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Formation reconfiguration with impulsive maneuvers has been continuously addressed in recent decades. The

studies mostly focused on in-plane formation reconfiguration since the out-of-plane motion is independently

controlled by a single burn. Most in-plane reconfiguration studies, meanwhile, rely on tangential maneuvers

because of fuel efficiency and controllability of the orbital energy, compared to radial maneuvers. In this paper,

the perspective differs that little influence of the radial maneuvers on the orbital energy is considered as a benefit

rather than a drawback. By employing radial burns only, an effect of the thrust errors on the semimajor axis control

error can be minimized. Both numerical simulations and sensitivity analysis demonstrate the robustness of the

proposed radial impulsive burns compared to the conventional tangential impulsive control schemes.

Nomenclature

a = semimajor axis
e = eccentricity
i = inclination
M = mean anomaly
n = mean orbit velocity
RE = Earth radius
u = mean argument of latitude
ΔVR;ΔVT;ΔVN = velocity changes in local radial, tangential,

and normal directions

δe = � δex δey �T ; relative eccentricity vector

δi = � δix δiy �T ; relative inclination vector
δλ = relative longitude
θ = argument of latitude of the relative ascend-

ing node
φ = argument of latitude of the relative

perigee
Ω = right ascension of the ascending node
ω = argument of perigee

I. Introduction

IMPULSIVE control for formation reconfiguration has been con-
tinuously studied in the past decades because it is the key to

substantializing a spacemissionwithmultiple satellites. Themethods
can be roughly divided into two parts: one with relative Cartesian
coordinates [1–3] and the otherwith orbit elements difference [4–12].
Concentrating on the latter part, Schaub andAlfriend [6] proposed an
analytical solution consisting of three impulses. An impulse pair
whose firing locations are separated by a half-orbit period was
applied for in-plane correction. Both tangential and radial delta-v
components were employed at the two extreme points: perigee and
apogee. Vaddi et al. [7] derived an analytical two-impulse maneuver
strategy for projected circular orbit reconfiguration. The first delta-v
vector was composed of radial and orbit-normal components, and the
second delta-v vector was only in the radial direction. To reduce

delta-v consumption further, multiple-revolution solutions have also
been sought [12–15], assuming a control window of longer than an
orbital period. Mok et al. [12] expanded upon the previous solution
[6] by adding a pair of tangential impulses to exploit along-track drift
in reducing the total delta-v cost.
Aiming at real implementations of formation control, D’Amico

and Montenbruck [8] developed an analytical fuel-efficient control
strategy for the TanDEM-Xmission, based on relative orbit elements’
(ROE’) representation [9]. For in-plane correction, two tangential
impulses were applied, which are in terms of four ROE components:
relative semimajor axis (SMA), two-element relative eccentricity
vector, and relative longitude. However, the relative longitude could
not be tightly controlled due to the limited number of impulses. In
2015, Gaias and D’Amico [10] generalized the previous study by
considering the use of radial and tangential impulses together. Espe-
cially, the proposed three-tangential-impulsive strategy was able to
further reduce delta-v consumption and tightly control the relative
longitude. In 2018, the three-impulse strategy was applied as one
of the orbit control solutions for optimal maneuver planning of
reconfiguration [11].
While there is a significant benefit of employing only tangential

impulses in formation control regarding fuel efficiency, two side
effects might be present. One is a longer reconfiguration period
compared to the general impulsive strategy (employing both tangen-
tial and radial maneuvers) which requires less than 1.5 orbital periods
to accomplish the reconfiguration [6,7]. This is due to the intermedi-
ate time used to exploit the driftmotion caused by the SMAdifference
in order to reduce the delta-v cost. The second is an impact of the
thrust execution error on the ROE control. When the desired along-
track driftmotion is not exactly induced or is not fully eliminated after
reconfiguration by the thrust error, it can cause an extra drift motion.
This can be problematic for safety if the relative eccentricity/incli-
nation (e∕i) vectors are not maintained in parallel. For example, in
formation flying with smaller spacecraft (e.g., CubeSats), periodic
formation keeping against the J2 perturbationmay not be feasible due
to the limited amount of fuel [16]. In this case, the safety condition is
dependent on the relative longitude (i.e., along-track offset), there-
fore the relative longitude drift caused by the thrust error can raise the
safety issue.
In this paper, the reconfiguration problem is formulated by

employing only radial impulses. Analytical delta-v solutions for
two and three impulses are newly obtained. A required reconfigura-
tion time is less than 1.5 orbital periods which is aligned with
previous studies [6,7]. Another important benefit of the proposed
method is that the relative SMA is hardly changed after the reconfig-
uration maneuver since it is only affected by the tangential delta-v
component. Hence, the unintended along-track drift motion that might
threaten the safety requirement can be avoided. The controllability of
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the SMA is assumed to be achieved by another orbit control method
that is differential drag control [17–19],which has been already applied
in severalmissions suchas the constellation ofPlanetLabs Inc.’ [17,18]
and NASA’s Cyclone Global Navigation Satellite System (CYGNSS)
[19] constellations.
In the following part of the paper, Sec. II introduces the relative

motion equations parameterized byROE. Sections III and IV propose
two- and three-radial-impulsive methods, respectively. Section V
demonstrates the performance of the proposed method: especially
focusing on its robustness against the thrust execution error. Finally,
Sec. VI presents a systematic sensitivity study of both radial and
tangential impulsive methods against the thrust error.

II. Relative Motion Equations

Relative motion between two spacecraft can be described by the
relative orbit elements [9]:

0
BBBBBB@

δa
δex
δey
δix
δix
δλ

1
CCCCCCA

�

0
BBBBBB@

δa
δe cosφ
δe sinφ
δi cos θ
δi sin θ
δλ

1
CCCCCCA

�

0
BBBBBB@

�ad − a�∕a
ed cosωd − e cosω
ed sinωd − e sinω

id − i
�Ωd − Ω� sin i

�ud − u� � �Ωd −Ω� cos i

1
CCCCCCA

(1)

where �a; e;ω; i;Ω; u� are the classical orbit elements (OE) of the
chief satellite, except u � M� ω of the mean argument of latitude.

