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Simplify. To know is to simplify without losing essence.
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Summary
Robots have the potential to assume tasks across various real-world scenarios. To
achieve this, we require adaptable and reactive robots that can robustly deal with
products and environments that present variability. For example, in the agro-food
sector, each tomato plant inside a greenhouse is unique; hence, different robotic
motions are required when interacting with different plants. Unfortunately, due
to their simplicity, most robotic solutions currently employed are rigid and rely
on hand-crafted rules. Such solutions perform well in controlled and repetitive
environments; however, they fall short when these conditions are not met. As a
consequence, a large family of problems remains unsolved.

In this context, Imitation Learning (IL) presents itself as an attractive alterna-
tive, since it introduces a framework that allows modeling and adapting complex
behaviors with ease. This is achieved by introducing robots that can be quickly
customized by non-expert roboticists through intuitive methods similar to the ones
humans use to learn from each other, e.g., demonstrations, corrections, evaluations,
etc. The simplicity of utilizing these methods reduces the obstacles to real-world
adoption, rendering them a practical substitute for existing solutions. Nevertheless,
despite these advantages, data-driven methods often come at the cost of not be-
ing completely reliable, especially in situations that are not well represented in the
training data. Hence, due to the strict task performance requirements commonly
imposed in real-world environments, such limitations must be addressed for these
solutions to be adopted. Therefore, in this dissertation, we study these challenges,
and address them with the aim of providing tools for developing reliable and data-
efficient IL methodologies that can be employed to solve problems in challenging
real-world scenarios.

Historically, IL has been addressed as an offline learning problem, i.e., behaviors
are transferred to robots by means of recorded demonstrations. However, one of the
main limitations of such approaches is covariate shift. This occurs when the train-
ing data, obtained from trajectories generated by an expert demonstrator, do not
align with the trajectory distribution that the robot encounters during deployment.
This mismatch arises because, with respect to the training data, robots make small
decision-making errors that accumulate over time. Consequently, even if a robot
initially operates within a region covered by the training data, it will gradually de-
viate from it. This results in encountering unseen states, and, therefore, in the robot
making erroneous and potentially dangerous actions, ultimately leading to failure.
In this context, Interactive Imitation Learning (IIL) has emerged as an appealing
alternative to overcome this problem. In IIL, training data are generated under the
robot’s trajectory distribution by means of online feedback. In this way, during the
learning process, a human teacher observes the robot’s behavior and occasionally

vii



viii Summary

corrects or evaluates it. This process inherently enforces training and testing data
to belong to the same distribution, as the robot learns on the distribution of states
it generates itself. Consequently, IIL presents a framework that makes IL more re-
liable, and, therefore, it is of main interest to this thesis. Given its importance, in
Chapter 2, we formalize IIL and provide an overview of this field.

Apart from IIL addressing the covariate shift problem, since humans give feed-
back to robots as a function of their behavior, it is possible to use feedback signals
that are provided relative to the robot’s actions. This can be a powerful tool, since
it allows for humans to teach robots behaviors that might not be easy or feasible to
demonstrate directly. In this regard, Chapter 3 introduces a method based on rela-
tive corrective feedback. This feedback modifies the robot’s behavior by indicating
in which direction a performed action must be modified. For instance, if a robot is
moving too slow, a human can indicate the robot to go faster, without needing to
provide an exact speed value for the robot to reach. Although this idea is not new,
there remain multiple challenges in learning from this type of feedback. Therefore,
Chapter 3 addresses one of them: tasks involving high-dimensional observations
where temporal information is required to build proper state representations. Such
problems can be frequently encountered in real-world scenarios. Consequently, it
is of main interest to provide solutions for them. This chapter shows that this can
be addressed via state representation learning strategies, which enable the extrac-
tion of spatiotemporal features using minimal, non-expert human feedback. It also
contrasts various feedback modalities, underlining the particular importance of this
approach in the context of relative corrections.

Although IIL introduces powerful methods for learning reliable behaviors from
human feedback, these behaviors still lack interpretability and predictability. This
makes it challenging for these methods to be adopted in real-world scenarios where
strong requirements must be met. In this regard, it is appealing to incorporate
tools from control theory into these frameworks to provide them with guarantees
and make their behavior predictable. Therefore, in the context of autonomous driv-
ing, Chapter 4 introduces an approach that merges the robustness of MPC with
the adaptability and efficiency of IIL. By making part of the MPC’s cost function
learnable, we utilize established MPC methods for achieving standard behaviors
like path tracking and obstacle avoidance, while learning other parts such as veloc-
ity references. The learned parts are computed using context information, such as
the vehicle’s first-person view, allowing it to incorporate complex human reason-
ing in the computed trajectories. Experimental results, obtained using a realistic
simulator, demonstrate that the proposed method achieves real-time execution and
superior performance, in terms of collisions and deadlocks, compared to approaches
that rely solely on optimization or solely on data-driven methods. As a result, we
demonstrate that the benefits of MPC can be effectively integrated with those of
IIL, leading to a reliable and powerful framework.

Then, in Chapter 5, we continue our investigation into integrating control theory
knowledge with Imitation Learning (IL). The objective is to facilitate the learning
of robotic motions from human demonstrations. These motions are modeled as
dynamical systems, enabling the application of theories from this field to analyze
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properties such as global asymptotic stability. In this context, globally asymptoti-
cally stable motions are those that consistently reach the task’s goal state, regardless
of the robot’s initial conditions. This means that even when the robot encounters
states not represented by the imitation data, it can still generate motions converging
towards the goal. Recognizing the importance of this feature in robotic motions, we
introduce a novel Deep Neural Network (DNN) loss term that enforces it. This in-
troduction of a specialized loss term is a key distinction of our method. In contrast,
other works that learn stable motions from demonstrations often do so by constrain-
ing the structure of their learning models, for example, by requiring invertibility or
positive/negative definiteness. While these constraints ensure stability, they limit
the applicability of the methods to a narrower range of models and tend to exces-
sively limit the learning flexibility of function approximators. Lastly, it is important
to note that this approach is compatible with IIL; however, offline IL is employed
in this chapter for practical reasons related to the focus on stability loss design. We
demonstrate that the proposed method, derived using Deep Metric Learning (DML)
tools, effectively learns stable and accurate motions. To this end, comparisons with
other methods are conducted using datasets containing demonstrations of multiple
motions. Moreover, real-world validations are performed using a robot manipulator
in various scenarios. These validations involve learning dynamical systems, both
first and second order, in different state spaces, such as the robot’s end-effector
position and its 7-dimensional joint space.

Lastly, in Chapter 6, we build upon the concepts introduced in Chapter 5, with
the aim of developing a more efficient and versatile loss function. This approach
tackles the same challenge as the preceding chapter: enforcing global asymptotic
stability in motions modeled as dynamical systems. The newly introduced loss
function also incorporates principles from DML; however, it introduces fewer struc-
tural constraints in the optimization process to achieve stability. This innovation
allows the robot to converge to a broader range of stable motions, thereby exhibiting
improved optimization performance, particularly in learning second-order dynami-
cal systems. Furthermore, a key feature of this methodology is its ability to ensure
stability within non-Euclidean state spaces. This aspect is crucial in robotics; for
example, robot orientations are often represented in non-Euclidean spaces, such
as the 3-sphere for unit quaternions. Therefore, enforcing stable motions in these
spaces is a critical requirement for a variety of practical applications. Similar to
Chapter 5, this approach is evaluated using datasets of demonstrated motions and
is further tested in the real world with robot manipulators. The real-world experi-
ments demonstrate that robots can effectively learn complex, stable motions in the
space of their end-effector pose, thereby considering their orientation.





Samenvatting
Robots hebben het potentieel om taken over te nemen in verschillende realistische
scenario’s. Om dit te bereiken hebben we adaptieve en reactieve robots nodig die
robuust kunnen omgaan met producten en omgevingen die variabel zijn. In de agro-
voedingssector is bijvoorbeeld elke tomatenplant in een kas uniek; dus zijn verschil-
lende robotbewegingen vereist bij interactie met verschillende planten. Helaas zijn
de meeste huidige robuuste oplossingen vanwege hun eenvoud star en vertrouwen ze
op handgemaakte regels. Dergelijke oplossingen presteren goed in gecontroleerde en
repetitieve omgevingen; echter, ze schieten tekort wanneer niet aan deze voorwaar-
den wordt voldaan Als gevolg hiervan blijft een groot aantal problemen onopgelost.

In deze context presenteert Imitatie Leren (IL) zich als een aantrekkelijk alterna-
tief, aangezien het een framework introduceert dat het modelleren en aanpassen van
complex gedrag gemakkelijk maakt. Dit wordt bereikt door robots te introduceren
die snel aangepast kunnen worden door gebruikers zonder robotica achtergrond mid-
dels intuïtieve methoden, vergelijkbaar met de methoden die mensen gebruiken om
van elkaar te leren, zoals demonstraties, correcties, evaluaties, enzovoort. De een-
voud van het gebruik van deze methoden vergemakkelijkt de toepassingin de echte
wereld, waardoor ze een praktisch alternatief worden voor bestaande oplossingen.
Desalniettemin, komen datagedreven methoden ondanks hun voordelen vaak met
het nadeel dat ze niet volledig betrouwbaar zijn, vooral in situaties die niet goed
vertegenwoordigd zijn in de trainingsdata. Vanwege de strikte prestatievereisten die
vaak worden opgelegd in real-world omgevingen, moeten deze beperkingen worden
aangepakt voordat deze oplossingen kunnen worden toegepast. Daarom bestuderen
we in dit proefschrift deze uitdagingen en pakken ze aan met als doel het ontwikkelen
van betrouwbare en datagestuurde IL-methodologieën die ingezet kunnen worden
om problemen in uitdagendescenario’s in de echte wereld op te lossen.

Historisch gezien is IL behandeld als een offline leerprobleem, dat wil zeggen, ge-
drag wordt overgebracht op robots door middel van opgenomen demonstraties. Een
van de belangrijkste beperkingen van dergelijke benaderingen is echter covariabele
verschuiving. Dit gebeurt wanneer de trainingsdata, verkregen uit trajecten gegene-
reerd door een geoefende demonstrator, niet overeenkomen met de trajectverdeling
van de robot tijdens gebruik. Deze mismatch ontstaat doordat robots, ten opzichte
van de trainingsdata, kleine fouten maken die zich in de loop van de tijd opstapelen.
Daardoor zal een robot, zelfs als deze aanvankelijk binnen een gebied werkt dat door
de trainingsdata wordt gedekt, geleidelijk daarvan afwijken. Dit resulteert in het te-
genkomen van ongeziene toestanden, en dus in het maken van foutieve en potentieel
gevaarlijke acties door de robot, wat uiteindelijk tot falen leidt. In deze context is
Interactief Imitatie Leren (IIL) naar voren gekomen als een aantrekkelijk alternatief
om dit probleem te overkomen. In IIL worden trainingsdata gegenereerd onder de
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trajectverdeling van de robot door middel van online feedback. Op deze manier
observeert een menselijke leraar tijdens het leerproces het gedrag van de robot en
corrigeert of beoordeelt dit af en toe. Dit proces dwingt inherent dat trainings- en
testdata tot dezelfde verdeling behoren, aangezien de robot leert met de verdeling
van toestanden die het zelf genereert. Daardoor biedt IIL een framework dat IL
betrouwbaarder maakt, en is daarom van hoofdbelang voor deze scriptie. Gezien
het belang ervan, formaliseren we in Hoofdstuk 2 IIL en bieden een overzicht van
dit veld.

Naast het feit dat IIL het probleem van covariabele verschuiving aanpakt, omdat
mensen feedback geven aan robots als een functie van hun gedrag, is het mogelijk
om feedbacksignalen te gebruiken die relatief zijn ten opzichte van de acties van
de robot. Dit kan een krachtig hulpmiddel zijn, omdat het mensen in staat stelt
om robot gedrag te leren dat misschien niet gemakkelijk of haalbaar is om direct
te demonstreren. In dit opzicht introduceert Hoofdstuk 3 een methode gebaseerd
op relatieve correctieve feedback. Deze feedback wijzigt het gedrag van de robot
door aan te geven in welke richting een uitgevoerde actie moet worden aangepast.
Bijvoorbeeld, als een robot te langzaam beweegt, kan een mens aangeven dat de
robot sneller moet gaan, zonder dat een exacte snelheidswaarde voor de robot moet
worden opgegeven. Hoewel dit idee niet nieuw is, blijven er meerdere uitdagingen
bestaan bij het leren van dit type feedback. Daarom richt Hoofdstuk 3 zich op
een van deze uitdagingen: taken die betrekking hebben op observaties met hoge
dimensies waarbij tijd-afhankelijke informatie nodig is om de toestand goed te re-
presenteren. Dergelijke problemen komen vaak voor in realistische scenario’s. Het
is daarom van groot belang om oplossingen voor deze problemen te bieden. Dit
hoofdstuk toont aan dat dit aangepakt kan worden via strategieën voor het leren
van toestandrepresentaties, die het mogelijk maken om spatiotemporele kenmerken
te extraheren met minimale, feedback van mensen zonder robotica achtergrond. Het
contrasteert ook verschillende feedbackmodaliteiten, waarbij het bijzondere belang
van deze aanpak in de context van relatieve correcties wordt benadrukt.

Hoewel IIL krachtige methoden introduceert voor het leren van betrouwbare ge-
drag uit menselijke feedback, mist hetnog steeds interpreteerbaarheid en voorspel-
baarheid. Dit maakt het uitdagend voor deze methoden om te worden toegepast
in scenario’s in de echte wereld waar aan strenge eisen moet worden voldaan. In
dit opzicht is het aantrekkelijk om hulpmiddelen uit de regeltheorie te integreren
in deze frameworks om ze van garanties te voorzien en hun gedrag voorspelbaar te
maken. Daarom introduceert Hoofdstuk 4 in de context van autonoom rijden een
aanpak die de robuustheid van MPC combineert met de aanpasbaarheid en efficiën-
tie van IIL. Door een deel van de kostfunctie van MPC leerbaar te maken, gebruiken
we gevestigde MPC-methoden om standaardgedragingen zoals padvolging en obsta-
kelontwijking te bereiken, terwijl we andere delen zoals snelheidsreferenties leren.
De geleerde delen worden berekend met contextinformatie, zoals de first-person-
view van het voertuig, waardoor het complex menselijk redeneren in de berekende
trajecten kan integreren. Experimentele resultaten, verkregen met behulp van een
realistische simulator, tonen aan dat de voorgestelde methode real-time uitvoering
en superieure prestaties behaalt, wat betreft botsingen en patstellingen, vergele-
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ken met benaderingen die uitsluitend vertrouwen op optimalisatie of uitsluitend op
datagestuurde methoden. Als gevolg daarvan demonstreren we dat de voordelen
van MPC effectief geïntegreerd kunnen worden met die van IIL, wat leidt tot een
betrouwbaar en krachtig framework.

Vervolgens zetten we in Hoofdstuk 5 ons onderzoek voort naar het integreren van
kennis van regeltheorie met Imitation Learning (IL). Het doel is om het leren van
robotbewegingen uit menselijke demonstraties te vergemakkelijken. Deze bewegin-
gen worden gemodelleerd als dynamische systemen, wat de toepassing van theorieën
uit dit veld mogelijk maakt om eigenschappen zoals globale asymptotische stabili-
teit te analyseren. In deze context zijn globaal asymptotisch stabiele bewegingen
diegene die consequent de doelstaat van de taak bereiken, ongeacht de initiële con-
dities van de robot. Dit betekent dat zelfs wanneer de robot toestanden tegenkomt
die niet vertegenwoordigd zijn door de imitatiedata, het nog steeds bewegingen kan
genereren die naar het doel convergeren. Gezien het belang van deze eigenschap in
robotbewegingen, introduceren we een nieuwe term voor de verliesterm van Deep
Neural Networks (DNN) die dit afdwingt. Deze introductie van een gespecialiseerde
verliesterm is een belangrijk onderscheid van onze methode. Andere werken die sta-
biele bewegingen uit demonstraties leren, doen dit vaak door de structuur van hun
leermodellen te beperken, bijvoorbeeld door omkeerbaarheid of positieve/negatieve
definitheid te vereisen. Hoewel deze beperkingen stabiliteit garanderen, beperken
ze de toepasbaarheid van de methoden tot een kleiner scala van modellen en be-
perken ze vaak de leervrijheid van functie-approximatoren overmatig. Tot slot is
het belangrijk om op te merken dat deze aanpak compatibel is met IIL; echter,
bespreken we offline IL in dit hoofdstuk om praktische redenen vanwege de focus
op het ontwerp van de stabiliteitsverliesterm. We tonen aan dat de voorgestelde
methode, afgeleid met behulp van Deep Metric Learning (DML) tools, effectief sta-
biele en nauwkeurige bewegingen leert. Hiervoor worden vergelijkingen met andere
methoden uitgevoerd met datasets die demonstraties van meerdere bewegingen be-
vatten. Bovendien worden echte wereldvalidaties uitgevoerd met behulp van een
robotmanipulator in verschillende scenario’s. Deze validaties omvatten het leren
van dynamische systemen, zowel eerste als tweede orde, in verschillende toestands-
ruimten, zoals de positie van de eind-effector van de robot en zijn 7-dimensionale
gewrichtsruimte.

Tot slot bouwen we in Hoofdstuk 6 voort op de concepten die zijn geïntroduceerd
in Hoofdstuk 5, met als doel het ontwikkelen van een efficiëntere en veelzijdigere
verliesfunctie. Deze aanpak gaat dezelfde uitdaging aan als het vorige hoofdstuk:
het afdwingen van globale asymptotische stabiliteit in bewegingen gemodelleerd als
dynamische systemen. De nieuw geïntroduceerde verliesfunctie integreert ook prin-
cipes van DML; echter, het introduceert minder structurele beperkingen in het opti-
malisatieproces om stabiliteit te bereiken. Deze innovatie stelt de robot in staat om
te convergeren naar een breder scala aan stabiele bewegingen, waardoor een verbe-
terde optimalisatieprestatie wordt vertoond, met name bij het leren van dynamische
systemen van de tweede orde. Bovendien is een belangrijk kenmerk van deze me-
thodologie de mogelijkheid om stabiliteit binnen niet-Euclidische toestandsruimten
te waarborgen. Dit aspect is cruciaal in de robotica; bijvoorbeeld, robotoriënta-
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ties worden vaak gerepresenteerd in niet-Euclidische ruimten, zoals de 3-sfeer voor
eenheidsquaternionen. Het afdwingen van stabiele bewegingen in deze ruimten is
dan ook een kritische vereiste voor een verscheidenheid aan praktische toepassingen.
Net als in Hoofdstuk 5 wordt deze aanpak geëvalueerd met datasets van gedemon-
streerde bewegingen en verder getest in de echte wereld met robotmanipulatoren.
De experimenten in de echte wereld demonstreren dat robots effectief complexe,
stabiele bewegingen kunnen leren in de ruimte van hun eindeffector pose, waarbij
rekening wordt gehouden met hun oriëntatie.
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1.1. An Emerging Approach for Reactive and
Adaptable Robots

In the last few decades, significant research and development have been conducted
in the field of robotics [1]. However, despite these advancements, the full
potential of robotics in practical real-world applications remains largely untapped.
Currently, most real-world robotic systems employ simplistic methods, such as
using pre-recorded waypoints to define a robot’s trajectory. Although such
approaches have been successful in highly structured and predictable environments,
their effectiveness quickly diminishes in less controlled settings.

The agro-food industry and household settings are examples of environments
where more advanced solutions are required. In these domains, each instance of
a problem presents unique characteristics, necessitating distinct solutions for each
case. For example, in agricultural harvesting tasks, each plant exhibits a unique
morphology, necessitating robotic solutions that can adapt their behavior to these
variations. Similarly, in household environments, variations in layout and resident
preferences necessitate a tailored approach for each situation. See Fig. 1.1 for
examples of these settings.

Furthermore, these environments require robots to adapt in real time to
unforeseen changes. An example is the need for a robot to modify its planned
course of action when a person unexpectedly obstructs its path, ensuring
safety. Another scenario involves morphological changes a plant experiences
during harvesting, where, previously inaccessible areas are revealed and must be
considered in the robot’s motion.

Unfortunately, implementing more advanced solutions to address these challenges
often demands significant investment and time, which can be prohibitive in many
scenarios. For instance, customizing robotic systems for each household requires
skilled engineers, a process that becomes intractable considering the wide variety
of layouts and resident preferences. In the agro-food sector, this limitation has led
to a heavy reliance on human labor. However, unappealing working conditions,
such as highly repetitive tasks, are making it increasingly difficult to find skilled
personnel for these jobs. As a result, there is an urgent need for methods that
enable programming and adapting robots to complex scenarios easily.

In this context, Imitation Learning (IL) [2, 3] emerges as a particularly
promising methodology. As a data-driven approach, IL facilitates the transfer of
human expertise to robots through intuitive human-robot interactions. It enables
robots to learn or refine their decision-making strategies by imitating human
demonstrations and/or incorporating real-time corrections or evaluations. This
approach significantly reduces the complexity of programming robotic behaviors,
which might otherwise require intricate rule sets or the meticulous design of
reward/cost functions. Consequently, IL dramatically simplifies the adaptation of
robots to novel scenarios. Furthermore, by being exposed to multiple situations in
the training data, robots can learn to react successfully to real-time variations in
the environment.

Additionally, IL democratizes the process of programming robots, enabling
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(a) Kitchen arrangements.

(b) Tomato plants.

Figure 1.1.: Examples of variable and changing environments.
Image credits: Aleksandr Malofeev, Edgar Castrejon, and Jason Briscoe on Unsplash.

individuals without specialized robotics knowledge to impart task-specific expertise.
This aspect is particularly beneficial in settings where access to robotics experts
is limited, such as small to medium-sized companies or, as mentioned above,
household environments.

Nevertheless, although IL offers a promising pathway for enhancing robotic
capabilities, it is not without its own set of challenges that need to be addressed.
Hence, to achieve IL’s full potential, it is crucial to acknowledge and tackle them.

1.2. Advancing Data-Efficiency and Reliability in
Imitation Learning

One of the primary challenges in IL originates from its data-driven nature, where
data is obtained from human demonstrations and/or feedback. The effectiveness
of IL is significantly influenced by the quantity and quality of the training data.
Consequently, the more diverse and comprehensive this data is, covering a wide
range of situations, the better a robot can generalize, and thus perform, in
real-world scenarios. This aspect is crucial in IL, highlighting that, in more
challenging scenarios, a reliable performance requires extensive datasets. However,
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collecting large amounts of data often becomes impractical, infeasible, or costly,
presenting a critical barrier to IL’s practical application. Thus, the development of
data-efficient methods that perform reliably under varied conditions stands
as a foundational challenge in IL.

This challenge is central to this dissertation, and each chapter is motivated by
it. To address it, two main approaches are employed throughout this work: 1)
exploring an alternative formulation to traditional IL, and 2) introducing prior
knowledge into our models.

1.2.1. An Alternative Formulation to Traditional IL
In traditional IL, the learning process of the robot occurs offline [2, 4, 5]. This
means that expert demonstrations of a task are first collected, and only after
this collection is complete, are they used to learn the behavior. This approach
is often referred to as behavioral cloning [6]. However, behavioral cloning faces a
critical challenge regarding data efficiency, originating from a phenomenon known
as covariate shift [2].

Covariate shift is generally defined as the prediction problem where the
probability densities in the source (training data) and target (real-world
application) domains differ [7]. It manifests when a robot, trained on a specific
dataset, faces situations not represented in that training data. This discrepancy
often leads to the execution of erroneous actions and subsequent failures. Such
scenarios are common in robotics, leading to extensive research addressing this
issue.

In the field of decision making, one significant source of covariate shift is
compounding errors [2, 8]. Compounding errors represent a scenario where a
robot progressively deviates from the region represented in the training data.
This gradual drift can eventually lead to entirely novel situations, culminating in
failure. Such errors occur because learned models inherently exhibit prediction
errors. While these errors might be minimal initially, they can accumulate over
time. Consider, for instance, a robot navigating on a field. With each movement,
the robot makes a slight deviation from the demonstrated trajectory. As these
deviations add up, the robot drifts increasingly further from the intended path,
eventually entering a region poorly represented by the training data. Entering this
region leads to increasingly significant errors, resulting in the robot being unable
to return to the original trajectory or, worse, crashing.

The above-described scenario precisely showcases the operation of behavioral
cloning. To understand this method and, hence, the source of the problem
further, it is essential to introduce core concepts from the field of sequential
decision making [9]. In these scenarios, an entity known as the agent interacts
within an environment. At each time instance, or time step, the agent receives
information about the environment’s current situation through the state. Based on
its decision-making strategy, termed the policy, the agent executes an action. This
action aims to modify the environment’s state to achieve a predetermined goal.
Consequently, the environment transitions to a new state, and this sequence of
events repeats. For example, in robotics, the environment can represent the robot
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and objects it interacts with, while the agent represents the algorithm or controller
responsible for deciding which actions to execute, at each time step, in the robot’s
motors. This problem formulation is widely used in robotics for learning behaviors,
where the objective is to find a policy function that maps from environmental
states to actions.

Then, in behavioral cloning, the learning process starts by obtaining
demonstrations from an expert agent, such as a human skilled in the task.
These demonstrations consist of state-action pairs recorded at various time steps,
capturing the expert’s decisions for each state encountered. Multiple strategies
can be employed to collect demonstrations, such as teleoperation, motion tracking,
or kinesthetic teaching1. Subsequently, the robot’s policy is modified to closely
resemble the expert’s policy. More specifically, for the states visited by the expert,
the policy is optimized to match the expert’s actions as closely as possible. This
is commonly achieved by modeling the policy as a parametrized function, such as
a DNN, and adjusting its parameters to meet this objective [10–12]. However, as
mentioned earlier, this approach has its limitations. Small approximation errors
can lead the robot to encounter state regions never visited by the expert, and
hence, where the robot’s behavior was never trained, i.e., covariate shift. This
occurs since many regions of the state space do not require the expert to visit
them when completing a task, but it is possible to reach them if mistakes about its
behavior are made.

This calls for a formulation of the IL problem that overcomes this limitation.
Consequently, a family of IL methods known as Interactive Imitation Learning
(IIL) has recently gained popularity for effectively tackling this issue [13–16]. In
IIL, the expert agent, also called the teacher, has an active role during the learning
process. As the learning agent, i.e., the robot’s controller, interacts with the
environment, it is continually supervised and receives feedback from the teacher.
When the robot’s actions are erroneous, the teacher provides feedback that guides
the agent to improve its policy. Hence, given this feedback, the policy is updated.
This process is then repeated until a successful policy is achieved. Notably, this
ensures the robot learns directly in the distribution of states it generates itself.
Consequently, during testing, the robot will likely operate within regions covered
by the training data, having already received feedback in the regions its policy
would naturally lead to. This makes IIL drastically reduce the training data
required for learning a well-performing policy, as it does not necessitate exhaustive
data collection over the entire state space.

IIL represents a powerful approach with numerous untapped potentialities. Yet,
it is unlikely to be a standalone solution for overcoming all the challenges of IL.
Acknowledging this, the following subsection shifts focus to an alternative approach
for developing reliable and data-efficient IL methods: the incorporation of prior
knowledge into our learning systems.

1Some of these approaches generate demonstrations that contain desired state transitions
rather than motor commands. This assumes the existence of a lower-level controller capable
of achieving such transitions.
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1.2.2. Introducing Prior Knowledge
IIL significantly increases the likelihood of robots operating in regions well-
represented in their training data. However, even under IIL, there are cases where
robots are forced to act in regions where training data is lacking. This can be
due to practical limitations, or the nature of some problems, which makes them
extremely difficult to completely represent in the training data. Consequently,
assuming that covariate shift is adequately addressed, a situation can emerge where
the training and testing data belong to the same distribution, yet the training data
do not entirely capture this distribution, thereby harming generalization.

For example, certain scenarios can lead to data scarcity [17]. In such situations,
limited access to human demonstrators/teachers results in a poorly represented
state distribution. This challenge is particularly evident in time-limited settings,
such as in household environments. Here, an IL method that enables a resident
to teach a robot a new task in just 10 minutes, rather than several hours, could
significantly increase the practicality of these solutions.

Furthermore, another challenge in representing state distributions arises with
long-tailed problems [18]. These are scenarios where, despite having substantial
human data, the problem presents numerous unlikely situations. In practice, this
means that some of these rare events are bound to occur. However, it is not
possible to cover every case in the training data. For instance, in autonomous
driving, a vehicle can encounter a vast number of rare situations, and, since
safety is particularly crucial in this context, addressing this problem is of critical
importance.

Consequently, IL would significantly benefit from methodologies that address
this issue, and, therefore, has motivated a substantial portion of this dissertation.
In this work, we tackle this problem by introducing prior knowledge into the robot’s
behavior. The objective is to identify and integrate aspects of the robot’s behavior
that remain consistent across the entirety of a task, and embed them as intrinsic
elements of their policies. As a result, even when encountering unfamiliar scenarios,
a robot equipped with such behaviors is more likely to execute reasonable actions.
Behaviors incorporated into the robot in this manner are known as inductive bias
[19]. For instance, decision-making features like obstacle avoidance and stability,
which are commonly required in robotic tasks, are excellent candidates to be
incorporated through inductive bias.

Note that models constructed with these inherent properties lead to more
data-efficient frameworks. Such built-in capabilities imply that certain complex
behaviors, which would otherwise require extensive human data, become default
features of our model. As a result, a significant portion of training data is
effectively replaced by inductive bias. Moreover, this approach enables IL methods
to provide guarantees, a critical aspect for learning reliable robot behaviors.

Inductive bias, then, offers a promising path to enhance data efficiency and
reliability in IL techniques. However, it also introduces unique challenges.
Firstly, integrating desired behaviors into a robot’s policy is not straightforward
and often requires extensive research and experimentation. Secondly, once
integrated, the next step is to ensure that the inductive bias does not compromise
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the robot’s learning capabilities. These capabilities are closely tied to the
function approximator representing the robot’s policy. Therefore, the more
expressive this function approximator is, the more adaptable the robot becomes.
However, introducing inductive bias limits the range of potential solutions available
to the function approximator, thereby reducing the robot’s learning capacity.
The challenge then lies in applying inductive bias precisely, avoiding excessive
constraints on the solution set, and thus maintaining an extensive range of viable
policy options. A notable example of this challenge is the stability versus accuracy
dilemma [20]. In this scenario, stability represents the capacity of a robot to
consistently reach a desired goal state, and inductive bias is utilized to ensure this
property when learning motions through IL. However, this inductive bias also has
the counter-effect of constraining the family of motions the robot can accurately
reproduce.

To address these challenges, we explore control theory tools to model well-
understood behaviors, grounded in a robust theoretical foundation. By integrating
these behaviors into the robot’s policy, we provide guarantees and a clear
understanding of the inductive biases applied. This approach creates a synergy
between the accumulated knowledge from decades of control theory research and
the adaptability and practicality inherent in machine learning. We demonstrate the
effectiveness of this fusion, highlighting an approach that is not only increasingly
popular, but also has the potential to significantly advance the field.

1.3. This Thesis
The preceding sections have introduced the topics that form the foundation of this
thesis. Bearing these in mind, we can now present a brief overview of the upcoming
chapters. This overview will highlight the main ideas within these chapters while
indicating how they interconnect.

1.3.1. Chapter 2: An Overview of Interactive Imitation
Learning

In Chapter 2, we delve into the theoretical foundations of Interactive Imitation
Learning (IIL). This section formally introduces the diverse methodologies within
IIL, exploring various approaches to framing these methods. A key focus is on
how the feedback from human teachers can be modeled and interpreted differently,
leading to distinct IIL techniques. Furthermore, we discuss how the characteristics
of a given problem influence the suitability of different IIL techniques. This aims
to clarify the differences between these methods and identify the most effective
feedback modalities based on the problem’s parameters.

The chapter concludes with an in-depth discussion on on-policy and off-policy
learning methods. Originating from the Reinforcement Learning (RL) literature,
these terms have sparked disagreement over their application in IIL. However,
understanding these concepts is critical for the effective use and design of IIL
techniques. Therefore, we clarify them and provide examples of IIL methods that
belong to either category.
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1.3.2. Chapter 3: Integrating State-Representation
Learning with Human Corrective Feedback

In this chapter, we explore and expand upon a specific technique for robotic
learning through human feedback, known as D-COACH [21]. In this method, the
human teacher signals the direction in which a robot’s actions should be modified.
For instance, if a robot’s motion is slower than desired, the human can provide
a feedback signal that implies increase speed. The robot then integrates this
feedback to refine its actions, leading to improved performance. Note that in this
approach, no specific action is provided; the feedback is more about guidance than
exact numerical values, such as move at 20 km/h. Therefore, this technique is
particularly advantageous when humans have a clear understanding of the task’s
solution, but find it challenging or impractical to demonstrate it directly.

D-COACH is designed to work together with DNNs, which model the robot’s
policy. A key application of this technique is learning behaviors directly from the
raw pixels of an image. However, this method encounters limitations in problems
where temporal information is essential. Take, for example, the swing-up pendulum
problem, where a torque-limited pendulum must reach and maintain an upright
position. Here, the underactuated nature of the pendulum necessitates a strategy
that includes velocity information. Nevertheless, this velocity cannot be derived
from a single image of the pendulum. As a result, data from multiple images must
be compiled to infer this information, a process that proves difficult when relying
solely on D-COACH’s feedback signals.

To address this limitation, in Chapter 3, we integrate state representation
learning into the D-COACH framework. The goal of state representation learning
is to develop compact and effective state representations by utilizing auxiliary
loss functions. Hence, we propose learning these representations to encapsulate
temporal information, which is then integrated into the policy learned through
human feedback. Via simulations and real-world experiments, we show that this
integration is an effective method for addressing D-COACH’s limitation while
learning well-performing policies data efficiently. This is shown in problems like the
swing-up pendulum, both using simulations and a real platform, and an experiment
involving a 3-DoF robotic arm operating on a conveyor belt.

1.3.3. Chapter 4: Learning to Guide Model Predictive
Control from Human Feedback

Chapter 4 marks the beginning of our study into the integration of control
theory within IL. The context of this work is autonomous driving in unstructured
environments, where we operate under the assumption of having a predetermined
set of waypoints indicating a vehicle’s path. Then, the objective is for the vehicle
to follow the waypoints while safely interacting with other agents (e.g., vehicles,
pedestrians, and bicycles), and adhering to traffic regulations. This scenario poses
an interesting challenge for IL, as obtaining safe behaviors is of vital importance.
However, the complexity of the task makes it intractable to rely solely on a
data-driven approach.
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As a result, we propose the use of a Model Predictive Controller (MPC), where
we design parts of its cost function to be learnable. This approach allows us to
leverage existing MPC methodologies for generating standard behaviors, such as
path tracking and collision avoidance. Simultaneously, it facilitates the modeling
of more complex aspects of the cost function through higher-level policies, which
are learned via IIL. The vehicle’s behavior emerges from the combination of
the traditional elements of the MPC’s cost function and these newly learned
components. Consequently, our overall policy exhibits a strong inductive bias
while gaining enhanced adaptability from the learnable aspect of its behavior.
This strategy effectively combines the benefits of incorporating prior knowledge
into learning frameworks with the advantages provided by learning from humans
interactively. Due to the complexities of real-world driving scenarios, we validated
this method using the CARLA Simulator [22], an advanced 3D simulator designed
for autonomous driving research.

1.3.4. Chapter 5: Stable Motion Primitives via Imitation
and Contrastive Learning

In Chapter 5, our focus is on the challenge of teaching robots motion primitives.
These are fundamental actions, such as grasping or manipulating objects, that form
the building blocks for more complex sequences. By integrating these primitives,
robots can handle extended tasks. This approach is motivated by the concept
of creating a higher-level decision-making framework where a robot can access a
library of these motions and intelligently combine them for multi-step objectives,
like the preparation of a meal. Interestingly, this concept has gained popularity
recently, largely due to advancements in foundation models [23] such as ChatGPT
[24] and LLaMA [25], and the research on their planning capabilities [26].

The primary objective of our research is to integrate a crucial inductive bias,
specifically global asymptotic stability, into the learning of motion primitives from
demonstrations. This concept is vital in dynamical systems theory, ensuring
that irrespective of their initial conditions, systems are assured to converge to
an equilibrium. Interestingly, this idea is directly applicable to the domain of
motion primitives, which are commonly expected to consistently lead the robot to
a specific goal state upon completing the motion. For example, in a primitive
designed for grasping an object, the intended goal is a state where the object can
be secured if the gripper closes. Therefore, this becomes prior knowledge that we
can embed into the robot’s default behavior, i.e., regardless of the trends observed
in the demonstrations, the robot should always reach its goal.

To achieve this, we model motion primitives as dynamical systems and propose
a novel DNN contrastive loss function that incorporates the desired stability
properties into these systems. Consequently, they encode the evolution of the
demonstrated motions and have a globally asymptotically stable equilibrium at the
task’s goal state. Importantly, this necessitates an intermediate step for translating
the system’s desired evolution into robotic actions. Therefore, in such settings, a
lower-level controller is required, e.g., a PD-type controller with inverse dynamics,
for torque-controlled robotic manipulators.
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Notably, modeling motions as dynamical systems also enables reducing covariate
shift by minimizing a multi-step imitation error. This approach facilitates obtaining
accurate motions when employing offline IL, which is the approach we take in
this chapter. Consequently, we introduce a framework that leverages dynamical
systems and their underlying theory, offering a novel approach for incorporating
inductive bias and reducing covariate shift. This leads to a data-efficient and
reliable learning framework for motion primitives.

Lastly, experiments in two scenarios were carried out. The first scenario consisted
of using datasets containing demonstrations of a variety of primitives. Then,
dynamical systems were learned using this data, and simulated by integrating
them to study the behavior of the learned systems and compute statistics without
involving real platforms yet. The second experimental approach consisted of a
real-world validation using a 7-DoF KUKA iiwa manipulator. Here, three different
tasks were learned from human demonstrations, namely, writing, cleaning a table,
and hanging a hammer, showcasing the successful integration of this approach in a
real-world platform.

1.3.5. Chapter 6: Deep Metric Imitation Learning for
Stable Motion Primitives

Finally, in Chapter 6, we delve deeper into the ideas introduced in Chapter 5,
offering a more general and better-performing approach. The previous chapter
presents a novel methodology for designing auxiliary cost functions, which induce
stability properties in dynamical systems modeled as DNNs. Its key concept is
the discovery that introducing a specific structure in the DNN’s latent space leads
to global asymptotic stability. This stability can then be enforced using tools
from the Deep Metric Learning (DML) literature, where several approaches exist
for enforcing different types of latent structures. Building on these foundations,
this chapter employs a more general DML approach to introduce stability. This
approach enables a more expressive learning framework, allowing the policy to
converge to a broader family of solutions. As discussed in the previous section,
this broader convergence directly addresses one critical challenge associated with
inductive bias.

Moreover, this approach facilitates the easy integration of stability properties
into dynamical systems evolving in non-Euclidean manifolds. In particular, we
conduct an in-depth study of 3-dimensional spheres. These manifolds are crucial
as they represent the space used to encode unit quaternions, a common and
practical way to represent robot orientations. Consequently, this method enables
the learning of stable motions that, for instance, encompass the complete pose of a
robotic manipulator’s end effector. It allows for the simultaneous consideration of
Cartesian space for position and spherical space for orientation. As a result, this
chapter introduces an innovative and powerful methodology for learning motion
primitives, showcasing the potential of incorporating dynamical system theory and
metric learning techniques into robotic behavioral learning.

The experimental validation of this approach followed the same methodology as
that described above for Chapter 5. Consequently, both datasets of motions and
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real-world platforms were utilized to evaluate the method. In this instance, two
robot manipulators were employed for validation. A 6-DoF IRB 1200 robot was
used to learn harvesting motions, and a 6-DoF Kinova Gen2 robot was employed
to learn the task of placing a hammer on a table.
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In this chapter, we first formalize the problem of sequential decision-making
using the Markov Decision Process (MDP) framework [28], and use this description
to define the Interactive Imitation Learning (IIL) problem. Subsequently, we
explore the various interaction modalities that humans can use to provide feedback
to robots. Furthermore, we present a literature review focusing on methods that
explore feedback within the agent’s state-action space, as these are most pertinent
to this dissertation. Finally, we delve into an in-depth discussion of on-policy and
off-policy learning methods, emphasizing their significance in the context of IIL.

2.1. Theoretical Background
Many problems like solving Rubik’s cube with a robotic hand, controlling the
propulsion of a rocket, swinging up a pendulum, or finding the best strategy in a
chess game share the necessary idea of finding the best set of actions that would
successfully accomplish the task. These problems share many properties, and
therefore, they can be modeled using a common framework (i.e., MDP).

2.1.1. Decision Theory
A wide variety of problems can be formalized as a sequential decision-making
process, where the decision-making authority is an agent, operating in a certain
environment. At each time instance t (also known as time step), the agent receives
information describing the situation of the environment with the state vector st,
and executes an action at, aiming to change the environment towards a desired
state according to the goal of the task. The environment transitions to a new state
st+1, and provides a reward rt, which is a signal that explains the objective of the
task.

When a decision-making problem has well-defined initial and terminal conditions,
it is known as a finite horizon problem, and the period of time between its start
and end is called an episode. The collection of states and actions experienced by
the agent throughout an episode is known as a trajectory τ = (s0, a0, ..., sT , aT ),
where T corresponds to the number of time steps visited by the agent.

Decision theory provides a formal and complete framework for decision-making
by combining probability and utility theory [29].

2.1.2. Markov Decision Process
Initial foundations for MDP are set by [28] and further extended by [30]. An
MDP models a stochastic, sequential decision-making process in a fully observable
environment as a tuple < S,A, T ,R > with four components:

• S: A set of all possible states s.

• A: A set of all possible actions a. Some problems may have a state-dependent
set of actions (A(s)).
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• T (s′ | a, s): A transition model that defines P(st+1 = s′ | st = s, at = a),
probability of reaching state s′ if action a is applied in state s
(T : S ×A× S 7→ [0, 1]).

• R(s, a): A reward function, determining the reward r received for applying
action a in state s (R : S ×A 7→ R).

Decisions are modeled as state-action pairs (s, a). The next state s′ is determined
by a probability distribution, which is defined by the transition function T and it
is based on the current state s and the applied action a. The Markov property
defines that the next state s′ is dependent only on the current state and action,
while the previous states and actions do not have any influence on the current
transition. A deterministic policy π is a mapping from states to actions, defining
which action should be chosen in that state in S (π : S 7→ A). The policy can
also have a stochastic representation, with a distribution over state-action pairs
(π : S ×A 7→ [0, 1]).

In certain problems, the agent cannot directly observe the underlying state.
Instead, the state can only be inferred indirectly, using an observation model
(the probability distribution of different observations given the underlying state).
For such problems, it is appropriate to consider the Partially Observable Markov
Decision Process (POMDP) [31], where the dynamics are still described using
MDPs, and the additional observation model O(s, o) specifies the probability of
perceiving an observation o in a state s.

