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a b s t r a c t

Future district heating systems (DHS) will be supplied by renewable sources, most of which are limited in
temperature and flow rate. Therefore, operational optimization of DHS is required to maximize the use of
renewable sources and minimize (fossil) peak loads. In this paper, we present a robust and fast model-
predictive control approach to use the thermal mass of buildings as a daily storage without violating tem-
perature constraints. The novelty of this paper includes two elements. First, the focus on an operational
control strategy that explicitly accounts for temperature-limited renewable sources, like a geothermal
source. Secondly, the optimization problem is formulated as a (nearly) convex optimization problem,
which is required for adoption of model-predictive control in practice. The examples show that the peak
heating demand can be reduced by 50%, if the thermal inertia of the buildings is used and the heating
setpoints are adapted. Furthermore, the operational optimization finds the proper balance between ben-
efits of pre-heating using renewable sources with limited capacity and costs of additional heat losses due
to pre-heating.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Scarcity of resources and climate change due to increasing level
of CO2, has led to increased interest in renewable sources of
energy. While wind turbines and solar panels have been in the
limelight, relatively little attention has been paid to the energy
used for heating and cooling. Heating and cooling account for
38% of the primary energy use in the Netherlands and around
50% in the European Union.

Using renewable energy sources for heating or cooling is subject
to a spatial, temporal and temperature mismatch between produc-
tion and demand. The spatial mismatch can be overcome by using
a district heating/cooling network. A temporal mismatch can be
overcome by making use of heat storage. This can be for example
a seasonal storage like an aquifer thermal energy storage. Another
option for short-term storage is preheating of buildings (load-
shifting), or the installation of a heat buffer. It is a challenge to
make optimal use of the different heat sources and storage possi-
bilities. The temperature mismatch can be solved by (fossil) peak
supply, heat pumps and by using short-term storage to limit the
peak demand. Since most renewable sources are limited in peak
supply and temperature, operational optimization techniques are
required to maximize the use of renewable sources and minimize
(fossil) peak supply.

The development of operational optimization techniques
started in the 1990s. These papers focused on achieving a mini-
mum acceptable supply temperature using the heat demand as a
boundary condition to the optimization. Benonysson [1] has
addressed many of the challenges associated with operational opti-
mization of a district heating network, including time delays due to
supply temperature variations, variable revenues from CHP pro-
duction units and cost functions. Madsen et al [2] investigated
stochastic prediction and control methods to minimize heat losses
and CHP heat production costs, subject to constraints on the min-
imum required supply temperature for each consumer and a con-
straint on temporal temperature gradient. Dahl et al. [3] have
investigated the impact of weather-forecast uncertainty and heat
demand uncertainty on the operational supply temperature and
associated savings. They conclude that the potential benefit of
using dynamic uncertainties is larger for district heating systems
with smaller pumping capacities.

More recently, model-predictive control (MPC) solutions were
developed for a wide range of control problems in district heating
systems. Faharani et al. [4] developed a MPC-based day-ahead pro-
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duction schedule for a smart thermal grid with CHP units and boil-
ers connecting greenhouses with thermal buffer tanks. The MPC
was a Mixed-Integer Linear Programming (MILP) formulation, tak-
ing into account capacity constraints, start-up costs, fuel costs,
electricity sales with variable prices and heat demand uncertain-
ties. Knudsen et al. [5] developed a MPC controller for demand
response in domestic hot water preparation. This MPC was formu-
lated as a non-convex continuous quadratic optimization problem
with receding time horizon. Claessens en Vanhoudt et al. [6,7]
developed a MPC strategy with 3 different short-term thermal
storage configurations: central storage, distributed storage and
thermal mass storage. The optimized CHP profit for the thermal
mass concept was marginally smaller than for the distributed stor-
age concept, but it is considered a promising demand side manage-
ment strategy, due to limited implementation costs. The pragmatic
MPC strategy is based on a three step approach, derived from elec-
trical grid optimization with modifications.

Kensby et al. [8] have shown experimentally that a significant
fraction of the daily heat demand on a winter day can be stored
in the thermal mass of relatively heavy buildings without loss of
thermal comfort. They provide general guidelines for the amount
of heat that can be stored via direct load control without indoor
temperature measurements. Lesko et al. [9] have developed an
iterative approach using multiple MILP solutions to include non-
linearities in the operational optimization of a DHS using the ther-
mal inertia of buildings as one of the short-term storage options in
the DHS, although the impact of this thermal storage on the ther-
mal building behaviour is not included in the optimization. Domin-
kovic [10] investigated the potential of thermal building mass for
storage in DHS. He optimised the operational costs using different
scenarios for pre-heating and heating cut-off periods, showing the
added value of intraday heat storage in the building thermal mass.

Vandermeulen et al. [11] recently discussed the challenges
involved in developing novel control strategies to unlock the flex-
ibility in thermal energy storage present in district heating and
cooling networks and the thermal inertia of buildings. They con-
clude that prediction uncertainties, the complex network dynam-
ics and network size need further research to ensure an efficient
and effective control of thermal networks.