The subscript d stands for theOE of the deputy satellite, � δex δey �T
is the relative eccentricity vector, and � δix δiy �T is the relative

inclination vector. Compared to the Cartesian coordinate representa-
tion, the first five ROE components are kept constant in the Keplerian
orbit. Even with major perturbations such as the J2 perturbation and
aerodynamic drag, the ROE components are slowly varying so that
the closed-form solution of the state transition matrix can be
achieved [20].
Instantaneous change of the ROE by the impulsive maneuver can

be represented by

a

0
BBBBBBB@

Δδa
Δδex
Δδey
Δδix
Δδix
Δδλ

1
CCCCCCCA

� 1

n

2
66666664

0 2 0

sin u 2 cos u 0

− cos u 2 sinu 0

0 0 cos u

0 0 sin u

−2 0 0

3
77777775

0
@ΔVR

ΔVT

ΔVN

1
A (2)

In this equation, important relationships between the relative
motion and delta-vmaneuver can be found. First, the in-planemotion
and the out-of-planemotion can be decoupled. Second, the tangential
maneuverΔVT can control an eccentricity vector with half of delta-v
expenditure compared to the radialmaneuverΔVR. Third, the relative
SMA aδa can be only changed by the tangential maneuver. In
this paper, assuming thatΔδa is zero, the two or three radial impulses
are applied to correct �Δδex;Δδey;Δδλ�. In addition, the single orbit-
normal impulse is applied to correct �Δδix;Δδiy� [10].

III. In-Plane Reconfiguration with Two Radial
Maneuvers

The change of the ROE in the in-plane motion by radial impulse
ΔVR can be summarized as follows:

aΔδλ � −2ΔVR∕n

aΔδex � ΔVR sin u∕n

aΔδey � −ΔVR cos u∕n (3)

Supposing that the two radial impulses ΔVR1
and ΔVR2

are

employed for reconfiguration, Eq. (3) can be rewritten by

aΔδλ � −2ΔVR1
∕n − 2ΔVR2

∕n

aΔδex � ΔVR1
sin u1∕n� ΔVR2

sin u2∕n

� ΔVR1
sin u∕n� ΔVR2

sin�u� ξ�∕n
aΔδey � −ΔVR1

cos u1∕n − ΔVR2
cos u2∕n

� −ΔVR1
cos u∕n − ΔVR2

cos�u� ξ�∕n (4)

There are three equations with four unknown variables: ΔVR1
,

ΔVR2
, u1, and ξ, where u1 represents the angular position at the first

impulse firing; and ξ � u2 − u1 is the angular distance between the

two impulses.
To obtain the minimum delta-v solution, a cost function J can be

defined as a function of ΔVR2
:

J ≡ jΔVR1
j � jΔVR2

j �
���� − naΔδλ

2
− ΔVR2

����� jΔVR2
j

�
���� naΔδλ2

� ΔVR2

����� jΔVR2
j (5)

Assuming Δδλ ≥ 0 without loss of generosity, J can be catego-

rized into the three following cases:
Case a: ΔVR2

< − naΔδλ
2

,

J �
���� naΔδλ2

� ΔVR2

����� jΔVR2
j � −

naΔδλ
2

− ΔVR2
− ΔVR2

� −
naΔδλ

2
− 2ΔVR2

(6)

Case b: − naΔδλ
2

≤ ΔVR2
≤ 0,

J �
���� naΔδλ2

� ΔVR2

�����jΔVR2
j � naΔδλ

2
� ΔVR2

− ΔVR2

� naΔδλ
2

(7)

Case c: ΔVR2
> 0,

J �
���� naΔδλ2

� ΔVR2

����� jΔVR2
j � naΔδλ

2
� ΔVR2

� ΔVR2

� naΔδλ
2

� 2ΔVR2
(8)

Meanwhile, ΔVR2
can be represented as a function of ξ. First, the

last two equations of Eq. (4) can be organized as

aΔδex sin u − aΔδey cos u � 1

n
ΔVR1

� 1

n
ΔVR2

cos ξ (9)

aΔδex cos u� aΔδey sinu � 1

n
ΔVR2

sin ξ (10)

By combining Eqs. (9) and (10),

n2a2�Δδe2x � Δδe2y� � ΔV2
R1

� ΔV2
R2

� 2ΔVR1
ΔVR2

cos ξ (11)

can be achieved. Substituting 2ΔVR1
� −naΔδλ − 2ΔVR2

from

Eq. (4) into Eq. (11), the equation can be rewritten as follows:

n2a2�Δδe2x � Δδe2y� � n2a2Δδλ2∕4� naΔδλΔVR2
� 2ΔV2

R2

− naΔδλΔVR2
cos ξ − 2ΔV2

R2
cos ξ (12)

By rearranging Eq. (12) as an order of ΔVR2
, the second-order

equations can be achieved such that
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2�1 − cos ξ�ΔV2
R2

� naΔδλ�1 − cos ξ�ΔVR2

� n2a2�Δδλ2∕4 − �Δδe2x � Δδe2y�� � 0 (13)

2ΔV2
R2
�naΔδλΔVR2

� n2a2

�1− cosξ� �Δδλ
2∕4− �Δδe2x �Δδe2y�� � 0

(14)

By solving Eq. (14), ΔVR2
can be finally obtained as a function

of ξ:

ΔVR2
�

−naΔδλ�na
�������������������������������������������������������������������������������������
Δδλ2 − 1

�1−cosξ� �2Δδλ2 − 8�Δδe2x �Δδe2y��
q

4

(15)

Considering case b first, the condition of Δδλ can be deduced by

�������������������������������������������������������������������������������
Δδλ2 −

1

�1 − cos ξ� �2Δδλ
2 − 8kΔδek2�

s
≤ Δδλ (16)

Since �1 − cos ξ� ≥ 0, Eq. (16) leads to

Δδλ2 ≥ 4kΔδek2 (17)

In short, J � naΔδλ
2

whenΔδλ2 ≥ 4kΔδek2, regardless of the u and
ξ values. Thus, there are infinite solutions available. Here, we assume

ξ � π; then, the other variables are automatically decided as follows:

ΔVR2
� −naΔδλ� 2nakΔδek

4
; ΔVR1

� −naΔδλ∓ 2nakΔδek
4

(18)

From Eq. (4),

aΔδex � ΔVR1
sin u∕n − ΔVR2

sin u∕n � ∓akΔδek sinu
aΔδey � −ΔVR1

cos u∕n� ΔVR2
cos u∕n � �akΔδek cos u

∴u � tan−1�−Δδex∕Δδey� (19)

There are two combinations of �ΔVR1
;ΔVR2

� available, depend-
ing on u. If u is selected to make sin u as �−Δδex∕kΔδek� and cos u
as �Δδey∕kΔδek�, then �ΔVR1

;ΔVR2
� become

ΔVR1
� −naΔδλ − 2nakΔδek

4
; ΔVR2

� −naΔδλ� 2nakΔδek
4

(20)

When Δδλ2 < 4kΔδek2, on the other hand,

ΔVR2
�

−naΔδλ� na
�����������������������������������������������������������������������
Δδλ2 − 1

�1−cos ξ� �2Δδλ2 − 8kΔδek2�
q

4
> 0

holds, and this indicates case c. For this case, the cost function can be

redefined as a function of Δδe and ξ:

J� naΔδλ
2

�2ΔVR2
� na

2

����������������������������������������������������������������������������
Δδλ2−

