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Abstract:
In this paper, we propose an obstacle avoidance solution for a 34-gram quadcopter equipped
with a monocular camera. The perception of obstacles is tackled by a lightweight convolutional
neural network predicting a dense depth map from a captured grey-scale image. The depth
network performs self-supervised learning and thus requires no ground-truth labels that are
costly to acquire. Based on the depth map, the control strategy is implemented by a behavior
state machine that balances the efficiency to explore the environment and the safety of avoiding
obstacles. In real-world flight experiments, our solution demonstrates the efficacy of predicting
trust-worthy depth maps and a stable control strategy in various cluttered environments.

Keywords: Autonomous robotic systems, Perception and sensing, Flying robots, Embedded
robotics, Monocular depth prediction, Self-supervised learning.

1. INTRODUCTION

Small flying robots, such as nano quadcopters, have
promising applications owning to their agility in narrow
spaces. However, the small size and light weight (e.g., ∼
10×10 cm and∼30 grams) limit the sensing and processing
resources onboard. A monocular camera is small in size
and can sense rich information, making it the primary
sensor that enables a flying robot to interact with its
surroundings. Besides, to navigate a nano quadcopter au-
tonomously and safely, the visual processor and controller
are required to be efficient enough to ensure low latency.
This is especially important in cluttered environments
where obstacle avoidance is a necessity.

Focusing on learning-based solutions, there are various
ways to navigate a quadcopter between obstacles with
a monocular camera. The first is using an end-to-end
navigation network. The network proposed in Loquercio
et al. (2018) was trained by human driving actions and
can directly generate a obstacle-avoiding navigation policy.
The disadvantage of end-to-end networks is that it is hard
to reasoning the strategy they follow, which makes it
harder to predict the strategy’s capability of generalizing
to unknown environments.

The second way is to infer the depth of a pixel from its
optical flow, assuming the surroundings to be stationary.
The authors of Bouwmeester et al. (2022) focused on
substantially reducing neural network size while retaining
sufficient performance for dense optic flow estimation. The
network was applied to obstacle avoidance by comparing
the left and right halves of the flow map. The disadvantage
of using optic flow for obstacle avoidance is that sufficient
motion is essential and that obstacles in the direction of
motion are hard to detect.

Fig. 1. System architecture. In our framework, a
lightweight CNN is proposed for monocular depth
estimation on a nano quadcopter, e.g. Crazyflie
(Bitcraze, 2022). Based on the depth estimation, a
behavior state machine is used to manoeuvre the
quadcopter around obstacles while exploring the envi-
ronment, and to redirect it to safe directions when
facing dangerous scenarios.

The third way is resorting to a dense depth map. It is pop-
ular with flying robots equipped with a stereo or RGB-D
(depth) camera. Thanks to recent developments in monoc-
ular depth estimation with deep neural networks (DNNs),
a dense depth map can be obtained from a single image.
There are not only works pursuing higher accuracy with
larger networks Godard et al. (2019); Ranftl et al. (2020)
but also works focusing on smaller networks and faster
inference speed, with the aim of deployment on memory-
and-computation-constraint mobile devices. Many of them
adopted self-supervised learning Liu et al. (2020); Poggi
et al. (2022). To better train a small network, learning
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ronment, and to redirect it to safe directions when
facing dangerous scenarios.

The third way is resorting to a dense depth map. It is pop-
ular with flying robots equipped with a stereo or RGB-D
(depth) camera. Thanks to recent developments in monoc-
ular depth estimation with deep neural networks (DNNs),
a dense depth map can be obtained from a single image.
There are not only works pursuing higher accuracy with
larger networks Godard et al. (2019); Ranftl et al. (2020)
but also works focusing on smaller networks and faster
inference speed, with the aim of deployment on memory-
and-computation-constraint mobile devices. Many of them
adopted self-supervised learning Liu et al. (2020); Poggi
et al. (2022). To better train a small network, learning

from a larger network through knowledge distillation is
also a popular choice Aleotti et al. (2020); Yucel et al.
(2021); Wang et al. (2021). Dense depth maps are applied
to obstacle avoidance of a quadcopter in Chakravarty et al.
(2017). A disadvantage is that the depth network requires
ground-truth labels for training. Additionally, the control
strategy is not capable of handling corner cases, such as
being too close to a wall or obstacles in the center view.

