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Abstract
Knowledge of seafloor topography (bathymetry) is increasingly important as coastal environments are
unprecedentedly stressed by climate change and anthropogenic pressure. The bathymetry of shallow
nearshore waters is yet marginally monitored due to costly and time-intensive survey techniques.
Methods to obtain satellite derived bathymetry (SDB) have become increasingly valuable. Mapping
temporal change is however challenging, because the majority of these methods remain heavily dependent
on situ observations. This thesis introduces an SDB approach to estimate temporal bathymetric changes,
which omits the need for synchronous in situ data.
The approach is based on a reference image correction method that enables direct comparison of
multitemporal imagery and temporal extrapolation of a conventionally-trained bathymetry estimation
model (BEM). Research focused on pre-processing multispectral imagery, developing a bathymetry
estimation model and estimating bathymetry for times of absent in situ data. The proposed method is
demonstrated with a case study in the Dutch Wadden Sea; a site characterised by dynamic morphology,
high turbidity and homogeneous bottom type. A log-linear estimation model is obtained by linear
regression on in situ observations and the three visible bands of Sentinel-2 imagery. Scarcity of
high-quality Sentinel-2 imagery is managed by combing multiple images into a six-month composite.
The availability of two sets of vaklodingen in situ observations allowed for training and testing two
bathymetry estimation models (BEM 2016 and BEM 2019) and for cross-validating the depth estimates
after a three-year extrapolation of these models.
Bathymetry is estimated for times of absent in situ data by temporal extrapolation of the two estimation
models. The extrapolation showed estimation of shallow bathymetric structures in up to four metre
water depth with an RMSE of approximately one metre. Additionally, the migration direction of these
bathymetric structures is successfully estimated. Within the tested three-year time frame, predictive
power did not decrease. These results imply that estimation performance is governed by composite
quality and predictive power of the bathymetry estimation model. The limited influence of temporal
extrapolation on estimation performance suggests that the availability of high-quality satellite imagery
and one set of non-synchronous in situ observations is sufficient to estimate bathymetry for times of
absent in situ data. The proposed method potentially provides a tool for mapping temporal bathymetric
changes of nearshore zones across the globe.
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1
Introduction

Coastal environments are unprecedentedly stressed by climate change and increasing anthropogenic
pressure. Understanding and predicting future changes therefore become increasingly important. To
assess potential impacts, detailed mapping and continuously monitoring of marine systems is required
Accurate mapping of bathymetry is relevant to many areas of marine science and engineering, such as
management of the marine environment, industrial development and coastal research studies.
Bathymetric surveys are traditionally ship-based observations from multi-beam sonars or aircraft-based
measurements from lidar scanners. Ship-based surveys provide accurate depth observations at high
spatial resolution, these time-intensive and costly surveys are however limited to one-dimensional
transects in accessible, non-shallow waters. Airborne surveys alternatively offer swift access to remote
areas but these campaigns are limited by weather conditions and in spatial coverage. In addition, lidar
surveys are costly and constrained to optically clear waters.
Spaceborne remote sensing potentially provides a tool for global bathymetric mapping with frequently-
recorded data, albeit at lower resolution than multi-beam sonar or airborne lidar surveys. Obtaining
satellite derived bathymetry (SDB) from optical sensors has been extensively studied since the 1970s
(Lyzenga, 1978). The spatiotemporal resolution of optical imagery has since increased significantly, for
example with the launch of the Sentinel-2 satellites. Multispectral imagery from this mission is publicly
available with a repeat-visit up to every five days and a spatial resolution of ten metre for its three
visible bands (European Space Agency, 2015).
Estimation approaches that obtain bathymetry from spectral information vary from empirical to (semi-)
analytical models. Analytical approaches simulate the propagation of light through the atmosphere
and the water column by inversion of radiative transfer models (e.g. Hedley et al., 2009, Lee et al.,
1999). Although analytical models require no in situ data for calibration, these approaches are strongly
dependent on knowledge of the optical properties of the ocean and the characteristics of the seafloor (e.g.
Gao, 2009, Hedley et al., 2009). Empirical approaches derive a relation between the intensity of a spectral
image and in situ depth observations, for which methods vary from simplified theoretically-oriented
models (e.g. Lyzenga, 1978) to extensive statistical machine learning techniques (e.g. Sagawa et al.,
2019). The majority of bathymetry estimation approaches is heavily dependent on in situ observations,
whether it be measurements of optical water properties as input for analytical models or depth observa-
tions to train empirical models. Obtaining in situ measurements is expensive and consequently not
frequently repeated.
Bathymetry estimation is strongly limited by the scarce availability of in situ observations in both
space and time. Mapping temporal bathymetric changes is especially challenging because it requires
bathymetry estimation for times of absent in situ data. To overcome this problem, I propose an approach
to estimate temporal bathymetric changes which omits the need for synchronous in situ data. The
approach is based on temporal extrapolation of an empirically-derived bathymetry estimation model.
To investigate the potential of the proposed method, the following research questions are defined:

1
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To what extent can bathymetry be derived from multispectral imagery, for times of absent
in situ data?
In support of this main question, four sub-questions are defined.

• How to enable direct comparison of multitemporal satellite imagery in order to map temporal
bathymetric changes??

• How to manage the expected scarcity of high-quality images due to challenging conditions associated
with the study site?

• What approach is best-suited to relate water depth and multispectral imagery for the site-specific
conditions?

• What is the performance of extrapolation in terms of detectable bathymetric changes, temporal
limits and estimation quality?

This thesis is structured as follows: Chapter 2 provides some background information on bathymetric
structures and remote sensing and presents insight into defining a bathymetry estimation model.
Chapter 3 first introduces the case study and the data and then illustrates the proposed method to
map temporal bathymetric changes. This consists of pre-processing the multispectral imagery to isolate
the bathymetric signal, developing a bathymetry estimation model and extrapolation of this model.
Chapter 4 discusses the results to assess to which extent the proposed method can be used to estimate
bathymetry for times of absent in situ data. Chapter 5 summarises the main findings based on the
research questions and provides future recommendations.



2
Background information

Estimating bathymetry from satellite imagery requires some understanding of the physical processes
underlying both the dynamics of coastal zone and the propagation of light. Across this combined topic,
spatial and temporal scales vary extremely from an electromagnetic wave with the speed of light to
the development of a coastline over decades. Knowledge of the characteristics of the case study and
the applications of remote sensing are essential to obtain a bathymetry estimation model appropriate
for the local conditions. In support of the Wadden Sea case study (introduced in Section 3.1.1), this
chapter first provides a brief introduction to the morphodynamics of a tide-dominated system (Section
2.1). Next, the chapter presents a background on electromagnetic radiation and its properties (Section
2.2) and an introduction on how to derive bathymetry from satellite images (Section 2.3).

2.1 Morphodynamic changes of a tide-dominated system
The coastal zone is controlled by a balance between constructive and destructive forcings, which form
a complex system of coupled interactions between land and water. Sediment is continuously eroded,
transported and deposited under the influence of physical and ecological processes in the water. A
disparity between deposition and erosion governs the development of structures on the seabed. These
structures shape the seafloor topography, which is also known as bathymetry.
The morphological structures on the seabed, known as bedforms, form as a result of the interaction
between water and sediment. Their spatial and temporal scales are closely connected, large features
develop over long periods of time. For example, large tidal channels and sand banks with surface
dimensions from 5 to 20 km2 change on a timescale from years to decades, while smaller structures with
dimensions up to several km2 evolve within years (Bosboom and Stive, 2012).
Tide-dominated shorelines are especially dynamic systems where bedforms and bathymetry are constant-
ly changing. Tidal basins and barrier coasts were formed as a result of flooded land due to post-glacial
sea level rise (De Swart and Zimmerman, 2009). The morphological development of these systems is
controlled by the relative influence of hydrodynamics forcings by winds and tides.
Tidal basins are part of highly-dynamic tidal inlet systems, which consist of unique morphological
features that each exhibit characteristic temporal evolution. Typical morphological elements of a tidal
inlet systems are the ebb-tidal delta, the tidal channels, the tidal flats and the total channel volume. (van
Veen et al., 2005(1950)) (Figure 2.1). The ebb-tidal delta is a fan-shaped accumulation of sediment
seaward of the tidal inlet, that was deposited from the ebb current flowing out of the tidal basin.
Alongshore sediment transport bypasses the inlet which may result in small depositional structures
on top of the ebb-tidal delta. Over the period of a tidal cycle, large volumes of water are exchanged
between the open ocean and the enclosed basin, which naturally keeps the inlets from closing. Flood
currents enter the tidal basin through deep channels and across shallow intertidal flats, which fall dry
during low water. The channels are characterised a deep main channel with tidal bars and a bifurcating
pattern of side channels which gradually decrease in depth towards land (De Swart and Zimmerman,
2009, van Veen et al., 2005(1950)).

3
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Figure 2.1: Illustration of the morphological elements of a tidal inlet system in the Dutch Wadden Sea. Source: (Sha, 1990)

The morphodynamic development of these tidal inlet systems occurs on a wide range of spatial and
temporal scales. The smallest features form due to the interaction of water and sediment and develop
within a day, while the elements of the tidal inlet system, such as the tidal basin, extend over kilometres
and develop over centuries (Bosboom and Stive, 2012). The principal morphological features develop
due to seasonal and interannual variations in weather and tidal forcings. An example are the tidal
channels, which span hundreds of metres and evolve on a scale of years.

2.2 Electromagnetic radiation
Electromagnetic radiation emitted by the Sun can be used to obtain bathymetry. Due to interactions
with the atmosphere and the ocean, the bathymetric signal only contributes marginally to the composed
signal that is recorded by a satellite sensor.

2.2.1. An introduction to electromagnetic radiation
Electromagnetic radiation is radiant energy travelling through space by means of electromagnetic waves.
This wave phenomenon is induced by periodically changing magnetic and electric fields (Ishimaru,
1991). Waves are characterised by their wavelength or frequency, which are related through the speed
of the wave. In vacuum, electromagnetic waves travel with the speed of light. The energy carried
by electromagnetic waves is proportional to their frequency, waves with high frequencies and short
wavelengths hold more energy.
The electromagnetic spectrum describes the range electromagnetic waves based on their frequency and
classifies them into separate spectral bands (Figure 2.2). The spectrum ranges from gamma waves at
the high frequency end of the spectrum to radio rays at the low frequency end. Visible light covers only
a narrow section of the electromagnetic spectrum, wavelengths range from approximately 400 nm to
700 nm. This section is commonly divided into even narrower bands of spectral colours, such as red,
green and blue.
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Figure 2.2: Visualisation of the electromagnetic spectrum, illustrates the range of electromagnetic waves based their frequency
and wavelength and marks the separate bands. Source: https://www.miniphysics.com/electromagnetic-spectrum_25.html

2.2.2. Recording radiation with sensors
Sensors only record electromagnetic radiation from a specific part of the electromagnetic spectrum.
For example, the human eye sees visible light while a radio is designed to detect radio waves. Active
systems record electromagnetic radiation from their own artificial source, whereas passive sensors record
naturally available radiation such as solar radiation. Optical sensors record radiation within the visible,
near infrared and short wave infrared parts of the spectrum. The exact configuration of their recording
bands however varies. Multispectral sensors record electromagnetic radiation in multiple spectral bands.
The red, green and blue band of the visible spectrum are typically included. The instruments on board
the Sentinel-2 satellites are an example of multispectral sensors currently in orbit around Earth. For
this study, Sentinel-2 imagery is used. Details on the mission and its data are therefore provided in
Section 3.1.2.

2.2.3. Attenuation of radiation through a medium
Electromagnetic radiation interacts with the medium through which it propagates; incident radiation
may be reflected, scattered in a new direction or exchange energy with the medium. As a result of these
interactions, the radiant intensity may decrease (attenuate). The intensity of propagating radiation is
attenuated by scattering, which diffuses radiation, and by absorption, which converts radiation into
another form of energy. The interaction of an electromagnetic wave and matter is controlled by the
relation between the wavelength and the medium. This relative measure is described by the penetration
depth, which is defined as the distance where the intensity has reduced to approximately one third. The
spectrally dependent penetration depth can be used to express the attenuation of intensity. The law of
Lambert-Beer defines the exponential decay of the intensity as function of the penetration depth and
the path length of propagation into the medium:

𝐼 = 𝐼ኺ expዅ
ℓ
ᒆ (2.1)

Where 𝐼 is the reduced intensity, 𝐼ኺ the initial intensity, 𝛼 the penetration depth and ℓ the path length.

https://www.miniphysics.com/electromagnetic-spectrum_25.html
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2.2.4. Earth’s energy balance
The Sun is the primal source of energy at Earth and its electromagnetic radiation is attenuated by
interactions with the Earth and its atmosphere. Solar radiation is emitted across the shortwave end of
the electromagnetic spectrum, ranging from ultraviolet to near infrared (250 to 2500 nm). Incoming
solar radiation predominantly consists of visible light (approx. 46 %) and near infrared radiation
(approx. 46 %) (Iqbal, 2012). Approximately one third of the incoming radiation is reflection back to
outer space (Marshall and Plumb, 2007).
These incoming and outgoing radiation fluxes are part of the Earth’s energy balance. Incoming
shortwave radiation is absorbed by the surface of the Earth and subsequently emitted as heat and
longwave radiation (Marshall and Plumb, 2007). Here, the focus is on incoming and outgoing shortwave
radiation (Figure 2.3, adjusted from Ruddiman, 2000). Due to atmospheric interactions, only half of
the incoming radiation reaches the surface of the Earth. From this flux, that actually reaches Earth’s
surface, the majority is absorbed and just a fraction is reflected back to space. The incoming radiation
that never reaches Earth, is absorbed or redirected by scattering or reflection by the atmosphere. The
outgoing signal predominantly consists of this radiation, that is scattered or reflected by the atmosphere
(>85 %).

