude of the flow signal may vary for different pitch peri-
ods. As we do overlap-add synthesis for an averaged signal, the amplitude shimmer is
not reflected in the synthesized result. Amplitude Shimmer can also be compensated
by multiplying the windowed waveform with a random gain. However, as there hasn’t
been a study for this probability distribution, this has been disregarded.

3. Aspirated voicing, turbulence might occur due to nonlinearities in the airway tract, or
an opening in the closed phase of the glottal waveform. This can be modeled by adding
random noise to excitation waveform.

3.5. Synthetic Snore
In order to evaluate inverse filtering and tube modelling on snoring sounds, we will use

real-life signals to analyze excitation flow of snoring signals. In section 3.5.1, the data that
have been used in this analysis will be introduced. Then, the framework for the snoring
sound synthesis will be mentioned. We will also investigate a simple Voice Activity Detec-
tor and evaluate success of YIN pitch detection on snoring sounds in section 3.5.2. Later, in
section 3.5.3 on page 47, the shape of the average waveform for snore will be evaluated and
compared with glottal waveform.

3.5.1. Crossover Trial
In this section, we will experiment on snoring sounds that have been collected in Silent-

Night project in United States, Philips Respironics. The trial was conducted in order to eval-
uate effectiveness of different anti-snoring devices and to find a method to determine the
best solution for the couple. A preselection has been made to exclude patients with OSA. 27
participants, comprising of a snorer, and if available a snoring partner, used three different
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devices for 38 days. The device effectiveness was assessed subjectively after each night and
after every device period. The sound recordings were made with a mobile phone (Motorola
G5) with a java app, and encoded in OGG Vorbis format. The timeline for the trial is given
in 3.24. For MAD and PD, a period of one week is dedicated for adjustment and training.
Participants were interviewed after each device usage, specifically during day 10,24 and 38.

Figure 3.24: Timeline of Crossover Trial, Baseline Period (BL), Nasal Dilator (ND),Mandibular Advancement De-
vice (MAD),Positional Device (PD)

The collected data consisted of information at intake and exit, daily surveys, the inter-
views at crossovers, and the audio recordings. The intake, exit and crossover interviews were
extensive: the number of questions for snorer and partner were (25,26), (17,17) and (17,19)
for the intake, crossover and exit interview, respectively. The daily surveys comprised of 8
questions, including a score of the sleep quality rated by the snorer, and scores by the partner
for disturbance, snoring loudness, and sleep quality.

The snoring periods are detected by a dedicated algorithm developed in Philips Research
by Brinker et al. [18] in Java Environment. The algorithm uses autocorrelation to find breath-
ing rate and finds the volume difference by k-means clustering. Later, several conditions are
applied to detect snore epochs. Two of the important conditions are minimum and max-
imum breathing rate (4 BPM,20 BPM respectively), 4dB threshold for threshold level be-
tween K-means segments. Segments are 0.5 seconds long (8192) and shifted by 0.125 seconds
(2048). The program outputs in warped linear prediction features, binary snore classification,
k-means relative energy, breathing rate with 8Hz sampling rate. Additionally, program out-
puts snoring epochs as Waveform Audio File Format with 16000 Hz. These snoring epochs are
a period of consecutive snore events and used in our snore analysis.

As a result of the trial, patients who benefit from a particular device have been identified
in Brinker et al. [19]. In this study multiple sources of evidence for the device effectiveness
has been considered. As the first source of supporting evidence we considered the daily sub-
jective data on loudness of snoring, sleep disturbance and sleep quality of the partner, which
are daily inputs. As the second source of supporting evidence we considered the daily objec-
tive data on loudness and duration of snoring as measured by the aforementioned Java app.
As the third source of supporting evidence we considered the same daily objective data on
loudness and duration of snoring but now did a comparative analysis between device peri-
ods. For all of these criteria, Welch Test [81] have been used to identify statistical significance.
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Figure 3.25: Excitation Flow Analysis Framework

Our framework follows the procedure is explained below.

1. A snore epoch from a specific patient on a specific night is taken. These sound excerpt
can be between 4 minutes to 2 hours.

2. We detect the pitch with YIN pitch detector for the entire file.

3. We use a voice activity detector using spectral flatness of the signal 3.5.2. The threshold
for spectral flatness is taken to be 0.3;

4. An iterative schmitt trigger is used to embed hysteresis effect. Output of schmitt trigger
is multiple 1-2 second snore events that occur during inhale periods.

5. A High pass filter is used to eliminate low-frequency fluctuations captured by the mi-
crophone

6. An inverse filter mentioned in section 2.5 on page 24 is used to obtain excitation flow
for a snore event

7. The peaks are found using the algorithm mentioned in section 3.4.4 on page 40.

8. Segments of pitch period duration are taken, centering the maximum amplitude of ex-
citation waveform. We later interpolate the events with different length and find an
average waveform for the snore epoch.

9. Overlapp-Add with a fade in and fade out window is applied to synthesize an excitation
flow signal of longer duration.

10. The signal is convolved with impulse response of the airway tract transfer function

11. If the excitation pulse is taken to be the main signal, signal is convolved with impulse
response of the lip radiation. If excitation derivative is taken, this box is ignored.
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3.5.2. Voiced Activity Detector and YIN Pitch Detection
Here, we used a voiced activity detector that incorporates spectral flatness. In theory,

spectrally flat frames are prone to be silent, as they would have noise characteristics. We
calculate Welch’s power spectral density estimate. Welch’s method computes a modified pe-
riodogram for each segment of length 0.025 seconds and then averages these estimates to
produce the estimate of the power spectral density. Later, we calculate the spectral flatness
by finding the geometric mean and divide to mean of the spectrogram. Later, we normalize
by dividing to maximum flatness. The threshold for a silent frame is that, normalized spectral
flatness has to be larger than 0.3.

