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Abstract: Efficient multi-purpose reservoir control policies are crucial in the face of frequent
and severe floods and droughts, and to balance water allocation across conflicting demands.
Evolutionary Multi-Objective Direct Policy Search (EMODPS) is a popular approach to design
control policies for multi-purpose reservoir systems. EMODPS, however, relies on experimental
choices within the key components of the framework particularly when coupling multi-objective
evolutionary optimization with nonlinear approximation networks. This study explores a suite
of radial basis functions (RBFs) used to map the system’s states to control actions in a
flexible manner as time-varying, non-linear relationships. We provide a systematic assessment of
different RBF functions to explore their suitability to obtain Pareto efficient control policies. We
use the Susquehanna river basin case study in which competing water demands for hydropower,
environment, urban water supply, atomic power plant cooling and recreation need to be met. Our
findings suggest that the choice of RBF functions have a large impact on the model outcomes
and the search behavior of the optimization algorithm.

Keywords: Optimal operation of water resources systems,direct policy search, global
approximators

1. INTRODUCTION

Effective operations in existing reservoir systems are essen-
tial to meet competing water demands and to cope with
challenging hydro-climatic conditions. Evolutionary Multi-
Objective Direct Policy Search (EMODPS) has proven to
be a flexible and generalizable approach to design effective
operating policies in multi-purpose reservoir management
due to its ability to find trade-offs across multiple com-
peting objectives, with heterogeneous, non-linear objective
function formulations (Giuliani et al., 2016). EMODPS
combines Direct Policy Search (DPS), to parameterize
the control policy using global approximators, with multi-
objective evolutionary algorithms (MOEAs). A major ben-
efit of this combination is that the set of Pareto optimal
control policies can be attained in a single run (Giuliani
et al., 2016) due to the MOEA’s population-based search
via the use of stochastic search operators (Zatarain Salazar
et al., 2016). The suitability of several popular MOEAs
within the EMODPS framework has been explored ex-
tensively (Zatarain Salazar et al., 2016; Gupta et al.,
2020). The success of the EMODPS, is nonetheless, highly
dependent on the function which maps states to actions.
A flexible structure that is capable of capturing nonlinear
relationships is required and so far, radial basis functions
have been successfully applied for multi-purpose reservoir
control (Giuliani et al., 2014, 2016; Zatarain Salazar et al.,
2016; Gupta et al., 2020; Doering et al., 2021).

Busoniu et al. (2009) recommends the use of a Gaussian
distribution for continuous RBF parameters due to its

⋆

unbounded support. Giuliani et al. (2014) later used Gaus-
sian RBFs for direct policy search within the EMODPS
framework. However, the performance of alternative uni-
versal approximators requires further exploration. We aim
to understand to what extent nonlinear approximation
within the EMODPS framework can affect the recommen-
dations that will influence efficient reservoir management
strategies. We use the Conowingo reservoir in the Lower
Susquehanna River Basin (LSRB), USA, to study the
impact of nonlinear approximation networks over multi-
objective reservoir control described in Section 1.1.

1.1 The Conowingo Reservoir System

The Conowingo reservoir, is an interstate water body
shared by the states of Pennsylvania and Maryland. The
reservoir needs to meet demands for hydropower, urban
water supply to Chester (PA) and Baltimore (MD), cool-
ing water for the Peach Bottom nuclear power station,
and recreation. The downstream releases of the dam are
subject to minimum flow requirements which were set by
the Federal Energy Regulatory Commission (FERC) to
preserve fishing resources. The Conowingo dam objectives
are modeled over the simulation time horizon of one year.
A yearly simulation horizon has been chosen due to the
system’s limited regulatory capacity and low dependence
on the reservoir levels at the start of the simulation
Zatarain Salazar et al. (2016).

Hydropower revenue (to be maximized) is defined as
the economic revenue gained from hydropower production
at the Conowingo hydropower dam in US$/MWh defined
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in Eq. 1. The energy prices are defined by the seven hour
moving average of the energy price trajectory in the Penn-
sylvania, New Jersey–Maryland (PJM) energy market (
Exelon, 2010 ). The hourly energy production (MWh) is
defined by Eq.2 , where η is the turbine efficiency, g is
the gravitational acceleration (9.81m/s2), γw is the water
density (1000kg/m3), h̄t is the net hydraulic water level
difference (head) in meters and qTurb

t is the turbine flow
in m3/s.

