
Using Multiple On-Site Markers to Create Large-Scale Augmented Reality 
Experiences on Smartphones

Alex Maat
Supervisor(s): Baran Usta, Michael Weinmann, Elmar Eisemann EEMCS, 

Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract
Augmented Reality (AR) tracking for mobile de-
vices is not realiable in environments where large
virtual content, such as an entire virtual build-
ing, is to be displayed to the user. This paper
presents a study on how multiple on-site mark-
ers can be used to better align the virtual scene
to the real-world environment to improve large-
scale AR experiences. The method consists of
detecting QR markers from the video stream,
and then updating the position, orientation, and
scale of the virtual content in order to mini-
mize the error between the real markers and their
corresponding virtual markers. This allows for
more accurate tracking and can be used in more
complex environments. Three different evalua-
tion methods are proposed. Additionally, experi-
ments were conducted to explore the influence of
marker density and marker layout. These exper-
iments show that higher density layouts as well
as structured layouts lead to higher accuracy and
stability.

1 Introduction
Augmented Reality (AR) is the enhancement of the real
world by adding virtual information. This often means dis-
playing text, virtual models, icons, etc on top of the live
camera feed of the real world. Over the last decade, AR
has become increasingly popular with the improvements in
both hardware and software [3].

Most AR applications use relatively small-scale virtual
elements, like animals, furniture, text, or symbols. This is
usually achieved by analizing the video stream and identi-
fying planes by finding natural reference points. Another
common approach for AR is imposing virtual content on
top of a single marker. However, using AR to impose
large-scale virtual content, that is to say entire buildings or
streets, is less common. Large-scale AR apps allow users
to explore and experience certain sites as if they were there
in a different time frame.

To create an immersive and convincing large-scale AR
experience, the virtual content needs to be aligned to
the world properly, and move together with the camera
movement. Specific hardware exists, such as Microsoft’s
HoloLens, built to deliver convincing AR experiences.
However, the goal of this large-scale AR is to be acces-
sible to visitors of specific (historic) sites. Therefore, the
aim of this paper is to analyze the use of a multiple on-site
markers that can be used to offer large-scale AR on mobile
devices.

The paper first focuses on the methodoloy used for de-
tecting and tracking multiple 2D on-site markers. The po-
sitions and orientations of these markers are then used to

place the virtual content, which consists of content that
is displayed to the user, as well as virtual markers used
to align the content. After this is elaborated, the evalua-
tion metrics are explained followed by experiments that use
these metrics to compare the use of a multi-marker system
in different contexts: the number of markers; the density of
the markers (how many markers are visible at in a single
frame); and the layouts of the markers (uniform or random
offsets).

2 Related Work

There have been several studies relating to (multi-)marker
based AR systems that are relevant for this paper.

One related study by Sing et al. was about using multi-
ple image markers in a coloring book to allow the user to
color in the drawing on their phone [8]. In this study they
used the images in the coloring book as markers. In their
paper, however, the multiple markers did not function as
a means of better estimating the virtual position of the vir-
tual content. Since each marker had their own content to be
overlayed. In addition, Sing et al.’s application only uses
the markers in the context close to the camera. However, in
our paper the focus lies on using the markers in a larger en-
vironment, where the markers are further apart and further
from the camera and might not all be visible to the camera
at the same time.

Gherghina et al. did research on a marker-based tracking
system using QR codes and its performance [5]. Since this
study is from 2013, smartphone hardware is meanwhile at
a much better state. Therefore the results in performance
shown in their paper are slightly outdated. Additionally,
their study did not focus on using multiple markers which
our paper will.

A study by Baratoff et al. focused on creating an interac-
tive multi-marker calibration application [2]. The user first
scans the area to create a model of the markers, which is
then used for real-time camera pose estimation relative to
the markers. The authors use pose estimation to place the
virtual content. Our paper will use a different method, and
instead of laying the focus on the calibration of the mark-
ers, our paper will focus on a different alignment method
and three evaluation methods used for multi-marker exper-
iments that have implications on large-scale AR.

A paper by Zauner and Haller also focused on a multi-
marker calibration application for mobile devices [9]. Their
paper also elaborates on how they stabilize the position and
orientation of the detected markers. The alignment method
explained in this paper is inspired by their work, but our pa-
per adds quantitative evaluations in order to compare differ-
ent multi-marker scenarios for implications on large-scale
environments.



