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A B S T R A C T

The accuracy of structural analysis in composite structures depends on the proper estimation of the uncer-
tainties mainly related to the mechanical properties of the constituent materials. On this basis, a sophisticated
numerical tool is proposed, able to perform stochastic finite element analysis on composite structures with
material uncertainties by distributing stochastic mechanical properties along the domain of a composite
structure. The output of the analysis is a probability density function for the deformation, strain, stress and
failure fields. The proposed tool exploits the Karhunen–Loève expansion and the Latin Hypercube Sampling
methods for the stochastic distribution of the mechanical properties, the well-established First-Order Shear
Deformation theory in conjunction with a random variable approach for the calculation of stochastic stiffness
matrices, and the Puck’s failure criterion for the conduction of probabilistic analysis of different failure modes
in composite structures. A quasi-static tensile testing campaign was conducted with quasi-isotropic coupons in
order to assess the fidelity of the method and the efficiency of the stochastic distribution algorithm is compared
with the full field data acquired by the digital image correlation approach. The current paper provides a
thorough presentation of the development of the proposed stochastic finite element method and validation
results which ensure the efficiency of the proposed stochastic numerical tool.
1. Introduction

Nowadays, composite laminates are extensively used for the design
and manufacturing of lightweight and reinforced structures in the
aerospace, maritime, automotive, civil construction industry, etc., due
to their advantageous characteristics such as high strength, damage
tolerance and light weight. The increased demand of drastic carbon
emissions reduction in both the manufacturing and the transportation
sectors, leads to even lighter and damage tolerant composite structures
and this fact makes the design analysis more demanding. On the other
hand, during the design process, the response of structures composed of
fiber-reinforced composites, has shown significant deviations between
numerical analysis and experimental data. The scattering response of
the real-world structures is due to the inherent randomness on their
mechanical properties, despite the rigorous quality checks. This means
that the elimination of uncertainties due to manufacturing processes

Abbreviations: 2D, two-dimensional; CDF, cumulative distribution function; DIC, digital image correlation; FE, finite element; FEA, finite element analysis;
FEM, finite element method; FPF, first-ply-failure; FSDT, first-order deformation theory; K–L, Karhunen–Loève; LHS, latin hypercube sampling; LPF,
last-ply-failure; MCS, Monte Carlo simulation; PC, polynomial chaos; PDF, probability density function; RF, random field; SFE, stochastic finite element; SFEM,
stochastic finite element method
∗ Corresponding author.

E-mail addresses: C.Nastos@tudelft.nl (C. Nastos), d.zarouchas@tudelft.nl (D. Zarouchas).

cannot be achieved, but the safety factors used since now in the struc-
tural design processes seems to lead to overweight structures which is
now more critical to be encountered than before.

The finite element method (FEM) is extensively used as a trustwor-
thy numerical tool for modeling engineering problems. The advantages
of the FEM are numerous and well-known since it is a well-established
method [1], however its deterministic nature enforces some limitations
to describe the general characteristics of a system. This means that
the FEM cannot perform reliability analysis due to the existence of
uncertainties in a real-world structure. A common practice to overcome
this issue is to apply safety factors in engineering design which leads
to more conservative designs as already mentioned [2].

Thus, there is a need of performing probabilistic analysis including
material and/or loading stochasticity and predicting the mechanical
response in a probabilistic way rather than using deterministic analysis
algorithms which are restricted to average values and therefore to
vailable online 23 February 2022
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some overestimated safety factors. In addition, the advancement of the
computer science is able to accommodate the stochastic analysis, which
in fact is more computationally demanding than the deterministic anal-
ysis, but can lead to more efficient designs and provide more realistic
and reliable representations of the investigated structures.

A significant number of research is done for the development of
reduced order methods, hyper-reduction methods and derivative driven
Monte Carlo methods, which improve substantially the computational
time and the feasibility of stochastic analysis [3–7]. Also, acceleration
methods are reported, which enable the acceleration of the search space
during sensitivity analysis or forward uncertainty quantification [8,9].
Rappel, et al. [10–12] have exploited the Bayesian inference to iden-
tify uncertain material parameters and to estimate material parameter
distributions from limited/incomplete data. Deshpande et al. [13] have
recently developed a Bayesian neural network for the prediction of non-
linear deformations, which shows a great potential due to the unique
probabilistic predictive capabilities. On the same way, the Bayesian
neural network is involved to multi-scale modeling and found that it
successfully replaces local microscale solutions and overcomes the high
computational cost of the direct numerical simulations [14].

The influence on the uncertainty quantification and on the reliabil-
ity of the numerical models, explains the reason why computational
stochastic mechanics are receiving considerable attention by the sci-
entific community [15]. A powerful tool in computational stochastic
mechanics is the stochastic finite element method (SFEM), which is an
extension of the deterministic finite element (FE) approach and is able
to treat random effects by modeling uncertainties during the simulation
of engineering problems. Stefanou [16] has conducted a thorough state-
of-art review regarding simulation methods for stochastic processes and
fields, stochastic formulations and other recent developments in the
area of SFEM.

Argyris et al. [17,18] have presented a stochastic formulation of
a triangular shell element where the elastic modulus, the Poisson’s
ratio and the thickness were considered as random variables along the
structural domain by applying the spectral representation method. The
Monte Carlo SImulation (MCS) was exploited during this work and
a large number of independent samples were generated. The MCS in
conjunction with the stochastic finite element analysis (FEA) has been
employed for reliability-based design optimization in shell structures
where material imperfections and uncertain thickness were consid-
ered [19]. Popescu et al. [20] have exploited the combination of the
MCS and FEA to study the effect of random heterogeneity of soil
properties and the behavior of failure mechanisms by the prediction
of stochastic shear strengths. However, the implementation of the MCS
is hindered by the demanding computational effort due to the large
number of samples required, thus cost effective techniques such as the
Pre-conditional Conjugate Gradient Method, parallel computing etc. are
needed to be investigated [21,22]. Also, other variants of the MCS have
been reported to encounter the large number of samples required such
as importance sampling, subset simulation and line sampling [23].