Many studies address some kind of operational optimization
[9,12–14], but the integrated optimization of temperature-
limited sources and demand side management has not yet been
addressed, despite its practical relevance for integration of renew-
able low-temperature sources into 4th Generation District Heating
(4GDH) systems. Many authors derive an optimization model that
is in the class of Mixed-Integer Non-linear programmes (MINLP)
[9,11,13]. Model-predictive control with real-time optimization
needs to meet a number of requirements in order to get adopted
by operators, as experienced by water management operators
[15]. An acceptable and feasible solution must be guaranteed
within a certain bounded time, small perturbations in problem for-
mulation must result in small differences between solutions and
each solution must be a good solution in terms of objective func-
tion value. These requirements lead to the requirement of a convex
problem definition, for which the detailed building and network
physics must be simplified. We will show in this paper that a refor-
mulation of the problem definition leads to a more convenient
optimization problem in the class of continuous convex problems,
while still addressing optimal integration of temperature-limited
sources, temperature-limited capacity of heating elements, ther-
mal energy storage in the building inertia and acceptable indoor
temperatures.

In this paper we will describe a simplified heat network model
and show how this model is used in a MPC-based operational opti-
mization of a DHS with several heat sources and multiple build-
ings. In the following section, the model components will be
described. Afterwards, it will be shown how the model is used
for optimization. This model is applied to different test cases with
increasing complexity to show the validity of the simplified model.
The paper ends with a discussion of the results obtained and
conclusions.
2. Model development

2.1. Network components and their requirements

In order to allow a controller to compute an optimal heating
schedule, a model is required to describe the relation between
heating inputs and building temperatures. For deterministic, real-
time optimization to be possible, this model has to be convex. Con-
vex optimization problems have several properties that are
strongly recommended for real-time optimizations. First, the solu-
tion is unique, such that the solver time is well predictable. Sec-
ondly, subsequent solutions with slightly different boundary
conditions with a receding time horizon will results in similar solu-
tions, which is required to gain the trust of network operators in
such advanced operational decision support. The convexity
requirement holds for the objective function as well as the inequal-
ity constraints depending on the decision variables. Equality con-
straints should be linear to obtain a convex problem formulation.
In practice, this boils down to developing the simplest possible
model that is still sufficiently accurate.

In the following, simplified heat network component models
will be derived, including sensitivity assessments to substantiate
underlying assumptions. The following components are required
to model a heat network:

1. Building
2. Pipe
3. Heat source
4. Heat exchanger

It is not necessary nor desired to include valves and pumps in
the optimization for a number of reasons. First, we are primarily
interested in the transport of heat. Secondly, pump and valve set-
tings can be derived in the post-processing of the optimization. The
third reason not to include pumps and valves in the optimization,
is the fact that these components introduce complex non-
linearities that complicate the optimization unnecessarily. Obvi-
ously, a priori estimates of operational limits in terms of heat
and mass flows are taken into account.

The convexity requirement applies to the relations between the
decision variables and Building model as well. The external pro-
cesses, like the ambient temperature, solar influx and building
temperature bounds, can be arbitrary temporal functions.

The components are combined to construct an operational opti-
mization model of a district heating system. We select the heat
flow and source supply temperatures as decision variables. Fur-
thermore, the primary return temperature is assumed constant.
Using this assumption and these decision variables, the mas flow
rates from all sources and to all buildings can be derived in a
unique way. Therefore, the mass flow rates can be determined as
post-processing and do not need to be included in the optimization
problem. The supply temperatures are used in the constraints that
limit the maximum supply from a heat source and limit the max-
imum heat supply to the buildings. By using the heat flow, instead
of using the mass flows and temperature separately, a linear equa-
tion is obtained. If the temperature and mass flow would be used
as optimization variables, then the merging of two flows would
result in a non-linear equality constraint, which violates the con-
vexity requirement.
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In the following sections the equations for the different compo-
nents are discussed. The symbols in bold fonts denote decision
variables in the optimization model. The other symbols denote
dependent or external variables in the optimization model.

2.2. Building

The main purpose of the building model is to calculate the air
temperature inside the building and the short-term storage in
the thermal mass of the building. Therefore, an energy balance
for the air inside the building is made. This is given by:

CqVð Þair
dTair

dt
¼ Qheat þ Qgain � Qtrans þ Qmass þ Qsolar � Qvent � Qcool

ð1Þ
In which:C = Heat capacity of the air in the building [J/kg/K],

q = Density of air [kg/m3], V = Volume of air inside the building
[m3], Tair= Temperature of the air inside the building [K],
Qheat =Heat supplied to the building by the district heating system
[W], Qgain = Heat supplied to the building by internal gains [W],
Qtrans = Heat transmission with the outside air through windows
and walls [W], Qmass = Heat exchange between air inside the build-
ing and its thermal mass in walls and floors [W], Qvent = Heat loss
due to ventilation and infiltration [W], Qcool = Cooling demand in
the building [W].

2.2.1. Heat transmission
Heat can be lost through the walls, rooftop and foundation of

the building and by ventilation (mechanical as well as free flow).
The transmission refers to heat loss through the roof, walls and
floors, and can be modelled with:

Qloss ¼ AU Tair - Toutð Þ ð2Þ
In which:A = Area through which the heat is transported [m2],

U = Thermal transmittance [W/Km2], Tout = Outside air tempera-
ture [K]

This model equation ignores the thermal storage in the building
envelope in order to reduce the number of variables per building in
the optimization. The thermal storage of the building envelope is
lumped with the building floors as detailed hereafter.

