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Abstract: Intuitive user interfaces are indispensable to interact with the human centric smart envi-
ronments. In this paper, we propose a unified framework that recognizes both static and dynamic
gestures, using simple RGB vision (without depth sensing). This feature makes it suitable for inex-
pensive human-robot interaction in social or industrial settings. We employ a pose-driven spatial
attention strategy, which guides our proposed Static and Dynamic gestures Network—StaDNet. From
the image of the human upper body, we estimate his/her depth, along with the region-of-interest
around his/her hands. The Convolutional Neural Network (CNN) in StaDNet is fine-tuned on a
background-substituted hand gestures dataset. It is utilized to detect 10 static gestures for each hand
as well as to obtain the hand image-embeddings. These are subsequently fused with the augmented
pose vector and then passed to the stacked Long Short-Term Memory blocks. Thus, human-centred
frame-wise information from the augmented pose vector and from the left/right hands image-
embeddings are aggregated in time to predict the dynamic gestures of the performing person. In a
number of experiments, we show that the proposed approach surpasses the state-of-the-art results
on the large-scale Chalearn 2016 dataset. Moreover, we transfer the knowledge learned through
the proposed methodology to the Praxis gestures dataset, and the obtained results also outscore the
state-of-the-art on this dataset.

Keywords: gestures recognition; operator interfaces; human activity recognition; commercial robots
and applications; cyber-physical systems

1. Introduction

The modern manufacturing industry requires human-centered smart frameworks,
which aim to focus on human abilities and not conversely demand humans to adjust
to whatever technology. In this context, gesture-driven user-interfaces tend to exploit
human’s prior knowledge and are vital for intuitive interaction of humans with smart
devices [1]. Gesture recognition is a problem that has been widely studied for developing
human-computer/machine interfaces with an input device alternative to the traditional
ones (e.g., mouse, keyboard, teach pendants and touch interfaces). Its applications include
robot control [2–4], health monitoring systems [5], interactive games [6] and sign language
recognition [7].

The aim of our work is to develop a robust, vision-based gestures recognition strat-
egy suitable for human-robot/computer interaction tasks in social or industrial settings.
Industrial applications where human safety is critical, often require specialized sensors
compatible with safety standards such as ISO/TS 15066. Yet, scenarios which require
human sensing in industry or in social settings are broad. Monocular cameras offer ben-
efits which specialized or multi-modal sensors do not have, such as being lightweight,
inexpensive, platform independent and easy to integrate. This is desirable for robotic
assistants in commercial businesses such as restaurants, hotels, or clinics. We therefore, pro-
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pose a unified framework for recognizing static and dynamic gestures from RGB images/
video sequences.

A study of gestural communication [8] notes that most gestures used in assembly
tasks are physically simple while no non-hand body language is involved in part manip-
ulation. At first, we design a robust static hand gestures detector which is trained on a
background substituted gestures dataset namely OpenSign [9], which contains 9 American
Sign Language (ASL) gestures. Sign language is considered among the most structured
set of gestures [10]. In this work, we employ sign language gestures only as a proof of
concept—our static hand gesture detector can be adapted to other classes as well. The static
hand gestures detector is detailed in [11]. For more generic and flexible gesture detection,
we propose a multi-stream neural architecture for dynamic gestures recognition, which is
integrated with our static hand gestures detector in a unified network.

Our unified network is named StaDNet—Static and Dynamic gestures Network. It
learns to smartly focus on dominant input stream(s) to correctly recognize large-scale
upper-body motions plus subtle hand movements, and therefore distinguish several inter-
class ambiguities. The idea of visual attention presented in [12] is also embedded in StaDNet,
which is eventually based the on human selective focus and perception. Thus, we develop
a pose-driven hard spatial-attention mechanism, which focuses on the human upper body
and on his/her hands (see Figure 1). It is also noteworthy that in the RGB images, scale
information about the subjects (e.g., size of his/her body parts) is lost. To address this
problem, we devise novel learning-based depth estimators to regress the distance of the hands
and the upper-body from the sensor. Our depth estimators are trained on the ground
truth depth obtained from the video sequences of Kinect V2. Once the parameters are
learned, our algorithm is able to regress the relative depth of the body joints only from
the 2D human skeleton. Therefore, in practice, we no longer require a depth sensor and
StaDNet is able to detect static and dynamic gestures exclusively from the color images.
This characteristic makes StaDNet suitable for inexpensive human-robot interaction in
social or industrial settings.

RGB Image 
Frames OpenPose

Focus on 
Hands 

Module

Pose Pre-
Processing 

Module

left and right hands 
depth estimators 

fl and fr

skeleton depth 
estimator fn

StaDNet

Pose Augmentation and 
Dynamic Features Extraction

Dynamic 
Gesture 
Label

Framewise 
Static Gestures 

Labels

Scale and Position Normalized Skeleton Output
Before Normalization After Normalization

Spatial Attention Module

Figure 1. Illustration of our proposed framework. In Spatial Attention Module, we mainly have learning-based depth
estimators (grey boxes), Focus on Hands (FOH) Module and Pose Pre-Processing (PP) Module. 2D skeleton is extracted by
OpenPose. FOH exploits hand coordinates obtained from the skeleton and crops hand images with the help of hand depth
estimators, while PP performs scale and position normalization of the skeleton with the help of skeleton depth estimator.
The features from the normalized pose are extracted by Pose Augmentation and Dynamic Features Extraction Module and
are fed to StaDNet together with the cropped hand images. StaDNet detects frame-wise static gestures as well as dynamic
gestures in each video.
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2. Related Work

The gesture detection techniques can be mainly divided into two categories: wearable
strategies and non-wearable methods. The wearable strategies include electronic/glove-
based systems [13,14], and markers-based vision [15] methods. However, these are often
expensive, counter-intuitive and limit the operator’s dexterity in his/her routine tasks.
Conversely, non-wearable strategies such as pure-vision based methods, do not require
structuring the environment and/or the operator, while they offer ease-of-use to interact
with the robots/machines. Moreover, the consumer-based vision sensors have rich output,
are portable and low cost, even when depth is also measured by the sensor such as Microsoft
Kinect or Intel Realsense cameras. Therefore, in this research we opt for a pure vision-based
method and review only the works with vision-based gestures detection.