Another popular technique is the perturbation method where all
the stochastic quantities are expanded around their mean value via
Taylor series. This approach is limited to small perturbations and
does not readily provide information on high-order statistics of the
response and the resulting system of equations becomes extremely com-
plicated beyond second-order expansion. However, the perturbation
method has been reported for the development of probabilistic finite
elements for structural dynamic analysis [24] and for homogeniza-
tion of two phase elastic composites with random fiber and matrix
elastic modulus [25]. Ding et al. [26] have presented a high order
perturbation-based stochastic isogeometric method for modeling and
quantifying thickness uncertainty in shell structures and the thickness
randomness affect has been verified in the response of thin structures.
Kamiǹsci [27] has extended the perturbation techniques beyond its
limits, in order to confirm their applicability on the inclusion of uni-
form and triangular probability distributions for the uncertainties of
2

engineering problems.
Sakamoto and Ghanem [28] have presented an alternative method
to generate sample functions of stochastic processes by using prescribed
probability density functions (PDFs) and correlation functions and
applied them into the expansion of the polynomial chaos (PC) decom-
position. Field and Grigoriu [29] have examined the performance of
the PC approximation in terms of accuracy and limitations by reporting
some metrics; and their major findings were, that the accuracy differs
from metric to metric and that the method could be computationally
demanding due to the large number of coefficients that are required to
be calculated. Xiu et al. [30] have exploited the polynomial chaos to
develop a stochastic spectral method for modeling uncertainties in the
boundary domain (rough surfaces, viscosity) in flow simulations at low
Reynolds number and they proved that it outperforms the MCS method.
Also Matthies and Bucher [31] have used the PC and the Hermite
transform for the solution of stochastic partial differential equations
which describe structures with material and geometrical random im-
perfections. Chen and Soares [32] have employed a spectral expansion
with the use of PC to develop a stochastic finite element method for the
representation of the stochastic nodal displacements in terms of normal
random variables regarding laminated composite plates. The ability of
the PC method to solve large deformation engineering problems has
been examined and it has been observed that the performance decreases
with the existence of sharp non-linearities and slope changes, hence
alternative approaches are needed to be investigated [33].

On the same direction, the Karhunen–Loève expansion (K–L) has
been reported in combination with the PC and the MCS for stochas-
tic analyses and this approach is termed as spectral stochastic finite
element method. In this case the random properties (mechanical, geo-
metrical, etc.) are modeled by the K–L expansion and the probabilistic
system response by the PC decomposition as well. The K–L expansion
could be considered as a special case of the orthogonal series expansion,
hence it is a subcase of the spectral representation methods which
are able to expand the stochastic field as a sum of special functions.
Grigoriu [34] has used three test applications to evaluate the K–L, spec-
tral and sampling theorems which provide approximations for random
functions by the exploitation of finite sums of deterministic functions.
The evaluation of the three theorems has been conducted in terms of
accuracy and limitations and both the benefits and the drawbacks are
reported. Lucor et al. [35] have combined the K–L with the PC method
and presented an approach to predict dynamic solutions for general
random oscillators. Comparisons with the MCS method have also been
presented where their proposed approach seems to outperform the MCS
in terms of computational time. Schenk and Schuëller [36,37] have
combined the K–L with the MCS method to study the effect of random
geometric imperfections in thin-walled cylindrical shells and finally to
predict the limit loads according to FE buckling analysis.

All the aforementioned stochastic techniques have been also applied
for the probabilistic prediction of the mechanical response and failures
in composite structures [38]. Ngah and Young [39] have combined
the K–L and PC expansion to distribute random elastic properties in
a unidirectional carbon fiber composite panel and to calculate the
stochastic response in terms of strains as well. Their approach has
been compared with the MCS and the perturbation method and it
seems to be more efficient because it is applicable to a wider range
of material variability than the perturbation method and it is less com-
putational demanding than the MCS. Lin and Lam [40] have presented
a method for the probabilistic failure analysis of laminated composite
plates where material properties and strength parameters are treated
as random variables. The phenomenological failure criterion of Tsai
and Hahn was used to perform probabilistic analysis considering the
first-ply-failure (FPF). Sasikumar et al. [41] have developed a SFEM
using optimal linear expansion for random field discretization and the
Tsai–Hill failure criterion for failure assessment of composite beams
with spatially varying properties. Lal et al. [42] have combined the
perturbation method and the extended finite element method to per-

form stochastic fracture analysis in laminated composite plates with
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a central crack. Sepahvand [43] has reported a SSFEM for vibration
analysis of fiber-reinforced composites with random fiber orientation
and presents PDFs for the first six natural frequencies in comparison
with the deterministic values obtained from the FEM. Trinh et al. [44]
have presented a study aiming to quantify the stochastic buckling
behavior of laminated composite plates exposed to uncertainties in
material properties and lamina parameters by using the MCS for the
generation of random samples. Feraboli et al. [45] have obtained the
full-field strain measurements from a number of specimens via the
digital image correlation (DIC) and extracted the mean values and the
coefficients of variation for elastic modulus in fiber direction. By using
the classic laminate plate theory, FEA and a randomization algorithm to
distribute the random elastic modulus, they have generated numerically
statistical distributions of full-field strains.

To the authors best knowledge, there is a limited number of papers
dealing with the effects of the spatial variability of material properties
and strengths on laminated composites for probabilistic failure analysis.
All of these works use failure mode-independent criteria that limit
the analysis to first-ply-failure. The contribution of this paper is the
utilization of a failure mode-dependent criterion, i.e. Puck’s failure
criterion, that enables a probabilistic progressive failure analysis.

According to the aforementioned literature, the K–L expansion
method is more generic than the other approaches and its advantageous
functionality enables its implementation to a general purpose FE solver
for conducting probabilistic structural analysis in complex structures
with complicated geometries and gradients.

The present work exploits the Latin Hypercube Sampling (LHS)
method and the Karhunen–Loève expansion method to generate and
distribute the stochastic mechanical properties and strengths along
a random field (RF). The RF is actually the mesh of the structural
domain where random properties are distributed. A mapping interpo-
lation algorithm is used to transfer stochasticity from the RF nodes
to the Gaussian integration points existing on the FE mesh. The First-
Order Shear Deformation theory (FSDT) for laminated composites is
employed for the calculation of stochastic stiffness matrices and for the
development of the proposed stochastic finite element method (SFEM).
Also, the Puck’s failure criterion is used for the probabilistic analysis
of different matrix and fiber failure modes. To examine the validity
of the proposed numerical tool, tensile experiments in quasi-isotropic
coupons are conducted and the full-field strain data are extracted
via the digital image correlation method. The experimental data are
successfully compared with the presented stochastic numerical tool in
terms of probabilistic analysis of axial strains, damage propagation and
final failures.

The current article is organized as follows. Section 2 introduces the
Karhunen–Loève expansion method and describes the development of
stochastic finite elements with random material properties. Section 3
describes the tensile testing campaign that was conducted for the
quasi-isotropic carbon fiber reinforced polymer coupons and for the
material characterization as well. Section 4 presents indicative results
obtained by the proposed method and correlations between numer-
ical and experimental data regarding the probabilistic prediction of
strengths.

2. Stochastic finite element for failure analysis concept

The current section presents the entire procedure followed for the
development of stochastic finite elements for probabilistic failure anal-
ysis in laminated composite plates.