3 Multi-Marker Virtual Model Alignment

The goal of this paper is to present the implications of using
multiple on-site markers for mobile large-scale AR appli-
cations. Therefore, we need a system that aligns the virtual
AR content with the detected markers in the real world.
Each location for which the application should work has
a corresponding virtual model. This virtual model contains
virtual markers that are placed in the same offsets from one
another according to their real world positions and orienta-
tions. This virtual model also contains the virtual content:
the visuals that should be displayed to the user, since the
virtual content needs to be displayed relative to the mark-
ers. A visualization can be observed in Figure 1.

(a) A representation of what a
location in the real world may
look like. The red and blue squares
represent two different markers.

(b) A representation of the virtual
model corresponding to the real
world in Figure 1a. The mark-
ers are placed with the same posi-
tional and angular offset compared
to the real world scenario.

Figure 1: Visualization of the real world and its corresponding
virtual model.

The flow of the application can be split into three parts:
setup, initialize, and update. The steps for each of these
three parts are visualized in Figure 2.

The setup part consists of preparing the environment.
This needs to be done manually and needs to be done only
once. After these steps are completed, the user can (re)run
the application unlimited in the prepared area. The exact
steps are explained in subsection 3.1.

The application can be used after the setup. It then starts
with the initialize part. The details of this are elaborated
upon in subsection 3.2.

The update part is the biggest section of the application.
This part contains the main working of the alignment al-
gorithm. The steps in this part are executed each update
(frame). The update loop starts by updating the virtual
camera. Which is followed by detecting markers. And fi-
nally using these markers and their correspondences with
the virtual markers to transform the virtual model to align
the virtual content. A detailed explanation of all the dif-
ferent (sub)steps in the algorithm can be found in subsec-
tion 3.3.

(a) The flow of the setup of the application. The
steps in this process need to be done manually, be-
fore the application can be used.

(b) The flow of the application during the initial-
ization of the application, as well as the update
loop. All these steps are handled by the applica-
tion automatically.

Figure 2: Visualization of the flow of the application.

3.1 Setup
Before the application can be used in a specified area, the
setup steps shown in Figure 2a need to be executed. To do
this, 2D markers need to be placed in the real world. The
exact location depends on the experiment. An example can
be found in Figure 3a.

The placed markers should have unique IDs. In this pa-
per, this is achieved by using unique QR codes for each ID.
In the Unity Editor, the images of the QR codes are added
to the ReferenceImageLibrary asset that contains a list
of all markers as well as their physical sizes.

After the placement in the real world, the relative dis-
tances and orientations between the markers in the real
world need to be measured. Then, the virtual model should
be created using these measurements and the virtual mark-
ers are given their corresponding IDs. This virtual model
also contains the virtual content that should be displayed to



the users. The markers in the model and this content need
to be placed to support the respective alignment.

(a) An example of a setup in the
real world. Two markers are
placed. The right marker has ID 1
and the left marker has ID 2.

(b) The virtual model correspond-
ing to the real world scenario. The
markers are given their respective
IDs. In this whole paper, the mark-
ers of the virtual model are always
indicated by red squares.

Figure 3: Example of the real world and virtual model setup.

3.2 Initialize
When the setup of an environment and its virtual model
are complete, the application can be run. This step cor-
responds to the INITIALIZE section in Figure 2b. At the
start of the application the AR session is initialized. This
AR session is managed by the ARCore implementation for
Unity’s ARFoundation. The Unity scene contains an AR
Session Origin that contains a virtual camera. This virtual
camera moves through the Unity scene according to how
the translation and rotation is measured from the mobile
device by the framework. This is done by using the smart-
phone’s accelerometer and gyroscope [1].

3.3 Update
After the initialization is done, the update loop shown in
Figure 2b starts running. This loop starts by transforming
the virtual camera. As mentioned before, this is managed
by the ARFoundation framework.

The next step consists of detecting the markers that are
placed in the real world. The ARFoundation framework
continuously processes the streaming video from the cam-
era. When a marker is detected, it is placed in the virtual
world relative to the AR session origin, where the frame-
work thinks this marker is relative to the camera. The
framework makes use of the accelerometer and gyroscope
in the smartphone for this estimation [1]. The markers that
are placed by the framework are now referred to as detected
markers. It infers the orientation based on reference points
on the marker. The distance between the marker and the
camera is calculated by the framework by using the prede-
fined dimensions of the markers. The position and orien-
tation of the detected markers are continuously updated as
long as the framework keeps detecting them. This usually
results in tiny changes in rotation and position around an
average center point of the marker. The detection an place-
ment of these markers is visualized in Figure 4.