Traditional activity recognition approaches aggregate local spatio-temporal infor-
mation via hand-crafted features. These visual representations include the Harris3D
detector [16], the Cuboid detector [17], dense sampling of video blocks [18], dense trajecto-
ries [19] and improved trajectories [20]. Visual representations obtained through optical
flow, for example, Histograms of Oriented Gradients (HOG), Histograms of Optical Flow
(HOF) and Motion Boundary Histograms (MBH) also achieved excellent results for video
classification on a variety of datasets [18,21]. In these approaches, global descriptors of the
videos are obtained by encoding the hand-crafted features using Bag of Words (BoW) and
Fischer vector encodings [22]. Subsequently, the descriptors are assigned to one or several
nearest elements in a vocabulary [23] while the classification is typically performed through
Support Vector Machines (SVMs). In [24], the authors segmented the human silhouettes
from the depth videos using Otsu’s method of global image threshold [25]. They extracted
a single Extended-Motion History Image (Extended-MHI) as a global representation for
each gesture. Subsequently, maximum correlations coefficient was utilized to recognize
gestures in a One-Shot learning setting. Other works that utilized One-Shot Learning for
gesture recognition include [26–28].

Lately, the tremendous success of deep neural networks on image classification
tasks [29,30] instigated its application in activity recognition domain. The literature on the
approaches that exploit deep neural networks for gestures/activity recognition is already
enormous. Here, we focus on related notables which have inspired our proposed strategy.

2.1. 3D Convolutional Neural Networks

Among the pioneer works in this category, [31] adapted Convolutional Neural Net-
works (CNNs) to 3D volumes (3D-CNNs), obtained by stacking video frames, to learn
spatio-temporal features for action recognition. In [32], Baccouche et al. proposed an
approach for learning the evolution of temporal information through a combination of
3D-CNNs and Long Short term Memory (LSTM) recurrent neural networks [33]. The short
video clips of approximately 9 successive frames were first passed through a 3D-CNN
features extractor while the extracted features were subsequently fed to the LSTM network.
However, Karpathy et al. in [34] found that the stacked-frames architecture performed
similar to the one with single-image input.

A Few-Shot temporal activity detection strategy is proposed in [35], which utilized
3D-CNNs for features extraction from the untrimmed input video as well as from the
few-shot examples. A two-stage proposal network was applied on top of the extracted
features while the refined proposals were compared using cosine similarity functions.

To handle resulting high-dimensional video representations, the authors of [36] pro-
posed the use of random projection-based ensemble learning in deep networks for video
classification. They also proposed rectified linear encoding (RLE) method to deal with
redundancy in the initial results of the classifiers. The output from RLE is then fused by a
fully-connected layer that produced the final classification results.
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2.2. Multi-Modal Multi-Scale Strategies

The authors of [7] presented a multi-modal multi-scale detection strategy for dynamic
poses of varying temporal scales as an extension to their previous work [37]. They utilized
the RGB and depth modalities, as well as the articulated pose information obtained through
the depth map. The authors proposed a complex learning method which included pre-
training of individual classifiers on separate channels and iterative fusion of all modalities
on shared hidden and output layers. This approach involved recognizing 20 categories
from Italian conversational gestures, performed by different people and recorded with an
RGB-D sensor. This strategy was similar in function to [34] except that it included depth
images and pose as additional modalities. However, it lacked a dedicated equipment
to learn evolution of temporal information and may fail when understanding long-term
dependencies of the gestures is required.

In [38], authors proposed a multi-modal large-scale gesture recognition scheme on
the Chalearn 2016 Looking at People Isolated Gestures recognition dataset [39]. In [40], ResC3D
network was exploited for feature extraction, and late fusion combined features from
multi-modal inputs in terms of canonical correlation analysis. The authors used linear
Support Vector Machine (SVM) to classify final gestures. They proposed a key frame attention
mechanism, which relied on movement intensity in the form of optical flow, as an indicator
for frame selection.

2.3. Multi-Stream Optical Flow-Based Methods

The authors of [41] proposed an optical flow-based method exploiting convolutional
network networks for activity recognition along the same lines of [34]. They presented the
idea of decoupling spatial and temporal networks. The proposed architecture in [41] is
related to the two-stream hypothesis of the human visual cortex [42]. The spatial stream in
their work operated on individual video frames, while the input to the temporal stream was
formed by stacking optical flow displacement fields between multiple consecutive frames.

The authors of [43] presented improved results in action recognition, by employing
a trajectory-pooled two-stream CNN inspired by [41]. They exploited the concept of
improved trajectories as low level trajectory extractor. This allowed characterization of the
background motion in two consecutive frames through the estimation of the homography
matrix taking camera motion into account. Optical flow-based methods (e.g., the key frame
attention mechanism proposed in [38]) may help emphasizing frames with motion, but are
unable to differentiate motion caused by irrelevant objects in the background.