2.3. Solar influx

The solar influx is assumed to heat the internal walls and floors
of the building. The air is indirectly heated via the floor and walls.
The solar influx through the windows onto the building floors and
internal walls is calculated based on the method as described in
the ASHRAE handbook [16]. The total solar heat input is given by:

Qsolar ¼ frAEsol ð3Þ
In which:fr = Window fraction [-], A = Window area [m2], Esol =-

Total solar influx on the observed surface per m2 [W/m2]
For every outside façade this solar flux is calculated to get to the

total solar influx into the building. The sun will also heat the out-
side walls and roof. This will not contribute to the heating of the
building, since the time the heat requires for penetration through
a wall is long. This can be calculated with help of the Fourier num-
ber, which is given by:

Fo ¼ at

D2 ð4Þ

In which:a = Thermal diffusion coefficient of building
wall[m2/s], t = Time required to reach a certain depth [s]

When the Fourier number is below 0.1, the temperature on the
opposite side of the material which is heated, has not increased.
Therefore, it can be calculated what time it would take for the tem-
perature on the inside of the building to increase when the sun is
shining on the building wall. For concrete, the thermal diffusion
coefficient ranges from 3.7e to 8 to 8.4e-8 m2/s. For a wall of
20 cm thick this gives a time of 13 h. In this time most of the solar
heat in the wall has been transferred back to the outside air. It is
therefore assumed that solar radiation is only entering the build-
ings through windows.
2.4. Ventilation and infiltration

The final source of heat loss in this model is the heat loss due to
ventilation and infiltration of air. The ventilation heat loss can be
calculated from:

Qvent ¼ 1� gð ÞqcpairQ flow Tair � Toutð Þ ð5Þ
In which:g = Efficiency of heat recovery [�], Qflow = Air flow rate

of ventilation [m3/s]
The air flow rate is determined by how often the entire air vol-

ume inside the building is refreshed. This is an input for the model.
The value will be based upon the occupancies level of the building.
Normally the factor will be about 2 to 3 times per hour. The heat
loss due to infiltration through cracks, windows and doors can also
be calculated based upon a flow rate of air from the outside to the
inside. However, the total sum of this flow will be much less than
the flow due to mechanical ventilation, since it will not replace the
entire building volume of air within an hour. Therefore, this term
will be much less than the heat loss due to the mechanical ventila-
tion and can thus be neglected.

Heat storage in floors and internal walls
The inside of the building consists of air, floors and internal

walls, representing the thermal inertia. The floors and walls will
exchange heat with the air and they are also heated by the solar
radiation on the building. The total volume of walls and floors,
assumed to be constructed from the same materials, is modelled
as one thermal element with a certain thickness and surface area.
The surface area A is set to the gross floor and wall area inside the
building for convenience. The total thickness of this layer is based
on internal wall and floor volume divided by gross floor area. This
thermal inertia is then discretized in smaller sublayers, see Fig. 1.
As can be seen in this figure, this is a symmetric situation and only
half of the floor sublayers need to be modelled. The heat balance
for the top layer is:

CqVð Þwall
dTcon1

dt
¼ Qsolar � hc2aA Twall;1 � Tair

� �

� hcA Twall;1 � Twall;2
� � ð5Þ

The heat transfer coefficient can be determined with standard
Nusselt relations over the relevant temperature range. In order to
avoid introduction of non-linearities an average heat transfer coef-
ficient must be applied (e.g. 20 W/m2K). The area is the gross floor
area of the building. For the other layers the heat balance is given
by:

CqVð Þwall
dTconi

dt
¼ hcA Twall;i � Twall;i�1

� �� hcA Twall;i � Twall;iþ1
� � ð6Þ

And for the middle layer the balance is:

CqVð Þwall
dTwall;

dt
¼ hcA Twall;i � Twall;i�1

� � ð7Þ

The total heat transfer to the air inside the building is given by:

Qmass ¼ 2hc2aA Twall;1 � Tair
� � ð8Þ

The factor of 2 comes from the fact that the air is on both sides
of the floor layer.



Fig. 1. Discretization of the thermal inertia in sub-layers.
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To determine the minimum required number of layers for the
optimization several simulations with different numbers of layers
have been performed. For these simulations the air and floor tem-
perature start at 20 �C, the ambient temperature outside of the
building is 0 �C. Heat is lost through the building envelope and
no other heat sources or losses are taken into account. Fig. 2 shows
the result for the temperatures of the air inside the building and
the temperature of the floor sublayers. The air temperature drops
faster in the first hour or so, since a temperature difference must
be created first, before heat transfer starts from the walls to the
air. After approximately 15 h, the temperatures in all layers drop
at the same rate.

Fig. 3 shows the air temperature at different time intervals as a
function of the number of layers used. For every time interval the
influence of additional sub layers decreases. Above ten layers there
is almost hardly any influence. Below 10 sub layers (5 calculated
values due to symmetry.) the heat transfer from the thermal inertia
is overestimated, leading to higher air temperatures at fewer sub-
layers. The time scale which is of interest for this problem is in the
order of 12 h. From this perspective it has been chosen to model 10
sublayers in a building using 5 calculation values due to symmetry.
If fewer layers would be used, then the thermal mass would
respond too fast to changes in the air temperature.

2.5. Pipe

The pipe is used to transport the heat from one location to
another location. In the current implementation for operational
optimization the heat loss and the thermal delays (travel time)
are neglected. Both simplifications are required to ensure a convex
model, since the heat loss would depend upon the supply temper-
ature and delays would be affected by the optimized solution. The
validity of the second simplification is disputable, but defended by
the following arguments:

1. The thermal delay becomes relevant only when supply temper-
atures may vary from hour to hour, which is not recommended
from a thermal stress point of view.