1

�1− cosξ� �2Δδλ
2−8kΔδek2�

s

(21)

The partial derivative of J with respect to ξ can be obtained by

∂J
∂ξ

� na

4

�
Δδλ2 −

1

�1 − cos ξ� �2Δδλ
2 − 8kΔδek2�

�−�1∕2�

×
�2Δδλ2 − 8kΔδek2�

�1 − cos ξ�2 sin ξ (22)

Since Δδλ2 < 4kΔδek2, from the definition of case c, �2Δδλ2 −
8kΔδek2� becomes negative. By defining C0,

C0 � C0�ξ� ≡
na

4

�
Δδλ2 −

1

�1 − cos ξ� �2Δδλ
2 − 8kΔδek2�

�−�1∕2�

×
�2Δδλ2 − 8kΔδek2�

�1 − cos ξ�2 > 0 (23)

∂J∕∂ξ can be simplified as

∂J
∂ξ

� −C0 sin ξ (24)

According to Eq. (24), J becomes the minimum when ξ � π, and
the minimum value is found by

Jjξ�π �
na

2

������������������������������������������������������
Δδλ2 − �Δδλ2 − 4kΔδek2�

q
� na

2
× 2kΔδek � nakΔδek (25)

The correspondingΔVR1
andΔVR2

can then be easily achieved by

ΔVR2
� −naΔδλ� 2nakΔδek

4
� −

na

4
Δδλ� na

2
kΔδek (26)

ΔVR1
� −

na

2
Δδλ −

�
−naΔδλ� 2nakΔδek

4

�

� −
na

4
Δδλ −

na

2
kΔδek (27)

Finally, the last unknown variable u can be obtained by

naΔδex � ΔVR1
sin u − ΔVR2

sin u � −nakΔδek sinu
naΔδey � −ΔVR1

cos u� ΔVR2
cos u � nakΔδek cos u

∴u � tan−1�−Δδex∕Δδey� (28)

Third, case a has the same solution as case c but with the switched
�ΔVR1

;ΔVR2
� and different u:

ΔVR2
� −

na

4
Δδλ −

na

2
kΔδek; ΔVR1

� −
na

4
Δδλ� na

2
kΔδek

sin u � �Δδex∕kΔδek�; cos u � �−Δδey∕kΔδek� (29)

Because u is the same as the previous one with only the phase
difference of π, Eq. (29) for case a is eventually identical to the
solution of cases b and c.
Lastly, if cos ξ � 1, Eq. (4) can be written as follows:

aΔδλ � −2ΔVR1
∕n − 2ΔVR2

∕n � −2�ΔVR1
� ΔVR2

�∕n
aΔδex � ΔVR1

sinu∕n� ΔVR2
sin u∕n

� �ΔVR1
� ΔVR2

�∕n × sin u

aΔδey � −ΔVR1
cos u∕n − ΔVR2

cos u∕n

� −�ΔVR1
� ΔVR2

�∕n × cos u (30)

where u � tan−1�−Δδex∕Δδey�. Note that, however, Eq. (30) does

not have a solution ifΔδλ∕2 ≠ Δδey∕ cosu � kΔδek; otherwise, the
first and the third equations in Eq. (30) will be parallel. In other words,
there will be no possible �ΔVR1

;ΔVR2
� combination that satisfies

LIM AND MOK 1883

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Se

pt
em

be
r 

24
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

49
33

 



required �Δδex;Δδey�. There will be an infinite number of solutions

whenΔδλ∕2 � kΔδek since Eq. (30) is underdetermined. In this case,

any �ΔVR1
;ΔVR2

� that satisfy − naΔδλ
2

≤ ΔVR2
≤ 0 minimize J as

J � naΔδλ
2

. The solutions for the three cases are summarized in Table 1.

IV. In-Plane Reconfiguration with Three
Radial Maneuvers

In-plane relative orbit change by three radial impulses ΔVR1
,

ΔVR2
, andΔVR3

is derived as follows. There are now three equations

with six unknown variables: ΔVR1
, ΔVR2

, ΔVR3
, u1, u2, and u3:

aΔδλ� −2ΔVR1
∕n− 2ΔVR2

∕n− 2ΔVR3
∕n

aΔδex � ΔVR1
sinu1∕n�ΔVR2

sinu2∕n�ΔVR3
sinu3∕n

aΔδey � −ΔVR1
cosu1∕n−ΔVR2

cosu2∕n−ΔVR3
cosu3∕n (31)

If u1, u2, and u3 are defined as �u� kiπ� with integer ki, then the
equations can be simplified by

naΔδλ � −2ΔVR1
− 2ΔVR2

− 2ΔVR3

naΔδex � �−1�k1 × ΔVR1
sin u� �−1�k2

× ΔVR2
sin u� �−1�k3 × ΔVR1

sin u

naΔδey � −�−1�k1 × ΔVR1
cos u − �−1�k2

× ΔVR2
cos u − �−1�k3 × ΔVR3

cos u (32)

Now, there are seven unknown variables: ΔVR1
, ΔVR2

, ΔVR3
, u,

k1, k2 and k3. To reduce the number of variables, u is assumed to be
the same as Eqs. (19) and (28) in the two-impulse case such that

Δδex∕Δδey � − sin u∕ cos u ∴u � tan−1�−Δδex∕Δδey� (33)

There are six cases according to the set of integers �k1; k2; k3�. In
the following, we introduce an example process of deriving the local
minimum impulse solution under ui � �u� kiπ�. Only the first two
combinations are introduced, whereas the complete solution is sum-
marized in Table 2:
Case a: k1 � 2l, k2 � 2m, k3 � 2n

naΔδλ � −2ΔVR1
− 2ΔVR2

− 2ΔVR3

naΔδex � ΔVR1
sinu� ΔVR2

sin u� ΔVR3
sin u

naΔδey � −ΔVR1
cos u − ΔVR2

cos u − ΔVR3
cos u (34)

FromEq. (34), �ΔVR1
� ΔVR2

� ΔVR3
� can bewritten in a differ-

ent form:

naΔδex sin u � �ΔVR1
� ΔVR2

� ΔVR3
�sin2u

naΔδey cos u � �−ΔVR1
− ΔVR2

− ΔVR3
�cos2u

ΔVR1
� ΔVR2

� ΔVR3
� naΔδex sin u − naΔδey cos u (35)

We can easily see that there is no solution if −Δδλ∕2 ≠
Δδex sin u − Δδey cos u:
Case b: k1 � 2l, k2 � 2m, k3 � 2n� 1

naΔδλ � −2ΔVR1
− 2ΔVR2

− 2ΔVR3

naΔδex � ΔVR1
sinu� ΔVR2

sin u − ΔVR3
sin u

naΔδey � −ΔVR1
cos u − ΔVR2

cos u� ΔVR3
cos u (36)