Jhyd =

H
t=1

(HPt · ρt) (1)

HPt = ηgγwh̄tq
Turb
t · 10−6 (2)

Water supply reliability to the Atomic Power
Plant, Chester and Baltimore (to be maximized) The
daily average volumetric reliability defined as:

JV R,i =
1

H

H
t=1

(Y i
t /D

i
t) (3)

where Y i
t (m

3) is the daily delivery, Di
t(m

3) is the corre-
sponding demand, and i represents the water supply to
Baltimore, Chester or the Atomic Power Plant. Figure ??
illustrates the demand in cubic feet per second for each
objective.

Environmental Shortage (to be minimized) specified as
the daily average shortage index in regard to the FERC
minimum flow requirements, defined as follows:

JSI =
1

H

H
t=1


max(Zt − Yt, 0)

Zt

2

(4)

where Yt (m3) is the daily release and Zt (m3) is the
corresponding FERC flow requirement. The quadratic for-
mulation (Eq. 4) is intended to penalize substantial deficits
in a single time step while allowing for more frequent,
minor shortages Hashimoto et al. (1982). Figure ?? depicts
the monthly water supply demands as well as the FERC
minimum flow criteria.

Recreation (to be maximized) defined in Eq. 5 as the
storage reliability throughout the tourist season’s week-
ends. Given by the relationship between the number of
weekend days in the peak season that are less than the
intended level (nF ) and the total number of weekends in
the tourist season (Nwe). To ensure recreational activities,
the target level is 32.5 m (106.5 ft).

JSR = 1− nF

2Nwe
(5)

2. METHODS

An initial step towards offering guidance for flexible reser-
voir control using EMODPS, requires understanding the
influence that the family of functions shaping the control

policy have over the tradeoffs of interest. The main compo-
nents of the framework are (1) the use of nonlinear approx-
imators to parameterize the operating policy for multiple
objectives, and (2) the identification of parameterizations
that yield Pareto approximate reservoir control policies us-
ing multi-objective evolutionary search (Zatarain Salazar
et al., 2016; Giuliani et al., 2016). We focus on the first
component of the framework, the non-linear approxima-
tors, in particular on RBFs. The main differences between
an RBF network and other ANN architectures is that it
always consists of an input layer, a hidden layer with a
nonlinear activation function and a linear output layer.
Each neuron in the hidden layer has a kernel function, also
known as an activation function, distinguished by a center
xi and radius σ. The idea is to apply locality-sensitive
transformations of the data points into high-dimensional
spaces, allowing the altered points to be linearly separable
(Aggarwal, 2018). Correlation is high when the points are
close together and is low when they are far apart. The
output layer consists of a neuron for each output, giving
the predicted value by multiplying the sum of the weights
with the euclidean distance for each RBF. This gives an
RBF network the ability to handle nonlinear problems.

The control policy is described in Equation 6, where the
vector ut is a sum of basis functions defined by the input
vector x, and the output of the kth node in the output
layer (with k = 1, ..., Nu):

uk =

n
i=1

wk
i ϕi(xt) (6)

where n is the number of RBFs and wi is the weight
of the i -th RBF ϕi. The weights are non-negative (i.e.,
wi ≥ 0∀i) and their sum equals to one (i.e.,

n
i=1 wi = 1).

The function is only a valid covariance function when
its variance is non-negative for every possible choice of
n. The function models the joint variability of the func-
tions’ random decision variables. It returns the modelled
covariance between each pair in xa and xb. ϕi(xt) is an
activation function. The initial activation function used in
the Susquehanna case is:

ϕi(x) = exp


−

m
j=1

(xj − cj,i)
2

b2j,i


 (7)

where m is the number of input variables x, and ci, bi

are the m-dimensional center and radius vectors of the ith
RBF, respectively. The centers of the RBF must lie within
the bounded input space and the radii must strictly be
positive (i.e., using normalized variables, ci ∈ [−1, 1] and
bi ≥ (0, 1]). The parameter vector θ is therefore defined
as θ = [ci,j , bi−,j , w

k
i ], with i = 1, ..., n, j = 1, ...,m, and

k = 1, ..., Nu (Giuliani et al., 2016).

2.1 Activation functions (Kernels)

An activation function qualifies as a radial basis function
when it is semi-positive definite and isotropic (Williams
and Rasmussen, 2006). Positive definite functions have
the property that the function of x is greater or equal
to zero for all x. Activation functions that are isotropic
only depend on the difference between x − x′ (i.e. the
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in Eq. 1. The energy prices are defined by the seven hour
moving average of the energy price trajectory in the Penn-
sylvania, New Jersey–Maryland (PJM) energy market (
Exelon, 2010 ). The hourly energy production (MWh) is
defined by Eq.2 , where η is the turbine efficiency, g is
the gravitational acceleration (9.81m/s2), γw is the water
density (1000kg/m3), h̄t is the net hydraulic water level
difference (head) in meters and qTurb

t is the turbine flow
in m3/s.

