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Abstract
In this paper, a method is proposed for stylizing stereoscopic
augmented reality, while attempting to retain temporal and
visual coherence. By tracking an AR marker and estimating
a disparity map from stereo images, world positions of an-
chor points are tracked across frames and images, in order
to move them with the scene. Additionally, the density of
anchor points in the image is adjusted each frame to prevent
areas from being over- or underpopulated with anchor points.

The method is applied to a simple mosaic style and both
quantitative and qualitative results demonstrate improved co-
herence when compared to a baseline. Besides that, the algo-
rithm runs at near-interactive frame rates.

1 Introduction
Combining the real world with the digital world has received
considerable attention over the years, especially in the form of
augmented reality (AR), which has made significant progress
and has many applications [2, 16]. However, one of the is-
sues facing AR is the difficulty in combining the real world
with a virtual scene. These are two different media, as the
real world is depicted as a 2D image or video and the virtual
scene is typically a 3D rendering. As a result, virtual objects
are likely to be distinguishable if they are not rendered in a
photorealistic manner [1].

Another possible way to overcome this shortcoming and
possibly improve user immersion, is using image/video styl-
ization [8]. In the case of AR, this means similarly styling
the real world and the virtual scene, in such a way that they
blend together. There has been extensive research in styliz-
ing images and video [11]. Additionally, it has been shown
that some abstractions can improve recognition of objects by
participants, both for regular video [22] and for augmented
reality [19].

Some promising work has been conducted in this com-
bined area, for example Fischer, Bartz, and Straßer apply a
basic cartoon style [8] to an augmented scene, and later also
a painting-like style with brush strokes [7]. This demon-
strates that image stylization in AR has merit and can con-
sistently stylize the combined real world and virtual scene.
However, the aforementioned research only performs styliza-
tion on a frame by frame basis and does not take into ac-
count the preceding frames, which can result in inconsistent
stylization between subsequent frames of a video for certain
styles. Achieving this coherence over time, frequently called
temporal coherence, has received attention for regular video
stylization [3]. Additionally, a few papers address this issue
in AR. For example Wang et al. use edge flow to improve
frame-to-frame edge detection coherence in a cartoon style
[21] and Chen, Turk, and MacIntyre use feature tracking to
move brush strokes with the scene [5].

An underexplored area is the combination of coherent
video stylization in AR with stereoscopic rendering of AR
scenes, which means having one video stream for each eye,
with the goal of better depth perception. Stereoscopic aug-
mented reality has been shown to improve emotional involve-
ment over just having a single video stream [18]. A paper by
Lerotic et al. demonstrates a useful application of this area, by

applying a non-photorealistic stereoscopic AR overlay to as-
sist in surgery [12]. However, this is mostly unrelated to this
work, as the non-photorealism is only applied to the virtual
scene and dissimilar to the aforementioned image stylization.
Another paper by Steptoe, Julier, and Steed performs a case
study on the improvement of discernability with a simple styl-
ization applied to stereoscopic AR [19], showing improved
immersion when compared to an unstylized version, similar
to the results discussed by Winnemöller, Olsen, and Gooch
[22]. However, there are no significant contributions in defin-
ing a more generalized framework for coherently stylizing
stereoscopic AR scenes, especially one that makes use of the
extra information gained by stereo-vision, which is what this
paper sets out to address.

In this paper, a new method for coherently stylizing stereo-
scopic AR scenes is proposed, along with the necessary re-
strictions on respective parts of the stylization pipeline. The
coherence is not only between consecutive frames in a video,
but also between the two stereoscopic frames. This new
method is applied to a simple mosaic style for demonstration
purposes, but with some small adjustments can likely be ap-
plied to any style consisting of anchor points. The main prin-
ciple behind the algorithm is moving anchor points with their
approximated world space coordinates, which are estimated
from the stereo depth information and AR marker tracking.
The most prominent restriction is the requirement for the en-
tire scene to be static, with an exception for the virtual object,
otherwise the world space position of an object changes when
it is moved, and it cannot be tracked. Finally, the following
research question is answered in this paper:

How can visual and temporal coherence be improved when
stylizing stereoscopic augmented reality?