Sequential Decision-Making Problem
The objective of solving decision-making problems modeled with MDPs or
POMDPs is to find the policy π∗, that maximizes the expected accumulated reward
(also known as utility or value), i.e.,

π∗ = arg max
π∈Π

Eτ∼pπ(τ)

[
T∑
t=0

γtR(st, at)
]
, (2.1)

where pπ(τ) corresponds to the trajectory distribution induced by π, Π to the
set of possible policies, and γ is a discount factor. Since problems, in general, can
have infinite horizon (T →∞), this sum could diverge. Therefore, the sum can be
discounted with the discount factor γ, where 0 ≤ γ < 1. This problem formulation
assumes the reward hypothesis, which claims that “all of what we mean by goals
and purposes can be well thought of as maximization of the expected value of the
cumulative sum of a received scalar signal (reward)” [9].

There exists a plethora of methods for solving sequential decision-making
problems, each with unique assumptions, strengths, and weaknesses. We make
rough distinctions between three different approaches: Control, Planning, and
Learning.

The boundaries of these approaches are not always clear as many practical
solutions commonly lie in between or combine these approaches. In this work,
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Figure 2.1.: IIL learning loop.

we focus on Interactive Robot Learning approaches, where the goal is to devise a
policy by learning from interactions with humans.

2.1.3. Interactive Imitation Learning
MDPs in IIL
In IIL, a human teacher, which we will refer to as the teacher, aims to improve the
behavior of a learning agent, which we will refer to as the learner, by occasionally
providing feedback to it as a function of the observed behavior (see Fig. 2.1).
The period of time when the teacher provides feedback to the learner is known
as the learning process, which finishes whenever the human considers the learner’s
behavior appropriate or when no more improvement is observed. The human
feedback can be modeled with the feedback function H. Although H can evolve
throughout a learning process (i.e., a human may modify its understanding of
a task when teaching), for simplicity, the following of this chapter assumes this
function does not change.
H is presented as a more general alternative to the reward function employed

in the MDP framework. At every time step, as a consequence of the agent’s
behavior, H outputs a feedback signal Ht, which is defined as any type of
information that can be used to improve the agent’s policy (see Fig. 2.2). In
IIL, feedback can be occasional; therefore, Ht consists of two values: ht ∈ Rn
and gt ∈ {0, 1}. ht provides the information employed to improve the agent’s
performance and gt indicates the instances where feedback was given, i.e.,
ht exists whenever gt = 1. Furthermore, and differently from the reward
function in Reinforcement Learning (RL), H may depend on previously visited
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Figure 2.2.: MDP with the feedback signal Ht.

states s≤t ≡ (s0, s1, ..., st) and actions a≤t ≡ (a0, a1, ..., at). Hence, in the
deterministic case, H(s≤t, a≤t, s

′
t) : St+1 ×At+1 × S 7→ Rn × {0, 1} (note that the

domain can be a subset of St+1 × At+1 × S, where Xt represents X to the
power of t). Alternatively, H can be modeled as a probability distribution
H : St+1 ×At+1 × S × Rn × {0, 1} 7→ [0, 1]. Finally, note that this formulation can
be extended to cases where the agent generates active queries, where H would also
depend on them.

Given that ht does not necessarily represent a reward, the problem formulation
of the MDP needs to be modified accordingly. The next subsection discusses how
to approach this problem.

Interactive Imitation Learning Objective
The goal of sequential decision-making problems is to find a policy π that generates
trajectories τ ∼ pπ(τ) such that an objective function J(π) is minimized. In RL,
for instance, the objective function is defined by the policy’s (negative) expected
return. In IIL, however, there is not always direct access to this function, as it is
commonly represented implicitly inside the teacher’s mind and, therefore, it is not
always possible to minimize it directly. Consequently, more generally, it is possible
to formulate the problem in terms of an observable surrogate loss L(π,H) computed
as a function of the feedback function H. We assume that the minimization of
L(π,H) indirectly minimizes J(π) (or at least leads to near-optimal solutions).
Note that when the true objective function of the problem is available, these two
functions are the same (i.e., L = J). Hence, IIL aims to find a learner’s policy πl

by solving the following optimization problem:

πl∗ = arg min
π∈Π

L(π,H). (2.2)

One key aspect of this equation is the approach employed to search through the
space of solutions Π. In practice, when learning this sequential decision-making
problem, the data used to optimize (2.2) comes from a policy that interacts with
the environment, which biases the optimization problem. Hence, depending on this
policy, different solutions will be obtained.
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To make this idea evident, the problem can be formulated in terms of the
expected immediate cost C(s, a) of performing an action a for a state s [8]. Then,
we can express this cost in terms of a policy π with Cπ(s) = Ea∼π(s) [C(s, a)].
Consequently, the objective function becomes the accumulated expected immediate
cost J(π) =

∑T
t=0 Es∼pt

π(s) [Cπ(s)], where T corresponds to the task horizon and
ptπ(s) is the state distribution at time step t induced by π. Once again, given that
we might not have access to Cπ(s), the problem can be formulated in terms of the
immediate expected surrogate loss ℓπ(s) = Ea∼π(s) [ℓπ(s, a,H(s, a))], yielding the
following IIL optimization problem:

πl∗ = arg min
π∈Π

T∑
t=0

Es∼pt
π(s) [ℓπ(s)] . (2.3)

In practice, the expected value of the surrogate loss in (2.3) is estimated from the
data collected by a policy that interacts with the environment (i.e., ptπ is induced
by this policy). For instance, Behavioral Cloning (BC) methods use the teacher’s
policy πh to collect training data (i.e., s ∼ ptπh(s)), or, in other words, the data
comes from executions of the task performed by the teacher.

It turns out that methods like BC that learn from data gathered with a policy
different from the one that is later evaluated (i.e., πl) suffer from covariate shift.
Therefore, in IIL, the training data distribution depends on the learner’s policy.
In this way, these methods aim to minimize the state distribution mismatch
between the data sampled at training and test time. Nevertheless, this poses a
chicken-or-the-egg problem, since without knowing the learner’s policy in advance,
it is not possible to generate data from the trajectories that this policy would
generate [32]. IIL methods address this by solving the problem iteratively, i.e., the
learner’s policy is used to collect data, improve its behavior from the data, and
repeat this process N times until a well-performing policy is obtained. Hence, by
noting that

∑T
t=0 Es∼pt

π(s) [ℓπ(s)] = TEs∼pπ(s)) [ℓπ(s)], where pπ(s) = 1
T

∑T
t=0 p

t
π

corresponds to the average distribution of states [8], the general IIL problem can
be formulated as:

IIL problem: πl∗ = arg min
π∈Π

N∑
i=1

Es∼p
πl

i
(s)) [ℓπ(s)] . (2.4)

Note that in this equation there is an abuse of notation, as pπl
i
(s) represents

a distribution of states that depends on πli, but the actions taken for collecting
training data do not always necessarily have to distribute exactly as πli.

From (2.4) it can be observed that every IIL method has the following properties:

1. A surrogate loss ℓπ is computed as a function of the feedback function H.

2. The problem is formulated over state distributions that depend on the
learner’s policy.

3. The problem is solved iteratively by sampling, at each training iteration,
from state distributions that depend on the current learner’s policy.
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Episodic Feedback
A family of IIL methods solves (2.2) by solving the inverse problem, i.e., L(π,H)
is unknown and human feedback is employed to estimate L̂(π,H). Then, this
estimation is minimized L̂(π,H) with some optimization method (e.g., path
planning or RL). Commonly, several trajectories are sampled from the learner’s
policy πl to get Monte Carlo estimates of L(π,H) and feedback is provided at
the end of them, i.e, gt = 0 the rest of the time. This feedback consists of an
evaluation over the complete trajectory that has the form of a choice/preference
[33–35], i.e., at each iteration, given the execution of two or more trajectories
from the learner, the teacher provides a ranking of them. Then, the feedback is
employed to gradually shift the trajectories generated by the learner in a direction
where their performance will increase.

Per Step Feedback
Alternatively, many IIL methods directly solve (2.3) following approaches that were
derived either from RL (value maximization) or the classical Imitation Learning
(IL) (divergence minimization) literature. Therefore, in these cases, feedback is
provided in a per-step basis, i.e., the teacher observes the behavior of the learner at
each time step and provides feedback if necessary.

Value Maximization Value Maximization methods correspond to IIL approaches
that employ human feedback to solve problems formulated using the RL approach
(see Eq. 2.1). In other words, some part of the RL problem is modified through H.

The most direct way of doing this is by naively replacing the reward function of
an existing RL approach with H and executing the learning process as if nothing
changed. However, prior research has shown that such methods may induce positive
reward cycles, which could lead to unintended behaviors [36]. This shortcoming led
to the development of approaches that built upon the RL literature but took into
account this and other limitations in the method design.

Divergence Minimization The IIL methods that are derived from the literature
of classical IL can be modeled as a divergence minimization problem where we
assume that we have access to expert trajectories from πh. Then, the problem
is modeled as minimizing the distance between the trajectory distribution of the
expert/human pπh(τ) and the learner pπh(τ). The f − divergence family [37] is
a class of divergences that measure distances between probability distributions.
Hence, the IL problem can be seen as an f-divergence minimization problem [38,
39]. By denoting the f-divergence between two distributions as Df (·, ·), IL can be
formalized as:

πl∗ = arg min
π∈Π

Df (pπh(τ), pπ(τ)) . (2.5)

BC methods solve (2.5) by using the forward Kullback–Leibler divergence (KL),
which reduces the problem to the Maximum Likelihood Estimation (MLE) of the
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teacher’s policy from samples drawn from the trajectory distribution induced by
the teacher’s policy [40], i.e.,

πl∗ = arg max
π∈Π

Eτ∼p
πh (τ)

[
T∑
t=0

ln π(at|st)
]
. (2.6)

Interestingly, if the Total Variation (TV) distance between these distributions is
minimized instead, the problem reduces to the minimization of the forward KL
divergence between the teacher and the learner policies from a state distribution
that follows the learner’s policy [39]

πl∗ = arg min
π∈Π

Es∼pπ(s)
[
DKL

(
πh(a|s), π(a|s)

)]
. (2.7)

Notably, if we define the surrogate loss of an IIL problem as ℓπ =
DKL

(
πh(a|s), π(a|s)

)
, then we would have an IIL method that minimizes the

TV divergence between the teacher’s and the learner’s policy. The method Data
Aggregation (DAgger) [8] minimizes this objective function, which inspired a broad
family of IIL methods.

In this case, the feedback function directly outputs a desired action for a given
state, i.e., ht corresponds to a sample from πh(a|s). The samples ht can be
employed to estimate πh by solving the MLE problem. Alternatively, πl can be
modeled as a deterministic policy. In such cases, the samples are approximated by
the minimization of a distance between πl and ht (e.g., Mean Squared Error (MSE)
minimization). This approach can indirectly solve (2.7) if some assumptions are
made; for instance, if it is assumed that πl follows a Gaussian distribution with
fixed variance, solving (2.7) is equivalent to finding a discrete policy that models
the mean of this distribution through MSE minimization [2].

2.2. Modalities of Interaction
In the IIL literature, there exist various modalities of interaction that a human
teacher can adopt to communicate with the learning agent. In this Chapter,
we aim to provide a classification of these methods by answering the question
what kinds of feedback could a teacher use to train an agent interactively? The
feedback is the signal containing the information that human teachers explicitly
communicate to the learning agent through a Human-Robot (or Human-Computer)
interface. Different kinds of feedback are useful for transferring knowledge to the
agent depending on factors like the task complexity, the teacher’s understanding
or expertise about it, the potential of the teacher to learn through the training
process, or the available interface for providing feedback.

The short answer to that question provides two main categories that group
the learning methods. They are based on the domain of the feedback provided
by the teacher, which could be either in the evaluative space or in the transition
(state-action) space. The former covers the methods in which the teacher provides
a signal of assessment or evaluation about how well the agent performs, while the
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latter category gathers the methods that require the teacher to provide feedback
that let the agent learn how to do the task.

In both categories, there are two ways for the user to transmit the assessment or
guidance to the agent. The teacher could provide feedback that is either relative or
absolute. In the relative feedback case, the teacher provides a signal that contains
information about the direction the agent behavior should shift to, with respect
to current or other policy executions, e.g., how good a policy/transition is with
respect to others, or how a transition should be modified with respect to the current
one. However, since it is only a relative direction, it does not specify explicitly
what the exact input-output mapping is that the model should fit to, and it might
be required to gather many feedback samples to tune the final mapping, even for
a specific state or state-action pair. On the other hand, the absolute feedback
contains information about the current execution regarding the optimal behavior,
implicitly known by the teacher. The relative feedback requires a lower cognitive
load (i.e., less mental effort) for teachers because it is less informative than the
absolute counterpart, which sometimes makes it less data efficient. In other words,
the use of relative and absolute feedback can represent a trade-off between data
efficiency and the cognitive load of the teachers during the interaction.

Table 2.1 presents the four modalities a teacher can use for interacting with a
learning agent, depending on the kind of information provided and the way it is
represented (absolute or relative). This dissertation focuses on methods utilizing
feedback in the transition space. Consequently, the subsequent section provides a
more in-depth exploration of these methods.

Table 2.1.: Modalities of interaction according to the feedback type.
Absolute
Feedback

Relative
Feedback

Feedback in Evaluative Space Reinforcements Preferences
Feedback in Transition
(State-Action) Space

Absolute
Corrections

Relative
Corrections

2.2.1. Human Feedback in Transition (State-Action) Space
Human feedback in the transition space contains information about how to do the
task, i.e., explicit feedback that explains how a transition should be done, being
it in the space of the actions, or the states. Unlike in learning from evaluative
feedback, with feedback in the transition space, there is no explicit quality
assessment of the policy, the feedback signals represent the teacher’s insights or
understanding of the task execution. This kind of feedback can be absolute, in
which case the teacher is expected to demonstrate the optimal transition for the
state the agent is currently visiting. Relative feedback, on the other hand, is used
in cases where the teacher corrects the policy execution towards the considered
right direction with respect to what the robot is executing in that time step.
However, it does not assume that the correction is the optimal action, but rather
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a hint in that direction. The correct action is reached after some iterations that
accumulate the incremental progress of many relative corrections.

Learning from Human Absolute Corrections
In this kind of interaction, the agents are expected to receive explicit demonstrations
of the task execution by the teacher, while the learning policy is controlling the
agent, as shown in Fig. 2.3. Depending on the method, the teacher can provide
corrective demonstrations every time step, occasionally according to the teacher’s
own decision, or because the learner queries them. Moreover, those demonstrations
could be either only recorded, or recorded and executed. In the former case the
agent executes the action from the current policy, whereas, in the latter, the
agent replaces those actions with the ones demonstrated by the teacher, as in
teleoperation mode. These methods are the closest to standard Learning from
Demonstration (LfD) methods like Behavioral Cloning, and some of them could
even be considered a generalization of BC.

Corrective Demonstrations One of the first approaches in this category is
the Confidence-Based Autonomy framework presented by [13], which has two
components, Confident Execution and Corrective Demonstrations. The first
is a strategy that uses various thresholds to evaluate the confidence of the
agent in a certain state, and in case it is too low, it stops the autonomous
execution and queries the human teacher for additional demonstrations. Corrective
Demonstrations are the second mechanism, which allows the teacher to provide
corrections to any mistake of the agent.

The idea of Corrective Demonstrations is further investigated by [41–43],
wherein they propose to leverage both prior hand-coded policies and corrective
demonstrations. Instead of only obtaining directly a policy from the demonstrations,
it keeps the hand-coded policy as the primary behavior, which is only replaced
by the demonstrations when the robot visits states that are similar to the ones in
which the corrective demonstrations were recorded. This approach was used to
train the humanoid robot Aldebaran Nao to solve a complex ball dribbling task,
and it shows improvement compared to a hand-coded controller.

Some of the most important methods for learning from corrective demonstrations
are inspired or belong to a family of approaches based on DAgger [8], which
interactively records the correct action demonstrations while a novice policy is
controlling the agent. DAgger was not specifically intended for human users, the
teacher could be another expert policy, like a model-based controller or a planner
system. Indeed, many methods have been proposed after DAgger, since the
requirement of human teacher input every time step is not the most user-friendly
approach.

The idea behind DAgger is to generate roll-out trajectories with the current
policy iteratively, query the expert for corrections on the visited state-action pairs,
and finally add the corrected actions to the dataset used for training the policy.

As with other methods in this section, this approach enables the expert to provide
corrections on the states visited by the current policy, meaning that the data
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Figure 2.3.: Learning from human absolute corrections: the teacher is explicitly
telling the robot to go left.

distribution is induced by the agent itself, drastically reducing compounding errors
and distribution shift issues common in standard learning from demonstrations
settings [8].

DAgger requires a corrective demonstration from the teacher in every state,
however, it uses a gating function based on a β probability in order to control what
action is actually executed, whether the action of the learner πR(s) or the one of
the teacher πT (s).

At the beginning of the learning process, β is set high for the robot to execute
most of the expert teacher actions because the initial robot policies could make
many mistakes that lead to dangerous or irrelevant states. Through the iterations
of the algorithm, β is decreased to zero in order to give full control to the learning
agent. If β = 1 all the time, DAgger performs exactly as behavioral cloning because
the data distribution is completely induced by the teacher.

If the expert is a human, this is often unfeasible and prone to incorrect labels
for robotic tasks, which usually operate at high control frequency, generating a
large number of actions for each trajectory. Most of the variants of DAgger
(mentioned later) [44–48] differ from the original in i) the implementation of the
gating function; ii) the way data is recorded, all aiming to improve workload, query
efficiency, or safety.

The Svm-based reduction in Human InterVention (SHIV) algorithm [49] is very
similar to DAgger, however, it actively requests labels in states considered risky,
instead of requiring labels every time step, reducing the human burden. The risk is
defined when previously unseen states are visited, or when the policy model has a
high surrogate loss in the area of the visited state. The method was validated in
grasping tasks, outperforming the original DAgger.

A possible alternative is to monitor the policy execution and intervene when
necessary, taking over control from the agent completely. This is a more natural
and intuitive approach for a human teacher compared to labeling individual
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state-action pairs. This setting can be defined as learning from human intervention,
and numerous studies have been presented to investigate such methods.

There exist two main types of human intervention approaches: Human-Gated
and Robot-Gated [50]. Both types change the stochastic gating function based on
the probability β for executing either the action of the learner or the action of the
expert, with a different strategy.

Human-Gated Interventions Human-gated interventions allow the expert
users to decide themselves when to intervene (control the agent). Its advantage is
that safety is ensured by the expert, who is always ready to intervene in case of
dangerous behavior.

Human Gated DAgger (HG-DAgger) [46] is a direct extension of the DAgger
algorithm, where the human teacher is in charge of intervening when the agent
drifts away from the desired behavior. Every time an intervention occurs, the
expert trajectory is recorded and stored in the training data set used to optimize
the policy. Additionally, HG-DAgger learns a safety threshold of a risk metric,
which could be used as a policy confidence metric for different regions of the state
space. The method is evaluated on both a simulated and a real-world autonomous
driving task, showing better performance compared to behavior cloning and
standard DAgger.

The assumption of the method is that the teacher does not intervene in the
portions of the trajectory that are well executed. A different approach is used in
the Intervention Weighted Regression (IWR) framework [51], where the robot’s
own experience is stored together with the teacher’s interventions in the replay
buffer. The authors show that storing such data has the advantage of reinforcing
the already good behavior and improving the robustness of the policy, because
more data is stored overall, and the data itself is distributed covering wider
areas of the state space. Nevertheless, since the amount of intervention and
non-intervention data is usually imbalanced, the authors propose a weighting
parameter to prioritize the intervention samples. The method is evaluated on
two challenging simulated manipulation tasks with low-dimensional observations,
demonstrating better performance compared to HG-DAgger and to behavior
cloning with complete demonstration.

IWR works under the assumption that the teacher is always able to correct
bad behaviors, which might not be true in general, since non-expert users might
be in charge of training the robot. In [52] the Corrective and Evaluative
Interactive Learning (CEILing) framework combines human interventions with
evaluative feedback. The use of evaluative feedback on non-corrected portions of
the trajectory gives the human teacher the option to decide which part of the
trajectory to use for training and which to discard. The method is shown to be
able to train manipulation tasks from high-dimensional image observations directly
in the real world in less than one hour of training.

Another related method is the Expert Intervention Learning (EIL) framework [53].
EIL aims to learn from the interventions as well as from the timing of the
interventions since non-intervention constitutes useful information as well. They
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formalize a constraint on the learner’s value function, which is used to differentiate
good enough, bad and intervention state-action pairs. The method is evaluated
on a physical miniature car with a discrete action space, consisting of a library
of 64 driving primitives. EIL is benchmarked against behavior Cloning and
HG-DAgger, showing safe and more desirable trajectories. Another recent work in
the same category is Super-Human InsErtion using Learning from Demonstration
(SHIELD) [54], which focuses on the problem of industrial insertion. It extends the
Deep Deterministic Policy Gradient from Demonstration (DDPGfD) [55] algorithm
with a collection of different design choices, including on-policy corrections, i.e.,
the human can intervene to guide the agent back into the optimal region in case of
deviations.

In Cycle-of-Learning [56], human-gated interventions are used for improving
a policy obtained from demonstrations pre-recorded in the first stage. The
experiments with a perching task using a simulated drone showed that this
approach has better performance than using either only demonstrations or only
human interventions.

Corrective demonstrations are not only used for learning an explicit policy, but
also for learning objective functions. In Learning to Navigate from Disengagements
(LaND) [57], the teacher takes over the control of autonomous navigation robots
during failure situations. However, the data gathered during the interventions is
not used for updating the policy, but for training a disengagement predictive model
that is used as part of the cost function of the task, which is optimized during the
decision-making with a model predictive control-based planner.

Robot-Gated Interventions Robot-gated interventions require the agent to
estimate when an intervention is necessary, which does not require constant
attention from the teacher, since the robot is the one deciding when the
intervention should be performed, allowing the human to supervise multiple robots
at once [48]. These methods generally require the agent to estimate a measure of
performance, safety, or uncertainty about the currently observed state, which is
then used to determine when to query or enable human teacher control. However,
these kinds of approaches have to deal with the disengagement of the users, who
do not react immediately when requested and require some time to be able to take
over the system again.

One example of this approach is presented in [58], where the policy outputs a
discrete vector of confidence scores for four different gripper orientations, and the
one with the highest confidence is picked. An apprenticeship model is developed,
which queries the teacher intervention in case of too many failures in a row or if
the output confidence is lower than a certain threshold.

A variation of DAgger called Safe DAgger (SafeDAgger) [44] trains a classifier
that predicts whether the learning policy deviates from the expert and, if it is the
case, it switches the control to the expert in order to prevent executing unsafe
actions. The authors mention that the metric used for comparing the expert and
learning policy should depend on the task. Experiments with a driving simulator
showed that SafeDAgger is safer and more efficient than DAgger. Ensemble Dagger
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(EnsembleDAgger) [45]—a method that extends SafeDAgger—uses the deviation
classifier as a discrepancy rule, along with a doubt rule that also switches control
from the learning policy to the expert teacher. The doubt rule is computed based
on the novelty/uncertainty of the policy, which is measured with the variance of
an ensemble of neural networks. The doubt rule lets the agent prevent executing
dangerous actions in unseen states, in addition to the actions of the learning policy
that tend to deviate from the expert teacher.

The Lazy DAgger (LazyDAgger) [47] framework also extends SafeDAgger, in
particular, it aims to reduce context switching by adding noise to the actions
provided by the supervisor to improve the data distribution as well as by adopting
an asymmetric switching criteria, modeled as a hysteresis function. Finally, Thrifty
DAgger (ThriftyDAgger) [48] is proposed, where the switching policy is learned
instead. Interventions are queried in case the encountered state is sufficiently
novel or risky. Similar to EnsembleDAgger, novelty is estimated by computing
the variance of each output of a set of policies, whereas the “risk” of a state
is estimated by learning a Q-function to evaluate the discounted probability of
success from that given state and the action proposed by the policy.

Conclusion Learning from absolute corrective demonstrations is the interactive
approach most similar to standard learning from demonstration since the teacher
should explicitly show what the robot has to do, i.e., she/he is required to be
an expert at solving the task. However, these interactive methods have the
advantage of i) reducing compound errors, because the demonstrations are given to
correct the current learning policy deviations; and ii) reducing the cognitive load
of the teachers since they are not required to give full demonstrations in most of
the methods, but rather occasional corrections; and iii) dealing better with the
mistaken demonstrations, which are not normally considered by imitation learning
methods intended for non-human teachers.

Mistaken demonstrations have a direct effect that the teacher is able to predict,
allowing the teachers to be aware of how to fix their mistakes. Although in most
methods the mistaken feedback remains in the database used for training the
policy, it is possible to compensate for them with correct labels outnumbering the
mistakes, something relatively simple to do given the explicit nature of this kind of
feedback (unlike with evaluative feedback).

Learning from Human Relative Corrections
Methods in this category do not require the teacher to know what the exact action
or state transition should be applied by the agent in every state. However, they
need to understand how a change in the action/state-transition magnitude would
impact the execution of the task. In other words, the teacher should be able to
roughly estimate how a transition would change if the policy is slightly modified.
For instance, knowing that less power in a propeller decreases the acceleration of
an aircraft or boat, or more force in the pedal brake slows down a car. With
these insights, teachers could suggest how to modify a continuous policy in a more
natural way (see Fig. 2.4), as it happens when a coach is instructing a student for
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Figure 2.4.: Learning from human relative corrections: the teacher is correcting
the velocity of the robot telling it that it can increase the value with respect to the
current one.

learning a physical skill, e.g., in football training: kick the ball a bit harder and more
to the right side, in a singing lesson: slightly increase the volume of your voice in
this part of the song, during a dance move bend the knees less. This correction could
be discrete (increase/decrease the action) as well as continuous-valued, depending
on the interface used.

Advice Operators One of the first interactive methods using relative corrections
is Advice-Operator Policy Improvement (A-OPI), where at each iteration, it rolls
out the current policy while recording the state-action pair’s trajectory. Then,
in an offline phase, the teacher selects the parts of the trajectory considered to
be modified, along with an associated advice operator that changes the model’s
action of each selected pair. Finally, there is a phase of policy re-derivation based
on the updated dataset [59–61]. An advice operator can be a relative change of
the current action; for instance, in a navigation task, the advice accelerate would
change the model’s current velocity request, multiplying it by 1.1. It is a relative
correction because it means increase the current action magnitude. An advice
operator can also be the demonstration of an action, being it an absolute corrective
demonstration (Sec. 2.2.1). For instance, the advice stop changes the model’s
velocity request to zero. Corrective demonstrations and A-OPI were sequentially
applied by [62] for improving the walking stability of a NAO humanoid robot.

The COACH framework Similarly to A-OPI, when actions are in-
creased/decreased, the COrrective Advice Communicated by Humans (COACHc)
[15] framework employs binary feedback to indicate, for a given state, the direction
in which the action taken by an agent has to change, while the magnitude of
the change is set as a predefined parameter in the range of the actions. A
parametrized policy is directly learned in the parameter space, as in policy search
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RL [63]. Differently from A-OPI, the feedback provided in COrrective Advice
Communicated by Humans (COACHc) and the policy updates occur while the
agent is interacting with the environment, i.e., during policy execution time, which
allows the teacher to directly observe the effects of the corrections and correct
again if required, speeding up the learning process. COACHc was originally
formulated to model the policy as a linear combination of basis functions, which
allowed to solve tasks such as teaching a NAO robot to dribble a ball [15].

The method was later extended to Deep COACH (D-COACH) [21, 64], which
models the policy with Deep Neural Network (NN)s, allowing to solve tasks with
high dimensional observations, like RGB images obtained from a camera such as
in the problem of driving a Duckie Town car [21]. Also solving problems like
balancing a real inverted pendulum swing-up, or solving a manipulation task in
a conveyor belt with partial observations by incorporating memory into the NN
architecture [65]. Furthermore, COACHc was combined with Policy Search RL to
learn precise motor skills, solving tasks such as the ball-in-a-cup [66]. These works
present experiments in which the learning agents obtained policies with higher
performances with respect to the capabilities of their human teachers, who were
not always able to execute the task at hand, but still managed to teach it.

COACHc is employed to learn tasks with feedback in the action space, however,
corrective advice can similarly be applied to collect feedback in the state space,
in tasks wherein the teacher considers that it could be more natural due to the
not-so-intuitive relation or effect between the action, the current state, and the
next state. With Teaching Imitative Policies in State-space (TIPS) [67], relative
corrections in the state space are used for updating the policy; however, in order
to find the action labels that would obtain the advised relative state correction,
an additional module based on learning an inverse dynamics model is proposed.
This inverse model works for translating the state space feedback into the space
of the actions, such that the policy could be updated just as with COACHc.
TIPS can also be considered as the interactive version of Behavioral Cloning from
Observations (BCO) [68]. The method was validated with a fishing and a laser
drawing task with a real KUKA LBR iiwa 7 robot, and a user study with simulated
environments showed that using feedback in the state space can reduce the task
load of the teachers.

Physical advice Some works that are more focused on teaching behaviors
with manipulators have been proposed for letting the teachers provide kinesthetic
corrections over the executed trajectories. These relative corrections are used for
either updating a policy or updating the objective function that can be used in a
model-based setting with a planner system.

For instance, a policy correction by the teacher on the end-effector displacement
with respect to the original trajectory is detected with tactile sensors in Tactile
Policy Correction (TPC) [69]. The correction could be used for policy refinement
or policy reuse. In the former, the corrections are added as new data points to
the training set, whereas in the latter the corrections are used to replace some
already existing data points. In both cases, all the data points in the set are used
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for re-deriving the policy after the execution. The approach was validated with
grasping tasks using an iCub humanoid robot.

Additionally, incremental refinement of trajectories of context-dependent policies
is performed with kinesthetic feedback in [70]. The corrections are not detected and
computed with tactile sensors, but rather with the measured position difference
between the desired trajectory and the one disturbed by the teacher. A reaching
task is used in the experiments for testing the method with a BioRob arm. In [71]
kinesthetic corrections are also used to reshape a movement primitive used for a
feeding assistance robot application.

Relative corrections as implicit preferences The relative corrections intended
to modify a manipulator trajectory are also used as implicit preference feedback,
despite it being an explicit relative correction in the state space. The trajectory
disturbed by the teacher is closer to what the teacher is expecting the robot to
do (preferred option) than the trajectory intended by the robot. Some methods
leverage this information of preference for learning a function that approximates
the teacher’s objective (see (2.2)), such that it could be used along with a
lower-level system for computing the desired robot trajectory. Based on this
concept, Trajectory Preference Perceptron (TPP) was proposed and tested in
robotic tasks in a household setting and pick-and-place tasks in a grocery store
checkout setting [72, 73]. Similarly, Online Learning from physical Human-Robot
Interaction (HRI) was validated in household tasks with shared workspaces [74–76].

Conclusion The methods based on relative corrections allow non-expert teachers
to incrementally correct the agent until the unknown desired actions are found, in
a guidance setting that resembles the natural way a teacher corrects a student.
Some of these methods empower the teachers, who in some cases are not able to
demonstrate the task, to teach agents to perform and reach the goals successfully.
Learners outperforming the teacher in IIL is similar to what we see in humans
learning complex skills, e.g., when a sports coach guides the player to perform
complex behaviors that they cannot do (anymore). Nevertheless, learning with this
feedback modality is limited to continuous action problems.

Since this feedback is directly given in either the state or action space, methods
using it are also more flexible for reverting the effect of mistaken corrections.
Moreover, there are some methods that update the policies with stochastic gradient
descent and do not store the feedback in a dataset, which are even less sensitive to
the occasional teacher mistakes, allowing to provide a correct label that does not
conflict with any previously stored wrong feedback.

2.2.2. Discussion
In this section we classified different IIL methods according to the explicit
information that is given by the teacher to the learner, having two main categories:
Feedback in the evaluative space, and feedback in the transition space. They
are divided into subgroups of relative and absolute feedback, therefore, the
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discussion sets any form of interaction within one of the four subgroups: i) Human
reinforcements; ii) human preferences; iii) corrective demonstrations; iv) Relative
corrections. Each of the introduced subgroups has its pros and cons which condition
the situations in which they could be applied. In general, all these interaction
modalities let the teachers train agents that perform better than policies obtained
with standard IL, especially to reduce the problem of compound errors, since more
complete data is incrementally collected with the teacher interventions during or
after the policy roll-outs.

Some works have compared methods of different modalities of interaction and
have found that users tend to prefer to interact with the learning agents by
communicating information that explains or shows how to perform the task, rather
than to provide assessments of the quality of the policy [14, 77–79]. However, this
preference is not the only relevant factor that could be considered for selecting the
most convenient approach to solve a specific problem.

The growing community of learning with humans in the loop research is still
mostly focused on exploring new methods and evaluating their effectiveness and
efficiency. Research for measuring and comparing usability will help to identify
what approach or method is more convenient for each kind of problem. Usability
can be assessed by analyzing how effective is a method for obtaining a successful
policy, how efficient is the learning process, how pleasant the process is for the
users, how sensitive it is to human mistakes, and how easy it is for the user to
learn to interact with the system.

Nevertheless, there are insights that can guide the selection of the interaction
modality to be used for training a policy. Depending on the used modality of
interaction, the set of people who can teach a learning agent can be more or
less inclusive regarding their expertise. This is correlated with the amount of
information contained within the feedback signals of each modality.

With corrective demonstrations, the feedback is the informatively richest since
the teacher explicitly shows what the agent should do. This means, that only
users with high expertise in the task can teach the system. With the relative
corrections, the set of users can be widened because not only expert demonstrators
can participate, but also users are enabled to teach if they just have insights
about how the transitions would change with a variation of the action. They can
advise slight corrections to the agent to incrementally improve a policy. The set
of possible teachers is augmented if using human reinforcements, because then, the
teachers do not require to know much about what actions should be done or how
transitions should be modified, as long as they can assess locally whether each
part of a behavior is appropriate (assessments that implicitly happen before any
intervention with the two subgroups of the transition space feedback modalities).
If an action is considered wrong, the teacher does not need to know which the
correct one is, he/she would just punish it for the agent to try something else until
it finds the appropriate behavior. Finally, in the case of learning from preferences,
the set of possible teachers is the largest one, since it includes any person who
understands the objective of a task, and who can assess whether one behavior is
closer to the solution than other ones, without being required to understand or
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Human 
Preferences

(relative feedback)

Human 
Reinforcements

(absolute feedback)

Relative 
Corrections

(relative feedback)

Corrective
Demonstrations

(absolute feedback)

Feedback in evaluative domains Feedback in state-actions domains

Amount of information in the feedback signals

Usable by domain non-expert teachers

Learning 
from:

Interaction Modalities

Figure 2.5.: Interaction modalities and the information contained in the feedback
signals. The four modalities are organized in the plane from the right with the
Corrective demonstrations modality requiring the highest expertise, to the left with
the human preferences requiring the least (as shown by the green arrow). This
order has a negative correlation with the amount of information shared within the
feedback signals in each modality (red arrow)

specify what exactly makes the preferred behavior better.

As mentioned before, the corrective demonstrations are the most informative
interactions, followed by the relative corrections that are defined in the same
domain of actions or states, but they do not need to be strictly accurate since
the accumulation of many corrections can gradually reach the desired behavior
(Fig. 2.5). With human reinforcements, the feedback is a scalar evaluating the
performance of each part of the policy execution, and it can be discrete or
continuous. With human preferences, the feedback contains the least amount
of information because even one discrete feedback signal (or N in the case of
rankings) is used to compare full or partial trajectories, without assessing any
individual decision.

Both the limitations given by human factors, or physical constraints like the
ones related to learning with real physical robots that cannot be accelerated as
in simulation, cannot be directly approached by adding computational power, as
in the case of other Machine Learning (ML) methods. Therefore, some variables
like the level of expertise of the teacher, the physical constraints given by the
environment and the users, e.g., time, and the available interfaces compose
the factors considered for selecting the right modality. Other variables of the
interactive imitation learning problem that are discussed in the next sections
consider additional nuances of the approach selection.
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2.3. On/Off Policy Learning
Machine Learning methods intended to solve sequential decision-making problems
(like RL or IL) feature different algorithmic properties related to what kind of
data is used for learning, when and how it is generated, and how it is used for
updating the policy. Depending on how these questions are approached by the
method designer, learning processes could be classified as on/off-line learning and
on/off-policy learning.

The chronological evolution of the focus on the way the learning data is generated
for IL has been relatively opposite with respect to RL. Initially, the main idea of
RL was the autonomous learning of a policy by trial and error, while the agent is
interacting with the environment, i.e., collecting the data samples while testing the
learning policy. However, in recent years, researchers have dedicated efforts to an
additional branch for applying the MDPs properties, and RL concepts, for learning
from prerecorded data without further agent-environment interaction, as is the
case with offline RL [80]. On the other hand, IL was studied for many years only to
find methods that could replicate behaviors contained in static datasets of expert
demonstrations, and only later it has been explored the idea of incrementally
collecting data from the teacher who observes the learning agent performance.

Due to the different development of these two learning paradigms, general
common concepts have been independently introduced. In this section, a discussion
intending to unify the definitions of these concepts given in both the RL and IL
literature is presented, while trying to keep the RL definitions as the reference.

2.3.1. Online and Offline Learning
Depending on when the collection of data used for learning is carried out, the
learning methods could be classified into offline or online learning. In RL, the
offline learning setting is defined as the situation when “the agent no longer has
the ability to interact with the environment and collect additional transitions using
the behavior policy. Instead, the learning algorithm is provided with a static
dataset of transitions and must learn the best policy it can using this dataset”
[80]. In contrast, in the online learning setting, the experience the agent gathers
for learning increases with new interactions with the environment, allowing it to
improve the current policy.

The projection of these definitions into the world of IL matches completely
with the classification of interactive and non-interactive methods. Offline learning
covers the standard IL methods that sequentially record demonstrations in a static
dataset, and later obtain a policy with the recorded data. Online IL methods cover
the group of IIL approaches because they feature the ability to collect more data
with a dynamic dataset during learning. Since in IL the data collection depends on
a teacher, the continuous feedback sampling of online learning involves the teacher
in the loop as it has been defined for IIL.

As mentioned in the introduction of this chapter and considering the introduced
definitions, we could say that RL was initially developed for online learning, and
only recently its potential for learning offline has been studied, while IL was first
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formulated offline, and recently extended to the online setting.
In both RL and IL, the agent learns from the obtained feedback, provided by

the environment or teacher intervention, respectively. Both learning paradigms
aim at a similar objective in the offline case, since both try to obtain a policy
that reproduces the behavior recorded in the data. In other words, offline RL
also tries to imitate the demonstrations collected in a dataset; however, it makes
use of a reward function that supports the process of defining which decisions in
the demonstrated data are more relevant and which ones are less convenient for
attaining the task goal.

Since, historically, offline learning has been predominately applied in IL methods,
two ideas that become evident in online learning scenarios have been mostly
ignored in its literature: on-policy and off-policy learning (see Fig. 2.6). These
ideas have been well-defined and deeply studied by the RL community, and they
play a fundamental role in the understanding and design of learning methods. In
this section, we argue that the relevance that on-policy and off-policy learning
has in RL also transfers to IIL. However, although some works have used these
concepts in the context of IIL [81–83], they are still not clearly defined in this field.
Therefore, to analyze the relevance that on/off-policy learning has in IIL, it is
necessary to first clearly define it for this case.

Below, we introduce these concepts from the original definitions in the literature
of RL, and thereafter they are extended to the IIL case.

On/Off-Policy Learning in Reinforcement Learning
[9] define these concepts stating: “on-policy methods attempt to evaluate or improve
the policy that is used to make decisions, whereas off-policy methods evaluate or
improve a policy different from that used to generate the data”. The policy that is
being learned is often referred as target policy πt, and the policy used to generate
the learning data as behavior policy πb. Then, on-policy learning occurs when the
learning data comes from trajectories generated by the target policy, i.e., πt = πb.
In contrast, if πt ̸= πb, the learning is off-policy. Note that, consequently, offline
RL requires off-policy learning.

These concepts can be formally defined from the RL objective and from how
it is commonly optimized. From (2.1), we have that this objective commonly
corresponds to the maximization of the discounted expected return

π∗ = arg max
π∈Π

Eτ∼pπ(τ) [G(τ)] , (2.8)

where G(τ) =
∑T
t=0 γ

tR(st, at) corresponds to the return.
In practice, since we do not have analytical access to this expectation, to

find the policy π∗ that maximizes the presented objective, it is necessary to
empirically collect information from, ideally, every possible trajectory τ (or
transition (st, at, st+1, rt+1) given the Markov assumption) and shift the behavior
of πt towards the trajectory distribution that maximizes (2.8). However, in
most realistic scenarios, it is not possible to sample the complete state-action
space; hence, a policy is commonly chosen to sample this space as diversely and
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(a) On-policy Learning (b) Off-policy Learning

(c) Offline Learning

Figure 2.6.: Different learning schemes used in RL that are applicable to IL. In
on-policy learning, the target policy πk is the same as the behavior policy. This
policy collects the data used in the update that leads to πk+1 (a). In off-policy
learning the behavior policy πβ is different from the target policy, allowing the
use of a replay buffer. However, in practice, πβ results from combining πk with
exploration noise or input from the teacher (b). In offline learning the behavior
policy πβ used for obtaining the data is completely different from the policy π
obtained in the learning process, which is not considered for the data collection (c).
This figure is inspired by [80], with some modifications.

exhaustively as possible while keeping the problem tractable. This policy is πb.
Then, at every update iteration, the data collected by πb is employed to estimate
the current expected return of the trajectory distribution induced by πt, and πt

is modified such that this expectation increases. However, if data is generated
by sampling trajectories induced by πb, how is the expected return computed with
respect to πt? There are two options, 1) on-policy learning, i.e, directly improve
πb at every iteration (πb = πt), 2) off-policy learning, i.e., πb ̸= πt and employ a
strategy to compute the expected return of πt from trajectories collected by πb.
Consequently, at every learning iteration, the estimated objective of an on-policy
learning method corresponds to

on-policy: Êτ∼p
πb (τ) [G(τ)] , (2.9)
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where Êτ∼pπ(τ) corresponds to the expectation estimated by sampling data from
the environment following a policy π.

In contrast, the estimated objective of off-policy methods, even though the data
comes from πb, corresponds to

off-policy: Êτ∼pπt (τ) [G(τ)] . (2.10)

Note that off-policy methods are defined as those that are able to learn off-policy,
which indicates that it is also possible to learn on-policy with these methods, as
they are capable of learning from data generated by any policy, which includes the
target policy [9].

The RL literature provides a vast family of on-policy and off-policy learning
methods, to study how the concepts of on/off-policy are applied in practice we can
analyze some examples.