Figure 2.3: Incoming solar radiation interacts with the atmosphere and the Earth. The majority (70 %) of the incoming radiation
is absorbed, the remainder (30 %) is reflected back to space. Reflections from the Earth’s surface are a small fraction (approx.
15 %) of the outgoing radiation. This cartoon demonstrates the effect of the interactions between electromagnetic radiation and
Earth’s atmosphere. Source: Ruddiman (2000)

The Earth’s atmosphere consists of a mix of gases, some of which absorb radiation from specific parts
of the electromagnetic spectrum. The atmosphere can therefore only be penetrated by radiation of
certain frequencies. In the visible spectrum, the atmosphere is almost completely transparent, while it
is very opaque in the ultraviolet spectrum (Marshall and Plumb, 2007). This characteristic absorption
spectrum of the atmosphere, which is due to its constituents, is one of the reasons for the decreasing
intensity of electromagnetic radiation.
Reflections of electromagnetic radiation in the atmosphere are largely due to clouds. Scattering changes
the direction of an electromagnetic wave, it can occur with and without the loss of energy (respectively
inelastic and elastic scattering) (Platt et al., 2007). Also this type of interaction is determined by the
relative relation between the wavelength of the electromagnetic wave and the size of the particle that it
interacts with. Rayleigh scattering occurs upon interaction with molecules, while Mie scattering occur
when electromagnetic radiation interacts with aerosols in the atmosphere (Platt et al., 2007). Radiation
scattered and reflected by the atmosphere makes up the majority of the outgoing shortwave radiation.
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2.2.5. The bathymetric signal
Approximately 15 % of the outgoing flux reflected on the surface of the Earth. The fraction of incoming
solar radiation that is reflected is known as the albedo. Light surfaces, such as snow or desert, reflect
more radiation and thus have a high albedo. Water mostly absorbs electromagnetic radiation, and
therefore has an albedo of 2-10 % (Marshall and Plumb, 2007).
In liquid state, water absorbs radiation across a wide range of the electromagnetic spectrum. Absorption
across the visible spectrum is however weak (e.g. Buiteveld et al., 1994, Morel, 1974) (Figure 2.4).
Absorption across this narrow band of visible light is variable, wavelengths with long wavelengths and
low energy are absorbed first. Blue light is therefore absorbed the least, because it has the shortest
wavelength in the visible spectrum. As a result, blue light penetrates deeper into the water column than
red light. The law of Lambert-Beer can be used to quantify this attenuation of light in water (Section
2.2.3).

Figure 2.4: Absorption spectrum of liquid water. The majority of electromagnetic radiation is strongly absorbed by water. Visible
light is however absorbed weakly; only electromagnetic radiation at these wavelengths propagates into the water column. Source:
https://commons.wikimedia.org/wiki/File:Absorption_spectrum_of_liquid_water.png

In nearshore waters, incoming solar radiation may reflect on the seafloor if the intensity of the incoming
radiation is sufficiently large and the depth sufficiently shallow. In this case, the reflected signal is
a product of the water depth and the reflective properties of the bottom type. This bathymetric
signal, which reflected on the seafloor, propagates towards space. All outgoing reflections result from
interactions between electromagnetic radiation and the medium through which it propagated. The total
outgoing radiation flux is thus the summation of all the different processes, of which the bathymetric
signal is only a very small fraction.

https://commons.wikimedia.org/wiki/File:Absorption_spectrum_of_liquid_water.png
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2.3 Satellite derived bathymetry
The intensity of the reflected signal can be used as a proxy for water depth, due to the relation between
the intensity of radiation and the properties of the water, as defined by the law of Lambert-Beer (Section
2.2.3, Equation 2.1). As a result of the absorption spectrum of water (Section 2.2.5), visible light can
be used to obtain information of the water column and thus optical remote sensing is used to derive
bathymetry.

2.3.1. Empirical models vs. analytical models
Algorithms to derive bathymetry from optical satellite imagery are predominantly based on the physics
of light attenuation in water. These bathymetry estimation models are commonly classified into
analytical and empirical approaches. This section briefly discusses analytical and empirical models
in order to provide context for the empirical estimation model that is used in this study.

Analytical approaches employ the inversion of radiative transfer models which are priory tuned. Forward
modelling is used to calculate a range of reflected intensities from the properties of the water column
and the bottom type. For each pixel, the observed intensity is compared to the modelled intensities
and the optimal model is inverted to estimate depth (Hedley et al., 2009, Kerr and Purkis, 2018, Lee
et al., 1999). Although analytical models require no in situ data for calibration, expert knowledge of
a range of water properties and seafloor characteristics is essential to apply a radiative transfer model
(Gao, 2009). By simultaneously deriving water depth and reflected intensities, analytical approaches
are robust and not sensitive to variations in bottom type (Bierwirth et al., 1993).

Empirical algorithms derive light attenuation properties and water depth by performing regression
analysis on in situ depth observations. These empirically calibrated approaches are much simpler and
require less input parameters than the complex and computationally-expensive analytical models (Gao,
2009). The performance of empirical models is limited by water turbidity and the influence of the
seafloor surface, they are however widely used (e.g. Lyzenga, 1978, Pacheco et al., 2015, Stumpf et al.,
2003). Although, analytical models are extremely sensitive to atmospheric corrections (Casal et al.,
2020, Hedley et al., 2018), accurate corrections are also important in empirical approaches. Consistent
corrections are in particular crucial for temporal analysis of SDB, because imagery must be directly
comparable (Caballero and Stumpf, 2020a, Casal et al., 2019)

2.3.2. Atmospheric corrections
Atmospheric effects have a significant influence on the signal received by a satellite-based sensor (Section
2.2.4). The contribution of atmospheric effects to the recorded signal is in the visible spectrum up to 90
% (Gordon and Morel, 1983). Correcting for these atmospheric influences is therefore crucial in order
to isolate the bathymetric signal and obtain accurate depth estimates. Currently, a wide variety of
correction schemes is available. Atmospheric corrections can be classified into image-based approaches
and methods that rely on atmospheric radiative transfer models, the latter requiring in situ observations
(Hadjimitsis et al., 2004).

The darkest object subtraction (DOS) method, first introduced by Chavez Jr (1988), is a widely-used
atmospheric correction for bathymetric purposes (e.g. Geyman and Maloof, 2019, Lyzenga, 1978, Pacheco
et al., 2015). The DOS method is an image-based correction which derives the atmospheric effects from
an image itself, it thus requires no external data and can therefore be applied to any multispectral
image. The reflectance from a significantly dark object is assumed to predominantly consist of signal
reflected or scattered by the atmosphere. The atmosphere is assumed to be constant across the image
such that each pixel is affected equally by the atmospheric effects and its constant offsetting effect can
be removed by subtracting the intensity of the darkest pixel.

Sen2Cor is a physics-based algorithm to apply atmospheric corrections on multispectral imagery that
was developed by the European Space Agency (ESA) to correct imagery from their Sentinel-2 satellites
(European Space Agency, 2015). The Sen2Cor correction is based on the ATCOR model (Richter,
1990) which employs the inversion of radiative transfer model by using lookup tables (Main-Knorn
et al., 2017). ESA distributes Sen2Cor freely and offers a selection of readily processed Sentinel-2
imagery. The Sen2Cor corrections have been used in recent studies on the derivation of bathymetry
from multispectral images (e.g. Casal et al., 2019, Evagorou et al., 2019, Poursanidis et al., 2019).
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2.3.3. Defining a bathymetry estimation model
The reflected signal recorded by a multispectral sensor can be used to estimate water depth according
to the law of Lambert-Beer (Section 2.2.3). Lyzenga (1978) was the first to define the log-linear relation
between observed water depths and the intensity of the recorded signal within a given spectral band:

𝑧 = 𝑎 log 𝐼፤ + 𝑏 (2.2)

Where 𝑧 is the water depth, 𝐼 the intensity of the recorded radiance, 𝑘 denotes the spectral band and
𝑎 and 𝑏 are the coefficients describing the linear relationship.

The relation between depth and intensity is better constrained by combining multiple spectral bands
(e.g. Lyzenga, 1978, Stumpf et al., 2003). A linear combination of multiple spectral bands is given by:

𝑧 = 𝑏 +∑
፤
𝑎፤ log 𝐼፤ (2.3)

Where 𝑧 the water depth is now a function of each spectral band 𝑘, with 𝐼፤ the intensity of the recorded
radiance and 𝑎፤ and 𝑏 the coefficients defining the linear relationship.

The log-linear model (Equation 2.3) assumes a uniform bottom type, which makes the algorithm very
sensitive to bottom type heterogeneity. Stumpf et al. (2003) provide an alternative independent of
bottom type, by using the ratio of different spectral bands. The simple algorithm from Lyzenga (1978)
is however widely applicable and has since been used in many studies that estimate bathymetry from
optical satellite imagery (e.g. Pacheco et al., 2015, Poursanidis et al., 2019, Traganos et al., 2018).

2.3.4. Using in situ observations to obtain the estimation model
In situ observations can be used to obtain the coefficients defining the relationship between water depth
and intensity (Equation 2.3). Regression analysis establishes the relationship between independent and
dependent variables in order to predict quantitative outputs (Hastie et al., 2009). Empirical bathymetry
models apply regression analysis on in situ depth observations and recorded radiances to estimate water
depth.

For a data set of 𝑁፞ depth observations and the three visible bands of an image (red, green and blue),
Equation 2.3 can be written in matrix form as a set of 𝑁፞ equations and 4 unknown coefficients:

z = Ax =
⎡
⎢
⎢
⎢
⎣

log 𝐼፫Ꮃ log 𝐼፠Ꮃ log 𝐼Ꮃ 1

⋮ ⋮ ⋮ ⋮

log 𝐼፫ᑟᑖ log 𝐼፠ᑟᑖ log 𝐼ᑟᑖ 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑎፫
𝑎፠
𝑎
𝑏

⎤
⎥
⎥
⎦

(2.4)

Where z is the vector of depth observations (size Ne × 1), x the vector with the unknown coefficients
(size 4 × 1) and A (size 4 ×Ne) the design matrix relating these two vectors through the log-transformed
recorded radiances Ik.

The log-linear relation between water depth and intensity allows for linear regression by applying
least squares estimation. Least-squares estimation is a common approach in regression analysis to
manage overdetermined systems, which have more observations available than necessarily required to
estimate the unknown parameters of interest. Often there is no exact solution due to measurements
errors, and thus are overdetermined systems generally inconsistent (Verhagen and Teunissen, 2017). By
including the errors in the linear system and subsequently minimising the sum of the squared errors,
the least-squares solution is a unique fit to the data.

The linear system including measurement errors is then defined as:

z = Ax+ e (2.5)

Where e is the vector of errors (size Ne × 1).
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The unknown coefficients in x are obtained by minimising the squared sum of errors. The estimated
solution to the unknown parameters is the least squares estimator x̂, which is given by:

x̂ = argmin(eዉe) = argmin(z−Ax)ዉ(z−Ax) = (Aዉ
A)ዅኻAዉ

z (2.6)
Where x̂ is the least squares estimator which is the solution to the unknown coefficients in the vector
x that is obtained by using the observations vector z, design matrix A and error vector e.



3
Methodology

This chapter presents a method to estimate temporal changes from satellite derived bathymetry. The
proposed method is based on tailored processing of multispectral imagery and temporal extrapolation
of a conventionally-trained bathymetry estimation model. The chapter introduces the Wadden Sea
case study and data that are used in this study (Section 3.1) and the workflow which is structured into
three components (Figure 3.1). First, the processing of multispectral imagery to isolate the bathymetric
signal (Section 3.2). Second, the development of a bathymetry estimation model (Section 3.3). Third,
the temporal extrapolation of the trained estimation model to estimate bathymetry for times of absent
in situ data (Section 3.4).

Figure 3.1: Visual summary of the presented workflow that enables estimating bathymetry from multispectral imagery for times
of absent in situ data. The workflow is divided into three sections; processing multispectral imagery to isolate the bathymetric
signal, deriving a bathymetry estimation model and estimating temporal bathymetric changes.
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To verify the capabilities of temporal analysis using high-quality multispectral images, research has
focused on pre-processing satellite images which includes removal of clouds and a novel reference image
correction method for the correction of large-scale non-bathymetric signals. In addition, an optimised
approach for the creation of composite images is studied (Section 3.2).
To describe the relation between depth and the recorded intensity of a multispectral image, a depth
estimation model is employed which is based on the propagation of visible light in water (Section 3.3).
Study site characteristics such as turbidity govern the attenuation of light whereas bottom habitat
controls the reflection of incoming radiation. Therefore, a bathymetry estimation model should be
adapted to the case study. The bathymetry estimation model is obtained by using in situ depth
observations to train a linear regression model. The availability of two sets of in situ observations
allows for training and testing two bathymetry estimation models (BEM 2016 and BEM 2019).
By temporal extrapolation of the readily-trained bathymetry estimation model, bathymetry is estimated
for times of absent in situ data (Section 3.4). Extrapolated estimates are compared with in situ
observation to verify the estimation performance. Additionally, predictive power of the extrapolated
estimation model is compared with a benchmark performance.
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3.1 Case study
Testing and validating the presented method requires a case study with a dynamic environment for
which repeated in situ observations are available. The Wadden Sea is a tidal system where bathymetry
continuously changes, its Dutch waters are surveyed by the national agency Rijkswaterstaat approx-
imately every three years. Multispectral imagery is available from a wide range of sources. Imagery
of ESA’s Sentinel-2 mission is especially suited given its high revisit frequency of approximately every
five days and its open access. This section presents the characteristics of the Wadden Sea case study
(Section 3.1.1) and the details of the available data sets that are used for this study (Section 3.1.2).