In this work, we develop an obstacle avoidance framework
(as shown in Fig. 1) for a nano quadcopter based on a
lightweight depth network (LDN). The contributions can
be summarized as:

(1) The training of the LDN combines two supervision
signals: self-supervised learning using reprojection-
based view synthesis and knowledge distillation from
a larger network. Better accuracy is achieved than
using either one of them solely. No ground-truth label
is required.

(2) The behavior state machine handles noisy low-
resolution depth maps and safely navigates the quad-
copter out of corner cases, such as dynamic obsta-
cles, obstacles right in front, or facing a planar wall
vertically. This approach improves upon Chakravarty
et al. (2017); Bouwmeester et al. (2022) in generating
robuster control commands.

The structure of the paper is as follows. Section 2 describes
the architecture of the LDN, learning schemes, datasets,
and the design of a behavior state machine. In Section 3,
we present an ablation study of learning schemes and the
results of flight experiments of a nano quadcopter. The
conclusion is followed in Section 4.

2. METHODOLOGY

2.1 Lightweight Monocular Depth Network

The architecture of the LDN is shown in Fig. 2. Most depth
networks in the literature have the downsampling encoder
and upsampling decoder architecture, predicting a depth
map with the same resolution as the input image. Dif-
ferently, our network performs downsampling three times
and reaches 1/8th resolution of the input image. There is
upsampling operation. It has 391, 793 trainable parameters
in total. According to our knowledge of literature, only
the MiniNet Liu et al. (2020) has fewer parameters than
the proposed network. MiniNet has an iterative recurrent
module, while our network performs a one-time forward
pass. Note that we do not compare the proposed LDN
with other works because our focus is on ground-truth-free
training schemes instead of network architecture design.
The training schemes studied can be applied to a depth
network with any architecture.

The reason for predicting low-resolution depth maps is two
folds. Firstly, the network aims to run onboard a Crazyflie
nano quadcopter equipped with a Bitcraze AI-deck 1 DNN
processor. A PyTorch-trained network model is required
to be converted by specific software to be flashed into the
AI-deck. The proposed network architecture is empirically
optimized under the given hardware/software constraints.
Secondly, our control strategy does not require a high-
resolution depth map. Given the resolution of the image
1 https://www.bitcraze.io/products/ai-deck/

captured by the onboard camera (324×244), we crop it
to 320×224, which means the 1/8th resolution depth map
has 40×28 pixels. The resolution may seem low, but it
provides adequate information about the surroundings to
fly safely. It is also sufficient for self-supervised learning
and knowledge distillation, which will be introduced later.

2.2 Depth Learning Schemes

We discuss two supervision signals for training an LDN.
The first is the reprojection-based self-supervised learning.
The main loss function is the photometric matching loss
Lphoto(D,T ). D denotes the depth map prediction of im-
age Ii and T is the relative pose prediction between Ii and
Ii+1. We adopt Monodepth2 Godard et al. (2019) as the
base and add the geometry consistency loss Lgeo proposed
in Bian et al. (2019). Since the LDN outputs low-resolution
depth maps, the grey-scale images constructing Lphoto are
downsampled to 1/8th resolution. T can be predicted by
a pose network trained from scratch simultaneously with
LDN. The training of LDN-1 in Table 1 uses this scheme.

T can be obtained in another way. Given the mechanism of
Lphoto(D,T ), more accurate pose predictions can benefit
the training of an LDN. Following this idea, we train the
depth and pose networks of Monodepth2 that are based on
ResNet-18 with full-resolution images. Besides adding the
geometry consistency loss, to improve the pose accuracy,
we implement the iterative depth-dependent pose predic-
tion Wagstaff et al. (2022). The number of iterations is
set to three in both training and inference. When loading
image snippets during training, we implement that there is
a 75% possibility of using a bigger temporal step. Because
the relative translational motion between Ii and Ii+2 is
usually bigger than Ii and Ii+1, which is better for learning
depth. The trained Monodepth2 networks are referred
to as Teacher networks in the rest of this article. The
pose predictions from Teacher networks are used in the
reprojection-based loss, as in the case of training LDN-3,
LDN-4, and LDN-5 in Table 1. Teacher networks perform
only inference in the training of an LDN.