2.1. Spectral decomposition of random field by the Karhunen–Loève expan-
sion

A continuous random function can be represented by a complete
set of deterministic functions with corresponding random coefficients.
In the general case, the spectral representation methods expand the
3

𝐂

stochastic field as a sum of trigonometric functions with random phase
angles and amplitudes. Based on this idea, the K–L expansion was
introduced by Spanos and Ghanem [46]. The K–L expansion can be
seen as a special case of the orthogonal series expansion where the or-
thogonal deterministic functions, the eigenfunctions of the covariance
function for the random field and the uncorrelated random variables
are involved [47]. In this paper, the K–L expansion is employed for
discretizing spatially varying random fields in the two-dimensional
(2D) domain. Thus, both the material properties (elastic modulus, shear
modulus, Poisson ratios) and the strengths (tensile, compressive) on
fiber and matrix direction are decomposed into a deterministic and a
stochastic part. Consider a random field 𝑤(𝐱, 𝜃) with mean value 𝜇𝑤(𝐱),
he K–L expansion is written as [48]

(𝐱, 𝜃) = 𝜇𝑤(𝐱) +
∞
∑

𝑖=1

√

𝜆𝑖𝜙𝑖(𝐱)𝜉𝑖(𝜃) (1)

here {𝜉(𝜃)}∞𝑖=1 are uncorrelated zero mean random variables and
𝜆𝑖}∞𝑖=1, {𝜙𝑖(𝐱)}∞𝑖=1 are the eigenvalues and eigenfunctions respectively
alculated by the eigenvalue analysis of the Fredholm integral equation
f the second kind, shown in Eq. (2).

∫𝛺2𝑒

𝐶(𝐱1; 𝐱2)𝜙𝑘(𝐱2)𝑑𝐴2𝑒 = 𝜆𝑘𝜙𝑘(𝐱1) (2)

here 𝐶(𝐱1, 𝐱2) is the covariance function, 𝐴2𝑒 indicates the elemental
omain (𝛺2𝑒) in terms of position vector 𝐱2 = (𝑥2, 𝑦2), that is 𝑑𝐴2𝑒 =
𝑥2𝑑𝑦2. The covariance function for spatially varying random fields is
onstructed by Eq. (3),

(𝐱1; 𝐱2) = 𝜎2𝑤𝑒𝑥𝑝
(

−
|𝑥1 − 𝑥2|
𝑏𝑐1𝐿𝐷1

−
|𝑦1 − 𝑦2|
𝑏𝑐2𝐿𝐷2

)

, 𝐱1, 𝐱2 ∈ 𝛺 (3)

where 𝑏𝑐1, 𝑏𝑐2 are the correlation length parameters of the two different
directions of the domain, 𝐿𝐷1, 𝐿𝐷2 are the physical characteristic
lengths and 𝜎𝑤 is the standard deviation of the random property 𝑤.
This means that the definition of random field’s size is required for the
calculation of Eq. (3).

The size/number of the RF elements should be selected to capture
adequately the random field fluctuations of the stochastic spatial vari-
ability of the material properties. A convergence study about selecting
the size of the RF field for the K–L expansion method is reported on [48]
and the selected number of RF elements is recommended to satisfy the
condition below:

𝑁𝑅𝐹 ≥
𝐿𝐷
𝐿𝑐

(4)

where 𝐿𝑐 is the correlation length; 𝐿𝑐 = 𝑏𝑐𝐿𝐷 for each direction.
Galerkin finite element techniques are used for the solution of the
Fredholm integral equation (Eq. (2)) which leads to the calculation of
eigenvalues and eigenfunctions [49]. According to the Galerkin finite
element approach, the eigenfunction 𝜙𝑘(𝐱) could be expressed in a
discrete domain as

𝜙𝑘(𝐱) =
𝑛𝑜𝑑𝑅𝐹
∑

𝑗=1
𝐍𝑗 (𝐱)𝑑𝑘𝑗 = ⟨𝐍(𝐱)⟩{𝑑} (5)

here 𝑛𝑜𝑑𝑅𝐹 is the number of nodes per RF element, 𝑑𝑘𝑗 is the 𝑗th
odal value of the 𝑘th eigenfunction of the covariance function and 𝐍𝑗
s a set of 2D shape functions. During the current work, Lagrangian
nterpolation shape functions are used for the formation of 9-node
uadratic quadrilateral RF elements. Applying Eqs. (3), (5) into Eq. (2)
eads to
[

∫𝛺1𝑒
∫𝛺2𝑒

𝐶(𝐱1; 𝐱2)⟨𝐍(𝐱1)⟩𝑇 ⟨𝐍(𝐱2)⟩|𝐉𝑒|2𝑑𝐴2𝑒𝑑𝐴1𝑒

]

𝑑}𝑒 = 𝜆𝑖 ∫𝛺1𝑒

⟨𝐍(𝐱1)⟩𝑇 ⟨𝐍(𝐱1)⟩𝑑𝐴1𝑒{𝑑}𝑒

(6)

Eq. (6) denotes the integral solution for each RF element. During
he total assembly of all RF elements, Eq. (6) turns into a generalized
igenvalue problem:
𝐃 = Λ𝐂𝐃 (7)
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𝑤

𝐂 =
𝑁𝑅𝐹
∑

2𝑒=1

𝑁𝑅𝐹
∑

1𝑒=1
∫𝛺1𝑒

∫𝛺2𝑒

𝐶(𝐱1; 𝐱2)⟨𝐍(𝐱1)⟩𝑇 ⟨𝐍(𝐱2)⟩

|𝐉𝑒|2𝑑𝐴2𝑒𝑑𝐴1𝑒

(8)

Λ𝑘𝑗 = 𝛿𝑘𝑗𝜆𝑘 (9)

𝐁 =
𝑁𝑅𝐹
∑

𝑒=1
∫𝛺𝑒

⟨𝐍(𝐱)⟩𝑇 ⟨𝐍(𝐱)⟩|𝐉𝑒|𝑑𝐴𝑒 (10)

where 𝐃 denotes the eigenfunction matrix and 𝛿𝑘𝑗 is the Kronecker
delta. The integration of 𝐂, 𝐁 matrices is achieved by the Gaussian
quadrature rule. The eigenvalues analysis of Eq. (7) leads to the cal-
culation of each nodal value of the random field 𝑤(𝐱, 𝜃) by using the
truncated K–L expansion evolving 𝑀 number of K–L terms.

𝑤(𝐱, 𝜃) = 𝜇𝑤(𝐱) +
𝑀
∑

𝑖=1

√

𝜆𝑖𝜙𝑖(𝐱)𝜉𝑖(𝜃) (11)

(𝐱, 𝜃) could be any of the randomly distributed values along the RF
esh (i.e. along the structural domain).