YIN Pitch detection algorithm is applied over the whole signal. The results are seen in Fig-
ure 3.26 and 3.27. Most of the detected segments are identical using the Exponential Smooth-
ing and Schmitt Trigger smoothing. It has been tested that Schmitt Trigger is faster than ex-
ponential smoothing. Hence, Schmitt Trigger is used for computational efficiency.
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Figure 3.26: Histogram for Median and Mean Pitch Frequencies for a Snore Epoch
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Figure 3.27: Histogram for all voiced Pitch Frequencies for a Snore Epoch

It is required to mention that a snoring sound during inhalation is usually 1-2 seconds
long, while a vowel sound is around 20 milliseconds long. Hence, it is beneficial to state
that as mentioned in Huang et al. [47], the amplitude of the snoring signals increases as the
amount of pressure increases with time. Hence, pitch detection algorithm detects different
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pitch for different time frames within a signal. Here, it has to be mentioned that the snoring
sounds that have been used in this trial have a flat spectrum due to inclusion of white noise
caused by both imperfect mobile microphones and the distance between the audio source,
the snorer’s mouth, and the microphone. This causes the pitch to be erratically estimated
even though YIN pitch detector is resilient to low SNR. It can be seen in the histograms below
and that despite it might be unstable within a single snore signal (see: 3.26 on the preceding
page), if we take the median for each snore event, we can find an estimate around the range
60-80Hz. as seen in Figure 3.28
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Figure 3.28: Histogram for Median and Mean Pitch Frequencies for a Snore Epoch
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Figure 3.29: Histogram for all voiced Pitch Frequencies for a Snore Epoch

3.5.3. Average Excitation Waveform

As we have found the audible snore events and used filtering to estimate the excitation
flow signal, it is now necessary to envelop the signals surrounding the peak amplitude. The
results can be found in Figures 3.30a on the next page and 3.30b on the following page
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(b) Excitation Derivative Waveforms for a Snore
Epoch

Figure 3.30: Average Excitation Signal and Excitation Derivative Signal. Each line indicates a snore waveform with
a pitch period. Black line indicates averaged waveform for a snore event

It can be seen in Figures 3.30a and 3.30b that the shape of the excitation flow is differ-
ent for snoring and speech (Figures 3.21 on page 41 and 3.22 on page 42). The pitch of both
vowel sounds is higher than the snoring signals. As it has been discussed in Section 3.5.2
on page 46 the pitch within a snoring signal is less stable causing the shape of the excitation
signals to change within each snore instance. These waveforms are hard to compare with
previous literature as it has not been experimentally investigated. In vivo experimentation
while snoring for non-OSA population in order to find Cross sectional area change with an
imaging device has not been present while this thesis is being written. The results however
can be compared to work of Huang et al. [47] where consecutive frames of high-speed video
filming of a collapsing tube conveying airflow has been taken and plotted. Despite the re-
sults do resemble each other, the lower frequency sampling in the study (1000 frames/sec)
and lack of correspondence to natural setting makes the comparison less sensible to derive
conclusions. Lastly, Ng et al. [61] followed a similar method to find snore excitation flow. The
sourceflow results from this study matches the flow found in our study. Parametrization for
snore flow signals can be found in Ng et al.[63].

3.6. Comparison of Inverse Filtering Transfer Function and Snoring
Models

In this section, vocal tract transfer functions obtained from the inverse filtering methods
applied to real snoring sounds, will be compared to tube model transfer functions. As we do
not have the ground truth for the vocal tract transfer function we will take the spectra found
by the inverse filter to be the empirical evidence as these spectra has been deducted by real-
life snoring sounds.

The power spectrum obtained from these transfer functions will be compared in order to
measure spectral distortion. We will assume that power specturm obtained from the sound
files are the true spectrum of the vocal tract i.e. P (ω) = |H(e jω)|2 and estimated power spec-
trum of the vocal tract P (ω) = |H(e jω)|2, obtained from the tube model P̂ (ω) = |Ĥ(e jω)|2.

Itakura Saito distance has been given by [49] [71]

D I S(P (ω), P̂ (ω)) = 1

2M

M∑
ω=−M

[
P (ω)

P̂ (ω)
− log

P (ω)

P̂ (ω)
−1

]
(3.2)

where M is the size of the fourier transform. It shall be mentioned that D I S is a non-symmetric
measure, i.e. D I S(P (ω), P̂ (ω)) ̸= D I S(P̂ (ω),P (ω)). A symmetric measure has been defined by
Gray and Markel [41] and evaluated in [42]. The measure can be defined by

DCOSH = 1

2

(
D I S(P (ω), P̂ (ω))+D I S(P̂ (ω),P (ω))

)
(3.3)
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Figure 3.31: Examples of Itakura - Distance Measure

1 2 3 4 5 GMS Shifted
Spectrum 1 0 0 56 0.0228 0.3870 0.5594 0 00 0 16
Spectrum 2 0 57 0 0 60 0.3301 0.5227 0 57 0 17
Spectrum 3 0.0236 0 61 0 0.2744 0.4875 0.0236 0.0141
Spectrum 4 0.5180 0.4410 0.3634 0 0.2525 0.5180 0.4865
Spectrum 5 0.9286 0.8811 0.8319 0.3590 0 0.9286 0.9116
Gain Multiplied
Spectrum

0 00 0 56 0.0228 0.3870 0.5594 0 0 16

Shifted Spec-
trum

0 16 0 18 0.0140 0.3705 0.5589 0 16 0

Table 3.4: Table for Distance Measures

We also introduce here a gain independent method to compare two spectra, Itakura Distor-
tion measure. This is sensible as signal level makes no difference in the human understanding
of sound.