The second supervision signal is the knowledge distillation
(KD) loss from the depth Teacher network. A predicted
low-resolution depth map DLDN is upsampled via bilinear
interpolation to be the same resolution as the input image.
The depth map prediction of Teacher network DT serves
as the proxy label. We use the L1 loss, LKD = |DT −
up(DLDN)|. The KD loss weight λKD = 1.0. The complete
loss function is shown in Eq. (1).

L = λgeo · Lgeo(DLDN, T ) + Lphoto(DLDN, T ) + λKD · LKD

(1)

2.3 Image Datasets

We collect two datasets in two real-world environments.
The grey-scale images captured by the tiny camera on-
board the quadcopter were transmitted via wireless com-
munication to a laptop computer. During data collection,
we held the quadcopter in hand and performed random
motion. One environment is a controllable experimental
environment CyberZoo (Fig. 3 (a)). In this environment
the layout of objects is easy to change in order to test with
different conditions, e.g., density and type of obstacles.
6,231 images were captured in total. Another environment
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Fig. 2. Architecture of the lightweight CNN for monocular depth prediction. “+” denotes element-wise summation and
“//” stands for tensor concatenation along the channel dimension. Blue color denotes that the convolutional layer is
followed by a batch normalization layer and a ReLU activation function. Color yellow denotes that the convolutional
layer is followed by a ReLU6 activation function. Color green denotes a max pooling layer with stride=2.

is a Corridor in an office building (Fig. 3 (b)). Here we
captured 2,717 images. There is no ground-truth label
available. All the images are used for training.

(a) CyberZoo environment.
The obstacles include screens,
chairs, plants, pillars, etc.

(b) Corridor that can contain
trashcans and chairs.

Fig. 3. Real-world environments for data collection.

Besides the real-world datasets, we take three subsets from
the TartanAir Wang et al. (2020) dataset to evaluate the
training schemes, as shown in Table 1. Raw images and
ground-truth depth maps are resized to the resolution
of 320×224. The subset of the top group of Table 1
is made of office and office2 environments. The second
subset is collected in the neighborhood environment. The
subset of the group at the bottom of the table contains
the seasonsforest and seasonsforest winter environments.
Around 15% images are used for testing. In accuracy
evaluation, an LDN is trained on a single dataset and
tested on the same dataset.

2.4 Behavior State Machine for High-Level Control

We design an inverse-depth-map-based Behavior State
Machine (BSM) to generate high-level velocity commands
for the quadcopter. The velocity command is then tracked
by a low-level attitude controller. By saying inverse, we
mean that nearer obstacles have larger inverse depth values
which are restricted to the range d ∈ (0, 1). As shown in
Fig. 1, rather than focusing on pixel-wise depth values, we
firstly extract a K-dimensional vector by taking the aver-
age of K sub-maps cut along the column of the full map,
where dk is the k-th averaged inverse depth value. Our

motivation for doing this is to increase robustness to trivial
depth changes restricted to small areas. Furthermore, it is
expected that in this way the state machine can be also
insensitive to depth prediction errors and image noise.

As shown in Fig. 1, one state of the BSM is manoeuvre
which implements the trade-off between navigation to
a goal and avoiding surrounding obstacles. The obsta-
cle avoidance control is mainly inspired by the Behav-
ior Arbitration Scheme Althaus and Christensen (2002);
Chakravarty et al. (2017), in which all elements in the
averaged depth vector are weighted summed to generate
the yaw rate command ψ̇:

ψ̇avoid(d) = λavoid

K−1∑
k=0

[(
K + 1

2
−k)·e−

c
dk ·e−

(k−K+1
2

)2

2σ2 ] (2)

where λavoid, c, σ are weights that can be tuned for dif-
ferent sensitivity levels to obstacles. In principle, obstacles
with higher inverse depth values that are near to the center
view of the quadcopter contribute to a larger ψ̇.