We begin this paper with a more verbose description of
related work on coherence in Section 2. We then provide a
breakdown of the prepared method in Section 3, followed by
details on the implementation in Section 4. After that, the
corresponding results are shown in Section 5 and discussed
in Section 6. Finally, a short section on how the research in
this paper has been conducted responsibly in Section 7, fol-
lowed by a conclusion and recommendations for future work
in Section 8.

2 Related Work
Since little work has been done regarding the combination
of temporal and visual coherence in stereoscopic augmented
reality styliztion, works addressing these issues will be com-
pared to this paper separately.

Firstly, a method addressing temporal coherence in styl-
ized AR is proposed by Chen, Turk, and MacIntyre, their
method tracks feature points in the scene across frames and
moves anchor points using barrycentric coordinates between
the three nearest, co-existing feature points [5]. These anchor
points define the position of certain style elements, in their
case brush strokes, but can be adapted to other anchor point
based styles, such as the mosaic tiles used in this paper. This
relocation of anchor posed based on object features is similar
to the method proposed in this paper, but their method suffers
from the difficulty of tracking feature points across frames,
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Figure 1: Overview of the coherent stylization pipeline. The initialization step sets up the initial mosaic pattern by generating anchor points
and their world positions. Then a four-step process is run each frame that consists of (1) tracking the camera view matrix from the AR marker,
(2) computing view space maps from disparity maps, (3) repositioning anchor points based on estimated world positions and (4) redistributing
anchor density.

which we overcome by making use of estimated world space
information in the form of disparity maps instead. Later, the
same authors improve their brush stroke method by making
use of information about the scene geometry to move anchor
points according to positions in object space [4]. Again, this
takes a similar approach to the one proposed in this paper,
even more so as it also makes use of world space information,
but it assumes the model space is given beforehand and does
not currently run at interactive frame rates, partly due to the
chosen brush stroke stylization. Lu, Xiao, and Tang propose
a coherent video stylization technique with improved optical
flow by using a machine learning based approach to track the
flow of entire objects and apply affine transformations to cor-
responding style elements [14].

Secondly, visual coherence, or stereo coherence, is not as
well-defined as temporal coherence, since it relates to stereo-
scopic imagery, which is far less commonplace than regu-
lar video. The work by Richardt, Kyprianidis, and Dodgson
shows improved stereo coherence when applying styles in ob-
ject space instead of image space, as by their user study [17],
which is the same principle behind this paper.

Both coherence types suffer from a lack of generalized
quantitative analysis metrics, for which a solution will not be
proposed in this paper, but it will be addressed by comparison
to a baseline.

3 Methodoloy

The method for coherent stylization used in this paper con-
sists of the initial setup, followed by a four-step process ex-
ecuted on each frame. A respective overview of the entire
method is shown in Figure 1. In the initial setup a random-
ized mosaic pattern is first generated for the left image, then
for each mosaic anchor point, its world position is estimated,
which is then used for the rest of the four-step process. Firstly,
the AR marker is tracked on both stereo frames to determine
the relative view information for the scene. Secondly, the
stereo frames are used to compute disparity maps, from which
the depth maps are estimated. Thirdly, the information from
the first two steps is used to determine the expected new loca-
tion of each anchor point and verify whether it is occluded or
not. Finally, the density of anchor points is determined in or-
der to add or remove anchor points in sparse or populated ares
respectively. Whenever a new tile is added in the fourth step,
its corresponding world position is also established. More de-
tails on the initialization and each of the steps follows below.
It is important to note that the entire scene is expected to be
static, except for virtual objects, otherwise the world space
position of an object changes when it is moved, and any an-
chor point attached to it will not move with the object.



Figure 2: Example of a Voronoi diagram, where the black dots rep-
resent the points.

3.1 Initialization
In the initialization step, the initial mosaic pattern is gener-
ated for an arbitrary reference image, in this case the left
stereo image. The creation of the mosaic pattern is done using
a semi-randomized Voronoi diagram, which colors a pixel ac-
cording to the closest point in the diagram, see Figure 2. This
Voronoi diagram is generated by first uniformly distributing
M ×N points over an image with dimensions W ×H , then
each point is randomly offset in the range [0, W

M ) for x and
[0, H

N ) for y [6]. Here M and N can be chosen by the user
and define the amount of horizontal and vertical anchor points
in the initial mosaic pattern, W and H are simply the width
and height of the input image/video. Once these points have
been generated, each point is assigned the color of the closest
pixel in the image, which is then used to generate the final
image, as shown in Figure 3.