Jhyd =

H
t=1

(HPt · ρt) (1)

HPt = ηgγwh̄tq
Turb
t · 10−6 (2)

Water supply reliability to the Atomic Power
Plant, Chester and Baltimore (to be maximized) The
daily average volumetric reliability defined as:

JV R,i =
1

H

H
t=1

(Y i
t /D

i
t) (3)

where Y i
t (m

3) is the daily delivery, Di
t(m

3) is the corre-
sponding demand, and i represents the water supply to
Baltimore, Chester or the Atomic Power Plant. Figure ??
illustrates the demand in cubic feet per second for each
objective.

Environmental Shortage (to be minimized) specified as
the daily average shortage index in regard to the FERC
minimum flow requirements, defined as follows:

JSI =
1

H

H
t=1


max(Zt − Yt, 0)

Zt

2

(4)

where Yt (m3) is the daily release and Zt (m3) is the
corresponding FERC flow requirement. The quadratic for-
mulation (Eq. 4) is intended to penalize substantial deficits
in a single time step while allowing for more frequent,
minor shortages Hashimoto et al. (1982). Figure ?? depicts
the monthly water supply demands as well as the FERC
minimum flow criteria.

Recreation (to be maximized) defined in Eq. 5 as the
storage reliability throughout the tourist season’s week-
ends. Given by the relationship between the number of
weekend days in the peak season that are less than the
intended level (nF ) and the total number of weekends in
the tourist season (Nwe). To ensure recreational activities,
the target level is 32.5 m (106.5 ft).

JSR = 1− nF

2Nwe
(5)

2. METHODS

An initial step towards offering guidance for flexible reser-
voir control using EMODPS, requires understanding the
influence that the family of functions shaping the control

policy have over the tradeoffs of interest. The main compo-
nents of the framework are (1) the use of nonlinear approx-
imators to parameterize the operating policy for multiple
objectives, and (2) the identification of parameterizations
that yield Pareto approximate reservoir control policies us-
ing multi-objective evolutionary search (Zatarain Salazar
et al., 2016; Giuliani et al., 2016). We focus on the first
component of the framework, the non-linear approxima-
tors, in particular on RBFs. The main differences between
an RBF network and other ANN architectures is that it
always consists of an input layer, a hidden layer with a
nonlinear activation function and a linear output layer.
Each neuron in the hidden layer has a kernel function, also
known as an activation function, distinguished by a center
xi and radius σ. The idea is to apply locality-sensitive
transformations of the data points into high-dimensional
spaces, allowing the altered points to be linearly separable
(Aggarwal, 2018). Correlation is high when the points are
close together and is low when they are far apart. The
output layer consists of a neuron for each output, giving
the predicted value by multiplying the sum of the weights
with the euclidean distance for each RBF. This gives an
RBF network the ability to handle nonlinear problems.

The control policy is described in Equation 6, where the
vector ut is a sum of basis functions defined by the input
vector x, and the output of the kth node in the output
layer (with k = 1, ..., Nu):

uk =

n
i=1

wk
i ϕi(xt) (6)

where n is the number of RBFs and wi is the weight
of the i -th RBF ϕi. The weights are non-negative (i.e.,
wi ≥ 0∀i) and their sum equals to one (i.e.,

n
i=1 wi = 1).

The function is only a valid covariance function when
its variance is non-negative for every possible choice of
n. The function models the joint variability of the func-
tions’ random decision variables. It returns the modelled
covariance between each pair in xa and xb. ϕi(xt) is an
activation function. The initial activation function used in
the Susquehanna case is:

ϕi(x) = exp


−

m
j=1

(xj − cj,i)
2

b2j,i


 (7)

where m is the number of input variables x, and ci, bi

are the m-dimensional center and radius vectors of the ith
RBF, respectively. The centers of the RBF must lie within
the bounded input space and the radii must strictly be
positive (i.e., using normalized variables, ci ∈ [−1, 1] and
bi ≥ (0, 1]). The parameter vector θ is therefore defined
as θ = [ci,j , bi−,j , w

k
i ], with i = 1, ..., n, j = 1, ...,m, and

k = 1, ..., Nu (Giuliani et al., 2016).

2.1 Activation functions (Kernels)

An activation function qualifies as a radial basis function
when it is semi-positive definite and isotropic (Williams
and Rasmussen, 2006). Positive definite functions have
the property that the function of x is greater or equal
to zero for all x. Activation functions that are isotropic
only depend on the difference between x − x′ (i.e. the
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euclidean distance). We explored popular isotropic and
positive definite functions, as well as the multiquadric
function shown in Table 1 (Fasshauer, 2007; Schaback,
2007; Askari and Adibi, 2015; Zhang et al., 2014).