2.4. CNN-LSTM and Convolutional-LSTM Networks

The work in [44] proposed aggregation of frame-level CNN activations through
(1) Feature-pooling method and (2) LSTM network for longer sequences. The authors
argued that the predictions on individual frames of video sequences or on shorter clips as
performed in [34], might only contain local information of the video description, while it
could also confuse classes if there are fine-grained distinctions.

The authors of [45] proposed a Long-term Recurrent Convolutional Network (LRCN)
for multiple situations including sequential input and static output for cases like activity
recognition. The visual features from RGB images were extracted through a deep CNN,
which were then fed into stacked LSTM in distinctive configurations corresponding to the
task at hand. The parameters were learned in an “end-to-end” fashion, such that the visual
features relevant to the sequential classification problem were extracted.

The authors in [46] proposed a method to process sequential images through
Convolutional-LSTM (ConvLSTM), which is a variant of LSTM containing a convolution
operation inside the LSTM cell. In [47], the authors studied redundancy and attention in
ConvLSTM by deriving its several variants for gesture recognition. They proposed Gated-
ConvLSTM by removing spatial convolutional structures in the gates as they scarcely
contributed to the spatio-temporal feature fusion in their study. The authors evaluated
results on the Chalearn 2016 dataset and found that the Gated-ConvLSTM achieved reduc-
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tion in parameters size and in computational cost. However, it did not improve detection
accuracy to a considerable amount.

2.5. Multi-Label Video Classification

The authors of [48] presented a multi-label action recognition scheme. It was based on
Multi-LSTM network which tackled with multiple inputs and outputs. The authors fine-
tuned VGG-16 pre-trained on ImageNet [49], on Multi-THUMOS dataset at the individual
frame level. Multi-THUMOS is an extension of THUMOS dataset [50]. A fixed length
window of 4096-dimensional “fc7” features of the fine-tuned VGG-16 was passed as input
to the LSTM, through an attention mechanism, that weighted the contribution of individual
frames in the window.

2.6. Attention-Based Strategies

The application of convolutional operations on entire input images tends to be com-
putationally expensive. In [12], Rensink discussed the idea of visual representation, which
implied that the humans do not form detailed depiction of all objects in a scene. Instead,
their perception focuses selectively on the objects needed immediately. This was supported
by the concept of visual attention applied for deep learning methods as in [51].

Baradel et al. [52] proposed a spatio-temporal attention mechanism conditioned on
human pose. The proposed spatial-attention mechanism was inspired by the work of
Mnih et al. [51] on glimpse sensors. A spatial attention distribution was learned conjointly
through the hidden state of the LSTM network and through the learned pose feature
representations. Later, Baradel et al. extend their work in [53] and proposed that the
spatial attention distribution can be learned only through an augmented pose vector, which
was defined by the concatenation of current pose, velocity and accelerations of each joint
over time.

The authors of [54] proposed a three streams attention network for activity detection.
These were statistic-based, learning-based and global-pooling attention streams. Shared
ResNet was used to extract spatial features from image sequences. They also proposed a
global attention regularization scheme to enable the employed recurrent networks to learn
dynamics based on global information.

Lately, the authors of [55] presented the state-of-the-art results on the Chalearn 2016
dataset. They proposed a novel multi-channel architecture, namely FOANet, built upon
a spatial focus of attention (FOA) concept. They cropped the regions of interest occupied
by the hands in the RGB and depth images, through the region proposal network and
Faster R-CNN method. The architecture comprised of 12 channels in total with: 1 global
(full-sized image) channel and 2 focused (left and right hand crops) channels for each of
the 4 modalities (RGB, depth and optical flow fields extracted from the RGB and depth
images). The softmax scores of each modality were fused through a sparse fusion network.

3. Datasets

For dynamic gestures classification, we use the Chalearn 2016 Isolated Gestures
dataset [39], referred to simply as Chalearn 2016 in the rest of the paper. It is a large-
scale dataset which contains Kinect V1 color and depth recordings in 320× 240 resolution
of 249 dynamic gestures recorded with the help of 21 volunteers. The gestures vocabulary
in the Chalearn 2016 is mainly from nine groups corresponding to the different application
domains: body language gestures, gesticulations, illustrators, emblems, sign language,
semaphores, pantomimes, activities and dance postures. The dataset has 47,930 videos with
each video (color + depth) representing one gesture. It has to be noted that the Chalearn
2016 does not take into account any specific industry requirements, and that Kinect V1
is obsolete. However, as we intend to target a broader human–robot interaction domain
which includes the fast-growing field of socially assistive as well as household robotics, this
requires robots to have the capacity to capture, process and understand human requests in
a robust, natural and fluent manner. Considering the fact that the Chalearn 2016 dataset
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offers a challenging set of gestures taken from a comprehensive gestures vocabulary with
inter-class similarities and intra-class differences, we assumed the Chalearn 2016 suitable
for training and benchmarking results of our strategy.

To demonstrate the utility of our approach on a different gesture dataset, we evaluate
the performance of our model on the Praxis gesture dataset [56] as well. This dataset
is designed to diagnose apraxia in humans, which is a motor disorder caused by brain
damage. This dataset contains RGB (960 × 540 resolution) and depth (512 × 424 resolution)
images recorded by 60 subjects plus 4 clinicians with Kinect V2. In total, 29 gestures
were performed by the volunteers (15 static and 14 dynamic gestures). In our work, only
dynamic gestures that is, 14 classes are considered while their pathological aspect is not
taken into account that is, only gestures labeled “correct” are selected. Thus, the total
number of considered videos in this dataset is 1247 with mean length of all samples equal
to 54 frames. StaDNet is trained exclusively on color images of these datasets for dynamic
gestures detection.