3.1.1. The Wadden Sea tidal system
The Wadden Sea is world’s largest tidal flat system which stretches along the coasts of The Netherlands,
Germany and Denmark. It is recognised for its global importance and has been listed as a UNESCO
world heritage site since 2009. The coastal wetlands consist of a variety of habitats which include tidal
areas, estuaries and salt marches. The tidal flats with its complex pattern of channels are the most
important habitat, covering more than 10,000 km2. A series of barrier islands shelters the tidal flats
from the North Sea, the back-barrier Wadden Sea is only connected through the tidal inlets.
With its barrier islands and tidal inlets it forms the highly dynamic Wadden system, where bathymetry
is continuously changing (Wang et al., 2012). Characteristic features such as a large ebb-tidal channel
and deep tidal channels (Section 2.1), indicate that its major inlets are predominantly shaped by
tidal forcings (Elias et al., 2012). Sediment is transported alongshore by waves, bypassing the inlets
and forming bedforms on top of the ebb-tidal delta (Sha, 1989). Its dynamic environment makes the
Wadden Sea a suitable area to investigate the potential of mapping these morphodynamic changes by
using multispectral imagery.
The Wadden Sea consist of a large variety of habitats such as its tidal flats and seagrass beds. In
an ecological context, habitat is often used to describe the physical environment of a living organism.
In remote sensing however, it just refers to surface features, which can have for instance geological,
geomorphological or biological origin (Green et al., 2000). Sand is the principle constituent of the
sediment in both tidal channels and on the tidal flats (van Straaten, 1954). Therefore, the tidal flats
and tidal channels form a homogeneous habitat with a uniform sandy bottom type in view of remote
sensing purposes.
High concentrations of suspended sediment are the primary reason for high turbidity in many coastal
waters, including the Wadden Sea (Postma, 1961). Turbidity affects the propagation of electromagnetic
radiation through the water column and attenuates incoming solar radiation or the reflected bathymetric
signal. Deriving bathymetry from multispectral imagery for the Wadden Sea is therefore limited by high
turbidity levels in the water column.
A study site was selected which is representative of the dynamics Wadden Sea system; bathymetric
surveys demonstrate the presence of deep tidal channel and shallow tidal flat structures within this site.
The study site has a homogeneous bottom type due to absence of seafloor covering habitats such as
seagrass beds. The site of approximately 10 by 4 km is located north of the Dutch island Rottumeroog
and west of the German island Borkum (Figure 3.2).
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Figure 3.2: Map of the Wadden Sea across the north of The Netherlands. The red square marks the selected study site which
is representative of the dynamic environment of the Wadden system due to the presence of a deep tidal channel structure and
shallower tidal flats. The channel and flat structures are the only surface features present within the study site, which therefore
has a uniform sandy bottom type.

3.1.2. Available data
In situ depth observations in the Dutch Wadden Sea are routinely recorded by Rijkswaterstaat. Approx-
imately every years the bathymetry of delineated zones is acquired. Depths up to approximately −20 m
NAP are measured by ship-based multibeam echosounders, emerged areas are additionally surveyed
by using laser altimetry. For this study, part of tile KB1110 × 134 was used. Data is interpolated
onto a 20 × 20 m grid and available from the OpenEarth database via Deltares (Deltares, 2018). This
bathymetry dataset is commonly known as vaklodingen and therefore hereafter referred to as such.
Figure 3.3 shows an example of the vaklodingen observations for the Dutch Wadden Sea. For this
study, the vaklodingen data is which was acquired from July to September 2016 and July to September
2019. Figure 3.4 shows the two vaklodingen data set (2016 and 2019) for the study site.

Figure 3.3: Visualisation of the bathymetry of the Dutch Wadden Sea from a vaklodingen data set. Deep ares such as the tidal
channels are depicted in dark blue, whereas shallow waters such as the tidal flats are shown in light colours.
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Figure 3.4: Visualisation of the 2016 and 2019 vaklodingen data for the study site marked on the zoomed in map of the Wadden
Sea. Deep depths are shown in dark blue, shallow areas are depicted in light blue.

Multispectral imagery from Sentinel-2 is freely available through ESA’s Copernicus programme. The
Sentinel-2 mission consists of two twin polar-orbiting satellites; Sentinel-2A was launched on 23 June
2015 and Sentinel-2B on 7 March 2017 (European Space Agency, 2015). The Sentinel-2 satellites are
equipped with a multispectral sensor that records electromagnetic radiation in thirteen spectral bands
(443 to 2190 nm). The three visible bands have a spatial resolution of 10 m, these bands were used for
this study. Data is available as tiles of a fixed size of 100 × 100 km2.
Sentinel-2 imagery is provided to users at different levels of processing; products are available at Level-1C
(L1C) and Level-2A (L2A). L1C data are Top Of Atmosphere (TOA) reflectances that have been
corrected radiometrically and geometrically, which includes orthorectification and geo-referencing to
the WGS84 datum (European Space Agency, 2015). L2A data are Bottom Of Atmosphere (BOA)
reflectances derived from the L1C product by using the Sen2Cor processor (Section 2.3.2). ESA
offers users access to the Sen2Cor processor but also has the corrected L2A product readily available
since March 2018, for the area of northwestern Europe. Products are embedded with a cloud-type
specifying bitmask, which is based on combining information from the blue spectral band and the three
short-wavelength infrared (SWIR) bands. Pixels are specified as cloud-free, dense cloud or cirrus cloud
(European Space Agency, 2015).
This study employs Sentinel-2 imagery of tile 31U at L1C (TOA) and L2A (BOA) level. Data was
accessed through the online JavaScript interface of Google Earth Engine (GEE). GEE is an online cloud
platform that provides access to a collection of free geospatial datasets and optical satellite imagery,
and offers a high- performance computing system (Gorelick et al., 2017). The original tile was clipped
to the study site of approximately 10 × 4 km2 (Section 3.1.1). For this research, the three visible bands
(Section 2.2.5) and the embedded cloud mask were used.

Figure 3.5: Visualisation of a Sentinel-2 BOA image (22-09-2020) of the Dutch Wadden Sea (processed with Sen2Cor)
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3.2 Isolating the bathymetric signal in multispectral imagery
Obtaining clean, high-quality multispectral images suited to temporal analysis, requires specifically
tailored image processing. To assess temporal changes of the bathymetric signal, it is important
that multispectral imagery is directly comparable. This section presents an approach to isolate the
bathymetric signal from non-bathymetric constituents of the recorded signal (Section 2.2.4) developed
especially for temporal analysis. First, a reference image is selected (Section 3.2.1) and next, the three
components of the presented method are introduced (Figure 3.6); the detection and removal of clouds
(Section 3.2.2), a correction for large-scale non-bathymetric variations with the use of a reference image
(Section 3.2.3) and a correction of local and high-frequent non-bathymetric signals by creating composite
images (Section 3.2.4).

Figure 3.6: Visualisation of the presented workflow to isolate the bathymetric signal from non-bathymetric constituents in
multispectral imagery, tailored to temporal analysis. The workflow is structured into three components; i) the removal of clouds,
ii) correcting large-scale non-bathymetric variations with the use of a reference image and, iii) correcting local and high-frequent
non-bathymetric signals by creating composite images. The correction level of an image is indicated as Top Of Atmosphere
(TOA) which is the uncorrected imagery, or Bottom Of Atmosphere (BOA) which is the level after correction.

Clouds obstruct multispectral imagery and pixels affected by cloud coverage should be discarded. The
effect of clouds is expressed locally by a binary classifier for each pixel known as a cloud mask. This
study employs an ESA cloud mask embedded in the Sentinel-2 product (European Space Agency, 2015)
(Section 3.1.2), supplemented with a cloud mask based on the intensity recorded in the red band, for
the local detection of clouds (Section 3.2.2). Images largely affected by clouds are completely removed
from the data collection.
To correct for large-scale non-bathymetric signals, a novel reference image correction method is designed
and applied to the multispectral imagery (Section 3.2.3). Atmospheric and aquatic variations alter
multispectral imagery on a large scale, which allows isolation of the local bathymetric signal by using a
reference image. Images obstructed by large-scale non-bathymetric effects that cannot be corrected are
removed from the data set.
To correct for local and high-frequent non-bathymetric signals, composite images are created. Combining
multiple images into one composite image also manages the limited availability of high-quality multi-
spectral imagery. To create clean composites, this study employs a spatiotemporal filter which includes
outlier detection to correct for local or high-frequent non-bathymetric variations (Section 3.2.4).
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3.2.1. Reference image
One single image is used as reference to create a correction method for large-scale non-bathymetric
signals. To achieve this, the bathymetric signal is this image should be clear and unobstructed by for
example clouds or high water levels. To minimise atmospheric effects, an readily corrected BOA image is
selection from the Sen2Cor-processed collection of Sentinel-2 products. The image is manually selected
to ensure high quality and a clear bathymetric signal. Multiple images satisfied the criteria of which
one image is selected. The reference image used in this study is obtained by the Sentinel-2 mission at
August 26, 2019 (Figure 3.7). This section briefly introduces the reference image and its applications
in this study.
3.7).

Figure 3.7: Manually-selected clean and cloud-free reference image (26-08-2019) processed to BOA level by the Sen2Cor processor.

The reference image is central to the correction method for multispectral imagery which will be
introduced in Section 3.2.3). This reference image correction method employed this BOA image as
reference to correct all uncorrected TOA imagery for large-scale non-bathymetric variations. Furthermore,
the reference image is used to identify images obstructed by large-scale effects which cannot be removed
through corrections (Section 3.2.3).
Additionally, the cloud-free reference image is used to determine a relative threshold for the supplemen-
tary red band cloud mask (Section 3.2.2). For this purpose, to enable comparison with the uncorrected
TOA imagery, the reference image is used at L1C TOA level. The reference image is only used at TOA
level to determine this relative red band threshold. Throughout this thesis, the term reference image
therefore refers to the image at L2A BOA level.
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3.2.2. Detecting local clouds
Multispectral imagery is often obstructed by clouds; incoming radiation with wavelengths in the visible
spectrum cannot penetrate and is reflected back to space (Section 2.2.4). The intensity of the reflected
signal is relatively large, because clouds strongly reflect light across all three visible spectral bands.
In the combined multispectral image, this results in white pixels which contain no information of the
Earth’s surface. Image-wide bathymetry estimation is hindered by these cloudy pixels and thus should
these pixels be excluded from the depth estimation workflow.
Methods of cloud detection vary strongly depending on their application. Sentinel-2 imagery is embedded
with a cloud mask by ESA (Section 3.1.2), for which the algorithm was developed for global cloud
detection. On a local scale, not every cloudy pixel is identified (Figure 3.8).

Figure 3.8: Three (partly) cloudy images of different dates, overlaid with the ESA cloud mask (yellow) which did not identify
each individual cloudy pixel.

In this study, the absence of any other surface reflectors such as land and ice, allows for supplementary
identification of clouds by using the characteristically high reflectances of clouds. Minimal light at the
red wavelength is reflected from the ocean and thus high intensities for this spectral band are expected
to be indicative of clouds (Section 2.2.5). Therefore, to supplement ESA’s cloud-detection, a threshold
is set on the intensity of the red band. The threshold is determined relative to a cloud-free image. For
this, a L1C TOA version of the reference image is used to enable comparison of the reference image and
the uncorrected TOA imagery. The threshold is defined as twice the 99th percentile of the red band
of the L1C reference image. By setting this threshold, a secondary binary cloud mask is created which
is suited for identifying clouds under the study-specific conditions. Images with a total cloud coverage
exceeding 20 % are removed from the data set.
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3.2.3. Correcting large-scale variations with a reference image
The recorded multispectral signal predominantly consists of atmospheric components and thus are
atmospheric corrections crucial in the derivation of bathymetry, for which many tailored algorithms exist
(Section 2.3.2). Each individual image is corrected to its present atmospheric and aquatic conditions,
because the correction methods apply an image-based correction or require synchronous in situ observa-
tions. The error introduced by the insufficiency of these corrections, therefore differs at any epoch. As
a result, images from different epochs display strong variations in intensity.
To illustrate this, images from three different dates are presented side-by-side (Figure 3.9). To visualise
the effect of different atmospheric corrections, original uncorrected TOA imagery (Section 3.1.2) are
shown (top row) in comparison to images corrected by the DOS method (middle row) and the Sen2Cor
processor (bottom row) (Section 2.3.2). A column-wise comparison demonstrates the strong variation
between images of different dates, which is a consequence of the time-varying errors that arise from the
discrepancy between physical processes and their modelled corrections.

Figure 3.9: Visualisation of strong variability of multispectral imagery from different epochs. The top row displays ’original’ TOA
images which are not corrected for atmospheric effects. Variation between these three images demonstrates the heterogeneity
in space and time of atmosphere and ocean. DOS-corrected imagery in the middle row and Sen2Cor-corrected imagery in the
bottom row also display strong temporal variation despite correcting for atmospheric and aquatic effects. Strong variations
between images from different epochs illustrate the incomparibility of multitemporal imagery for a time-independent relation
between intensity and depth.