Figure 4: When the framework detects a marker, it places a vir-
tual version of the detected marker in the scene with the same
relative position and orientation. In the whole paper, these mark-
ers are always represented by green squares.

A detected marker may stay in the scene even if it is
out of frame. This means it will still be considered during
all calculations, it only implies that the position and ori-
entation relative to the virtual camera is less accurate. If
the framework is too unsure about a previously detected
marker, this marker is removed and not considered any-
more in any calculations.

After the detected markers are placed in the virtual
scene, we start working on transforming the virtual model
to align the virtual markers with the detected markers in
order for the virtual content to be displayed at the right po-
sition. This starts with identifying corner pairs between the
detected markers and the virtual markers. The real detected
marker’s image is unique and contains its ID. To create the
corner pairs, its corresponding virtual marker is found by
using this ID. Since the size, position, and orientation of
the detected marker is known, the corners are calculated.
This calculation works as follows:

−→
c1 =

−−−−−−−−−−−−→
marker.position+ 0.5 ∗ width ∗

−−−−−−−→
marker.up

+0.5 ∗ height ∗
−−−−−−−−−→
marker.right

Where marker.up and marker.right are unit vectors of
the cardinal directions in the marker’s local space. The
other three corners are calculated similarly, in a clockwise
fashion.

The virtual model (and thus also the virtual content)
needs to be translated, rotated, and scaled in such a way
that it minimizes the distances between the corner pairs.
Since the detected markers are managed by the framework,
we can - and therefore do - only move the virtual model.

The next step consists of changing the virtual model’s
pivot point. This is done by moving all its children (the
virtual markers as well as the virtual content) according to
the offset between the current absolute position of the vir-
tual model and the average position of all the virtual model
corners that have a corresponding detected marker:

−−−−→
offset =

−−−−−−−−−−−−−−−−→
virtualModel.position

−
−−−−−−−−−−−−−−−−−−−−→
cornerPair.modelPosition



The new pivot of the virtual model is the center of all virtual
markers that have a corresponding detected marker. Note
that only the detected markers are considered in the formula
above, since corner pairs only exists for a virtual marker
and detected marker pair. Figure 5 shows what the pivot
change looks like.

(a) The initial positions of the de-
tected markers (green) and the vir-
tual markers (red).

(b) The positions of the virtual
markers changed after the pivot
update.

Figure 5: A before and after of the pivot update. The white sphere
indicates the pivot of the virtual model. The red arrows indicate
how the corners of the markers in the model need to be moved.

Now that the pivot point is at the center of the markers,
the virtual model is translated according to:

−−−−−−−−→
translation =

−−−−−−−−−−−−−−−→
cornerPair.direction

In this case cornerPair.direction is the vector from
the virtual corner to the corresponding detected corner. As
a result, the center of the virtual markers overlaps with the
center of the detected markers. Figure 6 visualizes the re-
sult of the translation.

(a) Before translation. (b) After translation.

Figure 6: The virtual model pivot is moved to the center of the
detected markers.

The next step is to rotate the virtual model to further re-
duce the corner pair errors. To get the rotation to perform,
the desired rotation for each pair is calculated as a quater-
nion. Quaternions are used to overcome the gimbal lock of
rotation matrices [7]. To then average the quaternions of
all pairs, the quaternions are first used to create a sum of all
the forward and up directions:

−−−−−−−−−→
forwardSum = cornerPair.desiredRotation ∗

−−−−→
(0, 0, 1)

−−−−→
upSum = cornerPair.desiredRotation ∗

−−−−→
(0, 1, 0)

Both these vectors are then divided by the number of pairs
to get the average forward/up combination of all the desired
rotations. From these vectors, a final quaternion is calcu-
lated and this is used to rotate the virtual model.