During manoeuvre, the forward speed is set to be |v| =
0.3m/s. Besides, to encourage the quadcopter to explore
the environment rather than focusing on avoiding obsta-
cles in a local area, the goal direction of navigation is
chosen to be the vector index that corresponds to the
smallest inverse depth value:

ψ̇goal(d) = λgoal(argmin
k

(dk)−
K + 1

2
) (3)

The overall yaw rate can be summarized as:

ψ̇ = ψ̇avoid(d) + ψ̇goal(d). (4)

The other state of BSM is redirect, redirecting the
facing of the quadcopter to a safer direction at a certain
yaw rate while hovering. This state is triggered when
either of these two situations is satisfied: (1) when the
difference ∆ between the mean of the two elements in
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Besides the real-world datasets, we take three subsets from
the TartanAir Wang et al. (2020) dataset to evaluate the
training schemes, as shown in Table 1. Raw images and
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of 320×224. The subset of the top group of Table 1
is made of office and office2 environments. The second
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subset of the group at the bottom of the table contains
the seasonsforest and seasonsforest winter environments.
Around 15% images are used for testing. In accuracy
evaluation, an LDN is trained on a single dataset and
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Machine (BSM) to generate high-level velocity commands
for the quadcopter. The velocity command is then tracked
by a low-level attitude controller. By saying inverse, we
mean that nearer obstacles have larger inverse depth values
which are restricted to the range d ∈ (0, 1). As shown in
Fig. 1, rather than focusing on pixel-wise depth values, we
firstly extract a K-dimensional vector by taking the aver-
age of K sub-maps cut along the column of the full map,
where dk is the k-th averaged inverse depth value. Our

motivation for doing this is to increase robustness to trivial
depth changes restricted to small areas. Furthermore, it is
expected that in this way the state machine can be also
insensitive to depth prediction errors and image noise.

As shown in Fig. 1, one state of the BSM is manoeuvre
which implements the trade-off between navigation to
a goal and avoiding surrounding obstacles. The obsta-
cle avoidance control is mainly inspired by the Behav-
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where λavoid, c, σ are weights that can be tuned for dif-
ferent sensitivity levels to obstacles. In principle, obstacles
with higher inverse depth values that are near to the center
view of the quadcopter contribute to a larger ψ̇.

During manoeuvre, the forward speed is set to be |v| =
0.3m/s. Besides, to encourage the quadcopter to explore
the environment rather than focusing on avoiding obsta-
cles in a local area, the goal direction of navigation is
chosen to be the vector index that corresponds to the
smallest inverse depth value:

ψ̇goal(d) = λgoal(argmin
k

(dk)−
K + 1

2
) (3)

The overall yaw rate can be summarized as:

ψ̇ = ψ̇avoid(d) + ψ̇goal(d). (4)

The other state of BSM is redirect, redirecting the
facing of the quadcopter to a safer direction at a certain
yaw rate while hovering. This state is triggered when
either of these two situations is satisfied: (1) when the
difference ∆ between the mean of the two elements in

the center of the averaged depth vector and the mean of
other elements is larger than threshold η; (2) when the
variance of the K vector values is below a threshold ϵ.
The first case represents an obstacle in the center view,
on the other hand, case (2) indicates that there maybe a
planar wall right in front. By tuning the weight parameters
and thresholds, the behavior state machine can achieve
decent exploration performance while avoiding obstacles
and escape from corner cases. Specifically, we manually
tuned K = 8 in the flight experiments. Algorithm 1
describes the proposed BSM in detail.

Algorithm 1: Behavior State Machine (BSM)

Inputs: K,λavoid, λgoal, c, σ, η, ϵ; trained params θ
Initialize monocular depth CNN with params θ
while true do

Get inverse depth map through CNN inference
Get the averaged depth vector D = [d1, d2, ..., dK ]
Calculate center indexes k1 = K

2 , k2 = K
2 + 1

Calculate depth value difference
∆ = 1

2 (dk1 + dk2)− 1
K−2

∑
k

dk, k ̸= k1, k2

if ∆ > η or Var[D] < ϵ then
redirect while hovering in-place

else
Calculate yaw rate command (2), (3), (4)
manoeuvre

end

3. EVALUATION

In this section, we first compare the accuracy of LDNs
trained by different learning schemes using the three public
datasets whose ground-truth depth maps are available.
Secondly, We conduct experiments in cluttered environ-
ments and demonstrate the effectiveness of the LDNs and
the behavior state machine. Finally, we test the general-
ization capability of an LDN.

3.1 Comparison of Learning Schemes

To explore the best way to train an LDN, we compare
five training schemes by training LDNs on three datasets,
corresponding to the three groups divided by horizontal
lines in Table 1. The “Teacher” in the first row of each
group denotes Teacher networks trained on the individual
dataset. They are the pre-trained teacher (PTT) networks
in the training of LDN-2, LDN-3, and LDN-4. The only
difference between LDN-5 and LDN-4 is that Teacher
networks are trained from scratch simultaneously with
LDN-5. The gradient flows of Teacher networks’ outputs
are detached from the loss function for LDN training.
So the training of the Teacher networks of LDN-5 is not
affected by LDN-5.