The random variable 𝜉𝑖(𝜃), actually is used to generate 𝜃 random
ases by the sampling approach. The MCS is mostly used for sampling
eneration of different 𝜉𝑖(𝜃) and therefore the stochastic problem turns
nto 𝜃 deterministic problems. This means that the number of the
equired deterministic problems and as a result the computational ef-
iciency of the stochastic method, depends on the considered sampling
pproach. The MCS approach is a computational demanding sampling
ethod, because its random sampling scheme, requires a large number

f samples to provide functional statistical results. This is done, because
he MCS selects each random point independently from the probability
istribution given for the random values. On the other hand, the Latin
ypercube sampling approach, spreads the sample points more evenly
cross all possible values [50]. Thus, the proposed work employs the
HS which is found to be more efficient in comparison with the MCS
n terms of computational effort [51].

In the current work, elastic modulus, shear modulus, Poisson ratios,
ensile and compressive strengths are treated as random values and
re distributed in a stochastic way with specific mean values (𝜇𝑤) and
tandard deviations (𝜎𝑤) along the domain. Thus, 𝑤(𝐱, 𝜃) can be written
s a vector:
(𝐱, 𝜃) =[𝐸11(𝐱, 𝜃) 𝐸22(𝐱, 𝜃) 𝐸33(𝐱, 𝜃) 𝑣13(𝐱, 𝜃) 𝑣12(𝐱, 𝜃)

𝑣23(𝐱, 𝜃)𝐺13(𝐱, 𝜃) 𝐺12(𝐱, 𝜃) 𝐺23(𝐱, 𝜃) 𝑋𝑇 (𝐱, 𝜃)
𝑋𝐶 (𝐱, 𝜃) 𝑌𝑇 (𝐱, 𝜃) 𝑌𝐶 (𝐱, 𝜃) 𝑆(𝐱, 𝜃)]𝑇

(12)

where 𝐸11, 𝐸22, 𝐸33 denote the elastic modulus in principal directions
1, 2 and 3 respectively, 𝑣13, 𝑣12, 𝑣23 denote the Poisson ratios in planes
13, 12 and 23 respectively, 𝐺 denote the shear modulus on each of
the aforementioned planes, 𝑋𝑇 , 𝑋𝐶 are the tensile and compressive
strengths in the fiber direction, 𝑌𝑇 , 𝑌𝐶 are the tensile and compressive
strengths in the matrix direction and 𝑆 is the shear strength.

2.2. Mapping interpolation method

A detailed description of distributing randomly the material prop-
erties along a structural domain via the LHS and the K–L method
is provided in Section 2.1. According to the described procedure, a
computationally efficient random sampling of each type of property
is achieved and the random values are distributed on the entire RF
mesh and more specifically on the RF nodes. However, the formation
of stochastic stiffness matrices and the development of stochastic finite
elements (SFEs), requires the transportation of the calculated random
properties from the RF field to the FE mesh.

The aforementioned process is necessary because the proposed
SFEM enables the complete separation between the RF and FE mesh
4

which is the key point to the robust stochastic modeling. The major
Fig. 1. The nodes and the Gaussian integration points of a 9-node quadratic quadri-
lateral FE. Blue dots indicate the nodes and yellow crosses indicate the integration
points.

role of the RF mesh is to distribute efficiently the stochastic variables
depending on the correlation length and the 𝑀 terms of the truncated

–L expansion. In this case, randomness is resulted from material
eterogeneity and manufacturing processes. On the other hand, the
ole of the FE mesh depends on geometrical features and displace-
ents/stress states of the structure, and is to predict converged FE

olutions which are representative for real-life structures. This means
hat the predefined density of the two types of meshes are subjected to
ifferent criteria and the separation is beneficial, because the user can
mplement modifications either on the RF or on the FE mesh without
ffecting the convergence/performance of the other mesh type.

To achieve the meshes separation and finally to develop stochastic
tiffness matrices; a procedure is followed to transfer the stochastic
roperties firstly from the RF nodes to the FE nodes and subsequently
rom the FE nodes to the Gaussian integration points of the FE mesh.
he number and location of the Gaussian integration points depend
n the selection of the shape functions or on the polynomial order.
s already mentioned, the current work exploits the 9-node quadratic
uadrilateral FEs both for the RF mesh and for the FE mesh. Of course,
he size of the two meshes (i.e. number of elements) is different, due
o the complete RF and FE mesh separation already discussed. The
odes of a 9-node FE are indicated with blue dots in Fig. 1, and
he Gaussian integration points with yellow cross as well. The local
oordinate system of each element (𝜉, 𝜂) is placed on the center of the
lement. The transfer from the RF nodes to the FE nodes is achieved
y transferring the eigenfunction 𝜙𝑖(𝐱) to the FE nodal points by using
q. (13) below,

𝑗𝐹𝐸
𝑖 =

9
∑

𝑚=1
𝑁𝑚(𝜉

𝑗
𝑖 , 𝜂

𝑗
𝑖 ) 𝜙

𝑗𝑅𝐹
𝑚 (13)

here 𝜉𝑗𝑖 , 𝜂
𝑗
𝑖 are the isoparametric coordinates attached to the 𝑗th RF

lement, which correspond to the 𝑖th FE node and are calculated within
ach RF element. For each RF element, a nonlinear system of equations
hat relates the FE nodal coordinates (𝑥𝑗𝑖 , 𝑦

𝑗
𝑖 ) within the 𝑗th RF element

ith the RF nodal coordinates (𝑋𝑗
𝑚, 𝑌

𝑗
𝑚) of the same 𝑗th RF element has

o be solved. The nonlinear system is formulated in Eq. (14) below.
9
∑

𝑚=1
𝑁𝑚(𝜉

𝑗
𝑖 , 𝜂

𝑗
𝑖 )𝑋

𝑗
𝑚 − 𝑥𝑗𝑖 = 0

9
∑

𝑚=1
𝑁𝑚(𝜉

𝑗
𝑖 , 𝜂

𝑗
𝑖 )𝑌

𝑗
𝑚 − 𝑦𝑗𝑖 = 0

(14)

he solution of Eq. (14) and the substitution of the obtained (𝜉𝑗𝑖 , 𝜂
𝑗
𝑖 )

soparametric coordinated into Eq. (13), leads to the calculation of
he eigenfunction at the 𝑖th FE node within 𝑗th RF element. Thus, the
andom property distribution at the FE nodes can be calculated using
q. (15), by substituting the obtained 𝜙𝐹𝐸

𝑖 from Eq. (13).

𝐹𝐸 (𝐱, 𝜃) = 𝜇𝑤(𝐱) +
𝑀
∑√

𝜆𝑖𝜙
𝐹𝐸
𝑖 (𝐱)𝜉𝑖(𝜃) (15)
𝑖=1
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Fig. 2. The stepwise procedure for random properties transfer from RF nodes to FE nodes and from FE nodes to Gaussian integration points.
w
c
t
f
c

𝛿

w

Fig. 3. Distribution of random: (a) 𝐸11; (b) 𝐸22 mechanical properties on the Gauss
integration points of the modeled structure.