2. If supply temperature setpoints vary gradually on a daily time-
scale, then deviations in heat supply due to this assumption can
be absorbed by flow variations. During part-load conditions, a
slightly larger flow rate is not critical. The only critical condition
occurs when the supply temperature must increase quickly to a
full load condition in the DHS.

The annual heat loss from a network is a substantial fraction
of the total heat production and depends on the time-averaged
supply and return temperatures in the network. The optimiza-
tion promotes lower supply temperatures. Therefore, the net-
work heat loss will reduce in an optimized solution compared
to a reference solution without temperature limitations. The net-
work heat loss reduction is an additional benefit which is not
quantified in the optimization, because these losses are
neglected.

2.6. Temperature-limited heat sources

The heat sources supply heat to the system. The governing
equation is:

Qhout ¼ Qhin þ Qsup ð9Þ
in which Qhout = Heat flow going out of the source [W], Qhin = Heat
flow going into the source from a return line [W], Qsup = Heat sup-
plied by the source [W]

The maximum amount of heat, a source can supply, is limited
by the capacity of the source itself. It can also be limited by the
temperature. For example, a geothermal source can only supply
its maximum capacity at a fixed temperature difference between
the in- and outflow. Furthermore the outflow temperature is fixed
(Ts,max). This adds a constraint to a temperature-limited source in
the form of:

Qsource <
DTs

Tprim � Tret
Qtots ð10Þ

in which Qsource = Heat supplied by the source [W], Qtots = Total heat
delivered by all sources [W], Tprim = Maximum of primary supply
temperature of the network and maximum source supply tempera-
ture to ensure that the ratio is always less than or equal to 1. [K],
Tret = Primary return temperature from buildings, assumed constant
and equal to the design value of the DH network [K], DTs = the
design temperature difference at the heat exchanger of the source,
based on maximum source supply temperature Ts,max and the
design value of the primary return temperature Tret:-
DTs ¼ Ts;max � Tret [K]

The key assumption for the optimization is the constant return
temperature in the DHS. This assumption is realistic, if the hydrau-
lic controls of the secondary systems are properly designed and
implemented [17].

This is a non-linear non-convex constraint, since both the pri-
mary temperature and the heat supplied by the sources are deci-
sion variables. To linearize the equation, it is rewritten to:

TprimQsource � TretQsource � DTQtot;s < 0 ð11Þ



Fig. 2. Temperature of the air and sublayers of the floor with 10 sublayers.

Fig. 3. Air temperature at different time intervals for different numbers of layers.
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In this equation only the first term is non-linear. In
order to include this, the homotopy approach is used. The
constraint is linearized around a nominal point (Qsnom,Tpnom). This
gives:

TpnomQsnom þ Tpnom Qsource1 � Qsnomð Þ þ Qsnom Tprim � Tpnom
� �

� TretQsource � DTQtot;s < 0 ð12Þ
The non-linear equation is then multiplied with a factor X and

the linearised equation is multiplied with the factor 1� Xð Þ. The
optimization is then started with this X = 0, basically solving the
linear constraint. When a solution is found, this factor is increased
and another optimization is performed. The starting point for the
next optimization is the solution of the previous optimization. This
is continued until X = 1 and the solution is found for the complete
non-linear problem. The main reason to maintain this non-convex
constraint is illustrated in Fig. 4 hereafter.

When the DH system needs a supply temperature, exceeding
the maximum temperature of the renewable source, then the
renewable source will deliver the largest possible fraction of the
total heat supply, which corresponds with a point on the non-
linear (blue) line in Fig. 4. Fig. 4 clearly shows that the linearised
equation underestimates the maximum supply from the renew-
able source. We could use a priori knowledge to select a better lin-
ear approximation; e.g. a linearization at 80 �C, but that would still
result in significant underestimation of the renewable source
capacity at 70 �C or 100 �C. Since the optimal solution will always
hit the non-linear boundary, when the supply temperature has to
exceed the maximum temperature of the renewable source, we



Fig. 4. Non-linear constraint for temperature-limited source and linearization around 70 �C and 2 MW total heat supply.
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decided to iterate towards this optimum solution using the homo-
topy approach.

Next to this constraint there is also a constraint on the temporal
supply temperature gradient. This is given by:

dTprim

dt

����
���� 6 dTmax ð13Þ

In which dTmax = Maximum temperature change per unit of
time for the source; typically equivalent to 5 K/h.[K/s]

2.7. Heat exchanger with temperature-limited supply

The heat exchanger (HEX) represents the heat emission system
of a building by supplying heat from the district heating system to
a building. The governing equation is:

Qhin ¼ Qhout þ Qsup ð14Þ
in which Qhout = Heat flow going out of the building HEX [W],

Qhin = Heat flow going into the building HEX [W], Qsup = Heat sup-
plied by the DHS to the building [W]

The amount of heat supplied is limited by the HEX capacity or
the radiator capacity. The design temperature inside the buildings
can be assumed constant around 293 K. The maximum supply from
the heat emission system (Qmax) is determined based on the capac-
ity at a design temperature Td by:

Qmax ¼
Ts � Tb

Td � Tb
Qd ð15Þ

In whichQd = Design capacity of radiator [W], Td = Design tempera-
ture of radiator [K], Tb = Design air temperature in building [K],
Ts = Temperature of water inside radiator and secondary building
network [K]