Ground-truth depth maps are downsampled to the same
resolution as LDN predictions for accuracy evaluation.
Many images have pixels filming the texture-less sky,
whose correct depth is hard to be learned by the
reprojection-based loss. Therefore we exclude from the
evaluation all pixels whose ground-truth depth is more
than 100 meters. We follow the same evaluation procedure
as Godard et al. (2019). Seven metrics of depth prediction
accuracy shown in the first row of Table 1 are calculated

after performing per-image median ground truth scaling.
The first four count the error of all pixels. δ < 1.25n

indicate the ratio of the predictions whose differences to
the ground-truth values lay within the thresholds, i.e.,
close enough to the ground truth.

From the data in Table 1, we notice that using KD as the
only supervision signal (LDN-2) may lead to outlier depth
predictions that are very inaccurate, as indicated by the
big Sq Rel values in the first and the third groups. Using
both KD and SSL but without the geometry consistency
loss (LDN-3) leads to outliers as well. Using SSL loss alone
to train the LDN and a pose network from scratch (LDN-
1) produces few apparent outliers. But comparing LDN-
1’s accuracy with LDN-4, the gap is evident, especially in
the metrics δ < 1.25n. Combining all loss terms, LDN-
4 has the overall best performance. In all metrics, the
accuracy of LDN-5 is only slightly worse than LDN-4. An
advantage of LDN-5 over LDN-4 is that LDN-5 requires
only one training process. Training the LDN does not
require waiting for the completion of training Teacher
networks, which reduces the time required for deployment
in a new target environment.

3.2 Flight Experiments

We choose the training scheme of the LDN-5 of Table
1 for the networks that navigate the quadcopter. Two
LDNs are trained respectively on the datasets collected in
the two real-world environments. To better evaluate the
performance of the LDN and improve the control strat-
egy, all subsequent experiments are conducted with off-
board processing. The grey-scale images captured by the
quadcopter’s camera are wirelessly transmitted to a laptop
computer for inference, where high-level control commands
are generated. The inference frequency, restricted mainly
by image transfer, is around 7 Hz.

CyberZoo Experiments Four different environments were
tested in CyberZoo, featuring sparse static obstacles, dense
static obstacles, dynamic obstacles, and unknown obsta-
cles. The quadcopter successfully navigates through en-
vironments containing sparse and dense static obstacles
without collisions, covering a wide area and avoiding ob-
stacles, as depicted in Fig. 4. Videos of experiments in
environments with dynamic and unknown obstacles are
available in the supplementary material 2 .

To study how exactly the depth network and the BSM
works, we investigate the green trajectory in Fig. 4 (b).
The high-level control command at each time-step along
this trajectory and the corresponding behavior state are
shown in Fig. 5. It can be seen that the BSM is able
to consistently switch between manoeuvre and redirect
at different scenarios and generate yaw rate commands
to navigate through the cluttered environment. In the
left column of Fig. 6, we show the camera views and
depth maps at timesteps t1 ∼ t5. The monocular depth
network’s predictions of the inverse depth map provide
crucial information for the BSM to detect and avoid
obstacles in the environment.

At t1 and t5, the quadcopter is in manoeuvre mode due to
the close proximity to obstacles, as shown in left column

2 https://github.com/tudelft/depth_avoider_crazyflie.git
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Table 1. Ablation Study. Bold numbers indicate the best accuracy metrics achieved by LDNs.

Model SSL1 λgeo KD2 PTT Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25↑ δ < 1.252↑ δ < 1.253↑
Teacher ✓ 0.2 0.0925 0.8052 4.7785 0.2378 91.30 % 95.75 % 97.20 %
LDN-1 ✓ 0.02 0.2735 1.3616 5.9309 0.4399 57.38 % 82.78 % 91.74 %
LDN-2 ✓ ✓ 0.2542 260.60 22.072 0.3115 83.76 % 93.67 % 96.26 %
LDN-3 ✓ 0.0 ✓ ✓ 0.2537 397.25 21.415 0.3124 83.30 % 93.64 % 96.24 %
LDN-4 ✓ 0.2 ✓ ✓ 0.1574 1.0726 5.4606 0.3104 82.80 % 93.30 % 96.10 %
LDN-5 ✓ 0.2 ✓ 0.1617 1.1024 5.4925 0.3165 81.77 % 92.99 % 95.96 %