4. Our Strategy

In this work, we develop a novel unified strategy to model human-centered spatio-
temporal dependencies for the recognition of static as well as dynamic gestures. Our Spatial
Attention Module localizes and crops hand images of the person, which are subsequently
passed as inputs to StaDNet unlike previous methods that take entire images as input
for example, [44,45]. Contrary to [48], where a pre-trained state-of-the-art network is
fine-tuned on entire image frames of gestures datasets, we fine-tune Inception V3 on a
background-substituted hand gestures dataset, used as our CNN block. Thus, our CNN
has learned to concentrate on image pixels occupied exclusively by hands. This enables
it to accurately distinguish subtle hand movements. We have fine-tuned Inception V3
with a softmax layer, to classify 10 ASL static hand gestures while the features from the
last fully connected (FC) layer of the network are extracted as image-embeddings of size
1024 elements. These are used as input to the dynamic gestures detector in conjunction with
the augmented pose vector which we explain in Sections 5.1.2 and 6.1. Moreover, in con-
trast to the previous strategies for dynamic gestures recognition/video analysis [7,52,53],
which employed 3D human skeletons to learn large-scale body motion–and corresponding
sensor modalities–we only utilize 2D upper-body skeleton as an additional modality to our
algorithm. However, scale information about the subjects is lost in monocular images. To
address this, we also propose learning-based depth estimators, which determine the approxi-
mate depth of the person from the camera and region-of-interest around his/her hands
from upper-body 2D skeleton coordinates only. In a nutshell, StaDNet only exploits the
RGB hand images and an augmented pose vector obtained from 8 upper-body 2D skeleton
coordinates, unlike other existing approaches like [55], which include full-frame images in
addition to hand images, depth frames and even optical flow frames altogether.

To reiterate, our method does not require depth sensing. We only utilized the (raw)
depth map from Kinect V2 offline, to obtain ground truth depth values of a given 2D
skeleton for our learning-based depth estimators. These values can be obtained from any state-
of-the-art depth sensor. Once the depth estimators are trained, our method only requires
RGB modality to process images and detect gestures on-line. We employ OpenPose [57]
which is an efficient discriminative 2D pose extractor, to extract the human skeleton and
human hands’ keypoints in images. OpenPose also works exclusively on the RGB images.
Thus, our method can be deployed on a system with any RGB camera, be it a webcam or an
industrial color (or RGB-D) camera. Nevertheless, we only tested OpenPose in laboratory or
indoor domestic environments and not in a real industry. Yet, since our framework is not
restricted to the use of OpenPose, we could integrate another pose extractor system, better
suited for the target application scenario.
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5. Spatial Attention Module

Our spatial attention module is divided into two parts—Pose Pre-processing Module
and Focus on Hands Module (see Figure 1). We detail these modules in the following.

5.1. Pose Pre-Processing Module

We first resize the dataset videos to 1080× C pixels, where C is the value of resized
image columns obtained with respect to new row value, that is, 1080, while maintaining the
aspect ratio of the original image (1440 in our work). The necessity to resize the input videos
will be explained in Section 5.1.3. After having resized the videos, we feed them to OpenPose,
one at a time, and the output skeleton joint and hand keypoint coordinates are saved for
offline pre-processing. The pose pre-processing is composed of three parts, detailed hereby:
skeleton filter, skeleton position and scale normalization and skeleton depth estimation.

5.1.1. Skeleton Filter

For each image, OpenPose extracts N skeleton joint coordinates depending on the
selected body model while it does not employ pose tracking between images. The oc-
casional jitter in the skeleton output and missing joint coordinates between successive
frames may hinder gesture learning. Thus, we develop a two-step pose filter that rectifies
occasional disappearance of the joint(s) coordinates and smooths the OpenPose output. The
filter operates on a window of K consecutive images (K is an adjustable odd number, 7 in
this work), while the filtered skeleton is obtained in the center frame. We note pi

k = (xi, yi),
the image coordinates of the ith joint in the skeleton output by OpenPose at the k-th image
within the window. If OpenPose does not detect joint i on image k: pi

k = ∅.
In a first step, we replace coordinates of the missing joints. Only r̄ (we use r̄ = 7)

consecutive replacements are allowed for each joint i, and we monitor this via a coordinate
replacement counter, noted ri. The procedure is driven by the following two equations:

pi
K = pi

K−1 if pi
K = ∅

∧ pi
k 6= ∅ ∀k = 1, . . . , K− 1

∧ ri ≤ r̄
(1)

pi
k=1,...,K−1 =

{
∅ if pi

K = ∅ ∧ ri > r̄
pi

K if pi
k=1,...,K−1 = ∅ ∧ pi

K. 6= ∅
(2)

Equation (1) states that the i-th joint at the latest (current) image K is replaced by
the same joint at the previous image K − 1 under three conditions: if it is not detected,
if it has been detected in all previous images, and if in the past it has not been replaced
up to r̄ consecutive times already. If any of the conditions is false, we do not replace
the coordinates and we reset the replacement counter for the considered joint: ri = 0.
Similarly, (2) states that the i-th joint coordinates over the window should not be taken
into account that is, joint will be considered missing, if it is not detected in the current
image K and if it has already been replaced more than r̄ consecutive times (we allow only r̄
consecutive replacements driven by (1)). This also resets the replacement counter value for
the considered joint. Moreover, the i-th joint in all of the window’s K− 1 images is set to
its position in the current image K, if it has never been detected in the window up to the
current image.