This equation simplifies the log-averaged temperature depen-
dency of heat emission systems. It is based on the temperature
inside the radiator which is on the secondary side of the heat
exchanger. Therefore, an additional step is required to couple tem-
perature at the secondary side to the temperature on the primary
side. The heat exchanger is designed to work with a certain tem-
perature difference between the primary and secondary side. If
we assume this difference to be constant over the entire tempera-
ture range the primary temperature is given by:

Tprim ¼ Ts þ DThex ð16Þ
In which Tprim = Temperature at the primary (inlet) side of the
heat exchanger [W], DThex = Design temperature difference
between the primary and secondary side of the building HEX. [K]

Finally, combining the above equations leads to a temperature-
limited constraint on the supplied heat to the building:

Q sup 6 Tprim � DThex � Tb

Td � Tb
Qd ð17Þ

Equation (18) is used to limit the supply to the buildings at a
reduced primary supply temperature, taking into account the
design capacity of the radiators. In fact, this constraint expresses
that the mass flow rates on both sides of the heat exchangers can-
not exceed the design value. Therefore, the mass flow rates
towards the buildings will not exceed the design value.
3. Optimization model

The above components can be used to create an operational
optimization model of a DHS, defined by a set of linear and lin-
earized algebraic-differential equations in the decision variables.
The decision variables are the heat supplies from the sources, the
heating and cooling demands by the buildings and the supply tem-
peratures per source. This is combined with a linear objective func-
tion. It is possible to use different objective functions. The objective
function for these cases minimizes the total costs, defined as
follows:

C ¼
X

cijQ ijDt ð18Þ
In whichC = Total cost [Euro or CO2], cij = Cost per unit of energy

for time step i and source j [Euro or CO2/Wh], Qij = Heat supplied by
source j in time step i [W], Dt = Time step for the optimization [h]

The cost per unit of power can also vary in time (e.g. cheap by
night expensive during daytime). The pumping energy is in the
order of 1% of the heat supply [10] and therefore ignored in the
objective function. Next to this a set of constraints is added to
the model. Limiting the capacity of the sources and the heat sup-
plied to the buildings has already been discussed. Next to this
the temperature inside the buildings should stay within certain
bounds. During office hours these bounds are rather strict while
during night time the bounds are extended to promote peak shav-
ing by using the thermal inertia of the buildings, see Fig. 5.



Fig. 5. Upper and lower bound temperature of the buildings. typical for office buildings.
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We have used the operational optimization toolbox RTC-Tools
[18,19] to model and solve the optimization problems. RTC-Tools
can use different solvers, depending on the problem formulation.
In this case the continuous non-linear solver IPOPT [20] has been
used.
3.1. Test case

To study the results of the optimization model as implemented
within RTC-Tools a simple test case is used. This test case consists
of three office buildings and two sources, which have been derived
from a real-life example. Fig. 6 shows an overview of the system.
Table 1 and Table 2 show an overview of the main properties of
the office buildings. Table 3 shows the properties of the sources.

A maximum supply temperature of 70 �C is a typical geothermal
source temperature in the Netherlands, extracted from 2 km deep
reservoirs. If the renewable source would be a data centre or sur-
face water, then then a central heat pump preferably lifts the tem-
perature to 70 �C at most. The constant return temperature in these
test cases is 40 �C.
Fig. 6. overview of the example system studied.
4. Results

Section 4 presents optimization results of the developed model-
predictive control solver. First the time horizon boundary effects
are discussed to assess start-up and end-of-horizon effects in the
results. Section 4.2 details optimization results for scenarios with
increasing complexity: 1) a reference case with constant outside
temperature, 2) realistic environmental conditions, 3) impact of
ventilation, 4) source capacity constraints, 5) impact of difference
source prices. 6) impact of time-varying heating costs and 7)
impact of a temperature-limited source.

4.1. Time horizon boundary effects

Before optimizations are performed and analyzed first the effect
at the boundaries of the time horizon used for the optimization
need to be investigated. An optimization has been performed to
investigate the effect of the boundaries for the example system.
In this optimization no additional heat flows (solar, ventilation
etc.) are taken into account. Furthermore, the outside temperature
is kept constant at 0 �C. A period of 31 days has been optimized. For
each day the same constraint on the temperature inside the build-
ings is used (Fig. 5). There are no temperature constraints on the
source, which makes the model fully linear.

By using these constraints, it is expected that the time series
over the successive days will be similar. Only at the beginning
and end of the optimization time horizon it is expected that there
is a difference.

Fig. 7 shows the time series of the heat supplied by both
sources. The mean of the 31 days is plotted (black line) together
with this mean plus and minus 2 times the standard deviation. Fur-
thermore, the heat supplied at day 1 (red), 2 (blue) and 31 (dashed
red line) is shown. The first day clearly shows a different behavior
than the other days due to initialization effects. Hence, day 1
should be neglected in the analysis of further results, since the dif-
ference is most of the times more than two times the standard
deviation.

Fig. 8 shows the mean air temperature of building 1 for the
31 days of the optimization together with the air temperature at
day 30 and 31. As can be seen the temperature at day 31 shows
a large deviation of the mean, especially at the end of the day.



Table 1
Overview of the properties of the buildings.