The temporal variation of the errors introduced by the insuffiency of the correction methods limits
the comparability of multispectral imagery. Multitemporal studies on satellite derived bathymetry
therefore often focus on minimising these errors by improving the (atmospheric) correction methods
(e.g. Caballero and Stumpf, 2020a). This study presents an alternative method that instead aims to
minimise the temporal variation of the errors from the insufficiency of the correction method.
To obtain time-independent correction errors, I developed an approach that corrects for non-bathymetric
variations by utilising a single reference image. The idea behind this approach is that bathymetric
changes are local, which causes the majority of the image to be stable over time. The local bathymetric
signal can be isolated from the non-bathymetric constituents that cause large-scale variations because of
their different spatial scales. Subtracting the non-bathymetric constituents from an image established a
correction for large-scale variations. The approach of subtracting the non-bathymetric sources is similar
to the DOS method (Section 2.3.2), which models these sources as a constant offset. In this study, the
heterogeneity of the atmosphere and the ocean is taken into account by defining a spatially dependent
function for the non-bathymetric sources.
The correction for large-scale non-bathymetric variations is implemented using the manually selected
high-quality reference image (Section 3.2.1). The bathymetric signal is isolated by minimising the
difference between an image and the reference image under the constrain of a model that estimates the
non-bathymetric sources.
The correction is a function of the reference image and the non-bathymetric constituents. Since the
atmospheric and aquatic conditions are heterogeneous in space, the modelled non-bathymetric sources
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𝐶፤ are spatially dependent:
𝐼፨፫፤ = 𝐼፤ − 𝐶፤(𝑥, 𝑦, 𝐼፤) (3.1)

Where 𝐼፨፫፤ and 𝐼፤ are the intensity of the recorded radiance in spectral band 𝑘 for the corrected image
and the image to be corrected respectively, and 𝐶፤ is a spatially dependent model that estimates the
non-bathymetric constituents.
The non-bathymetric perturbations are modelled as a linear approximation:

𝐶፤ = 𝛼፤(𝑥, 𝑦) 𝐼፤ + 𝛽፤(𝑥, 𝑦) (3.2)

Where 𝐶፤ is the model which corrects for non-bathymetric constituents in spectral band 𝑘 = 1, 2, 3
for red, green and blue respectively, 𝐼፤ is the intensity of the recorded radiance in spectral band 𝑘
and 𝛼፤ and 𝛽፤ are the spatially dependent (𝑥, 𝑦) coefficients defining the linear relationship of the
non-bathymetric sources estimation model.
On a small scale, large-scale variations can be approached by a linearisation. Therefore, the spatial
dependence of the coefficients 𝛼፤ and 𝛽፤ is given by a linear approximation:

𝛼፤(𝑥, 𝑦) = 𝛼ኻ፤𝑥 + 𝛼ኼ፤𝑦 + 𝛼ኽ፤ and 𝛽፤(𝑥, 𝑦) = 𝛽ኻ፤𝑥 + 𝛽ኼ፤𝑦 + 𝛽ኽ፤ (3.3)

Where 𝛼ኻ፤, 𝛼ኼ፤ and 𝛼ኽ፤ are the coefficients defining the linear spatial dependence of correction coefficient
𝛼፤ of location (𝑥, 𝑦). Idem for 𝛽፤.
The use of the reference image allows for empirically solving the coefficients 𝛼፤ and 𝛽፤ that define this
non-bathymetric sources estimation model 𝐶፤. Least squares estimation is used to fit the model 𝐶፤ to
the difference between the reference image and the image that is to be corrected. This overdetermined
linear system is given by:

𝐼፤ − 𝐼፫፞፟፤ = 𝛼ኻ፤𝑥 𝐼፤ + 𝛼ኼ፤𝑦 𝐼፤ + 𝛼ኽ፤ 𝐼፤ + 𝛽ኻ፤𝑥 + 𝛽ኼ፤𝑦 + 𝛽ኽ፤ (3.4)

By using a reference, the temporal variation of the errors resulting from the insufficiency of the reference
image correction method is minimised. As a result of this approach, multitemporal imagery is now
directly comparable (Figure 3.10).

Figure 3.10: Visualisation of the reference image correction method (bottom row) for three example images of different dates
in comparison to the Sen2Cor correction (top row). The reference image correction method reduced changes between images
significantly, the imagery is now directly comparable.

Images obstructed by large-scale effects can be removed based on the prior assumption that bathymetric
changes only occur locally. After the corrections, all imagery should resemble the reference image.
However, large-scale effects such as haze or turbidity can alter images significantly. These strongly
deviating images are identified by comparing the corrected imagery to the reference image. To quantify
the resemblance of an image, the average deviation per pixel relative to the reference image is defined.
Distinction of strongly deviating images is found to be best for comparison of the green band only. To
remove these images with large-scale variations, a threshold is set on the relative deviation in the green
spectral band at 8.5%. This threshold is determined by manually tuning the parameter and visually
assessing its identification performance.
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3.2.4. Correcting local and high-frequent variations with a composite
Cloud coverage affects multispectral imagery such that, despite the high revisit frequency of Sentinel-2,
the majority of data is not usable for SDB (or any purpose). To deal with this problem, imagery is
often manually handled to find a suitable image. Combining a stack of multitemporal images into one
cloud-free composite is an alternative to manhandling data that also manages the problem of data
sparsity due to cloud coverage.
In addition to handling cloudy images, compositing acts as a low-pass filter for other high-frequent
variations. Single images are highly susceptible to high-frequent variations such as tidal water levels or
the degree of turbidity. Generally, knowledge of these parameters is required to compare multitemporal
images. High-frequent variations are averaged by combining multiple images into one composite. As
a result, additional information of local conditions is no longer required to compare multitemporal
imagery.
To create composites of consistent quality that contain minimal local non-bathymetric sources, a
spatiotemporal filter is developed that detects and removes outliers. Small-scale non-representative
pixels, such as cloud shadows, coast lines or abrupt changes, are removed.
A composite is created from a stack of 𝑁። atmospherically-corrected images from epoch 𝑡ኺ to 𝑡ፍᑚ (Figure
3.11). Each pixel (𝑖, 𝑗) of the composite is generated by evaluating the pixels in a spatiotemporal
box, which has the size of the spatially adjacent pixels and the number of images in the stack (size
3 × 3 ×Ni indexed by (if, jf, tf)). For each pixel (𝑖, 𝑗) all pixels of the spatiotemporal filter are assessed;
non-representative pixels (depicted in red) are removed. Identification of these non-representative pixels
is done with the supplemented cloud mask (Section 3.2.2) and by iterative outlier detection.

Figure 3.11: Graphic illustration of the spatiotemporal filter. Each pixel (።, ፣) in a composite image is generated based on the
pixels from a spatiotemporal box with the size of the spatially adjacent pixels and the number of images in a stack (size 3 × 3 ×Ni,
indexed by if , jf , tf ). Cloudy and non-representative pixels (depicted in red) are removed from the selection of filter pixels. The
remaining filter pixels (depicted in green) are used to obtain the value of the composite pixel.

The iterative outlier detection employed the generalised extreme studentized deviate (ESD) test from
Rosner (1983). Outliers are iteratively removed from the collection of spatiotemporal filter pixels based
on their relative deviation from the mean (Figure 3.12). For each composite pixel (𝑖, 𝑗), a test statistic
𝑅 is defined to score the combined relative deviation to the mean of the red, green and blue spectral
bands. The largest outlier is identified as the pixel (𝑖፟ , 𝑗 , 𝑡፟) that corresponds to the maximum test
statistics. The outlier is removed if its test statistics exceeds the maximum relative deviation while
maintaining a minimum number of filter pixels.
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Figure 3.12: Graphic illustration of the iterative outlier detection. For each filter pixel (።ᑗ , ፣ᑗ , ፭ᑗ) a test statistic ፑ is defined
to express its deviation from the mean. Outliers are removed if maximum deviation is exceeded while maintaining a minimum
number of filter pixels.

The number of pixels in the filter 𝑁፟ is defined as the contributing pixels which are not rejected by the
cloud mask or the outlier detection. It is obtained by applying a binary operator Π, to all pixels in
the spatiotemporal box and summing over its three dimensions. Operator Π represents the combined
outcome of the rejection criteria for a pixel (if, jf, tf), the pixel is included when Π = 1 and excluded
when Π = 0.

𝑁፟ = ΣΣΣ Π(𝑖፟ , 𝑗 , 𝑡፟) (3.5)

For each pixel (𝑖, 𝑗) the mean of each spectral band ⟨𝐼፤⟩ is determined over the spatiotemporal filter.
Furthermore, for each pixel (𝑖, 𝑗) the variance-covariance matrix of the spectral bands 𝑐𝑜𝑣(𝐼፤ , 𝐼᎓) is
defined. From the variance-covariance matrix the standard deviations for each spectral band 𝜎ፈᑜ follow.

⟨𝐼፤⟩|።,፣ =∑
።ዄኻ

።ᑗ።ዅኻ
∑

፣ዄኻ

፣ᑗ፣ዅኻ
∑

ፍᑚ

፭ᑗኻ

𝐼፤(𝑖፟ , 𝑗 , 𝑡፟)
𝑁፟

Π(𝑖፟ , 𝑗 , 𝑡፟) (3.6)

cov(𝐼፤ , 𝐼᎓)|።,፣ =
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ፍᑚ
፭ᑗኻ (𝐼፤(𝑖፟ , 𝑗 , 𝑡፟) − ⟨𝐼፤⟩|።,፣) (𝐼᎓(𝑖፟ , 𝑗 , 𝑡፟) − ⟨𝐼᎓⟩|።,፣)

𝑁፟
(3.7)
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ኼ

𝑁፟
(3.8)

Where ⟨𝐼፤⟩, 𝑐𝑜𝑣(𝐼፤ , 𝐼᎓) and 𝜎ፈᑜ are the mean, covariance and standard deviation of the intensity for
spectral bands 𝑘, 𝜁 evaluated for composite pixel (𝑖, 𝑗).

For each pixel (𝑖፟ , 𝑗 , 𝑡፟) of the 𝑁፟ filter pixels, a relative deviation is expressed in each spectral band
𝑘 by a test statistic 𝑅፤. The test statistic is defined as the distance to the mean ⟨𝐼፤⟩ normalised by the
standard deviation 𝜎ፈᑜ :

𝑅፤(𝑖፟ , 𝑗 , 𝑡፟) =
|𝐼፤(𝑖፟ , 𝑗 , 𝑡፟) − ⟨𝐼፤⟩|።,፣|

𝜎ፈᑜ |።,፣
(3.9)
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Subsequently, each filter pixel is scored as the average of the test statistics of the three spectral bands:

𝑅 = 1
3

ኽ

∑
፤ኻ

𝑅፤ (3.10)

Where 𝑅 is the average test statistic for filter pixel (𝑖፟ , 𝑗 , 𝑡፟), which represents the relative deviation
combined for the spectral bands red, green and blue (𝑘 = 1, 2, 3).
A relative threshold is set for the combined deviation 𝑅 of filter pixel (𝑖፟ , 𝑗 , 𝑡፟), which is set at two
times the standard deviation 2𝜎ፈᑜ . Because the test statistic is normalised by the standard deviation,
the threshold is correspondingly normalised, which sets the threshold at 2.
The average test statistic 𝑅 is calculated for each pixel (𝑖፟ , 𝑗 , 𝑡፟) of the 𝑁፟ filter pixels. If the maximum
value exceeded the threshold, the corresponding pixel is removed. The process is iterated until no
maximum test statistic score exceeded the threshold or until the arbitrary minimum number of pixels
(𝑁፦።፧ = 30) is reached:

if max (𝑅(𝑖፟ , 𝑗 , 𝑡፟)) > 2 ∶ remove filter pixel (𝑖፟ , 𝑗 , 𝑡፟) and recompute 𝑅 (3.11)

A composite image is created by applying the spatiotemporal filter to each pixel. For each pixel (𝑖, 𝑗),
the mean of the intensity 𝐼፤ in spectral band 𝑘 of the remaining 𝑁፟ pixels in the filter, is assigned as
the pixel value of the intensity of the composite 𝐼ፂ፤ in that spectral band:

𝐼ፂ፤ (𝑖, 𝑗) = ⟨𝐼፤⟩|።,፣ (3.12)

A quality map is constructed to support the composite image. The standard deviation of the intensity
𝐼፤ in spectral band 𝑘 of the remaining 𝑁፟ pixels in the filter is used for each pixel (𝑖, 𝑗) as a quality
measure of the pixel after filtering:

𝜎ፂፈᑜ(𝑖, 𝑗) = 𝜎ፈᑜ |።,፣ (3.13)

Where 𝜎ፂፈᑜ is the standard deviation of the composite value 𝐼ፂ፤ of the intensity 𝐼፤ in spectral band 𝑘
Composite images manage limited data availability and high-frequent non-bathymetric variations, albeit
at the cost of smoothening the signal of bathymetric changes. The spatial and temporal scales of the
bathymetric structures of interest should be taken into consideration when selecting the duration of a
composite image. For this study, a composite duration of six months is selected to ensure observable
dynamics within a yearly timescale (Section 2.1) while handling the scarcity of Sentinel-2 imagery.
To model temporal bathymetry changes, composites are generated between 1 January 2016 and 31
December 2019, by using a moving-average filter. Partially overlapping composite time-frames are
created with their start dates one month apart, which resulted in forty-three time-windows.



3.3. Developing a bathymetry estimation model 24

3.3 Developing a bathymetry estimation model
A bathymetry estimation model describes the relation between water depth and the recorded radiance
of multispectral imagery. In situ depth observations are required to train the estimation model. In
this study, these depth observations were additionally used to constrain the depth estimation model
to the penetration depth of visible light into the water column (Section 2.2.3). This section presents
a description of the depth estimation model (Section 3.3.1) and an explanation of how this model was
trained (Section 3.3.2).

3.3.1. Model description
To define the relation between the corrected and composited imagery and the in situ observations from
the vaklodingen, a log-linear relationship was used which is based on the model from Lyzenga (1978)
(Section 2.3.1). This log-linear approach is well-suited to the homogeneous habitat of the study site
in the Wadden Sea (Section 3.1.1). Due to the absorption spectrum of water, only visible light can be
used for the estimation of bathymetry (Section 2.2.5). For this study, water depth is therefore defined
as a function of the intensity of the composite image for the three visible spectral bands:

𝑧 = 𝑏 +
ኽ

∑
፤ኻ

𝑎፤ log 𝐼ፂ፤ (3.14)

Where 𝑧 is the water depth, 𝐼ፂ፤ the intensity of composite image for the k = 1, 2, 3 spectral bands, and
𝑎፤ and 𝑏 the coefficients describing the linear relationship.
The log-linear relation is constrained to the penetration depth of visible light into the water column
(Section 2.2.3). The turbid waters of the Wadden Sea strongly limit the penetration of light and
subsequently the ability to derive bathymetry for deep depths from an optical image. The local
penetration depth was assessed by comparing recorded radiances of the reference image to observed
water depths from the corresponding 2019 vaklodingen. Depths observed deeper than this penetration
depth, cannot be estimated from multispectral imagery with the log-linear model. To implement this
constrain, a threshold was set on the in situ observations that were used to derive the estimation model.

