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Preface
The thesis delves into solving dynamic programming (DP) problems. The approach to this topic is
analogous to, and was inspired by (Fast) Fourier Transform and how it is often more convenient to
do computations/analysis in a dual domain. Under assumptions common in optimal control problems,
these DP problems can be reformulated using convex conjugates. Further, we show that there is a
potential computational gain by operating in the dual domain as opposed to direct optimization in the
primal domain.

Both theoretical and practical approaches are presented to solve the problem in an unconventional
way. A technique to compute solutions to DP problems, aptly named Fast Dynamic Programming, is
developed which offers a numerical solution in linear time.

I would like to thank Amin Sharifi Kolarijani for his discussions on preliminary reports and his
insightful feedback on the structure and the content of the thesis; and Peyman Mohajerin Esfahani for
his guidence throughout the thesis.

Gyula Félix Max
Delft, November 12, 2019
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1
Introduction

The objective of the thesis is to compute optimal cost functions, J(x) : X → R, of the following form:

J(x) = min
u∈U

g(x, u) + J+(f(x, u)), ∀x ∈ X (1.1)

where x ∈ X denotes the state, u ∈ U is the action, g : X×U → R is the running cost and f : X×U → X
models the dynamics of the underlying system. The function J+(x) refers to the cost function in the
following step, in other words, the cost associated with the state where the system will end up in after
taking action u. Problems having descriptions similar to Eq. (1.1) are known as dynamic programming
(DP) problems. More formal definitions are given later in Chapter 2.

Many problems may be modelled and/or solved through dynamic programming: economical prob-
lems [1], inventory control [2], Hamilton–Jacobi–Bellman equation [3], shortest path algorithms [4],
optimal control [5, 6], and many more. While being able to model the problem perfectly, computing its
solution numerically grows exponentially with the number of dimensions. This is known as the “curse-
of-dimensionality”, a term originated from Bellman [7]. To mitigate this problem as well as address
issues of possibly lacking the model of the underlying process, various methods were developed that fall
under the category of approximate dynamic programming [8, 9] and neuro-dynamic programming [10]
– or, with a term used more commonly, reinforcement learning.

To fully convey the message of the thesis we indicate its inspiration. In linear system theory, the
Laplace transform often helps translating the problem into a dual domain where operations can be
performed more conveniently [11]. Not only mathematical analysis simplifies after the transformation,
but also numerical computations of solutions frequently require less time; even including the expense of
the (inverse) transformation. Related to this, advances in signal processing have been immensely put
forward starting from the mid-20th century due to development of efficient algorithms [12, 13], e.g. the
Fast Fourier Transform (FFT), that can quickly compute signals’ dual counterpart.

One major difference between system theory and dynamic programming, however, is that the so-
lution operator of the latter is no longer linear in the conventional sense. We mean by the solution
operator the mathematical transformation of the “input”, i.e. x(t) and J+(x) for system theory and DP
respectively, to the “output” which is usually denoted y(t) and J(x) for systems and DP respectively.
This nonlinearity makes handling such problems cumbersome.

Fortunately, there are two similar and related workarounds to avoid nonlinearity. First, when one
changes algebras to the so-called max-plus algebra, which replaces addition (+) with maximization
(max or “⊕”) and multiplication (×) with traditional addition (+ or “⊗”), the solution operator to
dynamic programming problem does become linear in the max-plus sense [14]. Max-plus algebra is a
powerful tool that has been extensively used for discrete event systems [15], (stochastic) optimal control
problems [16–18], communication networks [19].

Second, there exists a transformation, the Legendre–Fenchel transform (LFT) or convex conjugate,
that plays a role in the context of dynamic programming similar to the Laplace transform of linear
systems [20]. The convex conjugate of a function f : H → R can be written as:

f∗(s) = sup
x∈H
〈x, s〉 − f(x), ∀s ∈ H (1.2)

1



2 1. Introduction

for some Hilbert spaceH. Additionally, in max-plus algebra the LFT both symbolically and contextually
resembles a form of convolution [21] which further strengthens the similarity between LFT and Laplace
transform. An interesting property of conjugation is that inf-convolution of two functions becomes a
simple addition in the conjugate domain. For appropriate functions f and g their inf-convolution is:

(f�g)(x) = inf
y∈H

f(y) + g(x− y) ∗−→ (f�g)∗(s) = f∗(s) + g∗(s). (1.3)

Notice how Eq. (1.1) and the left side of Eq. (1.3) are notationally similar, foreshadowing our method
to be developed in this thesis.

Moreover, the convex conjugate can be computed with a linear time algorithm [22], called Linear-
time Legendre transform (LLT), that “beats” the traditional O(N logN) complexity of FFT as well
as complexity of previous LFT implementations [23, 24]. Besides dynamic programming, the convex
conjugate emerged in other related fields, such as distance transform in computer science [25], computer
vision [26], communication networks [27]. The reader is referred to [28] for an extensive survey on the
applications of the conjugate.

To our best knowledge, so far no comprehensive algorithm has been proposed in the literature for
solving DP problems that combines theoretical properties of conjugation with the power of the LLT
algorithm and its numerical complexity. The main contribution of the thesis concerns expressing the
optimal cost function in a deterministic case and is, in a sense, similar to the works [29] and [30].
However, our approach extends to a more general case with respect to [30], where a special combination
of linear dynamics, with nonnegative monotone A, and cost function only dependent on the action (g(u))
was used. Further, it is possible to “chain” our method and solve DP problems with longer time-horizon
but due to the nature of the problems we are aiming to solve there is little computational gain opposed
to gain [29] and [30]. A concrete (step-by-step) algorithm is developed with numerical examples. It
is worth noting that the approach presented in this thesis does suffer from curse-of-dimensionality.
However, the computation time scales linearly with the cardinality of the state and action space as it
will be explained later.