There is one situation that breaks this calculation, which
needed a special case to handle. When the direction vec-
tors of the corner pairs cancel each other out, the resulting
rotation is the identity quaternion. This happens for exam-
ple when the desired rotation is exactly 180 degrees. To fix
this, we change the desired rotation to a randomized small
rotation (-0.1 degrees to 0.1 degrees for each euler axis)
when we detect that the calculated rotation is close to re-
sulting in no rotation. When there indeed was supposed to
be no rotation, this slight rotation is not noticeable. But
when the rotation is necessary, the angle keeps growing
each update until it converges. A sequence of these rota-
tions can be observed in Figure 7.

Figure 7: The sequence of applied rotations. After a few itera-
tions, the distance between the corner points does not decrease
anymore by rotating the model.

The last step of the update cycle is calculating and apply-
ing the right scale. For this, we again average the desired
scales for all corner pairs.

For a single corner pair, the desired scale is calculated by
projecting the target corner position onto the line that orig-
inates from the pivot of the virtual model and goes through
the corner of the virtual marker. This line indicates the
’path’ that corner takes in space when the scale of the vir-
tual model is changed. The projected point is the point on
that scale line that has the smallest distance to the target
point. The formulas below calculate this closest point.

t =
−−−−−−−−−−−−−−→
scaleLineDirection ·

−−−−−−−−−−→
originToPoint

−−−−−−−−−→
closestPoint =

−−−−−−−−−−−−−−−→
virtualModelOrigin

+t ∗
−−−−−−−−−−−−−−→
scaleLineDirection

Now that we have the point on the scale line that is clos-
est to the target corner point, we can calculate the desired



scale for this corner pair. For both the current position of
the corner and the closest point, the distances are calculated
to the virtual model origin. Dividing these two distances
gives the desired scale:

desiredScale = distanceFromOrigin

/currentDistanceFromOrigin

A visualization of this method can be observed in Figure 8.

Figure 8: A visualization of how the desired scale is calculated.
The origin of the virtual model is at the center of the red marker.
The red lines indicate the scale lines that originate from the vir-
tual model origin and go through the four corners. For each cor-
ner pair, the point closest to the target corner on the scale line
is shown with a white sphere. The green lines help to visualize
which points correspond to which corners. The labels show what
scale is required for the virtual model in order for the corner to
move to that closest point.

To get the final scale that will be applied, the average is
taken from the desired scales of all corner pairs:

scale = desiredScale

Figure 9 shows the result of changing the scale.

(a) Before the scale is applied. (b) After the scale is applied.

Figure 9: Applying the scale is the last step in the alignment al-
gorithm.

4 Evaluation Metrics
To be able to compare different multi-marker setups to each
other, different evaluation metrics are used. The evaluation
is done on three distinct aspects: accuracy, stability, and
performance.

Accuracy The first metric used for evaluation is that of
accuracy. This metric measures the distance between the
detected marker corners and their corresponding target cor-
ners. This is visualized in Figure 10. The values of all the
corner pairs are accumulated and the sum is normalized by
dividing by the number of pairs. The larger this number, the
less the virtual scene is able to be aligned with the detected
scene. The final equation is as follows:

accuracy = |(
−−−−−−−−−−−−−−−−−−−→
cornerPair.targetCorner

−
−−−−−−−−−−−−−−−−−−−−−→
cornerPair.detectedCorner)|/numPairs

Figure 10: Arrows are drawn between all corner pairs, indicating
how the corners need to move in order to reduce the error. The
numbers indicate the lengths of the arrows. The normalized sum
of these lengths are used as accuracy metric.

Stability Evaluating the stability is done in three differ-
ent ways. Since the application updates the positions and
orientations of all markers that are visible to the camera
every frame, the application also updates the position, rota-
tion, and scale of the virtual content. This means the virtual
content is not stationary during the session.

To visualize and quantify the positional stability, we
keep track of the x, y, and z coordinates of the virtual con-
tent for each frame. The smoothness and flatness of these
graphs indicate the positional stability: the flatter the graph
the more stable the position.

For the rotational stability, instead of tracking the abso-
lute values of the orientation for each frame, we track the
change in angle. Therefore, larger spikes indicate more ro-
tational instability.

The last stability metric is done by tracking the scale.
Since the virtual content is always scaled homogeneously,
we only have to track a single number for the scale for each
frame.

Performance The performance of the algorithm is quan-
tified by measuring the number of ticks between the start
and end of the algorithm, during each frame. A C# tick is
the smallest unit of time, equal to 100 nanoseconds [4].