In the second step, we apply Gaussian smoothing to each pi, over the window of K
images. Applying this filter removes jitter from the skeleton pose and smooths out the joint
movements in the image at the center of the filter window. Figure 2 shows the output of
our skeleton filter for one window of images.
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Figure 2. The Skeleton Filter described in Section 5.1.1. Images are arranged from left to right in chronological order. The
central image shows the skeleton output by the filter. The six other images show the raw skeletons output by OpenPose.
Observe that—thanks to Equation (1)—our filter has added the right wrist coordinates (shown only in the central image).
These are obtained from the K-th frame, while they were missing in all raw skeletons from frame 1 to K− 1.

5.1.2. Skeleton Position and Scale Normalization

Figure 1 includes a simple illustration of our goal for skeleton position and scale
normalization. We focus on the 8 upper-body joints shown in Figure 3: p0,...,7, with p0

corresponding to the Neck joint, which we consider as root node. Position normalization
consists in eliminating the influence of the user’s position in the image, by subtracting the
Neck joint coordinates from those of the other joints. Scale normalization consists in elimi-
nating the influence of the user’s depth. We do this by dividing the position-shifted joint
coordinates by the neck depth dn, on each image, so the all joints are replaced according to:

pi ← pi − p0

dn
. (3)

Since our framework must work without requiring a depth sensor, we have developed
a skeleton depth estimator to derive the neck depth, d̃n and use it instead of dn in (3). This
estimator is a neural network, which maps a 97-dimensional pose vector, derived from the
8 upper body joint positions, to the depth of the Neck joint. We will explain it hereby.

Figure 3. Features augmentation of the upper body. In the left image, we show 8 upper-body joint coordinates (red),
vectors connecting these joints (black) and angles between these vectors (green). From all upper-body joints, we compute a
line of best fit (blue). In the right image, we show all the vectors (purple) between unique pairs of upper-body joints. We
also compute the angles (not shown) between the vectors and the line of best fit. From 8 upper-body joints, we obtain
97 components of the augmented pose vector.

5.1.3. Skeleton Depth Estimation

Inspired by [7], which demonstrated that augmenting pose coordinates may improve
performance of gesture classifiers, we develop a 97 dimensional augmented pose vector
xn (subscript n means Neck here) from 8 upper-body joint coordinates. From the joints
coordinates, we obtain—via least squares—a line of best fit. In addition to 7 vectors from
anatomically connected joints, 21 vectors between unique pairs of all upper-body coordi-
nates are also obtained. The lengths of individual augmented vectors are also included in
xn. We also include the 6 angles formed by all triplets of anatomically connected joints, and
the 28 angles, between the 28 (anatomically connected plus augmented) vectors and the line
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of best fit. The resultant 97-dimensional augmented pose vector concatenates: 42 elements
from abscissas and ordinates of the augmented vectors, their 21 estimated lengths and
34 relevant angles.

To obtain the ground-truth depth of Neck joint, denoted dn, we utilize OpenSign dataset.
OpenSign is recorded with Kinect V2 which outputs the RGB and the registered depth
images with resolution 1080 × 1920. We apply our augmented pose extractor to all images
in the dataset and—for each image—we associate xn to the corresponding Neck depth. A
9 layers neural network fn is then designed, to optimize parameters θn, given augmented
pose vector xn and ground-truth dn to regress the approximate distance value d̃n with a
mean squared error of 8.34× 10−4. Formally:

d̃n = fn(xn, dn; θn). (4)

It is to be noted that the estimated depth d̃n is a relative value and not in metric
units, and that the resolution of ground truth images in OpenSign is 1080 × 1920. For scale
normalization (as explained in Section 5.1.2), we utilize the estimated depth d̃n. Thus, the
input images from the Chalearn 2016 dataset are resized such that the row count of the
images is maintained to 1080. This is required as we need to re-scale the predicted depth to
the original representation of the depth map in OpenSign (or to that of Kinect V2). Yet, the
StaDNet input image size can be adapted to the user’s needs if the depth estimators are
not employed.

5.2. Focus on Hands Module

This module focuses on hands in two steps: first, by localizing them in the scene, and
then by determining the size of their bounding boxes, in order to crop hand images.

5.2.1. Hand Localization

One way to localize hands in an image is to exploit Kinect SDK or middleware like
OpenNI (or its derivatives). These libraries however do not provide accurate hand-sensing
and are deprecated as well. Another way of localizing hands in an image is via detectors,
possibly trained on hand images as in [58]. Yet, such strategies struggle to distinguish left
and right hands, since they operate locally, thus lacking contextual information. To keep
the framework generic, we decided not to employ specific hand sensing functionalities
from Kinect–be it V1 or V2–or other more modern sensing devices. Instead, we localize
the hand via the hand key-points obtained from OpenPose. This works well for any RGB
camera and therefore does not require a specific platform (e.g., Kinect) for hand sensing.

OpenPose outputs 42 (21 per hand) hand key-points on each image. We observed
that these key-points are more susceptible to jitter and misdetections than the skeleton
key-points, particularly on the low resolution videos of the Chalearn 2016 dataset. Therefore,
we apply the same filter of Equations (1) and (2) to the raw hand key-points output by
OpenPose. Then, we estimate the mean of all Nj detected hand key-point coordinates pj,
to obtain:

pc =
1
Nj

Nj

∑
j=1

pj, (5)

the hand center in the image.