It is worth noting that all RBF kernels are implemented
with the Euclidean distance. With the modified squared
exponential RBF Kernel, the working range of the RBFs
improved when the Euclidean distance was implemented,
this was particularly true for the Matern 3/2 and the
Matern 5/2 kernel.

2.2 Experimental design

Our goal is to understand how the shape of the RBF affects
the performance of the tradeoffs when using EMODPS.
The number of RBF functions was kept constant at n = 4.
The centers, radii and weights where searched by the
MOEA with ci ∈ [−1, 1], bi ∈ [0, 1], and wi ∈ [0, 1]. These
ranges where preserved across all the tested activation
functions in Table 1. Each configuration was run for
10 random seed trials to account for variability on the
initial MOEA population, and each experiment was run
for 100,000 function evaluations.

2.3 Assessment Metrics

To assess the performance of the different RBF configu-
rations, we analyze the trade-offs in the objective space
and assess their convergence and diversity (Zitzler et al.,
2003) using generational distance, additive ϵ-indicator,
hypervolume, epsilon progress and the archive size.

Generational distance This metric measures the average
Euclidean distance between the points in an approxima-
tion set and the nearest corresponding points in the ref-
erence set. The metric is then computed as the average of
the distances. The generational distance is considered to
be an easy metric to meet because it often requires only
one solution to be close to the reference set to achieve good
performance.

Additive Epsilon-Indicator The additive ϵ indicator (Zit-
zler et al., 2003) assesses consistency of the Pareto approx-
imate set, that is, the ability to capture all the regions of
the tradeoff space. The metric is calculated as the largest
distance that an approximation set must move in order to
dominate the reference set, making it extremely sensitive
to gaps in trade-offs (Zatarain Salazar et al., 2016). In
other words, it measures the worst case distance needed
in the approximation set in order to dominate its nearest
neighbor in the reference set (Reed et al., 2013; Hadka and
Reed, 2012).

Hypervolume The hypervolume indicator (Zitzler et al.,
2003) provides a measure of convergence and diversity
by examining the multidimensional volume attained by
each approximation set in relation to a reference set.
Where each objective adds another dimension to the
multidimensional volume. It calculates the difference in
hypervolume between the reference set and the Pareto
approximation set (Reed et al., 2013).

Epsilon Progress ϵ-progress is a computationally efficient
indication of search progress and stagnation. When the
current solution sits in a different ϵ-box that dominates
the previous solution, then ϵ-progress occurs. The ϵ-box
divides the objective space into several boxes with the size
ϵ. If two solutions reside in the same ϵ-box, the solution
closest to the optimal solution will be kept, while the other
solution will be eliminated.

Archive Size The archive size is the number of non-
dominated solutions held by the archive. ϵ MOEAs utilize
ϵ-values to limit the size of the archive. All solutions
that are ϵ-dominated are eliminated. This helps to avoid
deterioration, indicating that the ability of the MOEA
to find new solutions is diminishing. The final number of
non-dominated solutions at the end of all model iterations
are used to compute the performance metrics. A bigger
archive size can give a more complete image of the trade-off
space. But this can only be argued when both convergence
and diversity are also high. The archive size can also give
information about micro evolution on different parts of the
Pareto front.

3. RESULTS

We assessed the performance of each of the activation
functions specified in Table 1 via a visual analysis of the
tradeoffs and through multiobjective performance metrics
that indicate their ability to converge and diversify.

3.1 Comparison of trade-offs and performance metrics

Figure 1 shows the trade-offs attained by the different
activation functions. Each RBF configuration is depicted
by a different color, each axis contains the objective
values, where the preferred solutions lie at the top of each
axis. If two lines cross, this indicates that a tradeoff was
discovered.

Inspecting the tradeoffs for each RBF configuration, we
note that the modified squared exponential RBF (1a), the
squared exponential RBF (Figure 1b) and the inverse mul-
tiquadric RBF (Figure 1d ) attain a diverse solution space
with high performance across each objective, reflected by
lines hitting the top of each objective axis. The inverse
quadratic RBF in Figure 1c performs slightly worse, how-
ever, it finds a diverse set of solutions. In contrast, the
Exponential RBF (Figure 1e), Matern 3/2 kernel (Figure
1f), and Matern 5/2 kernel (Figure 1g), find a narrow
trade-off space. This may indicate that the exponential
RBF, Matern 3/2 kernel and Matern 5/2 kernel have
difficulty traversing the fitness landscape, causing the ap-
proximation set to be less diverse.