D I (P (ω), P̂ (ω)) = log
1

2M

M∑
ω=−M

[
P (ω)

P̂ (ω)

]
− 1

2M

M∑
ω=−M

log
P (ω)

P̂ (ω)
(3.4)

The gain difference between vocal tract transfer function from inverse filter and the transfer
function from tube model is significant. As a response, for our experiments, Itakura Distance
is an adequate measure, as it is gain independent[71].

In figure 3.31, we have created five different spectra; first three, very similar to each other,
and fourth and fifth are different. We have also manipulated Spectrum 1 by multiplying the
spectrum, and shifting the spectrum to the right. The results for the distance measures is
given in Table 3.4

In Figure 3.31, it can be seen that gain has no effect on the distance measure, and the
measure has low sensitivity to shifting the spectrum. As seen above, fifth spectrum is the
most different to Spectrum 1 compared to other spectra, and this is reflected in the table
above.
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Figure 3.32: Spectra for tube models and spectra from inverse filtering. The numbers in the legend are corre-
sponding averaged Itakura distances to randomly selected spectra of resulting inverse filter vocal tract transfer
functions represented in black dotted lines

Spectral comparison and results for both methods are shown in Figure 3.32. For inverse
filter method, a model order of 16 has been used, in concordance with section 3.1.1 equa-
tion 3.1 on page 28. Inverse filter method finds dominant peaks below 1000 Hz and in many
of the cases, find below 500 Hz. However, it can not be replicated by a tube model 1 as look-
ing at Equation 2.31 would show that such a tube would require double the length of average
airway tract (around 34 cm). It can be seen that transfer function for Model 2 is significantly
impacted by gain adjustment in Itakura Distance Measure. As a result, as it can be seen in 3.32
in the legend and in Table 3.5 on the facing page, on average, second model performs better
at modelling the vocal tract.

As tube model, we compared two models that are suggested in the section 2.3 on page 20.
Similarly, in order to detect the vocal tract transfer function, we ignored the effect of the lip
radiation and took reflection coefficient of glottis as 0.7. The additional parameters have been
taken into account. We created spectra for four different excitation locations, mentioned in
section 3.3.3 within the tube for both of the models. It is now possible to estimate an LP model
for these eight spectra and use inverse filter on real snore events. However, since we do not
know if these transfer functions do actually represent the transfer function for the airway
during snoring sounds we compare the spectra with spectra obtained from IAIF model.

Snore event signals found in the overnight sleep recordings are collected and the middle
frame from each snore signal has been extracted. The results from inverse filtering of each
frame has been obtained and compared with eight transfer function spectra from the tube
models using the distortion measures. As a result, distances to different models have been
averaged, and the model with the minimum distance has been found. The results can be
found in table 3.5 on the facing page
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Patient
Average Itakura Distance and Deviation Best Average Spectral Match

Model 1 Model 2
Model 1 Model 2

Type Distance Type Distance
Patient 1 2.135 ± 0.564 0.714 ± 0.581 Epiglottis 1.396 Velum 0.376
Patient 2 1.989 ± 0.538 0.726 ± 0.487 Epiglottis 1.282 Velum 0.389
Patient 3 2.130 ± 0.558 0.659 ± 0.610 Epiglottis 1.581 Tongue 0.323
Patient 4 1.879 ± 0.549 0.761 ± 0.445 Epiglottis 1.139 Velum 0.374
Patient 5 2.099 ± 0.571 0.711 ± 0.591 Epiglottis 1.336 Velum 0.317
Patient 7 1.811 ± 0.541 0.713 ± 0.367 Epiglottis 1.129 Velum 0.410
Patient 8 2.104 ± 0.521 0.785 ± 0.554 Epiglottis 1.387 Velum 0.433
Patient 9 2.365 ± 0.595 0.666 ± 0.742 Epiglottis 1.399 Tongue 0.399
Patient 10 1.690 ± 0.514 0.844 ± 0.361 Epiglottis 1.017 Velum 0.436
Patient 11 2.082 ± 0.581 0.747 ± 0.560 Epiglottis 1.270 Velum 0.382
Patient 12 1.889 ± 0.594 0.691 ± 0.499 Epiglottis 1.063 Velum 0.265
Patient 13 2.028 ± 0.535 0.724 ± 0.472 Epiglottis 1.333 Velum 0.402
Patient 14 1.820 ± 0.522 0.728 ± 0.309 Epiglottis 1.246 Velum 0.469
Patient 15 2.294 ± 0.536 0.837 ± 0.577 Epiglottis 1.537 Tongue 0.374
Patient 16 2.189 ± 0.541 0.761 ± 0.549 Epiglottis 1.390 Tongue 0.409
Patient 17 2.195 ± 0.550 0.754 ± 0.601 Epiglottis 1.436 Tongue 0.423
Patient 18 2.210 ± 0.604 0.760 ± 0.684 Epiglottis 1.359 Velum 0.319
Patient 19 1.710 ± 0.459 0.759 ± 0.306 Epiglottis 1.105 Velum 0.456
Patient 22 1.960 ± 0.530 0.733 ± 0.484 Epiglottis 1.283 Velum 0.327
Patient 23 1.882 ± 0.572 0.796 ± 0.473 Epiglottis 1.087 Velum 0.356
Patient 24 2.010 ± 0.523 0.743 ± 0.508 Epiglottis 1.247 Velum 0.446
Patient 25 2.012 ± 0.538 0.702 ± 0.492 Epiglottis 1.320 Velum 0.374
Patient 26 1.914 ± 0.538 0.672 ± 0.468 Epiglottis 1.240 Velum 0.247
Patient 27 1.724 ± 0.438 0.804 ± 0.227 Epiglottis 1.332 Velum 0.430
Patient 28 1.820 ± 0.542 0.783 ± 0.417 Epiglottis 1.098 Velum 0.402
Patient 29 1.360 ± 0.360 0.997 ± 0.220 Epiglottis 0.876 Velum 0.699