Figure 3: The same image of a real scene with a virtual dragon,
unstylized (left), and with a 40× 40 mosaic stylization (right).

The rendering of this Voronoi diagram would ideally be
done by rendering infinitely long cones at each anchor point.
However, this is impossible to render, so it can be approxi-
mated with finite cones made from polygons instead, which
will later be exploited for generating the density in Section
3.5. The scale of these cones, meaning the radius of the cir-
cular base, should be at least large enough to cover its entire
range in case each nearby anchor point is at the furthest pos-
sible position, see Figure 4.
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Finally, the anchor points are translated from 2D image
space to 3D world space in order to be used in the rest of
the process, this conversion is further elaborated in Section
3.6.

Figure 4: Minimum scale for each cone to always cover every pixel
of the image.

3.2 Marker Tracking
The first step in the process, after the initial setup has been
completed, is to determine a relative camera view matrix from
the AR marker. An example of such a marker, which was cho-
sen arbitrarily, is shown in Figure 5. This step is performed
by ARtoolkitX and OpenCV using the scale of the AR marker
and requires the marker to be fully visible at all times. Alter-
natively, scene features could be used to similarly estimate
the camera view matrix. However, a marker is chosen since it
is already commonplace in AR applications and is designed
to be more reliably tracked.

Figure 5: Example of a typical marker used in AR scenes. Identified
by a unique shape surrounded by a thick black border.

3.3 Disparity Map
Next, the stereo images belonging to the same frame are used
to compute an approximate disparity map. These stereo im-
ages are assumed to be calibrated, such that any lens distor-
tion is removed, and rectified, such that the images appear
to be taken from parallel cameras. The disparity map con-
tains the disparity for each pixel, which holds the distance
between the same pixel in the two images; computed using
the semiglobal matching algorithm [9] in OpenCV. The algo-
rithm tries to find similar regions of pixels in both images to
compute their disparity. After computing the raw disparity for
both stereo images, an improved weighted least squares filter



from OpenCV is applied to both disparity maps, in order to
smooth the result and attempt to fill in occluded or untextured
areas [13]. An example of the conversion from two stereo
images to disparity and from disparity to filtered disparity is
shown in Figure 6.

Figure 6: The steps involved in converting stereo images (left), to
disparity maps (middle), to filtered disparity maps (right). Only the
respective versions of the left stereo image is shown (with increased
contrast).

With this filtered disparity, the view space depth or Z-
coordinate can be computed as follows [10, Chapter 11]:

Z =
b ∗ f
d

(2)

Where b is the baseline, or distance between the camera
lenses, f is the focal length of the cameras, and d is the dis-
parity. Additionally, the view space X- and Y -coordinates
can be computed as follows:

X =
(x+W/2) ∗ b

d
(3)

Y =
(y +H/2) ∗ b

d
(4)

Where b and d are the same as before, and x and y are the
horizontal and vertical pixel positions in the range [0,W ) and
[0, H) respectively for an image with dimensions W × H .
These coordinates might need to be negated depending on
the desired up and right direction of the camera. Now each
pixel in both stereo images has an estimate of its correspond-
ing view space coordinate. The view space coordinates of
the virtual model are added to this view space coordinate
map by rendering them directly to a texture without any post-
processing and imposing that texture on top of the map.

3.4 Anchor Repositioning
Once the view space coordinate for each pixel has been ap-
proximated, it can be used in conjunction with the computed
view matrix to reposition the anchor points. The current rele-
vant information stored for each anchor point is its world po-
sition, which is converted to view space with the previously
estimated view matrix and this view space coordinate is sub-
sequently converted to image space with a projection matrix,
in order to determine whether the anchor point should still be
visible, and if so, reposition it to the new image space coor-
dinate. This projection matrix should be a perspective pro-
jection matrix based on the properties of the camera, such as
the field of view and dimensions. The image space x- and

y-coordinates are used to sample from the view space coordi-
nate map and the distance between this sampled view space
coordinate and the computed view space coordinate is com-
pared to a value ϵ in order to determine whether it should be
discarded or not. If the distance is larger than ϵ, the anchor
point is likely occluded, so the anchor point ought to be re-
moved. On the other hand, if the distance is smaller than or
equal to ϵ, the anchor point is likely in the correct place, so its
image space coordinate needs to be repositioned to the com-
puted image space coordinate. It is important to note that the
value of ϵ is highly dependent the scale of the AR marker in
relation to the rest of the scene and the accuracy of the dis-
parity map, in this paper a value of ϵ = 0.2 is used.