3.3.2. Model training
The coefficients 𝑎፤ and 𝑏 which define the bathymetry estimation model (Equation 3.14) are obtained
empirically, by using in situ observations and the corresponding composite image to train the model.
The vaklodingen data is interpolated onto the 10 m grid of the Sentinel-2 multispectral imagery. Both
data sets are randomly partitioned in subsets for training and testing (80/20). The observed penetration
depth (Section 3.3.1) is set as a threshold on the vaklodingen data to constrain the depth estimation
model (Equation 3.14). Regression analysis is performed on the constrained training subsets of the
composite image and the interpolated vaklodingen by using least squares estimation (Section 2.3.4).
Synchronous in situ observations and multispectral imagery are required to train the depth estimation
model. Two sets of vaklodingen data are obtained since the launch of the Sentinel-2 mission, respectively
the 2016 and 2019 surveys (Section 3.1.2). Two synchronous six-month composite images (Section
3.2.4) are therefore suited for training and validating the depth estimation model (Equation 3.14);
the composites from July 2016 to January 2017 and from July 2019 to January 2020. Hereafter, the
two resulting estimation models are referred to as the 2016 and 2019 bathymetry estimation models
respectively (BEM 2016 and BEM 2019). To assess the affect of averaging images in a composite, an
additional bathymetry estimation model is trained on the reference image.
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3.4 Estimating bathymetry
The trained bathymetry estimation models (BEM 2016 and BEM 2019) are used to estimate depths for
times of absent in situ data. As a result of the reference image correction method, multispectral imagery
of different epochs is directly comparable, which allows for using a bathymetry estimation model that
is constant over time. Temporal extrapolation is performed by applying the readily-trained estimation
model to non-synchronous imagery. This section presents how composite images are used to estimate
bathymetry and map temporal changes (Section 3.4.1), provides a quality assessment of the estimated
depths (Section 3.4.2) and shows how depth estimates are validated (Section 3.4.3).

3.4.1. Estimating bathymetry and mapping temporal changes
Bathymetry is estimated with the two bathymetry estimation models which are trained with the
vaklodingen (Section 3.3.2). First, the performance of the estimation models for the Wadden Sea
case study is assessed. The bathymetry estimation models are applied to the remaining testing subset
of the composite that was used to define the models. Applying the estimation models to their training
composite sets a benchmark for estimation performance which can be used to evaluate the influence
of temporal extrapolation. The estimated depths are visualised on two-dimensional maps and along
one-dimensional transects.
The effect of temporal extrapolation on estimation performance is cross-validated with non-synchronous
vaklodingen data. An extrapolation of three-years is performed by applying BEM 2016 to the 2019
composite and BEM 2019 to the 2016 composite. For each estimation model, the performance is
compared to its the benchmark performance. The extrapolated depth estimates are correspondingly
visualised on two-dimensional bathymetry maps and along one-dimensional transects.
Temporal bathymetric changes over a period of four years are estimated by applying the two bathymetry
estimation models to consecutive partially-overlapping composites. For six locations the temporal
development is visualised with timeseries. To provide context to the temporal changes, the development
of a bathymetric sandbank structure is estimated. Contourlines are used to define the outline of this
structure. The development of the structure is also estimated over a four-year period with the use of
four composite from consecutive years.

3.4.2. Quality of estimated depths
To obtain an estimate of the depth estimation quality, the covariance matrix for each pixel (𝑖, 𝑗) of the
composite is propagated (Equation 3.7). The bathymetry estimation model is non-linear, therefore a
linearisation is used for the error propagation (Verhagen and Teunissen, 2017). The resulting depth
variance 𝜎ኼ፳ for pixel (𝑖, 𝑗) is given by:

𝜎ኼ፳ |።,፣ ≈ JQፈፈJ
ዉ (3.15)

Where J is the Jacobian matrix of the bathymetry estimation model:

J = [ Ꭷ፳Ꭷፈᑣ
Ꭷ፳
Ꭷፈᑘ

Ꭷ፳
Ꭷፈᑓ ] = [

ፚᑣ
ፈᑣ

ፚᑘ
ፈᑘ

ፚᑓ
ፈᑓ ] (3.16)

And where Qፈፈ is the variance-covariance matrix:

Qፈፈ|።,፣ = [
𝜎ኼፈᑣ cov(𝐼፠ , 𝐼፫) cov(𝐼 , 𝐼፫)

cov(𝐼፫ , 𝐼፠) 𝜎ኼፈᑘ cov(𝐼 , 𝐼፠)
cov(𝐼፫ , 𝐼) cov(𝐼፠ , 𝐼) 𝜎ኼፈᑓ

]

።,፣

(3.17)
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3.4.3. Validation of estimation
Bathymetry estimates are compared to in situ observations to assess estimation performance. To
set a benchmark for the performance of the estimation models for the Wadden Sea case study, the
bathymetry estimation models are applied to the remaining testing subset of the composite used for
training. Next, the influence of temporal extrapolation is cross-validated by applying the estimation
models to a non-synchronous composite. By combining the two estimation models and the two six-month
training composites, four scenarios are defined (Table 3.1).

Benchmark Extrapolation
(Synchronous) (Non-synchronous)

BEM 2016 + Composite 2016 BEM 2016 + Composite 2019
BEM 2019 + Composite 2019 BEM 2019 + Composite 2016

Table 3.1: Setting a benchmark of estimation performance by applying the bathymetry estimation models to the remainder of
the training subset.

Estimated depths are qualitatively validated by visual comparison with the in situ observations. The
widely-used root mean square error (RMSE) is used to quantify the differences between observed and
estimated values. The RMSE metric is sensitive to outliers, it should therefore be evaluated when used
to quantify estimation performance.



4
Results & Discussion

As discussed in Chapter 3, a three-strep workflow to map temporal bathymetric changes is tested on
a Wadden Sea study site. Here, I present the results of processing the multispectral imagery to isolate
the bathymetric signal (Section 4.1), validating the bathymetry estimation model (Section 4.2) and
estimating bathymetry for times of absent in situ data (Section 4.3).

4.1 Isolating the bathymetric signal in multispectral imagery
To obtain clean, high-quality multispectral imagery suited to temporal analysis, an approach to process
multispectral imagery is presented that is specifically tailored to mapping temporal bathymetric changes.
(Section 3.2). This includes the removal of clouds, a novel reference image correction method to correct
for large-scale non-bathymetric signals and a modified approach for the creation of composite images
to correct for local and high-frequent non-bathymetric variations.

4.1.1. Detecting and removing clouds
Pixels obstructed by clouds in Sentinel-2 imagery are classified by the ESA and identified with a binary
cloud mask (European Space Agency, 2015) developed for global applications. To locally supplement
cloud detection for the Wadden Sea case study, an additional cloud mask is implemented which is based
on the reflectance recorded in the red band. Cloudy pixels are identified by the characteristically high
reflectance in the red band, for which the threshold is set as twice the 99th percentile of the red band
reflectance of the TOA reference image. In this section, the performance of the supplementary red band
mask is assessed.
Three Sentinel-2 images with varying cloud coverage are selected to illustrate differences between the
embedded ESA cloud mask and the supplementary red bank cloud mask (Figure 4.1, columns). To
evaluate the performance of the cloud masks, unmasked original TOA imagery is shown (top row)
overlaid with the ESA cloud mask (middle row) and the supplementary red band mask (bottom row).
For each epoch, the cloud coverage is computed using the ESA mask and using the supplemented ESA
and red band mask. By supplementing the ESA cloud mask, the percentage of cloudy pixels for the
first image increased from zero to 3 %, for the second image from 39 % to 59 % and for the third image
from 5 % to 41 %.

27
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Figure 4.1: Example of multispectral imagery with varying degrees of cloud coverage from three different epochs (columms) to
illustrate cloud mask performance. Unmasked TOA imagery (top row) is overlaid with the ESA cloud mask in yellow (middle
row) and the supplementary red band cloud mask in orange (bottom row). A maximum cloud coverage of 20 % was accepted.
Supplementing the ESA cloud mask with the red band cloud mask appropriately removes the third image in addition to the
second image (displayed in red).

The site-specific red band cloud mask successfully supplemented cloud detection by the ESA cloud mask.
For all three epochs, the red band mask correctly identified additional cloudy pixels. Cloud detection
is complex because of the heterogeneous effects of clouds on multispectral imagery and is especially
difficult on a global scale. Cloud coverage can be very local such as on the first day, which leaves the
majority of pixels in the image unaffected. Often, the effects of clouds are image-wide and few pixels
contain bathymetric information. The heterogeneity of clouds and their image-wide effects is visible
for the images of the second en third day; dense clouds are more easily detected than thinner layers
of clouds. Upon inspection, the remaining unmasked parts of these images show no structure at all or
display a pattern of clouds. The unmasked pixels of cloudy images with a significant percentage of cloud
coverage appear to contain no reflections from the Earth’s surface, which demonstrates the difficulty
of cloud detection. To avoid including these undetected non-representative pixels, images with a cloud
coverage computed to be more than 20 % are removed from the four-year collection of Sentinel-2 data.
Supplementing the ESA cloud mask with the red band cloud mask appropriately removed the third
image in addition to the second image.
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4.1.2. Correcting large-scale variations
The reference image correction method is applied to the multispectral imagery to correct for large-scale
non-bathymetric signals (Section 3.2.3). The local bathymetric bathymetric signal is isolated from
large-scale atmospheric and aquatic variations by using a reference image. Images obstructed by
large-scale non-bathymetric effects are identified by their relative deviation from the reference image,
which is quantified as the average deviation per pixel in the green spectral band. This section evaluates
imagery corrected with the reference image correction method and illustrates how images obstructed
by large-scale non-bathymetric effects are removed.
Three images with varying degrees of clarity are selected to demonstrate the effects of the reference
image correction method and to illustrate large-scale obstructions (Figure 4.2). The intensity of the
bathymetric signal increases from the first to the third image. The relative deviation in the green band
with respect to the reference image is displayed above each image.

Figure 4.2: Visualisation of directly comparable multispectral imagery which was corrected for large-scale variations with the
reference image correction method. The bathymetric signal is increasingly visible for these three epochs. The first image is strongly
obstructed by some large-scale effects. To remove obstructed images, large-scale obstructions were identified by quantifying the
resemblance to the clean reference image as the average relative deviation in the green band. The threshold for these residuals in
the green band (RG) was manually set to 8.5 % which appropriately removes the first image (displayed in red) but includes the
second and third image (displayed in green).

Multispectral imagery was directly comparable after applying the reference image correction method.
The corrected images display uniformity in colour, clarity and brightness, in contrast to the uncorrected
images, the DOS-corrected images and the Sen2Cor corrected images (Figure 3.9). The clear bathymetric
signal in the third image demonstrates that large-scale non-bathymetric variations are successfully
removed, while the local bathymetry is conserved. These preserved local bathymetric structures confirm
the assumption that bathymetric changes are local and that they can be distinguished from large-scale
variations (section 3.2.3).
Despite the corrections and the preservation of local bathymetric structures, the three images display
varying degrees of image quality. These large-scale distortions can be due to atmospheric or aquatic
conditions such as haze or turbidity. Image quality is resembled by the average deviation per pixel in the
green band relative to the reference image. A larger deviation from the reference image was indicative
of images strongly obstructed by large-scale non-bathymetric effects. The first image displays little
bathymetric information and deviates the most from the reference image (8.9 %). The bathymetric
signal is best visible in the third image, which correspondingly deviates the least from the reference
image (7.3 %). The threshold on the relative deviation is set to 8.5 % manually, which appropriately
included the second and third image but excluded the first image from the data set. Setting this
threshold however potentially removes images that contain bathymetric information. Selecting images
by setting this threshold was therefore a trade-off between including low-quality images and excluding
high-quality images.
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4.1.3. Compositing
Multiple images are combined into a composite to correct for local and high-frequent non-bathymetric
effects. Compositing also handled data scarcity of high-quality images. This section demonstrates the
need for composite images.
From 01 July 2016 to 01 January 2017 fourteen images are initially selected that had a cloud coverage
lower than fifty percent (Figure 4.3). The images are corrected with the reference image correction
method and overlaid with the ESA cloud mask (depicted in yellow) and the supplementary red band
cloud mask (depicted in orange). Cloud coverage is calculated from the ESA mask and from the
supplemented cloud mask, both values are displayed above each image. The red band mask extended
the ESA mask, with cloud detection predominantly centred around pixels already identified as cloudy.
Furthermore, images obstructed by large-scale non-bathymetric effects are identified by expressing the
deviation relative to the reference image. This relative deviation in the green band is also displayed
above the individual images. Thresholds are set to a maximum cloud coverage of 20 % and maximum
average relative deviation of 8.5 %. Values exceeding the threshold are depicted in red, accepted values in
green. To create a high-quality composite image, individual images should comply with both thresholds.

Figure 4.3: Visualisation of all corrected images from 01 July 2016 to 01 January 2017 with a total cloud coverage less than fifty
percent. Images are overlaid with ESA cloud mask (yellow) and Red Band cloud mask (orange) and display three percentages:
(ESA) cloud coverage based on ESA cloud mask, (ESA+Red) cloud coverage based on ESA and Red band cloud masks and
(RG) deviation relative to reference image expressed as Residual of the Green band. Values are displayed in red if they exceed
corresponding threshold (ESA: 0.2, ESA+Red: 0.2, RG: 0.085). Only images with all percentages shown in green were considered
satisfactory for compositing.

The selected images demonstrate the performance of the supplemented cloud mask and the reference
image correction method, but also illustrate the limited number of high-quality images to combine into
a composite image. The supplementary red band cloud mask sufficiently detected additional cloudy
pixels. The maximum cloud coverage based on this combined cloud mask aptly identified three more
images obstructed such that they contain no bathymetric information. Out of the fourteen images, five
images exceeded the accepted cloud coverage. Setting the threshold for relative deviation in the green
band at 8.5 %, appropriately identified another six images obstructed by large-scale effects. From the
three remaining high-quality images (2016-09-08, 2016-09-15, 2016-09-25) a composite image is created.
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To demonstrate the limited availability of high-quality data, Figure 4.4 provides an overview of the
high-quality images among all Sentinel-2 imagery available from 1 January 2016 to 1 January 2020.
Data availability increased strongly with some delay after the launch of the Sentinel-2B satellite in
2017. Seasonal trends are somewhat visible, between April and October more high-quality images are
available than from October to April, which corresponds to Dutch summer and winter respectively.