SARSA and Q-Learning To illustrate the difference between on-policy and
off-policy methods, let us study SARSA [84] and Q-Learning [85], two seminal
RL methods. SARSA is on-policy and Q-Learning is off-policy. These methods
employ Temporal-Difference (TD) learning to compute estimates of the expected
return and solve (2.8). TD combines ideas from Monte Carlo (MC) methods and
Dynamic Programming (DP), i.e, trajectories are empirically sampled from the
environment, but the final outcome is estimated based on current models of the
environment (which is known as bootstrapping), instead of only using the sampled
data. SARSA and Q-learning employ TD learning to estimate the action-value
function Q(st, at), which estimates the expected return of a policy given its current
state and selected action and derive a policy from it. Hence, the environment can
be sampled following πb and bootstrapped at every time step to get the following
sample/estimation of the return:

G(τ)t = rt+1︸︷︷︸
sample

+ γQ(st+1, at+1)︸ ︷︷ ︸
estimation

. (2.11)

Then, Q can be updated by computing the error of this TD estimate with respect
to the current estimation of Q for a given time step, which is known as the update
rule of SARSA:

SARSA: Qnew(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)︸ ︷︷ ︸
TD target

−Q(st, at

︸ ︷︷ ︸
TD error

)], (2.12)

where α is the learning rate of the update. Note that the only variable that
indicates that (2.12) is following πb is at+1, as the other variables are a consequence
of the action taken by πb one time step before, which can be ignored at t + 1
given the Markov assumption. Hence, it is possible to remove the dependence of
the TD-target from πb if instead of using the action at+1 sampled from πb in this
estimate, a different one is chosen. This idea can be followed to create an off-policy
variation of SARSA, known as Q-learning.
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Q-learning defines its target policy as the optimal policy according to the current
estimation of Q, i.e., πt(st) = arg maxaQ(st, a). Then, (2.12) can be modified
by replacing the term Q(st+1, at+1) with the Q value of πt, making the return
estimation to be according to πt instead of πb, i.e,

Q-learning:
Qnew(st, at)← Q(st, at) + α[rt+1 + γmax

a
Q(st+1, a)−Q(st, at)], (2.13)

where the modified value with respect to (2.12) is highlighted in red. Note that
in the special case where the behavior policy is greedy with respect to the current
estimate of Q (e.g., when using an ϵ-greedy exploration strategy and ϵ tends to
zero ), the SARSA and Q-Learning update rules are equivalent [84] because the
target and behavior policies are the same, i.e., Q-Learning becomes on-policy.

Importance Sampling Another well-known approach for designing off-policy
learning methods is importance sampling. Importance sampling allows methods
that in nature are on-policy, such as SARSA, to become off-policy by weighting the
TD errors with the importance sampling ratio [9, 86]. The importance sampling
ratio is employed to estimate the update of the Q function of the target policy from
data generated by a different policy, e.g., the behavior policy. Closely related to the
methods studied above, the method Temporal-Difference per Decision Importance
Sampling (TD-DIS)1 [87] can be analyzed in this case. TD-DIS method can be
seen as an off-policy extension of SARSA by means of importance sampling [88,
89]. The update rule of TD-DIS is

TD-DIS:
Qnew(st, at)← Q(st, at) + αρt[rt+1 + γQ(st+1, at+1)−Q(st, at)], (2.14)

where
ρt = πt(at|st)

πb(at|st)
(2.15)

is the per-step importance sampling ratio between the target policy and the
behavior policy. The similarities between SARSA and TD-DIS are evident; ρt is
the only variable that differentiates both methods and allows the update rule of
TD-DIS to be employed with data collected by the target policy. In the special
case where this method is used on-policy, the behavior and target policies become
the same (i.e., ρt = 1) and TD-DIS becomes equivalent to SARSA.

2.3.2. On-Policy/Off-Policy Learning in Imitation
Learning

According to [2], the terms on-policy and off-policy, in the IL literature, are
mentioned for the first time in [81]. The authors use the terms on-policy and

1The acronym TD-DIS is introduced in this work for simplicity, given that no acronym is
proposed in [87].
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off-policy according to which policy is used to sample data from the environment.
If the current agent’s policy is used to sample data, then the method is on-policy; if
the teacher’s policy is used to sample data, then the method is off-policy. Although
this definition may seem equivalent to the one in RL, there is a difference: in RL,
these definitions are about the data that is used in the evaluation or improvement
of the current agent’s policy.

This difference is important because online RL and IIL are iterative learning
processes (i.e., the agent’s policy is evolving over time while it interacts with
the environment), which means that the distribution of the data generated by
an older version of the agent’s policy is not the same as the one generated by
the current agent’s policy. The on/off-policy definitions provided in [81] allow
on-policy methods to use data generated by older versions of the agent’s policy
(i.e., other policies) when improving its behavior, which is not consistent with the
RL definition.

As an example, DAgger [8] has commonly been defined as being on-policy and
Behavioral Cloning as off-policy [2, 81, 83]. Nevertheless, in DAgger, data is
constantly being aggregated in a dataset that is used to update the agent’s policy
iteratively. Consequently, data generated with a different policy than the target
policy is used in the update rule, and, therefore, from an RL perspective, it would
be an off-policy method. From this point of view, DAgger and Behavioral cloning
are in the same category.

Instead, we argue that the ideas of on/off-policy learning can be transferred
differently to IIL. In this section, we focus the analysis on the per-step feedback
case as described in Sec. 2.1.3, as it is the case that most resembles RL.

From Reinforcement Learning to Interactive Imitation Learning
From the definition of on/off-policy learning in RL provided in Sec. 2.3.1, we
can recall that off-policy learning occurs when data collected with one policy
(i.e., behavior policy) is employed to update a different one (i.e., target policy).
Consequently, off-policy learning allows updating a policy from data that has no
dependence on it.

This same idea can be employed to study on/off-policy methods in IIL, i.e., if
the data used in the update rule of the learner’s policy follows a different policy,
the learning method is off-policy; otherwise, it is on-policy. The only difference is
that, in this case, the learner collects the feedback signal when interacting with the
environment, instead of the reward signal like in RL. As mentioned in Sec. 2.1.3,
the feedback signal can be understood as a generalization of the reward.

To observe this more clearly, we can analyze methods from the two paradigms
that lead to IIL methods (see Sec. 2.1.3): 1) Value Maximization and 2) Divergence
Minimization.

Value Maximization methods
Since these methods derive from the RL literature, they optimize the RL objective,
and, therefore, the definitions provided in Sec. 2.3.1 can be directly used to
define them as being on-policy or off-policy. Let us study two of these methods:
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Convergent Actor-Critic by Humans (COACHe) [90] and Training an Agent
Manually via Evaluative Reinforcement (TAMER) [91].

COACHe COACHe is derived employing the policy gradient theorem of RL
[9]. This theorem allows to directly improve the parameters θ of a policy π
by computing the gradient of its value function and applying stochastic gradient
ascent. Consequently, COACHe applies the following update rule to its policy:

θnew ← θ + α∇θπ(st, at)
ht+1

π(st, at)
, (2.16)

where α is the learning rate and ht+1 the human feedback. Here, ht+1 can be
interpreted as replacing the advantage function used in this type of policy gradient
methods, which describes how much better or worse an action would perform
compared to the agent’s action when following the agent’s policy. Consequently, to
improve the agent’s policy with this method, it is necessary to learn on-policy;
otherwise, ht+1 would indicate the advantage of an action with respect to a policy
different from the agent’s policy, making its update incorrect.

TAMER TAMER can be interpreted as a method that maximizes the Q function
for deriving a policy but assumes that the policy behaves myopically (i.e., γ = 0).
Therefore, we can observe that if we assume a myopic behavior, (2.12) and (2.13)
reduce to the same solution, which corresponds to the update rule employed by
TAMER

Qnew(st, at)← Q(st, at) + α[ht+1 −Q(st, at)], (2.17)
where the reward rt+1 is replaced by the human feedback ht+1. Consequently,

TAMER interprets the feedback signal as a Q-value, which does not depend on
the agent’s policy [92]. Moreover, it does not depend on any policy, but only
on immediate actions. Consequently, with TAMER, it is possible to update the
target policy with data collected by any policy, making it an off-policy learning
method. Note that although it is likely that the teacher will provide feedback
as a function of the learner’s policy [90, 93]. For instance, TAMER is proposed
considering assumptions such as “The trainer can evaluate an action or short
sequence of actions, considering the long-term effects of each” (effects with respect
to the policy) and “a human trainer’s reinforcement function, is a moving target.
Intuitively, it seems likely that a human trainer will raise his or her standards as
the agent’s policy improves”. However, from an algorithmic perspective, given the
proposed implementation, the feedback is policy-independent.

Divergence Minimization methods
Let us recall (2.7), which summarizes IIL methods based on Divergence
Minimization and rewrite it in its MLE form [39], instead of the Kullback–Leibler
(KL) divergence between two policies; then, in each training iteration we solve

max
π∈Π

Es∼pπ(s),a∼πh [ln(π(a|s))] . (2.18)
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This form of the equation is useful for analyzing the on/off-policy nature of these
methods because it explicitly shows the state and action distributions. Here, we
analyze two IIL methods derived from this equation: DAgger [8] and COACHc
[15].

DAgger In DAgger, (2.18) is minimized by setting the feedback signal to ht = at.
Hence, ht directly corresponds to a label of the optimal action (according to the
teacher) for a given state. This method assumes that for every sampled state from
which this equation is minimized, the label ht does not depend on the current
agent’s policy, as it only follows πh. Therefore, it is possible to update the agent’s
policy from data generated by any policy, which makes DAgger an off-policy
learning method.

Nevertheless, there is one important remark to make. Given that the state
distribution of the samples used to update (2.18) depends on the behavior policy, a
different behavior policy will, inevitably, yield different solutions. However, this is
also the case for RL methods, so this definition is still consistent with them.

COACHc In COACHc, the assumption is that the feedback signal corresponds
to an error signal that indicates the direction in which the current agent’s policy
should be modified to improve its performance (feedback is only meaningful for
improving the current behavior policy, and not future versions of it). Therefore, in
this case, for every training iteration, an action label is generated as a function of
the learner’s policy with the form a = πl(s) + e · ht, where e is a hyperparameter
defined as the error magnitude. Consequently, (2.18) gets modified, since the
actions do not distribute as πh anymore, but rather as a different distribution that
depends on πl. Therefore, it is only possible to update COACHc with samples
collected by the agent’s policy, making this method an on-policy learning method.

2.3.3. Discussion
The concepts discussed in this section are as important in IIL as in RL because
they are agnostic of the feedback source used for policy improvement (teacher or
environment). Instead, they are related to the way the learning experience is
obtained and used in the policy updates.

The replay of recorded experience and the way it is implemented is one of the
main features that come into the discussion of On/Off-policy learning. But unlike
RL, wherein the reward function (that could be deterministic or stochastic) is
(time or policy) invariant, IIL methods could have in some cases feedback of the
teacher that depends on the performance of the policy. Therefore, depending
on the assumption about the teacher’s feedback within a learning method, it is
relevant to evaluate what kind of learning is the most convenient for the method
implementation, such that it leverages that assumption.

Since in online learning the experience is incrementally collected, there are
additional challenges when fitting function approximators with this kind of data.
The sequential nature of these problems makes the data have spatio-temporal
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correlations, therefore not following the IID assumption of most ML approaches.
Additionally, when training NNs from a static dataset, the iterative process of
updating the model normally reduces the error for most training data as long as
there are sufficient iterations. That is because some data points require more
update steps following the cost function gradient than others. However, when data
samples are obtained incrementally while also learning, it is difficult to control the
model to avoid either overfitting or underfitting the data. In both cases, there is
the additional issue of the model being changed for other input-output mappings
different from the ones used in the update, which counts as losing the already
acquired knowledge, and is known as “catastrophic forgetting”.

Experience replay is a technique introduced for breaking those correlations in the
collected data during the policy update. It also helps to have a good balance for
not overfitting to the most recent training data, while keeping the old experience in
the memory of the model, i.e., it helps to deal with the three problems previously
mentioned.

For instance, in methods wherein the teacher provides evaluative feedback at any
time step, there could be two different cases:

1. When the human feedback is assumed to replace the MDP reward and used
within an RL implementation, the feedback is assumed to be consistent
in all the state-action space, such that the RL learning properties hold.
In this case, the old feedback samples are never conflicting with the new
ones, therefore, old feedback signals are always usable, and the choice of
on/off-policy learning is left to the RL implementation, being both valid.

2. When it is assumed humans consider past and future in their evaluative
feedback signals, and it is used as something equivalent to value function
(e.g., TAMER), i.e., the feedback depends on the policy. Consequently,
feedback given over state-action pairs of old policies could be contradictory
with respect to the one obtained with the current policy. This assumption
requires giving priority to the feedback given to the execution of the current
policy, hence on-policy learning would be more appropriate.

Since the discussions of On/Off-policy learning are relatively new and not
consolidated in IL, this dimension of the algorithmic features space has been
neglected in some implementations of IIL methods. Some algorithms have
considered a learning strategy that does not align with the assumptions of the
required human feedback. It is not simple to implement methods whose algorithmic
features match the feedback assumptions because the limitations created by
the aforementioned problems (non-IID, over/under-fitting, catastrophic forgetting)
condition the learning strategies.

The most common case of having inconsistent implementations is when the
feedback is policy-dependent, but experience replay is required for stable learning,
i.e., on-policy learning deals better with the assumed policy-dependent feedback,
but the need for experience replay makes it necessary to learn from off-policy
data. As mentioned before, importance sampling helps for decreasing the priority
of data obtained with different policies [94], which is convenient for learning from
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off-policy data with methods whose assumptions align with the on-policy learning
conditions. The Convergent Actor-Critic by Humans (COACHe) algorithm [82] is
a good example of IIL with a policy-dependent feedback assumption (naturally
on-policy), which benefits of off-policy learning for stability, but using importance
sampling to prioritize the data in the updates according to the distribution of the
current policy.
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3.1. Introduction
The ongoing industry revolution is demanding more flexible products, including
robots in household environments or medium-scale factories. Such robots should
be able to adapt to new conditions and environments, and to be programmed with
ease. As an example, let us suppose that there are robot manipulators working in
an industrial production line that need to perform a new task. If these robots were
hard coded, it could take days to adapt them to the new settings, which would
stop the production of the factory. Easily programmable robots by non-expert
humans would speed up this process considerably.

In this regard, we present a framework in which robots are capable to quickly
learn new control policies and state representations, by using occasional corrective
human feedback. To achieve this, we focus on interactively learning these policies
from non-expert humans that act as teachers.

We present a Neural Network (NN) architecture, along with an Interactive
Imitation Learning (IIL) method, which efficiently learns spatiotemporal features
and policies from raw high dimensional observations (raw pixels from an image),
for tasks in environments not fully temporally observable.

We denominate IIL as a branch of Imitation Learning (IL) where human
teachers provide different kinds of feedback to the robots, like new demonstrations
triggered by robot queries [13], corrections [46], preferences [95], reinforcements
[93], etc. Most IL methods work under the assumption of learning from perfect
demonstrations; therefore, they fail when teachers only have partial insights in
the task execution. Non-expert teachers could be considered all the users who
are neither Machine Learning (ML)/control experts, nor skilled to fully show the
desired behavior of the policy.

Interactive approaches like COACH [96], and some Interactive Reinforcement
Learning (IRL) approaches [90, 93], are intended for non-expert teachers, but
are not completely deployable for end-users. Sequential decision-making learning
methods (IL, IIL, IRL, etc.) rely on good state representations, which make the
shaping of the policy landscape simple, and provide good generalization properties.
However, this requirement brings the need of experts on feature engineering to
pre-process the states properly, before running the learning algorithms.

The inclusion of Deep Learning (DL) in IL (given its popularity gained in the
field of Reinforcement Learning (RL) [97]), allows to skip pre-processing modules
for the input of the policies, since some architectures of NNs endow the agents
with intrinsic feature extraction capabilities. This has been exhaustively tested in
end-to-end settings [97]. In this regard, DL allows non-expert humans to shape
policies based only on their feedback.

Nevertheless, in real-world problems, we commonly face tasks wherein the
observations do not explain the complete state of the agent due to the lack of
temporal information (e.g., rates of change), or because the agent-environment
interaction is non-Markovian (e.g., dealing with occlusions). For these cases, it is
necessary to provide memory to the learning policy. Recurrent Neural Networks
(RNNs) can learn to model dependencies on the past, and map them to the
current outputs. This recurrency has been used in RL and IL mostly using Long
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Figure 3.1.: Interactively shaping policies with agents that model the world.

Short-Term Memory (LSTM) networks [98].
Therefore, LSTMs are included in our NN architecture to learn temporal features,

which contain relevant information from the past. However, DL algorithms require
large amounts of data, so as a way to tackle this shortcoming, State Representation
Learning (SRL) has been used to learn features more efficiently [99, 100].
Considering that real robots and human users have time limitations, as an SRL
strategy, a model of the world is learned to obtain state representations that make
the policy convergence possible within feasible training time intervals (see Fig. 3.1).

The combination of SRL and the teacher’s feedback is a powerful strategy
to efficiently learn temporal features from raw observations in non-Markovian
environments.

The experiments presented in this chapter show the impact of the proposed
architecture in terms of data efficiency and policy final performance within the
Deep COACH (D-COACH) IIL framework [21]. Additionally, the experimental
procedure shows that the proposed architecture could be even used with
other IL methods, such as Data Aggregation (DAgger) [8]. The code
used in this chapter can be found at: https://github.com/rperezdattari/
Interactive-Learning-of-Temporal-Features-for-Control.

The chapter is organized as follows: background on approaches used within our
proposed method, and the related work are presented in Sec. 3.2. Sec. 3.3 describes
the proposed NN architecture along with the learning method. Experiments and
results are given in Sec. 3.4, and finally the conclusions are drawn in Sec. 3.5.

3.2. Background and Related Work
Our method combines elements from SRL, IL and memory in NN models to build a
framework that enables non-expert teachers to interactively shape policies in tasks

https://github.com/rperezdattari/Interactive-Learning-of-Temporal-Features-for-Control
https://github.com/rperezdattari/Interactive-Learning-of-Temporal-Features-for-Control
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with non-Markovian environments. These elements are introduced hereunder.

3.2.1. Dealing with non-Markovian Environments
There are different reasons why a process could be partially observable. One of
them is when the state describes time-dependent phenomena, but the observation
only contains partial information of it. For instance, velocities cannot be
estimated from camera images unless observations from different time steps are
combined. Other examples of time-dependent phenomena are temporary occlusions
or corrupted communication systems between the sensors and the agent.

For these environments, the temporal information needs to be implicitly obtained
within the policy model. There are two well-known approaches for adding memory
to agents in sequential decision-making problems when using NNs as function
approximators:

1. Observation stacking policies [101]: stacking the last N observations
(ot, ot−1, ...oN ), and using this stack as the input of the network.

2. Recurrent policies [102]: including RNN layers in the policy architecture.

One of the main issues of observation stacking is that the memory of these
models is determined by the number of stacked observations. The overhead
increase rapidly for larger sequences in high-dimensional observation problems.

In contrast, RNNs have the ability to model information for an arbitrarily long
amount of time [103]. Also, they do not add input-related overheads, because
when these models are evaluated, they only use the last observation. Therefore,
RNNs have lower computational cost than observation stacking. Given the more
practical usage of recurrent models and their capability of representing arbitrarily
long sequences, in this work we use RNN-based policies (with LSTM layers) in the
proposed NN architecture.

Nevertheless, the use of LSTMs has a critical disadvantage, since its training
is more complex and requires more data, something very problematic when
considering human teachers and real systems. We will now introduce SRL, which
helps to accelerate the LSTM converge.

3.2.2. State Representation Learning
In most of the problems faced in robotics, the state st, which fully describes
the situation of the environment at time step t, is not fully accessible from the
robot’s observation ot. As mentioned before, in several problems the observations
lack temporal information required in the state description. Evenmore, these
observations tend to be raw sensor measurements that can be high-dimensional,
highly redundant and ambiguous. A portion of this data may even be irrelevant.

As a consequence, to successfully solve these problems a policy needs to 1)
find temporal correlations between several consecutive observations, and 2) extract
relevant features from observations that are hard to interpret. However, finding
relations between these large data structures with the underlying phenomena
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of the environment, while learning controllers, can be extremely inefficient.
Therefore, efficiently building controllers on top of raw observations requires to
learn informative low-dimensional state representations [104]. The objective of
SRL is to obtain an observer capable of generating such representations.

A compact representation of a state is considered to be suitable for control if the
resulting state representation:

• is Markovian,

• has good generalization to unseen states, and

• is defined in low dimensional space (considerably lower than the actual
observation dimensionality) [99].

Along with the control objective function (e.g., reward function, imitation cost
function), other objective functions can be used for SRL [100], namely:

• observation reconstruction,

• forward model or next observation prediction,

• inverse model,

• reward function, or

• value function.

3.2.3. Interactive Learning methods
This subsection introduces briefly two approaches for interactively learning from
human teachers while agents are executing the task.

Data Aggregation: (HG-)DAgger
DAgger [8] is an IIL algorithm that aims to collect data with online sampling. To
achieve this, trajectories are generated by combining the agent’s policy πθ and the
expert’s policy. The observations ot and the demonstrator’s corresponding actions
a∗
t are paired and added to a database D, which is used for training the policy’s

parameters θ iteratively in a supervised learning manner, in order to asymptotically
approach the expert’s policy. At the beginning of the learning process, the
demonstrator has all the influence over the trajectory made by the agent; then, the
probability of following the demonstrator’s actions decays exponentially.

For working in real-world systems, with humans as demonstrators, a variation
of DAgger, Human-Gated DAgger (HG-DAgger) [46], was introduced. In this
approach, the demonstrator is not expected to give labels over every action of
the agent, but only in places where s/he considers that the agent’s policy needs
improvement. Only these labels are aggregated to the database and used for
updating the policy. Additionally, every time feedback is given by the human, the
policy will follow the provided action. As a safety measure, in HG-DAgger the
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Algorithm 1 (HG-)DAgger
1: Require: demonstrations database D with initial demonstrations, policy

update frequency b
2: for t = 1,2,... do
3: if mod(t, b) is 0 then
4: update πθ from D
5: observe state ot
6: select action from agent or expert
7: execute action
8: feedback provide label a∗

t for ot, if necessary
9: aggregate (ot, a∗

t ) to D

uncertainty of the policy over the observation space is estimated; this element is
omitted in this work. Algorithm 1 shows the general structure of DAgger and
HG-DAgger.

Deep COACH
In this framework [21], humans shape policies giving occasional corrective feedback
over the actions executed by the agents. If an agent takes an action that the
human considers to be erroneous, then s/he would indicate with a binary signal ht,
the direction in which the action should be modified.

This feedback is used to generate an error signal for updating the policy
parameters θ. It is done in a supervised learning manner with the cost function J
using the mean squared error and stochastic gradient descent. Hence, the update
rule is:

θ ← θ − α · ∇θJ(θ). (3.1)
The feedback given by the human only indicates the sign of the policy error.

Its magnitude is supposed to be unknown, since the algorithm works under
the assumption that the user is non-expert; therefore, s/he does not know the
magnitude of the proper action. Instead, the error magnitude is defined as the
hyperparameter e, that must be defined before starting the learning process. Thus,
the policy errort is defined by ht · e.

To compute a gradient in the parameter space of the policy, the error needs to
be a function of θ. This is achieved by observing that:

errort(θ) = atarget
t − πθ(ot) (3.2)

where atarget
t is the incremental objective generated by the feedback of the human

atarget
t = at + errort and at is the current output of the policy πθ. From (3.1) and

(3.2), and the derivative of the mean squared error, we can get the COACH update
step:

θ ← θ + α · errort · ∇θπθ. (3.3)
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Algorithm 2 Deep COACH
1: Require: error magnitude e, buffer update interval b
2: Init: B = [] # initialize memory buffer
3: for t = 1,2,... do
4: observe state ot
5: execute action at = πθ(ot)
6: feedback human corrective advice ht
7: if ht is not 0 then
8: error t = ht · e
9: atarget(t) = at + error t

10: update π using SGD with pair (ot, atarget
t )

11: update π using SGD with a mini-batch sampled from B
12: append (ot, atarget

t ) to B
13: if mod(t, b) is 0 then
14: update πθ using SGD with a mini-batch sampled from B

To be more data efficient and to avoid locally over-fitting to the most recent
corrections, Deep COACH has a memory buffer that stores the tuple (ot, atarget

t )
and replays this information during learning. Additionally, when working in
problems with high-dimensional observations, an autoencoding cost is incorporated
in Deep COACH as an observation reconstruction SRL strategy. In the Deep
COACH pseudo-code (Algorithm 2) this SRL step is omitted. Deep COACH learns
everything from scratch in only one interactive phase, unlike other deep interactive
RL approaches [90, 93], which split the learning process into two sequential learning
phases. First, recording samples of the environment for training a dimensionality
reduction model (e.g., an autoencoder); secondly, using that model for the input of
the policy network during the actual interactive learning process.

3.3. Learning Temporal Features Based on
Interactive Teaching and World Modelling

In this section, the SRL NN architecture is described along with the interactive
algorithm for policy shaping.

3.3.1. Network Architecture for Extracting Temporal
Features

For approaching problems that lack temporal information in the observations, the
most common solution is to model the policy with RNNs as discussed in Sec. 3.2.1;
therefore, we propose to shape policies that are built on top of RNNs, with
occasional human feedback. In this work, we are using the terms world model and
transition model interchangeably.

IIL methods can take advantage of SRL for training with other objective
functions by 1) making use of all the experience collected in every time step, and
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Figure 3.2.: Transition model and policy general structure.

2) boosting the process of finding compact Markovian embeddings. We propose
to have a neural architecture separated into two parts: 1) transition model, and
2) policy. The transition model is in charge of learning the dynamics of the
environment in a supervised manner using samples collected by the agent. The
policy part is shaped only using corrective feedback. Fig. 3.2 shows a diagram of
this architecture.

Learning to predict the next observation ot+1 forces a Markovian state
representation. This has been successfully applied in RL [105]. RNNs can
encode information from past observations in their hidden state hLSTM

t . Thus, the
objective of the first part of the neural network is to learn M(ot, at, hLSTM

t−1 ) = õt+1,
which, as a consequence, learns to embed past observations in hLSTM

t . Additionally,
when the observations are high-dimensional (raw images), the agents also need to
learn to compress spatial information. To achieve this, a common approach is to
compress this information in the latent space of an autoencoder.

For the first part of the architecture, we propose to use the combination of
an autoencoder with an LSTM to compute the transition function model, i.e.,
predicting the next high-dimensional observation. A detailed diagram of this
architecture can be seen in Fig. 3.3.

In the second part of the architecture, the policy takes as input, a representation
of the state ŝt, that is generated inside the transition model network. This
representation is obtained at the output of a fully-connected layer (FC3), that
combines the information of hLSTM

t−1 with the encoder compression of the current
observation e(ot). This is achieved by adding a skipping connection between the
output of the encoder and the output of the LSTM.

3.3.2. Interactive Algorithm for Policy and World-Model
Learning

In Algorithm 3, the pseudo-code of the state representation learning strategy is
presented. The hidden state of the LSTM is denoted as hLSTM, and the human
corrective feedback as h. In every time step, a buffer D stores the samples of
the transitions with sequences of length τ (line 5). The agent executes an action
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Figure 3.3.: Proposed neural network architecture. Convolutional and recurrent
(LSTM) layers are included in the transition model in order to learn spatiotemporal
state representations. The estimated state ŝt is used as input to the policy, which
is a fully-connected NN.

Algorithm 3 Online Temporal Feature Learning
1: Require: Policy update algorithm πupdate, training sequence length τ , model

update rate d
2: Init: D = []
3: for t = 1,2,... do
4: observe observation ot
5: append (ot−1, ..., ot−τ , at−1, ..., at−τ , ot) to D
6: execute action at = πθ(ot, hLSTM

t−1 )
7: compute hLSTM

t from M(ot, at, hLSTM
t−1 )

8: feedback human feedback ht
9: call πupdate(ot, at, ht)

10: if mod(t, d) is 0 then
11: update M using SGD with mini-batches of sequences sampled from D

based on its last observation and the current hidden state of the LSTM (line
6). This hidden state is updated using its previous value and the most recent
observation and action (line 7). Line 8 captures the occasional feedback of the
teacher, which could be a relative correction when using Deep COACH, or the
corrective demonstration when using HG-DAgger. Also, depending on the learning
algorithm, the policy is updated in different ways (line 9) .

D replays past transitions of the environment in order to update the transition
function model (line 11). This is done following the bootstrapped random updates
[102] strategy. This model is updated every d time steps.

3.4. Experiments
In this section, experiments for validating the proposed neural network architecture
and the interactive training algorithm are presented. In order to obtain a thorough
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evaluation, different experiments are carried out to compare and measure the
performance (return i.e., sum of rewards) of the proposed components. Initially,
the network architecture based on SRL is evaluated in an ablation study, aiming to
quantify the data efficiency improvement added by its different components. Then,
using the proposed architecture, D-COACH is compared with (HG-)DAgger using
simulated tasks and simulated teachers (oracles). The third set of experiments
is carried out with human teachers in simulated environments, again comparing
different learning methods. Finally, a fourth set of validation experiments is carried
out in real systems with human teachers. Most of the results are presented in this
chapter; however, some of them are in the supplementary material, along with
more detailed information on the experiments

Two real and three simulated environments with different complexity levels were
used, all of them using raw images as observations. The simulated environments
are Mountain-Car, Swing-Up Pendulum, and Car Racing, whose implementations
are taken from OpenAI Gym [106]. These simulations provide rendered image
frames as observations of the environment. These frames visually describe the
position of the system but not its velocity, which is necessary to control the system.
The experiments on the real physical systems consist of a Swing-Up Pendulum and
a setup for picking oranges on a conveyor belt with a 3 degrees of freedom (DoF)
robot arm.

The metrics used for the comparisons are the achieved final policy performance,
and the speed of convergence, which is very relevant when dealing with both, real
systems and human teachers. A video showing most of these experiments can be
found at: https://youtu.be/4kWGfNdm21A?si=ir_1Rw4G4E-SrmBi.

3.4.1. Ablation study
In this ablation study, the architecture of the network is the independent variable
of the study. Three independent comparisons were carried out using DAgger,
HG-DAgger and D-COACH. The training sessions were run using a simulated
teacher to avoid any influence of human factors.

Three different architectures were tested for learning the policy from an oracle.
The structure of the networks is introduced below:

1. Full network: Proposed architecture.

2. Memoryless state representation learning (M-less SRL): Similar to
the full network, but without using recurrence between the encoder and
decoder. The autoencoder is trained using the reconstruction error of the
observation.

3. Direct policy learning (DPL): Same architecture as in the full network,
but without using SRL, i.e., not training the transition model. The encoding,
recurrent layers and policy are trained only using the cost of the policy.

The ablation study is done on a modified version of the Car Racing environment.
Normally, this environment provides an upper view of a car in a racing track. In

https://youtu.be/4kWGfNdm21A?si=ir_1Rw4G4E-SrmBi
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this case, we occluded the bottom half of this observation, such that the agent
is not able to precisely know its position in the track. This position can be
estimated if past observations are taken into account. As a consequence, this
is an appropriate setting for making a comparison of different neural network
architectures. Table 3.1 shows the different performances obtained by the learning
algorithms when modifying the structure of the network. These results show a
normalized averaged return over 10 repetitions for each experiment, in which 5
evaluations were carried for each one of these repetitions.

Table 3.1.: Performance (return) comparison of different learning methods in
the Car Racing problem. Returns were normalized with respect to the best
performance (DAgger Full).

FULL M-less SRL DPL
D-COACH 0.97 0.76 0.68
DAgger 1.00 0.87 0.96
HG-DAgger 0.89 0.69 0.90

As expected, DAgger with the Full architecture obtained the best performance,
and given that it receives new samples every time step, it was robust against the
changes in the architecture, even when it did not have memory. On the other
hand, D-COACH was very sensitive to the changes in the architecture, especially
with the DPL architecture. This shows how the Full model is able to enhance
the performance of the agents in problems where temporal information is required.
It even makes Deep COACH perform almost as well as DAgger, despite that the
former does not require constant and perfect teacher feedback. Finally, HG-DAgger
was more robust than D-COACH in the DPL case, but its performance with the
full model was not as good.

3.4.2. Simulated tasks with simulated teachers
In the second set of experiments, a comparison between the algorithms DAgger,
HG-DAgger, and Deep COACH was carried out using the proposed Full network
architecture. To keep the experiments free from human factor effects, the teaching
process was, once again, performed with simulated teachers. The methods were
tested in the simulated problems Mountain Car (in the supplementary material),
and Swing-Up Pendulum. A mean of the return obtained over 20 repetitions is
presented for these experiments, along with the maximum and minimum values of
these distributions.

Swing-Up Pendulum
In the case of the Swing-Up Pendulum, the results are very different for both
DAgger agents (see Fig. 3.4). Both have a higher rate of improvement than
Deep COACH during the first minutes, when the policy is learning the swinging
behavior. Since the swinging part requires large actions, the improvement with
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Deep COACH is slower. However, once the policy is able to swing the pendulum
up, the second part of the task is to keep the balance in the upright position,
which requires fine actions. It is at this point when learning becomes easier for the
Deep COACH agent, which obtains a constant and faster improvement than the
HG-DAgger agent, even reaching a higher performance. In Fig. 3.4, the expected
performance upper bound is showed with a black dashed line, which is the return
obtained by the simulated teacher. The purple dashed line shows the performance
of a random policy, which is the expected lower bound.

3.4.3. Simulated tasks with human teachers
The previous experiments give insights into how the policy architectures and/or
the learning methods perform when imitating an oracle. Most IL methods are
intended for learning from any source of expert demonstrations. It does not have
to be a human necessarily; it can be any type of agent. However, the scope of this
work is on learning from non-expert human teachers, who are complex to model
and simulate. Therefore, conclusions have to be based on results that also include
validation with real users.

Experiments with the Mountain-Car (in the supplementary material), and the
Swing-Up Pendulum were run with 8 human teachers. In this case, the classical
DAgger approach is not used, since, as discussed in Sec. 3.2.3, it is not specifically
designed for human users. Instead, HG-DAgger is validated.

Swing-Up Pendulum
This task is relatively simple from a control theory point of view. Nevertheless,
it is quite challenging for humans to tele-operate the pendulum, due to its fast
dynamics. Indeed, the participants were not able to successfully tele-operate the
agent; therefore, unlike the Mountain-Car task, we could consider the participants
as non-experts on the task.

Fig. 3.5 shows the results of this experiment, which are similar to the ones
presented in Fig. 3.4. At the beginning, Deep COACH has a slower improvement
when learning to swing up; however, it learns faster than HG-DAgger when the
policy needs to learn the accurate task of balancing the pendulum. For the users, it
is more intuitive and easier to improve the balancing with the relative corrections
of Deep COACH than with the perfect corrective demonstrations of HG-DAgger,
as they do not need to know the right action, rather just the direction of the
correction. Unlike the performance of the simulated teacher depicted in Fig. 3.4,
this plot shows the performance of the best human teacher tele-operating the
pendulum with the same interface used for the teaching process. It can be seen
that using both agents allowed to obtain policies that outperform the non-expert
human teachers.

All the policies trained with Deep COACH were able to balance the pendulum,
whereas with HG-DAgger the success rate was the half. Additionally, after
the experiment, the participants were queried about what learning strategy they
preferred. Seven out of eight expressed preference for Deep COACH.
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Figure 3.4.: D-COACH and (HG-)DAgger comparison in the Swing-Up Pendulum
problem using a simulated teacher.
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Figure 3.5.: Simulated Swing-Up Pendulum learning curve with human teachers

3.4.4. Validation on physical systems with human teachers
The previous experiments performed comparison studies of the NN architectures
and the learning methods under controlled conditions in simulated environments.
In this section, Deep COACH is validated with human teachers and real systems in
two different tasks: 1) a real Swing-Up Pendulum, and 2) a fruits classifier robot
arm.

The real Swing-Up pendulum is a very complex system for a human to
tele-operate. Its dynamics are faster than the simulated one of OpenAI Gym used
in the previous experiments. The supplementary material provides more details
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Figure 3.6.: Orange selector experimental set-up. 1) conveyor belt, 2) “orange”
samples, 3) frame observed by the camera, 4) RGB camera, and 5) 3 DoF robot
arm.

of this environment along with the learning curve of the agents trained by the
participants of this validation experiment. Those results, along with the video,
show that non-expert teachers can manage to teach good policies.

Orange selector with a robot arm
This set-up consists of a conveyor belt transporting “pears” and “oranges”, a 3
DoF robot arm located over the belt, and an RGB camera with a top view of the
belt (see Fig. 3.6). The image of the camera does not capture the robot arm. The
robot has to select oranges with the end effector, but avoid pears. The robot
does not have any tool like a gripper or vacuum gripper to pick up the oranges.
Therefore, in this context, we consider a successful selection of an orange when
the end effector intersects the object. The performance of the learning policy is
measured using two indices: 1) rate of oranges successfully selected, and 2) rate of
pears successfully rejected.

The observations obtained by the camera are from a different region of the
conveyor belt than where the robot is acting. Therefore observations cannot be
used for compensating the robot position in the current time step, rather they are
meaningful for future decisions. In other words, the current action must be based
on past observations. Indeed, the delay between the observations and its influence
on the actions is around 1.5 seconds. This delay is given by the difference between
the time when the object gets out from the camera range and the time it reaches
the robot’s operating range. This is why this task requires to learn temporal
features for the policy.

The problem is solved by splitting it into two sub-tasks which are trained
separately:

1. Orange selection: The robot must intercept the orange coordinate with the
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Figure 3.7.: Orange selection/pear rejection learning curve.

end effector, right when it passes below the robot.

2. Pear rejection: The robot must classify between oranges and pears, so
when a pear is approaching under the robot, the end effector should be lifted
far from the belt plane, otherwise it should get close.

These two sub-tasks can be trained sequentially. The orange selection is trained
initially, with a procedure in which there are some oranges being transported by
the belt with fixed positions, while some others are placed randomly. This in order
to avoid over-fitting of the policy to specific sequences.

When the robot is able to track the oranges in its reach, the pear rejection
learning starts. For that, pears are placed randomly throughout the sequences
of oranges, and the human teacher advises corrections on the robot movement in
order to make the end effector move away from the pears when they are in the
operation region of the robot.

Fig. 3.7 depicts the average learning curves for this task after 5 runs of the
teaching process. It is possible to see that the pear rejection sub-task is learned
within 20 minutes with 100% success, while the orange selection is a harder
sub-task that only reaches around 80% success after 50 minutes. Effectively,
combining the two sub-tasks, the performance of the learned policies is given
only by the success of the orange selection, since the pear rejection was perfectly
attained in all the runs executed for this experiment.

3.5. Conclusions
This chapter has introduced and validated a SRL strategy for learning policies
interactively from human teachers in environments not fully temporally observable.
Results show that when meaningful spatiotemporal features are extracted, it is
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possible to teach complex end-to-end policies to agents using just occasional,
relative, and binary corrective signals. Even more, these policies can be learned
from teachers who are not skilled to execute the task.

The evaluations with the Data Aggregation approaches and Deep COACH
depict the potential of this kind of architecture to work on different IIL methods.
Especially in methods based on occasional feedback, which are intended to reduce
the human workload.

The comparative results between HG-DAgger and Deep COACH with non-expert
teachers showed that with the former, the policy will remain biased with mistaken
samples even if the teacher makes sure of not providing more wrong corrections
(given that it works with the assumption of expert demonstrations); hence, it
makes harder to refine the policy. On the other hand, Deep COACH proved to
be more robust to mistaken corrections given by humans, since all the non-expert
users were able to teach tasks that they were not able to demonstrate.

The previous mentioned shortcoming of DAgger algorithms open possibilities
for future works, which are intended to study how to deal with databases with
mistaken examples. Another field of study is the one of data-efficient movement
generation in animation [107], which combined with our method, would make it
possible to learn (non-)periodic movements using spatiotemporal features and IIL.
Challenges such as the generation of smooth, precise, and stylistic movements (i.e.,
dealing with high-frequency details [108]) could be also addressed.
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4.1. Introduction
Autonomous navigation in unstructured human environments (e.g., indoor and
urban) poses a combination of problems, such as continuously changing conditions
(e.g., sunny and cloudy), interaction/coordination with other agents (e.g.,
pedestrians, bicycles, human drivers and/or other automated vehicles), and
ensuring the safety of people inside the vehicle and/or other agents in the
environment. Consequently, building robust robotic solutions in such environments
remains challenging.

The safety of Autonomous Vehicles (AV) has been a main topic of interest in the
research community. Optimization-based techniques for local trajectory planning,
such as Model Predictive Control (MPC), have gained popularity, since they can
provide safety guarantees through the enforcement of constraints, e.g., for collision
avoidance. Nevertheless, the performance of optimization-based methods is limited
in complex environments, since they typically rely on geometric information and
hard-coded rules to control high-level variables (e.g., switching between behaviors,
controlling velocity references, etc.), which are either costly or lead to suboptimal
solutions. Hence, the interaction and coordination of AVs with other agents, in
unstructured environments, remains challenging.

To address this limitation, recently, there has been a growing interest in
approaches that combine the strengths of optimization-based methods with the
ones of learning-based methods [110, 111]. Learning techniques have shown to
be a powerful tool for finding complex solutions directly from environment data,
without requiring models.

In this work, we propose to learn human-like driving behaviors and encode them
in a Model Predictive Contouring Control (MPCC) planner [112]. Human-like
driving behaviors are desired in AVs as they produce trust in other human drivers
and facilitate coordination/interaction with other agents by acting predictably
[113]. However, human data can be expensive to obtain, and modeling
complex environments with changing conditions may require large amounts of
data. Consequently, we propose to follow an Interactive Imitation Learning (IIL)
approach [13, 14, 46], which—in contrast to non-interactive Imitation Learning
approaches (e.g., Behavioral Cloning)— is data efficient. IIL employs online human
feedback to transfer implicit knowledge from humans to robots.

To induce the learned behavior in the solutions of the MPCC, we propose
to learn to control high-level variables used in its objective function such that
the resulting optimization process yields solutions corresponding to the desired
behavior. As a first step, we focus on controlling the forward velocity reference of
the MPCC. This reference has a large impact on the vehicle’s behavior and it is
challenging to design otherwise, given that it depends on many variables [114]. To
closely match human behavior, we propose to learn to control this reference from
(approximately) the same visual input that humans use, the first-person front-view
of the vehicle (see Fig. 4.1).

The main contributions of this work are:

• Combining the state-of-the-art from control and machine learning in a unified
framework and problem formulation for motion planning.
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Figure 4.1.: Proposed framework, Social MPCC. The Visual Guidance observes
the environment from state sh and suggests the next velocity reference uh to the
Local Planner. Then, the Local Planner—as a function of the state sl, the velocity
reference uh and the global path P—computes a local trajectory and sends a
control command ul to the vehicle. Depending on the resulting vehicle behavior,
the teacher may correct the Visual Guidance through the signal h to improve its
behavior.

• A framework to generate safe and socially-compliant trajectories in
unstructured urban scenarios by learning human-like driving behavior
efficiently.

We present simulation results1 in realistic driving scenarios using the CARLA
simulator [115]. The presented results show that our approach can data-efficiently
learn velocity references from human feedback using images as input, enhancing the
performance of local trajectory planners and generating safe and socially compliant
behaviors. Furthermore, we compare our approach with optimization-based-only
and learning-based-only baselines, demonstrating the strength of combining both
methods. Finally, qualitative results show the ability of the method to learn
human-like driving behaviors.

The remaining of this chapter is organized as follows: Sec. 4.2 presents works
related to decision-making algorithms for motion planning and IIL methods,
Sec. 4.3 the problem formulation, Sec. 4.4 the proposed method and Sec. 4.5 the
experimental results.

1Code available at: https://github.com/rperezdattari/Social-MPCC

https://github.com/rperezdattari/Social-MPCC
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4.2. Related Work
In this section, we review work from the two fields that are brought together in
this chapter: 1) Motion Planning and 2) Interactive Imitation Learning.

4.2.1. Motion Planning
Classical autonomous navigation systems frequently employ a hierarchic planning
architecture decomposing the navigation pipeline into a sequence of blocks
performing different sub-tasks such as perception, high-level decision making and
motion planning [116]. These works can be divided into three main categories:
rule-based, optimization-based and learning-based.