3.2 Performance across the Lower Susquehanna River
basin objectives

In Figure 2 we inspect in detail the performance across
each of the LSRB objectives. Each pane shows the ob-
jective distributions attained by different activation func-
tions. The boxplots show consistent results with the par-
allel coordinate plots in Figure 1, with the benefit of
detecting detailed differences across each objective.

Table 1. Suite of radial basis functions used in this study

Activation Function ϕ(r) Reference

Modified squared exponential exp(− (x−x′)2

σ2 ) Giuliani et al. (2014)

Squared Exponential exp(− ||x−x′||2
2σ2 ) Williams and Rasmussen (2006)

Inverse quadratic 1
1+(σ∗||x−xi||)2

Fasshauer (2007)

Inverse multiquadric 1√
1+(σ∗||x−xi||)2

Fasshauer (2007)

Exponential exp(
−||x−x′||

σ
) Fasshauer (2007)

Matern(3/2) (1 +
√
3∗||x−xi||

σ
)exp(−

√
3∗||x−xi||

σ
) Williams and Rasmussen (2006)

Matern(5/2) (1 +
√
5∗||x−xi||

σ
+

5∗||x−xi||2
3σ2 )exp(−

√
5∗||x−xi||

σ
) Williams and Rasmussen (2006)

We observe that the the modified squared exponential and
the squared exponential RBFs attain the highest median
values for the hydropower objective (panel a). The in-
terquartile range for these two RBFs reflects a difference of
approximately 10 M USD/ year, with several low perfor-
mance outliers. In contrast, the inverse quadratic and the
inverse multiquadratic, show a median value of approxi-
mately 45 M USD/year, with a difference of approximately
30 M USD/year between the lower and upper quartiles.
The whiskers reflect, nonetheless, that these functions find
the entire range of hydropower values, this is particularly
true for the inverse multiquadratic RBF. The distribution
of the exponential and Matern 3/2 RBFs result in a
short box with values clustered around 45-50 and 50-55
M USD/year respectively. The Matern 3/2 and Matern
5/2 achieve similar median values, however, the outcomes
from the Matern 5/2 RBF result in a higher upper quartile.
Moving on to panel b, all the activation functions achieved
a median value higher than 75% reliability for the atomic
power plant, with the exception of the exponential RBF.
It is worth noting that the squared exponential variants,
the inverse quadratic and inverse multiquadratic RBFs
found solutions close to 100% reliability for this objective.
The lowest performance for the atomic power plant was
linked to the exponential RBF, with the median value
at 60%. Next, panel c shows the reliability results for
water supply to Baltimore, we observe that the modified
squared exponential and squared exponential RBFs show
high performance, however, in this case, the interquartile
range is broader for the modified squared exponential. The
inverse multiquadratic and the exponential RBFs attain
the lowest median reliability for Baltimore at roughly
40%, however, the former finds solutions across the entire
reliability range including the absolute highest value for
this objective. This stands in contrast to the exponential
RBF, whose boxplot is short and its lowest and highest
performance is bounded between 0.15 and 0.62. The me-
dian values attained by Matern 3/2 and Matern 5/2 are
around 0.5, with both whiskers skewed towards lower reli-
abilities. We follow next the reliability results for Chester
in panel d, we note that the modified squared exponential
and the squared exponential RBFs again have the highest
performance reflected by the median values, upper quartile
ranges and their highest attained value, these two config-
urations are followed by the inverse multiquadratic RBF
with a slightly lower median value and lower 25 % score
values. Finally, the exponential RBF again is outperformed
by all the other tested RBFs for water supply reliability.
The modified squared exponential and the squared expo-
nential RBFs find the largest range for the environmental
objective in panel e. Interestingly, the Matern 3/2 and

Matern 5/2 kernels find a good range of solutions for this
objective, where the Matern 3/2 outperforms the squared
exponential variants which attained consistently high per-
formance across the other LSRB objectives. This could be
explained by the stark trade-off between the environmental
objective and the other objectives highlighted in section
3.1.

Finally, all the RBFs attain high scores for the recreation
objective, with the exception of the inverse quadratic and
the exponential RBF, most of the low scores for the other
RBFs are outliers.

3.3 Performance metrics compared

Figure 3 shows the performance metrics for each activation
function. The metrics where computed relative to a global
reference set generated from the non-dominated solutions
across the 7 activation functions over 10 random seed
trials. The x-axis shows the number of function evaluations
(nfe), set in this case to a maximum of 100,000. Further,
each row shows a different metric value, and each column
shows a distinct RBF. Finally, the colored plots depict the
runtime dynamics for each configuration.