Since ΔVR3
has a different sign in Eq. (36),

ΔVR1
� ΔVR2

� ΔVR3
� −naΔδλ∕2

naΔδex � �−naΔδλ∕2� sinu − 2ΔVR3
sin u

naΔδey � −�−naΔδλ∕2� cos u� 2ΔVR3
cos u (37)

�ΔVR1
� ΔVR2

− ΔVR3
� can be derived as follows:

naΔδex sinu � �ΔVR1
� ΔVR2

− ΔVR3
�sin2u

naΔδey cos u � �−ΔVR1
− ΔVR2

� ΔVR3
�cos2u

ΔVR1
� ΔVR2

− ΔVR3
� naΔδex sin u − naΔδey cos u (38)

From Δδλ in Eqs. (36) and (38), ΔVR3
can be obtained by

ΔVR1
� ΔVR2

� ΔVR3
� −naΔδλ∕2

naΔδex sin u − naΔδey cos u � ΔVR1
� ΔVR2

− ΔVR3

� �−naΔδλ∕2� − 2ΔVR3

∴ΔVR3
� −

1

2
naΔδex sin u� 1

2
naΔδey cos u −

1

4
naΔδλ (39)

From Eq. (39), �ΔVR1
� ΔVR2

� can be found by

ΔVR1
�ΔVR2

�1

2
naΔδex sinu−

1

2
naΔδey cosu−

1

4
naΔδλ (40)

Table 1 Two radial maneuvers’ solution for in-plane reconfiguration

Minimum impulses solution
P jΔVRi

j
Δδλ2 > 4kΔδek2 Infinite solutions with respect to u1 selection, and one of them could be

ΔVR1
� −

na

4
Δδλ −

na

2
kΔδek, where u1 � tan−1�−Δδex∕Δδey�, and

ΔVR2
� −

na

4
Δδλ� na

2
kΔδek, where u2 � u1 � π

naΔδλ
2

Δδλ2 � 4kΔδek2 Infinite solutions with respect to u1 selection, and one of them could be

ΔVR1
� −

na

4
Δδλ −

na

2
kΔδek, where u1 � tan−1�−Δδex∕Δδey�, and

ΔVR2
� −

na

4
Δδλ� na

2
kΔδek, where u2 � u1 � π

Also, u2 � u1 � 2π is available

only with any �ΔVR1
;ΔVR2

� combination that satisfies −
naΔδλ

2
≤ ΔVR2

≤ 0,

where u1 � tan−1�−Δδex∕Δδey� and ΔVR1
� −

naΔδλ
2

− ΔVR2

naΔδλ
2

� nakΔδek

Δδλ2 < 4kΔδek2 ΔVR1
� −

na

4
Δδλ −

na

2
kΔδek, where u1 � tan−1�−Δδex∕Δδey�, and

ΔVR2
� −

na

4
Δδλ� na

2
kΔδek, where u2 � u1 � π

nakΔδek
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For Eq. (40), jΔVR1
j � jΔVR2

j is minimized when jΔVR1
j�

jΔVR2
j � jΔVR1

� ΔVR2
j. One possible solution can be selected as

follows, which corresponds to the�� − combination in Table 2:

ΔVR1
�ΔVR2

� 1

4
naΔδex sinu−

1

4
naΔδey cosu−

1

8
naΔδλ (41)

Although
P jΔVRi

j is equivalent to those in Table 1, three impul-
sivemaneuvers could be still useful since each ofΔVRi

can be smaller.

In other words, more ΔVRi
combinations can be available under the

same delta-v limit of the propulsion system.

V. Examples of In-Plane Reconfigurations

Numerical results are presented to verify the proposed two- and
three-radial-impulsive solutions. Figure 1 shows the flowchart
applied in the simulation. First, the orbits of both satellites are
propagated in the inertial frame. Then, they are converted into the
mean OEs [21], and the mean ROE are obtained from the two mean

Table 2 Three radial maneuvers’ solution for in-plane reconfiguration

Sign �−1�ki Local minimum impulses solution when ui � �u� kiπ�
P jΔVRi

j
� �� There is no solution if −Δδλ∕2 ≠ Δδex sinu − Δδey cos u. — —

− − − There is no solution if −Δδλ∕2 ≠ −Δδex sinu� Δδey cos u. — —

� − − ΔVR1
� 1

2
naΔδex sinu −

1

2
naΔδey cosu −

1

4
naΔδλ

jΔVR2
j � jΔVR3

j � jΔVR2
� ΔVR3

j, and one possible solution is
ΔVR2

� ΔVR3
� −

1

4
naΔδex sinu� 1

4
naΔδey cosu −

1

8
naΔδλ

−�� ΔVR1
� −

1

2
naΔδex sinu� 1

2
naΔδey cos u −

1

4
naΔδλ

jΔVR2
j � jΔVR3

j � jΔVR2
� ΔVR3

j, and one possible solution is
ΔVR2

� ΔVR3
� 1

4
naΔδex sinu −

1

4
naΔδey cosu −

1

8
naΔδλ

� −� ΔVR2
� −

1

2
naΔδex sinu� 1

2
naΔδey cos u −

1

4
naΔδλ

jΔVR1
j � jΔVR3

j � jΔVR1
� ΔVR3

j, and one possible solution is
ΔVR1

� ΔVR3
� 1

4
naΔδex sinu −

1

4
naΔδey cosu −

1

8
naΔδλ

naΔδλ
2

,

where Δδλ2 ≥ 4kΔδek2

−� − ΔVR2
� 1

2
naΔδex sinu −

1

2
naΔδey cosu −

1

4
naΔδλ

jΔVR1
j � jΔVR3

j � jΔVR1
� ΔVR3

j, and one possible solution is
ΔVR1

� ΔVR3
� −

1

4
naΔδex sinu� 1

4
naΔδey cosu −

1

8
naΔδλ

najΔδex sinu − Δδey cos uj
� najΔδex

−Δδex
kΔδek − Δδey

Δδey
kΔδek j

� nakΔδek,

�� − ΔVR3
� −

1

2
naΔδex sinu� 1

2
naΔδey cos u −

1

4
naΔδλ

jΔVR1
j � jΔVR2

j � jΔVR1
� ΔVR2

j, and one possible solution is
ΔVR1

� ΔVR2
� 1

4
naΔδex sinu −

1

4
naΔδey cosu −

1

8
naΔδλ

where Δδλ2 < 4kΔδek2

− −� ΔVR3
� 1

2
naΔδex sinu −

1

2
naΔδey cosu −

1

4
naΔδλ

jΔVR1
j � jΔVR2

j � jΔVR1
� ΔVR2

j, and one possible solution is
ΔVR1

� ΔVR2
� −

1

4
naΔδex sinu� 1

4
naΔδey cosu −

1

8
naΔδλ

Fig. 1 Simulation study configuration.
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OEs. After calculating the required impulsive solutions, they are
applied as delta-v in the inertial frame during propagation.