Table 3.5: Average Spectral Distances and Standard Deviations for Model 1 and Model 2 to Vocal Tract Transfer
Function Spectrum for each Patient

The averages are taken over all frames from various nights (including different device us-
age) and over 4 different hypothesized excitation locations for 2 models. It shall be noted that
some devices may change the cross-sectional area of the airway during usage. We have also
compared the distances for frequencies lower than 1500 Hz. As mentioned in the beginning
of Chapter 3 the lower frequency region is dominates the energy spectrum and it is beneficial
to compare these segments instead of the entire spectrum. In Table 3.5 it can be seen that av-
erage Itakura Distance to vocal tract transfer function spectrum for model two is significantly
lower than Model 1. The standard deviations are taken over different excitation locations, and
it can be seen that distances to Model 2 is highly sensitive to the assumed excitation location.

3.7. Analysis on Different Participants

Next, we have analyzed each patient and obtained excitation flow signal for each night
and each snore epoch by averaging over all the snore events and interpolating and reshaping
for median pitch period. The resulting signals can be seen below. This has been done for all
the patients and it can be seen in Appendix B.
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Patient
Model 1 Model 2

Sample Size
Epiglottis Tongue Velum O. Walls Epiglottis Tongue Velum O. Walls

Patient 1 0.39 0 0.19 0.19 8.09 44.70 44.70 1.73 519
Patient 2 0.73 0 0 0.15 4.16 26.26 66.54 2.16 2041
Patient 3 0 0 0 0 11.76 23.53 64.71 0 17
Patient 4 4.81 0.69 0.69 0 1.10 22.01 68.09 2.61 727
Patient 5 0.82 0 0 0 5.56 32.10 59.67 1.85 486
Patient 7 3.23 0.92 0 0.46 4.15 15.21 71.89 4.15 217
Patient 8 0.67 0.22 0 0.11 3.14 40.31 49.27 6.27 893
Patient 9 0 0 0 0 60.38 18.87 20.75 0 53
Patient 10 7.90 2.83 1.30 0.24 0.94 6.84 71.58 8.37 848
Patient 11 6.43 0 0 0.23 20.42 17.93 52.87 2.12 1322
Patient 12 0.93 0 0 0 0.31 7.41 91.05 0.31 324
Patient 13 0 0 0 0 0 46.15 53.85 0 26
Patient 14 0 0 0 0 0 21.88 75 3.13 32
Patient 15 0 0 0 0 28.95 28.07 41.23 1.75 114
Patient 16 0 0 0 0 16.25 40 41.25 2.50 80
Patient 17 2.42 0.40 0 0 32.66 26.21 33.87 4.44 248
Patient 18 0.41 0 0 0 1.51 32.74 65.21 0.14 730
Patient 19 0.76 1.19 0.11 0.32 0.43 15.43 69.69 12.08 927
Patient 22 0.68 0.68 0 0 0 30.82 65.75 2.05 146
Patient 23 5.90 0.88 0.14 0.47 1.15 10.52 77.41 3.53 1474
Patient 24 0 0.56 0.56 0 0.56 31.07 63.84 3.39 177
Patient 25 0 0 0 0.64 0.64 38.46 59.62 0.64 156
Patient 26 0 0 0 0 0 9.09 90.91 0 11
Patient 27 0 0 0 0 0 16.22 59.46 24.32 37
Patient 28 6.70 0.90 0.05 0.42 0.42 15.41 69.55 6.54 1895
Patient 29 17.94 9.16 4.58 0 0 17.18 29.77 21.37 262

Table 3.6: Percentage for detected snoring instances per obstruction type for both models
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(a) Excitation Waveform signal for patient 1
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(b) Excitation Derivative Waveform for patient 1

Figure 3.33: Waveforms for patients. Each line indicates a snore epoch. Bold lines indicate averaged flow signals
for each device

We select specific patients that have been identified as whose snoring has been substan-
tially alleviated by a device, as mentioned in subsection 3.5.1 on page 43. Here, we will
demonstrate each flow signal obtained from snore epochs of Baseline duration and try to
identify if there is a significant difference in the excitation flow between the set of patients
impacted by Nasal Dilator, Mandibular Advancement Device, and Positional Device. Our
expectation is to find different flow signals and different pitch for group of patients, as the
patients reported that this specific device remarkably changes their snore pattern. As a first
investigation, we look at the number of snore events detected using our YIN estimator.
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Figure 3.34: Total Events per Device

We also calculate average number of events.
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Figure 3.35: Average snore events per device per hour

Next, we show the results for each excitation flow analyzed from the snoring signals. We
analyzed the snore epochs extracted from the sleep periods during the baseline period of first
three days. The participants for whom specific devices worked particularly well as identified
in Brinker et al. [19] can be seen in Table 3.7 on the next page.
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Effective Device Participant # of Nights # of snore epochs

Nasal Dilator
4 3 8
5 3 1
6 3 1

Mandibular
Advancement
Device

3 2 0
15 3 12
18 3 6
22 3 4
24 3 5
26 2 1
27 3 0
28 3 22

Positional
Device

7 3 1
9 3 1

14 3 0
19 3 6
25 3 3

Table 3.7: Effective Device Data From the trial

As it can be seen in table 3.7 above several participants lack sufficient knowledge for base-
line period. Participant 3 and Participant 14 are examples of this case. Additionally, Partici-
pant 9 has one baseline period recording which features a high background noise.