5 Experiments and Results
The experiments in this section have all been performed
with the same hardware and software configuration. The
application is run through the Unity Editor. It makes use
of the AR Foundation Editor Remote package in order to
run the experiments wirelessly on a smartphone through
the editor [6]. The Unity Editor was run on a Windows 10
laptop with the Intel i7-8750H CPU and 16GB RAM. The
smartphone used in the experiments is the Samsung Galaxy
S10+ with 128GB of storage.

For the first experiment we analyze the performance, ac-
curacy, and stability based on the number of detected mark-
ers. The evaluation methods used are described in sec-
tion 4. The real-world environment used for the experiment
consists of four markers, one on each wall of a square room
of 20m².

Figure 11 shows the measured performance during the
run of the application. This shows that there is a clear cor-
respondence in algorithm duration based on the number of
detected markers, since the minimum bounds of the num-
ber of ticks increases each time a marker is added. Since
the jumps of the minimum bounds are of the same spacing
each time, the algorithm performs in O(n) time, where n is
the number of detected markers. This makes sense, as the
algorithm needs to perform calculations for all corner pairs
of the markers for each of the steps.

Figure 11: The runtime of the algorithm measured during one
session. The minimum bounds of the runtimes is clearly depen-
dent on the number of detected markers.

A visualization of the accuracy measurements are shown
in Figure 12. At the very start of the application, the accu-
racy error starts relatively large, and then rapidly shrinks
during a few frames. This happens since the algorithm
takes a few iterations for it to settle on the final result. After
these first few frames, during the rest of the frames where
only one marker is detected, the accuracy is the highest.
This is because the algorithm only takes the one detected
marker into account. So it can translate, rotate, and scale
the virtual model to fit that one marker perfectly.

When a second marker is detected and thus considered
in the algorithm, the accuracy makes a sudden jump. The

initial spike happens because the first few iterations in up-
dating the rotation are less accurate. After a few updates,
the accuracy settles. This plateau is at a lower accuracy
than the plateau with only one detected marker. This oc-
curs because of imperfections between the matchups in the
virtual model and the real environment. Because of this the
error cannot be reduced any further. This is, however, ex-
pected and exactly the reason why we average and use the
information from all markers. The same behaviour can be
observed when the third marker is detected.

The detection of the fourth marker, however, shows dif-
ferent behaviour. At first the error settles at a higher value.
This happens due to a limitation of the current implemen-
tation. The framework wrongly updated one of the markers
that was out of sight and therefore the algorithm could not
properly align the virtual model. A few seconds later the
wrongly detected marker is in frame again and now up-
dated properly, reducing the error and settling for the same
error as with three markers.

Figure 12: The accuracy of the alignment measured during one
session based on the number of detected markers.

The last aspect considered for this environment is the
stability. Figure 13a shows that the position changes when
a new marker is detected. The change in position around
frame 3200 happens because of the correction of the mis-
detection as explained earlier. When looking at the over-
all graph, it looks like the position changes a lot and thus
the virtual content would seem to make big jumps during
each new marker. In practice, this effect is less noticeable,
since the measurements of these positional coordinates do
not take into account that the pivot of the virtual model is
changed.

The stability of the rotation is measured by the change in
angle. This is shown in Figure 13b. The spikes only occur
at the start of detecting a new marker (except for the spike
around frame 3200). It then takes a few frames to stabilize
the rotation.

The stability of the scale shows similar behaviour as can
be observed in Figure 13c. Since the scale is updated after
the rotation, and the rotation takes a few updates to settle,
the scale changes quite a bit during this period. However,



after the rotation has settled, the scale settles as well and
stays stable.

(a)

(b)

(c)

Figure 13: The stability of the alignment during one session
based on the number of detected markers. The subfigures show
the stability of the position, rotation, and scale respectively.

Next we look into the influence of the density of the
markers on the positional stability. For this experiment we
had two different real-world setups: a low density setup and
a high density setup. For the setups we placed three mark-
ers next to each other, at the same height, with a spacing of
70cm and 35cm respectively.

Figure 14 shows the positional stability in both setups.
There are two things to note when comparing the two
graphs. The first is that the position in the high density
setup stays more stable when there is no change in the num-
ber of detected markers. In Figure 14a the y and z coordi-
nates make a jump around frame 260. Similar jumps are
not observed in the high density setup in Figure 14b.