5.2.2. Hand Bounding-Box Estimation

Once the hands are located in the image, the surrounding image patches must be
cropped for gesture recognition. Since at run-time our gestures recognition system relies
only on the RGB images (without depth), we develop two additional neural networks, fl
and fr, to estimate each hand’s bounding box size. These networks are analogous to the
one described in Section 5.1.2. Following the scale-normalization approach, for each hand
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we build a 54 dimensional augmented pose vector from 6 key-points. These augmented
pose vectors (xl and xr) are mapped to the ground-truth hands depth values (dl and dr)
obtained from OpenSign dataset, through two independent neural networks:

d̃l = fl(xl, dl ; θl) (6)

d̃r = fr(xr, dr; θr). (7)

In (6) and (7), fl and fr are 9-layer neural networks that optimize parameters θl and θr

given augmented poses xl and xr and ground-truth depths dl and dr, to estimate depths d̃l
and d̃r. Mean squared error for fl and fr are 4.50× 10−4 and 6.83× 10−4, respectively. The
size of the each bounding box is inversely proportional to the corresponding depth (d̃l or
d̃r) obtained by applying (6) to the pure RGB images. The orientation of each bounding box
is estimated from the inclination between corresponding forearm and horizon. The final
outputs are the cropped images of the hands, il and ir. Now since our depth estimators fn,
fl and fr have been trained, we do not require explicit depth sensing either to normalize
the skeleton or to estimate the hand bounding boxes.

6. Video Data Processing

Our proposed spatial attention module conceptually allows end-to-end training of
the gestures. However, we train our network in multiple stages to speed-up the training
process (the details of which are given in Section 8). Yet, this requires the videos to be
processed step-by-step beforehand. This is done in four steps, that is, (1) 2D pose-estimation,
(2) features extraction, (3) label-wise sorting and zero-padding and (4) train-ready data
formulation. While prior 2D-pose estimation may be considered a compulsory step–even if
the network is trained in an end-to-end fashion—the other steps can be integrated into the
training algorithm.

6.1. Dynamic Features: Joints Velocities and Accelerations

As described in Section 5, our features of interest for gestures recognition are skeleton
and hand images. The concept of augmented pose for scale-normalization has been detailed
in Section 5.1.2. For dynamic gestures recognition, velocity and acceleration vectors
from 8 upper-body joints, containing information about the dynamics of motion, are
also appended to the pose vector xn to form a new 129 components augmented pose
xdyn. Inspired by [7], joint velocities and accelerations are computed as first and second
derivatives of the scale-normalized joint coordinates. At each image k:

ṗi
k = pi

k+1 − pi
k−1 (8)

p̈i
k = pi

k+2 + pi
k−2 − 2pi

k. (9)

The velocities and accelerations obtained from (8) and (9) are scaled by the video
frame-rate to make values time-consistent, before appending them in the augmented
pose vector xdyn. For every frame output by the skeleton filter of Section 5.1.1, scale-
normalized augmented pose vectors xdyn (as explained in Section 5.1.2) plus left il and
right ir hands cropped images (extracted as explained in Section 5.2) are appended in three
individual arrays.

6.2. Train-Ready Data Formulation

The videos in the Chalearn 2016 are randomly distributed. Once the features of interest
(il, ir and xdyn) are extracted and saved in .h5 files, we sort them with respect to their
labels. It is natural to expect the dataset videos (previously sequences of images, now
arrays of features) to be of different lengths. The average video length in this dataset
is 32 frames, while we fix the length of each sequence to 40 images in our work. If the
length of a sequence is less than 40, we pad zeros symmetrically at the start and end of the
sequence. Alternatively, if the length is greater than 40, we perform symmetric trimming
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of the sequence. Once the lengths of sequences are rectified (padded or trimmed), we
append all corresponding sequences of a gesture label into a single array. At the end of
this procedure, we are left with the 249 gestures in the Chalearn 2016 dataset, along with an
array of the ground-truth labels. Each feature of the combined augmented pose vectors is
normalized to zero mean and unit variance, while for hand images we perform pixel-wise
division by the maximum intensity value (e.g., 255). The label-wise sorting presented in
this section is only necessary if one wants to train a network on selected gestures (as we will
explain in Section 8). Otherwise, creating only a ground-truth label array should suffice.

7. Dynamic Gesture Recognition

To classify dynamic gestures, StaDNet learns to model the spatio-temporal depen-
dencies of the input video sequences. As already explained in Sections 5.2 and 6.1, we
obtain cropped hand images il and ir as well as the augmented pose vector xdyn for each
frame in a video sequence. These features are aggregated in time through Long-Short Term
Memory networks to detect dynamic gestures performed in the videos. However, we do
not pass raw hand images, but extract image embeddings of size 1024 elements per hand.
These image embeddings are extracted from the last fully connected layer of our static
hand gesture detector and can be considered as rich latent space representations of hand
gestures. This is done according to:

el, pl = gsta(il, θst)

er, pr = gsta(ir, θst), (10)

with:

• gsta the static hand gesture detector, which returns the frame-wise hand gesture class
probabilities pl,r and the embeddings vectors el,r from its last fully connected layers;

• θst the learned parameters of gsta.

For each frame of a video sequence of length N, the obtained hand image embeddings
el, er and augmented pose vector xdyn are subsequently fused in vector ψ, and then passed
to stacked LSTMs followed by gdyn network. This network outputs dynamic gestures
probability pdyn for each video:

ψ = [el; xdyn; er]

pdyn = gdyn(LSTMs(
N

∑
i=1

ψi, θLSTMs), θdyn). (11)

The gdyn network consists of a fully connected layer and a softmax layer which takes
the output of LSTMs as input; θLSTMs and θdyn are model parameters to be learned for
the detection of dynamic gestures, while pdyn is the detected class probability obtained as
output from the softmax layer. The illustration of our network is presented in Figure 4. We
employ dropout regularization method between successive layers to prevent over-fitting
and improve generalization, and batch-normalization to accelerate training.
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Figure 4. Illustration of StaDNet for static and dynamic gestures recognition. We perform intermedi-
ate fusion to combine hand image embeddings and augmented pose vector.