Moreover if we compare the results in Figure 3.35 on the preceding page and 3.34 with
Table 3.7, we see that reported effective devices do not reflect a decrease in number of snore
events per hour or number of snore events. This result might point to different conclusions.
Moreover, the reporting of the partners may have different biases and different priorities for
characterizing sleep quality. These will be elaborated deeply in the discussion chapter.

Below, we introduced excitation flow waveforms extracted from sound files during the
baseline duration of the trial, which refers to the duration that no device has been used. We
aim to find a distinct pattern for patients which a different device worked well. We average
the excitation flows of each snore event, and then average over the entire snore epoch. In
figures below, dotted lines show each night, and solid line shows the average.
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(b) Patient 4 Excitation Flow Derivative
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(b) Patient 5 Excitation Flow Derivative
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Participants Alleviated by Mandibular Advancement Device (MAD)
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(a) Patient 18 Excitation Flow
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(b) Patient 18 Excitation Flow Derivative
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(a) Patient 22 Excitation Flow
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(b) Patient 22 Excitation Flow Derivative
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(b) Patient 24 Excitation Flow Derivative

Participants Alleviated by Positional Device (PD)
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(a) Patient 7 Excitation Flow
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(b) Patient 7 Excitation Flow Derivative
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(a) Patient 19 Excitation Flow
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(b) Patient 19 Excitation Flow Derivative
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(a) Patient 25 Excitation Flow
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(b) Patient 25 Excitation Flow Derivative

Resulting waveforms are discussed in Chapter 4 on the facing page.



4
Discussion

The experiments section showed us several aspects of tube modelling and whether these
can be applied to the snoring problem. In this section we will elaborate the results of these
experiments.

Unlike Ng et al.[64] and Saha et al.[73], we have followed different methods and proce-
dures to work on the upper airway. Ng, excited the tube from glottis, and used a transfer
function created for the entire upper airway tube. As an hypotheses we suggested alternative
models, which have different excitation locations and different circuit characteristics in sec-
tion 2.3. Additionally, in section 3.3 we have shown that obstruction location plays a critical
role in creating the upper airway transfer function for the models that have been suggested.
However, similar to Ng, we have found that narrowing of the pharyngeal airway increase the
formant frequencies for Model 1 and peak frequency, as expected from the tube modelling
theory.

On the other hand, Saha et al. used tracheal recordings, which differ from ambient record-
ings and claimed to be higher in SNR and useful in classification accuracy [84]. Additionally,
they have only experimented on non-varying cross sectional area, i.e. single tube. In their
studies they have found that increases in the upper airway length reduced the resonant fre-
quency of snoring sounds and validated against recordings of actual snoring events. This also
matches with our findings for model one and model 2 in Figure 3.13 on page 37 and 3.14 on
page 37.

Apneic(OSA) and benign(non-OSA) snoring sounds have been compared in Fiz et al. [36],
Perez-Padilla et al. [67]. While the results do not reach a consensus on difference between
OSA and non-OSA patients, it has been found that OSA snorers have power spread over
higher frequency range compared to non-OSA snorers. Additionally it has been found that
maximum frequency i.e upper limit of the spectrum defined as the highest frequency peak
with a power greater than 3% of the peak power has been significantly larger(500Hz non-
OSA, 1400Hz OSA) in OSA patients with a larger spread. This can be linked to our study in
the sense that if the constriction is in multiple regions and in the upper part of the airway,
Oropharyngeal walls, is the area that is one of these areas for both of the models, the first
formant frequency increased. Especially, as seen in 3.14 on page 37 first formant frequency
is around 1200 Hz. Hence, it may be claimed that this increase in the first formant frequency
may reflect characteristics of multiple constrictions as in OSA. However, since OSA patients
have been excluded from the trial, it would be overreaching to conclude on characteristics of
OSA snore events.

Additionally, previous studies have found that main frequencies of snoring due to the
narrowing at the base of tongue were above 650 Hz, frequencies of palatal snoring were below
450 Hz [83][70]. This has also been observed in our models, specifically in Model 2 3.14 on
page 37.

As the next step, we discuss the characteristics of the excitation flow. Firstly, we observed
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that speech signals and snore signals have fundamentally different flow characteristics as it
can be seen in Figures 3.16 on page 38 and 3.21 on page 41. This can be observed using the
inverse filtering technique that has been used for speech processing for snoring signals and
speech signals. This difference is expected as speech is created from forced vibration of the
vocal folds, while snoring is caused by vibration of the relaxed tissue that is obstructing the
airway. We also found that pitch of the snoring signals are lower compared to speech signals
for most of the participants to the trial.

Snoring excitation waveforms may differ for each person and each device used during
the sleep as seen in Section 3.7 on page 51. It also varies for each snore event and each
night. However, they do follow a similar pattern and this enables the parametrization of
excitation flow [63]. The waveform follows an exponential rise for the first half of the flow
pattern, and a fall, again exponentially. While there exists difference between each device
period waveforms, it is difficult to achieve a consensus on how each device effects the exci-
tation waveform. The difficulty comes from varying pitch during snoring, lack of audio files
for many of the patients for many of the nights, and noisy sound files. Additionally it is hard
to achieve consensus on what creates a difference between participants during the baseline
period. Parametrization of these snore flows is a plausible way to find the differences in these
flow signals. Airas et al.[3], and Ng[63] defined multiple parameters for glottal waveform,
namely, Open Quotient, Negative Quotient, Positive Quotient etc. Ng et al. [63] has claimed
that these features are useful for differentiating snore signals.