A. Δδλ � 0

Initial reference OE of the chief satellite is given in Table 3,
whereas initial ROE of the deputy satellite is set to zero. Desired
ROE is assumed as the 15 m helix orbit [8] without the along-track
offset: Δδλ � 0. The J2 disturbance is included during orbit propa-
gation, and it is considered in the ΔV calculation by using the state

transition matrix presented in Ref. [22].
The two-impulse solution is summarized in Table 4. We can see

that the delta-v magnitudes are the same since Δδλ � 0, shown
by Eq. (18).
The three-impulse solution is obtained from the same problem and

summarized in Table 5. For comparison, the previous three-tangen-
tial-impulse method is also applied for reconfiguration [10]. The
fastest reconfiguration scenario is assumed for the tangential maneu-
ver case (k1 � 0; k2 � 1; k3 � 2). The results demonstrate that the
tangential maneuver solution is twice as efficient for relative eccen-

tricity vector control, as can be inferred by the dynamics in Eq. (2).
To verify whether

P jΔVij remains the same with other
�ΔVR1

;ΔVR3
� combinations (mathematically proven in Table 2) as

long as jΔVR1
j � jΔVR3

j � jΔVR1
� ΔVR3

j is satisfied, another

�ΔVR1
;ΔVR3

� is applied, and its results are summarized in Table 6.

It can be seen that the total amount of delta-v
P jΔVij is the same as

expected.

B. Δδλ ≠ 0: Case b Δδλ2 ≥ 4kΔδek2
Table 7 shows a new reconfiguration scenario with the 300 m

along-track offset. This condition corresponds to case b. A two-
impulse solution is first obtained, and its results are summarized in
Table 8. Compared to the results ofΔδλ � 0, it is shown that the total
delta-v is greatly increased. To verify whether

P jΔVij remains the
same regardless of the maneuver positions, the different initial

impulse position (u1 � 60 deg) is adopted, and its results are sum-

marized in Table 9. Three-impulse solutions in radial and tangential

directions are summarized in Table 10. Two remarks can be noted as

follows. First, the benefit of increasing number of impulse in the

radial maneuver method can be found. The maximum delta-v among

the delta-v set is decreased from 0.0856 into 0.0739 m∕s, which
means that the less powerful thruster can be employed for the same

reconfiguration scenario. Second, the disadvantage of the radial

Table 6 Three radial maneuvers’ result from
reconfiguration scenario 1 with different delta-V

combinations

Parameter Value

ΔV direction Radial

u1, rad 0

u2, rad 3.1416

u3, rad 6.2832

ΔV1, m/s −0.0062
ΔV2, m/s −0.0082
ΔV3, m/s −0.0021P jΔVij, m/s 0.0164

Table 7 Relative orbit reconfiguration
scenario 2: case b

Desired relative orbit elements Values

aδa, m 0

aδex, m 0

aδey, m 15

aδix, m 0

aδiy, m −15
aδλ, m 300

Table 8 Two radial maneuvers’ result from
reconfiguration scenario 2

Parameter Value

u1, rad 0

u2, rad 3.1416

ΔVR1
, m/s −0.0903

ΔVR2
, m/s −0.0739P jΔVRi

j, m/s 0.1642

Table 9 Two radial maneuvers’ result for
reconfiguration scenario 2 (u1 � 60 deg)

Parameter Value

u1, rad 1.0472

u2, rad 4.3706

ΔVR1
, m/s −0.0856

ΔVR2
, m/s −0.0787P jΔVRi

j, m/s 0.1642

Table 3 Relative orbit reconfiguration scenario 1

Initial reference orbit

a, km e i, deg Ω, deg ω, deg M�0�, deg
6928 0.002 98 0 45 0

Initial relative orbit elements

aδa, m aδex, m aδey, m aδix, m aδiy, m aδλ, m

0 0 0 0 0 0

Desired relative orbit elements

aδa, m aδex, m aδey, m aδix, m aδiy, m aδλ, m

0 0 15 0 −15 0

Table 4 Two radial maneuvers’ result from
reconfiguration scenario 1

Parameter Value

u1, rad 0

u2, rad 3.1416

ΔVR1
, m/s −0.0082

ΔVR2
, m/s 0.0082P jΔVRi

j, m/s 0.0164

Table 5 Three radial (top) and tangential (bottom) maneuvers’ result from reconfiguration scenario 1

ΔV direction u1, rad u2, rad u3, rad ΔV1, m/s ΔV2, m/s ΔV3, m/s
P jΔVij, m/s

Radial 0 3.1416 6.2832 −0.0041 −0.0082 −0.0041 0.0164

Tangential 1.5708 4.7124 7.8540 0.0021 −0.0041 0.0021 0.0082
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maneuver approach with respect to fuel efficiency can be clearly

seen. One possible remedy would be the use of differential drag

control to adjust the along-track distance aΔδλ until Δδλ2 <
4kΔδek2 holds.

C. Δδλ ≠ 0: Case a or c Δδλ2 < 4kΔδek2
The along-track distance is adjusted to 20 m, as in Table 11, which

conforms the Δδλ2 < 4kΔδek2 condition. A two-impulse solution is

summarized in Table 12. We can see that the total delta-v cost is

equivalent to that of the Δδλ � 0 condition, which verifies that the

delta-v cost is independent of Δδλ when Δδλ2 < 4kΔδek2 holds.

Compared to case b, the delta-v cost is now dependent on the impulse

firing positions, and it can be seen by comparing the results in

Tables 12 and 13. Finally, double fuel efficiency of the tangential-

impulsive-solution compared to the proposed radial-impulsive-sol-

ution can be found in Table 14.

D. Robustness Test Against Thrust Magnitude Error

In the last simulation case, thrust magnitude errors are incorporated

into the delta-v commands in order to test the robustness of the

reconfiguration methods. Both of the three radial- and tangential-

impulsive methods are applied, and their performances are compared.