Teacher ✓ 0.2 0.2373 2.1778 7.1647 0.3184 71.15 % 86.23 % 92.57 %
LDN-1 ✓ 0.02 0.3888 4.2736 10.552 0.5167 45.72 % 70.60 % 82.73 %
LDN-2 ✓ ✓ 0.3202 3.7768 8.2885 0.3936 57.87 % 80.12 % 89.70 %
LDN-3 ✓ 0.0 ✓ ✓ 0.3186 7.7472 8.4581 0.3925 57.91 % 80.20 % 89.80 %
LDN-4 ✓ 0.2 ✓ ✓ 0.3204 2.8655 8.5541 0.4044 56.88 % 79.00 % 88.87 %
LDN-5 ✓ 0.2 ✓ 0.3232 2.9012 8.5883 0.4064 56.58 % 78.76 % 88.76 %

Teacher ✓ 0.2 0.4596 5.1482 10.596 0.5282 58.06 % 76.01 % 84.18 %
LDN-1 ✓ 0.02 0.5374 7.7569 14.000 0.6515 47.32 % 65.97 % 76.04 %
LDN-2 ✓ ✓ 0.5945 48.237 13.878 0.5753 52.91 % 72.29 % 81.61 %
LDN-3 ✓ 0.0 ✓ ✓ 0.5659 33.697 16.351 0.5683 53.54 % 72.65 % 81.89 %
LDN-4 ✓ 0.2 ✓ ✓ 0.5804 6.9544 12.673 0.6003 50.84 % 69.80 % 79.28 %
LDN-5 ✓ 0.2 ✓ 0.5865 7.0496 12.700 0.6026 50.71 % 69.64 % 79.09 %

1 This column indicates whether the network training uses self-supervised learning (SSL). When Teacher networks are available,
the relative pose prediction that constructs the photometric matching loss for the LDN is the prediction of Teacher networks.

2 Model Distillation (KD). The LDN acts as a student network that imitates the outputs of the teacher depth network using L1
loss. This column also indicates whether Teacher network involved in training.

of Fig. 6. The BSM generates large yaw rates to guide the
quadcopter away from the obstacles. However, in corner
cases such as at t2 and t4, where the quadcopter is facing
a planar wall or when the obstacle is in the center of view,
the manoeuvre behavior cannot find a path. Therefore,
the BSM switches to redirect mode to redirect the
quadcopter to a safe direction. In situations such as at t3,
where obstacles are far from the quadcopter and the goal
direction is directly in front, the drone moves forward and
navigates towards the goal while steering at a low speed.

(a) Sparse environment (b) Dense environment

Fig. 4. Flight trajectories captured by Optitrack global
motion capture system. Different color represents
multiple trajectories with various starting points, with
color goes deeper along the timestep. Obstacles are
plotted manually for demonstration.

Corridor Experiments The quadcopter successfully nav-
igated to the end of the corridor in most attempts during
experiments in the corridor environment (demo video can
be found in the supplementary material). However, in a few
cases, the camera’s field of view was blocked by a single
obstacle after a sharp turn and the quadcopter crashed.

3.3 Network Generalization

In the right column of Fig. 6, we show examples of de-
tecting objects that are not captured by the training set.
The LDN being tested is trained on the CyberZoo dataset.

Fig. 5. Yaw rate and behavior state. By switching behav-
ior state accordingly to the context, BSM generates
suitable high-level control commands.

The top row depicts a successfully detected moving human
with motion blur, even though humans remained station-
ary in the training set. The second row exhibits a par-
tially detected obstacle. We hypothesize that the network’s
ability to generalize to new obstacles may be attributed
to the familiar background of the environment. Despite
that only a portion of an unknown obstacle is detected
in many cases, our control strategy consistently generates
appropriate actions. Additional unknown obstacles were
placed in the CyberZoo environment, and the quadcopter
successfully avoided them in multiple runs.

To test the generalization further, we utilized the same
LDN trained in the CyberZoo to navigate the quadcopter
in the Corridor environment. As displayed in the third
row of the right column of Fig. 6, the network was able
to detect a section of the wall, indicating a similar level of
generalization as in the second row.