Generational distance All the activation functions reach
a comparable generational distance to that of the global
reference set within the first 25,000 nfe. In this case, a
low metric value is desired as it indicates the average
distance between the global reference set and the Pareto
approximation. Generational distance is used in this study
mainly to detect absolute failure in our configurations.

Additive epsilon indicator The additive epsilon indicator
measures gaps in the Pareto front, hence, it is a harder
metric to meet than generational distance. Similarly to
generational distance, this metric is computed relative to
a global reference set and a low value is desired as it
measures the distance that an approximation set needs
to be translated in order to dominate the global reference
set. We notice that the different random seed trials for
the modified squared exponential RBF start to stabilize
before 25,000 nfe. Further, some configurations are more
sensitive to the random seed trials (( i.e.) the initial sample
of the MOEA population). This is particularly stark for the
exponential RBF and the Matern 5/2 RBF, where there
is a clear split between high and low seed performance.
Conversely, the squared exponential, inverse quadratic
and inverse multi-quadratic RBF, show less random seed
variability but fail to find epsilon values close to the global
reference set.
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Table 1. Suite of radial basis functions used in this study

Activation Function ϕ(r) Reference

Modified squared exponential exp(− (x−x′)2

σ2 ) Giuliani et al. (2014)

Squared Exponential exp(− ||x−x′||2
2σ2 ) Williams and Rasmussen (2006)

Inverse quadratic 1
1+(σ∗||x−xi||)2

Fasshauer (2007)

Inverse multiquadric 1√
1+(σ∗||x−xi||)2

Fasshauer (2007)

Exponential exp(
−||x−x′||

σ
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√
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5∗||x−xi||

σ
+

5∗||x−xi||2
3σ2 )exp(−

√
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We observe that the the modified squared exponential and
the squared exponential RBFs attain the highest median
values for the hydropower objective (panel a). The in-
terquartile range for these two RBFs reflects a difference of
approximately 10 M USD/ year, with several low perfor-
mance outliers. In contrast, the inverse quadratic and the
inverse multiquadratic, show a median value of approxi-
mately 45 M USD/year, with a difference of approximately
30 M USD/year between the lower and upper quartiles.
The whiskers reflect, nonetheless, that these functions find
the entire range of hydropower values, this is particularly
true for the inverse multiquadratic RBF. The distribution
of the exponential and Matern 3/2 RBFs result in a
short box with values clustered around 45-50 and 50-55
M USD/year respectively. The Matern 3/2 and Matern
5/2 achieve similar median values, however, the outcomes
from the Matern 5/2 RBF result in a higher upper quartile.
Moving on to panel b, all the activation functions achieved
a median value higher than 75% reliability for the atomic
power plant, with the exception of the exponential RBF.
It is worth noting that the squared exponential variants,
the inverse quadratic and inverse multiquadratic RBFs
found solutions close to 100% reliability for this objective.
The lowest performance for the atomic power plant was
linked to the exponential RBF, with the median value
at 60%. Next, panel c shows the reliability results for
water supply to Baltimore, we observe that the modified
squared exponential and squared exponential RBFs show
high performance, however, in this case, the interquartile
range is broader for the modified squared exponential. The
inverse multiquadratic and the exponential RBFs attain
the lowest median reliability for Baltimore at roughly
40%, however, the former finds solutions across the entire
reliability range including the absolute highest value for
this objective. This stands in contrast to the exponential
RBF, whose boxplot is short and its lowest and highest
performance is bounded between 0.15 and 0.62. The me-
dian values attained by Matern 3/2 and Matern 5/2 are
around 0.5, with both whiskers skewed towards lower reli-
abilities. We follow next the reliability results for Chester
in panel d, we note that the modified squared exponential
and the squared exponential RBFs again have the highest
performance reflected by the median values, upper quartile
ranges and their highest attained value, these two config-
urations are followed by the inverse multiquadratic RBF
with a slightly lower median value and lower 25 % score
values. Finally, the exponential RBF again is outperformed
by all the other tested RBFs for water supply reliability.
The modified squared exponential and the squared expo-
nential RBFs find the largest range for the environmental
objective in panel e. Interestingly, the Matern 3/2 and

Matern 5/2 kernels find a good range of solutions for this
objective, where the Matern 3/2 outperforms the squared
exponential variants which attained consistently high per-
formance across the other LSRB objectives. This could be
explained by the stark trade-off between the environmental
objective and the other objectives highlighted in section
3.1.

Finally, all the RBFs attain high scores for the recreation
objective, with the exception of the inverse quadratic and
the exponential RBF, most of the low scores for the other
RBFs are outliers.