Rule-based methods aim to translate human-driving rules and behaviors into
handcrafted functions. These methods have demonstrated good performance
in some real structured scenarios such as precedence at an intersection [117].
Nevertheless, these methods are scenario-specific and are prone to fail if the
environment structure changes.

Optimization-based approaches typically model the decision-making problem as
a Partially Observable Markov Decision Process (POMDP) as the other agents’
intentions are not directly observable [118]. To model interaction, [119] proposed
a joint approach for behavior prediction and planning, combining online POMDP
solvers [120] for behavior prediction and nonlinear receding horizon control for
trajectory planning [121]. Nevertheless, these approaches have scalability issues
and assume structured navigation scenarios.

Learning-based methods can scale to cluttered and unstructured environments
[122] allowing to incorporate high-dimensional data (e.g., RGB-D images, LiDAR
point-clouds, etc.) into the decision-making policy [123]. For instance,
Reinforcement Learning (RL) methods have been used to learn end-to-end control
policies for autonomous racing [124] and indoor navigation [125] by learning a
policy optimizing for long-term rewards. To generate socially compliant behaviors,
[126] proposed to introduce social rules into the learning framework by designing a
reward function penalizing the agent when not respecting human navigation norms.
Yet, these methods do not provide any robustness or safety guarantees [127].

Recently, works combining learning-based approaches for decision-making and
optimization-based methods for motion planning have demonstrated to achieve
superior performance by providing guidance on high-level decision variables needed
to solve the optimization [128, 129]. Closely related to our work, [130] learned a
subgoal policy from visual information using Model Predictive Control (MPC) as
supervisor. In contrast, we propose to learn a visual decision-making policy from
human feedback. Similarly, [131] used adversarial learning to train an end-to-end
decision-making module from human demonstrations. Nevertheless, it assumes a
high-definition map to be available and considers a discrete set of decisions limiting
the applicability of this approach only to well-constrained driving scenarios.
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4.2.2. Interactive Imitation Learning
Interactive Imitation Learning (IIL) is a branch of Imitation Learning (IL) whose
objective is to develop algorithms that transfer a policy from a teacher to a learning
agent (learner) through interactions between the teacher and the learner [3, 46,
65]. Some examples of feedback are demonstrations [8, 13], relative corrections [15,
65], preferences [35], and evaluations [93]. In autonomous driving, it is common to
find methods that work with humans as teachers, and demonstrations as feedback
[46, 132–135], given that 1) it is easy to find humans that know how to drive a
vehicle, and 2) human-like driving is a desired feature in autonomous vehicles [114,
133]. Therefore, building on top of this evidence, the IIL part of our work follows
this same strategy.

Although, in the context of IIL, demonstrations are interpreted as feedback,
they can be applied in non-interactive IL algorithms as well, i.e., Behavioral
Cloning (BC) and Inverse Reinforcement Learning (IRL) [2]. However, compared
to non-interactive methods, IIL poses an ideal setting to learn from humans, as
it reduces human effort by being data efficient. This is achieved by providing
feedback online over trajectories induced by the learner’s policy, which improves
its behavior only in the relevant regions of the state space (i.e., the ones that are
likely to be visited) [8, 16] Furthermore, IRL, not only suffers from inefficiency
in terms of amount of demonstrations, but also suffers from inefficiency in terms
of interactions with the environment [2, 136], which can be a limitation when a
realistic simulator of the environment is not available.

The IIL method employed in this chapter can be interpreted as a practical
variation of DAgger [8], since DAgger is not designed to work interactively with
humans. DAgger expects the teacher to provide demonstrations at every state
visited by the learner, and the trajectories generated by the learner are a result
of a mixed control setting that combines actions from the learner and from the
teacher. However, humans are sensitive to timing and latency; therefore, providing
good demonstrations over an agent that is partially controlled is counterintuitive
and cognitively demanding [50]. Alternatively, the teacher can observe the learner’s
behavior and intervene whenever this behavior is not appropriate, taking control
over the learner and using these actions as demonstrations, as proposed by [16, 46,
137]. The method used in this work belongs to this group of approaches. Note
that this group can be extended [51] and combined with other types of feedback
[52] and/or active learning [138].

4.3. Preliminaries
Throughout this chapter we use the term ego-agent to refer to the agent controlled
by our method (e.g., autonomous vehicle or mobile robot) and other agents to refer
to the non-controllable agents (e.g., human-driven vehicles, pedestrians, or robots)
in the surrounding of the ego-agent. Moreover, the Euclidean norm of x is denoted
by ∥x∥ and ∥x∥Q = xTQx denotes the weighted squared norm.
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4.3.1. Problem Formulation
Consider the navigation scenario where an ego-agent must navigate from an
initial position p0 to a goal position g. At the beginning of an episode, the
ego-agent receives a global reference path P to follow from a path planner
consisting of a sequence of M reference way points pref

m = [xref
m , yref

m ] ∈ R2 with
m ∈ M := {1, . . . ,M}. Then, consider a hierarchical control structure with a
high-level control policy πh

θ , defined as a parametrized function with parameters θ,
and a predefined optimization-based low-level controller πl that follows P . The
superscripts h and l are used to denote the variables related to the high-level
and low-level controllers, respectively. For each time step k, the high-level policy
receives the state sh

k and takes an action uh
k = πh

θ (sh
k). Subsequently, uh

k is provided,
along with the state sl

k and the global reference path, to the low-level controller,
which takes an action ul

k = πl(sl
k, u

h
k;P). This action leads to the next state

sl
k+1 = f(sl

k, u
l
k), under the dynamic model f(sl

k, u
l
k)2.

The policy that encompasses the combination of πh
θ and πl is denoted as

πθ(sk;P), where sk = [sh
k, s

l
k]. Note that the control output uk = πθ(sk;P) is the

same as ul
k, since ul

k is the output applied to the vehicle, while uh
k acts on the

parameters of πl.
Simultaneously, we consider that for each time step, the ego-agent receives the

feedback signal hk, which provides information about a desired, expert behavior,
πexp. The goal is to employ hk to find the parameters θ such that πθ converges to
πexp. By doing so, πh

θ learns to guide πl such that a desired behavior is achieved
when following P .

Let pπθ
(τ) be a distribution over trajectories τ induced by πθ, and pπexp(τ) a

trajectory distribution induced by πexp, then, the problem can be formulated as the
minimization of the (forward) Kullback–Leibler divergence between the trajectories
induced by πθ and πexp [40]:

θ∗ = argmin
θ

DKL (pπθ
(τ)∥pπexp(τ)) (4.1a)

s.t. sl
k+1 = f

(
sl
k, u

l
k

)
, (4.1b)

ul
k = πl(sl

k, u
h
k;P), (4.1c)

ul
k ∈ U l, uh

k ∈ Uh, sl
k ∈ S l, sh

k ∈ Sh, (4.1d)
∀k ∈ R+.

Here, (4.1b) are the kino-dynamic constraints and (4.1d) represents the state and
control constraints where Si and U i, i ∈ {l,h}, are the set of admissible states and
control inputs (e.g., maximum agents’ speed), respectively.

Note that, in this work, hk is provided by a human; hence, θ∗ will depend on the
human’s judgment about the task.

2This is identical to the Vehicle Model used in the simulation defined in Sec. 4.4.3
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4.4. Method
In this section, we introduce the proposed socially-aware Model Predictive
Contouring Control (Social-MPCC) framework.

4.4.1. Overview
The proposed driving system can be divided into two parts: Visual Guidance
and Local Motion Planner. The Local Motion Planner πl follows a given
set of way points and ensures to avoid obstacles. Simultaneously, the Visual
Guidance system πh

θ uses images captured by the front camera view of the vehicle
to command a desired forward velocity reference vref to the Local Motion Planner
such that human-like driving behavior is generated. Given that the vehicle’s
steering commands are defined by the local planner only, it is not possible to
exactly match a reference human-like behavior by means of controlling vref alone.
Nevertheless, arguably, vref

k is expressive enough to accurately resemble human-like
behavior in most of the situations; for instance, in the case of a vehicle in a city, the
vehicle should reduce its velocity in the crossroads, stop at red lights, accelerate
when overtaking other cars, etc.

4.4.2. Visual Guidance
For each time step k, the Visual Guidance system (VG), represented as the
parametrized policy πh

θ , translates human driving behavior and scene context into
a forward velocity reference vref

k , which corresponds the high-level control output
uh
k := vref

k . The state of this function sh
k corresponds to the front camera view of the

vehicle jk, and, eventually, other information such as the vehicle’s current speed.
The objective is to find uh∗

k ∀k such that, given the Local Motion Planner, (4.1)
is solved. As discussed in Sec. 4.1 and Sec. 4.2, given the challenges in modeling
human behavior, Interactive Imitation Learning (IIL) arises as an appealing and
effective approach to tackle this problem, since it allows to data-efficiently and
robustly learn behaviors from humans.

Interactive Imitation Learning Formulation
In IIL, a human that acts as a teacher is involved in the learning process of an
agent. Feedback signals hk are generated by the human to modify the learner’s
policy towards a desired behavior in an online learning manner. The context of
autonomous navigation provides a framework where humans, by driving a vehicle,
are able to execute the actions which they consider to be the best for a given state.
Consequently, it comes natural to use feedback in the form of demonstrations.

In this work, a Learning from Interventions scheme is employed, i.e., every time
the human considers the agent to be executing an erroneous behavior, the teacher
takes control over the agent’s actions until it gets back into a region where the
observed behavior is the desired one. The data gathered in these interventions is
used as demonstrations for improving the agent’s behavior following a supervised
learning approach. The teacher’s feedback is represented by two variables: 1) i, a
Boolean that indicates if the human is intervening (if i = 1, the human intervenes;
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if i = 0, s/he does not), and 2) uh∗
k , which corresponds to the teacher’s optimal

action for the high-level controller to take (i.e., these actions follow the expert
policy πexp). For i = 1, the feedback is defined as hk = uh∗

k ; for i = 0, it is not
defined.

In practice, this works as follows: initially, the VG creates a velocity reference
uh
k that the Local Motion Planner tracks (along with a set of way points). The

human only observes the behavior of the AV (i = 0), as long as s/he considers that
it is adequate. Every time the planner generates undesired control commands, the
human (indirectly) takes control over it (i = 1) by overwriting the output of the
VG with the correct velocity reference uh∗

k . The data from these interventions (i.e.,
trajectories containing every state-action pair [sh

k, u
h∗
k ]) is collected, and employed

to improve the agent’s behavior.
Eq. (6.3) can be solved as an Imitation Learning problem ∀hk when i = 1 (i.e.,

for every state-action pair collected from the interventions). If, every time the
teacher intervenes, the demonstrated trajectories are stored in a dataset D, (6.3)
can be solved iteratively by sampling B trajectories with length K from D in every
iteration and minimizing

L(θ) = − 1
B

B∑
b=1

K∑
k=0

ln πh
θ (uh∗

b,k|shb,k) (4.2)

through gradient descent [139]. Note that this formulation assumes that πh
θ is a

stochastic policy, but in this work πh
θ is deterministic. However, if we assume

that the optimized distribution is Gaussian with a fixed variance, the mean of this
distribution can be equivalently obtained (and represented by the deterministic
policy πh

θ ) by minimizing the Mean Squared Error (MSE) [2, 51]

L(θ) = 1
B

B∑
b=1

K∑
k=0

(
uh∗
b,k − πh

θ (sh
b,k)

)2
. (4.3)

This optimization process does not mention the constraints shown in (6.3)
because they are implicitly captured in the demonstration data (given that it was
collected following actions generated by the Local Motion Planner).

iDAgger
As depicted in Sec. 4.2, we use an IIL method based on demonstrations similar to
the one described by [56] that solves (4.3); however, no name was provided by the
authors to this method specifically, as they employed a subgroup of modules from
a larger framework introduced by [137]. Hence, we will refer to it as iDAgger (for
intervention DAgger). Note that similar ideas have been employed in other works
as well [46, 51, 53].

iDAgger (Algorithm 4) generates a dataset D online using feedback, in the
form of interventions, provided by a human teacher. The state-action pairs
generated in every intervention, i.e., [sh

k, u
h∗
k ], by the human are aggregated to D.

Every b time steps, the learner updates its policy πh
θ by sampling a subset of D
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and minimizing (4.3). Furthermore, πh
θ can be initialized from an initial set of

demonstrations collected offline. As shown by [16], the policies learned with this
type of online learning algorithm are guaranteed to perform well (i.e., trajectory
cost grows linearly in the task horizon and imitation error) under the intervention
data distribution.

Algorithm 4 iDAgger
1: Require: D with initial demonstrations, pre-trained policy πh

θ and policy
update period b

2: for k = 1, 2, . . . do
3: observe sh

k

4: get intervention signal i
5: if i is True then
6: get feedback hk ← uh∗

k

7: aggregate {sh
k, hk} to D

8: uh
k ← hk

9: else
10: uh

k ← πh
θ (sh

k)
11: execute uh

k

12: update πh
θ from D if mod(k, b) is 0

4.4.3. Local Motion Planner
We built upon the MPC formulation provided by the Model Predictive Contour
Control (MPCC) [112] to generate control commands enabling the AV to follow a
reference path provided by a global path planner (e.g., Rapidly-exploring Random
Trees (RRT) [140]) and the forward velocity reference while satisfying dynamic and
collision constraints when a feasible solution is found.

Vehicle Model
We use a kinematic bicycle model for the AV with state sl = [x, y, ϕ, v], where x
and y are the agent’s Cartesian position coordinates, ϕ the heading angle and v
the forward velocity fixed in a global inertial frame W. The model is described as
follows:

ẋ = v cos(ϕ+ β)
ẏ = v sin(ϕ+ β)
ϕ̇ = v

lr
sin(β)

v̇ = ua

β = arctan
(

lr
lf + lr

tan
(
uδ

)) (4.4)

where β is the velocity angle and ul is the vehicle control input composed by
the forward acceleration ua and steering angle uδ, ul = [ua, uδ]. lr and lf are
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the distances of the rear and front tires from the center of gravity of the vehicle,
respectively, and are assumed to be identical.

Cost Function
The velocity reference vref generated by the VG allows controlling the AV driving
behavior directly: high-velocity reference values lead to highly aggressive behavior
while low-velocity reference values lead to cautious driving behavior. Hence, we
design the local planner’s cost function as follows:

J(sl
k, u

l
k, λk) =

∥∥eck(sl
k, λk)

∥∥
qc

+
∥∥elk(sl

k, λk)
∥∥
ql

+
∥∥vref
k − vk

∥∥
qv

+ ∥uak∥qu
+

∥∥uδk∥∥
qδ

(4.5)

where Q = {qc, ql, qv, qu, qδ} denotes the set of cost weights and λk is the estimated
progress along the reference path. First, we minimize the contour error (eck) and
lag error (elk), to track the reference path closely. The contour error quantifies how
much the ego vehicle deviates from the reference path laterally, whereas lag error is
the deviation of the ego vehicle from the reference path longitudinally. Please refer
to [112] for more details on path parameterization and tracking error. The third
term, ∥vref

k − vk∥, motivates the planner to follow the velocity reference provided
by the Visual Guidance system closely. Finally, we add a quadratic penalty to the
control commands, uak and uδk, to generate smooth trajectories.

Dynamic Obstacle Avoidance
First, we approximate the AV’s occupied area, Aego, as union of nc circles, i.e.,
Āego ⊆

⋃
c∈{1,...,nc} Ac, where Ac represents the cth circle’s area with radius r. For

the other vehicles, the occupied area by the ith vehicle, Ai, is approximated by an
ellipse of semi-major axis ai, semi-minor axis bi and orientation ϕ. Then, we define
a set of non-linear constraints enforcing that each AV’s circle c does not intersect
with the ith vehicle’s elliptical:

ci,ck (sl
k, s

li

k )=
[
∆xck
∆yck

]T
R(ϕ)T

[ 1
α2 0
0 1

β2

]
R(ϕ)

[
∆xck
∆yck

]
> 1, (4.6)

The parameters ∆xck and ∆yck represent x-y relative distances between the disc c
and the ellipse i for planning step k. α and β are function of the AV’s radius and
the other vehicle’s semi-major and semi-minor axis, respectively, and an enlarging
coefficient ensuring collision avoidance, with α = a+ rdisc + ϵ and β = b+ rdisc + ϵ.
We refer the reader to [121] for details on how ϵ is computed.

Road boundaries
To compute motion plans respecting the road boundaries, we employ constraints
on the AV’s lateral distance (i.e., contour error) with respect to the reference path
ensuring that the vehicle stays within the road limits:

−wroad
left ≤ eck(sl

k) ≤ wroad
right (4.7)
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where wroad
left and wroad

right are the left and right road limits, respectively.

MPCC Formulation
We formulate the motion planner as a Receding Horizon Trajectory Optimization
problem with planning horizon H conditioned on the following constraints:

ul∗
0:H−1 = min

ul
0:H−1

H−1∑
k=0

J(sl
k, u

l
k, λk) + J(sl

H , λH)

s.t. sk+1 = f(sl
k, u

l
k),

λk+1 = λk + vk∆t (4.8)
− wroad

left ≤ ec(sl
k) ≤ wroad

right

ci,ck (sl
k, s

li

k ) > 1 ∀c ∈ {1, . . . , nc},
ul
k ∈ U l, sl

k ∈ S l,

∀k ∈ {0, . . . ,H},

where ∆t is the discretization time and ul∗
0:H−1 the locally optimal control sequence

for H time-steps. The solver employed attempts to find a solution for the MPCC
problem for a fixed number of iterations. If a feasible solution is found, we apply
only the first control input for each step and recompute a new solution in the
next iteration considering new observed information in a receding horizon fashion.
Otherwise we employ a safety control command ul

safety.

4.4.4. Social-MPCC
Overall, the Social-MPCC framework utilizes the Visual Guidance policy to provide
a velocity reference that controls the vehicle’s behavior through the cost function
that is optimized by the Local Motion Planner. Imitation Learning is used to
optimize the VG’s parameters to model human behavior.

Algorithm 5 presents the overall framework. First, iDAgger (Algorithm 4) is
initialized to start the training of the Visual Guidance (line 2). Then, at the
beginning of each episode, the reference path P to be followed by the MPCC is
obtained from a global planner (line 4). Afterwards, for every time step of each
episode, the velocity reference vref

k = uh
k is received from iDAgger (lines 8-9) and

fed to the MPCC to compute the control command ul
k (line 10). Finally, ul

k

controls the AV (line 11). Each episode ends if a collision or a deadlock is detected.
Moreover, the human teacher can also request the end of the episode (lines 12-15).

4.5. Experiments
This section presents simulation results in a realistic urban scenario populated
with pedestrians and other vehicles (Fig. 4.2). First, we quantify the performance
throughout the training procedure (Sec. 4.5.2). Then, we show a qualitative
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Algorithm 5 Social-MPCC
1: Require: global planner, iDAgger (algorithm 4), MPCC and number of

episodes nepisodes
2: run Visual Guidance training with iDAgger in separate thread
3: while iepisode < nepisodes do
4: get reference path P from a global planner
5: for k = 1, 2, . . . do
6: get states sh

k, sl
k from environment

7: send sh
k to iDAgger (algorithm 4, line 3)

8: receive uh
k from iDAgger (algorithm 4, line 12)

9: set vref
k ← uh

k

10: compute ul
k ← πl = MPCC(vref

k , sl
k;P) ((4.8))

11: execute ul
k in vehicle

12: compute done ← collision/deadlock detected or teacher request
13: if done then
14: increment iepisode
15: break

(a) Top view city. (b) Ego vehicle’s back view.

Figure 4.2.: CARLA simulation environment.

evaluation of the method (Sec. 4.5.3). Finally, we present performance results
(Sec. 4.5.4) of the proposed method against baselines.

4.5.1. Experimental setup
Simulation results were carried out on an Intel Core i9, 32GB of RAM CPU @
2.40GHz. The non-linear and non-convex MPCC problem presented in Sec. 4.4.3
was solved using the ForcesPro [142] solver. The Visual Guidance was modeled
with a Deep Neural Network (DNN) implemented and optimized in TensorFlow 2
[143]. We used the open-source CARLA simulator [115] to create the simulation
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Figure 4.3.: Visual Guidance architecture (Sec. 4.5.1). The segmentation module
receives the image jk and provides a segmented image to the feature extraction
module. The recurrent policy takes these features as an input and generates
the velocity reference vref

k . In this work, a CARLA module was used for the
segmentation module and a pre-trained VGG19 network was used for feature
extraction. The recurrent policy consists of six fully-connected layers (FCX), and
one recurrent layer (R1). FC1, FC2, FC3, FC4 and FC5 use Leaky ReLU [141] as
activation function. FC1 has 150 neurons and the other layers have 1000 neurons.
FC6 has a linear activation and one neuron, as it is the output layer. The hidden
state size of R1 is 150. The variable extk corresponds to extensions to the input of
the network, such as traffic light state and/or information about where to go when
learning in an end-to-end manner.

environment where the Traffic Manager module was employed to simulate other
vehicles and the AI controller to control the pedestrians. The complete framework
was interfaced using the Robot Operating System (ROS) [144].

Visual Guidance: Deep Neural Network Architecture
The DNN architecture employed to represent the VG is defined by the mapping
πh
θ : sh

k 7→ vref
k (Fig. 4.3). The VG has to 1) be able to process images jk, 2)

deal with partial observability due to the absence of temporal information in jk.
Moreover, to further improve the input state of the VG, the vehicle’s speed vk can
also be provided to the network. Convolutional layers were employed to process jk
and recurrent layers to deal with the mentioned partial observability [145]. Hence,
the high-level state was defined as sh

k = [jk, srec
k , vk], where srec

k corresponds to the
hidden state of the recurrent layers.

To increase the generalization properties and data efficiency of the network,
two techniques were employed: 1) semantic segmentation [146], and 2) Transfer
Learning (TL) [147]. The input image jk was semantically segmented using a
CARLA module; however, in practice, DNN models such as SegNet [148] or
DeepLab [149] can be employed. For TL, we employed a VGG [150] model
pretrained on ImageNet [151]. The last layer of the VGG was removed and
replaced with recurrent and fully connected layers with trainable parameters to be
optimized with (4.3). Hence, the VGG was used as a state representation/feature
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Table 4.1.: Key hyperparameters used for local planner, learning algorithm, and
simulated environment.

Hyperparameter Value

Simulated environment

NCars 100
NPedestrians 200
NSupervised 5
Camera FoV 90.0◦

Visual Guidance

Interactive training time 2 hours
Image resolution 64× 64 pixels
Feature extractor VGG
Recurrent layer LSTM
Optimizer Adam
Learning rate 1e− 5
Batch size 100
Training iterations per
episode

1000

Local planner

Q = {qc, ql, qv, qu, qδ} {0.1, 0.2, 1.0, 1.2, 0.1}
Number solver iterations 500
usafety [−2.0, 0.0]
Solver method Primal-Dual

Interior-Point Method

extraction machine and its weights were not modified during the optimization of
πh
θ . LSTM [98] layers were employed as the recurrent layers of the network.

Finally, to optimize (4.3) with a recurrent DNN, we employed the bootstrapped
random updates method [102].

Table 4.1 presents the values of the hyperparameters used for the local planner,
training algorithm and simulation environment.

4.5.2. Training procedure
Fig. 4.2 shows the training environment. At the beginning of each episode, Ncars
cars and Npedestrians pedestrians are spawned in random locations. The AV receives
a sequence of way-points towards a random goal position provided by the CARLA
Route Planner. An episode ends if the AV collides, if it reaches the goal position
successfully, if a deadlock occurs, or if a teacher request is received.

Fig. 4.4 presents the VG’s learning performance. The first plot shows the amount
of time the teacher corrected the policy’s actions, and the second plot the moving
average of the mean squared error between the teacher and the policy’s actions.
The training procedure incorporates two phases: collection of an initial set of
demonstrations used to train an initial policy, and the interactive learning process
(as shown in Algorithm 4). Given that during the first Nsupervised steps the teacher
provides feedback continuously, the amount of demonstration time grows linearly,
as depicted in the upper plot of Fig. 4.4 from t = 0 s to t ≈ 1500 s. Afterwards,
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Figure 4.4.: Accumulated feedback and policy error evolution during training.
The top plot shows the amount of time the teacher had to correct the policy’s
action and the bottom the average policy’s action error.

feedback is only provided when the policy acts erroneously, which will depend on
the episode’s complexity and the novelty it provides. After t ≈ 4500 s, the total
demonstration time remains constant, showing that the policy is performing well
and the teacher does not need to provide more feedback.

The bottom plot shows that the moving average of the root mean squared error
between the VG’s action and the provided supervised action reduces over time,
stabilizing at around 2 m/s (note that 0 m/s ≤ uh

k ≤ 8 m/s). Although this error
may seem large, this result is expected, since humans are not always consistent
about the feedback they provide [152, 153], and data with irreducible error is
collected. Nevertheless, this is not considered to be an issue in this experiment,
as, when the mean squared error is minimized, the modes present in the data are
averaged, which was not observed as being detrimental. Inconsistencies only arose
in situations where their average would not jeopardize the safety of the learned
behavior (e.g., cruise speed in long roads or the response time to start accelerating
after a green light), while the general rules of driving (e.g., stopping at red lights
or if there are pedestrians crossing the street) were always respected.

4.5.3. Qualitative Results
This section analyzes the AV behavior using our method for two driving scenarios.
In the first scenario, depicted in Fig. 4.5a, the AV approaches a crossing area and
has to perform a left-turn maneuver. Between t1 and t2, the VG continuously
reduces the velocity reference as the AV approaches the crossing area yielding to
the vehicle coming from the right. Then, the velocity reference initially increases,
motivating the AV to cross the road, between t = 215 s and t = 217 s, and keeps a
continuous reference while turning left, between t = 217 s and t = 222 s. Once the
vehicle finishes turning left, approximately at t = 222 s, the velocity reference is
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(a) Left-turn maneuver.

(b) Pedestrian crossing the road.

Figure 4.5.: The blue circles depict the MPCC’s velocity reference provided by
the VG and the blue lines the road constraints. The red circles depict the predicted
constant velocity trajectory for the other vehicles or pedestrians.

increased again.
In the second scenario, depicted in Fig. 4.5b, a pedestrian crosses the road

in front of the AV. The VG reduces the velocity reference to let the pedestrian
cross, between t ≈ 595 s and t ≈ 598 s. Once the pedestrian finishes crossing, the
reference is increased. Afterwards, to safely perform a right turn maneuver, the
velocity reference is reduced.

More scenarios can be found in the attached video3, where it is possible to
appreciate that the exhibited behaviors resemble human driving.

4.5.4. Quantitative Results
The objective of this section is to study, quantitatively, the effect on the
performance of a trajectory planner when optimization-based and learning-based

3Available at: https://youtu.be/Ph7v25mEg7c

https://youtu.be/Ph7v25mEg7c
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methods are combined. To achieve this, we study three types of algorithms:
1) optimization-based only (MPCC), 2) optimization-based and learning-based
combined (Social-MPCC with and without traffic information) and 3) completely
data-driven (End-to-end learning with traffic information), which are described
below:

• MPCC: Local Motion Planner with constant velocity reference.

• Social-MPCC: the proposed Social-MPCC framework.

• Social-MPCC with traffic information: Social-MPCC with traffic lights’
information in its state.

• End-to-end learning with traffic information: same as before, but the
AV’s control ul = [ua, uδ] is learned using iDAgger alone.

To test the flexibility of the proposed framework, two variations of Social-MPCC
are presented, one that is general to any autonomous driving scenario and one that
is specific to driving in a city. In the general case, the structure of the VG is as
explained in Sec. 4.5.1; in the specific case, the input is extended with the traffic
lights’ state (see Fig. 4.3). Note that, strictly speaking, the traffic lights’ status is
also fed to the neural network in the general case, as it can be perceived from
few pixels in jk when the AV approaches a traffic light. Nevertheless, to obtain
real-time performance, it is necessary to limit the input’s resolution; hence, the
resolution of the images was not high enough to effectively use the traffic lights’
information from them.

It is to be expected that Social-MPCC will perform better when traffic
information is included into the system than when it is not. Therefore, to obtain
a fair comparison against the end-to-end policy, the traffic lights’ state is also
employed in this case. Moreover, when the complete behavior is learned from data,
it is also necessary to provide information to the network about where the vehicle
should go, as in the other methods this information is given to the MPCC through
P . To achieve this, the network was provided with sin(γ) (in the same way as the
traffic lights’ state, see Fig. 4.3), where γ is the angle between the center of the
vehicle and the next way-point located at distance of ∼ 15 m from it.

Finally, to test the data efficiency of Social-MPCC, only 2 hours were employed
for the complete learning process of the experiments, as opposed to other methods
in the literature that can use 100˘200× more human time (e.g., ∼ 300 hours
[154]). Table 4.2 compares the performance of the introduced methods in terms of
number of collisions per traveled distance and percentage of deadlocks. In terms of
computation performance, the VG (i.e., DNN) has an average computation time
of 5.1 ± 0.9 ms, while the MPCC optimization problem ((4.8)) takes on average
3.0± 1.35 ms.

Discussion
From Table 4.2 it can be observed that Social-MPCC drastically improves the
performance of MPCC with only 2 h of training. With the general Social-MPCC
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Table 4.2.: Statistic results for 100 episodes of Social-MPCC compared to
baselines.

No. Collisions per km. % of deadlocks
MPCC [112] 2.60 17
Social-MPCC 0.71 17
Social-MPCC with traffic lights 0.37 13
End-to-end with traffic lights 1.94 18

framework, it was possible to reduce the amount of collisions per kilometer by
3.66 times. Furthermore, in the case in which the traffic lights’ information was
provided to the VG, this value incremented to 7.03 and the percentage of deadlocks
was reduced to 13%.

Deadlocks occurred when the vehicle was stationary for an extended period
of time (600 time steps in this experiment). Hence, when no feasible solutions
were found by the MPCC, the activation of ul

safety could have led to deadlocks.
Interestingly, the VG also generated deadlocks. It was observed that the DNN
could get stuck by constantly providing zero forward velocity reference to the local
planner. Nevertheless, the combination of MPCC and VG did not increase the
number of deadlocks when combined in Social-MPCC; furthermore, the number of
deadlocks was reduced when the traffic lights’ information was employed in the
system. This occurred because an adaptive forward velocity reference can help the
MPCC find solutions in cases where it would otherwise get stuck.

Finally, it was observed that the end-to-end learner achieved an acceptable
performance; however, Social-MPCC showed to be superior after two hours of
training. Increasing the action space of the VG to also include a steering angle
reference makes the learning problem considerably harder. This is can be observed
with both the number of collisions per kilometer (5.24× more) and the amount of
deadlocks (1.38× more) that the end-to-end learner obtained.

Analysis Social-MPCC
Although IIL methods are very data efficient, it is still not possible to learn a
flawless behavior in 2 h; moreover, assumptions in the MPCC’s formulation may
cause it to perform suboptimally. Hence, there are situations in which our method
fails. We have visually inspected the training episodes and identified the main
factors leading to failure (i.e., collisions). Table 4.3 presents the five main failure
factors and their frequency considering a total of 100 episodes.

The categories in Table 4.3 are presented bellow:

• Unusual situations: Occasionally, the AV may get into situations that
are not common, such as interacting with oddly shape vehicles or with
multiple vehicles that got stuck and not moving, that are unlikely to by
encountered during training. Therefore, the VG may not be trained in similar
circumstances and consequently generate incorrect behaviors.
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Table 4.3.: Analysis of failure episodes: number of episodes per factor leading to
failure. We consider a total of 100 episodes.

Factor № episodes
Unusual situations 5
Outside the camera FoV 1
Wrong predictions 1
Small obstacles 8
Other agents contempt driving rules 1
Total 16/100

• Outside the camera Field of View (FoV): Due to the limited FoV of the
first person view camera used by the VG, our system is not able to obtain all
of the relevant visual information for driving in every situation. Hence, there
are cases in which obstacles are not perceived on time, leaving the system too
little time to react safely.

• Wrong predictions: The MPCC framework works under the assumption
that other vehicles and pedestrians have constant velocities. This assumption
does not hold in every situation, which may cause failures.

• Small obstacles: Small obstacles, such as children and bicycles, are not
always easily perceived by the VG. Furthermore, they are not frequently
encountered by the AV, which makes it more challenging to properly learn
about these cases during training. Therefore, our system was not fully robust
in avoiding collisions with small obstacles.

• Other agents contempt driving rules: In some cases, other agents, such
as vehicles or pedestrians, do not respect the driving rules. Other vehicles
may ignore red lights or pedestrians may cross the street in places where they
are not allowed to, inducing collisions with our system.

Small obstacles and unusual situations were the two most frequent types of
failures. Both cases occurred, in large part, due to the limited number of episodes
during which the policy was trained. More training time or data augmentation
techniques would largely help to decrease the frequency of these failures.

The rest of the failure cases did not affect the performance of the AV to a great
extent, as they happened once each. However, the proposed framework could be
extended to reduce these types of collisions. The failure episodes due to limited
FoV can be solved by, for instance, by incorporating 360◦ visual information,
allowing the policy to reason about the surrounding environment completely.
Secondly, failures due to wrong predictions can be solved with a high-fidelity
prediction model [155] reasoning about interaction and environment constraints.
Lastly, in the cases where other agents contempt driving rules, the local planner’s
safety bounds can be increased; moreover, more training time can help make the
VG be more robust.
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4.6. Conclusions
In this chapter we presented a framework, Social-MPCC, that combines an
optimization-based control method (MPCC) with a learning-based method
(iDAgger) for learning and executing safe, human-like, driving behaviors. Learning
human-like driving behaviors is a desired feature for AVs, as they produce trust in
other human agents and facilitate collision avoidance by acting predictably. To
achieve this, the forward velocity reference of a local trajectory planner is modified
in real time by a Visual Guidance system that learns, from humans, to control
this variable using first-person view images of a vehicle. The learning method
follows an Interactive Imitation Learning training procedure that enables obtaining
well-performing policies in only two hours of human training time, as opposed to
other methods in the literature that require 100˘200× more human time.

The method was experimentally validated in a realistic simulator. Qualitative
results show the capacity of the method to successfully encode human-like
driving behaviors in the MPCC. Quantitative results compare the performance
of Social-MPCC against baselines that are optimization-based (i.e., MPCC)
or learning-based only (i.e., end-to-end iDAgger). Social-MPCC substantially
improved the performance of MPCC, both in terms of number of collisions and
deadlocks. Furthermore, after two hours of interactive training, the proposed
method showed to be superior to the end-to-end learning method. Finally,
Social-MPCC achieved real-time performance, which allows it to be implemented
on a real platform.

Future works can extend Social-MPCC to control a larger family of high-level
control variables of the MPCC with the Visual Guidance. For instance, way
points could be locally modified to enforce specific behaviors. Furthermore,
modifying the weights in the MPCC’s cost function could also be employed for
this purpose. Finally, the proposed framework could also be extended with other
Interactive Learning techniques: for example, corrective advice could be used to
teach behaviors that may be challenging to demonstrate [65].
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5.1. Introduction
Imitation Learning (IL) provides a framework that is intuitive for humans to use,
without requiring them to be robotics experts. It allows robots to be programmed
by employing methods similar to the ones humans use to learn from each other,
such as demonstrations, corrections, and evaluations. This significantly reduces the
resources needed for building robotic systems, making it particularly appealing for
real-world applications (e.g., Fig. 5.1).

Nevertheless, due to their data-driven nature, IL methods often lack guarantees,
such as ensuring that a robot’s motion always reaches its target, independently of
its initial state (e.g., Fig. 5.2). This can be a major limitation for implementing
methods in the real world since it can lead to failures and/or accidents.

To tackle these challenges, we can model motions as dynamical systems whose
evolution describes a set of human demonstrations [157–159]. This is advantageous
because 1) the model depends on the robot’s state and it is learned offline, enabling
the robot to adapt to changes in the environment during task execution, and 2)
dynamical systems theory can be employed to analyze the behavior of the motion
and provide guarantees.

In this work, we focus on learning dynamical systems from demonstrations to
model reaching motions, as a wide range of tasks requires robots to reach goals,
e.g., hanging objects, pick-and-place of products, crop harvesting, and button
pressing. Furthermore, these motions can be sequenced to model cyclical behaviors,
extending their use for such problems as well [160].

A reaching motion modeled as a dynamical system is considered to be globally
asymptotically stable if the robot always reaches its goal, independently of its
initial state. In this work, we will refer to such systems as stable for short.
Notably, by employing dynamical systems theory, stability in reaching motions
can be enforced when learning from demonstrations, providing guarantees to these
learning frameworks.

In the literature, there is a family of works that use this approach to learn stable
motions from demonstrations [158, 159, 161]. However, these often constrain the
structure of their learning models to meet certain conditions needed to guarantee
the stability of their motions, e.g., by enforcing the learning functions to be
invertible [159, 162, 163] or positive/negative definite [158, 164, 165]. Although
these constraints ensure stability, they limit the applicability of the methods
to a narrow range of models. For example, if a novel promising Deep Neural
Network (DNN) architecture is introduced in the literature, it would not be
straightforward/possible to use it in such frameworks, since, commonly, DNN
architectures do not have this type of constraints. Furthermore, the learning
flexibility of a function approximator is limited if its structure is restricted, which
can hurt its accuracy performance when learning motions.

Hence, in the context of DNNs1, we propose a novel method for learning stable
motions without constraining the structure of the function approximator. To

1We understand DNNs as a collection of machine learning algorithms that learn in a
hierarchical manner, i.e., the function approximator consists of a composition of multiple
functions, and are optimized by means of backpropagation [166].
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Figure 5.1.: Overview of a motion model learned using the proposed framework.
The blue trajectory in the task space T , shows the movement of the robot’s end
effector when starting from its current state xt. The evolution of this trajectory
is defined by the dynamical system ẋdt = ϕθ(ψθ(xt)), which is represented with a
vector field of red arrows in the rest of the space. Using Contrastive Learning,
this system is coupled with a well-understood and stable dynamical system in the
latent space L that ensures its stability.

achieve this, we introduce a contrastive loss [167, 168] to enforce stability in
dynamical systems modeled with arbitrary DNN architectures. This is achieved by
transferring the stability properties of a simple, stable dynamical system to the
more complex system that models the demonstrations (see Fig. 5.1). To the best
of our knowledge, this is the first approach that learns to generate stable motions
with DNNs without relying on a specific architecture type.

We validate our method using both simulated and real-world experiments,
demonstrating its ability to successfully scale in terms of the order and
dimensionality of the dynamical system. Furthermore, we show its capabilities
for controlling a 7DoF robotic manipulator in both joint and end-effector space.
Lastly, we explore potential extensions for the method, such as combining motions
by learning multiple systems within a single DNN architecture.

The chapter is organized as follows: related works are presented in Sec. 5.2.
Sec. 5.3 describes the background and problem formulation of our method. Sec. 5.4
develops the theory required to introduce the contrastive loss, introduces it, and
explains how we employ it in the context of Imitation Learning. Experiments and
results are divided into sections 5.5, 5.6, and 5.7. Sec. 5.5 validates our method
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Figure 5.2.: Example of a motion learned using Behavioral Cloning. White curves
represent demonstrations. Red curves represent learned motions when starting
from the same initial positions as the demonstrations. The arrows indicate the
vector field of the learned dynamical system. The yellow dotted line shows a region
with a spurious attractor. The magenta lines show regions where the trajectories
diverge away from the goal.

using datasets of motions modeled as first-order and second-order dynamical
systems. These motions are learned from real data, but they are evaluated without
employing a real system. Sec. 5.6 validates the method in a real robot, and
Sec. 5.7 studies possible ways of extending it. Finally, the conclusions are drawn in
Sec. 5.8.

5.2. Related Work
Several works have approached the problem of learning motions modeled as
dynamical systems from demonstrations while ensuring their stability. By
observing if these works employ either time-varying or time-invariant dynamical
systems, we can divide them into two groups. In time-varying dynamical systems,
the evolution of the system explicitly depends on time (or a phase). In contrast,
time-invariant dynamical systems do not depend on time directly, but only through
its time-varying input (i.e., the state of the system). The property of a system
being either time-invariant or not, conditions the type of strategies that can be
employed to enforce its stability. Hence, for this work, it makes sense to make a
distinction between these systems.

One seminal work of IL that addresses stability for time-varying dynamical
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systems introduces Dynamical Movement Primitives (DMPs) [157]. This method
takes advantage of the time-dependency (via the phase of the canonical system) of
the dynamical system to enforce its nonlinear part, which captures the behavior
of the demonstration, to vanish as time goes to infinity. Then, they build the
remainder of the system to be a function that is well-understood and stable by
construction. Hence, since the nonlinear part of the motion will eventually vanish,
its stability can be guaranteed. In the literature, some works extend this idea
with probabilistic formulations [169, 170], and others have extended its use to the
context of DNNs [171–173].

These time-varying dynamical system approaches are well-suited for when the
target motions have clear temporal dependencies. However, they can generate
undesired behaviors when encountering perturbations (assuming the time/phase is
not explicitly modulated), and they lack the ability to model different behaviors for
different regions of the robot’s state space. In contrast, time-invariant dynamical
systems can easily address these shortcomings, but they can be more challenging
to employ when motions contain strong temporal dependencies. Therefore, IL
formulations with such systems are considered to be complementary to the ones
that employ time-varying systems [5, 174]. In this work, we focus on time-invariant
dynamical systems.

An important family of works has addressed the problem of modeling stable
motions as time-invariant dynamical systems. These approaches often constrain
the structure of the dynamical systems to ensure Lyapunov stability by design.
In this context, one seminal work introduces the Stable Estimator of Dynamical
Systems (SEDS) [158]. This approach imposes constraints on the structure of
Gaussian Mixture Regressions (GMR), ensuring stability in the generated motions.

Later, this idea inspired other works to explicitly learn Lyapunov functions
that are consistent with the demonstrations and correct the transitions of the
learned dynamical system such that they are stable according to the learned
Lyapunov function [164, 165, 175]. Furthermore, several extensions of SEDS have
been proposed, for instance by using physically-consistent priors [176], contraction
theory [177] or diffeomorphisms [178].

Moreover, some of these ideas, such as the use of contraction theory or
diffeomorphisms have also been used outside the scope of SEDS. Contraction
theory ensures stability by enforcing the distance between the trajectories of a
system to reduce, according to a given metric, as the system evolves. Hence, it
has been employed to learn stable motions from demonstrations [179, 180]. In
contrast, diffeomorphisms can be employed to transfer the stability properties of a
stable and well-understood system, to a complex nonlinear system that models the
behavior of the demonstrations. Hence, this strategy has also been employed to
learn stable motions from demonstrations [159, 162, 163]. As we explain in Section
5.4.2, our method is closely related to these approaches. It is worth noting that of
the mentioned strategies, only [163] models stable stochastic dynamics. However,
this concept could also be explored with other encoder-decoder stochastic models,
e.g., [169].

Understandably, all of these methods constrain some part of their learning
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framework to ensure stability. From one point of view, this is advantageous, since
they can guarantee stability. However, in many cases, this comes with the cost of
reducing the flexibility of the learned motions (i.e., loss in accuracy). Notably,
some recent methods have managed to reduce this loss in accuracy [159, 163];
however, they are still limited in terms of the family of models that can be used
with these frameworks, which harms their scalability. Consequently, in this work,
we address these limitations by enforcing the stability of the learned motions as
a soft constraint and showing its effectiveness in obtaining stable, accurate, and
scalable motions.