The next step is to transfer the random properties from the FE nodal
points to the Gaussian integration points of each FE element for
the calculation of stochastic stiffness matrices by exploiting the well-
established Gauss integration method. Eq. (16) describes each ran-
domly distributed property for each 𝜃 random case,

𝑤𝐺(𝝃, 𝜃) =
9
∑

𝑖=1
𝑁𝑖(𝝃)𝑤𝐹𝐸

𝑖 (𝐱, 𝜃) (16)

where 𝝃 are the local coordinates of the FE field (𝜉𝑗 , 𝜂𝑗 ) for the 𝑗th
RF element. Fig. 2 illustrates the stepwise procedure that should be
followed for the proper transfer of the desired uncertain material
properties from the RF nodes to the FE nodes and subsequently from the
FE nodes to the Gaussian integration points. This procedure provides
the opportunity to distribute randomness to each Gauss integration
point in a consistent way and subsequently enhances flexibility and
precision on the calculations.

In order to illustrate some indicative results for the aforementioned
procedure, Fig. 3(a) depicts the distributed 𝐸11 mechanical property
on the Gauss integration points of a plate with dimensions 250 × 25
mm2. The distribution is achieved by the K–L expansion method with
143.7 GPa mean value, 18.4 GPa standard deviation, 12 K–L terms
and 0.1 correlation length parameters for 𝑏𝑐1, 𝑏𝑐2. On the same way,
Fig. 3(b) depicts the distributed 𝐸22 property with 9.2 GPa mean
5

value, 2 GPa standard deviation. All the other K–L parameters remain i
the same. A parametric study which considers the influence of the
K–L terms and of the correlation length parameters on the random
distribution is presented on Section 4.2.

2.3. Formulation of the stochastic laminated composite plate element

The current work exploits the first-order shear deformation the-
ory [52] for the stochastic simulation of the mechanical response of
laminated composite plates and the stochastic displacement field for a 𝜃
random case along 𝑥-axis, 𝑦-axis and through the thickness is described
as follows:
𝑢(𝑥, 𝑦, 𝑧, 𝜃) = 𝑢0(𝑥, 𝑦, 𝜃) + 𝑧 ⋅ 𝛽𝑥(𝑥, 𝑦, 𝜃)

𝑣(𝑥, 𝑦, 𝑧, 𝜃) = 𝑣0(𝑥, 𝑦, 𝜃) + 𝑧 ⋅ 𝛽𝑦(𝑥, 𝑦, 𝜃)

𝑤(𝑥, 𝑦, 𝑧, 𝜃) = 𝑤0(𝑥, 𝑦, 𝜃)

(17)

where 𝑢0, 𝑣0, 𝑤0 denote the stochastic displacements on the 𝑥-axis, 𝑦-
axis, and 𝑧-axis at the mid-plane of the plate respectively; 𝛽𝑥, 𝛽𝑦 denote
the stochastic rotations of the cross-section and 𝑧 is the local thickness
coordinate. The in-plane strains 𝜖𝑥, 𝜖𝑦, 𝜖𝑥𝑦 and the out of plane shear
strains 𝜖𝑦𝑧, 𝜖𝑥𝑧 are calculated in Eq. (18) below.

𝜀𝑥(𝑥, 𝑧, 𝜃) = 𝜀0𝑥(𝜃) + 𝑘𝑥(𝜃) ⋅ 𝑧

𝜀𝑦(𝑦, 𝑧, 𝜃) = 𝜀0𝑦(𝜃) + 𝑘𝑦(𝜃) ⋅ 𝑧

𝜀𝑥𝑦(𝑥, 𝑦, 𝜃) = 𝜀0𝑥𝑦(𝜃) + 𝑘𝑥𝑦(𝜃)

𝜀𝑦𝑧(𝑦, 𝑧, 𝜃) = 𝜀0𝑦𝑧(𝜃)

𝜀𝑥𝑧(𝑥, 𝑧, 𝜃) = 𝜀0𝑥𝑧(𝜃)

(18)

In the previous Eq. (18), the generalized stochastic strains of the
laminated plate cross section are defined as

𝜀𝐿
∼
(𝜃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀0𝑥(𝜃)
𝜀0𝑦(𝜃)

𝜀0𝑥𝑦(𝜃)
𝑘𝑥(𝜃)
𝑘𝑦(𝜃)
𝑘𝑥𝑦(𝜃)
𝜀0𝑦𝑧(𝜃)

𝜀0𝑥𝑧(𝜃)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑢0,𝑥(𝜃)
𝑣0,𝑦(𝜃)

𝑢0,𝑦(𝜃)+𝑣
0
,𝑥(𝜃)

𝛽𝑥,𝑥(𝜃)
𝛽𝑦,𝑦(𝜃)

𝛽𝑥,𝑦(𝜃)+𝛽𝑦,𝑥(𝜃)
𝑤0
,𝑦(𝜃)+𝛽𝑦(𝜃)

𝑤0
,𝑥(𝜃)+𝛽𝑥(𝜃)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(19)

here 𝜀0𝑥, 𝜀
0
𝑦, 𝜀

0
𝑥𝑦 are implying membrane strains, 𝑘𝑥, 𝑘𝑦, 𝑘𝑥𝑦 are the

urvatures and 𝜀0𝑦𝑧, 𝜀
0
𝑥𝑧 are the out of plain strains. The comma in

he subscript indicates differentiation. The principle of virtual work
or a two-dimensional solid defined in terms of axial and transverse
oordinates can be recast as

𝑉 − 𝛿𝑊 = 0 (20)

here 𝛿𝑉 is the virtual strain energy and 𝛿𝑊 is the virtual work

nduced by external applied forces. Each of the term in Eq. (20) is given
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by

𝛿𝑉 =∫𝛺0

{

∫

ℎ∕2

−ℎ∕2

[(

𝛿𝜀𝑥 + 𝑧𝛿𝑘𝑥
)

𝜎𝑥𝑥 +
(

𝛿𝜀𝑦 + 𝑧𝛿𝑘𝑦
)

𝜎𝑦𝑦+

(

𝛿𝜀𝑥𝑦 + 𝑧𝛿𝑘𝑥𝑦
)

𝜎𝑥𝑦 + 𝛿𝜀𝑥𝑧𝜎𝑥𝑧 + 𝛿𝜀𝑦𝑧𝜎𝑦𝑧
]

𝑑𝑧

}

𝑑𝑥𝑑𝑦

= ∫𝛺0

𝛿𝜀𝑇𝐿
∼

[𝐊𝐿]𝜀𝐿
∼
𝑑𝑥𝑑𝑦

(21)

𝛿𝑊 =∫𝛺0

𝛿𝑤0
[(

𝑞𝑏 + 𝑞𝑡
)]

𝑑𝑥𝑑𝑦 + ∫𝛤𝜎 ∫

ℎ∕2

−ℎ∕2

[(

𝛿𝑢𝑛+

𝑧𝛿𝛽𝑛
)

𝜎̂𝑛𝑛 +
(

𝛿𝑢𝑠 + 𝑧𝛿𝛽𝑠
)

𝜎̂𝑛𝑠 + 𝛿𝑤0𝜎̂𝑛𝑧
]

𝑑𝑧𝑑𝑠
(22)

and 𝐊𝐿 is defined in Eq. (23).