Figure 4.4: Visualisation of Sentinel-2 imagery from 2016 to 2019 which is usable for the derivation of bathymetry (indicated in
green) based on a maximum total cloud coverage of 20 % and a maximum deviation in the green band of 8.5 %.

Figure 4.4 accentuates the limited availability of high-quality images suited for the estimation of
bathymetry. Despite the increase in data due to the launch of Sentinel-2B, the number of high-quality
images is limited. Although partially-overlapping composite images with a duration of six-month
provided a solution to the data sparsity, for some time periods no high-quality imagery is available (for
example from 1 October 2017 to 1 April 2018). These data show that data scarcity can be managed
by increasing the duration of the composite. From a perspective that aims to maximise the number of
images in a composite, the suitability of six-month composites is argued by the limited availability of
high-quality data. Composite duration is however a trade-off between data scarcity and the observability
of morphological structures (Section 2.1).
The six-month composite from 1 July 2016 to 1 January 2017 is created from three individual images
(Figure 4.3). The composite is created by the spatiotemporal filter which included pixel-based outlier
detection (section 3.2.4) (Figure 4.5 (top)). Bathymetric structures from the individual images are
preserved while creating a smooth image. The composite image from 1 July 2019 to 1 January 2020
is of lower quality; the bathymetric structures are just faintly visible (Figure 4.5 (bottom)). The RGB
values of both composites are scaled from 0 to 700 to enable fair visual comparison.

Figure 4.5: Two six-month composite images (2016 and 2019) created with the spatiotemporal filter. The bathymetric signal is
significantly stronger in the 2016 composite (top image); the quality of the 2019 composite (bottom image) is lower.
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4.2 Bathymetry estimation model
The relationship between water depth and intensity of the multispectral image is described by the
bathymetry estimation model. In situ depth observations are used to obtain this relation and to
constrain the estimation model to the local penetration depth of visible light into the water column.
First, this section discusses the applicability of the log-linear model for the case study (Section 4.2.1).
Next, it presents the estimation benchmark results (Section 4.3) and highlights limitations on those
depth estimates (Section 4.2.3). This section concludes with bathymetry estimates of the benchmarks
scenarios along two-dimensional transects (Section 4.2.4).

4.2.1. Applicability of the log-linear model
To validate the log-linear bathymetry model (Section 3.3.1), the reference image is compared to the
corresponding 2019 vaklodingen. The log-transformed intensity of each spectral band is evaluated
against the in situ depths (Figure 4.6). The recorded intensity in the red band is somewhat lower than
the intensities in the green and blue bands. The three spectral bands display similar trends nonetheless;
each band shows a linear relationship for depths up to approximately -5 m. Below this penetration
depth, the relation between depth and intensity is ambiguous and a near-vertical trend is visible.

Figure 4.6: Comparison of log-transformed intensities of the three visible bands from the reference image (x-axis) and observed
water depths from the 2019 vaklodingen (y-axis). A clear linear relationship is visible for depths up to approximately 5 m, below
this depth that relationship is ambiguous.

The observed penetration depth of -5 m is determined by local aquatic conditions which control the
attenuation of light in the water column (Section 2.2.5). Due to high turbidity in the Wadden Sea
waters, little light actually reflects on the seafloor. Little reflected radiance is therefore recorded for all
depths deeper than the penetration depth, and all deep water pixels are approximately equally dark.
When comparing these low intensities of recorded radiance to observed water depths, a near-vertical
trend develops, where all deeper depth correspond to approximately the same intensity. The log-linear
relationship only holds for depths above the penetration depth, no clear relation can be defined for
depths under that threshold and the intensities of the multispectral image. The log-linear model is
therefore only suited to the first five meters of the water column; for this study area deeper depths
cannot be estimated. Consequently, only pixels corresponding to observed depths shallower than the
penetration depth are used to train the regression model.

4.2.2. From composites to bathymetry
To set a benchmark for the performance the bathymetry estimation model, the BEM 2016 and BEM
2019 models (Section 3.3.2) are applied to the remaining testing subset of their training composite. BEM
2016 is applied to the 2016 composite (Figure 4.5) and the resulting depth estimates are compared to
the 2016 vaklodingen (Figure 4.7. Similarly, BEM 2019 is applied to the 2019 composite (Figure 4.5)
and resulting estimates are compared to the depth observations from the 2019 vaklodingen (Figure 4.8.
The estimation models are constrained to the penetration depth of 5 m (Section 4.2.1) by setting a
threshold on the observations used for training (Section 3.3.2).
Estimated depths (Figures 4.7a and 4.8a) display shallow bathymetric structures similar to the observed
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vaklodingen (Figures 4.7c and 4.8c). Deep areas are estimated approximately equally shallow, around
5 m. The shallow bathymetric structures are clear and well-defined in the 2016 estimates (Figure 4.7a),
the 2019 estimates (Figure 4.8a) display in comparison less depth contrast and therefore less clear and
defined structures. A quality map is created from the standard deviation the depth estimate of each
pixel (Section 3.4.2) (Figures 4.7b and 4.8b). For the 2016 scenario (Figure 4.7b) the average standard
deviation appears to be larger than for 2019 (Figure 4.8b). However, in 2016 deep area estimates come
with the largest uncertainties, whereas the 2019 case shows largest uncertainties in the estimation of
the bathymetric structures of interest. To provide insight on the order of estimation errors, estimated
depths are compared to the observed depths (Figures 4.7d and 4.8d). Both estimation models incorrectly
estimate the deep areas to be greatly shallower. By applying BEM 2016 to the 2016 composite, shallow
bathymetric are estimated slightly too deep with locally larger errors (Figure 4.7d). Based on the 2019
composite, BEM 2019 estimated the shallow structures generally somewhat deeper (Figure 4.8d).
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Figure 4.7: Bathymetry estimates and estimation quality from BEM 2016 with 2016 composite, compared with 2016 vaklodingen.

Figure 4.8: Bathymetry estimates and estimation quality from BEM 2019 with 2019 composite, compared with 2019 vaklodingen.
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The bathymetry estimation models successfully estimated shallow bathymetric structures up to approx-
imately 5 m. Deep depths are however estimated significantly too shallow, which results in large
estimation errors of over 20 m. Estimation uncertainties are generally largest for deep areas. These
results correspond to the findings that depths deeper than the penetration depth cannot be estimated
by the log-linear model (Section 4.2.1). Although uncertainties appear larger for the BEM 2016 in
combination with the 2016 composite, the average standard deviation is approximately equal to the
2019 scenario when only taking into account depths observed shallower than 5 m (≈ 0.25 m). By
combining these results of bathymetries estimated for times with synchronous in situ data available, a
benchmark is set for the performance of the bathymetry estimation models.

4.2.3. Limitations on the depth estimates
To improve the performance of the bathymetry estimation model, the limiting effect of the penetration
depth on predictable depths is assessed. To illustrate this, the reference image is used to estimated
depths which are compared to observed depths (Figure 4.6). The bathymetry estimation model is
trained on the training subsets of the reference image and the 2019 vaklodingen for which (based on
results in Figure 4.6) only pixels corresponding to to depths up to 5 m are selected for training. For
shallow depths, the data shows a linear trend corresponding to the 1:1 line, which represents correct
estimation (See inner figure). In other words, depths up to five metres are estimated correctly by
using the log-linear relation between depth and intensity and setting the penetration threshold at 5 m.
However, deeper depths are estimated incorrectly, Figure 4.9 displays estimation errors as large as 20
m.

Figure 4.9: Comparison of estimated depths (x-axis) and observed depths (y-axis) from the reference image (26-08-2019) and the
2019 vaklodingen. The dark, dotted line represents the 1:1 line.

Figure 4.9 demonstrates the inability to estimate deep depths. The estimation model is constrained to
the penetration depth because the log-linear relation does not hold for deeper depths. Depths below
the penetration threshold reflect equally low radiation and are incorrectly estimated to be shallower by
the constrained model. This bias towards shallow depths strongly affects the RMSE which is used to
express the estimation performance.

If in situ observations are available, the penetration depth can be used to eliminate all depths observed
deeper from the data set in order to calculate the RMSE. By using this threshold on observed depths,
this RMSE provided an estimate of the minimal estimation error under the local conditions. For depths
that are observed shallower than 5 m, the RMSE computed on the reference image was 0.40 m, which
corresponds to an estimation error of approximately 8 %.
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In the absence of in situ data, it is not possible to eliminate those deep depths that give rise to
large estimation errors. The RMSE cannot be determined by setting a threshold on the observations
since knowledge is only available on estimated depths, rather than observed depths. To illustrate this
principle, the RMSE is calculated with the penetration depth of 5 m as a threshold on the estimated
depths. For depths estimated shallower than 5 m, the RMSE computed on the reference image was 7.22
m; an estimation error even larger than the range of estimated depths.

A closer look at Figure 4.9 illustrates the problem. No clear relationship is observable between observed
depths and depths that are estimated shallower than 4 m (indicated by the vertical dashed red line).
Deep depths are projected by the bathymetry estimation model as depths between 4 and 5 m. This
suggests that predictable depths are not limited to the penetration depth but that reliable estimates
are even more restricted.

To evaluate to what threshold estimated depths are reliable, a comparison is made of the RMSE based
on different cutoffs on the estimated depths (Figure 4.10). The two estimation models, BEM 2016 and
BEM 2019, are used to estimate depths on the remaining testing subset of their training composite
(Section 3.3.2). By setting the penetration depth (5m) as threshold on the estimated depths, large
estimation errors are obtained similar to the the RMSE prior calculated for the reference image. For
depths estimated shallower than 5 m, the RMSE computed with BEM 2016 was 5.14 m and the RMSE
computed with BEM 2019 was 7.78 m. Although reducing the threshold on the estimated depths
strongly decreased the RMSE for both scenarios, estimation especially improved for the BEM 2016
scenario. By setting the cutoff on estimated depths at 4 m (as suggested in Figure 4.9), the RMSE for
BEM 2016 is reduced to 0.94 m.

Figure 4.10: Visualisation of RMSE calculated with a threshold on estimated depths to evaluate the cutoff to which estimated
depths are reliable. Two scenarios are illustrated; the bathymetry estimation model trained on a six-month composite and
vaklodingen in 2016 (BEM 2016) applied to the remainder of its training composite, and the bathymetry estimation model
trained on a six-month composite and vaklodingen from 2019 (BEM 2019) applied to the remaining testing subset of its training
composite. RMSE errors decrease significantly by defining a shallower cutoff, which implies that estimation is more accurate for
shallower depths.

Defining an appropriate threshold on the estimated depths is important for the interpretation of the
results. RMSE errors decreased significantly when estimated depths are limited by lowering this
threshold. This reduction in RMSE implies that estimation accuracy improves for shallower depths.
Lowering the threshold also reduced the range of predictable depths. Defining this threshold is therefore
a trade-off between improving estimation accuracy and maintaining a range of predictable depths. Based
on these criteria, the threshold on estimated depths is set to 4 m.

Estimation errors were significantly smaller for the BEM 2016 scenario than for BEM 2019. These lower
RMSE values may suggest that estimation is more accurate with BEM 2016 instead of BEM 2019. The
RMSE is however not only an indicator of the performance of the estimation model, it is especially an
indication of the quality of the composite that was used. From these RMSE values it is difficult to
distinguish whether it was training the estimation model or applying this model to estimate depths,
that is limited by composite quality.
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4.2.4. Bathymetry along transects
To understand the potential of the bathymetry estimation model to map bathymetric structures in space,
estimated depths (Section 4.2.2) are visualised along three transects (Figures 4.11 and 4.12). Evaluating
the capability of estimating small structures is more straightforward from these two-dimensional transects
instead of the three-dimensional bathymetry maps (Figures 4.7d and 4.8d). Displayed are three transects
across a local sandbank, its morphological development is observed by comparing observed depths
(depicted in yellow) from the 2016 vaklodingen to the 2019 vaklodingen. Locally, bathymetric changes
of Estimated depths are supported by the (propagated) standard deviation for depth estimates (Figures
4.7b and 4.8b) as a confidence interval.
The capability of the bathymetry estimation model to estimate shallow bathymetric structures and
the inability to estimate deeper depths is once again demonstrated. These transects clearly show that
deep depths are projected as 4 to 5 m depths. The general shape of shallow bathymetric structures
is estimated successfully for both the 2016 and 2019 scenarios. However, estimates from BEM 2016
and the 2016 composite are more accurate than the estimates for 2019. Especially the relatively large
structure along transect B is underestimated in 2019. Uncertainties were generally larger for estimates
of deeper depths. Small-scale structures observed on top of the larger structures are visible along the
estimated depth profiles, although not equally along each transect.
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Figure 4.11: Estimated depths along transects from BEM 2016 applied to the remaining testing subset of its 2016 training
composite. Shallow bathymetric structures are accurately estimated with relatively small confidence intervals. Deeper depths are
estimated incorrectly and projected around 5 m. Shallow structures of varying spatial scales are observable along the estimated
depths.

Figure 4.12: Estimated depths along transects from BEM 2019 applied to the remaining testing subset of its 2019 training
composite. Shallow bathymetric structures are estimated somewhat deeper. Along transects A and C the general bathymetric
profile is visible, the large scale shallow structure along transect B is however hardly observable along the estimated profile. Deep
depths are incorrectly estimated to be approximately 4 m.
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4.3 Bathymetry for absent in situ data
Now that a benchmark for the performance of the log-linear bathymetry estimation model is defined, the
estimation model can be extrapolated in time to estimate bathymetry for times of absent in situ data.
The performance of this temporal extrapolation approach is first verified by using the non-synchronous
vaklodingen to validate extrapolated results.