5.3. Preliminaries
5.3.1. Dynamical Systems as Movement Primitives
In this work, we model motions as nonlinear time-invariant dynamical systems
defined by the equation

ẋ = f(x), (5.1)

where x ∈ Rn is the system’s state and f : Rn → Rn is a nonlinear continuous
and continuously differentiable function. The evolution defined by this dynamical
system is transferred to the robot’s state by tracking it with a lower-level controller.

5.3.2. Global Asymptotic Stability
We are interested in solving reaching tasks. From a dynamical system perspective,
this means that we want to construct a system where the goal state xg ∈ Rn
is a globally asymptotically stable equilibrium. An equilibrium xg is globally
asymptotically stable if ∀x ∈ Rn,

lim
t→∞

||x− xg|| = 0. (5.2)

Note that for this condition to be true, the time derivative of the dynamical system
at the attractor must be zero, i.e., ẋ = f(xg) = 0.

For simplicity, we use the word stable to refer to these systems.

5.3.3. Problem Formulation
Consider the scenario where a robot aims to learn a reaching motion, in a given
space T ⊂ Rn and with respect to a given goal xg ∈ T , based on a set of
demonstrations D. The robot is expected to imitate the behavior shown in the
demonstrations while always reaching xg, regardless of its initial state.

The dataset D contains N demonstrations in the form of trajectories τi,
such that D = (τ0, τ1, ..., τN−1). Each one of these trajectories contains the
evolution of a dynamical system with discrete-time states xt ∈ T when starting
from an initial state x0 and it transitions for T time steps t of size ∆t.
Hence, τi = (xi0, xi1, ..., xiT−1), where T does not have to be the same for every
demonstration, and here we added the superscript i to the states to explicitly
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indicate that they belong to the trajectory τi. Note, however, that the state
superscript will not be used for the remainder of the chapter.

We assume that these trajectories are drawn from the distribution p∗(τ), where
every transition belonging to a trajectory sampled from this distribution follows the
optimal (according to the demonstrator’s judgment) dynamical system f∗. On the
other hand, the robot’s motion is modeled as the parametrized dynamical system
fTθ , which induces the trajectory distribution pθ(τ), where θ is the parameter
vector.

Then, the objective is to find θ∗ such that the distance between the trajectory
distributions induced by the human and learned dynamical system is minimized
while ensuring the stability of the motions generated with fTθ towards xg. This can
be formulated as the minimization of the (forward) Kullback-Leibler divergence
between these distributions [40], subject to a stability constraint of the learned
system:

θ∗ = arg min
θ

DKL (p∗(τ)||pθ(τ)) (5.3a)

s.t. lim
t→∞

||xt − xg|| = 0, (5.3b)

∀xt ∈ T evolving with fTθ .

5.4. Method
We aim to learn motions from demonstrations modeled as nonlinear time-invariant
dynamical systems. In this context, we present the CONvergent Dynamics from
demOnstRations (CONDOR) framework. This framework learns the parametrized
function fTθ using human demonstrations and ensures that this dynamical system
has a globally asymptotically stable equilibrium at xg while being accurate w.r.t.
the demonstrations.

To achieve this, we extend the Imitation Learning (IL) problem with a novel loss
ℓstable based on Contrastive Learning (CL) [167] that aims to ensure the stability of
the learned system. Hence, if the IL problem minimizes the loss ℓIL, our framework
minimizes

ℓCIL = ℓIL + λℓstable, (5.4)

where λ ∈ R is a weight. We refer to ℓCIL as the Contrastive Imitation Learning
(CIL) loss.

5.4.1. Structure of CONDOR
The objective of ℓstable is to ensure that fTθ shares stability properties with a
simple and well-understood system. We will refer to this system as fL, which is
designed to be stable by construction. Consequently, if fL is stable, then fTθ will
also be stable.

Since fTθ is parametrized by a DNN, we can define fL to reside in the output of
one of the hidden layers of fTθ . This formulation might seem arbitrary; however, it
will be shown later that it enables us to introduce the stability conditions, which
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Figure 5.3.: Structure of CONDOR. We show an example of discrete-time
trajectories generated with fTθ , fL and fT →L

θ before training the DNN. Starting
from an initial point x0, a trajectory is generated in T using fTθ (blue) and two
trajectories are generated in L. One of them follows fT →L

θ (red), and the other
follows fL (green).

serve as the foundation for designing ℓstable. Therefore, we define the dynamical
system fTθ as a composition of two functions, ψθ and ϕθ,

ẋt = fTθ (xt) = ϕθ(ψθ(xt)), (5.5)

∀xt ∈ T . Note that fTθ is a standard DNN with L layers. ψθ denotes layers 1...l,
and ϕθ layers l + 1...L. We define the output of layer l as the latent space L ⊂ Rn.
Moreover, for simplicity, although we use the same θ notation for both ψθ and ϕθ,
each symbol actually refers to a different subset of parameters within θ. These
subsets together form the full parameter set in fTθ .

Then, the dynamical system fL is defined to evolve within L2. This system is
constructed to be stable at the equilibrium yg = ψ(xg), and can be described by

ẏLt = fL(yLt ), (5.6)

∀yLt ∈ L. Here, yLt corresponds to the latent state variables that evolve according
to fL.

Lastly, it is necessary to introduce a third dynamical system. This system
represents the evolution in L of the states visited by fTθ when mapped using ψθ,
which yields the relationship

ẏTt = fT →L
θ (xt) = ∂ψθ(xt)

∂t
, (5.7)

∀yTt ∈ L, where yTt corresponds to the latent variables that evolve according to
fT →L
θ .
Fig. 5.3 summarizes the introduced dynamical systems.

2Note that before training, this system will not completely reside in L, since it is allowed to
evolve outside the image of ψθ.
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5.4.2. Stability Conditions
The above-presented dynamical systems allow us to introduce the stability
conditions. These conditions state that if fT →L

θ exhibits the same behavior as fL,
and only xg maps to ψθ(xg), then fTθ is stable. We formally introduce them as
follows:

Theorem 1 (Stability conditions). Let fTθ , fT →L
θ and fL be the dynamical systems

introduced in Sec. 5.4.1. Then, xg is a globally asymptotically stable equilibrium of
fTθ if, ∀xt ∈ T ,:

1. fT →L
θ (xt) = fL(yTt ),

2. ψθ(xt) = yg ⇒ xt = xg.

Proof. Since fL is globally asymptotically stable at yg, condition 1) indicates
that as t → ∞, yTt = yLt → yg. However, from condition 2) we know that
yTt = ψθ(xt) = yg is only possible if xt = xg. Hence, as t→∞, xt → xg. Then, xg
is globally asymptotically stable in fTθ (xt).

Consequently, we aim to design ℓstable such that it enforces the stability
conditions in the presented dynamical systems by optimizing ψθ and ϕθ.

Connection with Diffeomorphism-based methods
It is interesting to note that the stability conditions make ψθ converge to
a diffeomorphism between T and L (proof in Appendix B.1). Consequently,
our approach becomes tightly connected to methods that ensure stability using
diffeomorphic function approximators [159, 162, 163]. However, differently from
these methods, we do not require to take into account the structure of the function
approximator and explicit relationships between fTθ and fT →L

θ .

5.4.3. Enforcing Stability
In this subsection, we introduce a method that enforces the stability conditions in
fTθ .

First condition
(
fT →L
θ = fL

)
The first stability condition can be enforced by minimizing the distance between the
states visited by the dynamical systems fT →L

θ and fL when starting from the same
initial condition. Hence, ∀yTt , yLt ∈ L a loss can be defined as ℓmatch = d(yTt , yLt ),
where d(·, ·) is a distance function.

Second condition (ψθ(xt) = yg ⇒ xt = xg)
The second stability condition, however, can be more challenging to obtain, since
we do not have a direct way of optimizing this in a DNN. Therefore, to achieve
this, we introduce the following proposition:



5

88 5. Stable Primitives via Imitation and Contrastive Learning

Proposition 1 (Surrogate stability conditions). The second stability condition of
Theorem 1, i.e., ψθ(xt) = yg ⇒ xt = xg, ∀xt ∈ T , is true if:

1. fT →L
θ (xt) = fL(yTt ), ∀xt ∈ T (stability condition 1),

2. yTt−1 ̸= yTt , ∀xt ∈ T \ {xg}.

Proof. If yTt−1 = ψ(xt−1) = yg the first condition implies that yg = yTt−1 = yTt , since
fL(yg) = 0. Consequently, given the second condition yTt−1 ̸= yTt , ∀xt ̸= xg, this is
only possible if xt−1 = xg.

In other words, Proposition 1 indicates that if the first stability condition is
true; then, we can obtain its second condition by enforcing yTt−1 ̸= yTt , ∀xt ̸= xg.
Notably, by enforcing this, the stability conditions are also enforced. Consequently,
we refer to the conditions of Proposition 1 as the surrogate stability conditions.

Then, it only remains to define a loss ℓsep that enforces the second surrogate
stability condition in fTθ . However, before doing so, note that the surrogate
conditions aim to push some points together (i.e., yTt and yLt ) and separate others
(i.e., yTt−1 and yTt ). Hence, this problem overlaps with the Contrastive Learning
(CL) and Deep Metric Learning literature [168].

Contrastive Learning
The problem of pushing some points together (ℓmatch) and separating others (ℓsep),
is equivalent to the problem that the pairwise contrastive loss, from the CL
literature, optimizes [167]. This loss computes a cost that depends on positive and
negative samples. Its objective is to reduce the distance between positive samples
and separate negative samples beyond some margin value m ∈ R+.

In our problem, positive samples are defined as yLt and yTt , and negative samples
are defined as yTt−1 and yTt . The loss for positive samples is the same as ℓmatch.
Differently, for negative samples, this method separates points by minimizing
ℓsep = max(0,m− d(yTt−1, y

T
t )), ∀yTt−1, y

T
t ∈ L. If their distance is smaller than m,

m− d(yTt−1, y
T
t ) > 0, which is minimized until their distance is larger than m and

m− d(yTt−1, y
T
t ) < 0.

Commonly, the squared l2-norm is used as the distance metric. Moreover, this
loss is optimized along a trajectory starting at t = 1, which is a state sampled
randomly from the task space T . Then, we define a contrastive loss for motion
stability as

ℓstable =
Bs−1∑
b=0

Hs∑
t=1
||yLt,b − yTt,b||22︸ ︷︷ ︸

ℓmatch

+ max(0,m− ||yTt,b − yTt−1,b||2)2︸ ︷︷ ︸
ℓsep

, (5.8)

where Bs, Hs ∈ N+ are the batch size corresponding to the number of samples
used at each training iteration of the DNN and Hs is the trajectory length used
for training, respectively.

Note that (5.8) does not take into account the fact that ℓsep should not be
applied at yg. However, in practice, it is very unlikely to sample xg, so we do
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not deem it necessary to explicitly consider this case. Furthermore, the loss ℓmatch
enforces fT (yg) = 0, which also helps to keep yTt−1 and yTt together when yTt−1 = yg.

Relaxing the problem
We can make use of the CL literature to use other losses to solve this problem.
More specifically, we study the triplet loss [181] as an alternative to the pairwise
loss. We call this version CONDOR (relaxed), since, in this case, the positive
samples yTt and yLt are pushed closer, but it is not a requirement for them to be
the same. Hence, we aim to observe if learning a specific structure in L is enough
to enforce stability in fTθ , even though (5.8) is not solved exactly. This allows to
compare different features between losses, such as generalization capabilities.

5.4.4. Boundaries of the Dynamical System
We enforce the stability of a motion in the region T by randomly sampling points
from it and minimizing (5.8). Since this property is learned by a DNN, stability
cannot be ensured in regions of the state space where this loss is not minimized,
i.e., outside of T . Therefore, it is crucial to ensure that if a point belongs to T , its
evolution will not leave T . In other words, T must be a positively invariant set
w.r.t. fTθ [165, 182].

To address this, we design the dynamical system such that, by construction, is
not allowed to leave T . This can be easily achieved by projecting the transitions
that leave T back to its boundary, i.e., if a point xt ∈ T transitions to a point
xt+1 /∈ T ; then, it is projected to the boundary of T . In this work, T is a
hypercube; consequently, we apply an orthogonal projection by saturating/clipping
the points that leave T .

Note that this saturation is always applied, i.e., during the training and
evaluation of the dynamical system. Hence, the stability conditions of Theorem 1
are imposed on a system that evolves in the positively invariant set T .

5.4.5. Designing fL

So far, we presented a method for coupling two dynamical systems such that they
share stability properties; however, we assumed that fL existed. In reality, we
must design this function such that it is stable by construction. Although several
options are possible, in this work, we define fL as

ẏt = α⊙ (yg − yt), (5.9)

where α ∈ Rn corresponds to the gains vector and ⊙ to the element-wise/hadamard
product. If αi > 03, this system monotonically converges to yg [183], where αi
corresponds to the i-th element of α.

3This holds for the continuous-time case. However, we approximate the evolution of this
system via the forward Euler integration method. Then, the system can be written for the
discrete-time case as yt+1 = Ayt, where A = I + diag(−α)∆t, assuming yg = 0 without loss
of generality. To ensure stability, the absolute value of the eigenvalues of A must be less
than one; then, 0 < αi < 2/∆t.
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Adaptive gains
In the simplest case, α is a fixed, pre-defined, value; however, the performance
of the learned mappings ψ and ϕ is susceptible to the selected value of α.
Alternatively, to provide more flexibility to the framework, we propose to define
α as a trainable function that depends on the current latent state yt, i.e., α(yt).
Then, the parameters of α can be optimized using the same losses employed to
train ψ and ϕ, since it is connected to the rest of the network and the training
error can be propagated through it.

Note that this system is stable under the same condition for α as before, as
shown in Appendix B.2.

5.4.6. Behavioral Cloning of Dynamical Systems
Finally, we need to optimize an Imitation Learning loss ℓIL such that the learned
dynamical system fTθ follows the demonstrations of the desired motion. For
simplicity, we opt to solve a Behavioral Cloning (BC) problem; however, in
principle, any other IL approach can be used. As described in Sec. 5.3, this can
be achieved by minimizing the (forward) Kullback-Leibler divergence between the
demonstration’s trajectory distribution and the trajectory distribution induced by
the learned dynamical system. Note that this problem formulation is equivalent to
applying Maximum Likelihood Estimation (MLE) between these distributions [40];
hence, we can rewrite it as

fT ∗
θ = arg max

fT
θ

∈F
Eτ∼p∗(τ) [ln pθ(τ)] . (5.10)

If we note that pθ(τ) is a product of conditional transition distributions
pθ(xt+1|xt), we can rewrite it as pθ(τ) = ΠT−1

t=0 pθ(xt+1|xt)p(x0), where p(x0) is
the initial state probability distribution. Replacing this in (5.10) and ignoring
constants we obtain

fT ∗
θ = arg max

fT
θ

∈F
Ext+1∼p∗(xt+1|xt),

xt∼pt∗(xt)

[
T−1∑
t=0

ln pθ(xt+1|xt)
]
, (5.11)

where pt∗(xt) is the probability distribution of states at time step t, and p∗(xt+1|xt)
is the distribution of transitioning to state xt+1 given that the system is in some
state xt. Both of these distributions are induced by the dynamical system f∗.

In practice, however, we do not have an analytical representation of the
distributions pt∗(xt) and p∗(xt+1|xt). Therefore, the problem has to be estimated
through empirical evaluations of this objective, which is achieved using the
demonstrations present in the dataset D. Then, we can solve this problem
iteratively [139] by randomly sampling batches of Bi trajectories from D at each
iteration and maximizing

fT ∗
θ = arg max

fT
θ

∈F

Bi−1∑
b=0

T−1∑
t=0

ln pθ(x∗
t+1,b|xt,b), (5.12)
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where the subscript b has been added to the states indicating their correspondence
to the different trajectories of B.

To solve this problem, we can assume the transition distribution of the learning
system to be a Gaussian with fixed covariance, and a mean corresponding
to the forward Euler integration [184] of fTθ for the given state xt,b, i.e.,
xt+1,b = xt,b + fTθ (xt,b)∆t, where ∆t corresponds to the time step size.
Furthermore, the same Gaussian assumption is made for the demonstration’s
distribution p∗(xt+1|xt); however, since its transitions are obtained directly from
the demonstrations, it is not necessary to integrate in this case. Then, (5.12)
reduces to the Mean Squared Error (MSE) minimization between the mean of the
demonstration’s distribution p∗(xt+1|xt), and the mean of the learning distribution
pθ(xt+1|xt) [2], i.e.,

fT ∗
θ = arg min

fT
θ

∈F

Bi−1∑
b=0

T−1∑
t=0
||x∗

t+1,b −
(
xt,b + fTθ (xt,b)∆t

)
||22. (5.13)

In practice, however, if the trajectories of the demonstrations are too long, due to
computation or complexity limitations, it might not be convenient to optimize this
objective for the complete trajectories. Therefore, this problem can be simplified
by allowing the initial conditions of the demonstration batches to be at any time
step t′ ∈ {0, ..., T − 1}, and optimizing the problem for some time horizon Hi ≤ T .
Consequently, we get the loss ℓIL that we employ to solve the BC problem in this
work:

fT ∗
θ = arg min

fT
θ

∈F

Bi−1∑
b=0

Hi−1∑
t=t′
||x∗

t+1,b − xt,b − fTθ (xt,b)∆t||22︸ ︷︷ ︸
ℓIL

. (5.14)

5.4.7. Compounding errors and multi-step learning
Commonly, (5.14) is solved as a single-step prediction problem (i.e., Hi = 1) by
computing only one transition from xt′,b using fTθ and comparing it against x∗

t′+1,b.
Nevertheless, in practice, the learned dynamical system is applied recursively,
i.e., assuming perfect tracking, every prediction is computed as a function of a
previously computed output using the following equation:

xh = xh−1 + fTθ (...x1 + fTθ (x0 + fTθ (x0)∆t)∆t...)∆t, (5.15)

where h is the evolution horizon. Therefore, the prediction error of fTθ compounds
and grows multiplicatively by every new prediction [185, 186]. This makes the
dynamical system diverge away from the states present in the demonstration’s
trajectories, requiring the system to make predictions in states that are not
supported by the training data, which is known as the covariate shift problem [2].
Consequently, the prediction error grows even larger.

An important reason for this issue to occur is that the learned system is expected
to act over multiple steps when it is only being trained for predicting single steps.
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Figure 5.4.: Multi-step IL loss for one sample when using backpropagation
through time, where h = Hi.

To alleviate this problem, the dynamical system must be trained for predicting
multiple steps, by setting Hi > 1 and computing xt,b in (5.14) recursively, as shown
in Fig. 5.4. In practice, however, the single-step loss is commonly employed, as the
multi-step loss has been regarded as being challenging to optimize, even for short
prediction horizons [187]. Nevertheless, these challenges can be addressed with
current DNN optimization techniques.

Consequently, we optimize the multi-step loss by noting that this can be
achieved using backpropagation through time [188, 189], which has become popular
and improved given its use in Recurrent Neural Networks (RNNs) [190]. Hence,
its limitations such as exploding/vanishing gradients or ill-conditioning [191] have
been alleviated. Furthermore, specifically for this case, we can observe that every
forward integration step in (5.15) can be interpreted as one group of layers inside
a larger DNN that computes xh. Then, each one of these groups has the same
structure as the residual blocks in ResNet [192], which have also shown to be
beneficial for alleviating vanishing/exploding gradients issues [193].

5.5. Simulated Experiments
In this section, we employ datasets of human handwriting motions to validate our
method. Although these datasets contain human demonstrations, our evaluation of
the learned motions is simulated, since no real system is involved in this process.
This can be better understood with Fig. 5.5, where we show two different control
strategies that can be employed with CONDOR. More specifically, Fig. 5.5b
presents an offline control strategy where a trajectory is computed and stored in a
buffer by applying CONDOR recursively. Afterwards, this trajectory is tracked by
a low-level controller. In our evaluation, however, we ignore the low-level controller
part and evaluate CONDOR using only the trajectory provided by the buffer, i.e.,
we assume that the trajectory is tracked perfectly. Despite this assumption, this
methodology with this dataset has been extensively used in the literature, since it
allows to test if the learning method generates adequate state transition requests
[158, 159, 163].

The DNN architecture and hyperparameter optimization process of the models
used in this section are described in appendices B.3 and B.4, respectively.
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(a) Online control. At every
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is fed to a low-level controller that
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(b) Offline control. fT
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trajectory is tracked with a low-
level controller.

Figure 5.5.: Control strategies that can be used with CONDOR.

5.5.1. LASA dataset validation: first-order 2-dimensional
motions

We validate our method using the LASA dataset4, which comprises 30 human
handwriting motions. Each motion, captured with a tablet PC, includes 7
demonstrations of a desired trajectory from different initial positions. The state is
represented as 2-dimensional positions, and the learned systems are of first order,
i.e., the output of fTθ is a desired velocity. Although the demonstrations may
have local intersections due to human inaccuracies, the shapes contained in this
dataset can be well represented using first-order dynamical systems, which cannot
represent intersections. Consequently, we employ the LASA dataset to evaluate
motions modeled as first-order dynamical systems, which is the same approach
that was taken by the paper that introduced this dataset [158].

Fig. 5.6 shows three examples of dynamical systems learned with CONDOR.
These motions share three features:

1. Adequate generalization: motions generated in regions with no demon-
strations smoothly generalize the behavior presented in the demonstrations.

2. Accuracy: the learned models accurately reproduce the demonstrations.

3. Stability: the vector fields suggest that, independently of the initial
conditions, every motion reaches the goal.

4https://cs.stanford.edu/people/khansari/download.html

https://cs.stanford.edu/people/khansari/download.html
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Figure 5.6.: Examples of LASA dataset motions learned using CONDOR,
SDS-ES, and CLF-DS (GMR). White curves represent the demonstrations. Red
curves represent the executed motions by the learned model when starting from
the same initial positions as the demonstrations. The arrows indicate the vector
field of the learned dynamical system (velocity outputs for every position). In
SDS-ES, every speed greater than 50 mm/s is saturated to this value.

In the following subsections, we provide further details regarding each one of
these points. Moreover, we compare CONDOR5 with two other state-of-the-art
methods for stable motion generation: 1) Control Lyapunov Function-based

5CONDOR code repository: https://github.com/rperezdattari/
Stable-Motion-Primitives-via-Imitation-and-Contrastive-Learning

https://github.com/rperezdattari/Stable-Motion-Primitives-via-Imitation-and-Contrastive-Learning
https://github.com/rperezdattari/Stable-Motion-Primitives-via-Imitation-and-Contrastive-Learning
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Dynamic Movements (CLF-DM) using Gaussian Mixture Regression (GMR)6 [164],
and 2) Stable Dynamical System learning using Euclideanizing Flows (SDS-EF)7

[159]. CLF-DM (GMR) learns a dynamical system using a GMR and corrects
its behavior whenever it is not stable according to a learned Lyapunov function.
SDS-EF is a diffeomorphism shaping method, as introduced in Sec. 5.4.2.

Generalization
Fig. 5.6 also depicts the performance of CLF-DM and SDS-EF on three motions.
Here, we observe that even though the stability of these methods is guaranteed,
unlike CONDOR, the behavior that they present in regions without demonstrations
might not always be desired.

In the case of SDS-EF, unpredictable motions can be generated8 (e.g., bottom
image, bottom-right quadrant), which, furthermore, can reach very high speeds
(e.g., 382 mm/s, while the demonstrations exhibit maximum speeds of around 40
mm/s). Note, however, that this issue can be alleviated by optimizing SDS-EF for
a shorter period of time, but this also makes it less accurate. Such unpredictability
and high speeds can be a limitation in real-world scenarios. For instance, when
humans interact with robots and must feel safe around them, or due to practical
limitations, e.g., it is unfeasible to track the requested motions with a low-level
controller.

Differently, in the case of CLF-DM, nonsmooth transitions are present in some
regions of the state space due to the corrections applied by the Lyapunov function.
This can also be a limitation, since robotic systems commonly avoid nonsmooth
trajectories to minimize the risk of damage [5].

Lastly, Fig. 5.6 evidences that, in real-world scenarios, CLF-DM and SDS-EF
are susceptible to making robots leave their workspaces. These methods do not
constrain their trajectories to reside inside a specific space, they only guarantee
that, eventually, these will converge to the goal. In practice, however, the learned
trajectories might need to leave a robot’s workspace to reach the goal. Then, in
Fig. 5.6, if we assume that the observed regions are a robot’s workspace, the vector
fields of CLF-DM and SDS-EF indicate that some motions depart from it. In
contrast, in CONDOR the workspace is a positively invariant set w.r.t. the learned
dynamical system (see Sec. 5.4.4); consequently, motions stay inside it.

Accuracy
Fig. 5.6 indicates that every method is able to accurately reproduce the
demonstrations. However, CLF-DM is clearly less accurate than CONDOR and
SDS-EF. For instance, in the bottom-left image, the inner red trajectory drifts

6CLF-DM code repository: https://github.com/rperezdattari/
Learning-Stable-Motions-with-Lyapunov-Functions

7SDS-EF code repository: https://github.com/mrana6/euclideanizing_flows
8These results are not completely consistent with the ones reported in [159], since we removed

additional preprocessing (smoothing and subsampling) to compare every method under the
same conditions.

https://github.com/rperezdattari/Learning-Stable-Motions-with-Lyapunov-Functions
https://github.com/rperezdattari/Learning-Stable-Motions-with-Lyapunov-Functions
https://github.com/mrana6/euclideanizing_flows
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Figure 5.7.: Accuracy comparison of CONDOR against state-of-the-art methods.
Each box plot summarizes performance over the 30 motions of the LASA dataset.

away from the demonstrations, coming back to them at the end of the motion due
to its stability properties.

Quantitatively speaking, we can employ different metrics to evaluate the accuracy
of the learned trajectories (see Fig. 5.7). Commonly, a distance between two
trajectories is minimized; one trajectory corresponds to a demonstration, and the
other corresponds to the one generated by the learned dynamical system when
starting from the same initial condition as the demonstration. However, different
distances between trajectories can be computed depending on the features that
we aim to evaluate from the trajectories. To have a more complete view of the
accuracy performance of our method, we compare CONDOR, CLF-DM (GMR)9

and SDS-EF10 under three distance metrics: 1) Root Mean Squared Error (RMSE),
2) Dynamic Time Warping Distance (DTWD) [194], and 3) Frechet Distance (FD)
[195].

We can observe that CONDOR clearly achieves better results against CLF-DM
(GMR) under every metric, while a smaller gap, yet superior, is achieved against
SDS-EF.

Stability
Lastly, we quantitatively study the stability properties of CONDOR. As mentioned
in Sec. 5.4, the stability of the motions it learns depends on the optimization
problem being properly minimized. Therefore, we need to empirically test this
after the optimization process finishes.

To achieve this, we integrate the dynamical system for L time steps, starting
from P initial states, and check if the system converges to the goal (i.e., fixed-point
iteration, where the fixed point corresponds to the goal). The larger the P , the
more accurate the results we obtain. If L is large enough, the system should

9Each GMR consisted of 10 Gaussians and each Lyapunov function was estimated using 3
asymmetric quadratic functions.

10Results were extracted from [159].
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converge to the goal after L steps. Hence, by computing the distance between
the last visited state and the goal, and checking that it is below some predefined
threshold ϵ, it is possible to evaluate if a trajectory is successful or not (i.e., if it
converges to the goal).

We evaluated CONDOR using all of the motions present in the LASA dataset
with L = 2000 and P = 1225 with ϵ = 1mm, and observed that 100% of the
trajectories reached the goal. Hence, CONDOR is able to successfully learn stable
motions.

5.5.2. Ablation Study
To better understand CONDOR and the relevance of its different parts, we perform
an ablation study where we compare four variations of this method:

1. CONDOR: the base method studied in Sec. 5.5.1.

2. CONDOR (relaxed): the contrastive loss for stability is replaced with
the triplet loss. This variation is presented to observe the importance of
minimizing the exact loss presented in (5.8) or whether it is enough to enforce
this type of structure in the latent space of the NN to obtain stable motions.

3. CONDOR (fixed gains): as explained in Sec. 5.4.5, having adaptive gains
in the latent dynamical system described in (5.9) should help obtaining more
flexible motions. Therefore, this model, with fixed gains, is studied to observe
the relevance and effect of using adaptive gains.

4. Behavioral Cloning (BC): the stability loss is removed and only the BC
loss is employed to learn motions. This model is used to study the effect
that the stability loss can have on the accuracy of the learned motions. To
observe the behavior of BC, we refer the reader to Fig. 5.2.

Fig. 5.8 presents examples of motions learned with both CONDOR (relaxed)
and CONDOR (fixed gains). In both cases, the motions display accuracy and
stability. However, these models differ in their generalization. CONDOR (relaxed)
has a generalization behavior similar to the one of CONDOR shown in Fig. 5.6.
In these cases, the regions of the state space without demonstrations exhibit a
trend that resembles the one observed in the demonstrations. In contrast, the
generalization of CONDOR (fixed gains) does not follow this trend as closely. For
example, within certain regions, the velocity of the motions decreases, and as they
approach the demonstrations, their direction becomes nearly orthogonal, indicating
a discrepancy between the generalized behavior and the pattern presented in the
demonstrations.

Accuracy
In this subsection, we compare the accuracy of the different variations of CONDOR
(see Fig. 5.9). Intuitively, BC should perform better than any variation of
CONDOR, since it only optimizes the BC loss. In contrast, the other variations
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Figure 5.8.: Examples of LASA dataset motions learned using two variations of
CONDOR: 1) relaxed and 2) fixed gains.
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Figure 5.9.: Accuracy comparison of different variations of CONDOR. Each box
plot summarizes performance over the 30 motions of the LASA dataset.

also optimize the stability loss, which could harm/limit the minimization of the
BC loss. Consequently, BC is the lower bound for the accuracy performance, i.e.,
best case scenario, a variation of CONDOR performs as well as BC does.

In Fig. 5.9, we observe that the accuracy performance of all of the variations
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Table 5.1.: Percentage of unsuccessful trajectories over the LASA dataset
(L = 2000, P = 1225, ϵ = 1mm).

Behavioral
Cloning

CONDOR
(fixed gains)

CONDOR
(relaxed)

CONDOR

36.4653% 0.0054% 0.0000% 0.0000%

of CONDOR is very similar, including the BC case. This result shows that
CONDOR, and its variations, is able to effectively minimize the BC and stability
loss together without harming the accuracy performance of the learned motions.

Stability
Table 5.1 shows the results of stability tests on the presented methods. We
can observe that when stability is not enforced (i.e., Behavioral Cloning), the
percentage of unsuccessful trajectories is significant, being larger than one-third
of the total amount of trajectories. In contrast, when stability is enforced using
adaptive gains, the system achieves perfect performance (i.e., every trajectory
reaches the goal), as it is observed with the results of CONDOR and CONDOR
(relaxed). Interestingly, this result also shows that the relaxed variation of
CONDOR can be employed for achieving stable motions without having a loss in
performance. In contrast, when fixed gains are employed, although the percentage
of unsuccessful trajectories is very low (< 0.01%), the performance degrades. This
result suggests that the stability loss is not being as effectively minimized as when
the gains are adaptive.

Dynamical Systems Mismatch
So far, we observed that every variation of CONDOR that minimizes the
stabilization loss is able to learn accurate and stable motions. The case of
CONDOR (fixed gains) showed a slightly worse stability performance and poorer
generalization capabilities than CONDOR and CONDOR (relaxed). However,
CONDOR has not shown to be clearly superior to its variations, especially in the
CONDOR (relaxed) case.

Since CONDOR (relaxed) approximates the loss that minimizes the distance
between yLt and yTt , the trajectories that it obtains with fL and fTθ in the latent
space should diverge faster than the ones generated with CONDOR. To investigate
this idea, we evaluate the optimization of this loss by separately simulating fTθ
and fL when starting from the same initial conditions. If the stabilization loss
is perfectly minimized, these simulations should yield the same trajectories when
mapping the evolution of fL to task space11; otherwise, they should diverge from
each other.

Fig. 5.10 presents motions learned using the different variations of CONDOR
and shows motions generated in task space when following fTθ and fL. We
11Trajectories from fL with known initial conditions in T (hence, yL0 = ψθ(x0)), can be mapped

to T by recursively applying xt+1 = xt + ϕθ(yLt )∆t.
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Figure 5.10.: Dynamical systems mismatch comparison. Blue curves represent
the demonstrations, black curves represent trajectories generated using fTθ of the
dynamical system, and red curves represent trajectories generated using fL of the
dynamical system. The black and red trajectories were obtained by integrating the
dynamical system through 80 time steps.

can observe that CONDOR performs well in the complete state space, where,
for most trajectories, it is not possible to detect a difference between the results
obtained using fL and fTθ . In contrast, we can observe that, for the other cases,
trajectories diverge more pronouncedly. Interestingly, the divergent trajectories
seem to overlap with the regions where demonstrations are provided. This suggests
the stabilization loss is not properly minimized in this region, indicating that
these variations of CONDOR struggle to find good solutions in the regions of the
state space where the imitation and stabilization losses are optimized together,
i.e., in the demonstrations. Finally, it is also possible to observe that CONDOR
(relaxed) obtains trajectories that are slightly more similar to the ones obtained
with CONDOR (fixed gains), although it is not conclusive.

Quantitatively, we can analyze this trajectory difference by computing the
accumulated error between the trajectories generated using both dynamical
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Figure 5.11.: Trajectory mismatch error. Results are presented as a function of
the length of a trajectory with respect to the complete length of the demonstrated
trajectories, corresponding to 1000 transitions. 100 trajectories in the task and
latent spaces were simulated, whose initial positions were uniformly distributed in
the motion’s state space. The results show the mean and half of the standard
deviation of the error computed with these simulations.

systems. Fig. 5.11 shows this error as a function of the trajectory length. As
expected, this error grows for the dynamical systems as a function of their
length. However, CONDOR obtains a significantly lower error than its variations.
Furthermore, Fig. 5.11 clearly shows that CONDOR (relaxed) outperforms
CONDOR (fixed gains). Finally, since this accumulated error is a consequence
of how well the stability loss is minimized, these results might explain why the
stability performance of CONDOR (fixed gains) is not perfect, i.e., this variation is
not able to successfully minimize the stability loss in the complete state space.

As a final remark, we can note that generating trajectories in the latent space
and then mapping them to task space can have other applications, such as
predicting future states efficiently and employing them, for instance, in Model
Predictive Control frameworks. It is considerably faster to generate trajectories in
the latent space than using the complete DNN architecture to compute them in
task space, since the number of parameters and layers required to do so is smaller.
Then, once the trajectory is generated in the latent space, it can be mapped to
task space as one batch in one forward pass.

5.5.3. LAIR dataset validation: second-order
2-dimensional motions

In this section, we introduce the LAIR handwriting dataset. The objective
is to test the accuracy and stability performance of the proposed method for
second-order motions, where the state comprises both position and velocity. This
dataset contains 10 human handwriting motions collected using a mouse interface
on a PC. The state here is 4-dimensional, encompassing a 2-dimensional position
and velocity, and the output of fTθ is the desired acceleration. The dataset’s
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Figure 5.12.: Motions modeled using CONDOR with first order and second order
systems. The shapes in grey correspond to the demonstrations. The colored
curves correspond to different instances of trajectories generated when starting
from different initial states. Every trajectory was initialized with zero velocity
and the initial positions were obtained by sampling from a Gaussian distribution
around the initial positions observed in the demonstrations. 36 trajectories were
sampled per plot.

shapes present several position intersections that have been designed to require, at
least, second-order systems to model them. This dataset is employed to test the
scalability of the proposed method in terms of the order of the motion.

Unlike the LASA dataset, the LAIR dataset contains raw demonstrations
without any type of postprocessing. Hence, the ending points of the demonstrated
trajectories might not always coincide exactly. To account for this, the goal of a
motion is computed by taking the mean between these ending points.

Accuracy
Fig. 5.12 shows three examples of motions of the LAIR dataset. These motions can
only be modeled using a dynamical system of, at least, second order. First-order
systems only employ position information to generate a trajectory; hence, visiting
the same position two times will generate an ambiguity for the learning algorithm.
This makes the learned system collapse to a solution that lies in between the
multiple demonstrated options. Therefore, we observe that first-order systems with
CONDOR are not able to appropriately model the shown motions.

In contrast, we observe that second-order systems are able to appropriately
capture the dynamics of the demonstrated motions and execute them as they were
intended. However, some trajectories (especially those coming from the tail of the
initial-state sampling distribution) do not go through the first intersection, since
they start from a position that, given its distance from the initial states of the
demonstrations, directly follows the trend of the motion after this intersection. If
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Figure 5.13.: Accuracy comparison of CONDOR when modeling motions using
first order and second order systems. Each box plot summarizes performance over
the 10 motions of the LAIR dataset.

Table 5.2.: Percentage of successful trajectories over the LAIR dataset (L = 2000,
P = 1225, ϵ = 10px).

CONDOR (1st order) CONDOR (2nd order)
9.3388% 0.0000%

this is a limitation for a specific application, providing demonstrations in those
regions would make the system behave as expected. Finally, another interesting
feature of these motions, is that the different trajectories, eventually, seem to
collapse to the same position, overlapping with each other. This comes as an
artifact when incorporating the stability loss, where the systems find these solutions
to ensure stability.

Quantitatively, the same conclusions can be drawn when observing Fig. 5.13.
This figure presents the results of the accuracy of both CONDOR variations under
the same metrics employed in Sec. 5.5.1. As expected, the second-order systems
outperform the first-order systems by a large margin.

Stability

Finally, we study the stability of the motions generated with CONDOR over the
LAIR dataset when using first-order and second-order systems. Table 5.2 shows
that when using first-order systems, CONDOR struggles to generate stable motions
with second-order demonstrations. For instance, when a demonstration has a loop,
the optimization of the DNN might not find a proper solution, since trajectories
inside the loop do not have a way of reaching a region outside the loop without
ignoring the demonstrations. In contrast, CONDOR with second-order systems is
always able to learn stable motions.
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(a) Hammer hanging. (b) Writing number two. (c) Table cleaning.

Figure 5.14.: Setup of real-world experiments.

5.6. Real-World Experiments
To validate the proposed framework in more realistic scenarios, we design three
real-world experiments using a 7-DoF KUKA iiwa manipulator: 1) hammer
hanging, 2) writing the number two, and 3) cleaning a table (see Fig. 5.14).
Throughout these experiments, four important characteristics of the learning
problem are changed: 1) dimensionality of the motion, 2) order of the motion,
3) control strategy, and 4) data collection method. These characteristics define
different Imitation Learning scenarios that can be found in real-world robotic
problems. Hence, by testing CONDOR in these scenarios we aim to show the
applicability, flexibility, and robustness of our method. Furthermore, if we compare
these scenarios with the simulated ones studied in the previous sections, we can
observe that our method is not restricted to 2-dimensional motions only and that
it can also work in higher-dimensional problems. Table 5.3 shows a summary of the
real-world experiments, which are explained in detail in the following subsections.

Similarly to the LAIR dataset, the demonstrations are not postprocessed in
these experiments. Hence, in this section, the goal of the motions is also computed
by taking the mean between the ending points of each demonstration.

5.6.1. Hammer hanging: First-order 3D motions
This experiment consists of learning to control the end-effector’s position of a robot
such that it hangs a hammer (see Fig. 5.14a), allowing us to test the behavior
of CONDOR for first-order 3-dimensional motions. This problem is interesting
since it shows that implicit knowledge, that otherwise requires modeling, can be
transferred to the robot via human demonstrations. In this case, this knowledge
includes information about the geometry of the hammer and the hanger that is
required to hang the hammer.

Control
We employ the online control strategy depicted in Fig. 5.5a, which allows the robot
to be reactive to perturbations and adjust its motion on the fly if the environment
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Table 5.3.: Characteristics of the real-world experiments.

Task Dim
state

Order
motion Control Data collection #

demos
Hammer
hanging 3 1 online,

end eff. motion capture 10

Writing
two 4 2 offline,

end eff.
computer mouse
interface 6

Table
cleaning 6 1 online,

joints
kinesthetic
teaching 2∗

∗ Two motion models were learned, and one demonstration was used per
model.

changes. Hence, at every time step, the robot obtains its position with respect to
the goal (i.e., the hanger) and sends an end effector’s velocity request to a low-level
controller. For details regarding the low-level controller, the reader is referred to
Appendix B.5.2.

Demonstrations
We used a motion capture system to collect demonstrations. The demonstrator
had to wear a glove whose position was tracked by the tracking system. We
recorded 10 demonstrations and used them to train CONDOR.

This approach has the advantage of it being comfortable for the human, since
it does not require the human to adjust to any specific interface nor interact with
the robot, which can require training. Nevertheless, since the robot embodiment is
not being employed to collect the demonstrations, there is no guarantee that the
collected motions will feasible for the robot to execute. Therefore, it is necessary
to record motions that can be executed by the robot, which, depending on the
problem, might require knowledge about the robotic platform.

Moving goal
To test the reactive capabilities of this approach, and the generalization properties
of motions modeled as dynamical systems, we made this problem more challenging
by making the hanger movable. To achieve this, we added tracking markers to
the top of the hanger and fed the hanger’s position to CONDOR in real time.
Consequently, while the robot was executing the hanging motion, the hanger could
be displaced and the robot had to react to these changes in the environment.

Notably, no extra data is required to achieve this, since the motion of CONDOR
is computed as a function of the relative position of the robot w.r.t. the goal.
Hence, by displacing the goal, the position of the end effector with respect to the
hanger changes, making CONDOR provide a velocity request according to this new
position.
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Figure 5.15.: The blue trajectories represent the learned model’s evolution of the
robot end effector’s position when starting from different initial conditions. The
larger and darker trajectories correspond to demonstrations. Some demonstrations
are occluded and others were removed for visualization purposes. The red point
corresponds to the goal.

Results
Fig. 5.15 shows a 3D plot with 1250 simulated trajectories generated with
CONDOR when starting from different initial positions. We can observe that all
of the trajectories reach the goal while following the shape in the demonstrations.
The performance of this model on the real robot can be observed in the attached
video.

5.6.2. Writing: Second-order 2D motions
We also tested CONDOR in a writing scenario (see Fig. 5.14b). The objective is to
control the robot’s end effector to write the number two on a whiteboard. To write
the number two, it is necessary to use second-order motions, since this character
has one intersection. Therefore, in this experiment, we aim to validate the ability
of CONDOR for modeling second-order motions. Finally, note that for writing it is
only necessary for the robot to move in a 2-dimensional plane; however, since the
motion is of second order, the state space of the robot is 4-dimensional (the same
as the motions in the LAIR dataset).

Control
We employ the offline control strategy as depicted in Fig. 5.5b. This approach is
suitable for writing since in this task it is important that the trajectory that the
robot executes is consistent with the one that CONDOR predicts from the initial
state. For instance, if the robot, while executing the motion is perturbed by its
interaction with the whiteboard in some direction, it would transition to a state
that is not consistent anymore with the character that has been written so far.
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In an offline control approach this is not very critical, because, given that the
reference of the motion is pre-computed, it would make the robot move back to a
state that is consistent with the motion that is being written. For details regarding
the low-level controller, the reader is referred to Appendix B.5.3.

Demonstrations
The same PC mouse interface developed to collect the LAIR dataset is employed
here. 6 demonstrations were collected and used to train CONDOR.

Results
The simulated results of this experiment follow the same behavior as the ones
presented in Sec. 5.5.3. To observe its behavior on the real robot, the reader is
referred to the attached video.