[𝐊𝐿(𝜃)] =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴11(𝜃) 𝐴12(𝜃) 𝐴16(𝜃) 𝐵11(𝜃) 𝐵12(𝜃) 𝐵16(𝜃)
𝐴12(𝜃) 𝐴22(𝜃) 𝐴26(𝜃) 𝐵12(𝜃) 𝐵22(𝜃) 𝐵26(𝜃)
𝐴16(𝜃) 𝐴22(𝜃) 𝐴66(𝜃) 𝐵16(𝜃) 𝐵26(𝜃) 𝐵66(𝜃) 0𝐵11(𝜃) 𝐵12(𝜃) 𝐵16(𝜃) 𝐷11(𝜃) 𝐷12(𝜃) 𝐷16(𝜃)
𝐵12(𝜃) 𝐵22(𝜃) 𝐵26(𝜃) 𝐷12(𝜃) 𝐷22(𝜃) 𝐷26(𝜃)
𝐵16(𝜃) 𝐵26(𝜃) 𝐵66(𝜃) 𝐷16(𝜃) 𝐷26(𝜃) 𝐷66(𝜃)

𝐴44(𝜃) 𝐴45(𝜃)0 𝐴45(𝜃) 𝐴55(𝜃)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(23)

𝐴(𝜃)′𝑠, 𝐵(𝜃)′𝑠 and 𝐷(𝜃)′𝑠 are the random extensional, bending and
bending–extensional coupling stiffnesses for a 𝜃 random case. The
approximation of the generalized strains in an elemental domain takes
the form shown in Eq. (24),

𝜀𝐿
∼
(𝜃) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜀𝑥(𝜃)
𝜀𝑦(𝜃)
𝜀𝑥𝑦(𝜃)
𝑘𝑥(𝜃)
𝑘𝑦(𝜃)
𝑘𝑥𝑦(𝜃)
𝜀𝑦𝑧(𝜃)
𝜀𝑥𝑧(𝜃)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
𝑛𝑜𝑑𝐹𝐸
∑

𝑖,𝑗=1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑹11 𝑹12 𝑹13 𝑹14 𝑹15

𝑹21 𝑹22 𝑹23 𝑹24 𝑹25

𝑹31 𝑹32 𝑹33 𝑹34 𝑹35

𝑹41 𝑹42 𝑹43 𝑹44 𝑹45

𝑹51 𝑹52 𝑹53 𝑹54 𝑹55

𝑹61 𝑹62 𝑹63 𝑹64 𝑹65

𝑹71 𝑹72 𝑹73 𝑹74 𝑹75

𝑹81 𝑹82 𝑹83 𝑹84 𝑹85

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑢̂0𝑖𝑗 (𝜃)

𝛽𝑥𝑖𝑗 (𝜃)
𝑣̂0𝑖𝑗 (𝜃)

𝛽𝑦𝑖𝑗 (𝜃)

𝑤̂0
𝑖𝑗 (𝜃)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(24)

where 𝑛𝑜𝑑𝐹𝐸 is the number of nodes per element, which depends on the
choice of polynomial order for the shape functions. As stated before,
the current work employs 9-node quadratic quadrilateral RF elements,
therefore each element consists of 9 nodes.
𝐑11 = 𝐑33 = 𝐑42 = 𝐑64 = 𝐑85 = 𝑁,𝑥(𝜉 − 𝑖) ⋅𝑁(𝜂 − 𝑗)

𝐑23 = 𝐑31 = 𝐑54 = 𝐑62 = 𝐑75 = 𝑁(𝜉 − 𝑖) ⋅𝑁,𝑦(𝜂 − 𝑗)

𝐑74 = 𝐑82 = 𝑁(𝜉 − 𝑖) ⋅𝑁(𝜂 − 𝑗)

(25)

Finally, the calculation of the stochastic stiffness matrix for each ele-
ment (𝐊𝑒(𝜃)) is achieved in Eq. (26), by using Eqs. (23), (25) and by
performing the Gauss integration method.

[𝐊𝑒(𝜃)] = ∭𝑉
[𝐑𝑇 ][𝐊𝐿(𝜃)][𝐑]𝑑𝑉 (26)

3. Experimental process

An experimental campaign was conducted both in lamina and lam-
inate level in order to: (1) extract the material properties and the
strengths on the lamina level and (2) to investigate the last-ply failures
of the quasi-isotropic laminates. Several coupons are tested in both
mentioned cases in order to generate population samples and finally
to extract mean values and deviations of mechanical properties which
actually consist the input properties to be provided to the proposed
stochastic finite element (SFE).

The specimens used in the present study were manufactured from
the UD carbon fiber Prepreg named Hexply® F6376C-HTS(12 K)-5%–
35% with the Autoclave process. The specific Prepreg contains high
tenacity carbon fibers (Tenax®-E-HTS45) and high-performance tough
epoxy matrix (Hexply® 6376). The nominal fiber weight ratio and
thickness of the Pregreg are 65% and 0.125 mm, respectively.

3.1. Digital image correlation apparatus

The DIC approach was employed to measure the displacement and
strain distributions along the specimens field. Therefore, a pair of 5
6

Fig. 4. A pair of 5 Megapixel cameras with 23 mm lens and 75 frames-per-second
used for full-field displacements and strain measurements.

Megapixel cameras with 23 mm lens and 75 frames-per-second was
placed in the front side of the specimen, as Fig. 4 shows. Post-processing
was performed using the commercial software VIC-2D® by Correlated
Solutions. A subset size of 29 pixels and step size of 7 pixels were
selected for correlation analysis.

3.2. Material characterization

A set of three different tensile tests were conducted according to the
relevant ASTM standards [53]: (1) on the fiber direction (00), (2) on
the transverse direction (900) and (3) shear tests on the 450 direction.
The obtained mechanical properties by the three sets of tests are the
elastic modulus on the fiber direction (𝐸11), the elastic modulus on
the matrix direction (𝐸22), the Poisson ratio on the 12 plane 𝑣12, the
shear modulus on the 12 plane 𝐺12, the tensile strength on fiber (𝑋𝑇 )
and matrix direction (𝑌𝑇 ) as well and the shear strength (𝑆). The DIC
approach was employed to measure displacements and strains in order
to obtain the full-field distributions of the measured values for each
specimen. The full-field measured distributions reveal the existence of
random variability along the domain of each specimen. As an indicative
example, the variability of the 𝐸11, 𝐸22 along the specimens domain is
illustrated for four arbitrarily selected specimens in Fig. 5 and Fig. 6
respectively. For both 𝐸11, 𝐸22 cases, the elastic moduli of fiber and
matrix were extracted by acquiring the strain data with DIC in the strain
range between 25% and 75% and after by calculating the mean values
of this range. It is observed that there are great dissimilarities along the
field of each individual specimen but also between all the specimens.
The same trend exists also for the rest properties. Table 1 enlists the
type of mechanical properties that are extracted from the tensile tests,
the number of specimens used for each property, the mean and the
standard deviation value for each extracted property.