4.3.1. Validating temporal extrapolation with bathymetry maps
The influence on estimation performance from temporal extrapolation of the bathymetry estimation
model is assessed. The availability of two sets of vaklodingen allowed for cross-validating the two
bathymetry estimation models. Depth estimates are obtained from BEM 2016 applied to the 2019
composite and compared to the 2019 vaklodingen (Figure 4.13). Similarly, depth estimates from BEM
2019 and the 2016 composite are compared to the 2016 vaklodingen (Figure 4.14). Prior to estimation,
the models were constrained to the penetration depth of 5 m (Section 4.2.1) by setting a threshold on
the observations used for training (Section 3.3.2).
Estimated depths (Figures 4.13a and 4.14a) display similar shallow bathymetric structures to depth
estimates as the result from the estimation model that were trained on synchronous in situ data (Figures
4.7a and 4.8a). Shallow structures are observable and deep depths are as expected incorrectly projected
to be equally shallow at 4 to 5 m. The bathymetric structures are better defined and more accurately
estimated by BEM 2019 in combination with the 2016 composite (Figure 4.14d) than by the BEM
2016 applied to the 2019 composite (Figure 4.13d). Sharp edges between shallow and deeper areas
are observable, even in the speckly estimates from BEM 2016 with the 2019 composite (Figure 4.8a).
Uncertainties for the depth estimates are correspondingly largest for the shallow structures of interest
estimated by BEM 2016 with the 2019 composite (Figure 4.13b). By applying BEM 2016 to the
2019 composite, shallow areas are estimated significantly too deep (Figure 4.13d). Based on the 2016
composite, the BEM 2019 estimates the shallow structures only slightly too deep (Figure 4.14d).
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Figure 4.13: Bathymetry estimates and estimation quality from BEM 2016 with 2019 composite, compared with 2019 vaklodingen.

Figure 4.14: Bathymetry estimates and estimation quality from BEM 2019 with 2016 composite, compared with 2016 vaklodingen.
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Comparing these results of the bathymetry estimation models applied to non-synchronous composites
(Figures 4.13 and 4.14) to the estimates of the estimation models and their synchronous training
composite (Figures 4.7 and 4.8), provides insight on the performance of the bathymetry estimation
models. When applied to the synchronous composites, BEM 2016 outperformed BEM 2019. However,
when applied to the non-synchronous composites, BEM 2019 outperformed BEM 2016. This seeming
contradiction implies that composite quality is more important to estimating depths than to training
the estimation model. Both BEM 2016 and BEM 2019 perform significantly lower when applied to the
low-quality composite from 2019 (Figure 4.5).

4.3.2. Validating temporal extrapolation with bathymetry along transects
To illustrate the potential of estimating bathymetry without the use of synchronous in situ data, depth
estimates from Section 4.3.1 are visualised along three transects (Figures 4.15 and 4.16). Estimated
depths are plotted along depth observations from the vaklodingen and propagated uncertainties are
depicted as confidence intervals.
Although the outline of the shallow bathymetric structures is somewhat observable in the estimates,
uncertainties are irregular and large for both deep and shallow estimates. Estimates from BEM 2019 and
the 2016 composite are smooth and successfully estimate the shallow bathymetric structures (Figure
4.16). Small-scale structures observed on top of the large structure are visible along the estimated
profiles, although not equally along each transect. As expected, deep depths are not estimated correctly
and are estimated at approximately 4.5 m. The small peaking structure at approximately 5 m depth in
Transect C was estimated, albeit too shallow.
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Figure 4.15: Estimated depths along transects from BEM 2016 applied to the 2019 composite. Large-scale structures are somewhat
observable from the irregular estimated profile. However, uncertainties of both shallow and deep estimates are large.

Figure 4.16: Estimated depths along transects from BEM 2019 applied to the 2016 composite. Both large-scale and small-scale
shallow structures are correctly estimated. Deep depths are incorrectly projected at approximately 4.5 m.
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Solely comparing the transect depth estimates from BEM 2016 with the synchronous 2016 composite
(Figure 4.11) to the transects from the non-synchronous 2019 composite (Figure 4.15 could suggest
extrapolation in time reduces estimation performance. Estimates along these transects from BEM
2019 however visibly improved with the non-synchronous 2016 composite (Figures 4.12 and 4.16).
The visualisation of estimated depths along the transects accentuates the limiting effect of applying
a bathymetry estimation model to the low-quality 2019 composite.
The accurate estimation of shallow structures without the use of synchronous in situ data demonstrate
the potential of mapping temporal variations (Figure 4.16). Both large-scale and small-scale structures
are visible along the estimated profile. In comparison to BEM 2016 (Figure 4.11), BEM 2019 shallow
structure estimates for 2016 are slightly more limited to approximately 4.5 m instead of 5.5 m depth.
This maximum predictable depth is likely an effect of the low-quality 2019 composite which was used
to train BEM 2019.
For transects A and B the eastern edge of the profile is estimated with a small horizontal bias. This
offset could be due to the incidence angle of the sun which results in differences in illuminated sides of
the bathymetric structure. This hypothesis is supported by the absence of a horizontal bias in transect
C, which is oriented somewhat perpendicular to transects A and B.
Confidence intervals are approximately constant along the estimated profiles, although depths estimated
around the prediction threshold of 4 to 4.5 m are slightly more uncertain. Large uncertainty is especially
visible for the steep transition of shallow to deep bathymetry. These large uncertainties could be to
the influence of neighbouring pixels on the bathymetric signal by for example refraction. As a result,
small horizontal errors occur around steep transitions from shallow to deep depth. On steep slopes,
small horizontal variations coincide with large vertical differences, which are visible along the estimated
profiles.
Bathymetry from the bathymetry estimation models and non-synchronous composites were cross-
validated by using the non-synchrnous vaklodingen data. RMSE erros for multiple thresholds on
estimated depths from were compared for the 2016 (triangles) and 2019 (circles) composites and three
bathymetry estimation models; BEM 2016 (blue), BEM 2019 (green) and an estimation trained on the
reference image (red) (Figure 4.10).

Figure 4.17: Visualisation of RMSE calculated with a threshold on estimated depths. Depths and RMSEs were calculated for
three different bathymetry estimation models (BEM 2016, BEM 2019 and trained on the reference image) and applied to the
2016 and 2019 composites.

For all three bathymetry estimation models, the RMSE for the synchronous and non-synchronous
scenarios are similar. This indicates that temporal extrapolation, by applying a model to an image
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three years apart from the training image, does not strongly affect the error of the estimation. These
findings verify the assumption that a general model relating depth to intensity exists after correcting
the multispectral imagery for all non-bathymetric variations. The estimation errors for the synchronous
scenario are expected to be less than those of the non-synchronous case. However, the RMSE for the
synchronous composite is not consistently lower. For all three models, the estimation errors are larger
when applied to the 2019 composite. Even the 2019 model applied to its synchronous composite, results
in larger errors than when applied to the 2016 composite. This suggests that the quality of the composite
image has a larger effect on the estimation errors than temporal extrapolation. This also implies
that reducing the estimation error by implementing a different model will benefit the extrapolated
results equally. Figure 4.17 highlights the potential of the extrapolating a readily-trained bathymetry
estimation model. As the RMSE does not significantly increases by extrapolating these models in
time, the approach successfully prepares multispectral imagery for extrapolation. Implementing another
bathymetry estimation model may therefore improve extrapolated results.
Figure 4.17 demonstrates the effect of averaging. The model trained on the reference image, cannot
estimate depths shallower than 3 [𝑚] when applied to the 2016 and 2019 composites. By creating a
composite, peak signals of individual images are averaged. This discrepancy between a single image
and composite results in a bias when applying a single image model to a composite image, and vice
versa. The model trained on the reference image has a negative bias when it is applied to a composite
image, hence the most shallow depths completely absent in the estimation. To optimise bathymetry
estimation on composites, the model should therefore be trained on a composite image too.

4.3.3. Temporal bathymetric changes in timeseries
Temporal bathymetric changes are estimated for six locations by using successive partially-overlapping
composites (Figure 4.18). Timeseries are created by applying the estimation models BEM 2016 (blue)
and BEM 2019 (green) to composite Sentinel-2 images spanning from 2016 to 2020 (Section 3.4.1).
Estimated depths are plotted against the vaklodingen observations (star symbol).
Depth increased between the vaklodingen observations for five locations, a decrease in depth is observed
only for location three (P3). Estimates display comparable trends from 2016 to 2019. Estimates from
both bathymetry estimation models display display similar profiles with fluctuations of varying scales.
The majority of the depth estimates from BEM 2016 is approximately 0.2 m to 1 m deeper than
estimates from BEM 2019. BEM 2016 estimates depths up to 5 m, whereas estimates from BEM 2019
are limited to 4 m.
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Figure 4.18: Temporal bathymetric changes for six point locations estimated by applying the BEM 2016 (blue) and BEM 2019
(green) estimation models to partially-overlapping six-month composites in comparison to vaklodingen observations (depicted by
the star symbol).

Figure 4.19: Point locations from Figure 4.18 visualised on top of the 2016 vaklodingen.

As expected, deep depths (eg. P3 2016 or P6 2019) are projected to the maximum predictable depth;
approximately 4 m for BEM 2019 and approximately 5 m for BEM 2016. The shallower profile of BEM
2019 therefore appears to better approach the selected shallow observations. BEM 2019 however closely
estimated the large difference between observations in P3. Based on these timeseries, both bathymetry
estimation models perform approximately equal.

The steep fluctuations which are especially visible for location one (P1), appear to be somewhat
unrealistic in comparison to the small difference that is observed between vaklodingen. These large
temporal fluctuations could be caused by location one’s position on a steep slope. On steep slopes, small
horizontal variations correspond with large vertical differences. Reflections from neighbouring pixels
due to for example refraction of light influence the bathymetric signal. As a result, small horizontal
errors occur around steep bathymetric edges. This effect is also visible in depth estimates along transects
(eg. Figure 4.16). This method of visualising temporal changes of point locations, is expected to be
very susceptible to large depth fluctuations as a result of small horizontal errors.
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4.3.4. Temporal bathymetric changes of two-dimensional structures
To provide context to the temporal changes, estimates are visualised as part of a bathymetric structure.
Here, temporal changes of (part of) a sandbank structure are estimated by using four composites
of consecutive years (Figure 4.20). The outline of the bathymetric structure is define as the 4 m
contourline. The observed outlines of the sandbank are depicted in grey; 2016 (dotted) and 2019
(dashed) (Figure 4.20a). Between these observations, the outline of the structure retreated towards the
right and the narrow tip changed direction. To estimate this temporal trend, intermediate annual
changes are estimated from BEM 2019 in combination with a six-month composite for each year
(depicted in pink) (Figure 4.20b). The lightest colour displays the sandbank estimated for 2016, the
darkest colour represents the structure in 2019. From light to dark the gradual retreat of the bathymetric
structure is visible. To visually improve the image, both estimated depth and vaklodingen lines were
smoothed by a Gaussian low-pass filter. Because vaklodingen data were used to anchor the bathymetry
estimation models to depth, estimates are referred to the vaklodingen chart datum, which is Normaal
Amsterdams Peil.

Figure 4.20: Outline of a bathymetric structure defined by the -4 m contour line. a) Temporal development of this sandbank
structure from 2016 to 2019 from vaklodingen observations. b) Intermediate annual development estimated from BEM 2019 and
six-month composites from four consecutive years.

The estimated depths show a temporal trend similar to the vaklodingen. The 2019 vaklodingen show the
start of the breakthrough of the sandbank in the right lower corner of the figure. Although the estimates
did not match this morphodynamic change completely, the retreating pattern is however clearly visible.
Composite quality strongly affects the performance of depth estimation, the contourlines are therefore
not solely representative of the performance of extrapolation. Increasing the duration of the composite
would increase the number of images and consequently improve its quality. It can be argued, for
example, that the breakthrough of the bathymetric structure would be better estimated by improving
the 2019 composite image. However, by doing so, the balance between observable changes and and
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quality images needs to be maintained. By showing only a single contour line, the extent of the line is
very sensitive to small deviations in depth and should thus be interpreted with care. The orientation
of the structures depicted by the contour lines is less sensitive to small errors and is therefore a good
representation of the structures.

4.4 Additional points of discussion
To finalise this chapter, I would like to address some additional points of discussion. This section aims
to elaborate on the consequences of selecting a different reference image (Section 4.4.1), the impact of
tidal water level variations and data scarcity on the quality of a composite (Section 4.4.2), the influence
of several modifications to the bathymetry estimation model (Section 4.4.3) and effects of temporal
extrapolation (Section 4.4.4).

4.4.1. Reference image
The reference image correction method enabled direct comparison of multitemporal images and allowed
for the use of a time-independent bathymetry estimation model. The quality and characteristics of the
reference image therefore have an extensive influence, since all multispectral imagery is corrected to this
image. Here, I would like to elaborate on the influence of (i) a different high-quality reference image
and (ii) a low-quality reference image.
A high-quality reference image is required for the reference image correction method because it is used to
correct for large-scale non-bathymetric variations in the Sentinel-2 imagery (Section 2.3.2). To achieve
this, the bathymetric signal in the reference image should be unobstructed; a high-quality cloud-free
image is required where propagation of the shallow bathymetry signal is not limited by turbidity or high
water levels. An image at low water is preferred; at low water an increased level of details is displayed
because the bathymetric signal is significantly stronger. To obtain an image that satisfied these criteria,
the reference image was manually selected from a collection atmospherically processed images. The
reference image correction method is a relative correction which brings all imagery to the level of the
reference image. Although selecting another satisfactory image would change the reference level, that
change is compensated by the bathymetry estimation model which anchors the imagery by using the
vaklodingen. Therefore, I expect that another clean and high-quality reference image will have little
effect on the estimated depths. To verify this line of reasoning, another high-quality reference image
should be tested and results should be compared.
The impact of a low-quality reference image would be more extensive. Any adverse features or errors
in the reference image are widely propagated because all multispectral imagery is corrected to this
image. Correcting the imagery to an obstructed reference image would therefore complicate isolating
the bathymetric signal from these images. Furthermore, the reference image is used to identify images
obstructed by large-scale non-bathymetric effects that cannot be removed by an atmospheric correction
(Section 2.3.2). Selecting a low-quality reference image would disable identification of images affected
by those large-scale effects. As a result, the quality of composite images would decrease by including
these low-quality images into a composite.