The other remark is that the change in position is smaller
in the high density scenario. The jump for the z coordi-
nate in Figure 14a is ≈ 0.45, while the jump in Figure 14b
is ≈ 0.2. The reason for this is that the alignment of the
virtual model gets fresh input more frequently with higher
densities. Since new markers are detected more often in the

same amount of space, smaller corrections in the alignment
are required.

(a) Positional stability for low density setup.

(b) Positional stability for high density setup.

Figure 14: Comparison of the positional stabilities in both a low
density and high density marker setup.

For the last experiment we look at the influence on the
accuracy of two different layout types: structurally spaced,
and randomly spaced. With a structurally spaced layout, it
is meant that the relative distances between the markers are
the same for each pair. In practice, this yielded in a layout
where three markers are placed on a flat wall with a spacing
of 70cm. The randomly spaced layout places the markers
at more obscure positions in the environment, such as cor-
ners, where they do not distract users as much. For this
experiment, this yielded in three markers placed on oppos-
ing walls.

As is visible in Figure 15, the accuracy in the structurally
spaced layout already settles after the second marker is de-
tected. When the third marker is also detected, the accu-
racy stays the same. On the other hand, in the randomly
spaced layout, the error increases both at the detection of
the second marker, as well as the third. The reason for this
difference is likely that with a structurally spaced layout,
the virtual model is easier to be made more accurately.



Figure 15: A combination of the accuracy graphs for both a uni-
formly spaced layout and a randomly spaced layout.

6 Discussion
The method shown in this paper has room for improve-
ments. The first of these improvements is the ability to
identify the markers better. Since the markers are QR
codes that can look quite similar to each other, especially
from further distances, the framework might misidentify a
marker and therefore the alignment with the virtual content
has a larger error. This would need more research on what
visual content the markers should use to improve identifi-
cation.

Another issue is the issue of misdetections. Sometimes
the detections of the markers are not accurate enough to
provide for a correct alignment. This could be improved
by ignoring markers that are not in frame, or by ignoring
markers that are outliers when compared to the positions in
the virtual model.

Currently, the user needs to be quite close to a marker
for the marker to be detected and identified. This breaks
user immersion as the user sometimes need to manually
make sure a marker gets detected. Therefore, this method
currently works best when the user will be using the appli-
cation close to the markers.

7 Responsible Research
Responsible research consists of two main aspects: ethical-
ity and reproducability.

With ethicality, concerns of discrimination or biases play
a role. Since the research for this paper did not include
user studies, there is no issue of implicit biases that may
be present in user study groups. Additonally, the system
presented is only a prototype used to perform and analize
experiments. Therefore, concerns in fair user interaction
are not applicable.

The reproducability of the research is ensured by includ-
ing comprehensive explanations of how the systems work
in section 3 and what limitations they have in section 6.
Additionally, the environment of the different experiments
are also made clear by stating what hardware and software
were used as well as describing the real world environ-

ments that were used. Both of these can be found in sec-
tion 5.

8 Conclusion
This paper presented a method for multi-marker AR align-
ment. The method uses averaging of the position, rotation,
and scale to align the virtual content with the real world
markers. Additionally, it elaborated on three different eval-
uation techniques to evaluate the accuracy, stability, and
performance.

The paper presented experiments on the implications of
multi-marker AR on large-scale AR. These experiments
showed that using markers spread throughout the environ-
ment can be used to give the application a fresh update on
the position of the user. Which in turn realigns the virtual
content for better accuracy. We also showed that the run-
time of this algorithm is O(n), where n is the number of
detected markers. Additionally, it was shown that a higher
density of markers in the environment yields more stability.
Furthermore, layouts of uniformly spaced markers outper-
formed randomly spaced markers due to the imperfections
in measurements during the setup of the environment and
corresponding virtual model.

The implementation of the method has room for im-
provement. Especially the marker detection and identifi-
cation part, since this is the current bottleneck for using the
application on larger distances from the markers.

The proposed alignment method in combination with the
conducted experiments allowed for a base of large-scale
marker-based AR as well as insights on marker distribution
and layout, which benefits the future of large-scale AR.

References
[1] Intro to AR Foundation — dots-tutorial.moetsi.com.

https://dots-tutorial.moetsi.com/ar-foundation/
intro-to-ar-foundation, 2021. [Accessed 19-Jun-
2022].