4.1. Limitations
In this section we will mention to limitations of the experiments and mention different

ways to surpass them.

As reported in [69], [53], [54] the obstruction sites might be plural. While our model is ca-
pable of simulating such a case, inverse filtering methods would not be able to find multiple
snore flows for different locations. The models can be adjusted to excite the tube from mul-
tiple locations with different excitation flows. However, in such a case, the transfer function
calculation should be adapted for multiple sources.

While nasal patency has been in the scope of this problem, it has not been investigated
for this study. Adding the impact of a closed or open nasal opening is trivial for both of the
models using a parallel input parallel output branching near the volume area as mentioned
in Maeda [56]. However, due to time schedule this is left for future work.

Effect of turbulence has not been investigated for this study. Reynolds number has to
be calculated, to determine if the flow characteristic is laminar or turbulent. If we calculate
the Reynolds number using mean inhalation velocity associated with sinusoidal at-rest [7],
1.81ms−1, air density, ρ as 1.14kgm−3 and diameter as 5×10−2 m and dynamic viscosity as
1.85×10−5 Pas we find the Reynolds number between 450 for 4cm and 670 for 6 cm. For
flow in a pipe of diameter D , Reynolds number below 2300 points to laminar flow [74]. How-
ever, changes in cross-sectional area, and in turn, changes of the volume velocity within the
tube with respect to depth of the airway, might cause turbulence during inhalation. This has
also been pointed out in Quinn et al. [70] as tongue base snoring appears to be associated
with airflow turbulence in a rapid, continuous airflow through a severely narrowed airway.
These turbulence-induced sounds have a higher frequency and broader spectral range than
that produced by the floppy soft palate intermittently obstructing the nasopharyngeal airway.
Detailed research on fluid dynamics using Finite Element Methods, and Computation Fluid
Dynamics have been conducted by Balint et al. [11] Chouly et al. [26], Bertram [14], Zhao et
al. [85] and Lucey et al. [55] and is an active field in fluid dynamics.

Total duration measured for each night is not precise. Audiovisual inspection showed that
many participants do not immediately fall asleep. However, as it is hard to point to the time
instance that patient had begun sleeping, it is incrementally hard to find the exact number
of snore events per hour. This, effects the results in 3.35 on page 53 and 3.34 on page 53.
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Additionally, as we use a Voice Activity Detector, we also detect surrounding sounds caused
by TV, crying baby, door opening, etc. Even though we have used a temporal limit of 2 seconds
for detection of inhalation events to eliminate faulty detections, this does not overcome the
interference problem for accurately detected segments. This overlap with snoring sounds,
causes the spectrum to be polluted by environmental sounds.

Different devices do change the waveform of the excitation flow. However, it is hard to de-
duce results from this trial. Number of patients and the non-clinical setup of the trial makes
the assessment of the flow waveforms intractable. As mentioned in the previous sections,
creation of the ground truth data is mostly derived from assessment of the participants’, and
their partners’ reports in the morning after and reporting at the end of device trial period. As
these reports can be susceptible to many bias problems such as Consistency bias, Selective
Memory, Self-Serving Bias, Rosy retrospection, Anchoring , Attentional bias and Focusing
effect and Peak-end rule.

The assumption that flow and the airway tract are linearly separable in section 2.5 on
page 24 may not be true for snoring problem. As mentioned in Babbs [10], Venturi effect plays
an important role in snoring. As Venturi effect is defined as reduced pressure that occurs
when a fluid flows through a constricted section of a tube or pipe, it changes to cross sectional
area. This means that tube and the flow are not linearly separable.





5
Conclusion and Future Work

The thesis project is aimed at designing an unobtrusive method to find the obstruction
location for benign(non-OSA) snoring patients, during their non-sedated sleep using simple
recording devices within uncontrolled environment. The method that has been suggested
has been created with an aim to reflect the physical realities of sound production.

We considered tube modelling in order to model snoring sound production. In the first
part of the thesis we have explained how our tube model works and created two different
models in concordance with upper airway anatomy. Additionally, we have introduced ad-
ditional components that reflect the physical phenomena, such as walls, heat conductance,
and resistance and compared its impact on tube modelling in experiments chapter. We also
investigated if linear prediction can be used to determine the shape of the upper airway tract,
and in concordance with the tube model. Later we tried to determine if these two methods,
namely tube model, and linear prediction can help to determine the excitation flow during
snoring. This has been later tested on snoring sounds recorded in natural conditions. While
the method has not been fully assessed and proven, due to numerous reasons (presented
in Discussion), it has been shown that it is in concordance with previous clinical trials and
research.

The concluding remarks on this study can be found below

1. Remarks on Tube Modelling

(a) We checked transfer function spectra for different models and different excitation
locations and obstruction severities. We have observed that for Model 1 the first
formant of the transfer function has increased as we moved the excitation location
to upper regions of the airway, equivalently, creating a shorter tube. For model 2,
the results show that it is harder to derive direct conclusions as model 1.

(b) Additional components do not have a significant impact on reconstruction us-
ing linear prediction coefficients, as these components do not alter the transfer
function spectrum of the vocal tract.

(c) Tube modelling using transfer function for ducts can model the upper airway sec-
tion while vowels are being pronounced. Tube model do find the same peaks and
bandwidths compared to commonly used inverse filter models. However, it is im-
portant to point the determination of the order of the linear prediction suffers
from the problem of causality dilemma, as the obstruction location is not known.
This especially has a higher impact on model two, as the lower part of the respira-
tory tract alters the tube model and the physical rules for determining the model
order can not be applied for this case.