8. Training

The proposed network is trained on a computer with Intel© Core i7-6800K (3.4 GHz)
CPU, dual Nvidia GeForce GTX 1080 GPUs, 64 GB system memory and Ubuntu 16.04
Operating system. The neural network is designed, trained and evaluated in Python-
Keras with tensorflow back-end, while skeleton extraction with OpenPose is performed
in C++.

The Chalearn 2016 dataset has 35,875 videos in the provided training set, with only
the top 47 gestures (arranged in descending order of the number of samples) representing
34% of all videos. The numbers of videos in the provided validation and test sets are 5784
and 6271, respectively. The distribution of train, validation and test data in our work is
slightly different from the approach proposed in the challenge. We combine and shuffle
the provided train, validation and test sets together, leading to 47,930 total videos. For
weight initialization, 12,210 training videos of 47 gestures are utilized to perform pre-
training with a validation split of 0.2. We subsequently proceed to train our network for
all 249 gestures on 35,930 videos, initializing the parameters with the pre-trained model
weights. In this work, we utilize the Holdout cross-validation method, which aligns with the
original exercise of the Chalearn 2016 challenge. Thus, we optimize the hyper-parameters
on the validation data of 6000 videos, while the results are presented on the test data of the
remaining 6000 videos.

As already explained in Section 3, we utilize only 1247 videos for 14 correctly per-
formed dynamic gestures from the Praxis Cognitive Assessment Dataset. Given the small size
of this dataset, we adapt the network hyper-parameters to avoid over-fitting.
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9. Results

For the Chalearn 2016 dataset, the proposed network is initially trained on 47 gestures
with a low learning rate of 1× 10−5. After approximately 66,000 epochs, a top-1 validation
accuracy of 95.45% is obtained. The parameters learned for 47 gestures are employed to
initialize weights for complete data training for 249 gestures as previously described. The
network is trained in four phases. In the first phase, we perform weights initialization,
inspired by the transfer learning concept of deep networks, by replacing the classification
layer (with softmax activation function) by the same with output number of neurons
corresponding to the number of class labels in the dataset. In our case, we replace the
softmax layer in the trained network for 47 gestures plus the FC layer immediately preceding
it. The proposed model is trained for 249 gestures classes with a learning rate of 1× 10−3

and a decay value of 1× 10−3 with Adam optimizer. The early iterations are performed
with all layers of the network locked except the newly added FC and softmax layers. As the
number of epochs increases, we successively unlock the network layers from the bottom
(deep layers).

In the second phase, network layers until the last LSTM block are unlocked. All LSTM
blocks and then the complete model are unlocked, respectively in the third and fourth
phase. By approximately 2700 epochs, our network achieves 86.69% top-1 validation
accuracy for all 249 gestures and 86.75% top-1 test accuracy, surpassing the state-of-art
methods on this dataset. The prediction time for each video sample is 57.17 ms, excluding
pre-processing of the video frames. Thus, we are confident that the online dynamic gesture
recognition can be achieved in interaction time. The training curve of the complete model
is shown in Figure 5 while the confusion matrix/heat-map with evaluations on test set is
shown in Figure 6. Our results on the Chalearn 2016 dataset are compared with the reported
state-of-the-art in Table 1.

Table 1. Comparison of the reported results with ours on the Chalearn 2016. The challenge results
are published in [59].

Method Valid % Test %

StaDNet (ours) 86.69 86.75

FOANet [55] 80.96 82.07

Miao et al. [38] (ASU) 64.40 67.71

SYSU_IEEE 59.70 67.02

Lostoy 62.02 65.97

Wang et al. [60] (AMRL) 60.81 65.59

Training Accuracy
Validation Accuracy

Training Loss
Validation Loss

0.8669

0.6323

0 500 1000 1500 2000 2500

1.000

0.0903

4.824

0.000

Epochs

FC, Softmax &
last LSTM

All LSTM and successive layers unlocked

All layers
unlocked

A
cc

ur
ac

y

C
at

eg
or

ic
al

C
ro

ss
-E

nt
ro

py
Lo

ss

F
C

 &
 S

o
ft

m
a
x

Figure 5. Training curves of the proposed Convolutional Neural Network (CNN)–Long Short term
Memory (LSTM) network for all 249 gestures of the Chalearn 2016. The network is trained in four
phases, distinguished by the vertical lines.
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Figure 6. Illustration of the confusion matrix/heat-map of StaDNet evaluated on test set of the
Chalearn 2016 isolated gestures recognition dataset. It is evident that most samples in the test set are
recognized with high accuracy for all 249 gestures (diagonal entries, 86.75% overall).

Inspecting the training curves, we observe that the network is progressing towards
slight over-fitting in the fourth phase when all network layers are unlocked. Specifically,
the first time-distributed FC layer is considered the culprit for this phenomenon. Although
we already have a dropout layer immediately after this layer, with dropout rate equaling
0.85, we skip to further dive deeper to rectify this. However, it is assumed that substitution
of this layer with the strategy of pose-driven temporal attention [53] or with the adaptive hidden
layer [61], may help reduce this undesirable phenomenon and ultimately further improve
results. Moreover, recent studies argue that data augmentation that is, the technique of
perturbing data without altering class labels, are able to greatly improve model robustness
and generalization performance [62]. As we do not use any data augmentation on the
videos in model training for dynamic gestures, doing the contrary might help to reduce
over-fitting here.