[2] G. Baratoff, A. Neubeck, and H. Regenbrecht. In-
teractive multi-marker calibration for augmented real-
ity applications. In Proceedings. International Sympo-
sium on Mixed and Augmented Reality. IEEE Comput.
Soc, 2002. doi: 10.1109/ismar.2002.1115079. URL
https://doi.org/10.1109/ismar.2002.1115079.

[3] Yunqiang Chen, Qing Wang, Hong Chen, Xiaoyu
Song, Hui Tang, and Mengxiao Tian. An overview
of augmented reality technology. Journal of Physics:
Conference Series, 1237(2):022082, June 2019. doi:
10.1088/1742-6596/1237/2/022082. URL https://doi.
org/10.1088/1742-6596/1237/2/022082.

[4] dotnet bot. TimeSpan.Ticks Property (System) —
docs.microsoft.com. https://docs.microsoft.com/
en-us/dotnet/api/system.timespan.ticks?view=net-6.
0#remarks, 2022. [Accessed 18-Jun-2022].

https://dots-tutorial.moetsi.com/ar-foundation/intro-to-ar-foundation
https://dots-tutorial.moetsi.com/ar-foundation/intro-to-ar-foundation
https://doi.org/10.1109/ismar.2002.1115079
https://doi.org/10.1088/1742-6596/1237/2/022082
https://doi.org/10.1088/1742-6596/1237/2/022082
https://docs.microsoft.com/en-us/dotnet/api/system.timespan.ticks?view=net-6.0#remarks
https://docs.microsoft.com/en-us/dotnet/api/system.timespan.ticks?view=net-6.0#remarks
https://docs.microsoft.com/en-us/dotnet/api/system.timespan.ticks?view=net-6.0#remarks


[5] Alexandru Gherghina, A. Olteanu, and N. Tapus. A
marker-based augmented reality system for mobile de-
vices. In 2013 11th RoEduNet International Confer-
ence. IEEE, January 2013. doi: 10.1109/roedunet.
2013.6511731. URL https://doi.org/10.1109/roedunet.
2013.6511731.

[6] Kyrylo Kuzyk. AR Foundation Editor Remote
— Utilities Tools — Unity Asset Store — asset-
store.unity.com. https://assetstore.unity.com/packages/
tools/utilities/ar-foundation-editor-remote-168773,
2022. [Accessed 18-Jun-2022].

[7] E.E.L. Mitchell and A.E. Rogers. Quaternion param-
eters in the simulation of a spinning rigid body. SIM-
ULATION, 4(6):390–396, June 1965. doi: 10.1177/
003754976500400610. URL https://doi.org/10.1177/
003754976500400610.

[8] Angeline Lee Ling Sing, Awang Asri Awang Ibrahim,
Ng Giap Weng, Muzaffar Hamzah, and Wong Chun
Yung. Design and development of multimedia and
multi-marker detection techniques in interactive aug-
mented reality colouring book. In Lecture Notes in
Electrical Engineering, pages 605–616. Springer Sin-
gapore, 2020. doi: 10.1007/978-981-15-0058-9 58.
URL https://doi.org/10.1007/978-981-15-0058-9 58.

[9] Jürgen Zauner and Michael Haller. Authoring of mixed
reality applications including multi-marker calibration
for mobile devices, 2004. URL http://diglib.eg.org/
handle/10.2312/EGVE.EGVE04.087-090.

https://doi.org/10.1109/roedunet.2013.6511731
https://doi.org/10.1109/roedunet.2013.6511731
https://assetstore.unity.com/packages/tools/utilities/ar-foundation-editor-remote-168773
https://assetstore.unity.com/packages/tools/utilities/ar-foundation-editor-remote-168773
https://doi.org/10.1177/003754976500400610
https://doi.org/10.1177/003754976500400610
https://doi.org/10.1007/978-981-15-0058-9_58
http://diglib.eg.org/handle/10.2312/EGVE.EGVE04.087-090
http://diglib.eg.org/handle/10.2312/EGVE.EGVE04.087-090

	Introduction
	Related Work
	Multi-Marker Virtual Model Alignment
	Setup
	Initialize
	Update

	Evaluation Metrics
	Experiments and Results
	Discussion
	Responsible Research
	Conclusion