(d) Model 2, which incorporates the lower part of the airway tract finds lower formant
frequencies around 300-500 Hz, which is parallel to previous literature.
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2. Remarks on Linear Prediction and Inverse Filtering

(a) Investigating viability of linear prediction for estimating the upper airway has
been done using different experiments. Based on these test, you only get a cor-
respondence on certain settings on a specific model and certain conditions, with
specific wall parameters, specific termination. Therefore, it is necessary to point
that it is questionable to use linear prediction, since under natural conditions, not
all the requirements are met.

(b) We have shown that using linear prediction coefficients to reconstruct the up-
per airway is not a plausible method as the spectral distances between vocal tract
transfer function obtained from the inverse filter and transfer function obtained
from the tube model are large. As we have confirmed that LPC can only represent
a model with an anechoic ending at excitation location in Model 1, using the coef-
ficients to reconstruct the cross-sectional area is not a plausible method. Conse-
quentially, the estimated transfer function from the inverse filter do not represent
the cross-sectional area.

(c) Even though Linear Prediction is not a good method to get the cross-sectional ar-
eas, it is useful to find the temporal characteristics of the snore signal i.e excitation
flow, and spectral characteristics, i.e. upper airway transfer function.

(d) An excitation flow pattern for snoring has been found. This is similar to previous
literature [47], but it is yet to be confirmed with better imaging techniques.

3. Remarks on Trial Data and Phenotyping

(a) Vocal tract transfer functions from inverse filtering methods have been compared
with the transfer functions of models excited from different locations. Using the
spectral distance measures, it has been found that, Model 2 is more successful in
modelling the airway tract for snoring problem.

(b) For Model 1, the majority of the airway tract transfer functions has been identified
as Epiglottic Snores, while for Model 2 the identified snores have been diverse.

(c) The effectiveness of the devices can not be identified by simple investigation of
average excitation flow, and we have not found any convincing leads that there
is a difference between flow models regarding the shape. Further work needs to
be conducted on parametrization to discover a distinguishing factor, given that
subjective evaluations of the participants reflect the essence of the problem accu-
rately. Additionally, it is important to detect the pitch period accurately, in order
to envelop the excitation flow signals correctly.

(d) Average number of snores per hour do not reflect the reporting of the participants
regarding the efficient device. While loudness can be an important aspect, it can
be said that annoyance of the partners are very subjective, and hard to estimate
using scientific methods.

5.1. Future Work
In order to achieve the main goal, presenting a product that correctly finds the obstruc-

tion location, and suggests a device for the consumer, several steps still need to be taken.
These steps are as follows

1. Annotation of the obstruction and excitation location has to be made by Ear Nose
Throat (ENT) experts similar to the previous studies. As we do not know the source
of the location that we have used in our analysis, this still need further validation by
medical personnel.
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2. A much better validation could be achieved by using a discriminative measure sug-
gested by Robb et al. [72]. This would require the patients withing this study to pro-
nounce multiple vowel sounds to predict snoring propensity. This would enable the
method to estimate the cross-sectional area and the constrictions within the airway
tube before recording the snoring sounds.

3. To the best of our knowledge, excitation flow pattern for snoring is yet to be confirmed
by advanced imaging techniques. Further, a controlled trial, using better audio equip-
ment can be used to measure the loss of quality and accuracy using mobile phones.

4. A mobile application, that can easily be used by consumers and give sufficient report
on how they sleep throughout the night has to be developed.





A
IAIF vs DIF Comparison

Comparison of flow models from TIMIT database for specified vowels.
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Figure A.1: Inverse Filtering Model Comparison for E
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Figure A.2: Inverse Filtering Model Comparison for I
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Figure A.3: Inverse Filtering Model Comparison for O
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Figure A.4: Inverse Filtering Model Comparison for u



B
Comparison of Excitation Flow for

Different Device Periods

The excitation flow for different device periods for each patient is shown in this section.
If a flow does not exist it might have different meanings:"

1. The patient has not made successful recordings for the device period

2. The patient has not filled in the survey regarding which device he/she used.

3. The patient did not snore on that night.

4. The patient did snore, but the voice activity detector has not captured it.

0 0.005 0.01 0.015
Time(s)

-0.02

0

0.02

0.04

S
ou

nd
 P

re
ss

ur
e

BL
ND
MAD
PD

0 0.005 0.01 0.015
Time(s)

-2

-1

0

1

2

S
ou

nd
 P

re
ss

ur
e

10-3

BL
ND
MAD
PD

Figure B.1: Excitation Waveform(left) and Excitation Derivative Waveform(right) for patient 2
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Figure B.2: Excitation Waveform(left) and Excitation Derivative Waveform(right) for patient 3
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Figure B.3: Excitation Waveform(left) and Excitation Derivative Waveform(right) for patient 4
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Figure B.4: Excitation Waveform(left) and Excitation Derivative Waveform(right) for patient 5
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Figure B.5: Excitation Waveform(left) and Excitation Derivative Waveform(right) for patient 7
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Figure B.6: Excitation Waveform(left) and Excitation Derivative Waveform(right) for patient 8
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Figure B.7: Excitation Waveform(left) and Excitation Derivative Waveform(right) for patient 9



C
Vowel Transfer Function Comparison

This appendix section shows the comparison for transfer functions obtained from sound
files using inverse filtering, and obtained from cross-sectional area tube model transfer func-
tions.
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Figure C.1: (left) Cross-sectional Areas; (right) Transfer Function for vowel E
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Figure C.2: Comparison of Vocal Tract Transfer functions from Inverse Filter vs Tube Model for vowel E
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Figure C.3: (left) Cross-sectional Areas; (right) Transfer Function for vowel I
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Figure C.4: Comparison of Vocal Tract Transfer functions from Inverse Filter vs Tube Model for vowel I
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Figure C.5: (left) Cross-sectional Areas; (right) Transfer Function for vowel O
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Figure C.6: Comparison of Vocal Tract Transfer functions from Inverse Filter vs Tube Model for vowel O
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Figure C.7: (left) Cross-sectional Areas; (right) Transfer Function for vowel U
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Figure C.8: Comparison of Vocal Tract Transfer functions from Inverse Filter vs Tube Model for vowel U