5.6.3. Table cleaning: First-order 6D motions
Finally, we test CONDOR in a cleaning task. The objective is to use the robot’s
arm to push garbage, which is on top of a table, to a trash bin. Differently from
the other scenarios, in this case, the robot’s joint space is directly controlled with
CONDOR. Hence, we learn a 6-dimensional motion. Note that the robot has 7
degrees of freedom, but we keep the last joint fixed as it has no influence on the
task.

Since the motions learned by CONDOR can be used as primitives of a more
complex motion, in this experiment we highlight this capability by learning two
motions that are sequenced together to generate the complete cleaning behavior.
Each motion is trained with only one demonstration.

This scenario allows us to test two features of our method: 1) its behavior in a
higher-dimensional space (6D), and 2) its capability to learn motions from only
one demonstration.

Control
Similarly to the hanging hammer experiment, we use the online control strategy
(Fig. 5.5a). Differently than before, in this case, the joint space of the robot
is directly controlled with CONDOR, i.e., a reference velocity for the joints
is provided to the low-level controller. Joint-space control is suitable for this
task because the configuration of the robot is important for completing the task
successfully since its body is used to push the trash. For details regarding the
low-level controller, the reader is referred to Appendix B.5.1.

Demonstrations
For this experiment, kinesthetic teaching was used to collect demonstrations. This
approach consists of collecting demonstrations by physically interacting with the
robot and guiding it along the desired trajectory. To make this task easier, the
gravitational forces of the robot were compensated such that it would not move
unless the human interacted with it.
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Figure 5.16.: Simulated trajectories, as a function of time, of the second motion
of the cleaning task. Blue trajectories correspond to evaluations of the model
under different initial conditions and the black trajectory corresponds to the
demonstration. The red point is the goal.

Results
Fig. 5.16 presents simulated results of the second cleaning primitive learned in this
experiment. Since the motion is 6-dimensional and, hence, it is very challenging to
visualize in one plot, we use six different plots to separately show the evolution of
each state dimension as a function of time.

In this case, we simulate 100 trajectories using CONDOR, since more make the
plots difficult to analyze. From them, we observe that as time increases, every
trajectory eventually reaches the goal. Note that, given that their initial states are
random, they can start further away or closer to the goal than the demonstration;
therefore, it might take them a longer/shorter time to reach the goal. Lastly, we
can observe that the demonstrated trajectory and some simulations, either overlap
or have the same shape with a phase shift, which showcases that the demonstrated
behavior is captured by CONDOR.

The reader is referred to the attached video to observe the behavior of the
cleaning primitives on the real robot.

5.7. Extending CONDOR
One of the advantages of our proposed framework is that we can extend it to
address more complex problems. Therefore, there are interesting areas of research
that can be studied with CONDOR. In this section, we aim to show the steps that
we have taken in this direction, which we plan to study deeper in future work.
More specifically, we tested two extensions:

1. Obstacle avoidance: multiple obstacle avoidance methods have been
proposed for motions modeled as dynamical systems, and it is an active field
of research [196–199]. We test CONDOR with one of these extensions [196]
and observe that it works properly. However, apart from this validation, we
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Figure 5.17.: t-SNE projection of the motion manifolds present in the latent
space of the DNN.

do not provide a contribution to this problem. Hence, the reader is referred to
Appendix B.6 for more details regarding obstacle avoidance in this research.

2. Multi-motion learning and interpolating: another interesting field of
research is learning multiple motions together in one Neural Network model.
This allows interpolating between these motions, generating novel behaviors
that are not present in the demonstrations. This can, for instance, reduce the
number of human demonstrations required to learn and generalize a problem
to a different situation.

In the next subsection, we study the interpolation capabilities of motions learned
with CONDOR.

5.7.1. Multi-motion Learning and Interpolation
We aim to provide preliminary results regarding the multi-motion learning
capabilities of CONDOR, and its behavior in terms of interpolation and stability.
To learn multiple motions in one Neural Network we extend its input with a
one-hot code that indicates which motion is selected. For instance, if we learn
three motions, we have three codes [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Then, each
code is used together with a different set of demonstrations to optimize ℓbc. To
interpolate between these motions, we select an input code of the DNN that has
an intermediate value between the ones of the motions, e.g., [0.5, 0.5, 0.0].

To ensure stability for all of the interpolated motions, we can minimize ℓstable for
each motion and also for the ones in the interpolation space, which should create a
bijective mapping between the complete input of the DNN (state and code) and
its latent space. Part of this can be observed in Fig. 5.17, which shows a t-SNE
[200] projection of three manifolds corresponding to the mapping of the state space
of three motions to the DNN’s latent space. Since each motion is mapped to a
different region of the latent space, it is possible to move in between these regions
to create interpolated motions.

Fig. 5.18 shows these motions and some examples of their interpolation. We can
note that the interpolation works properly, where features of different motions are
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Figure 5.18.: Different motions learned in one DNN. Blue curves correspond
to demonstrations, the darker their color, the more they influence each motion.
Arrows represent the vector field of the motion, and red curves correspond to
simulations of trajectories executed by the model. The figures highlighted in green
correspond to the cases where the BC loss is minimized. The remaining figures
correspond to interpolated motions. In the title of each plot, we can observe the
code provided to the network to generate each motion.

combined to create novel behaviors. Furthermore, we observe that, as expected, the
closer to a motion we interpolate, the more features of this motion the interpolated
one presents. Finally, regarding stability, every motion has zero unsuccessful
trajectories with L = 2000, P = 1225, and ϵ = 10px.

5.8. Conclusions
In the context of robotic reaching motions modeled as dynamical systems,
we introduce a novel contrastive loss that extends current Imitation Learning
frameworks to achieve globally asymptotically stable behaviors. We optimize
this loss together with a Behavioral Cloning loss, which, despite its practical
limitations due to the covariate shift problem, can achieve state-of-the-art results
by minimizing the multi-step loss instead of the single-step loss, as observed in
our experiments. Importantly, our stability loss can also be employed with other
Imitation Learning approaches, though its effectiveness with other losses remains
untested.
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Further experiments demonstrate that our framework, CONDOR, can effectively
learn stable and accurate motions across various scenarios. These experiments
were conducted in both simulated settings and with a real robot. We observed
that CONDOR learns successful behaviors in 1) 2-dimensional first-order motions
(LASA dataset), 2) 3-dimensional first-order motions (hammer hanging), 3)
4-dimensional second-order motions (LAIR dataset and writing two), and 4)
6-dimensional motions (cleaning table). Lastly, we observe that CONDOR can
be extended to learn multiple motions and interpolate between them, allowing it
to generate more stable behaviors without requiring more demonstrations. This
interesting area of research will be explored further in future work.

While this chapter’s findings are promising, they also reveal limitations that
inspire other future research directions. Firstly, our method has only been tested
on relatively low-dimensional state spaces; its applicability in higher-dimensional
spaces remains unexplored. Additionally, we assume that the employed state
representations used are minimal, a condition not always met in robotics. For
instance, orientation representations often employ non-Euclidean manifolds (e.g.,
unit quaternions or rotation matrices) that introduce constraints, making the
state representations non-minimal [201]. A further assumption is the existence
of a low-level controller capable of generating the state transitions requested by
CONDOR. While this is reasonable for manipulators, it can be a limiting factor
in highly underactuated robots. Finally, CONDOR assumes that a proper state
estimation (e.g., robot pose, goal location, or obstacles) is achieved by other
modules.
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6.1. Introduction
Imitation Learning (IL) provides a powerful framework for the intuitive
programming of robotic systems. Its strength lies in its ability to leverage
human-like learning methodologies, such as demonstrations and corrections, making
it accessible to non-robotics experts. This attribute significantly reduces the
resources needed to build robotic systems. However, the data-driven nature of
these methodologies presents a challenge: providing guarantees about the learned
behaviors.

In the context of reaching motions, it is crucial for the robot’s motions to
consistently reach the intended target, irrespective of the robot’s initial conditions.
Thus, modeling motions as dynamical systems proves beneficial. This approach
turns the problem into a question of ensuring global asymptotic stability (or
stability, for short) at the goal, and tools from dynamical system theory can then
be applied to guarantee this property.

Numerous methods have been proposed to ensure stability in motions represented
by dynamical systems. However, they often exhibit at least one of the following
limitations: 1) constraining the structure of their function approximators, and/or
2) being designed with the assumption that the robot’s state space is Euclidean.
To elaborate:

1. Constrained function approximators. To ensure stability guarantees,
methods often constrain the structure of their function approximators. For
instance, some approaches necessitate invertibility [159, 162, 163], while others
require positive or negative definiteness [158, 164, 165]. However, these
methods do not enable the full exploitation of modern Deep Neural Network
(DNN) architectures, as these constraints are not typically present in DNNs.
This limitation hinders their broader application in more complex models,
where integrating these constraints is challenging. Furthermore, inherently
constraining function approximators can overly restrict the range of solutions to
which they can converge, resulting in less flexible models than necessary. This
leads to suboptimal IL capabilities. In our context, this problem is known as
the stability versus accuracy dilemma [20].

2. Euclidean assumption. Learned motions must integrate with the geometry
of the space used to represent a robot’s state. For example, the end-effector
of a manipulator should always reach the intended target in both position and
orientation space. However, orientations are often represented in non-Euclidean
spaces, such as SO(3) or S3. This is because Euclidean representations like Euler
angles may not always provide a continuous description of motions that are
inherently continuous1 [201]. Such continuity is often a requirement for motions
modeled as dynamical systems. Furthermore, the generalization capabilities of
function approximations are compromised by non-continuous representations.
To enable proper generalization, states that are close in the real world should
be represented as closely related in the function approximator’s input, i.e., the
state space representation.

1This issue stems from singularities and non-unique representations.
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Figure 6.1.: Motion learned using the proposed framework. The blue trajectory
in the task space T demonstrates the evolution of the robot’s end effector state
xt when represented in a spherical manifold. The evolution of this trajectory is
governed by the dynamical system ẋt = ϕθ(ψθ(xt)), depicted as a vector field of
red arrows in the remaining of the space. Through Deep Metric Learning, this
system is stabilized by deriving a simpler representation in the latent space L.

Nevertheless, previous methods for stable motion generation have been initially
designed under the assumption that the state space is Euclidean [156, 158, 159,
163]. Consequently, some have later been explicitly adapted to account for the
geometry of motions that consider orientations [203–205], resulting in rather
convoluted learning frameworks.

In this work, we present a DNN framework capable of learning accurate, stable
motions in state spaces with arbitrary geometries without constraining the DNN’s
architecture. To accomplish this, we introduce a novel loss function that repurposes
the triplet loss, commonly used in deep metric learning literature [168, 181]. We
prove that this loss imposes conditions on the DNN’s latent space that enforce the
learned dynamical system to have a globally asymptotically stable equilibrium at
the motion’s goal state (see Fig. 6.1). To account for the geometry of the state
space, it is sufficient to consider its corresponding metric during the computation
of the loss, the choice of which depends on the specific task at hand. We validate
our method in various settings, including Euclidean, non-Euclidean, first-order,
and second-order motions. Additionally, real-world experiments controlling the
6-dimensional pose (x-y-z position and unit quaternion orientation) of a robot
manipulator’s end effector demonstrate the method’s practical applicability and
potential.

The rest of this chapter offers a thorough discussion of our developments.
Following a review of the relevant literature, we delve into foundational concepts
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and problem formulation. We then present the details of our methodology, provide
a proof regarding the stability of the learned motion, and discuss the integration of
the triplet loss function within the context of non-Euclidean state representations.
We validate our approach through several experiments and conclude by considering
potential directions for future research based on our findings.

6.2. Related Work
Three categories of works are relevant to this chapter. First, there are papers that
focus on learning stable motions, assuming these motions occur in Euclidean state
spaces. Second, others explore learning motions in non-Euclidean state spaces, but
do not consider the stability of the learned motions. Finally, a third set of papers
addresses both learning motions in non-Euclidean state spaces and their stability.
Importantly,

In every case, works use either time-varying (non-autonomous) or time-invariant
(autonomous) dynamical systems for motion modeling. In time-varying systems,
evolution explicitly depends on time (or a phase). Conversely, time-invariant
systems do not directly depend on time; instead, they rely on their time-varying
input (i.e., the state of the system). The property of a system being time-invariant
or not dictates the strategies we can use to ensure its stability. Thus, making a
distinction between these systems is important. Notably, both types of formulations
have been shown to be complementary in the context of IL [5, 174].

This work focuses on time-invariant dynamical systems. Consequently, although
we consider both methodologies for motion learning, we delve deeper into the
literature on time-invariant systems. Furthermore, while we concentrate on
methods that ensure asymptotic stability, we acknowledge that there are studies
imposing other conditions, such as via-point conditioning [206, 207], which can be
significantly relevant in some robotic contexts.

6.2.1. Stability in Euclidean State Spaces
Regarding time-varying dynamical systems, a seminal work in IL that addresses
the problem of learning stable motions introduces Dynamical Movement Primitives
(DMPs) [157]. DMPs take advantage of the time-dependency (via the phase of the
canonical system) of the dynamical system to make it evolve into a simple and
well-understood system as time goes to infinity. The simple system is designed to
be stable by construction. As a consequence, the stability of the learned motions
can be guaranteed. This concept has been extended in multiple ways, for instance
through probabilistic formulations [170, 208], or adapted to the context of DNNs
[171–173].

Conversely, IL approaches based on time-invariant dynamical systems often
constrain the function approximator used to model the dynamical systems. Such
constraints ensure stability by construction. One seminal work introduces the
Stable Estimator of Dynamical Systems (SEDS) [158]. This approach imposes
constraints on the structure of a Gaussian Mixture Regression (GMR) such that
the conditions for Lyapunov stability are always met. Multiple extensions of
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SEDS have been proposed, for instance by using physically-consistent priors [176],
contraction theory [177] or diffeomorphisms [178].

Other works propose explicitly learning Lyapunov functions that are consistent
with the demonstrations. These functions are then used to correct the transitions
learned by the dynamical systems, ensuring that they are always stable according
to the learned Lyapunov functions [164, 165, 175]. Moreover, some papers have
employed concepts such as contraction metrics [179, 180] and diffeomorphisms
[159, 162, 163, 209] to impose stability, in the sense of Lyapunov, in time-invariant
dynamical systems.

Understandably, all of these methods constrain some part of their learning
framework to ensure stability. From one perspective, this is advantageous as it
guarantees stability. However, in many cases, this comes at the expense of reduced
accuracy in the learned motions. Notably, some recent methods have managed
to mitigate this loss in accuracy [159, 163]. Nevertheless, they are still limited
in terms of the family of models that can be used with these frameworks, which
harms their scalability.

In Chapter 5, we addressed this issue by employing tools from the deep
metric learning literature [168]. There, we introduced CONDOR, which uses a
contrastive loss to enforce stability in learned motions through the optimization
process of a DNN. This approach proved effective in learning stable, accurate, and
scalable motions from human demonstrations. However, this method presents two
important limitations. First, it requires the design of a stable and well-understood
system for computing the contrastive loss (referred to as fL in Sec. 6.3.3), which
can significantly impact learning performance. Second, similar to the other
methods described in this subsection, CONDOR is limited to operating within
Euclidean state spaces.

In this work, we introduce a novel deep metric learning loss that ensures stability
while addressing the limitations of CONDOR, specifically, the need for the function
fL and the inability to learn motions in non-Euclidean manifolds. Moreover, this
loss requires weaker conditions for imposing stability, leading to, for instance, more
robust performance when learning second-order dynamical systems.

6.2.2. Stability in Non-Euclidean State Spaces
As noted previously, it is crucial to consider the geometry of our state spaces
when learning motions requiring pose control. Consequently, many studies have
adapted methods that originally assumed data from Euclidean spaces to work
with data from non-Euclidean manifolds, such as SO(3) and S3. In the context
of IL, pioneering approaches utilized time-varying dynamical systems (extensions
of DMPs) to incorporate the geometry of orientation representations into their
models [201, 210, 211]. Because DMPs inherently ensure stability, these methods
are stable as well.

In contrast, although several geometry-aware IL approaches based on time-
invariant dynamical systems have been introduced, such as Gaussian process
regressions [212, 213], GMRs [214–217], and kernelized movement primitives [218,
219], such methods are not inherently stable. As a result, in these cases, models
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need to be explicitly endowed with stability properties. This limitation has been
addressed in recent works, where [220] uses GMRs and employs contraction theory
to ensure stability considering the robot’s orientation geometry. Furthermore,
recent methods have extended the use of diffeomorphism-based techniques for
stability to generate motions in non-Euclidean manifolds as well [203–205].

These diffeomorphism-based methods are of particular interest to our work,
as our method is grounded in similar concepts for achieving stability. In both
approaches, we transfer the stability properties of a simple system in the latent
space of a DNN to the dynamical system that models motion in task space.
However, unlike these methods, our approach learns this property, whereas the
other works constrain the DNN structure to ensure its satisfaction. Moreover, our
method is not constrained to diffeomorphic solutions for transferring the stability
properties of the simple system to task space. Lastly, our method allows us to
seamlessly incorporate the geometrical aspects of the robot’s state space into the
learned model, as this integration is factored into the DNN’s optimization process.

6.3. Preliminaries
6.3.1. Dynamical Systems for Reaching Tasks
In this work, we model motions as nonlinear time-invariant dynamical systems
represented by

ẋt = f(xt), (6.1)

where xt ∈ T , with T ⊆ Rn being the task space, is the robot’s state, and
f : T → Rn is a differentiable function. Additionally, the subscript t indicates the
time instance to which the state corresponds. Since we are interested in solving
reaching tasks, we aim to construct systems with a globally asymptotically stable
equilibrium at a goal state xg. This implies that

lim
t→∞

||xg − xt|| = 0, ∀xt ∈ T . (6.2)

6.3.2. Problem Formulation
We consider a robot learning a reaching motion in the space T towards the goal
state xg ∈ T . Based on a set of demonstrations D, the robot is expected to imitate
the behavior shown in the demonstrations while always reaching xg, regardless of
its initial state. The dataset D contains N trajectories τ . These trajectories show
the evolution of a dynamical system’s state xt when starting from some initial
condition x0.

We assume that the demonstrations are drawn from an optimal distribution over
trajectories, denoted as p∗(τ), that adheres to the optimal dynamical system f∗.
Here, “optimal” refers to the behavior that the demonstrator deems best.

The robot’s motion follows the parametrized system fTθ , inducing the distribution
pθ(τ), where θ is a parameter vector. Then, the objective is to find the vector
θ∗ that minimizes the difference, expressed as the (forward) Kullback-Leibler
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divergence, between pθ(τ) and p∗(τ), while ensuring that xg is a globally
asymptotically stable equilibrium:

θ∗ = arg min
θ∈Θ

DKL (p∗(τ)||pθ(τ)) (6.3a)

s.t. lim
t→∞

d(xg, xt) = 0,∀xt ∈ T . (6.3b)

Here, Θ is the parameter space of a DNN, and d(·, ·) is a distance function.

6.3.3. Stability Conditions
In [156], the stability conditions are formulated to enforce stability in fTθ . This
is achieved by ensuring that fTθ inherits the stability properties of a simple and
stable system, referred to as fL. Thus, if fL is asymptotically stable, fTθ will also
be asymptotically stable. To accomplish this, the system fL is designed to define
the evolution of a state yt with an initial condition derived from mapping x0 to
the output of a hidden layer in the DNN that parameterizes fTθ . As a result, the
dynamical system fTθ is expressed as a composition of two functions, ψθ and ϕθ,

ẋt = fTθ (xt) = ϕθ(ψθ(xt)). (6.4)

Here, fTθ is a standard DNN with L layers. ψθ denotes layers 1, ..., l, and ϕθ layers
l + 1, ..., L. We define the output of layer l as the latent space L ⊂ Rm, which is
where yt resides, i.e., yt ∈ L. Note that L ⊂ Rm implies the dimensionality of the
vectors used to represent T and L does not need to be the same. Moreover, for
simplicity, although we use the same θ notation for both ψθ and ϕθ, each symbol
actually refers to a different subset of parameters within θ. These subsets together
form the full parameter set in fTθ .

Additionally, we introduce a third dynamical system. This system denotes the
evolution in L of the states visited by fTθ when mapped using ψθ, which yields the
relationship

ẏt = fT →L
θ (xt) = ∂ψθ(xt)

∂t
. (6.5)

Fig. 6.2 provides an example of the introduced dynamical systems.
Then, the stability conditions of [156] can be written as:

Theorem 2 (Stability conditions: v1). Let fTθ , fT →L
θ and fL be the introduced

dynamical systems. Then, in the region T , xg is a globally asymptotically stable
equilibrium of fTθ if, ∀xt ∈ T ,:

1. fT →L
θ (xt) = fL(yt),

2. ψθ(xt) = yg ⇒ xt = xg.

These conditions imply that if the system fT →L
θ behaves like fL, and any point

other than xg is excluded from mapping to the latent goal yg, then fTθ is stable.
Note that the latent goal is defined by the mapping ψθ(xg) = yg.
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Task Space

Latent Space

Figure 6.2.: Example of trajectories generated by simulating the systems fTθ ,
fT →L
θ and fL for different time instants. The stability conditions are not met in

this case, as fT →L
θ differs from fL.

In this work, we reformulate these conditions and propose a novel way to
optimize them. This adaptation endows the learning framework with increased
flexibility, enabling it to tackle a wider array of problems (e.g., non-Euclidean state
spaces) and achieve improved performance.

6.3.4. Deep Metric Learning: the Triplet Loss
Commonly employed in the Deep Metric Learning literature, the triplet loss [181]
has been utilized for learning and structuring latent state representations [168]. Its
function is to cluster similar observations together and differentiate dissimilar ones
within the latent space of a DNN. In this work, however, the triplet loss is used
differently. Although we continue to use this loss to impose a certain structure on
the DNN’s latent space, its purpose is to enforce the stability conditions, thereby
ensuring that fTθ is stable.

Let us recall the triplet loss:

ℓtriplet = max(0,m+ d(a, p)− d(a, n)), (6.6)

where m ∈ R>0 is the margin, a is the anchor sample, p the positive sample, and n
the negative sample This loss enforces positive samples to be at least m distance
closer to the anchor than the negative samples. Notably, this is enough for the loss
to become zero, i.e., it does not require the anchor and positive samples to have
the same value.
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6.3.5. Stability Analysis through Comparison Functions
In this work, we employ comparison functions, namely class-KL functions, to prove
global asymptotic stability at the equilibrium xg. These functions are used to
formulate a general approach for stability analysis in the sense of Lyapunov. As
described in [221, 222], these functions are defined as follows:

Definition 1 (class-K function). A continuous function α : [0, a) → R≥0, for
a ∈ R>0, is said to belong to class K if it is strictly increasing and α(0) = 0.

Definition 2 (class-L function2). A continuous function σ : R≥0 → R>0, is said to
belong to class L if it is weakly decreasing3 and lims→∞ σ(s) = 0.

Definition 3 (class-KL function). A function β : [0, a)×R≥0 → R≥0, for a ∈ R>0,
is said to belong to class-KL if:

• for each fixed s, the mapping β(r, s) belongs to class-K with respect to r,

• for each fixed r, the mapping β(r, s) belongs to class-L with respect to s.

Then, we can describe global asymptotic stability in terms of class-KL functions
as:

Theorem 3 (Global asymptotic stability with class-KL functions). The state xg is
a globally asymptotically stable equilibrium of (6.1) in T if there exists a class-KL
function β such that, ∀t ∈ R≥0 and ∀x0 ∈ T ,

||xg − xt|| ≤ β(||xg − x0||, t). (6.7)

Note that this theorem seamlessly integrates the concepts of stability and
attractivity within a single function β, which acts as an upper bound of
||xg − xt||. As the initial condition of the system moves further away from xg,
β correspondingly increases. Moreover, as the system evolves over time and β
decreases, it follows that the system’s distance to xg will eventually decrease.

6.4. Method
We introduce the Policy via neUral Metric leArning (PUMA) framework,
which learns motion primitives from human demonstrations parametrized as the
dynamical system fTθ . Furthermore, it enforces the goal of the motion xg to be a
globally asymptotically stable equilibrium of fTθ while maintaining accuracy with
respect to the demonstrations. To achieve this, we augment the Imitation Learning
(IL) problem with the stability-enforcing loss ℓstable. Hence, our framework
minimizes the loss:

ℓPUMA = ℓIL + λℓstable, (6.8)
where ℓIL is an imitation learning loss and λ ∈ R>0 is a weight factor.

2Note that the symbol L is used in two distinct contexts. While it represents the class-L
functions, it is also used to denote the set L introduced in Sec. 6.3.3. In subsequent sections
of the chapter, the L referring to class-L functions is exclusively used in the form KL.

3We use this term to denote functions that either remain constant or strictly decrease within
any interval of their domain.
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Figure 6.3.: Illustration of the behavioral cloning loss computation. Starting
from an initial condition x0, the system fTθ evolves to various time instants via Φxθ .
At each instant, the estimated state is compared with a demonstrated state. The
red arrows show the gradient path used to update the DNN’s weights using BPTT.

6.4.1. Behavioral Cloning
To minimize ℓIL, and thereby address (6.3a), we adopt the behavioral cloning loss
used in [156]. This loss tackles (6.3a) by modeling the output of the deterministic
dynamical system fTθ as the mean of a Gaussian distribution with fixed covariance.
Furthermore, it mitigates covariate shift by minimizing the multi-step error over
trajectory segments using backpropagation through time (BPTT), as depicted in
Fig. 6.3.

In every training iteration, we sample a batch Bi of trajectory segments Hi from
the dataset D. These segments can start at any point within a given demonstration,
with the start time defined as t = 0. Then, by introducing the evolution function
Φxθ (t, x0) : R≥0 × T → T , which defines the value of xt by integrating fTθ between
0 and t, with initial condition x0, we can construct the loss

ℓIL =
∑

Hi∈Bi

∑
(t,x∗

t )∈Hi

||x∗
t − Φxθ (t, x0)||22. (6.9)

Here, the states x∗
t along the trajectory segment Hi serve as labels for the states

predicted by the DNN from the initial condition x0 using Φxθ (t, x0). Note that the
initial condition is obtained from Hi, i.e., x0 = x∗

0.
Since we do not have an analytical solution of Φxθ , we approximate it using the

forward Euler method, i.e.,

Φxθ (t, x0) = Φxθ (t′, x0) + fTθ (Φxθ (t′, x0)) ∆t, (6.10)

where t′ = t−∆t and ∆t ∈ R>0 is the time step size. This integration starts with
the initial state x0, i.e., Φxθ (0, x0) = x0. It is important to note that the recursive
nature of Φxθ (t, x0) necessitates the use of BPTT for the optimization of the DNN.
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6.4.2. Triplet Stability Loss
Reformulating the Stability Conditions
The stability conditions of Theorem 2 involve three dynamical systems: fTθ , fT →L

θ ,
and fL. Note, however, that its first condition, namely, fT →L

θ = fL ∀xt ∈ T ,
essentially states that fT →L

θ must exhibit global asymptotic stability. In other
words, if the behavior of fT →L

θ is identical to that of another system, fL, for which
stability is verified, then the stability of fT →L

θ is also verified. Nonetheless, if we
can enforce its stability through a different method, these conditions can be more
generally written as follows:

Theorem 4 (Stability conditions: v2). Let fTθ and fT →L
θ be the introduced

dynamical systems. Then, in the region T , xg is a globally asymptotically stable
equilibrium of fTθ if, ∀xt ∈ T ,:

1. yg is a globally asymptotically stable equilibrium of fT →L
θ (xt),

2. ψθ(xt) = yg ⇒ xt = xg.

Surrogate Stability Conditions
Theorem 4 introduces stability conditions for fTθ ; nevertheless, it does not specify
how to enforce these conditions in the system. Therefore, we introduce the
surrogate stability conditions of Theorem 4. These conditions, when met, imply
that the stability conditions of Theorem 4 are also satisfied. Unlike the stability
conditions, the surrogate conditions can be directly transformed into a specific loss
function, ℓstable, for optimizing the DNN to enforce their satisfaction.

To formulate the surrogate stability conditions, we note that Theorem 4 can be
expressed in terms of relative distances. We define the distance between any given
latent state yt and the goal state yg as dt = d(yg, yt) = ∥yg − yt∥. Then, according
to Condition 1 of Theorem 4, which addresses global asymptotic stability, the
value of dt should, generally speaking, decrease over time. Moreover, the second
condition specifies that the value of dt should remain constant only for yg = ψθ(xg).
Formally, we introduce the conditions as:

Theorem 5 (Surrogate stability conditions). Let two dynamical systems be
governed by the equations ẋt = fTθ (xt) and ẏt = fT →L

θ (yt), such that yt = ψθ(xt).
Assume both fTθ and fT →L

θ are continuously differentiable. Then, in the region T ,
xg is a globally asymptotically stable equilibrium of fTθ if, ∀t ∈ R≥0:

1. dt = dt+∆t, for y0 = yg,

2. dt > dt+∆t, ∀y0 with x0 ∈ T \ {xg},

where ∆t ∈ R>0.

Proof. To prove this theorem, we demonstrate that if the surrogate stability
conditions are satisfied, then the stability conditions from Theorem 4 must also
hold. This leads to xg being a globally asymptotically stable equilibrium of fTθ .
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Second stability condition of Theorem 4 Let us begin by analyzing the
fulfillment of the second stability condition from Theorem 4. This condition states
that only xg can map to yg via ψθ. Then, since yg is defined as ψθ(xg), we need to
establish that no other xt maps to yg. To achieve this, we note that both xt and
x0 belong to the same state space T . Therefore, showing that this statement holds
∀x0 ∈ T implies that it also holds ∀xt ∈ T .

Now, suppose for a contradiction that there exists some x0 such that x0 ̸= xg and
y0 = ψθ(x0) = yg. Then, according to the second surrogate condition, dt > dt+∆t,
which contradicts the first surrogate condition. Consequently, the second stability
condition must be satisfied.

First stability condition Theorem 4 Let us now study the first stability
condition. Our goal is to prove that yg is a globally asymptotically stable
equilibrium of fT →L

θ within the region L, where the system is defined. Surrogate
condition 2 hints that the system’s stability could be verified through a Lyapunov
candidate defined using dt. This is because the condition enforces the distance
dt to strictly decrease within the interval defined by ∆t. However, this does not
necessarily imply that the Lyapunov candidate strictly decreases with time, as
it is possible for it to strictly increase locally while adhering to this condition,
as exemplified in Fig. 6.4. As a result, we proceed to demonstrate the global
asymptotic stability of yg using Theorem 3. Specifically, we aim to do so by
employing a class-KL upper bound β that fulfills (6.7).

To achieve this, we first define an evolution function for the distance dt, for a
given y0 and t, as δ : L × R≥0 → R≥0, with δ(y0, t) = ||yg − Φyθ(t, y0)||. Here, Φyθ
represents the evolution function of yt under the dynamical system fT →L

θ . Then,
we can express the upper bound β as

δ(y0, t) ≤ β(d0, t), (6.11)

where d0 = δ(y0, 0). Recall that for ensuring asymptotic stability, β must also
satisfy the following properties: i) β(0, t) = 0, ii) β weakly decreases with t, iii)
β is continuous with respect to d0 and t, iv) β → 0 as t → ∞, and v) β strictly
increases with d0.

It is important to note that verifying all these properties can lead to a lengthy
proof. Thus, while we introduce β and discuss the key concepts behind its design
here, the complete proof and details are provided in Proposition 3, Appendix C.1.

We now proceed to describe the three main aspects considered in the design of β.

1. Upper bound in time: First, we need to identify a β that weakly decreases with
time. For this purpose, we introduce a function that computes the maximum of
δ over the window [t, t+ ∆t] for any given y0 and t, i.e.,

δmax
t+∆t(y0, t) = max

s∈[t,t+∆t]
δ(y0, s). (6.12)

Clearly, this function serves as an upper bound for δ. Moreover, this function
must weakly decrease with time. Considering surrogate condition 2, which
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Figure 6.4.: Time evolution of two functions δ, δ1 and δ2, starting with different
initial conditions y0, but same d0. Both satisfy the surrogate stability conditions
with ∆t = 2. Additionally, the values of δmax and β, computed using these
functions, are shown. In this representation, δ = e−a·t (

sin2 (ωt) + d0 · cos2 (ωt)
)

with a = 0.75, d0 = 0.2, and ω = [π, π/2].

indicates that ∀s ∈ [t, t + ∆t], we have δ(y0, s + ∆t) < δ(y0, s), it follows that
there is no δ greater than δmax

t+∆t in the interval [t+ ∆t, t+ 2∆t]. By extending
this observation for every interval [t + n ·∆t, t + (n + 1) ·∆t], with n ∈ N, we
can conclude that δmax

t+∆t weakly decreases with time.

2. Upper bound in space: The function δmax
t+∆t(y0, t) provides an upper bound of δ

for a given y0. However, β(d0, t) depends on d0 rather than directly on y0. To
address this, for any specified d0, we must ensure that β ≥ δ for every y0 located
at this particular distance from the equilibrium. The set of initial conditions y0
fulfilling this condition can be defined as Y0(d0) = {y0 ∈ L : ||yg − y0|| = d0}.
Considering this, we can introduce an upper bound dependent on d0 by
computing the maximum of each δmax

t+∆t(y0, t), where y0 ∈ Y0:

δmax(d0, t) = max
y0∈Y0(d0)

(
δmax
t+∆t(y0, t)

)
. (6.13)

3. Strictly increasing/decreasing function: Similarly to δmax
t+∆t, the function δmax

also weakly decreases as a function of time (see Appendix C.1 for details). This
is not inherently problematic, as it verifies the properties of class-KL functions.
However, β must strictly increase as a function of d0, and, for this to be the
case, in our formulation, β must also strictly decrease as a function of time,
∀d0 ∈ L \ {yg}.
To achieve this, we consider β as the evolution function of a first-order linear
dynamical system with state zt, using δmax as the reference. This leads to the
equation

żt = α(zt − δmax), (6.14)
where α < 0. With an initial condition z0 greater than δmax

0 = δmax(d0, 0), we
ensure that β strictly decreases with time. Moreover, β remains above δmax, and
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consequently above δ, for all d0 ∈ L \ {yg}. Hence, by choosing z0 = δmax
0 + d0,

we ensure that β exhibits the desired increasing/decreasing properties. We can
express β as

β(d0, t) = z0 +
∫ t

0
żsds. (6.15)

Based on Proposition 3, Appendix C.1, we can confirm that our formulation for
β is a valid class-KL upper bound of δ. This indicates that the first stability
condition of Theorem 4 is satisfied, concluding our proof.

Loss Function
Crucially, the surrogate stability conditions from Theorem 5 can be enforced in a
DNN by minimizing the following expression, ∀y0 ∈ L and ∀t ∈ R≥0,

max
(
0,m+ d(yg, yt+∆t)− d(yg, yt)

)
, (6.16)

where m ∈ R>0. This function resembles the form of the triplet loss introduced
in Sec. 6.3.4. However, in our context, yg serves as the anchor sample, yt+∆t as
the positive sample, and yt as the negative sample. In the following discussion,
we explore how this expression induces the fulfillment of the surrogate stability
conditions within a DNN.

Second surrogate condition For any y0 where x0 ̸= xg, minimizing (6.16)
enforces transitions to progressively approach yg, as its minimization implies

d(yg, yt+∆t) +m ≤ d(yg, yt). (6.17)

Hence, d(yg, yt+∆t) < d(yg, yt), i.e., the second surrogate condition (see Fig. 6.5).

First surrogate condition In the case where y0 = yg = ψθ(xg), that is, when
the system is initialized at the equilibrium, enforcing a value of yt+∆t different from
yg would only increase the function in (6.16). Consequently, for y0 = yg = ψθ(xg),
(6.16) achieves its minimum when yt+∆t = yg = y0, equal to m. Therefore, this
equation also enforces the first surrogate condition.

Finally, since δ(y0, t) = d(yg, yt), we present the stability loss function as

ℓstable =
∑
y0∈Bs

∑
t∈Hs

max(0,m+ δ(y0, t+ ∆t)− δ(y0, t)). (6.18)

In this equation, Bs denotes a batch of initial latent states y0. These states
are derived by mapping initial states x0 (sampled randomly from T ) via the
function ψθ. Meanwhile, Hs represents a set of time instants t at which the loss is
minimized.

To compute this loss, we must recall that the evolution function of yt is
represented as Φyθ . Consequently,

δ(y0, t) = ||yg − Φyθ(t, y0)||. (6.19)
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Task Space

Latent Space

Figure 6.5.: Left: Illustration of the effect of optimizing ℓstable. The red arrow
depicts yt and yt+∆t being modified to fulfill (6.17). Right: Example of trajectories
generated with fTθ and fT →L

θ post-training. Each yt+∆t is closer to yg than its
predecessor yt.

Given the absence of an analytical representation for Φyθ , we approximate it using
the forward Euler method, and optimize it using BPTT, in a similar manner to
Sec. 6.4.1.

Importantly, optimizing this loss for all t ∈ R≥0 using BPTT is not feasible,
as it would necessitate computing the loss over an infinite number of samples.
Nevertheless, this limitation is not a significant concern when dealing with
time-invariant dynamical systems. In such systems, any state yt can be equivalently
represented by an initial condition y0, since both reside in the same state space L.
Consequently, when states are randomly sampled from T , and thereby from L, we
are essentially sampling from the space of all possible yt.

6.4.3. On the Stability Loss Metric
Intentionally, we have not specified which distance function or metric should be
used for computing the stability loss, since it should be selected depending on the
geometry employed to describe the robot’s state space.

To elaborate, recall that the learned dynamical system can be expressed as
ẋt = ϕθ(yt). It then follows that the output of our model is entirely determined
by the latent state yt. This implies that if two different states xa

t and xb
t map to

the same latent state, that is, yt = ψθ(xa
t ) = ψθ(xb

t ), the time derivative computed
by the learned dynamical system for both states will be identical. Such behavior
would manifest in certain states if ψθ were a non-bijective4 function. It would,
therefore, be potentially harmful for the learning process to enforce ψθ to be
non-bijective, as this would constrain the family of solutions to which the system
can converge, hindering the DNN’s optimization process. Ideally, we would like ψθ

4More rigorously, the property being described is that of non-injective functions. However, for
practical purposes, we can define the codomain of ψθ to be equal to its image, which is the
property that an injective function must have to be bijective. Hence, in this specific context,
we use these terms interchangeably.
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Non-bijective

Bijective (homeomorphism)

Figure 6.6.: Non-bijective vs bijective solution. In the non-bijective case, every
point on the blue line in T maps to the blue point in L. In the bijective case, the
original line undergoes a transformation that both compresses and skews it, yet a
one-to-one mapping is maintained.

to have the capacity to converge to a bijective function if required, where each
state xt maps to a unique latent state yt. Consequently, for any state xt, it would
be possible to compute a value of ẋt that is independent of those calculated for any
other state. Fig. 6.6 presents an example of bijective and non-bijective mappings
between dynamical systems where the surrogate stability conditions are enforced.

It turns out that the capacity of ψθ to converge to a bijective function is closely
linked to the metric used in calculating ℓstable, which should be chosen based on
the geometry of the robot’s state space. In the following subsection, we explore
this relationship in more depth.

Homeomorphisms and State Space Geometry
To study under which conditions ψθ can converge to a bijective function, let
us introduce the concept of topologically equivalent manifolds. Two manifolds,
e.g., T and L, are topologically equivalent if a continuous and bijective mapping,
known as an homeomorphism, exists between them [223]. In other words, two
topologically equivalent manifolds can be stretched, compressed, or twisted into
each other without tearing or gluing space. Since DNNs are continuous functions5,
a bijective function ψθ would also serve as a homeomorphism6 between T and L.

Moreover, since we have a notion of distance in both T and L, it follows
that these manifolds are metric spaces. A key property of metric spaces is that
their topology is generated by their distance functions. Therefore, if two metric
spaces are topologically equivalent, their metrics are termed as being equivalent
[225]. It is important to clarify that this does not necessarily mean that the two

5We can assume this since every broadly used model is continuous [145, 224].
6DNNs are commonly continuously differentiable, so, sometimes in the literature the term

diffeomorphism is employed instead, as diffeomorphisms are continuously differentiable
homeomorphisms.
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distance functions are identical, but rather that they induce metric spaces that are
homeomorphic to each other.

In our context, this implies that the distance function employed in the stability
loss (6.18) must induce a topology in L that is equivalent to that of T . For
example, if orientations are described using unit quaternions, the topology of T
would be spherical. Then, the stability loss metric should generate a topology that
is homeomorphic to the sphere. Otherwise, it would be infeasible for the DNN to
establish a homeomorphism between T and L.

In this work, Sec. 6.5, we use unit quaternions to represent orientations in our
robot experiments. For a detailed discussion on metrics and pose control in this
context, the reader is referred to Appendix C.2.

6.4.4. Boundary Conditions
Lastly, it is crucial to ensure that a dynamical system evolving in T always remains
within this manifold. Two scenarios are relevant to this work: 1) ensuring T is
positively invariant with respect to fTθ ; and 2) considering the state’s geometry
when computing the evolution of the dynamical system.

Positively Invariant Sets
In PUMA, the stability of a motion is enforced by randomly sampling points from
T and minimizing ℓstable. Thus, stability cannot be ensured in regions where this
loss is not minimized, i.e., outside of T . When boundaries are imposed on the
robot’s workspace, the learned dynamical system fTθ can potentially evolve towards
these boundaries, leaving T . Hence, to ensure stability, a state evolving within T
must not leave T . In other words, T has to be a positively invariant set with
respect to fTθ [165, 221].

To address this, we design the dynamical system so that it cannot leave T
by construction. This can be achieved by projecting any transitions that would
leave T back onto its boundary. For example, in Euclidean state spaces, T can
be represented as a hypercube; therefore, in this case, this projection is achieved
by saturating/clipping the points that leave T . Furthermore, we found that
introducing an additional loss, denoted as ℓ∂ , can be beneficial in enforcing this
condition through the optimization process of the DNN. As proposed in [165],
this can be accomplished by using the scalar product between the dynamical
system’s velocity v(xt) (which equates to fTθ for first-order systems) and the
outward-pointing normal vector n(xt) at states within the boundary of T . This
product should be ensured to be equal to or less than zero. Then, to achieve this
for DNNs, we introduce the following loss function

ℓ∂ = max(0, n(xt) · v(xt)). (6.20)

Evolving in Non-Euclidean State Spaces
When modeling dynamical systems in non-Euclidean state spaces, it is crucial to
ensure that states do not evolve outside the manifold representing them. For
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instance, unit quaternions must remain within the unit sphere. However, if these
states are evolved using Euclidean geometry tools, such as the forward Euler
integration method, deviations from the manifold are likely to occur.

Non-Euclidean state spaces are commonly defined within a higher-dimensional
Euclidean space and can sometimes be constructed by incorporating constraints
into this space. Consider the unit quaternion as an example: its state space consists
of every vector in R4 with a unit norm, forming the 3-sphere S3 ⊆ R4. Therefore,
in such scenarios, by integrating an operation that enforces these constraints, such
as normalization for S3, into the structure of the DNN representing fTθ , we ensure
that transitions remain within the manifold. Moreover, in this way, the distortions
that this operation introduces into the dynamical system’s output are factored into
the DNN’s optimization process, ensuring they are accounted for.

Alternatively, when we have access to the Riemannian metric of a state space
manifold, it is possible to use the exponential and logarithmic maps to do Euclidean
calculus in the tangent bundle of the manifold, and then map the solution back on
the manifold (the reader is referred to [226] for more details).