3.5 Density Redistribution
The final step of the process is to redistribute the density of
anchor points. This is necessary because removing occluded
anchor points from the previous step might result in areas
with few style features. In this case it would result in large
areas with the same color. Additionally, when the surface
of an object was initially in frontal view and is now viewed
from the side, anchor points might clump together, resulting
in areas that are overpopulated with anchor points and do not
convey the intended style.

The density redistribution first requires the density of the
anchor points to be computed for both stereo images. To com-
pute this density map, ideally the distance to nearby anchor
points is computed and aggregated for each pixel. However,
this is expensive to compute, so instead the density is com-
puted for kernels, in this case W

M × H
N pixels in size, which

only check for anchor and/or feature points inside the kernel
to compute the density. Here M , N , W and H are the same
variables as defined in Section 3.1. In this case, a specialized
method can be applied for generating the density, making use
of the approximated cones used for rendering the Voronoi di-
agram. This method renders each of the cones in gray scale
white, with a varying opacity depending on the depth of the
cone from the screen, ranging from 0.5 opacity for the clos-
est point, to 0 opacity for the furthest parts. As a result, when
rendered on a dark background, areas with many mosaic tiles
will appear bright, requiring the removal of anchor points,
and areas with few or no mosaic tiles will appear dark, requir-
ing the addition of anchor points. An example density image
is shown in Figure 7, which would ideally not have any areas
that are significantly brighter or darker than the average color.

Figure 7: Example of a density image (not a density map) generated
from rendering the cones from a Voronoi diagram in white with the
opacity corresponding to screen depth.



The resulting image is used to compute the density ρ for
each kernel by averaging the gray scale color of each pixel in
the kernel. This will either indicate that an anchor point needs
to be added if ρ < α or one or more anchor points need to be
removed if ρ > β. If α ≥ ρ ≤ β, no change is required. Here
α and β can be adjusted based on the desired results, values
of α = 0.01 and β = 0.9 work sufficiently in practice and
are used throughout all experiments in this paper. Adding
anchor points is straightforward, the same algorithm from
the initialization step in Section 3.1 is applied to generate a
semi-random mosaic tile, which places the anchor point at a
random position inside the kernel. Furthermore, any newly
added tile has its image space coordinate converted to world
space as in the initialization step, which will be elaborated in
Section 3.6. Removing anchor points, on the other hand, is
less straightforward since it is non-trivial to determine which
anchor points to remove and which to keep. Instead, all an-
chor points are removed from inside the kernel and a single
anchor point is added with the same procedure as before. The
density redistribution process is shown in Figure 8

Figure 8: The steps involved in density redistribution, from an im-
proper distribution (left), to a density map middle, to a redistributed
image(right).

3.6 Image Space to World Space

To convert an image space coordinate to world space, it could
be multiplied with the inverse projection matrix, followed by
the inverse view matrix. However, the image space depth
is not known when a new anchor point is added in image
space coordinates, so the corresponding world space coordi-
nate would be incorrect. Instead, the image space coordinate
is used to sample from the view space coordinate map and
convert it to world space with the inverse of the approximated
view matrix from Section 3.2.

4 Implementation

Any operation performed by OpenCV is done on the CPU,
which entails the marker tracking to compute the camera view
matrix and the computation of the disparity map followed by
the view space coordinate map. The disparity map estima-
tion is performed on the original image size scaled down by a
factor of 2. Furthermore, repositioning the anchors and redis-
tributing the density is performed on the CPU as well, since
any arbitrary amount of anchor points can be added or re-
moved in these steps, which can be more effectively handled
by the CPU. On the other hand, rendering the mosaic pattern
and computing the density map is done on the GPU.