Building Gross floor
area (m2)

Average height
per level (m)

Average floor
thickness (m)

Thermal transmittance
walls (W/m2/K)

Glass fraction at
every façade (-)

Thermal transmittance
glass (W/m2/K)

Overall thermal
transmittance(W/m2/K)

1 10,000 3.5 0.40 0.25 0.25 3 0.9
2 25,000 3.5 0.15 0.4 0.3 2.5 1.0
3 35,000 3.5 0.20 0.4 0.5 2 1.2

Table 2
Façade area of the building.

Building N NE E SE S SW W NW Roof Floor to air

1 700 0 50 0 300 0 80 0 900 300
2 1500 0 2500 0 1500 0 2500 0 7500 0
3 0 5000 0 10,000 0 5000 0 10,000 18,000 0

Table 3
Overview of the properties of the sources.

Source Maximum supply temperature (oC) Maximum power (MW)

1 70 2 or 1
2 120 2 or unlimited
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Based on this it is concluded that this day should also be neglected
in the results. Therefore, every optimization should be performed
with a start-up day and an end day, which are not considered in
the results.

The results from this section must be used for long-term opti-
mizations as well, such as scenarios for a climate year. For such
studies the optimization is split in periods of 1 week or 1 month,
depending on the problem size. The receding time horizon must
use at least two overlapping days as concluded from Fig. 7 and
Fig. 8: one start-up day and one day to obtain results for the last
day of the previous horizon.

4.2. Optimization results

In the remainder of the results section we will analyse and
reflect on the optimization results. The main goal is to show that
the optimizationmodel produces results which are understandable
and logical. This can serve as a first proof that the optimization
model can be used to control a real DHS.
Fig. 7. Total heat supplied by the sources the mean of 31 days and at day 1. 2 a
Unconstrained solution (reference case)
Before discussing the effect of several parameters on the solu-

tion the so-called basic solution is discussed. This is an optimiza-
tion for one week, without any constraint on the sources and
heat supplied to the buildings. The model includes a periodic tem-
perature constraint on the air temperature inside the buildings
(dashed lines in Fig. 9) with narrow temperature limits during
office hours and wider limits outside office hours. Furthermore,
all external and internal heat fluxes to the building have been set
to zero, except for the heat loss to the surroundings. The outside
temperature is set to 0 �C for the entire week to investigate the
impact of different parameters.

Fig. 9 shows the results for the air temperature inside the build-
ings, while Fig. 10 shows the total heat delivered by the sources. As
expected, the temperature is kept as much as possible at the lower
bound. If the temperature would be increased above the lower
bound, this would yield additional heat loss and increase the costs.
During the night time almost no heat is supplied to the buildings
and they cool down. As soon as a building reaches the lower bound
some heat is supplied to keep it at this bound. Also visible in Fig. 10
is the high peak heat demand in the morning to compensate for the
heat losses during the night. Conclusion: the optimization model
yields acceptable and understandable results for this basic case
showing typical dynamics in the inside building temperature and
heat supply.
nd 31. The dashed lines are the mean plus 2 times the standard deviation.



Fig. 8. Mean of the air temperature of building 1 for the 31 days of the optimization together with the air temperature at day 30 and 31. The black dashed lines are the mean
plus and minus two times the standard deviation.

Fig. 9. Temperature results for basic optimization.
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Effect of environmental parameters
In the previous optimization the effect of the solar influx and

changes in the ambient temperature in time were not considered.
Both can be taken into account by using climate design data. Dutch
climate data for the first week of January and the first week of May
have been used. Fig. 11 shows the ambient temperature for these
weeks. Fig. 12 shows the solar influx to all the buildings, taking
the cloud coverage into account.

Fig. 13 and Fig. 14 show the results for the first week of January,
showing marginal differences between these results and the one of
the basic case. The main difference is that the amount of heat
required now changes for the different days, due to the variation
in ambient temperature. During the weekend the solar influx into
the buildings is visible in the temperature results. This heats the
top sub-layer of the floor, which in turn heats the air inside the
building. This is visible around hour 130 in Fig. 13 at that time
the heat supplied by the sources is zero, while there is an increase
of building temperature, see Fig. 14.

Fig. 15 and Fig. 16 show the results for the first week of May.
The required heat reduces a lot, since the ambient temperature is
much higher and there is a high solar influx into the buildings.
The temperature inside the buildings is almost always against
the upper bound, while in January it was at the lower bound. To
keep the temperature within the bounds, cooling must be supplied
to the buildings, which can be seen in Fig. 17. Despite the large
cooling demands, there is still some heat demand at the end of
the night to maintain the inside temperature within the bounds.

Conclusion, the optimization can cope with changes in environ-
mental conditions and still produces understandable results and
correct dynamics in the thermal energy supply and temperatures.

The impact of a schedule of internal heat gains for electricity
consumption and occupancy can be included in the optimization
in a similar way, since the internal temperature is linearly related
to these internal heat gains following equation (1).

Effect of ventilation
In the previous optimization ventilation was not included. This

effect is taken into account with equation (5). An efficiency of 65%
is used, which is an average efficiency for a heat recovery unit. The
air flow is based on air change rate, which denotes how many
times the total air volume in the building is refreshed within one
hour. During office hours this factor is about 2–3, for other hours
it is between 0–1.5. Fig. 18 and Fig. 19 show the results. As can



Fig. 10. Total heat supplied by the sources for the basic case.