For the Praxis dataset, the optimizer and values of learning rate and decay, are the
same as for the Chalearn 2016 dataset. The hyper-parameters including number of neurons
in FC layers plus hidden and cell states of LSTM blocks are (reduced) adapted to avoid
over-fitting. Our model obtains 99.6% top-1 test accuracy on 501 samples. The training
curve of the StaDNet on the Praxis dataset is shown in Figure 7, the normalized confusion
matrix on this dataset is shown in Figure 8, while the comparison of the results with the
state-of-the-art is shown in Table 2. We also quantify the performance of our static hand
gesture detector on a test set of 4190 hand images. The overall top-1 test accuracy is found
to be 98.9%. The normalized confusion matrix for 10 static hand gestures is shown in
Figure 9.
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Table 2. Comparison of dynamic gestures recognition results on the Praxis gestures dataset; [56] also
used a similar CNN-LSTM network.

System Accuracy % (Dynamic Gestures)

StaDNet (ours) 99.60

Negin et al. [56] 76.61

Figure 7. Training curves of StaDNet on the Praxis gesture dataset.
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Figure 8. Normalized confusion matrix of the proposed model evaluated on test set of the Praxis dataset.



Sensors 2021, 21, 2227 16 of 20

Figure 9. Normalized confusion matrix for our static hand gesture detector quantified on test-set of
OpenSign. This figure is taken from [11] with the authors’ permission.

We devised robotic experiments for gesture-controlled safe human-robot interaction
tasks as already presented in [11]. These are preliminary experiments that allow the human
operator to communicate with the robot through static hand gestures in real-time while
dynamic gestures integration is yet to be done. The experiments were performed on BAZAR
robot [63] which has two Kuka LWR 4+ arms with two Shadow Dexterous Hands attached
at the end-effectors. We exploited OpenPHRI [64], which is an open-source library, to
control the robot while corroborating safety of the human operator. A finite state machine is
developed to control behavior of the robot which is determined by the sensory information
for example, hand gestures, distance of the human operator from the robot, joint-torque
sensing and so forth. The experiment is decomposed into two phases: (1) a teaching by
demonstration phase, where the user manually guides the robot to a set of waypoints and
(2) a replay phase, where the robot autonomously goes to every recorded waypoint to
perform a given task, here force control. A video of the experiment is available online
(http://youtu.be/lB5vXc8LMnk, accessed on 22 March 2021) and snapshots are given in
Figure 10.

Figure 10. Snapshots of our gesture-controlled safe human-robot interaction experiment taken
from [11] with the authors’ permission. The human operator manually guides the robot to way-
points in the workspace then asks the robot to record them through a gesture. The human operator
can transmit other commands to the robot like replay, stop, resume, reteach, and so forth with only
hand gestures.

http://youtu.be/lB5vXc8LMnk
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10. Conclusions

In this paper, a unified framework for simultaneous recognition of static hands and
dynamic upper-body gestures, StaDNet is proposed. A novel idea of learning-based
depth estimator is also presented, which predicts the distance of the person and his/her
hands, exploiting only the upper-body 2D skeleton coordinates. By virtue of this feature,
monocular images are sufficient and the proposed framework does not require depth
sensing. Thus, the use of StaDNet for gestures detection is not limited to any specialized
camera and can work with most conventional RGB cameras. Monocular images are indeed
sensitive to the changing lighting conditions and might fail to work in extreme conditions
for example, during sand blasting operation in the industry or during fog and rain in the
outdoors. To develop immunity against such lighting corruptions, data augmentation
strategies such as [65] can be exploited. One might argue that employing HSV or HSL
color models instead of RGB might be more appropriate to deal with changing ambient
light conditions. However, StaDNet actually relies on OpenPose for skeleton extraction and
on the hand gesture detector from our previous work [11]. OpenPose is the state-of-art in
skeleton extraction from monocular camera and takes RGB images as input. Furthermore,
our static hand gesture also takes RGB images as input and performs well with 98.9% top-1
test accuracy on 10 static hand gestures as we show in Figure 9. In spite of that, we are
aware that HSV or HSL had been commonly used for hand segmentation in the literature
by thresholding the values of Hue, Saturation and Value/Lightness. This indeed intrigues
our eagerness to train and compare the performance of deep models for hand gesture
detector in this color model/space, which we plan to do in our future work.

Our pose-driven hard spatial attention mechanism directs the focus of StaDNet on
upper-body pose to model large-scale body movements of the limbs and, on the hand
images for subtle hand/fingers movements. This enables StaDNet to out-score the existing
approaches on the Chalearn 2016 dataset. The presented weight initialization strategy
addresses the imbalance in class distribution in the Chalearn 2016 dataset, thus facilitates
parameters optimization for all 249 gestures. Our static gestures detector outputs the
predicted label frame-wise at approximately 21 fps with the state-of-the-art recognition
accuracy. However, class recognition for dynamic gestures is performed on isolated ges-
tures videos, executed by an individual in the scene. We plan to extend this work for
continuous dynamic gestures recognition to demonstrate its utility in human-machine
interaction. This can be achieved in one way by developing a binary motion detector
to detect start and end instances of the gestures. Although a multi-stage training strat-
egy is presented, we envision an end-to-end training approach for online learning of
new gestures.
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