5 Results
Since a general quantitative measure for the coherence is an
unsolved problem, which is non-trivial to solve, it will not be
addressed in this paper. Instead, we provide a comparison to a
baseline for both the quantitative and qualitative results. This
baseline consists only of the initial step of the mosaic pattern
generation for both the left and right image, after which all
anchor points remain static in image space. A few frames,
along with their stylized version, are shown in Figure 13
Pixel Differences in Numbers To measure the coherence
quantitatively, pixels visible in both images are compared and
their normalized difference is summed. This is done by es-
timating the world position of each pixel in the left image
and storing it along with its normalized RGB color, using the
same process described in Section 3.6. Next, just like the
procedure described in Section 3.4, for each saved world po-
sition, its new image space coordinate is determined, and it
is verified whether it is likely to belong to the same world
position. If it does, the euclidean distance between the pixel
colors are computed and summed to a total, otherwise it is
ignored. This is done for both the stereo image pair of each
frame and each pair of subsequent individual left and right
frames. The totals are averaged for 2 scenes with 100 frames
of 2 × 1024 × 1024, scaled down to 2 × 640 × 640, with
80× 80 initial Voronoi points, the results are displayed in Ta-
ble 1. For these results, the same disparity map estimation
is used from the implementation, which is likely to result in
imperfect view space coordinate maps. However, these im-
perfections will appear in both the baseline and our method,
so should not bias the results.

Scene Method Temporal Visual
Room Baseline 16234 16103

Our method 9922 10991
Market Baseline 22336 17828

Our method 13127 15093

Table 1: Average of the total world position pixel difference between
frames and images, demonstrating temporal and visual coherence.

Table 1 shows that there is a large difference in pixels be-
tween the images, even for our method, which is in part due
to incomplete areas in the disparity map and anchor points
near disparity edges that indicate far apart objects. However,
there is a statistically significant difference between the base-
line and our method, namely for the room around 63.6% for
the temporal coherence and 47.6% for the visual coherence,
and for the market around 70.1% for the temporal coherence
and 18.1% for the visual coherence.
Pixel Differences Visualized A visual example of the pixel
differences is shown in Figure 9. Here, green pixels are pixels
whose world coordinates are not visible in both images. For
all other pixels, its red intensity indicates the euclidian color
distance. To highlight the differences, each distance is nor-
malized by dividing by a constant value η that is larger than
the 95th percentile of distances, in this case η = 0.1. Large
green areas are visible where no disparity information can be
estimated, such as in the windows in the room scene, at the
background of the market scene, and around any edges. For



the same reason, the temporal coherence images have an error
distribution similar to the baseline images, since our method
essentially randomizes the mosaic tiles of this side each time.
The same holds for the omitted right side of the right stereo
image. Besides the differences in areas with imperfect dispar-
ity, the most significant error of our method is visible around
the aforementioned disparity edges.

(a) Left stereo images of the room scene.

(b) Right stereo images of the market scene.

Figure 9: Pixel differences between frames visualized for a baseline
(top) and our method (bottom). Left images show temporal coher-
ence and right images show visual coherence. Green pixels indicate
pixels that are not visible in both images, the red intensity of the
remaining mutually visible pixels indicates euclidean distance be-
tween the normalized RGB color, divided by η = 0.1.

Qualitative Comparison Besides a quantitative measure,
it is also relevant to highlight a few qualitative results. For
instance, Figure 10 shows the same books in the room scene,
in the left stereo image from a different angle between two
frames for both the baseline (top images) and our method
(bottom images). The temporal coherence of the baseline
is visibly worse than the temporal coherence of our method,
especially around the areas of stark contrast, such as in the
highlighted area.

Figure 10: Books stylized with a mosaic style, without temporal
coherence adjustments (baseline, top) and with temporal coherence
adjustments (our method, bottom).

Another qualitative example of the temporal coherence of
a poster in the market scene is shown in Figure 11. Here,
the right stereo image is shown between two frames for both
the baseline (top images) and our method (bottom images).
Again, the temporal coherence of our method is visibly better
than the baseline in the highlighted area and seldom worse in
surrounding areas.

Figure 11: Poster stylized with a mosaic style, without temporal
coherence adjustments (baseline, top) and with temporal coherence
adjustments (our method, bottom).