6.5. Experiments
We validate our method with three datasets, each allowing us to study different
aspects of it. For evaluation purposes, we use these datasets under the
assumption of perfect tracking of the desired state derivatives, ẋdt , provided by
fTθ , without any involvement of robots in this process. Subsequently, we test
our method in two real-world settings using two different robots. We have made
our code implementation of PUMA publicly available at: https://github.com/
rperezdattari/Deep-Metric-IL-for-Stable-Motion-Primitives. Details on
the DNN’s hyperparameters optimization process are presented in Appendix C.3.

6.5.1. Euclidean Datasets
Firstly, we evaluate our method using datasets of Euclidean motions. This enables
us to study how different variations of PUMA perform for Euclidean motions and
compare the performance of PUMA against state-of-the-art methods for stable
Euclidean motion generation.

LASA
The LASA dataset [158] is composed of 30 human handwriting motions, each
consisting of 7 demonstrations of desired trajectories under different initial
conditions. These demonstrations are two-dimensional and designed to be modeled
using first-order systems, i.e., output desired velocities as a function of their
positions. To compare accuracy performance between different models, we employ
the same metrics in every experiment: 1) Root Mean Squared Error (RMSE),
Dynamic Time Warping Distance (DTWD) [194] and Fréchet Distance (FD) [195].

https://github.com/rperezdattari/Deep-Metric-IL-for-Stable-Motion-Primitives
https://github.com/rperezdattari/Deep-Metric-IL-for-Stable-Motion-Primitives
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Figure 6.7.: Accuracy study in the LASA dataset.

Table 6.1.: Percentage of unsuccessful trajectories over the LASA dataset (L =
2500, P = 2500, ϵ = 1mm).

Behavioral
Cloning

PUMA
(Euc.)

PUMA
(Euc. + ℓ∂)

PUMA
(Sph.)

PUMA
(Sph. + ℓ∂)

36.4653% 0.0000% 0.0000% 0.0000% 0.0000%

Accuracy Fig. 6.7a shows the accuracy of four variations of PUMA. Here, we
compare the performance of different distance metrics in ℓstable for motions in
Euclidean spaces, focusing on the Euclidean distance and the great-circle (spherical)
distance. Furthermore, we also examine the influence of ℓ∂ on the accuracy of the
learned motions. We use Behavioral Cloning (BC) without a stability loss as an
upper performance bound for comparison. Interestingly, each variation of PUMA
achieves a similar performance; however, PUMA with a spherical metric shows
slightly better performance than PUMA with an Euclidean metric. This suggests
that the DNN has no difficulties in mapping the Euclidean space T into a spherical
space L. Lastly, we can also observe that the use of ℓ∂ does not harm the accuracy
performance of PUMA.

Stability The stability of the motions learned by PUMA hinges on the successful
minimization of (6.8), which we need to test after the learning process concludes
empirically. To do this, we integrate the dynamical system over L time steps,
starting from P initial states, and observe whether the system converges to the
goal. The larger the P , the more accurate our results. If L is sufficiently large, the
system should reach the goal after L steps. By measuring the distance between the
last state visited and the goal, and confirming that it falls below a pre-set threshold
ϵ, we can evaluate if a trajectory is successful (i.e., it converges to the goal).

Table 6.1 provides the stability results of BC and different PUMA variations.
The data shows that every variation of PUMA successfully enforces stability across
the dataset, generating no unsuccessful trajectories. Compared to BC, which has
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(a) S shape PUMA. (b) S shape CONDOR.

(c) S shape PUMA with ℓ∂ .

PUMA
(Euc.)

PUMA
(Sph.)

CONDOR PUMA
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(d) Positive invariance comparison.

Figure 6.8.: Positive invariance evaluation. In figures (a)-(c) white curves
represent demonstrations. Red curves represent learned motions when starting
from the same initial conditions as the demonstrations. The arrows indicate the
vector field of the learned dynamical system.

a 36.4653% rate of unsuccessful trajectories, the benefit of the proposed loss in
enforcing stability becomes clear.

State-of-the-art comparison Fig. 6.7b presents an accuracy comparison of
PUMA with other state-of-the-art methods, namely: 1) Control Lyapunov Function-
based Dynamic Movements (CLF-DM) using Gaussian Mixture Regression (GMR)
[164], 2) Stable Dynamical System learning using Euclideanizing Flows (SDS-EF)
[159], and 3) CONDOR. The results for PUMA correspond to the best-performing
variation in this dataset, i.e., spherical distance with ℓ∂ . We observe that PUMA
achieves competitive results, demonstrating similar performance in DTWD and FD
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Figure 6.9.: LAIR dataset PUMA / CONDOR comparison.

to CONDOR and SDS-EF, and slightly superior performance under RMSE.

Boundary loss Fig. 6.8 demonstrates the effect of the boundary loss ℓ∂ in
PUMA. Figures 6.8a and 6.8b present an example of the qualitative performance
of PUMA and CONDOR when no boundary loss is applied. In the top-left
region of these images, PUMA exhibits non-smooth trajectories at the boundary,
which abruptly change direction due to the applied saturation (see Sec. 6.4.4).
Conversely, CONDOR learns a smoother trajectory in this region. This feature in
PUMA vanishes when ℓ∂ is applied, as depicted in Fig. 6.8c. Finally, Fig. 6.8d
provides a quantitative evaluation of the boundary loss, confirming our qualitative
observations.

In this work, this loss is only relevant for Euclidean state spaces because we
do not introduce boundaries in the state space when controlling orientation in S3.

LAIR
Contrary to the LASA dataset, the LAIR dataset [156] is specifically designed to
evaluate second-order motions, i.e., those that map current position and velocity
to acceleration. This dataset comprises 10 human handwriting motions, with the
state being 4-dimensional, encompassing a 2-dimensional position and velocity.
The dataset’s shapes contain multiple position intersections, intentionally designed
to necessitate the use of at least second-order systems for their successful modeling.

CONDOR / PUMA comparison The state-of-the-art methods outlined in
Sec. 6.5.1, excluding CONDOR, do not address the challenge of learning stable
second-order systems. This can be attributed to the greater difficulty inherent in
learning such systems compared to first-order systems. As a result, we compare
the performance of PUMA with that of CONDOR. Fig. 6.9a illustrates the
comparative accuracy of both methods, with PUMA surpassing CONDOR on all
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Table 6.2.: Percentage of unsuccessful trajectories over the LAIR dataset (L =
2500, P = 2500, ϵ = 10px).

Behavioral
Cloning

PUMA
(Euc.)

PUMA
(Euc. + ℓ∂)

PUMA
(Sph.)

PUMA
(Euc.+ ℓ∂)

14.1160% 0.0000% 0.0000% 0.0000% 0.0000%
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Figure 6.10.: Accuracy study in LASA S2 dataset.

metrics. PUMA’s greater learning flexibility allows it to converge to solutions
beyond CONDOR’s capabilities. Moreover, this enhanced flexibility, as depicted
in Fig. 6.9b, endows PUMA with a more stable learning process. In practice,
this makes a significant difference, as motions with unsuccessful trajectories must
be discarded when considering the system’s stability. Therefore, greater learning
stability results in a larger set of motions without unsuccessful trajectories,
providing more alternatives of successfully learned systems to choose from.

Stability Table 6.2 presents the results of stability analysis for PUMA on the
LAIR dataset. Similar to the findings with the LASA dataset, every variation of
PUMA achieves a 0% rate of unsuccessful trajectories. This validates PUMA’s
ability to learn stable second-order motions.

6.5.2. Non-Euclidean dataset: LASA S2

The LASA S2 dataset [204] comprises 24 motions, each with 3 demonstrations.
Unlike the LASA dataset, the LASA S2 dataset represents these motions in
spherical geometry, as indicated by its name, in S2. The sphere, where the
motions evolve, is structured similarly to unit quaternions, though with one less
dimension. Essentially, we have a 3-dimensional Euclidean space where vectors are
constrained to have a unit norm. As a result, the state space is a 2-dimensional
spherical manifold embedded in this 3-dimensional space. This setup allows us to
examine the performance of PUMA in a manifold with similar attributes to those
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Table 6.3.: Percentage of unsuccessful trajectories over the LASA S2 dataset (L
= 2500, P = 2500, ϵ = 0.06).

Behavioral
Cloning CONDOR PUMA

(Euc.)
PUMA
(Sph.)

15.9217% 7.3133% 0.0000% 0.0000%

of unit quaternions. However, the more straightforward visualization of this setup
facilitates a more intuitive analysis of PUMA’s performance.

Accuracy
Fig. 6.10a presents the performance of two variations of PUMA, namely when using
Euclidean and spherical distance functions. Moreover, BC is included, serving as
a lower-bound reference. As explained in Sec. 6.5.1, the boundary loss ℓ∂ does
not apply in this case and is, therefore, not evaluated. We can observe that
the accuracy performance of both variations of PUMA is very similar, and BC
performs slightly better than both of them.

State-of-the-art Comparison Fig. 6.10b depicts a comparison between three
methods: 1) CONDOR, 2) PUMA, and 3) Lie Flows [204], a method developed for
learning stable motions in non-Euclidean manifolds using tools from Lie Theory.
PUMA outperforms both CONDOR and Lie Flows in terms of accuracy. Moreover,
in contrast to CONDOR, PUMA also successfully ensured stability in this dataset.

Stability
Table 6.3 depicts the stability results for the LASA S2 dataset. In this case, we
also conducted a stability analysis of CONDOR, which, as discussed in Sec. 6.2,
should not be capable of ensuring stability in non-Euclidean state spaces. This
assertion is confirmed by the data in Table 6.3, which shows that CONDOR
yields 7.3133% of unsuccessful trajectories. When compared to BC, which has
a 15.9217% rate of unsuccessful trajectories, it can be inferred that CONDOR
reduces the number of unsuccessful trajectories in non-Euclidean state spaces.
However, its performance is still far from satisfactory. In contrast, both versions of
PUMA achieve 0% of unsuccessful trajectories, marking a significant improvement.
Moreover, this validates that the Euclidean distance is effective for enforcing
stability in spheres, as it can induce spherical metrics, such as the chordal distance,
in lower-dimensional manifolds (see Appendix C.2).

Qualitative Analysis
Fig. 6.11 illustrates motions learned with PUMA in S2 using both spherical
and Euclidean distances. Within the observed region of the sphere, the vector
field exhibits no spurious attractors. Furthermore, when initiated from the same
conditions as the demonstrations, the trajectories in both cases show an accurate
reproduction of the motions.
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(a) Results using the great-circle distance.

(b) Results using the Euclidean (chordal) distance.

Figure 6.11.: Motions learned with PUMA in S2. White curves represent
demonstrations. Red curves represent learned motions when starting from the
same initial conditions as the demonstrations. The arrows indicate the vector field
of the learned dynamical system.

6.5.3. Real-world Experiments
We validate our method in two real-world setups, using two different robots.
Both robots have six degrees of freedom, with their end-effector pose represented
in R3 × S3 and are guided using PUMA. In these experiments, fTθ is employed
to generate velocity references in real-time, which are then sent to the low-level
controllers responsible for tracking these references in the robots. Note that
throughout the experiments, we operated under the assumption that the target
states of the robots were already known.

Greenhouse
This experiment was conducted in a greenhouse, where a robot was trained to
reach a black marker on a tomato plant (see Fig. 6.12). This marker, simulating
a plant’s peduncle, represented the target state the robot must reach to harvest
the plant. Here, the marker allowed us to test the method without causing harm
to the plant. This task presents significant challenges, as it requires the robot
to perform precise position and orientation control while considering the plant’s
complex geometry, which is non-trivial to model. In a practical setting, a motion
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Figure 6.12.: Two sequences of frames, each depicting a robot performing a task:
1) operating in a greenhouse, and 2) placing a hammer. The red circle is used to
highlight a target marker in the greenhouse experiment.

library should be developed to account for the variability across different plants
and targets. This library could then be used to select or combine suitable motions
to create an appropriate movement strategy considering the plant’s characteristics.
This experiment represents a preliminary step towards achieving this objective.

We utilized an ABB IRB 1200 robot equipped with the Externally Guided
Motion7 module, allowing real-time joint velocity control. As the motion takes
place in the end-effector space, the desired velocity at each time step was calculated
using fTθ , and subsequently mapped to the joint space. This conversion was
accomplished using the inverse kinematics module with joint limits from the
Robotics Toolbox [227]. Similarly, we translated the robot’s estimated joint state
into the end-effector space using the forward kinematics module from the same
toolbox. The same approach was taken to collect the demonstrations of this task
directly in the end-effector space, where a space mouse was employed to teleoperate
the robot.

Fig. 6.13 presents the demonstrations and simulations of motions conducted in
this experiment. It can be observed that five demonstrations were provided. Note
that these demonstrations do not have the same end time; only the final state
needs to be consistent. Over a span of 70 seconds, all simulated trajectories visibly
converge to the goal. For more details, the reader is referred to the attached video.

Hammer
The second experiment involves a robot accurately positioning a hammer next to
other tools on a table. This task requires precise control of the robot’s position and

7Code: https://github.com/ros-industrial/abb_robot_driver.

https://github.com/ros-industrial/abb_robot_driver
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Figure 6.13.: Simulated trajectories, as a function of time, of the greenhouse
experiment. Blue trajectories correspond to evaluations of the model under different
initial conditions and the black trajectory corresponds to the demonstration. The
red point is the goal.

orientation, as shown in Fig. 6.12. We are interested in controlling the hammer’s
movement, so we assume that the state of the hammer directly relates to the state
of the robot’s end effector. This assumption is necessary because the employed
low-level controller acts on the robot’s end-effector state, and we ensure stability in
this state space. Given that the hammer is attached to the robot through a double
hook, this assumption is valid as long as the hammer’s head is securely held. This
assumption breaks down towards the end of the motion when the robot places the
hammer on the table. However, since the final states of both the hammer and the
robot are similar, we observed that ensuring stability in the end-effector’s motion
effectively guides the hammer’s motion towards its goal state, as can be seen in
Fig. 6.12 and in the attached video.

We used the Kinova Gen2 Ultra lightweight robot arm with a double hook
replacing its default gripper. The control commands obtained from fTθ were
directly sent to a Cartesian space controller from Kinova8. The demonstrations
were collected through kinesthetic teaching, i.e., physically moving the robot along
desired paths. The simulated performance in this task was similar to that in the
greenhouse, given that the state space was identical in both cases. We refer the
reader to the attached video for examples of the robot executing this task from
various initial conditions.

8Kinova’s controllers: https://github.com/Kinovarobotics/kinova-ros

https://github.com/Kinovarobotics/kinova-ros
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6.6. Conclusions
We introduced a novel approach for learning stable robotic motions in both
Euclidean and non-Euclidean state spaces. To achieve this, we introduced a new
loss function based on the triplet loss from the deep metric learning literature. We
validated this loss both theoretically and experimentally.

Our approach, PUMA, demonstrated state-of-the-art performance in every
experiment, both in terms of accuracy and stability. It was validated using
datasets where the dynamical system evolution was simulated, as well as real
robotic platforms where it was employed to provide control commands to low-level
controllers.

Compared to previous work, PUMA offers not only an improvement in addressing
non-Euclidean state spaces but also increased flexibility by reducing restrictions
in the latent space of the DNN, leading to generally better performance. More
specifically, in previous work, the latent dynamical system is constrained to
evolve along straight lines towards the goal. In contrast, PUMA allows the
latent dynamical system to converge towards a broader range of stable dynamical
systems, since its loss function only enforces the latent dynamical system to
reduce the distance towards the goal. This feature expands the set of feasible
solutions available to the DNN during optimization, thereby enhancing the model’s
adaptability.

Lastly, while this paper’s findings are promising, there are also limitations that
can be addressed in future works. First, further exploration of the scalability
properties of PUMA is needed, as the largest DNN input employed in this paper
had 7 dimensions. Second, we have so far focused on learning independent motion
primitives for specific tasks. A relevant line of research would be integrating this
model into a larger framework where multiple primitives are learned and combined
together. Third, a topic that we did not address in this work is obstacle avoidance.
Recent techniques, such as Geometric Fabrics [228], exploit dynamical systems
to represent motions that achieve full-body obstacle avoidance, which can be
integrated with dynamical systems learned in the end-effector space of the robot.
Consequently, an exciting avenue for future work is exploring the combination
of these methods with PUMA. Finally, another interesting research direction is
studying the integration of these approaches with the low-level control of the
robots. Currently, it is assumed that the transitions requested by PUMA can be
tracked by the controllers of the robot. However, this is not always the case, and it
would be beneficial to incorporate this information into the learning framework.
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Conclusions and Future Work

7.1. Conclusions
Our research was driven by the significant potential of Imitation Learning (IL)
to broaden robot deployment in real-world applications. This potential comes
from IL’s ability to enable robots to execute complex behaviors, while remaining
adaptable and reactive. We recognize these capabilities as crucial elements
currently missing in many real-world robotic applications. The importance of
these features lies in the fact that most advanced robotic solutions are either
too costly or impractical in numerous scenarios, leading to the predominance
of simpler, non-reactive, systems. Therefore, by developing easily customizable
robotic solutions, we can facilitate rapid adaptation to diverse environments,
such as those encountered in the agro-food industry or household environments.
Importantly, these solutions can be adapted by non-experts, eliminating the need
for highly trained engineers to personalize systems for each individual scenario.
This approach significantly reduces costs and expands feasibility, making advanced
robotic systems accessible in contexts like medium-sized factories or homes, which
would otherwise find them impractical.

As a result, for advancing towards robots that learn via imitation, we focused
on two fundamental limitations of current IL approaches: reliability and data
efficiency. These are critical obstacles that have previously limited the wider
application of IL in practical robotics. Therefore, through this work, we have
introduced multiple methodologies to address them, demonstrating IL’s impressive
potential in transferring complex human behaviors to robots.

To accomplish this, we highlighted that issues in IL related to reliability and
data efficiency stem from a poor representation in the training data of the state
distribution that a robot experiences during deployment. This translates into
robots needing to make decisions in situations that have no similar counterparts
in the data the robot used to learn its behavior, resulting in arbitrary actions
and potential failure. One reason this scenario occurs is that a robot can make
small mistakes that compound, thus drifting away from the support of the training
data during the execution of a task, a phenomenon known as covariate shift.
Another reason is the impractical approximation of this distribution due to factors
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such as: 1) limited access to human data, leading to a sparsely represented
state distribution, or 2) long-tailed learning problems. Long-tailed problems
involve numerous unlikely situations; while not all are feasible to cover, some are
bound to occur in practice. As a result, these sources of IL limitations provide
interesting challenges that motivated the work introduced in this dissertation. We
explored two key concepts for tackling these distributional challenges in IL: online
learning, and inductive bias.

Firstly, we emphasized that covariate shift is not intrinsic to IL itself, but rather
a consequence of the problem formulation used in offline IL. Thus, changing this
formulation can effectively address the issue. In this context, online learning
methods, also known as Interactive Imitation Learning (IIL), which involve
real-time human-robot interaction, emerge as a promising approach, naturally
mitigating covariate shift. However, despite its potential, IIL remains relatively
underexplored in robotics. Consequently, our research addresses this gap by
examining and contrasting various IIL methodologies, highlighting their strengths
and limitations, and resolving ambiguities in critical areas such as on-policy
and off-policy learning (Chapter 2). Furthermore, we introduced and studied a
novel methodology for learning from human relative corrections, which integrates
techniques from the field of state representation learning (Chapter 3). We observed
that state representation learning is crucial when learning from relative corrections,
especially when the success of a problem depends on properly incorporating
temporal information. Our results indicated that, in such scenarios, this could be
the decisive factor between solving a task and failing. Additionally, a secondary
observation emerged from a simple simulated problem: the inverted pendulum. In
this problem, we compared policies derived from multiple human teachers using two
types of feedback: absolute corrections (i.e., demonstrations through interventions)
and relative corrections (i.e., directional guidance). The rapid dynamics of this
problem make providing demonstrations challenging; however, offering directional
guidance is relatively simple. Our experiments showed that while only half of the
human teachers could teach a successful policy using absolute corrections, all were
successful with relative corrections.

Secondly, in Chapter 4, we investigated the incorporation of inductive bias within
our learning frameworks. Recall that inductive bias introduces prior knowledge into
the robot’s policy, effectively narrowing down its potential solutions and guiding
it toward desired behaviors. This not only makes frameworks more data efficient
but also enables the establishment of guarantees, such as collision avoidance and
goal convergence. In the context of IIL, we applied this concept to learning
driving behaviors. More specifically, we incorporated a Model Predictive Controller
(MPC) into an IIL framework. Consequently, the MPC, through well-established
cost function terms, inherently provided capabilities to the robot, like collision
avoidance and path tracking. Simultaneously, more complex behavioral aspects,
such as determining the vehicle’s optimal speed in situations containing traffic
signals, other vehicles, or crossing pedestrians, were learned using interactive
data. This method demonstrated the effective fusion of interactive machine
learning and control methodologies, resulting in a flexible learning framework that
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is both data-efficient and reliable. As expected, our results showed that our
approach achieved better performance in terms of the number of collisions and
deadlocks, compared to its optimization-based-only and data-driven-only variants.
Specifically, our method resulted in 7.03 times fewer collisions and 1.31 times
fewer deadlocks than its MPC-only variant, and 5.24 times fewer collisions and
1.38 times fewer deadlocks than its data-driven-only variant. Interestingly, this
performance was achieved with only 2 hours of training time, a characteristic
that distinctly differentiates it from other methods in the literature, which report
requiring 100− 200 times more human time. We believe that a defining factor in
this difference is the employed IL approach: unlike other works that used offline
demonstrations, our method is based on collecting demonstrations online. This
shows the potential of IIL methods to make problems, which may seem intractable
in terms of data, manageable.

Lastly, in Chapters 5 and 6, we fully shifted our focus to inductive bias, moving
beyond IIL. We continued utilizing control theory tools, primarily focusing on
theoretical methods for analyzing the behavior of dynamical systems. Utilizing
these methods, we designed novel loss functions for Deep Neural Networks (DNNs),
aimed at incorporating inductive bias to enforce global asymptotic stability in
motion primitives modeled as dynamical systems. This is pertinent in situations
where the robot’s motion needs to consistently converge to a specific goal state,
such as in the acts of grabbing, swiping, or hanging. In these scenarios, by
ensuring that the goal state is a globally asymptotically stable equilibrium of
the dynamical system, convergence to this point is guaranteed, regardless of
the robot’s initial state. To achieve this, we introduced specific conditions in
the DNNs’ latent space to impose this stability. Utilizing deep metric learning
tools, we then developed loss functions tailored to optimize the DNN to meet
these conditions. Our research culminated in two methodologies: CONDOR
(Chapter 5) and PUMA (Chapter 6). CONDOR, as our initial approach, exhibited
exceptional performance and established the groundwork for further advancements.
Building on these principles, PUMA introduced a more versatile loss function,
not only offering better optimization properties but also extending stability
enforcement to non-Euclidean state spaces. Such an extension is crucial in robotics,
particularly for tasks like controlling a robot’s orientation. Both introduced
methods, depending on the evaluation metric used, demonstrated similar or
superior accuracy compared to state-of-the-art approaches that enforce stability.
This can be attributed to the fact that CONDOR and PUMA impose stability
through the optimization process of the DNN, in contrast to other methods that
achieve this by constraining the structure of their function approximators. Such
constraints can impose excessive limitations on the range of solutions these models
can reach, resulting in reduced learning capabilities and, consequently, suboptimal
IL solutions. However, it is challenging to attribute these results solely to these
constraints, as other factors, particularly hyperparameters, also influence these
outcomes. Furthermore, methods constraining the structure of their learning
models may also face scalability limitations, as encoding these restrictions in more
complex models can be challenging. This is a key distinction with our approaches,
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which are highly flexible in this respect, as they impose the stability behavior via
optimization and require minimal (CONDOR) or no (PUMA) intervention in the
DNN’s architecture. Our results provide evidence in this direction. For example,
CONDOR was easily extended to learn multiple stable motions within a single
DNN and to interpolate between them. Furthermore, both CONDOR and PUMA
successfully imposed stability in motions modeled as second-order systems, a feat
not yet demonstrated by other DNN-based approaches. However, we believe there
is still much to be explored in this regard, providing a foundation for exciting
future research.

Throughout this dissertation, the developed methodologies are supported by
robust theoretical principles, and have been rigorously tested using simulations,
and, in most cases, real-world systems. These elements are indispensable in
advancing the field of robotics. On one hand, given the expectation for robots
to operate in environments where safety and performance guarantees are crucial,
a deep understanding and predictability of these systems is essential. On the
other hand, the true viability of our methodologies depends on their real-world
applicability, necessitating empirical validation. To this end, we have tested our
methodologies using multiple systems: a 3-DoF manipulator, an inverted pendulum,
a 7-DoF KUKA iiwa manipulator, a 6-DoF Kinova Gen2 manipulator, and a 6-DoF
IRB 1200 manipulator. These platforms have been fundamental in providing
insights into real-world applications. It is important to note, however, that most
current laboratory settings in robotics may not always capture the full complexities
of real-world scenarios. This observation presents a significant challenge in the
field, providing a valuable opportunity for further work. Such efforts are essential
in advancing our robotic technologies toward practical realization.

7.2. Future Work
We have taken significant steps to address the challenges in IL. However, to fully
realize the potential of IL, several areas require further exploration. Some of these
challenges are directly related to the methodologies presented in this study, while
others pertain to broader aspects of IL. We outline below a some of these critical
challenges:

• Human-robot interfaces: A key challenge in IL that is often overlooked
is the interface used for collecting human data. In some cases, the
choice of interface can be the deciding factor between successfully learning
high-performing policies and failing to learn anything at all. For example,
kinesthetic teaching is a common method, involving physically manipulating
the robot. However, this approach becomes increasingly challenging, and
eventually infeasible, if the robot is too large or complex for the human to
control due to multiple degrees of freedom. Similarly, teleoperation can be
useful, but tasks demanding high precision may require more sophisticated
devices. These devices should allow for easy control of both the robot’s
position and orientation simultaneously. Moreover, if certain areas of the
workspace are inaccessible or occluded from the human operator’s view,
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adding onboard cameras to the robot becomes necessary. Moreover, as
highlighted in [229], haptic feedback can also be essential for humans to
provide accurate training data. Therefore, these examples illustrate how
interfaces that are commonly used can easily become limited, requiring
significant enhancements to effectively collect human data.

• Human mistakes: Another essential feature for IL to become practical
is its robustness against human mistakes when providing data. This can
be addressed either by preprocessing the data or by developing machine
learning algorithms that naturally counteract this issue. For instance, if
humans provide demonstrations with a Gaussian error centered on the correct
demonstrations, many methods are already robust to these errors, as they
assume a Gaussian policy and average out these mistakes. However, for
instance, in situations involving outlier mistakes, this data would distort such
policies. Hence, we need methodologies that consider these scenarios and can
address them effectively.

• Multimodal policies: Multiple strategies often exist as viable policy
solutions in the learning problem. Consequently, human data frequently
presents a variety of them for identical scenarios, highlighting the importance
of developing methods capable of handling these multimodalities. Efforts to
tackle this issue have varied, employing different strategies. One approach
involves forcing the learned policy to converge to a single solution [39, 230].
Another strategy filters the dataset to ensure only one modality is represented
in it [153]. More recently, some research has introduced methodologies
enabling the learning of multiple action options for the same state [231, 232].
While these approaches have shown promise in addressing this issue, they are
relatively recent developments. Therefore, there remains considerable scope
for further research to refine and enhance these methods.

• Robot’s model as inductive bias: Frequently, we have access to the
robot’s kinematic and even dynamic behavior. Nevertheless, this information
is rarely explicitly included in the policy optimization process. Including
this valuable information would increase the data efficiency of our learning
method. Moreover, it would also guide the optimization process towards
learning behaviors that are achievable by the robot. This is particularly
clear when modeling policies as dynamical systems. In these cases, policies
generate desired state transitions which, if optimized naively, might be
unfeasible for the robot. Therefore, our methods would greatly benefit
from incorporating the robot’s physical constraints into the learning process.
Although there are some efforts in this direction, e.g., [233], there is still a
considerable amount of work to be done.

• Guarantees in high-dimensional spaces: Lastly, a critical challenge
that remains unaddressed is integrating guarantees into policies dealing
with high-dimensional, and potentially multimodal, state spaces. This is
motivated by the last decade’s significant advancements in machine learning,
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particularly with DNNs. These networks are noted for their ability to
process high-dimensional data from multiple sources effectively. However, the
majority of efforts to introduce guarantees into learned policies have focused
on relatively low-dimensional state spaces. This approach is understandable,
as guarantees often require a well-defined state space where analyzing the
robot’s behavior is manageable. The challenge escalates when considering
inputs like raw pixels from images or point clouds, where analyzing the
system’s behavior in these unstructured spaces is daunting. Nevertheless,
if our goal is to develop flexible robots that can interpret information from
various sources and provide guarantees, we must tackle this issue. Without
addressing it, we risk having two parallel streams of development, each
making progress, but neither offering realistic solutions for the complex
problems we face in the real world.

These challenges provide exciting avenues for future research, offering the
potential to enhance the learning capabilities of our robots via IL, creating easily
customizable, adaptable, and reliable systems.
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A
Additional Experimental Details

(Chapter 3)
The metrics used for the comparisons in the experiments are the final policy’s
performance achieved and the speed of convergence, which is very relevant when
dealing with real systems and human teachers. In every learning curve, a mean of
the return obtained over 20 repetitions for every experiment is presented, along
with the maximum and minimum values of these distributions. The performance
was measured in the simulated environments with the objective functions included
in OpenAI Gym. For the real pendulum, a similar function to the one implemented
in OpenAI Gym was used, while for the task with the robot arm, the success rate
was used.

For the experiments with simulated teachers, high-performance policies trained
by expert teachers were used as oracles for providing the corrections. These
policies have performances at the level of the state of the art (performance plotted
in the figures). In Deep COACH, the corrections h are the sign of the relative
change advised by the teacher. Therefore, to compute these binary corrections, the
simulated teacher computes h = sign(ateacher − aagent) for each of the dimensions
composing the action vector, wherein ateacher is the action computed by the policy
of the teacher and aagent is the action computed by the learning policy, as it
has been implemented in [21, 96]. The frequency of the corrections given by the
simulated human teacher is controlled with a probability that is reduced with time.

For the experiments in which actual human teachers participated in correcting
policies, the corrections were provided through a keyboard. For each action
dimension, two keys were designated, so the user could advise an increase or
decrease, in each of the axes.

A.1. Neural Network Architecture
Fig. 3.3 in Chapter 3 shows the structure of the proposed NN architecture. The
hyperparameters of each layer are shown in Tables A.1 and A.2.
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Table A.1.: Hyperparameters of convolutional and deconvolutional layers.
Layer Activation Filters Filter size Stride
C1 ReLU 16 3× 3 2
C2 ReLU 8 3× 3 2
C3 sigmoid 4 3× 3 2
DC1 ReLU 8 3× 3 2
DC2 ReLU 16 3× 3 2
DC3 sigmoid 1 3× 3 2

Table A.2.: Hyperparameters of fully-connected and recurrent layers.
Layer Activation N◦ neurons
FC1 tanh 256
FC2 tanh 256
FC3 tanh 1000
FC4 tanh 256
FC5 ReLU 1000
FC6 ReLU 1000
FC7 tanh Task action dimension
R1 LSTM activations hLSTM = 150

(a) Original frame (b) Occluded frame

Figure A.1.: Original frame of the Car Racing environment, on the left. The
occluded frame used as observation in the network, on the right.

A.2. Ablation Study - Environment
All the results obtained in this study are shown in Chapter 3. The comparisons
were carried out only with the Car Racing problem of OpenAI Gym. In
this environment, the agent has three action dimensions which are: steering,
acceleration, and brake.

As mentioned in Chapter 3, the bottom half of the frame is occluded in order
to force the agent to make decisions based on past observations. An example of
the occluded frame is shown in Fig. A.1, the current position of the car on the
road is not observed by the learning policy; however, the entire frame is observed
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Figure A.2.: Comparative analysis in Mountain Car problem

by the policy used as a simulated teacher. Therefore, the corrections are based on
appropriate actions with respect to the real state of the environment.

A.3. Simulated Tasks with Simulated Teachers
The Mountain Car and the Swing-Up Pendulum environments originally provide,
at each time step, their low-dimensional explicit state. These are the position
and velocity of the car in the x axis, and the angle and angular velocity of the
pendulum, respectively. In order to obtain a high-dimensional observation (raw
image) we have modified the source code, such that the environment returns an
array with the rendered RGB frame.

Mountain Car
The action of the agent is the force applied in order to move the car. It is known
that the optimal solution for this task is a bang-bang controller (using the extreme
actions -1 or 1). Therefore, the correct actions given by the oracle are very
different from the initial policy in the whole state space. This makes it easier to
perform abrupt changes when updating the policy for DAgger-like agents than for
Deep COACH because the latter performs smaller steps based on incremental and
relative corrections (corrections are in the direction of the oracle’s action, but not
directly the actual action).

As it can be seen in Fig. A.2a, as expected, the learning convergence is faster for
DAgger, followed by HG-DAgger, whereas Deep COACH is the slowest. DAgger
converges faster than its modified version, HG-DAgger, because the former trains
the policy with corrections provided by the oracle during every time step, which is
most of the time not feasible when teaching with human users. All agents reach
the oracle’s performance at the end of the learning process.
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A.4. Simulated Tasks with Human Teachers
The validation was executed with 8 participants between 20 and 30 years. In the
experiments, the users observed the desired performance of the agent, received
instructions on how to interact with each kind of agent, and had the chance to
practice with the learning agent before recording results, in order to get used to
the role of teacher. The users interact with the learning agent using a keyboard.
Users correct the policies until they consider they cannot improve them anymore,
or until a maximum duration of the training session of 500 seconds (8.33 minutes).
The episodes of the tasks had a duration of 20 seconds, which for Mountain Car
means the maximum duration if the goal is not reached, whereas for the pendulum
this is constant. The duration of the time steps is 0.05 s.

Mountain Car
This task is very simple, since users understand properly how to teleoperate the
agent, therefore, we could state that for this task, the teachers are always experts.

Results in Fig. A.2b are similar to the ones observed in Fig. A.2a in Sec. A.3,
wherein at the beginning HG-DAgger improves way faster. However, in this case,
HG-DAgger gets stuck and is outperformed by Deep COACH after 20 seconds.
This happens as, despite the fact that the teachers are considered experts, they
could sometimes provide mistaken or ambiguous corrections. These inconsistencies
remain permanently in the database, so it is hard for the user to fix the generated
error.

A.5. Validation on Physical Systems with Human
Teachers

A.5.1. Real Swing-Up Pendulum
This system is similar to the one used previously from OpenAI Gym, although in
this set-up the dynamics are even much faster, and the actions are voltages instead
of torques. In this environment, a camera is set in front of the pendulum to obtain
observations similar to the simulated environment, as it is shown in Fig. A.3b,
wherein the camera is in the bottom, aligned with the pendulum. The observation
was down-sampled to 32 × 32 pixels images, while for all the other tasks the
down-sampling was to 64 × 64 pixels. An example of the actual observation
of the camera is in Fig. A.4, where it is possible to see the input of the NN
(down-sampled image), along with the prediction of the observation in t+ 1, with
a model that has been trained with the proposed architecture. In this example, it
is interesting to observe that the pendulum was rotating clockwise, therefore the
prediction shows the weight of the pendulum in a lower position.

Fig. A.3a shows the learning curve of 10 runs. On average, the users manage to
teach a policy able to balance after 29 episodes, and they keep on improving the
policy during the subsequent episodes. Preliminary tests showed that the sampling
time needs to be reduced to 0.025 s to be able to control the system.
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Figure A.3.: Analysis and setup of Real Swing-Up Pendulum

(a) Network input (b) Observation predic-
tion

Figure A.4.: Downsampled observation of the camera, which is the input of the
Network, on the left. Next observation prediction, on the right.

A.5.2. Orange selector with a robot arm
As mentioned in Chapter 3, this problem is composed of two sub-tasks, that are
sequentially trained. In the experiments, at the beginning when learning the
orange selection, the teachers corrected the policy only in order to make the
robot move the end-effector over the horizontal plane. Therefore, the transition
model along with a controller in charge of intercepting the oranges with the
end-effector is learned in the first stage. Then, in order to learn the second
sub-task (pear rejection) composing the problem, the already learned transition
model is reused in the training process of a second controller that either moves the
end-effector close to the belt or far when a pear is detected. These two controllers
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(a) Network input

(b) Observation prediction

Figure A.5.: Examples of images in the input of the Network, on the top.
Observation predicted for the next time step by the learned transition model, on
the bottom.

work in parallel since their actions are over different joints.
In the associated video it is shown examples of the actual images that go to the

input of the network, along with the prediction of the next observation. However,
due to the velocity of the video, it is not easy to see that the predicted oranges
are slightly shifted. In Fig. A.5 are shown examples of three different oranges
crossing the field of view of the camera. The examples are input-output pairs of
the transition model. The oranges moved by the belt are observed by the camera
while crossing from the top to the bottom of the field of view. It could be seen that
the predicted oranges are in a lower position with respect to the position observed
in the input, i.e. the model learns to predict the movement of the belt.



B
Additional Proofs and

Experimental Details (Chapter 5)
B.1. Approximating a Diffeomorphism
For achieving stable motions, CONDOR optimizes ℓstable. This loss is designed
to enforce the conditions of Theorem 1 in the NN employed to represent the
dynamical system fTθ . In this section, we show that as a consequence of this, ψθ
approximates a diffeomorphism when T is a Euclidean space.

Definition 4 (Diffeomorphism). A mapping between two manifolds ψθ : T → L is
called a diffeomorphism if it is differentiable and bijective.

In general, we can consider Neural Networks to be differentiable, since most
of the employed activation functions are differentiable. However, there are some
exceptions to this, as it is for the case of the ReLU activation [234]. In practice,
these exceptions are non-differentiable at a small number of points and they have
right and left derivatives, so they do not present many issues when computing
their gradients. However, strictly speaking, for such cases, our method would
make ψθ converge to a homeomorphism instead. Differently to a diffeomorphism, a
homeomorphism only requires the mapping to be continuous, but not differentiable.
Nevertheless, for simplicity, we will assume that ψθ is differentiable.

Then, we need to study if ψθ converges to a bijective function to conclude that
it approximates a diffeomorphism.

Definition 5 (Bijective function). A function is bijective if it is injective and
surjective.

Definition 6 (Injective function). A function is injective if every distinct
element of its domain maps to a distinct element, i.e., ψθ is injective if
ψθ(xa) = ψθ(xb)⇒ xa = xb,∀x ∈ T .

Definition 7 (Surjective function). A function is surjective if every element of
the function’s codomain is the image of at least one element of its domain, i.e.,
∀y ∈ L,∃x ∈ T such that y = ψθ(x).
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From these definitions, it is clear that the surjectivity of ψθ is straightforward
to show, since it depends on how its codomain is defined. In this work, we define
the codomain of ψθ as L, which is the manifold resulting from the image of ψθ. In
other words, the codomain L is a set that only contains the outputs of ψθ produced
from T . In such cases, a function is surjective, since its codomain and image are
equal, which ensures that ∀y ∈ L,∃x ∈ T such that y = ψθ(x) (Definition 7).

Consequently, it only remains to prove that if the conditions of Theorem 1 are
met, then ψθ is injective when T is a Euclidean space.

Proposition 2. If the conditions of Theorem 1 are met and the domain of ψθ is T ;
then, ψθ is injective.

Proof. By contradiction, let us assume that these conditions are met and ψθ is not
injective. Then, let us take two elements of T , xa0 and xb0 , where xa0 ̸= xb0 . If ψθ
is not injective, there ∃xa0 and ∃xb0 , such that ψθ(xa0) = ψθ(xb0). In such cases,
from Condition 1) of Theorem 1, we know that as t → ∞, the mappings of these
elements will generate the same trajectory in L following the dynamical system fL,
which converges to yg.

Since the evolution of the variables xa0 and xb0 is completely defined by the
evolution of their mappings in L (i.e., ẋ = ϕ(y)), both variables will present the
same time derivative in T . Consequently, given that the trajectories obtained when
starting from xa0 and xb0 , at time t, are described by xi(t) = xi0 +

∫ t
τ=0 f(x(τ))dτ1,

where i ∈ {a, b}, their integral part will be the same ∀t. Then, ∀t the distance
between both trajectories is d(xa0 , xb0) = ||xa(t) − xb(t)|| = ||xa0 − xb0 ||, where
d(·, ·) is a distance function.

Thus, as t → ∞, xa and xb will converge to two different points xag and xbg ,
respectively. However, we also stated that their respective mappings converge to
yg, i.e., ψθ(xag) = ψθ(xbg) = yg. In this case, Condition 2) of Theorem 1 implies
that xag = xbg = xg. This contradicts the fact that xag ̸= xbg. Consequently, ψθ is
injective.

Finally, from Proposition 2 we can conclude that if the conditions of Theorem 1
are enforced in fTθ ; then, ψθ will approximate a diffeomorphism.

B.2. Stability of fL with Adaptive Gains
In this section, we show that yg is globally asymptotically stable in the system
introduced in (5.9) when the adaptive gain α(yt) is greater than zero. Note that the
derivation introduced here is analogous to the one of the discrete-time case when
the system is simulated using the forward Euler integration method. However, in
the latter, the condition for global asymptotic stability is 0 < α(yt) < 2/∆t.

To show global asymptotic stability, we introduce the Lyapunov candidate
V (yt) = y⊤

t yt and study if the condition V̇ (yt) < 0 holds for all yt ∈ Rn. By
introducing A = diag(−α(yt)) and, without loss of generality, setting yg = 0, we

1In discrete time, the integral transforms into a summation.
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write (5.9) as ẏt = Ayt. Then,

V̇ (yt) = (Ayt)⊤yt + y⊤
t (Ayt)

= y⊤
t (A+A⊤)yt

= 2y⊤
t Ayt (since A diagonal).

(B.1)

Therefore, it follows that this function is negative when the eigenvalues of A are
negative. Since A is a diagonal matrix, the eigenvalues correspond to its diagonal
−α(yt). Consequently, yg is globally asymptotically stable in the system (5.9)
when α(yt) > 0.

B.3. Neural Network Architecture
In this appendix, we provide details regarding the Neural Network’s architecture.
The criteria employed to design the architecture were to build a network: 1) large
enough for it to be very flexible in terms of the motions that it can represent, and
2) with a reasonable size such that it can do inference in real time. Consequently,
we observed that 3 feedforward fully connected layers, with 300 neurons each, for
ψθ and ϕθ, i.e., 6 layers in total, were enough for obtaining accurate results and
low inference times. The employed activation function was GELU [235] for every
layer except for the last layer of the network, which had a linear activation, and for
the last layer of α, which had a sigmoid function. In our case, the network inferred
at 677± 57677± 57677± 57 Hz (confidence interval with one standard deviation) using a laptop
PC with an Intel i7-8750H (12) @ 4.100GHz CPU and an NVIDIA GeForce RTX
2070 Mobile GPU. PyTorch had the GPU enabled at inference time.

For the case of the adaptive gains α(yTt ), two layers were employed instead.
Note that these layers only affect the training time of the network, given that they
are not required for inference.

Finally, layer normalization [236] was added after each layer of the network
except for the last layers of ψθ, ϕθ and α. This type of normalization has shown
to be beneficial for reducing training times and also for helping with vanishing
gradients.