Fig. 11. Ambient temperature for first week of January and first week of May.
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be seen the total amount of heat required is more than in the base
case with the environmental parameters turned off (Fig. 10), the
maximum required power rises from 3.6 to 4.2 MW.

Effect of limited source capacity
In the previous section the focus was on the building. In this

section we will focus on sources with limited capacity. As a first
step the maximum heat from the sources is limited to 2 MW.
Fig. 20 shows the temperature inside the buildings and Fig. 21
shows the amount of heat supplied by the sources. As can be seen
it reduces the morning peak to 2.0 MW. During the week days
building 1 is preheated first, this is followed by building 2; building
3 is kept at the lowest possible temperature. This order is found by
the solver, because this order minimizes the overall heat losses due
to insulation and size of the buildings. This can also be seen in
Fig. 9 of the reference scenario, where the decrease in temperature
during night time is the smallest for building 1, then building 2 and
finally building 3.

Next to this, the solver proposes to heat building 1 to the max-
imum possible value during the weekend. This pre-heating will
store energy in the concrete floors of the buildings. These will start
to provide heat to the building when it cools down again. Conclu-
sion: adding bounds to the source capacity successfully forces the
optimization solver to find heat supply profiles with load shifting
and peak shaving.

Effect of heating costs
To investigate the effect of the cost function two sources are

included: one source with a low price, but with a maximum capac-
ity of 1.0 MW (representing a renewable source) and a second
source with a price which is 10 times higher. This source has
enough capacity to deliver the peak demand (typical for gas boiler).
Fig. 22 and Fig. 23 show the result. As can be seen source 1 (the
cheapest source) is the preferred source and is almost constantly
supplying its maximum power, while source 2 only supplies power
at mornings to heat the buildings to the lower bounds of the allow-
able temperature range. Furthermore, building 1 is preheated
much earlier than in the previous cases due to the lower costs of
the low capacity source. Hence, the optimization finds the proper
balance between the load shifting for pre-heating and the overall



Fig. 12. Total solar influx in all 3 buildings for first week of January and first week of May.

Fig. 13. Air temperature in the buildings for the first week of January.
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heating costs. The maximum heating power in this scenario is just
over 2 MW and half the required heating power for the scenario
with a heat source with ample capacity.

Effect of time varying heating costs
Fig. 24 shows the variation of the costs as function of the time.

Source 1 is cheap during the night time and more expensive during
daytime, source 2 has a constant price, lower than the daytime
price of source 1. Both sources have unlimited capacity. Fig. 25
and Fig. 26 show the results. Source 1 preheats building 1 and 2
during the night. Furthermore, during daytime source 1 is switched
off and source 2 is supplying, as expected. Fig. 26 illustrates that
variable prices lead to excessive supply variations when the price
is low. These dynamic variations are not recommended for many
renewable sources. It is concluded that the optimization model
can cope with varying costs function.

Effect of temperature-limitations of sources and heat emission
systems

In this final section the effect of temperature-limited sources
(equation (12)) and the rate of change of the primary supply tem-
perature (equation (14)) are included. Also the temperature limita-
tion of heat emission systems at the building level is included as
given by equation (18). Source 1 is bound by capacity and temper-
ature as given in Table 3. These capacity and temperature limita-
tions are characteristic for renewable heat sources like a
geothermal source, surface water or low-temperature datacenter
heat. The unit cost of renewable source 1 is assumed 10 times
lower than the unit cost of source 2. This cost could represent
the CO2 emission, the actual operational costs or a combination
of these parameters.

Fig. 27 shows the results for the temperature within the 3 build-
ings. Fig. 28 shows the heat supplied by the 2 sources and the max-
imum amount of heat that source 1 could supply due to the
temperature limitation. Fig. 29 shows the heat supplied to the
buildings. Furthermore, this figure shows the maximum possible
heat supply at the optimized supply temperature, due to the con-
straint of the heat emission system at building level. Fig. 29 shows
that the heat supplied to the building 3 is almost always at the
maximum possible. Finally, Fig. 30 shows the primary temperature
of the district heating system. This minimum supply temperature
is just sufficient, such that all buildings together use source 1 as
much as possible; see Fig. 28. It is concluded that all degrees of
freedom for optimization are fully used.



Fig. 14. Total heat supplied by the sources for the first week of January.

Fig. 15. Temperature results for first week of May.
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These results are compared with a heat supply based on a con-
ventional heating curve. This curve is given by the following rela-
tion (temperatures in �C):

Tprim ¼ �85
50

Tenv þ 113 ð19Þ

With the above equation the primary temperature is no longer a
decision variable and equation (11) is no longer non-linear. Using
this equation yields the primary temperature as a function of the
time as given in Fig. 30. Fig. 31 shows how much heat can be sup-
plied from the renewable source 1 for the 2 operational control
strategies: optimized control versus heat curve control. It is
emphasized that renewable source 1 is limited in supply tempera-
ture and power (2 MW at 70 �C, Table 3). The heat supplied for the
optimized case is much more at a stable level, while for the case
with the heating curve, the day-night pattern in the heat demand
is more visible and the supply from the renewable source 1 is
much smaller. When the primary temperature is not fixed, this
can be reduced, which enables source 1 to supply a large baseload
heat even when source 2 is not available. Since the cost for source 1
are much lower it results in an even spread of the heat supplied by
source 1 as can be seen in Fig. 31.
5. Discussion

The optimization model gives understandable and promising
results for all scenarios with increasing complexity. However, there
are still some points of discussion in the applicability of the model.
The first one is the correctness of the model, especially for the
building. The buildings in the test cases have been modelled as sin-
gle zone models. These models can be extended to multiple zones
without violating the conclusions of this paper. Furthermore, the
structure of the building model is similar to the RC-modelling
approach adopted and validated by Bacher and Madsen [21].
Bacher’s model includes three heat capacity terms for the internal
air, the envelope and the radiators. Our model includes six heat
capacity terms for the internal air and five thermal storage layers,
representing the floor and walls. It was shown that a 5-layer ther-



Fig. 16. Total heat supplied by the sources for first week of May.