3.3 Performance metrics compared

Figure 3 shows the performance metrics for each activation
function. The metrics where computed relative to a global
reference set generated from the non-dominated solutions
across the 7 activation functions over 10 random seed
trials. The x-axis shows the number of function evaluations
(nfe), set in this case to a maximum of 100,000. Further,
each row shows a different metric value, and each column
shows a distinct RBF. Finally, the colored plots depict the
runtime dynamics for each configuration.

Generational distance All the activation functions reach
a comparable generational distance to that of the global
reference set within the first 25,000 nfe. In this case, a
low metric value is desired as it indicates the average
distance between the global reference set and the Pareto
approximation. Generational distance is used in this study
mainly to detect absolute failure in our configurations.

Additive epsilon indicator The additive epsilon indicator
measures gaps in the Pareto front, hence, it is a harder
metric to meet than generational distance. Similarly to
generational distance, this metric is computed relative to
a global reference set and a low value is desired as it
measures the distance that an approximation set needs
to be translated in order to dominate the global reference
set. We notice that the different random seed trials for
the modified squared exponential RBF start to stabilize
before 25,000 nfe. Further, some configurations are more
sensitive to the random seed trials (( i.e.) the initial sample
of the MOEA population). This is particularly stark for the
exponential RBF and the Matern 5/2 RBF, where there
is a clear split between high and low seed performance.
Conversely, the squared exponential, inverse quadratic
and inverse multi-quadratic RBF, show less random seed
variability but fail to find epsilon values close to the global
reference set.
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Fig. 1. Parallel coordinates compared

Hypervolume Hypervolume provides the most thorough
measure of convergence and diversity making it the hard-
est metric to meet. Namely, hypervolume measures the
volume in a multi-dimensional space attained by an ap-
proximation set relative to the global reference set, hence,
a high metric value is desired. The runtime dynamics show
that the squared exponential variants (in blue and orange)
attain the highest hypervolume. In contrast, the inverse
quadratic, the inverse multiquadric and the exponential
RBFs achieve hypervolume values far from the global ref-
erence set. Interestingly, all the RBFs, with the exception

of the squared exponential variants, seem to stabilize after
25,000 nfe and do not show signs of further hypervol-
ume improvements beyond 100,000 nfes. These results are
contrary to the trends observed for the modified and the
squared exponential RBFs, which may indicate that fur-
ther hypervolume improvements are possible by continuing
exploration with a larger number of function evaluations.
These two RBF configurations could be suitable in com-
bination with asynchronous evolutionary optimization to
capitalize on parallel function evaluations.
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Fig. 2. Comparing RBFs per objective

Epsilon Progress Epsilon progress indicates the ability
to escape local optima and to find continued improvements
to the non-dominated archive. Specifically, the epsilon
value indicates the user-specified threshold for which the
search algorithm needs to produce at least one solution
above this threshold at a certain frequency to avoid stag-
nation. To this effect, the search dynamics for the modified
squared exponential RBF show practically a linear rela-
tionship between nfe and epsilon progress. In contrast, the
squared exponential shows milder progress throughout the
search and a wider performance range across random seed
trials. This is also true for the exponential, and for the
Matern 3/2 and Matern 5/2, whose high performing seeds
show fast epsilon progress, whereas the seeds that perform
poorly flatten quickly indicating stagnation, or infrequent
or no improvements to the archive. Overall, this analysis
suggests that the modified squared exponential and the
squared exponential RBFs are able to escape local optima,

while the other configurations either suffer stagnation or
have two modes of performance between seeds, some are
able to make epsilon progress and others get stuck in local
optima.

Archive size The archive contains the population of non-
dominated solutions, the size is adapted based on the
epsilon- dominance criterion which guarantees simultane-
ous diversity and convergence of the set. This explains
the similar trends observed between hypervolume and the
archive sizes, in essence, a large archive size can contribute
to the diversity of the approximation sets. In these results,
the modified squared exponential and squared exponential
RBFs contain between 500- 1000 members in the archive
at the end of the run, depending on the seed. These two
RBFs also achieved the highest hypervolume values at the
end of the 100k nfes. Evidently, the archive sizing is highly
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Epsilon Progress Epsilon progress indicates the ability
to escape local optima and to find continued improvements
to the non-dominated archive. Specifically, the epsilon
value indicates the user-specified threshold for which the
search algorithm needs to produce at least one solution
above this threshold at a certain frequency to avoid stag-
nation. To this effect, the search dynamics for the modified
squared exponential RBF show practically a linear rela-
tionship between nfe and epsilon progress. In contrast, the
squared exponential shows milder progress throughout the
search and a wider performance range across random seed
trials. This is also true for the exponential, and for the
Matern 3/2 and Matern 5/2, whose high performing seeds
show fast epsilon progress, whereas the seeds that perform
poorly flatten quickly indicating stagnation, or infrequent
or no improvements to the archive. Overall, this analysis
suggests that the modified squared exponential and the
squared exponential RBFs are able to escape local optima,

while the other configurations either suffer stagnation or
have two modes of performance between seeds, some are
able to make epsilon progress and others get stuck in local
optima.