D
Software Framework

This chapter will describe the software that has been written to enable the research. All
of the files are included in subdirectory proteus/snoringmodel

Directory / Name Description

areameasurements / measurements
Cross-Sectional Area Measurements digitized
from [60] and [28]

areameasurements / measurementsletter-
American

Cross-Sectional Area Measurements for American
English vowels digitized from Mermelstein et al.
[58]

areameasurements / measurementsletter-
Russian

Cross-Sectional Area Measurements for Russian
vowels digitized from Mermelstein et al. [58]

areameasurements / CSANarrow

Narrowing cross sectional area calculation The
method does interpolation for equally distributed
pivot points, that has been narrowed proportion-
ally.Function that finds a narrower cross sectional
area calculation given the parameters obstruction
index,obstruction severity ,obstruction width

test / testWallParams
Goes over each wall parameters in Ishizaka et al.
and Harper et al. Plots the output transfer function
and reconstruction

test/ testlowerrespiratoy
function that gives impedance for lower respira-
tory system

test / spectral_inspection

Function that creates different cross-sectional ar-
eas and excitation locations, and plot transfer
function and Cross-Sectional area reconstructions
based on Model 1

test / spectral_inspection_end

Function that creates different cross-sectional ar-
eas and excitation locations, and plot transfer
function and Cross-Sectional area reconstructions
based on Model 2

multitube_source_location Function that builds the tube model

multitube_source_location_end

same script with multitube_source_location with
the exception that first half of the tube is taken into
account and an anechoic termination is added -
Model2

average_excitation_flow
Finds average excitation flow for voiced segments
using inverse filtering methods.
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find_wform
Function that finds the maximum or minimum
and encapsulates the signal with pitch period.

test / testR
Function that test impact of Resistance on the
transfer function and CSA reconstruction

test / testG
Function that test impact of Conductance on the
transfer function and CSA reconstruction

distance_spectrum_table
Function that outputs tables for distance of trans-
fer functions of inverse filter and tube model.

test / testYin
Test function on snoring signals for Yin Pitch Esti-
mation

test / plotSnoreCount
Function that takes patient information and out-
puts snore count in a histogram plot

test / plotPatientWaveform
Function that takes patient information and out-
puts snore count in a histogram plot

test / plotEffectiveWform
Function that reads patient data and finds the av-
erage flow for each patients baseline periods

test / spectral_inspection_VOTE

Function that creates different cross-sectional ar-
eas and excitation locations, similar to the profiles
described in Kezirian et al.(2011) and plot trans-
fer function and Cross-Sectional area reconstruc-
tions.

test / spectral_inspection_RG
Function that compares outputs for varying glottis
reflection coefficient

AnimatedAcousticTube /atvframe
Function that calculates the Areas belonging to the
acoustic tube needed to generate the sound de-
fined by the variable input.

airwaywall struct that hold the parameters for airway wall.



Glossary

Anchoring he tendency to rely too heavily, or "anchor," on a past reference or on one trait or
piece of information when making decisions.. 59

Attentional bias neglect of relevant data when making judgments of a correlation or associ-
ation.. 59

Consistency bias incorrectly remembering one’s past attitudes and behaviour as resembling
present attitudes and behaviour. . 59

Focusing effect prediction bias occurring when people place too much importance on one
aspect of an event; causes error in accurately predicting the utility of a future outcome..
59

Peak-end rule that people seem to perceive not the sum of an experience but the average of
how it was at its peak (e.g. pleasant or unpleasant) and how it ended.. 59

Rosy retrospection the tendency to rate past events more positively than they had actually
rated them when the event occurred.. 59

Selective Memory refers to rare events which are widely reported, thereby altering the per-
ception of how common they actually are. . 59

Self-Serving Bias the tendency to attribute successes to internal characteristics while blam-
ing failures on outside forces. It may also manifest itself as a tendency for people to
evaluate ambiguous information in a way beneficial to their interests.. 59
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Acronyms

AHI Apnea-Hypoapnea Index. 4

AR Autoregressive. 22

BL Baseline Period. x, 44

BPM Beats Per Minute. 44

DIF Direct Inverse Filtering. 24, 38

DISE Drug Induced Sleep Endoscopy. 4

ENT Ear Nose Throat. 3, 4, 62

FIR Finite Impulse Response. 24

IAIF Iterative Adaptive Inverse Filtering. 24, 38, 50

IIR Infinite Impulse Response. 22

LP Linear Prediction. 35, 36, 39

LPC Linear Prediction Coefficients. 32, 62

LRT Likelihood Ratio Testing. 4

MAD Mandibular Advancement Device. x, 44, 52, 55

MPSSC Munich-Passau Snore Sound Corpus. 4

ND Nasal Dilator. x, 44, 52, 54

NREM Non-Rapid Eye Movement. 2

OSA Obstructive Sleep Apnea. 1, 3, 43, 57, 61

PCA Principal Component Analysis. 3

PD Positional Device. x, 44, 52, 55

RDI Respiratory Disturbance Index, sum of apneas and hypopneas. 27

REM Rapid Eye Movement. 2

ROC Receiver operating characteristic. 4

SFM Source Filter Model. 5, 42

SNR Sound to Noise Ratio. 4, 40, 47, 57
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