B.4. Hyperparameter Optimization
We introduce a hyperparameter optimization strategy for CONDOR’s different
variations on the LASA and LAIR datasets. We define an accuracy metric, Lacc,
calculated using the distance metrics from Sec. 5.5.1. We also evaluate the stability
of the system by minimizing the diffeomorphism mismatch, i.e., the RMSE between
yL1:N and yT1:N, defining the stability term, Lstable. Lastly, we account for the
precision of the learned system’s goal versus the real goal by measuring the average
distance of all final trajectory points to the goal, creating the term Lgoal. Then, we
define the following objective:

Lhyper = Lacc + γstableLstable + γgoalLgoal, (B.2)
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Table B.1.: Hyperparameter optimization results of CONDOR.

Hyperparameter Opt.? Hand-tuned value /
initial opt. guess Optimized value

CONDOR CONDOR
(fixed gains)

CONDOR
(triplet)

CONDOR
(1st order

LAIR)
CONDOR∗∗∗ CONDOR

(fixed gains)
CONDOR

(triplet)

CONDOR
(1st order

LAIR)
CONDOR
Max adap. latent gain (αmax) ✓ 1e-2 8e-3∗ 1e-2 9.997e-2 9.997e-2 2.470e-3∗ 3.970e-2 0.174
Stability loss weight (λ) ✓ 1 1 1 9.300e-2 9.300e-2 3.481 0.280 2.633
Window size imitation (Hi) ✓ 14 14 14 14 14 14 14 1
Window size stability (Hs) ✓ 4 4 2 4 1 1 2 8
Contrastive margin (m) ✓ 1e-2 1e-2 1e-4∗∗ 3.334e-2 3.334e-2 3.215e-3 1.977e-4∗∗ 1.557e-2
Batch size imitation (Bi) ✗ 250 250 250 250 - - - -
Batch size stability (Bs) ✗ 250 250 250 250 - - - -

Neural Network
Optimizer ✗ AdamW AdamW AdamW AdamW - - - -
Number of iterations ✗ 40000 40000 40000 40000 - - - -
Learning rate ✓ 1e-4 1e-4 1e-4 1e-4 4.855e-4 4.295e-4 8.057e-4 5.553e-5
Weight decay ✗ 1e-4 1e-4 1e-4 1e-4 - - - -
Activation function ✗ GELU GELU GELU GELU - - - -
Num. layers (ψθ, ϕθ, α) ✗ (3, 3, 3) (3, 3, -) (3, 3, 3) (3, 3, 3) - - - -
Neurons/hidden layer ✗ 300 300 300 300 - - - -
Layer normalization ✗ yes yes yes yes - - - -

∗ Corresponds to the optimized fixed gain.
∗∗ Corresponds to the triplet loss margin.
∗∗∗ Also applies for CONDOR (2nd order).

where γstable and γgoal are weighting factors. After initial tests, we settled on
γstable = 0.48 and γgoal = 3.5.

In practical applications, hyperparameter tuning has limitations like time
consumption and susceptibility to the curse of dimensionality. To mitigate this, we
focused on five strategies: reducing the objective function’s overhead, limiting the
evaluation set, employing Bayesian optimization, pruning, and selecting a subset of
hyperparameters.

Reduced objective function’s overhead
The objective function minimized in the hyperparameter optimization process is
periodically computed throughout each learning process. Consequently, if this
function is expensive to compute, it will make the optimization process slower.
More specifically, we observe that the computation of the accuracy using the
DTWD and FD metrics adds considerable overhead to the computation time of
the objective function. Furthermore, we also observe that the values of the RMSE,
DTWD, and FD are highly correlated. Therefore, since computing the RMSE is
much faster than computing the other metrics, the hyperparameter optimization
loss that accounts for accuracy only consists of the RMSE, i.e., ℓIL with Hi = n
and t′ = 0.

Reduced evaluation set
Optimizing hyperparameters for the LASA/LAIR dataset using different motions
simultaneously is challenging since the objective computed from different motions
is not comparable. Instead, we focused on optimizing using a single, difficult
motion, assuming robust hyperparameters for it would perform well overall. We
selected the heee motion from the LASA dataset for first-order motions and the
capricorn motion from the LAIR dataset for second-order motions. These motions,
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with complex features like large curvatures or sharp edges, represented challenging
test cases.

Bayesian optimization
During optimization, every evaluation of a different set of hyperparameters is
costly. Therefore, instead of randomly selecting the hyperparameters to evaluate
at each run or following a grid search approach, we select the most promising
set given the ones evaluated so far. To achieve this, we employ the Tree Parzen
Estimator (TPE) [237], which builds a probability model of the objective function
and uses it to select the next set of hyperparameters based on how promising they
are. We use the implementation available in the Optuna API [238].

Pruning
Throughout the optimization process, it is possible to detect inauspicious runs
after a few evaluations. Hence, these trials can be pruned before the training
process ends, freeing the computational resources for a new run to be executed. We
also incorporate this feature in the optimization process using the pruning method
available in the Optuna API.

Select a subset of hyperparameters
Finally, before starting the optimization process, by interacting with CONDOR,
we identified a subset of the hyperparameters that showed to have the largest
influence over its results. Therefore, to reduce the dimensionality of the search
problem, only this subset of hyperparameters is optimized. The rest are manually
tuned based on our interactions with the framework.

B.4.1. Results
Table B.1 details the results of the hyperparameters optimization process, including
the optimized parameters, and their pre- and post-optimization values. It is
divided into two sections: hyperparameters specific to CONDOR, and those general
to DNNs. Note that most optimized hyperparameters pertain to the CONDOR
method. For the LAIR dataset, we used LASA’s optimized hyperparameters as a
starting point, resulting in no improved set found for the second-order CONDOR
method. Hyperparameters used in BC are excluded as those applicable were
identical to those of CONDOR.

Note that the hyperparameter αmax ∈ (0, 1] has not been introduced yet. This
hyperparameter limits the maximum value of the adaptive gain α in fL (see
Sec. 5.4.5). Hence, if in this work we define ∆t = 1 for α in fL; then, even though
its maximum allowed value is 1, we limit it even further using αmax. This process
improves CONDOR’s performance, as observed in preliminary experiments. Hence,
we define α = αmaxᾱ(yTt ), with ᾱ as the DNN output using the sigmoid activation
function, ensuring α ∈ (0, αmax).
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B.5. Real-World Experiments: Low-Level
Control

Regarding the low-level control strategy employed in this work, we focus on fully
actuated rigid body dynamics systems, which evolve according to the following
equation of motion:

M(q)q̈ + C(q, q̇)q̇ +G(q) +D(q)q̇ = u, (B.3)

where q is the joint angle vector, M(q) is the inertia matrix, C(q, q̇) is the
Coriolis/centripetal vector, G(q) is the gravity vector, D(q) is the viscous friction
matrix and u is the actuation torque vector [239].

The objective of the low-level controller is to, at every time step, map the desired
state xd and state derivative ẋd provided by CONDOR to u, such that the system
is driven towards the desired state. In our experiments, we learn motions in task
space and in joint space. Hence, we employ slightly different strategies for each
case.

The control frequency of the low-level controller is 500500500 Hz in every experiment.

B.5.1. Joint space control
In this work, independently of the task that CONDOR controls, every motion
reference is eventually mapped to joint space. Hence, this subsection explains our
approach to track this reference in joint space (qd, q̇d). We achieve this by means
of a proportional-derivative (PD) controller with gravity compensation, i.e.,

u = α(qd − q) + β(q̇d − q̇) +G(q), (B.4)

where α and β are gain matrices. The higher the gains of this controller, the
smaller the tracking error [240, 241]. Moreover, an interesting property of this
approach is that as qd approaches qg, where qg corresponds to the mapping from xg
to the configuration space of the robot, CONDOR makes ẋd, and in consequence
q̇d, tend to 0. Then, (B.4) behaves similarly to

u = α(qd − q)− βq̇ +G(q). (B.5)

This control law ensures global asymptotic stability at the equilibrium qd for any
choice of α and β as long as these are positive definite matrices [239].

B.5.2. Task space control: Online
To control the robot when references ẋd are given online (see Fig. 5.5a) in task
space, we use the real-time Inverse Kinematics (IK) library TRACK-IK [242]. To
do so, we integrate the velocity reference using the forward Euler integrator to
obtain xd, and we map this position to joint space using this library to obtain
qd. We apply exponential smoothing to these results to alleviate vibrations and
stuttering issues. Finally, we compute the desired velocity q̇d using the forward
difference of q, i.e., q̇d = (qd−q)/∆t, where ∆t is the time step length of CONDOR.
Then, at every time step, the values qd, q̇d are provided to the controller described
in Appendix B.5.1.
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Figure B.1.: Obstacle avoidance in the LASA dataset.

B.5.3. Task space control: Offline
In the offline case (see Fig. 5.5b), a trajectory in task space (xd0, xd1, ..., xdN ) is
first computed with CONDOR. This trajectory is fed to the low-level controller to
execute it offline. To achieve this, firstly, we map the trajectory to joint space using
the Levenberg-Marquadt IK solver of the Robotics Toolbox [243]. In this case, we
employ this solver instead of TRACK-IK, because it is robust around singularities
and can avoid problems like stuttering [244]. This is important for obtaining very
smooth solutions in scenarios where this is critical, such as in writing tasks. Note
that the solver does not run in real time; however, this is not problematic, since
the IK solutions are computed offline.

Afterward, the resulting joint space reference trajectory is approximated with a
spline [245] that evolves as a function of time. Finally, when the motion starts, the
time is incremented by ∆t at each time step and used to query the reference value
that is sent to the controller described in Appendix B.5.1.

B.6. Obstacle Avoidance
Obstacle avoidance for motions modeled as dynamical systems is a problem that
has been addressed in the literature [196, 198, 246]. Any of these methods can be
combined with our proposed framework. In this work, we implemented the method
presented in [196] in PyTorch, and combined it with CONDOR. We compute a
modulation matrix M(x) that, when multiplied with the learned dynamical system
f(x), modifies the motion such that a new dynamical system f̄(x) = M(x)f(x)
is obtained. f̄(x) avoids obstacles while maintaining the stability properties of
f(x). For more details please refer to [196] (obstacle avoidance of multiple convex
obstacles).

Fig. B.1 shows motions from the LASA dataset where we test this approach. We
observe that the motions generated with CONDOR remain stable after applying the
modulation matrix. Furthermore, the obstacles are successfully avoided, showing
that, as expected, the dynamical system motion formulation of CONDOR can be
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effectively combined with methods designed to work with dynamical systems.
Finally, this method was tested with 3D obstacles in a real 7DoF robot

manipulator when controlling its end effector position. These results are provided
in the attached video.
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C.1. Upper Bound β
In this section, we introduce and prove the proposition used in Sec. 6.4.2 to
demonstrate that the surrogate stability conditions ensure asymptotic stability in
the dynamical system fTθ (xt).

Proposition 3 (Existence of class-KL function). Consider a dynamical
system ẏt = f(yt) with f : L ⊂ Rn → Rn continuously differentiable, and
Φyθ(t, y0) : R≥0 × L→ L as its evolution function. For a distance function
dt in L, we define its evolution, for a given t and y0, as δ : L× R≥0 → R≥0, with
δ(y0, t) = ||yg − Φyθ(t, y0)||.

Then, consider the function β : R≥0 × R≥0 → R≥0 defined as

β(d0, t) = z0 +
∫ t

0
żsds, (C.1)

with derivative
żt = α

(
zt − δmax(d0, t)

)
, (C.2)

where α ∈ R<0 and

δmax(d0, t) = max
y0∈Y0

(
max

s∈[t,t+∆t]
δ(y0, s)

)
, (C.3)

with Y0(d0) = {y0 ∈ L : ||yg − y0|| = d0} and ∆t ∈ R>0. The initial condition z0 is
set as

z0 = δmax
0 + d0, (C.4)

where δmax
0 = δmax(d0, 0).

Then, under the conditions of Theorem 5, i.e., ∀t ∈ R≥0,

1. dt = dt+∆t, for y0 = yg,
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2. dt > dt+∆t, ∀y0 ∈ L \ {yg},

there exists a class-KL function β such that ∀yt ∈ L and ∀t ∈ R≥0,

||yg − yt|| ≤ β(d0, t), (C.5)

which can also be expressed as

δ(y0, t) ≤ β(d0, t). (C.6)

Proof. To prove that a function β is an upper bound of δ and is class-KL, we need
the following conditions to hold ∀yt ∈ L and ∀t ∈ R≥0:

i) β(0, t) = 0,

ii) β decreases with t,

iii) δ ≤ β,

iv) β is continuous with respect to d0 and t,

v) β → 0 as t→∞,

vi) β strictly increases with d0.

Therefore, we proceed to prove all of these conditions. A summary of this proof is
depicted in Fig. C.1.

β(0, t) = 0
To demonstrate that this condition is valid, we introduce Lemma 1. For this lemma
to be applicable, a specific condition must be met. To validate this condition, we
refer to Lemma 2 and Corollary 1, both of which will be introduced subsequently.
We also present Corollary 2, which will prove beneficial in subsequent discussions.

Lemma 1 (β(0, t) = 0 constant). β(0, t) = 0 if δmax(0, t) = 0, ∀t ∈ R≥0.

Proof. If δmax(0, t) = 0, ∀t ∈ R≥0, for d0 = 0, from equations (C.4) and (C.2), we
can observe that z0 = 0 and żt = 0, ∀t ∈ R≥0. Replacing this in (C.1), we conclude
that β(0, t) = 0, ∀t ∈ R≥0.

Lemma 2 (δ = 0 constant). δ(yg, t) = 0, ∀t ∈ R≥0, if:

1. dt = dt+∆t, for yt+∆t = yg (Theorem 5, 1),

2. dt > dt+∆t, ∀yt ∈ L \ {yg} (Theorem 5, 2).

Proof. Let us introduce tg, which is the earliest t ∈ R≥0 where yt = yg. Then,
condition 1 gives rise to two scenarios for every state visited after tg:

i) δ(y0, t) is constant: A constant function satisfies dt = dt+∆t.
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Figure C.1.: Summary of lemmas and corollaries related to the proof of
Proposition 3. Bisque-colored boxes indicate the conditions necessary for the
proposition to be true, while blue boxes represent lemmas relying directly on its
assumptions and requirements.

ii) δ(y0, t) is periodic: A set of functions could meet the condition dt = dt+∆t by
varying over time but always returning to the same value after ∆t seconds.
However, in this case, the only possibility is that, for all t > tg, we have
δ(y0, t) = δ(y0, t + ∆t), i.e., a periodic function. This is because the time
derivative of δ is solely defined by yt, since ∂δ/∂t = ∂δ/∂yt · ẏt, and both of
these variables only depend on yt. Therefore, ∂δ/∂t at yg, and at any state
visited afterwards, given the state, must always be the same. This implies
that δ must evolve over time to the same states as those to which it evolved
∆t seconds ago, since for every state, the derivative is the same as it was ∆t
seconds before.

However, the periodic case for δ(y0, t) contradicts condition 2, which requires
that δ strictly decreases after ∆t seconds, and in the periodic scenario, it returns
to the same value after ∆t seconds. Hence, the only remaining scenario is that δ is
constant after tg, with a value of 0 (by definition). Lastly, by noting that y0 = yg
implies that tg = 0, we get that δ(yg, t) = 0, ∀t ∈ R≥0.

Corollary 1 (δmax(0, t) = 0). δmax(0, t) = 0 if δ(yg, t) = 0, ∀t ∈ R≥0.

Proof. If δ(yg, t) = 0, ∀t ∈ R≥0, and noting d0 = 0 implies that every y0 ∈ Y0 in
(C.3) is equal to yg, from (C.3), it follows that δmax(0, t) = 0, ∀t ∈ R≥0.

Corollary 2 (min(δmax)). min(δmax) = 0 if δmax(0, t) = 0, ∀t ∈ R≥0.

Proof. Recall that δ is positive definite and that δmax takes the value of some δ.
Then, δmax(0, t) = 0, ∀t ∈ R≥0, indicates that this is the minimum value δmax can
achieve. Hence, min(δmax) = 0.
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Then, provided that the conditions of Proposition 3 are met, the conditions
of Lemma 2 are fulfilled. Therefore, δ(yg, t) = 0 for every t ∈ R≥0, and, hence,
δmax(0, t) = 0 (from Corollary 1). Consequently, we can employ Lemma 1 to
demonstrate that β(0, t) = 0 for all t ∈ R≥0.

β decreases with t, and δ ≤ β
We introduce Lemma 3, which presents one condition that, if satisfied, implies
that β > δ and β strictly decreases over time, ∀d0 ∈ R≥0 \ {0}. After proving this
lemma, we introduce Lemma 4, which is then used to show that this condition
is satisfied in our case. Lastly, we combine this with the fact that β(0, t) = 0 to
conclude that β decreases with t (i.e., is a non-increasing function), and δ ≤ β,
∀d0 ∈ R≥0.

Lemma 3 (β > δ and strictly decreasing). β(d0, t) > δ(y0, t) and β(d0, t) strictly
decreases with respect to t, ∀d0 ∈ R≥0 \ {0}, ∀t ∈ R≥0, if:

1. δmax decreases with respect to t, ∀d0 ∈ R≥0 \ {0}.

Proof. Although δmax evolves as a function of time, we can infer from (C.2) that,
locally, β behaves as a linear first-order dynamical system, with the origin at δmax.
Given that α < 0, it follows that β will converge towards δmax over time.

Moreover, (C.4) indicates that z0 > δmax
0 for every d0 > 0. Given the properties

of linear first-order systems, β will strictly decrease towards δmax
0 , without ever

reaching or overshooting this value. Combined with condition 1, which indicates
that δmax decreases with respect to t for all d0 ∈ R≥0 \ {0}, we can conclude that β
will always be greater than δmax and will continue to strictly decrease towards this
value as a function of time. Therefore, β > δ and β strictly decreases with respect
to t, ∀d0 ∈ R≥0 \ {0}.

Lemma 4 (δmax decreases over time). δmax(d0, t) decreases with respect to t,
∀d0 ∈ R≥0 \ {0}, ∀t ∈ R≥0, if:

1. dt > dt+∆t, ∀t ∈ R≥0, ∀y0 ∈ L \ {yg}, (Theorem 5, 2).

Proof. Let us define
δmax
t+∆t(y0, t) = max

s∈[t,t+∆t]
δ(y0, s), (C.7)

which allows us to write δmax = maxy0∈Y0

(
δmax
t+∆t

)
. We will first prove that δmax

t+∆t
decreases with t.

To do so, observe that condition 1 can be rewritten as δ(y0, t + ∆t) < δ(y0, t).
Given that this condition holds true for every s in the interval [t, t+ ∆t], none of
the values of δ(y0, s) computed in this interval can exceed the maximum of this
interval, i.e., δmax

t+∆t(y0, t), after ∆t seconds. If there were such a value δ(y0, s)
that is greater than δmax

t+∆t(y0, t) after ∆t seconds, it would imply that δ(y0, s) had
increased, for some s, after ∆t, contradicting condition 1. Therefore, δmax

t+∆t can
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only decrease as time progresses. Since this holds for all instances of t, we conclude
that δmax

t+∆t decreases with respect to t, ∀y0 ∈ L \ {yg}.
Now, the function δmax computes the maximum over a set of functions δmax

t+∆t with
different initial conditions y0 ∈ Y0(d0). However, for any given d0, ∀y0 ∈ L \ {yg},
each one of these functions decreases with respect to time. Then, for any given
interval of time, we have two possible scenarios:

i) δmax is equal to one function δmax
t+∆t (the current maximum). In this case,

δmax decreases with time, since δmax
t+∆t decreases with time.

ii) The function that is currently the maximum over the set of functions δmax
t+∆t

reaches a point in time t′ where it changes. At the point where the change
occurs, the function will be lower than or equal to its previous values for
t < t′, since the previous maximum is decreasing. Furthermore, it will be
greater than or equal to the values for t > t′, since the new maximum also
decreases.

Therefore, we can conclude that ∀d0 where y0 ∈ Y0(d0) is not yg, δmax decreases
with respect to time. Moreover, by noting that ∀y0 ∈ Y0(d0), d0 ̸= 0 implies that
y0 ̸= yg, it follows that δmax decreases with respect to time, ∀d0 ∈ R≥0 \ {0},
∀t ∈ R≥0.

As a consequence, the assumptions and conditions outlined in Proposition 3
enable us to apply Lemma 4 to demonstrate that the conditions of Lemma 3 are
satisfied. This, in turn, leads us to the conclusion that β > δ and β(d0, t) strictly
decreases with respect to t, ∀d0 ∈ R≥0 \ {0}, ∀t ∈ R≥0. Lastly, before we showed
that, for d0 = 0, β(0, t) = 0, ∀t ∈ R≥0. Therefore, in general, we have that β ≥ δ
and β decreases with respect to t, ∀d0 ∈ R≥0, ∀t ∈ R≥0.

Continuity of β
We require β to be continuous with respect to t, for each fixed d0, and with respect
to d0, for each fixed t. To achieve this, we will introduce lemmas 5, 6 and 7.

Lemma 5. [Continuity of δ] If ẏt = f(yt) is continuously differentiable, then
δ(y0, t) is continuous with respect to y0 and t.

Proof. Given that ẏt = f(yt) is continuously differentiable, it follows that Φyθ(t, y0)
is continuously differentiable with respect to both t and y0 [247]. Moreover, since δ
is a metric on L defined by δ = ||yg − Φyθ(t, y0)||, it is continuous with respect to
Φyθ(t, y0) [248]. Since Φyθ(t, y0) is continuously differentiable and thus continuous,
and the composition of two continuous functions is continuous, it follows that
δ(y0, t) is continuous with respect to both y0 and t.

Lemma 6 (δmax continuous with respect to t). δmax is a continuous function with
respect to t, if δ is continuous with respect to t.
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Proof. We will first prove this for δmax
t+∆t (as defined in (C.7)). Given that δmax

t+∆t
is the maximum value of δ(y0, s) over the interval [t, t+ ∆t], any change in δmax

t+∆t
must be due to a change in δ for some s in the boundaries of [t, t + ∆t]. Then,
since δ changes continuously, δmax

t+∆t can only change continuously as well. Thus,
δmax
t+∆t is continuous with respect to t.
However, we need to show that δmax = maxy0∈Y0

(
δmax
t+∆t

)
is continuous with

respect to t. This follows from the fact that δmax computes the point-wise
maximum along t over a set of continuous functions δmax

t+∆t, which results in a
continuous function [249].

Lemma 7 (δmax continuous with respect to d0). δmax is continuous with respect to
d0, if δ is continuous with respect to y0.

Proof. Given the continuity of the function δ(y0, t) with respect to y0, the function
δmax
t+∆t computes the point-wise maximum along y0 over a set of continuous

functions, specifically {δ(y0, s) : s ∈ [t, t + ∆t]}. Consequently, δmax
t+∆t is also

continuous in y0 [249].
Building on this, we seek to demonstrate that δmax = maxy0∈Y0

(
δmax
t+∆t

)
is

continuous with respect to d0. To accomplish this, we will use the maximum
theorem [250]. This theorem states that if Y0(d0) is continuous with respect to
d0 and compact-valued1, and δmax

t+∆t(y0, t) is continuous in y0, then δmax(d0, t) is
continuous in d0.
Y0(d0) is continuous because the relationship between each y0 and d0, i.e., the

metric on L, is continuous [248]. Y0(d0) is compact-valued if, for each d0, Y0
constitutes a compact set. Given that Y0 ⊂ Rn, the Heine-Borel theorem [249]
indicates that Y0 is compact if it is both closed and bounded. Every Y0 is closed
as it fulfills an algebraic equation, and can be contained within any ball of radius
larger than d0, making it bounded. Consequently, Y0(d0) is compact-valued.

Therefore, since δmax
t+∆t(y0, t) is continuous with respect to y0, and Y0(d0) is both

continuous and compact-valued, the maximum theorem states that δmax(d0, t) is
continuous with respect to d0.

Now, we can proceed to conclude about the continuity of β for both t and d0.

1. Continuity in t: For any given d0, since β evolves as a linear first-order system
(as per (C.1)), its solution will exist provided that δmax is continuous with
respect to t [251]. Then, under the assumptions of Proposition 3, Lemma 6
confirms that δmax is indeed continuous, provided that δ is continuous. From
Lemma 5 we infer that δ is continuous with respect to t. Hence, β is well-defined
for any given d0, indicating that it is differentiable with respect to t, and,
therefore, continuous.

2. Continuity in d0: For any given t, from (C.1), we know that β will be continuous
with respect to d0 as long as both of its terms, z0 and the intregral of żt,
are continuous. The continuity of both terms depends on the continuity of

1The concepts of compact-valued and continuous refer to those employed in the literature of
set-valued functions/correspondences. For further details, we refer the reader to [250].
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δmax. Then, since Lemma 7 indicates that δmax is continuous with respect to d0
provided that δ is continuous with respect to y0, and Lemma 5 confirms that
this is indeed the case (given the assumptions of Proposition 3), we conclude
that β is continuous with respect to d0.

β → 0 as t→∞
To prove that this condition holds, we will utilize Lemma 8. The application of
this lemma necessitates the use of Lemma 4 and Corollary 1, which are already
introduced previously, and Lemma 9, which is introduced afterwards.

Lemma 8 (β converges to zero). β → 0 as t→∞ if:

1. δmax ∈ [0,max(δ)],

2. δmax decreases with respect to t, ∀d0 ∈ R≥0, ∀t ∈ R≥0,

3. dt < dt−∆t, ∀y0 ∈ L \ {yg}, ∀t ∈ R≥0, (Theorem 5, 2).

4. δmax surjective in d0,

5. δmax(0, t) = 0, ∀t ∈ R≥0.

Proof. According to (C.2), β approaches δmax as t→∞. Thus, demonstrating that
δmax → 0 as t→∞ would imply that β → 0 as t→∞.

Note that δmax ∈ [0,max(δ)] (condition 1) and δmax decreases for all t (condition
2). This indicates that as t goes to infinity, δmax must approach a limit
a ∈ [0,max(δ)]. We will proceed to show that this limit can only be zero.

Let us define y∗
0 ∈ Y0 and t∗ ∈ R≥0 as the variables in (C.3) where the maxima

are achieved for a given d0 and t. Thus, δmax = δ(y∗
0 , t

∗). From condition 3, we
know that δ(y∗

0 , t
∗ + ∆t) < δ(y∗

0 , t
∗), ∀y∗

0 ∈ L \ {yg}, ∀t∗ ∈ R≥0. This leads to two
scenarios:

i) y∗
0 remains constant: If y∗

0 does not change in the interval [t, t∗ + ∆t], then
δ(y∗

0 , t
∗), and therefore δmax, must strictly decrease at some point within this

interval. Otherwise, δ(y∗
0 , t

∗ + ∆t) < δ(y∗
0 , t

∗) would not hold true.

ii) y∗
0 changes: If y∗

0 changes during the interval [t, t∗ + ∆t], given that δmax

decreases with t (condition 2), this change can only occur if δ(y∗
0 , t

∗), and
hence δmax, strictly decreases at some point within the interval.

In either case, δmax strictly decreases at some point in the interval [t, t∗ + ∆t],
∀d0 ∈ R≥0 \ {0}, ∀t ∈ R≥0.

Taking this into account, if the limit was some value a ̸= 0, a contradiction
would arise. If a ̸= 0, we would always have a d0 ̸= 0 such that δmax(d0, 0) = a
(conditions 4 and 5). This implies that δmax must become lower than a before
t∗ + ∆t, and, since it is decreasing (condition 2), it will remain lower as time
progresses. Therefore, the only feasible value for the limit is a = 0, which confirms
δmax → 0 as t→∞. Consequently, β → 0 as t→∞.



C

170 C. Proofs and Method Details (Chapter 6)

Lemma 9 (δmax with d0). δmax ∈ [0,max(δ)], and δmax surjective with respect to
d0, if:

1. min(δmax) = 0,

2. δmax continuous with respect to d0.

Proof. Given that δmax computes a maximum over values of δ, we get
max(δmax) = max(δ). Then, we know that min(δmax) = 0 (condition 1), and that
δmax is continuous with respect to d0 (condition 2). Therefore, as a consequence of
the intermediate value theorem, δmax can take any value between min(δmax) and
max(δmax), i.e., δmax ∈ [0,max(δ)]. Moreover, each value of δmax ∈ [0,max(δ)]
must have at least one corresponding value of d0; hence, in this interval, δmax(d0, t)
is surjective with respect to d0.

To summarize, given the conditions and assumptions of Proposition 3, Lemmas
4, 9 and Corollary 1, indicate that the conditions of Lemma 8 are fulfilled, implying
that β → 0 as t→∞.

β strictly increases with d0

To prove this, we will introduce Lemma 10, which needs a condition supported by
Lemma 11, introduced afterwards.

Lemma 10 (β strictly increases with d0). β strictly increases with d0 if:

1. z0 strictly increases with d0,

2. δmax(0, t) = 0, ∀t ∈ R≥0,

3. β strictly decreases with t, ∀d0 ∈ R≥0,

4. β continuous with t,

5. β → 0 as t→∞.

Proof. For a fixed t, the β strictly increases in d0 if for any two numbers
da

0 and db
0 (where da

0 < db
0) within its domain, the condition da

0 < db
0 implies

βa(da
0, t) < βb(db

0 , t).
By condition 1, z0 strictly increases with d0, so we have za

0(da
0) < zb

0 (db
0).

Moreover, since (any) z0 is non-negative (see (C.4)), it follows that zb
0 > za

0 ≥ 0.
Given condition 2, this indicates that db

0 > 0.
Recalling (C.1), we have

βb = zb
0 +

∫ t

0
żsds. (C.8)

Since db
0 > 0, it follows from condition 3 that β(db

0 , t) strictly decreases with respect
to t (i.e., żt < 0). Furthermore, β is continuous with t and approaches zero as time
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goes to infinity (conditions 4 and 5). This, combined with zb
0 > za

0 , implies that
there must exist a time ta > 0 such that

βb = zb
0 +

∫ ta

0
żsds︸ ︷︷ ︸

za
0

+
∫ t

ta
żsds. (C.9)

Since żt < 0, starting from the same initial condition, a larger integration interval
results in a smaller value of β. Therefore, we deduce that βb > βa, as βa follows
the same format as equation (C.9) (when replacing the terms equivalent to za

0 , with
za

0) but with an integral that starts at 0 instead of ta, and 0 < ta. Thus, under the
given conditions, β strictly increases with respect to d0.

Lemma 11 (z0 strictly increases with d0). z0 strictly increases with d0 if:

1. δ(y0, t) continuous with respect to t.

Proof. For z0 to strictly increase with d0, for any two numbers da
0 and db

0 within its
domain, the inequality da

0 < db
0 must imply za

0(da
0) < zb

0 (db
0). From (C.4), we have

z0 = δmax
0 + d0. Given that d0 strictly increases with itself, it suffices to analyze

the behavior of δmax
0 .

Recall that δmax
0 = maxy0∈Y0

(
δmax
t+∆t(y0, 0)

)
and that δmax

t+∆t(y0, 0) computes the
maximum over the set {δ(y0, s) : s ∈ [0,∆t]}. We will refer to this set as W(y0).
Importantly, W(y0) contains δ(y0, 0) = d0 for all y0. Then, for any da

0 and db
0

satisfying da
0 < db

0 , the behavior of δmax
0 can be studied in three different scenarios.

Let ya
0 ∈ Y0(da

0) be the state that maximizes δmax
t+∆t for da

0, then:

i) da
0 = δmax

t+∆t(ya
0, 0): This scenario occurs when da

0 is the maximum of W(ya
0).

Then, if yb
0 ∈ Y0(db

0) is the state that maximizes δmax
t+∆t for db

0 , and, hence,
db

0 ∈W(yb
0 ), the maximum of W(yb

0 ) cannot be lower than db
0 . Consequently,

since da
0 < db

0 , we get δmax
t+∆t(ya

0 , 0) < δmax
t+∆t(yb

0 , 0). As both ya
0 and yb

0 are
those that maximize δmax

t+∆t over y0, for da
0 and db

0 , respectively, we conclude
that δmax

0 (da
0) < δmax

0 (db
0).

ii) da
0 < δmax

t+∆t(ya
0, 0) ≤ db

0: This scenario occurs when the maximum of W(ya
0)

is not da
0, and db

0 is greater than or equal to this maximum. Following a
similar reasoning to the above, we can conclude that δmax

0 (da
0) ≤ δmax

0 (db
0).

iii) da
0 < db

0 < δmax
t+∆t(ya

0, 0): This scenario occurs when the maximum of W(ya
0)

is not da
0, and db

0 is lower than this maximum. Provided that δ is continuous
with t (condition 1), in the set W(ya

0), since, for t = 0, δ = da
0, and for

some t∗ > 0, δ = δmax
t+∆t(ya

0 , 0), then we know there must exist a tb, with
0 < tb < t∗ ≤ ∆t, where δ = db

0 .
Now, observe that t∗ ∈ [tb, tb + ∆t]. Therefore, δmax

t+∆t(ya
0 , t

b), which
computes the maximum over {δ(ya

0 , s) : s ∈ [tb, tb + ∆t]}, cannot be lower
than δmax

t+∆t(ya
0 , 0). Moreover, we can select ya

t at time tb, i.e., ya
tb , as a new
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initial condition such that δmax
t+∆t(ya

tb , 0) = δmax
t+∆t(ya

0 , t
b). Since δ(ya

tb , 0) = db
0 ,

we get that ya
tb ∈ Y0(db

0). Hence, even though ya
tb might not maximize δmax

t+∆t
for Y0(db

0), we know that the maximum, achived at yb
0 , must be at least

greater than or equal to δmax
t+∆t(ya

tb , 0).
Consequently, we have that δmax

t+∆t(yb
0 , 0) ≥ δmax

t+∆t(ya
tb , 0), and δmax

t+∆t(ya
tb , 0) =

δmax
t+∆t(ya

0 , t
b) ≥ δmax

t+∆t(ya
0 , 0). Hence, δmax

t+∆t(ya
0 , 0) ≤ δmax

t+∆t(yb
0 , 0), and, there-

fore, δmax
0 (da

0) ≤ δmax
0 (db

0).

In summary, for any da
0 and db

0 with da
0 < db

0 , it is always true that
δmax

0 (da
0) ≤ δmax

0 (db
0), meaning δmax

0 is non-decreasing with respect to d0. As the
sum of a non-decreasing function (δmax

0 ) and a strictly increasing function (d0)
results in a strictly increasing function, we conclude that z0 strictly increases with
d0.

From Lemma 10, we can conclude that β strictly increases with respect to d0,
since assuming the conditions of Proposition 3, and that we have proven that β is
continuous in t, Lemmas 11, 3, and 8 indicate that the conditions of Lemma 10 are
fulfilled.

To summarize, we have demonstrated that all the requirements for β(d0, t) to be a
class-KL function, and to serve as an upper bound for δ(y0, t), are met for every
yt ∈ L and for all t ∈ R≥0. With this, our proof of Proposition 3 is complete.

C.2. Learning on Spherical Manifolds
In this work, we employ unit quaternions to control orientation; therefore,
we consider two distance functions that are relevant when learning spherical
geometries: 1) great-circle distance, and 2) chordal distance.

• Great-circle distance: This is the distance along a great circle. A great
circle is the largest circle that can be drawn on any given sphere, defining
the shortest distance between two points. In the context of unit quaternions,
which have a unitary norm, this distance is equivalent to the central angle α
subtended by two points on the sphere. Hence, we can define it as

dg.c. = α. (C.10)

• Chordal distance: This is a distance that can be computed when
an n-sphere is embedded in a higher-dimensional Euclidean space, i.e.,
Sn ⊂ Rn+1. Then, by computing the Euclidean distance in Rn+1 between
two points in Sn, we induce a distance in Sn, corresponding to the chordal
distance [252–254]. As the name suggests, this distance is the length of the
chord connecting two points in an n-sphere. Hence, it is defined as

dchord = 2r sin(α/2), (C.11)

where r is the radius of the n-sphere.
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Figure C.2.: Left: A spherical trajectory towards a goal at the north pole. The
chordal and great-circle distances at specific points are indicated as dchord and dg.c.,
respectively. Right: Distances as a function of the central angle between points.

These distances are depicted in Fig. C.2. Since both define the same topology Sn
they are considered to be equivalent, and can be utilized in PUMA to enforce
stability when states are represented as unit quaternions. The great circle distance
is especially suited to spherical spaces as it defines the shortest path, or the
geodesic, between two points. Conversely, the chordal distance is straightforward
to apply because it naturally arises when calculating the Euclidean distance at the
output of ψθ. This is due to L ⊂ Rm, where m > n represents the output size of
ψθ.

C.2.1. Comments on local stability
Considering a one-dimensional sphere, it is notable that at α = π (with respect to
the goal), both the great-circle distance and the chordal distance can decrease in
two possible ways: by evolving either to the right or to the left (see Fig. C.2).
Consequently, to ensure these distances decrease in the region around α = π, one of
these options should be selected. However, this would require the dynamical system
to instantly change its direction at this point, rendering fTθ discontinuous. Yet, in
Theorem 5, we assume this function is continuous, as continuity is a prerequisite
for the class-KL upper bound β to also be continuous, which is necessary to prove
stability.

Therefore, by extending this idea to higher-dimensional spheres, this implies
that when employing these metrics, we can only enforce local asymptotic stability
for Sn \ {p}, where p is the point at α = π. Moreover, due to the continuity of
fTθ , this point must correspond to a zero, and, therefore, represents an unstable
equilibrium. This property is not a flaw in the great-circle distance or the chordal
distance. Rather, it is a result of the topology of Sn, which does not allow for the
existence of a single stable equilibrium. This is a consequence of the Poincaré-Hopf
theorem [255].
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C.2.2. Pose Control
Until now, our discussion has centered on the applicability of our method for unit
quaternions. However, practical control of a robot’s pose requires simultaneous
control of both its position (Euclidean) and orientation (non-Euclidean). This can
be achieved by using a product metric, i.e., a metric resulting from the Cartesian
product of spaces. In this case, we are looking at the product R3 × S3.

A simple product metric is the sum of the metrics from each space in the
product [225], e.g., dRn + dSn for Rn × Sn, where dRn is a distance in Rn and dSn

is a distance in Sn. However, it is not straightforward to do this in L without
modifying the DNN structure. This is because the latent states yt are an entangled
representation of the robot states xt, making it impossible to simply add together
the distances of the Euclidean and non-Euclidean parts in the latent space.

Interestingly, when the product metric is computed using manifolds of identical
topology, such as R× R, the resulting metric is equivalent to the one obtained by
directly computing the metric in the higher-dimensional space (R2 in this example)
[225]. Hence, for such scenarios, there is no need to explicitly disentangle the
states in L; instead, we can compute the metric directly in the complete latent
space. Our case, nevertheless, is more complex since the topologies of S3 and R3

are different. Fortunately, we found two ways of easily overcoming this limitation.

Pose in Euclidean space
We have observed that an Euclidean metric, the chordal distance, can generate
spherical metrics in lower-dimensional manifolds. This becomes particularly
relevant when a Euclidean metric is employed in Rm, where m exceeds the
dimensionality of our state space (6 in our case). In this scenario, the metric
is equivalent to dR3 + dRm′ for m′ > 3 and 3 + m′ = m. Given that S3 can be
induced inside Rm′ , this suggests that R3 × S3 can be induced in Rm when using
the Euclidean distance in this space.

Pose in spherical space
Finally, we also note that the great-circle distance can be employed to achieve
the same objective. Suppose we compute this distance in S6. Then, it would be
equivalent to dS3 + dS3 . Interestingly, a diffeomorphism can be found between Rn
and a subset of Sn, e.g., the stereographic projection [256]. This implies that it is
feasible to use the metric dS3 in L, and find a valid representation for R3 within
a subspace of S3. Consequently, the product space R3 × S3 can be represented
within a subset of S6.

C.3. Hyperparameter Optimization
To optimize the hyperparameters of the different variations of PUMA employed in
the LASA and LAIR datasets, we utilized the Tree Parzen Estimator [237]. This
optimization method builds a probability model that facilitates the selection of
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Table C.1.: Hyperparameter optimization results of the different variations of
PUMA.

Hyperparameter Opt.? Hand-tuned value /
initial opt. guess Optimized value

Euc. Sph. Euc.
(2nd order)

Sph.
(2nd order) Euc. Sph. Euc.

(2nd order)
Sph.

(2nd order)
CONDOR
Stability loss margin (m) ✓ 1.250e-8 1.250e-4 1.250e-4 1.250e-4 5.921e-3 3.012e-05 2.424e-08 2.919e-7
Triplet imitation loss weight (λ) ✓ 1 1 1 1 1.315e-1 3.496 1.022e-1 4.473e-1
Window size imitation (Hi) ✓ 14 14 14 14 13 13 14 14
Window size stability (Hs) ✓ 4 1 1 1 11 13 11 11
Batch size imitation (Bi) ✗ 250 250 250 250 - - - -
Batch size stability (Bs) ✗ 250 250 250 250 - - - -

Neural Network
Optimizer ✗ Adam Adam Adam Adam - - - -
Number of iterations ✗ 40000 40000 40000 40000 - - - -
Learning rate ✓ 1e-4 1e-4 1e-4 1e-4 9.784e-5 8.574e-4 1.670e-4 1.245e-4
Activation function ✗ GELU GELU GELU GELU - - - -
Num. layers (ψθ, ϕθ) ✗ (3, 3) (3, 3) (3, 3) (3, 3) - - - -
Neurons/hidden layer ✗ 300 300 300 300 - - - -
Layer normalization ✗ yes yes yes yes - - - -

the most promising set of hyperparameters in each optimization round. For the
implementation of the Tree Parzen Estimator, we used the Optuna API [238].

To evaluate the selected sets of hyperparameters, we employ a loss function
Lhyper composed of two components. The first component, Lacc, assesses the
accuracy of the trained model. This is done by computing the RMSE between the
demonstrations and the trajectories simulated by the learned model, in a manner
similar to the approach used in the experiments section. The second component,
Lgoal, quantifies the average distance between the final points of trajectories,
simulated using the learned model, and the target goal. Thus, we have:

Lhyper = Lacc + γLgoal (C.12)

where γ is a weighting factor. After initial tests, we settled on γ = 3.5.
To make the computationally intensive process of optimizing hyperparameters

more feasible, we employed six strategies: 1) reducing the overhead of the
objective function, 2) limiting the size of the evaluation set, 3) utilizing
Bayesian optimization, 4) applying pruning techniques, 5) selecting a subset of
hyperparameters for optimization, and 6) employing an optimization range. For
details on the first five strategies, the reader is referred to [156]. The sixth strategy
consists of restricting the hyperparameter search to a predefined range.

Table C.1 presents the results of this optimization process. We can observe
the hyperparameters that were optimized, their initial values (chosen based on
preliminary tests), and their final optimized values. The ranges for hyperparameter
optimization are as follows: 1) m : [1e− 9, 1e− 1], 2) λ : [1e− 1, 10], 3) Hi : [1, 14],
4) Hs : [1, 14], and 5) learning rate: [1e− 5, 1e− 3]. Note that the variations using
the boundary loss are not included in the table, since in those cases the same
hyperparameters were employed and the boundary loss was added with a weight of
0.001. The same holds for the behavioral cloning case. Lastly, regarding Sec. 6.4.4
it is important to note that in every experiment involving spherical state spaces,
the dynamical system was kept within the manifold by normalizing the forward
Euler integration output.
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