Fig. 17. Total cooling supplied to the buildings for first week of May.
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mal storage model is physically realistic. Therefore, we expect this
building model to be accurate enough for practical applications.

Nevertheless, it is recommended to validate the indoor temper-
ature of the building model with more detailed building models
and measurements. Once this simplified building model is suffi-
ciently validated, it is straightforward to extend the optimization
to a large number of buildings by aggregating similar buildings
with similar orientation in the same neighborhood to a single
aggregated building.

Another point of discussion is the air temperature constraint
inside the building as given in Fig. 5. In some cases, the air temper-
ature is heated towards the upper temperature bound outside
working hours. This is done to store heat in the floor of the build-
ings. However, such a high temperature might not be acceptable
for the plants and other green elements inside the building. Such
a wide temperature bandwidth is more suitable for office buildings
than for residential buildings. This constraint can be adapted
accordingly. Limiting the maximum air temperature will reduce
the bandwidth for optimization and thus will result in reduced
flexibility and higher costs. These air temperature constraints can
be set by the user and thus are not a limiting factor for the appli-
cability of the optimization model. The model can even be used
to show the effect of these constraints on the operational costs.

The advantage of using this kind of optimization for the control
of a district heating system has been shown in the last example.
Here it was shown that a capacity and temperature-limited source
(e.g. geothermal) could be utilized much better, when the opti-
mization was used instead of a fixed heating curve. However, to
further investigate the advantage a detailed case study needs to
be performed of an existing district heating system.

A hidden benefit of this optimization approach is related to the
network heat losses. The network heat loss reduction, due to lower
supply temperatures, is an additional benefit which is not quanti-
fied in the optimization, because the network heat losses are
neglected in the optimization.

A final point of attention is the time used for the optimization
runs. If this optimization needs to be used to control the system,
the run time for the optimization should be much smaller than



Fig. 18. Air temperature in the buildings.

Fig. 19. Total heat supplied by the sources in January.

Fig. 20. Air temperature in the buildings.
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Fig. 21. Total heat supplied by the sources.

Fig. 22. Air temperature in the buildings.

Fig. 23. Heat supplied by the sources.
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Fig. 25. Air temperature in the buildings.

Fig. 26. Heat supplied by the sources.

Fig. 24. Variation of the prices over time.
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Fig. 28. Heat supplied by the sources.

Fig. 29. Heat supplied to the buildings and maximum heat that can be supplied to the buildings.

Fig. 27. Air temperature in the buildings.
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Fig. 30. Primary supply temperature.

Fig. 31. Comparison of the heat supplied by source 1 for an optimized primary temperature and one based on a heating curve.
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the prediction horizon. At this moment the full optimization prob-
lem including the non-linear constraint takes 104 s on an Intel core
I7, 2.4 GHz. It should be noted that this was only running the opti-
mization for one week and for a simple system. This time is well
within the time boundary for practical applications with hourly
updates.
6. Conclusions and recommendations

This paper describes and analyses an operational model-
predictive control optimization model for a district heating system
with capacity- and temperature-limited sources. The operational
optimization also takes the influence of the supply temperature
on the heat emission systems into account.

Whereas many authors have proposed operational optimiza-
tions as mixed-integer non-linear problems, we managed to define
a suitable model-predictive control optimization that meets all
requirements for practical applicability. The reformulation of the
problem definition leads to a convenient optimization problem in
the class of continuous (nearly) convex problems, while still
addressing optimal integration of temperature-limited sources,
temperature-limited capacity of heating elements, thermal
energy storage in the building inertia and acceptable indoor
temperatures. The operational optimization finds the proper bal-
ance between benefits of pre-heating using renewable sources
with limited capacity and costs of additional heat losses due to
pre-heating.

The test case shows that the peak supply reduces significantly
from 4 MW (Fig. 14) to 1.8 MW (Fig. 28). Furthermore, the supply
temperature is minimised such that the cheap temperature-
limited source can deliver most of the heat demand in continuous
operation. An additional benefit of the reduced supply temperature
is the reduction in network heat loss. Further benefits for the dis-
trict heating network include reduced variations in network flows.

The analysis of the building model performance, using concrete
floor parameters, shows that at least 5 floor layers must be
included in the building model to properly account for the thermal
inertia of buildings with concrete floors.

In addition to operational applications, the developed model-
predictive control solver can be used to quantify the heat flexibility
of districts over a wide range of annual scenarios, including vari-
able pricing and limitations in temperature and capacity of renew-
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able heat sources. The annual scenarios must use a receding time
horizon with two overlapping days as detailed in section 4.1.

It is concluded from the test case that the optimization model
gives optimal results for a wide range of realistic scenarios. For
future research it is recommended to study an existing district
heating system. Furthermore, a comparison of the results of the
single zone building model with results from a more complex
model and measurements should be made.
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