3.3. Last-ply-failure tests for the quasi-isotropic laminate

Tensile tests were also conducted to quasi-isotropic specimens for
measuring the ultimate loads and strengths where the LPF exists. For
that reason nine quasi-isotropic specimens were manufactured with
dimensions 250 × 25 × 2 mm3 and with lamination [(0∕90∕ ± 45)𝑠]2.
The loading rate of tensile machine was defined at 1 mm∕min until each
specimen failed.
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Fig. 5. The distribution of 𝐸11 obtained by DIC for 4 specimens. (a) Specimen 1; (b)
Specimen 2; (c) Specimen 3; (d) Specimen 4.

Table 1
Mean values and standard deviations extracted by full-field DIC measurements of each
specimen.

Property type (Units) Nr. of specimens Mean Deviation

𝐸11 (GPa) 11 143.7 18.4
𝐸22 (GPa) 7 9.2 2.0
𝐺12 (GPa) 5 5.1 0.7
𝑣12 (–) 11 0.37 0.14
𝑋𝑇 (MPa) 11 1924 146.9
𝑌𝑇 (MPa) 7 107.6 9.1
𝑆 (MPa) 5 96.3 0.8

The last-ply-failure strength on the current work is assumed to exist
when each specimen fails due to tensile breakage as Fig. 7 shows.
Fig. 8 depicts the probability of strength (in MPa) for all the tested
specimens. The lower and upper percentiles denote the confidence level
bounds which were set at 95% and the reference line assumes a normal
distribution for the LPF strengths with mean value of 837.0 MPa and
standard deviation 19.9 MPa.

4. Results and discussion

The proposed stochastic finite element method is employed for
the development of a stochastic finite element model which leads to
probabilistic analysis for the different failure types that Puck’s criterion
encompasses, considering the quasi-isotropic specimens with lamina-
tion [(0∕90∕±45)𝑠]2. The validity of the SFEM and its ability to conduct
probabilistic failure analysis is compared with the experimental results
already described in Section 3.
7

Fig. 6. The distribution of 𝐸22 obtained by DIC for 4 specimens. (a) Specimen 1; (b)
Specimen 2; (c) Specimen 3; (d) Specimen 4.

Fig. 7. Last-ply-failure of each specimen for ultimate strength measurements.

The stochastic finite element model consists of 9-node quadratic
FEs, of 60 × 6 RF elements and of 120 × 12 finite elements regarding the
RF and the FE mesh respectively. The model is considered as clamped
on its left side and is subjected to a tensile axial load on its right edge.
It has been observed via experiments that the force amplitude which is
applied along the edge of each specimen variates (i.e. it is not steady)
along y-axis [54]. Thus, in the current work, it is assumed that the force
amplitude is variable along the right edge with 1.1𝐹 amplitude on the
edges and with 0.9𝐹 on the center as shown in Fig. 9. The developed
SFE can accommodate any type of load variability and that offers the
opportunity to introduce uncertainties in the boundary conditions as
well. The stochastic FE model is solved by progressively increasing the
force amplitude until the last ply fails due to fiber tensile failure. As
already discussed, the Puck’s failure criterion [55] is exploited at each
incremental solution for the probabilistic assessment of different failure
modes.

The mechanical properties are randomly distributed using the K–
L expansion with 12 K–L terms and 0.1 correlation length parameters
for 𝑏 , 𝑏 . The mean values and the deviations of each property are
𝑐1 𝑐2
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Fig. 8. Probability plot of last-ply-failure strengths (in MPa) for the 9 quasi-isotropic
specimens. Normal distribution assumed within confidence level bounds of 95%.
Experimental results.

Fig. 9. A sketch of the quasi-isotropic laminate model clamped on its left side and
subjected to tensile variable force on its right.

assumed to be steady along the specimen (i.e. 𝜇𝑥(𝐱) = 𝜇𝑤) and the
values used as an input to the K–L expansion are enlisted on Table 1.
It is reported that the assumption of considering the randomness of the
mechanical properties as normal distribution works properly [56] in
comparison with experiments.

4.1. Selection of the number of random cases

The K–L expansion (Eq. (11)) includes the term 𝜉(𝜃) which is a
random operator of 𝜃 variables with zero mean values and unit devia-
tion. Both MCS and LHS methods could be used for generating random
samples 𝜉(𝜃). The number of samples 𝜃 should be carefully selected for
two main reasons: (1) in order to encompass properly the randomness
of the structure and (2) to decrease the computational demand of the
stochastic model. As discussed on Section 2.1, the LHS is reported to
be more efficient than the MCS, hence it is employed on the proposed
method. However, in order to estimate the number of 𝜃 samples that
the LHS requires to generate a population of 𝜉(𝜃) values with zero mean
and unit deviation, a convergence study should be conducted. The root
mean square (RMS) error is used to calculate how far is the mean value
of the selected 𝜃 number of samples, away from zero value which is the
mean value (𝜇𝑤 = 0) of the required random operator 𝜉(𝜃) (Eq. (27)).

𝑅𝑀𝑆 =

√

∑𝜃
𝑖=1(𝜉(𝑖) − 𝜇𝑤)2

𝜃
(27)

Fig. 10 shows the RMS error in a logarithmic scale of the mean
values of each sample number from 5 to 200 for both MCS and LHS
methods. The authors assumed that a proper number of samples should
achieve RMS below 0.01 (𝑅𝑀𝑆 < 0.01) and this is achieved by
selecting 100 LHS method samples to generate 𝜃 values. On the other
hand, the MCS needs more than 10000 samples to converge on a
RMS below 0.01. Therefore, the stochastic numerical models developed
during the current research, consider 100 samples generated by the LHS
method.
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Fig. 10. RMS error of the mean values for sample numbers from 5 to 200. Convergence
study comparison between the MCS and LHS methods.

Fig. 11. Sensitivity analysis for the affect of K–L terms and correlation length on the
uncertain properties distribution.