The simulation case is defined by conducting the previous three

reconfiguration maneuvers sequentially as shown in Table 15, from

the initial ROE to the final ROE (i.e., ROE0 to ROE3). It is assumed

that the only one reconfiguration maneuver from ROE1 to ROE2 is

corrupted by the thrust errors so that ROE3 can be exactly achieved at

the end. The thrust error is assumed to be proportional to the delta-v

magnitude (i.e., scale factor error) [16], and it follows the Gaussian

distribution function with zero mean and 0.015 standard deviations

(i.e., 1.5%), as in Table 16. The rest time between each reconfiguration

is set to 17 orbits, where the secular drift motion due to the thrust error

can be observed. For the out-of-planemaneuver, singleΔVN is applied

the same as the one used in the previous studies, e.g., in Ref. [10].
Figures 2 and 3 show the resultant relative motion represented in

the Cartesian coordinate frame. The along-track drift motion after the

second reconfiguration maneuver (i.e., ROE1 to ROE2) in the tan-

gential maneuver case can be clearly seen. It is mainly caused by the

relative SMAcontrol error.While the desired along-track offsetaΔδλ
is 300 m and is supposed to be kept constant, it drifts over time and

even approaches to the aΔδλ � 0 condition. This condition can

adversely affect the safety condition when the e∕i vector separation

Table 10 Three radial (top) and tangential (bottom) maneuvers’ result from reconfiguration scenario 2

ΔV direction u1, rad u2, rad u3, rad ΔV1, m/s ΔV2, m/s ΔV3, m/s
P jΔVij, m/s

Radial 0 3.1416 6.2832 −0.0452 −0.0739 −0.0452 0.1642

Tangential 1.5708 4.7124 7.8540 −0.0154 −0.0041 0.0195 0.0390

Table 11 Relative orbit reconfiguration
scenario 3: case a or c

Desired relative orbit elements Values

aδa, m 0

aδex, m 0

aδey, m 15

aδix, m 0

aδiy, m −15
aδλ, m 20

Table 12 Two radial maneuvers’ result for
reconfiguration scenario 3

Parameter Value

u1, rad 0

u2, rad 3.1416

ΔVR1
, m/s −0.0137

ΔVR2
, m/s 0.0027P jΔVRi

j, m/s 0.0164

Table 13 Two radial maneuvers’ result for
reconfiguration scenario 3 (u1 � 60 deg)

Parameter Value

u1, rad 1.0472

u2, rad 6.9501

ΔVR1
, m/s 0.0274

ΔVR2
, m/s −0.0383P jΔVRi

j, m/s 0.0657

Table 14 Three radial (top) and tangential (bottom) maneuvers’ result from reconfiguration scenario 3

ΔV direction u1, rad u2, rad u3, rad ΔV1, m/s ΔV2, m/s ΔV3, m/s
P jΔVij, m/s

Radial 0 3.1416 6.2832 −0.0068 0.0027 −0.0068 0.0164

Tangential 1.5708 4.7124 7.8540 0.0009 −0.0041 0.0032 0.0082

Table 15 Relative orbit reconfiguration scenario 4 (sequential)

aδa, m aδex, m aδey, m aδix, m aδiy, m aδλ, m

Initial relative orbit elements

0 0 0 0 0 0

Desired relative orbit elements 1

0 0 15 0 −15 0

Desired relative orbit elements 2

0 0 20 0 −20 300

Desired relative orbit elements 3

0 0 10 0 −10 200

Table 16 Simulation condition for scenario 4

Parameter Value

ΔV error (1 sigma) 1.5 % of ΔVi

Reconfiguration time window 2 orbits
Rest time between reconfigurations 17 orbits
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condition does not hold (i.e., δe is not parallel with δi). On the other
hand, in the radial maneuver case, the along-track control error is

bounded since the relative SMA is not affected by the radial impulses.

Figures 4 and 5 represent the relative motion in the ROE param-

eterization. In Fig. 4, again, the along-track drift motion after the

second reconfiguration maneuver can be observed. Figure 5 shows

the other four ROE’ histories, which are a�Δδex;Δδey;Δδix;Δδiy�.
Compared to theΔδλ difference between the twomaneuvermethods,
the control error differences in the relative eccentricity vector com-
ponents �Δδex;Δδey� are both small and bounded. The control error

differences in �Δδix;Δδiy� are the same since the delta-v in the orbit-

normal direction are equivalent to each other.
Table 17 summarizes the sets of the delta-v applied in the radial and

tangential control methods. The total delta-v without the thrust error
(i.e., ideal solution) are also shown in the last column. Note that the
delta-v at the last reconfiguration (ROE2 to ROE3) are only changed
since the thrust errors are only applied at the second reconfiguration.
It can be easily seen that the thrust error increases the delta-v cost. The
inaccurate completion of reconfiguration increases the delta-v cost at
the following reconfiguration due to the ROE control errors. Notice-
ably, the increase of delta-v is larger with the tangential maneuver
method because of the along-track drift motion. Specifically, the
delta-v at the last reconfiguration in the tangential and radial maneu-
ver approaches are increased by 55 and 7%, respectively.

VI. Sensitivity Analysis

In the previous section, the impact of the thrust error on the ROE
control errors was observed by the numerical examples. In this
section, the (worst-case) ROE control errors from the thrust error
are systematically analyzed. Specifically, the three-impulse radial
and tangential methods are focused on.

Fig. 3 Relative trajectory in HCW frame (in each axis).

Fig. 4 Relative semimajor axis (top) and relative longitude (bottom) histories.

Fig. 2 Relative trajectory in Hill–Clohessy–Wiltshire (HCW) frame.
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A. In-Plane Reconfiguration with Three Radial Maneuvers

Random errors in the delta-v magnitudes are defined by

ΔVR1;real � �1� α1�ΔVR1

ΔVR2;real � �1� α2�ΔVR2

ΔVR3;real � �1� α3�ΔVR3
(42)

where the scale factor errors α1, α2, and α3 feature Gaussian distri-

bution with the same 3-sigma σα:

�α1; α2; α3� ∝ N

�
0;

�
σα
3

�
2
�

(43)

Case a: Δδλ2 < 4kΔδek2
Based on the three radial maneuver solutions in Table 2, the ROE

errors caused by the thrust errors can be predicted. First, the relative

eccentricity vector error �δex;err; δey;err� is derived. As an example,

we first assume that ΔVR1
;ΔVR2

< 0 and ΔVR3
> 0, i.e., the

(�� −) combination in Table 2:

naδex;err � �α1ΔVR1
� α2ΔVR2

− α3ΔVR3
� sin u (44)

naδey;err � �−α1ΔVR1
− α2ΔVR2

� α3ΔVR3
� cos u (45)

Defining a random parameter A as

A ≡ α1ΔVR1
� α2ΔVR2

− α3ΔVR3
(46)

where

A ∝ N

�
0; �ΔV2

R1
� ΔV2

R2
� ΔV2

R3
�
�
σα
3

�
2
�

the estimated relative eccentricity error kδeerrk �
������������������������������
δe2x;err � δe2y;err

q
can be obtained by Eqs. (44) and (45) such that

n2a2kδeerrk2 � n2a2�δe2x;err � δe2y;err� � A2 (47)