This may be due to the fact that the wall and floor
structures also appear in the CyberZoo dataset. During
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the relative pose prediction that constructs the photometric matching loss for the LDN is the prediction of Teacher networks.

2 Model Distillation (KD). The LDN acts as a student network that imitates the outputs of the teacher depth network using L1
loss. This column also indicates whether Teacher network involved in training.

of Fig. 6. The BSM generates large yaw rates to guide the
quadcopter away from the obstacles. However, in corner
cases such as at t2 and t4, where the quadcopter is facing
a planar wall or when the obstacle is in the center of view,
the manoeuvre behavior cannot find a path. Therefore,
the BSM switches to redirect mode to redirect the
quadcopter to a safe direction. In situations such as at t3,
where obstacles are far from the quadcopter and the goal
direction is directly in front, the drone moves forward and
navigates towards the goal while steering at a low speed.

(a) Sparse environment (b) Dense environment

Fig. 4. Flight trajectories captured by Optitrack global
motion capture system. Different color represents
multiple trajectories with various starting points, with
color goes deeper along the timestep. Obstacles are
plotted manually for demonstration.

Corridor Experiments The quadcopter successfully nav-
igated to the end of the corridor in most attempts during
experiments in the corridor environment (demo video can
be found in the supplementary material). However, in a few
cases, the camera’s field of view was blocked by a single
obstacle after a sharp turn and the quadcopter crashed.

3.3 Network Generalization

In the right column of Fig. 6, we show examples of de-
tecting objects that are not captured by the training set.
The LDN being tested is trained on the CyberZoo dataset.

Fig. 5. Yaw rate and behavior state. By switching behav-
ior state accordingly to the context, BSM generates
suitable high-level control commands.

The top row depicts a successfully detected moving human
with motion blur, even though humans remained station-
ary in the training set. The second row exhibits a par-
tially detected obstacle. We hypothesize that the network’s
ability to generalize to new obstacles may be attributed
to the familiar background of the environment. Despite
that only a portion of an unknown obstacle is detected
in many cases, our control strategy consistently generates
appropriate actions. Additional unknown obstacles were
placed in the CyberZoo environment, and the quadcopter
successfully avoided them in multiple runs.

To test the generalization further, we utilized the same
LDN trained in the CyberZoo to navigate the quadcopter
in the Corridor environment. As displayed in the third
row of the right column of Fig. 6, the network was able
to detect a section of the wall, indicating a similar level of
generalization as in the second row.

This may be due to the fact that the wall and floor
structures also appear in the CyberZoo dataset. During

Fig. 6. Left column: Grey camera images and their corre-
sponding inverse depth maps at the same timesteps
as Fig. 5, i.e., t1 ∼ t5. Behaviors during from t1 ∼
t5 timesteps include turning right quickly, redirect-
ing, turning left slowly, redirecting, and turning left
quickly. Right column: Scenarios demonstrating the
generalization capability of the system. Cases from
top to bottom are dynamic obstacle (running human),
unknown obstacle (cardboard box), unknown environ-
ment (corridor), and a failure case of detecting an
unknown obstacle (trash can).

the experiment, the quadcopter flew safely through a part
of the corridor until it crashed on an undetected trashcan,
as shown in the fourth row of Fig. 6 (right column).

In this paper, we mainly focus on obstacle avoidance in
environments that the LDN knows. The LDN is trained on
a small dataset collected in the field. As for works Ranftl
et al. (2020); Aleotti et al. (2020) that pursue outstanding
generalization by exploiting huge training datasets, our
network is not comparable. When the flight environment
is unknown and thus network generalization has high
priority, the workflow proposed in Aleotti et al. (2020) can
be followed. We leave this to potential further works.

4. CONCLUSION

This paper presents a computationally efficient solution for
nano quadcopter obstacle avoidance. Obstacle detection
is conducted by a lightweight monocular depth network.
The training schemes that do not require ground-truth
labels are studied. We verify that the combination of
reprojection-based self-supervised learning and knowledge
distillation leads to the best accuracy. The control strategy
is implemented by a behavior state machine that relies
on the low-resolution depth map to detect and avoid
obstacles, while balancing navigation efficiency and safety.
In general, the whole system tackles the task well, featured
by the low demand for computational power and the
capacity of handling corner cases that are not solved by
other solutions.
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