4.2. Selection of the K-L parameters

Other two parameters that should be carefully selected for the
proper distribution of the uncertain properties in the material domain
are the number of the K–L terms 𝑀 , mentioned in Eq. (11) and the
correlation length 𝑏𝐶 mentioned in Eq. (3). A sensitivity analysis of 𝑀
and 𝑏𝐶 is conducted in order to investigate the affect of those two K–L
parameters on the uncertain properties distribution. The ratio of the
predefined standard deviation 𝜎𝑤 (Eq. (3)) to the standard deviation
calculated by the obtained 𝑤(𝐱, 𝜃) (Eq. (11)) values is used as a metric
in order to estimate a functional pair of (𝑀, 𝑏𝐶 ) values for the K–L
expansion. Fig. 11 depicts the ratio values obtained by variable pairs
of K–L terms and correlation lengths. It is shown that an efficient pair
for the K–L expansion could be obtained from the right upper region
of the contour, indicated with dark blue color. Hence, 12 K–L terms
and 0.1 correlation length parameter are chosen on the current work
to ensure the adequate stochastic distribution along the domain.
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Fig. 12. CDF of the load where the inter-fiber failure mode A occurs in elements 1
83 mm, 12.5 mm), 2 (125 mm, 16.5 mm), 3 (167 mm, 8.3 mm).

Fig. 13. Probability of matrix and fiber failures for layers (00 , 900 , 450) on the central
point of the quasi-isotropic plate (𝑥 = 125 mm, 𝑦 = 12.5 mm).

.3. Probabilistic analysis of failures

The current section presents indicative results for the probability of
ailure utilizing Puck’s failure criterion in various arbitrarily selected
lements by employing the proposed SFEM. For this purpose, Fig. 12
hows the cumulative distribution function of the load where the
nter-fiber failure mode A (the matrix fails in tension) occurs. The
DF is illustrated for three elements with (𝑥, 𝑦) coordinates: Elm 1

(83 mm, 12.5 mm), Elm 2 (125 mm, 16.5 mm), Elm 3 (167 mm, 8.3 mm).
Fig. 13, depicts the probabilistic progression of different type of

failures that are occurred successively in different plies of the same
point in the structure while tensile loading is being increased. Fig. 13
concerns the middle point of the investigated quasi-isotropic plate with
(𝑥, 𝑦) coordinates (125 mm, 12.5 mm). Firstly, the inter-fiber failure mode
A on the 450 plies is occurred, secondly the inter-fiber failure mode B on
the 450 plies is occurred and after that, the inter-fiber failure mode A on
the 900 plies appears. Lastly, fiber failure under tension is occurred on
the 00 plies. This proves that the proposed SFE model is able to provide
probabilistic failure predictions for composite structures in a detailed
progressive way, where the probability of each type of failure on each
9

ply is predicted for each element of the entire domain.
Table 2
Comparison of variance values for normal, lognormal,
Weibull and Gamma distribution methods. Results
obtained from the experimental data.
Distribution method Variance

Normal 396.504
Lognormal 394.849
Weibull 514.924
Gamma 371.347

4.4. Probabilistic analysis of last-ply-failures and comparisons with experi-
mental results

In order to further examine the validity of the proposed method,
probabilistic analysis of last-ply-failure is conducted and is compared
with the experimental data obtained by the quasi-isotropic specimens.
Different types of distributions are exploited to calculate the cumulative
distributions of the experimental data. Fig. 14(a) shows the comparison
of normal, lognormal, Weibull and Gamma distribution in terms of the
strength values. It is observed that normal, lognormal and Gamma types
of distribution are in close convergence at each other. The variance
between the distributions and experimental data is quantified by the
Distribution Fitter application included in the Statistics and Machine
Learning Toolbox 12.0 of Matlab 2020b ©and are enlisted on Table 2.

Fig. 14(b) shows the comparison between the SFE model and the
experimental results in terms of a CDF of the strengths that finally lead
to FPF. A satisfactory agreement is achieved in terms of the predicted
range of strength, thus the correlation with the experimental results is
enough to state that the proposed method shows a great potential for
probabilistic analysis in laminated composite plates.

Fig. 15 depicts the strength values and 𝑥-axis positions where
last-ply-failure is occurred for each random case of the investigated
quasi-isotropic composite plate models. All random cases considered
in the SFE model are denoted with red circles. Regarding the predicted
stochastic position, only 𝑥-axis position is depicted, because during the
LPF, each specimen fails under fiber tension along its width direction
(y-axis). It is observed that there are two clusters (indicated with blue
circles) of random cases mostly in the range 780–830 MPa which fail
near the boundaries; on the left edge where clamp exists and on the
right edge where tensile load is applied. Also, during tensile experi-
ments some specimens fail near the boundaries which is unacceptable
and are excluded from the process according to ASTM standards. The
same exists on the results acquired by the SFE model, which means that
the proposed SFEM can predict the stochastic mechanical response in
a realistic way and can conduct efficiently virtual testing in order to
replace a large amount of real testings and finally to avoid cost and
time effective testing campaigns.

5. Conclusions

Taking advantage of the appealing efficiency of the FEM in me-
chanics laminated composites and of the K–L expansion in stochastic
distribution, the stochastic finite element method, has been developed
and exploited for the probabilistic prediction of mechanical response
and failures in laminated composite plates. The formulation of the
SFEM in the context of the first-order shear deformation laminated
plate theory is described.

An experimental campaign for assessing the randomness: (1) on
the lamina level for each of the material property extracted and (2)
on the laminate level where the strengths for the last-ply-failure were
measured for the quasi-isotropic specimens, was conducted. The digital
image correlation approach, has revealed the inherent randomness
on lamina level and the extracted full-field values have been post-
processed and the mean values, standard deviations were provided as

an input to the proposed stochastic numerical tool. Five key advantages
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Fig. 14. (a) Experimental strength values. Comparison of normal, lognormal, Weibull
and Gamma distributions; (b) Last-ply-failure. CDF comparisons between numerical and
experimental data in terms of strength.

were demonstrated: (1) the K–L expansion method can simulate effi-
ciently the inherent randomness of composite materials and structures,
(2) the LHS outperforms the MCS, since it is a ‘‘more structured’’
random generator and decreases the computational effort due to the
smaller number of random samples required, (3) the finite element
method is able to encapsulate the aforementioned stochastic schemes
and to calculate stochastic discretized domains for probabilistic com-
putational mechanics, (4) the SFEM approach performs probabilistic
failure analysis on each element hence it is able to provide both holistic
and detailed failure status for a composite structure, (5) the complete
separation of the RF and the FE meshes increases substantially the
functionality of the proposed SFEM.

In closing, the developed SFEM has shown great potential for appli-
cations in probabilistic analysis of composite structures. Future work
will focus on the reliability analysis of more complex composite struc-
tures related to realistic applications, in a more detailed way since the
10
Fig. 15. Strength value and 𝑥-axis position of last-ply-failure existence for each random
case (denoted with red circles).

cooperation of stochastic modeling with the FE procedures supports
that.
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