Then, we define the worst-case relative eccentricity error kδe	errk,
from the thrust error, by

kδe	errk � jAj	∕na (48)

where jAj	 is the maximum expected value from the set of

�α1; α2; α3�, which can be obtained by their 3-sigma values in

Eq. (43) and the equation nakΔδek � jΔVR1
j � jΔVR2

j � jΔVR3
j

in Table 2 such that

jAj	 � σαnakΔδek (49)

along with the maximum scale factor errors �α	1 ;α	2 ; α	3�:0
@ α	1
α	2
α	3

1
A �

0
@�σα
�σα
�σα

1
A (50)

It can be easily shown that Eq. (50) also holds for the other

combinations of signs of delta-v in Table 2. Then, the worst-case

relative eccentricity error kδe	errk in Eq. (48) becomes

kδe	errk � σαkΔδek (51)

Table 17 Three radial (top) and tangential (bottom) maneuvers’ result from reconfiguration

ΔV direction u1, rad u2, rad u3, rad ΔV1, m/s ΔV2, m/s ΔV3, m/s
P jΔVij

P jΔVij (without error)
Radial 1 0 3.1416 6.2832 −0.0041 0.0082 −0.0041 0.0164 0.0164

2 119.554 122.696 125.837 −0.0437 −0.0816 −0.0437 0.1689 0.1689

3 241.696 244.838 247.980 0.0094 0.0287 0.0094 0.0475 0.0446

Total
P jΔVij 0.2329 0.2230

Tangential 1 1.5708 4.7124 7.8540 0.0021 −0.0042 0.0021 0.0082 0.0082

2 121.131 124.272 127.414 −0.0170 −0.0014 0.0184 0.0368 0.0368

3 240.235 243.376 246.518 −0.0117 0.0027 0.0081 0.0226 0.0145

Total
P jΔVij 0.0676 0.0595

Fig. 5 Relative eccentricity vector (left) and relative inclination vector (right) histories.
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Second, the relative longitude errorΔδλerr can be also obtained by
Eq. (36) such that

aΔδλerr � a�Δδλreal − Δδλ�
� −2�α1ΔVR1

� α2ΔVR2
� α3ΔVR3

�∕n (52)

whereΔδλreal andΔδλ are the real (with the thrust error) and the ideal
relative longitude changes. The worst-case relative longitude error

jδλ	errj can be easily obtained by

najδλ	errj � 2σαjΔVR1
� ΔVR2

� ΔVR3
j (53)

with

0
@ α	1
α	2
α	3

1
A �

0
@�σα
�σα
∓σα

1
A (54)

when α	3 has the opposite sign from �α	1 ; α	2�, assuming the (�� −)
combination in Table 2. The general solution of �α	1 ;α	2 ; α	3� can be

obtained by

0
@ α	1
α	2
α	3

1
A �

0
@��−1�k1
��−1�k2
��−1�k3

1
Aσα (55)

and the worst-case relative longitude error becomes

jδλ	errj � 2σαkΔδek (56)

Case b: Δδλ2 ≥ 4kΔδek2
The case with larger along-track distance correction compared to

relative eccentricity correction (i.e.,Δδλ2 ≥ 4kΔδek2) is considered.
Final results are only presented since the derivation procedure is

identical to the previous case: Δδλ2 < 4kΔδek2. Assuming Δδλ ≥ 0
without loss of generosity, jAj	 and kδe	errk can be derived by

jAj	 � jα1ΔVR1
� α2ΔVR2

− α3ΔVR3
j	

� σαjΔVR1
� ΔVR2

− ΔVR3
j � σαnaΔδλ∕2 (57)

kδe	errk � jAj	∕na � σαjΔδλj∕2 (58)

when �α	1 ; α	2 ; α	3� satisfy Eq. (55). The worst-case relative longitude
error jδλ	errj becomes

jδλ	errj � σαjΔδλj (59)

when �α	1 ; α	2 ; α	3� correspond to Eq. (50).

B. In-Plane Reconfiguration with Three Tangential Maneuvers

For comparison of robustness, the sensitivity study of the three

tangential maneuver solution is also performed. Since Δδa is

assumed to be zero in this paper, only the jΔδaj < kΔδek case in

Ref. [10] is considered. It is assumed that the tangential mane-

uver method achieved the absolute minimum solution (i.e.,P jΔVTi
j � nakΔδek∕2). Before going further, one of the ΔVTi

combinations is selected as in Table 18, which will be general-

ized later.
First, the relative eccentricity vector control error is analyzed.

While the ideal relative eccentricity correction is

aΔδex�2ΔVT1
cosu1∕n�2ΔVT2

cosu2∕n�2ΔVT3
cosu3∕n

aΔδey�2ΔVT1
sinu1∕n�2ΔVT2

sinu2∕n�2ΔVT3
sinu3∕n (60)

the relative eccentricity vector control error �δex;err; δey;err� due to the
thrust error becomes

anδex;err � υδex;err � 2�α1ΔVT1
− α2ΔVT2

� α3ΔVT3
� cos u1

anδey;err � υδey;err � 2�α1ΔVT1
− α2ΔvT2

� α3ΔVT3
� sinu1 (61)

with the relative eccentricity vector 2-norm error:

n2a2kδeerrk2 � 4A2 (62)

The parameter A is redefined by

A ≡ α1ΔVT1
− α2ΔVT2

� α3ΔVT3
(63)

Then, the worst-case relative eccentricity error becomes

kδe	errk � 2jAj	∕na � σαkΔδek (64)

and the general (independent from the delta-v sign combinations)

solution of jAj	 can be achieved by

jAj	 � σα�jΔVT1
j � jΔVT2

j � jΔVT3
j� (65)

The corresponding �α	1 ; α	2 ; α	3� are the same as Eq. (50).

Second, the relative SMA control error δaerr is derived. From

Eq. (2),

aΔδaerr � 2�α1ΔVT1
� α2ΔVT2

� α3ΔVT3
�∕n (66)

can be achieved, and the worst-case error becomes

jδa	errj � σαkΔδek (67)

The corresponding �α	1 ; α	2 ; α	3� combination is equivalent to

Eq. (55).
Third, the relative longitude error is derived. The desired relative

longitude at the final time of u � uF can be expressed in terms of

�ΔVT1
;ΔVT2

;ΔVT3
� and �u1; u2; u3� such that

naδλ�uF� � −3�uF − u3�ΔVT3
− 3�uF − u2�ΔVT2

− 3�uF − u1�ΔVT1
(68)

The relative longitude error then becomes

naδλerr � −3A (69)

where the parameter A is redefined by

A ≡ �uF − u3�α3ΔVT3
� �uF − u2�α2ΔVT2

� �uF − u1�α1ΔVT1
(70)