Archive size The archive contains the population of non-
dominated solutions, the size is adapted based on the
epsilon- dominance criterion which guarantees simultane-
ous diversity and convergence of the set. This explains
the similar trends observed between hypervolume and the
archive sizes, in essence, a large archive size can contribute
to the diversity of the approximation sets. In these results,
the modified squared exponential and squared exponential
RBFs contain between 500- 1000 members in the archive
at the end of the run, depending on the seed. These two
RBFs also achieved the highest hypervolume values at the
end of the 100k nfes. Evidently, the archive sizing is highly
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Fig. 3. Comparison of hypervolume, Additive epsilon indicator and generational distance of different RBFs

dependent on the starting populations reflected by a large
random seed variability across all the activation functions.

Table 2 summarizes the statistical differences across the
assessed activation functions. It shows the average across
seeds of the maximum and minimum attained values of
the metrics shown in Figure 3. The contribution of each
activation function to the global reference set is also
presented. This represents the amount of non-dominated
solutions which are present in the global reference set
which were generated from the model with that activation
function. As seen in the table, the modified squared
exponential RBF had the largest contribution (56%) to the
global reference set, followed by the squared exponential
RBF (28%), whereas the lowest contribution is attributed
to the exponential RBF (0.1%).

4. CONCLUSION

The aim of this study was to explore how the choice of
nonlinear approximation networks within the EMODPS
framework impact the tradeoffs of multi-sector water al-
locations. We used the Lower Susquehanna River Basin
model as a test case as it embodies common challenges
in reservoir control, including multiple competing de-
mands for hydropower, urban water supply, environment,
atomic power plant cooling and recreation, making it a
suitable candidate to test non-linear approximators for
EMODPS. Seven popular activation functions were inves-
tigated within this study; the modified squared exponen-
tial, the squared exponential , the inverse quadratic, the in-
verse multiquadric, the exponential, the Matern(3/2), and
the Matern(5/2). The activation functions where coupled
with the epsilon-NSGAII MOEA due to the algorithm’s
ability to balance convergence and speed.

Our analysis shows that the shape of the activation func-
tions significantly influence the performance of EMODPS

models. The question is: What characteristics of shape of
the activation function are causing them to behave more
desirably? The differences in performance can be explained
by changes in the fitness landscape traversed by the evo-
lutionary algorithm resulting in distinct search dynamics.
Key results show that the modified squared exponential
RBF and the squared exponential RBF achieved a diverse
set of tradeoffs and consistently attained high performance
metric values. This could indicate that the optimization
algorithm was able to create a smoother fitness landscape
with the squared exponential variants compared to the
other activation functions. Overall, this resulted in high
hypervolume performance and epsilon progress, reflecting
the ability to deal better with local optima and quickly
find a diverse set of tradeoffs. The analysis suggests that
both the modified squared exponential and the squared
exponential activation functions are suitable candidates to
be coupled with EMODPS. Lastly, the selection of an ap-
propriate family of functions is increasingly relevant when
finding tradeoffs through generative methods, in which a
compromise between flexibility and accuracy is inevitable.
Even if the goal is not to find accurate but good enough
tradeoffs for decision support, clear diagnostic assessments
of methodological choices that impact the results obtained
via parameterization-optimization-simulation are required
to increase their chances of success, to improve their reli-
ability and trust, and potentially move towards narrowing
the gap between the research and the intended applications
in reservoir control.

Table 2. Average best attained performance metrics per activation function

Activation
Function

Non-
dominated
solutions

Mean
Generational

distance

Mean Epsilon
indicator

Mean
Hypervolume

Set
Contribution

Modified SE 1514 0.005 0.308 0.426 56%
Squared Exponential 1357 0.007 0.337 0.378 28%
Adapted Inverse Quadratic 1266 0.016 0.425 0.216 4%
Adapted Inverse Multiquadric 1157 0.014 0.522 0.229 10%
Exponential 946 0.019 0.343 0.102 0.1%
Matern 3/2 1294 0.012 0.269 0.234 1%
Matern 5/2 857 0.011 0.362 0.196 2%
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