4.4.2. Composites
Composite images are used to train a bathymetry estimation model and subsequently to estimate
depths by serving as input for the trained model. Results are therefore strongly influenced by the
quality of the composite images. Composite quality is controlled by the images that are included
into the composite and their relative differences, both a product of the composite’s timespan. Here, I
would like to discuss (i) the influence of differences between multitemporal images due to tidal water
level variations. Furthermore, I would like to emphasise (ii) the impact of the scarcity of high-quality
data on composite quality, because creating composites is a trade-off between image quality and image
quantity.
Tidal water level variations may induce large-scale variations between multitemporal imagery. Repeat
visits of the Sentinel-2 satellites of the Wadden Sea area are at an approximately equal time of day.
Tides are the periodic motion of the oceans on Earth due to changes in the gravitational forces acting
upon the rotating Earth. The gravitational pull of the Moon, which orbits the Earth in one lunar
day (24 hours and 50 minutes), creates approximately two tidal cycles in one solar day (24 hours).
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The tidal cycle shifts every solar day due to the discrepancy between a solar and lunar day. The
gravitational pull of the Sun introduces an additional cycle of tidal water level variation that occurs
within a month (spring/neap). As a result, satellite images covering a timespan of several months record
water levels across both high/low and spring/neap variations. These tidal water level variations may
induce large-scale differences between multitemporal images. The reference image correction method is
developed to minimise such large-scale variations between images, therefore it also acts as a correction
for tidal water level variations. Corrected imagery and temporal differences are additionally averaged
by creating a composite image. Therefore, the influence of tidal water level variations on composites
and depth estimates appears to be minimal. To verify this hypothesis, a composite of images with
large tidal water level variations should be created and used to train a bathymetry estimation model.
Subsequently, its depth estimates should be tested against those of a composite with minimal variation
in tidal water levels.

Local conditions such as frequent cloud coverage and high turbidity levels result in a scarcity of
high-quality Sentinel-2 images. In this study, high-quality images are identified by thresholds on cloud
coverage and relative deviation in the green band. These threshold parameters are tuned to maximise
the number of high-quality images identified, while simultaneously minimising the number of low-quality
image incorrectly marked as high-quality. The identification of high-quality images is especially sensitive
to the threshold on relative deviation in the green band. A balance between high-quality imagery and a
sufficient number of images was maintained by setting this threshold at 8.5 %. In this study, increasing
the threshold with 0.5 % approximately doubled the number of images in the total four-year collection
of Sentinel-2 images, whereas reducing it with 0.5 % halved that number. Determining which images to
include is a trade-off between quality and quantity; including low-quality images solves the problem of
scarce high-quality data yet it reduces composite quality. Because of the sensitivity to this threshold,
the threshold on the relative deviation in the green band should be determined with care by manually
inspecting (some of) the corrected imagery. The identification of high-quality images was less sensitive
to the threshold on cloud coverage. Lowering the threshold from 20 % to 10 % removed one image from
the thirty-nine images in the four-year collection. Increasing the threshold to allow up to 40 % cloud
coverage, increased the number of images in the four-year collection with seven. A sensitivity study
could quantify the influence of both the cloud coverage threshold and the threshold on the relative
deviation in the green band.

4.4.3. Bathymetry estimation model
The bathymetry estimation model in this study is obtained by linear regression on a composite image
and in situ depth observations. The three-year extrapolation that is performed on this estimation
model did not decrease its predictive power; the root mean square errors were approximately equal
at one metre. The absence of error growth suggests that temporal extrapolation does not introduce
significant estimation errors. This appears to imply that improving composite quality or the bathymetry
estimation model will improve extrapolated estimation results accordingly. Therefore, I would like to
discuss (i) the influence of training the estimation model on a composite image and (ii) the expandability
of the presented work by evaluating four alternatives for the estimation model.

Estimation results differed for a bathymetry estimation model trained on a composite or on a single
image. The effect of averaging multiple images into a composite is visible by comparing the estimation
performance of three different estimation models (Section 4.3.2). The bathymetry estimation model that
is trained on a single image displayed a bias in the depth estimates obtained from a composite. Peak
signals are flattened in a composite image, this effect is particularly observable for very shallow water
that appeared to be somewhat deeper. The peak signals, which describe minimum depths, are much
higher in an individual image. A bathymetry estimation model that is trained on the averaged signal
of a composite is unable to predict the most shallow depths represented by the high peak signals in an
individual image. To avoid this estimation bias, the image type on which the bathymetry estimation
model is trained should be equal to that of the image used for estimation. Hence, in this study,
estimating depths from composite images required training the estimation model on a composite.

The application of the log-linear bathymetry estimation model is physically limited to the penetration
depth. Due to the projection of deeper depths onto the penetration depth, reliable estimates were
further constrained (Section 4.2.3). Both the penetration depth and a threshold on the reliability of
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estimated depths can be obtained by using in situ depth observations. In clear water conditions the
penetration depth is larger, which enables estimating deeper depths. Additionally, the projection of
deep depths onto the penetration depth is minimal if the water is sufficiently clear and bathymetry
sufficiently shallow. Application of the presented method to an alternative study site with clear water
conditions is therefore favourable, as depth estimation under these conditions is not dominated by
limitations of the penetration depth. Despite an increased range of predictable depths of the log-linear
estimation model, bathymetry derivation in optically clear waters is often complicated by other factors
such as heterogeneous bottom habitats.
Bathymetry estimation models based on ratios of spectral bands are demonstrated to be robust to
spatial variations in bottom type (e.g. Stumpf et al., 2003). The homogeneous bottom type of the
Wadden Sea study site allowed for use of the log-linear estimation model. Implementing a band ratio
model will expand the applicability of the presented method and enable the estimation of bathymetry
across spatially-varying habitats. Bathymetry estimation may be additionally complicated by spatial
variations across the water column such as turbidity (Caballero and Stumpf, 2020b). Substituting the
log-linear estimation model may also improve depth estimation for the turbid Wadden Sea study site,
as band ratio models are also demonstrated to be relatively robust to those spatial variations (Stumpf
et al., 2003). The presented extrapolation method is potentially applicable to estimate nearshore shallow
bathymetry at any global location if there is an estimation model available that can account for the
site’s spatial characteristics.
The log-linear estimation model may be improved by a different combination of the spectral bands.
Here, a linear combination of the log-transformed red, green and blue bands of Sentinel-2 imagery is
used. Removing red light from this equation for its limited capacity to penetrate the water column
may improve depth estimation (e.g. Traganos et al., 2018). Alternatively, additional Sentinel-2 bands
may be exploited to develop an estimation model that employs an increased number of spectral bands.
Furthermore, machine-learning techniques are demonstrated to improve estimation (e.g. Misra et al.,
2018, Sagawa et al., 2019). To verify the hypothesis that an improved estimation model directly
improves extrapolated estimation results, a comparative study could quantify predictive power for
multiple estimation models.
Although this study omits the need for synchronous in situ data, it is still dependent on at least one set of
in situ depth observations. In a recent study, Thomas et al. (2020) demonstrated a method to substitute
in situ depth observations with spaceborne lidar data from the ICESat-2 satellite. Incorporating
ICESat-2 data to train the bathymetry estimation would greatly expand the applicability of the work
presented in this thesis. ICESat-2’s continuous and global recordings are publicly available; its data
may provide new observations of locations yet to be surveyed by traditional campaigns or offer a
high-frequent alternative for areas that are regularly surveyed such as the Wadden Sea. Because the
proposed method enables temporal extrapolation of a bathymetry estimation model, it may be used to
utilise recent ICESat-2 observations to map historical bathymetric changes.

4.4.4. Temporal extrapolation
Within in the tested three-year time frame, temporal extrapolation did not decrease the predictive
power of bathymetry estimation in the Wadden Sea. These results imply that estimation performance
is predominantly governed by composite quality and the predictive power of the bathymetry estimation
model. This suggests that improving composite quality or the estimation model will directly improve
extrapolated results. Quantifying the effect of temporal extrapolation is however difficult, because
bathymetry estimation for this case study is strongly limited by the relatively shallow penetration
depth due to highly turbid waters. The estimation errors due to high-turbidity are significantly larger
than those introduced by the temporal extrapolation. To isolate the estimation errors from temporal
extrapolation, the presented approach should be tested for a less-constrained case study. Applying
temporal extrapolation of a bathymetry estimation model in optically clear waters will provide more
insight into its effect on predictive power and resulting temporal limits.



5
Conclusions

5.1 Conclusions
Mapping temporal bathymetric changes from satellite derived bathymetry is challenging because the
majority of bathymetry estimation methods is heavily dependent on in situ observations. As a result
of this dependency, the availability of synchronous in situ data governs the derivation of bathymetry
from multispectral imagery. For this thesis, I developed an approach to estimate temporal changes from
satellite derived bathymetry by estimating bathymetry for times of absent in situ data. This approach
included a reference image correction method for large-scale non-bathymetric variations, composite
images created with a spatiotemporal filter and temporal extrapolation of a readily-trained bathymetry
estimation model. To investigate the potential of the approach, four sub-questions are defined in support
of one main research question. Here, I summarise my findings for the Wadden Sea case study based on
these five questions.

1. How to enable direct comparison of multitemporal satellite imagery in order to map temporal
bathymetric changes?

Although tailored processing of multispectral imagery is in general important to obtain satellite
derived bathymetry, temporal analysis specifically requires imagery to be directly comparable.
A reference image correction method is developed to correct individual images for large-scale
non-bathymetric variations. This use of a reference image to correct multispectral imagery is
found to deliver results in which temporal signal variations are dominated by bathymetric changes.
The isolation of the bathymetric signal allowed for temporal extrapolation of a time-independent
bathymetry estimation model. The extrapolation enabled estimating bathymetry for times of
absent in situ data and subsequently mapping temporal changes.

2. How to manage the expected scarcity of high-quality images due to challenging conditions associated
with the study site?

High-quality images are effectively selected using two selection criteria; a threshold of 20 % on
the maximum cloud coverage and a threshold of 8.5 % on the average relative pixel deviation in
the green band between an image and the reference image. To manage the limited availability of
high-quality images, composites with a duration of six months are constructed. A spatiotemporal
filter that included an outlier detection algorithm successfully created clean and smooth composites.

3. What approach is best-suited to relate water depth and multispectral imagery for the site-specific
conditions?

The homogeneous bottom type of the case study allowed for a log-linear bathymetry estimation
model. The estimation model is applicable to the upper part of the water column into which
visible light penetrates. Linear correlation between depth and log-transformed intensities of the
multispectral image is observed for the first five metres of the water column. The bathymetry
estimation model is therefore trained only on depths that were observed shallower than five metre.
The estimation model projected deep depths onto this five metre zone due to the ambiguous
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relation between depth and intensity below the penetration depth. As a result, only depth
estimates up to four metre were reliable. Structures shallower than this four metre threshold
are estimated with root mean square errors of approximately one metre. Optimal estimation is
obtained by training the bathymetry estimation model on a composite, instead of training on a
single image. The application of an estimation model trained on a single image to a composite
image resulted in a negative bias that is due to the averaging of spectral peaks in individual images.
Submetre structures and large-scale formations are correctly estimated by using a composite to
train the estimation model.

4. What is the performance of extrapolation in terms of detectable bathymetric changes, temporal
limits and estimation quality?
Temporal changes are derived by extrapolating the readily-trained bathymetry estimation model
to consecutive composites with the use of a moving-average filter. With this method, the position
and the direction of the lateral migration of bathymetric structures are successfully estimated.
No difference in estimation quality was found between the application of a bathymetry estimation
model to a synchronous composite and an extrapolation of three years; the root mean square errors
were approximately equal at one metre. The absence of error growth suggests that predictive power
does not decrease with time. Within the tested three-year time frame, there is no temporal limit
of the extrapolation.

To what extent can bathymetry be derived from multispectral imagery, for times of absent
in situ data?
The presented method has shown to estimate shallow bathymetric structures with approximately one
metre accuracy for times of absent in situ data. Furthermore, the migration direction of these structures
is correctly estimated. Composite images with a duration of six months are used to successfully estimate
depths up to four metre. Predictive power did not decrease with the three-year extrapolation performed
on the bathymetry estimation model, therefore there seems no temporal limit to the extent of the
extrapolation within that time frame. The limited influence of extrapolation on the predictive power
suggests that the availability of high-quality satellite imagery and one set of non-synchronous in situ
observations is sufficient to estimate bathymetry for times of absent in situ data.

5.2 Recommendations
Based on the findings and conclusions of this thesis, the following recommendations are suggested.
Deriving bathymetry from multispectral imagery is generally challenging for waters with high turbidity
such as the Wadden Sea. Assessing the influence of temporal extrapolation on a bathymetry estimation
model is therefore increasingly difficult because the effects of turbidity dominated the estimation. To
quantify the effect of temporal extrapolation on estimation and to further investigate its temporal limits,
I recommend to test the presented approach under less constraining conditions such as optically clear
waters.
Estimation quality is strongly dependent on the performance of the bathymetry estimation model.
Implementing a more-advanced or improved estimation model will directly improve extrapolated depth
estimates. Selecting a robust estimation model that is well-suited to the characteristics of a study site is
therefore crucial. For the Wadden Sea case study I suggest improving the log-linear model by changing
the number of bands or substituting it for a band ratio model.
Estimation quality is furthermore governed by the quality of the composite image. The composite
is created by balancing quantity and quality of individual images on a timescale that represents the
dynamics of the morphological structures of interest. In that context, I recommend to explore different
composite configurations to establish an optimum. This specifically includes adjusting the duration of
the composite and testing the sensitivity to the two quality thresholds: the maximum cloud coverage
and the relative deviation in the green band. To quantify composite quality, I suggest to establish a
metric that describes the sensitivity to these tuning parameters. One way to this, would be expressing
the relative deviation of the composite with respect to the reference image, in a way similar to the green
band deviation that is used for individual images.
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