The worst-case relative longitude error can be obtained by

jδλ	errj � 3jAj	∕na (71)

where

Table 18 Assumptions for in-plane reconfiguration
sensitivity analysis

sign�cosu1� sign�cos u2� sign�cosu3�
− � −

sign�sinu1� sign�sinu2� sign�sinu3�
� − �

sign�ΔVT1
� sign�ΔVT2

� sign�ΔVT3
�

� − �
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A	 � σα��uF − u3�α3jΔVT3
j � �uF − u2�α2jΔVT2

j
� �uF − u1�α1jΔVT1

j� (72)

The corresponding �α	1 ; α	2 ; α	3� combination is equivalent to

Eq. (55). Further analysis of jδλ	errj can be performed from the fact

that �uF − u1� and �uF − u2� are always greater than 1 rad.Assuming

�uF − u3� > 1 as well,

jδλ	errj�
3σα
na

��uF−u3�jΔVT3
j��uF−u2�jΔVT2

j��uF−u1�jΔVT1
j�

≥
3kσα
na

�jΔVT3
j�jΔVT2

j�jΔVT1
j� (73)

with k > 1. Since
P jΔVTi

j � nakΔδek∕2 is assumed (i.e., absolute

optimal solution), Eq. (73) can be organized by

jδλ	errj ≥
3kσα
2

kΔδek (74)

Comparing to the relative longitude error in the radial maneuver

approach in Eq. (55), the following inequality holds:

jδλ	errjΔVR
� 2σαkΔδek <

3kσα
2

kΔδek ≤ jδλ	errjΔVT
(75)

which states that jδλ	errj from the tangential method is larger than that
from the radial method when �uF − u3� � k > 1.33.
A set of the worst-case ROE control errors is summarized in

Table 19.
The performed sensitivity analysis is verified by the numerical

examples,which are also applied in Sec.V. The 3-sigma of the delta-v
scale factor error σα is set to 0.05, and the worst-case analysis is
conducted by assuming �α1; α2; α3� as extreme values corresponding
to the 3-sigma value. The two combinations of the �α1; α2; α3� set are
considered in Table 20. The results verify that the thrust error in the
radial maneuvers merely affects the relative SMA error so that the
relative longitude error is smaller than that with the tangential
maneuvers. In addition, the resultant relative eccentricity errors are
exactly the same in the two methods.

C. Control Accuracy

The ROE changes caused by a single burn of radial and tangential
delta-v maneuvers are summarized in Table 21. The results aim to
predict the required minimum thrust for the given ROE control
accuracy requirements, especially on the in-plane ROE: δe, δa, and
δλ. As shown in the table, δe can be controlled withΔVR two times as
accurate as with ΔVT due to the nature of dynamics in Eq. (2).
Despite the large fuel consumption, the radial impulsive maneuver
strategy could be an option if higher control accuracy is desirable for
the given mission requirements. In addition, although the radial
impulse induces δλ instantaneously, unlike the tangential impulse,

Table 19 Maximum ROE errors induced by radial and tangential maneuvers

Maximum error (worst case) kδe	errk jδa	errj jδλ	errj
With three ΔVR Δδλ2 < 4kΔδek2 σαkΔδek when0

@ α	1
α	2
α	3

1
A �

0
@�σα
�σα
�σα

1
A

—— 2σαkΔδek when0
@α	1
α	2
α	3

1
A �

0
@��−1�k1
��−1�k2
��−1�k3

1
Aσα

Δδλ2 ≥ 4kΔδek2 σαΔδλ
2

when0
@ α	1
α	2
α	3

1
A �

0
@��−1�k1
��−1�k2
��−1�k3

1
Aσα

—— σαΔλ when0
@ α	1
α	2
α	3

1
A �

0
@�σα
�σα
�σα

1
A

With three ΔVT σαkΔδek when0
@ α	1
α	2
α	3

1
A �

0
@�σα
�σα
�σα

1
A

σαkΔδek when0
@ α	1
α	2
α	3

1
A �

0
@��−1�k1
��−1�k2
��−1�k3

1
Aσα

3σα
na

X
�uF − ui�jΔVTi

j when0
@α	1
α	2
α	3

1
A �

0
@��−1�k1
��−1�k2
��−1�k3

1
Aσα

Table 20 Sensitivity analysis for reconfiguration scenarios 1 to 3

akδe	errk, m ajδa	errj, m ajδλ	errj, m

Scenario 1 With three ΔVR Combination 1

0
@ α	1
α	2
α	3

1
A �

0
@�σα
�σα
�σα

1
A 0.7500 —— 0

Combination 2

0
@α	1
α	2
α	3

1
A �

0
@��−1�k1
��−1�k2
��−1�k3

1
Aσα 0 —— 1.5000

With three ΔVT Case 1 0.7500 0 0

Case 2 0 0.7500 8.8357

Scenario 2 With three ΔVR Case 1 0.7500 —— 15.0000

Case 2 7.5000 —— 1.5000

With three ΔVT Case 1 0.7500 0 15.0000

Case 2 0 0.7500 6.1643

Scenario 3 With three ΔVR Case 1 0.7500 —— 1.0000

Case 2 0.5000 —— 1.5000

With three ΔVT Case 1 0.7500 0 1.0000

Case 2 0 0.7500 7.8357

LIM AND MOK 1891

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Se

pt
em

be
r 

24
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

49
33

 



it can avoid changing δa; otherwise, it not only shifts δa but also drifts
δλ over time.

VII. Conclusions

A radial maneuver strategy with two- and three-impulsive burns
for formation reconfiguration was proposed. While the total delta-v
costs of the two and three impulses are the same, the three-impulse
method has the advantage of distributing the impulses more evenly
among the impulseswhile the total delta-v costs are the same between
the two- and three-impulse methods. Despite a clear limitation of
employing only radial maneuvers in fuel efficiency compared to the
tangential maneuver strategy, two advantages were addressed sup-
ported by the numerical results. The first is that its total delta-v
magnitude is independent of the allowed reconfiguration time assum-
ing that it is longer than 1.5 orbit periods, and the second is that the
ROE control errors become less sensitive to the thrust model errors.
Considering that most CubeSats are incapable of performing forma-
tion keeping in a regular basis, it is important to keep the along-track
distance for safety. In this regard, the SMAcontrol error caused by the
tangential maneuver error can be critical since it can make the space-
craft approaching to each other. The proposed radial maneuver
strategy, on the other hand, hardly induces the SMA control error
even with the thrust errors so that the intersatellite distance can be
maintained robustly.
A possible long-term reconfiguration strategy employing the pro-

posed radial maneuver strategy can be described as follows. The
SMA is controlled by differential drag, as well as the relative longi-
tude, to the maximum extent under given reconfiguration time; and
then the radial impulses correct the residual relative longitude
together with the relative eccentricity. This long-term strategy will
benefit from the increased robustness against the thrust errors in
tradeoff of delta-v increase. For futurework, a tradeoff study between
a delta-v cost and safety will be carried out, for long-term operations
of CubeSats.
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