Lastly, a qualitative example of the visual coherence is
shown in Figure 12, where the same window frame is shown
between the left and the right stereo images for both the base-
line (top images) and our method (bottom images). The visual
coherence of our method is visibly better than the baseline,
such as in the highlighted areas.

Figure 12: Window frame stylized with a mosaic style, without vi-
sual coherence adjustments (baseline, top) and with visual coher-
ence adjustments (our method, bottom).

Frame Times Finally, a measurement of frame times and
frames per second is highly relevant for an AR scenario.
Table 2 shows the average FPS, corresponding frame time,
alongside the frame time spent on estimating the disparity
map and subsequent view space coordinates. This average
is based on the same scenes and dimensions from the quan-
titative pixel differences. These results demonstrate 76% of
the frame time is spent on this estimation, while the actual
contribution of this paper relates to the remaining 24% of the
process, including the marker tracking, anchor repositioning,
density redistribution and of course rendering.

FPS Frame time Disparity estimation
5 201 ms 154 ms

Table 2: Average FPS, frame time and frame time spent on disparity
estimation combined with view space coordinate calculations.

6 Discussion
The results demonstrated in the previous section make it clear
that our method objectively outperforms the coherence of a
baseline method, that makes no effort to achieve coherence,
as by our quantitative analysis. However, the large pixel dif-
ference between frames and images in our method is still ap-
parent from both the quantitative and qualitative results. This
is especially apparent near disparity edges of objects that are
far apart, since anchor points of mosaic tiles near these edges
have the potential to differ significantly in color between
frames, due to imperfect disparity maps. On the other hand,
the coherence of objects with noticeable texture is shown to
significantly improve qualitatively.

As there has been little work done in coherent image styl-
ization for stereoscopic augmented reality, it is difficult to
compare it to other works. However, the world space method
by Chen, Turk, and MacIntyre [4] demonstrates similar an-
chor repositioning and density redistribution algorithms to
those proposed in this paper. The major differences are in
the mapping from image space to world space and in the fact
that their method is not directly intended for stereo-vision.
The mapping from image space to world space in their work
makes use of information about the scene geometry, which is
presumed to be available instead of estimated on demand.

Previous works have not demonstrated coherence methods
for image stylization that are shown work for both temporal
and visual coherence, nor make use of additional information
gained from stereoscopy to achieve coherence. This work
attempts to achieve this coherence for anchor point based
styles, by making use of a combination of the information
gained from both augmented reality and stereo-vision.

7 Responsible Research
To allow for the reproducibility of this research, any assump-
tions or restrictions have been described wherever necessary
alongside an extensive description of the tools, methods and
algorithms used in the pipeline. Moreover, even though a
generalized quantitative measurement of the results is an un-
solved problem, which makes it difficult to compare to other
works, an attempt was made to assess the results objectively
in terms of camparison to a baseline.

8 Conclusion
In this paper, we proposed a novel method for achieving tem-
poral and visual coherence when stylizing stereoscopic aug-
mented reality. This method makes use of the available in-
formation from tracking the AR marker and stereo-vision to
track the world position of anchor points and move them
across frames, while maintaining a balanced density of an-
chor points.

The results demonstrated in this paper show a significant
improvement of both the visual and temporal coherence when
compared to a baseline with no coherence adjustments. How-
ever, the main bottleneck in both performance and accuracy
is the disparity map, which takes a significant portion of the
frame time to generate an imperfect disparity map.

In the future, significant improvements of the algorithm
could be achieved by improving the speed and quality of dis-
parity mapping, for instance by using a more modern learn-
ing based technique [20]. On top of that, research could focus
on ways of improving the coherence around disparity edges,
since the proposed method lacks most in this area. Further-
more, a user study can be conducted to better asses the qual-
itative results and analyze possible improvements in user im-
mersion. Another idea is to take into account differences in
specular highlights between stereo images [15], which could
improve both stereo matching and visual coherence. Finally,
the proposed method could be adapted to different styliza-
tions that make use of anchor points, such as the painterly
brush strokes style [4].



(a) Room scene, frame 0.

(b) Room scene, frame 16.

(c) Market scene, frame 0.

(d) Market scene, frame 21.

Figure 13: A few unedited frames of two different scenes along with their stylized version, demonstrating the results of the stylization
pipeline. In these videos, the green Shrek head is the virtual object.
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