The thesis is structured as follows. The necessary mathematical preliminaries are to be found
in Chapter 2. Chapter 3 shows how the DP problem may be translated by using conjugates with
minor attention to implementation. In Chapter 4 numerical approaches are derived using the previous
chapter as foundation. Computations of various examples together with discussion thereof are given in
Chapter 5. The thesis is concluded in Chapter 6.



2
Preliminaries

The main topic revolves around convex functions and dynamic programming. To be able to convey the
message of the thesis some definitions, notations and preliminary knowledge of these subjects have to be
explained. There are countless of introductory materials to the topic and the reader is referred to [31]
and [32] for more information about convex analysis, and [33] about dynamic programming. Further,
it is assumed that the reader possesses knowledge about linear algebra and basic properties of Hilbert
spaces.

2.1. General definitions
We denote the extended real line with [−∞,+∞] = R∪{−∞}∪{+∞} with the ordering −∞ < x <∞
for all x ∈ R. Similarly, we define ]−∞,+∞] = R ∪ {+∞}.

Definition 2.1 (Linear bounded operator [34]). Let V and W be normed linear spaces. A linear
transformation T : V → W is said to be a continuous linear transformation, a continuous linear
operator, or linear bounded operator, if it is continuous as a map between the topological spaces V and
W (endowed with their norm topologies).

We denote the set of linear bounded operators by B(V,W ).

Definition 2.2 (Separable sum of functions [32]). The Hilbert direct sum of a totally ordered family
of real Hilbert spaces (Hi, ‖ · ‖i)i∈I is the real Hilbert space

⊕
i∈I
Hi =

{
x = (xi)i∈I ∈×

i∈I
Hi

∣∣∣∣∣ ∑
i∈I
‖xi‖2

i < +∞
}
, (2.1)

equipped with the addition (x,y) 7→ (xi + yi)i∈I , the scalar multiplication (α,x) 7→ (αxi)i∈I for scalar
α, and the scalar product

(x,y) 7→
∑
i∈I
〈xi, yi〉i. (2.2)

Now suppose that, for every i ∈ I, fi : Hi → ]−∞,+∞], and that if I is infinite, infi∈I fi ≥ 0. Then
the sum of separable functions is

⊕
i∈I

fi :×
i∈I
Hi →]−∞,+∞] : (xi)i∈I 7→

∑
i∈I

fi(xi). (2.3)

We also abuse notation and write H2 = H×H.

3



4 2. Preliminaries

2.1.1. Convex sets, functions
Definition 2.3 (Convex set). A set C ⊆ H is convex if for every element x and y in C, αx+ (1− α)y
is also an element of C for all 0 ≤ α ≤ 1.

Definition 2.4 (Convex function). A function f : H → [−∞,+∞] is said to be convex, if its epigraph
epi f = {(x, ξ) ∈ H × R | f(x) ≤ ξ} is a convex subset of H× R. A function f is said to be concave if
−f is convex.

Definition 2.5 (Lower semicontinuous function [32]). Let X be a Hausdorff space. A function f :
X → [−∞,∞] is lower semicontinuous function, or lsc for short, if for every x ∈ X and for every
ξ ∈ ]−∞, f(x)] there exists some neighbourhood C of x such that f(C) ⊂ ]ξ,+∞]. Equivalently, f is
lsc if its epigraph epi f = {(x, ξ) ∈ H × R | f(x) ≤ ξ} is closed.

Definition 2.6 (Domain of function). The (effective) domain of function f : X → [−∞,+∞] is defined
as:

dom f = {x ∈ X | f(x) < +∞}. (2.4)

Let X ⊂ Rn and f : X → [−∞,+∞]. We assign the value +∞ to f(y) where y /∈ X , that is:

fX : Rn → [−∞,+∞], (2.5)

x 7→

{
f(x) if x ∈ X ,
+∞ otherwise.

(2.6)

We drop the (·)X notation whenever possible. Unless stated otherwise, throughout the thesis we
extend the functions outside of their domain as mentioned above.

Definition 2.7 (Proper function [32]). A function f : X → [−∞,+∞] is proper if −∞ /∈ f(X ) and
f(X ) is not identically +∞ (the domain of f is non-empty).

Definition 2.8 (Subgradient [32]). Let f : X → ]−∞,+∞] be a proper function. Then v ∈ X is called
a subgradient of f at point y ∈ X if the following holds for all x ∈ X :

f(x) ≥ 〈v | x− y〉+ f(y). (2.7)

The set of all subgradients at point y is called the subdifferential of f at y, and it is denoted by ∂f(y).

2.2. Conjugate or Legendre–Fenchel Transform
Conjugate (or Legendre–Fenchel Transform, LFT for short) forms an essential part of our work.

Definition 2.9 (Convex conjugate). Given a function f : H → [−∞,+∞] on a Hilbert-space H, the
convex conjugate is defined as:

f∗(s) = sup
x∈H

(
〈x | s〉 − f(x)

)
, ∀s ∈ H, (2.8)

where 〈x | s〉 is the inner product defined on H. The biconjugate of f is obtained by performing the
conjugation twice: f∗∗ = (f∗)∗.

Let the set of convex functions on H be C (H), the set of convex lower semicontinuous functions on
H be Γ(H), and the set of proper convex lower semicontinuous functions on H be Γ0(H).

Proposition 2.10. The conjugation operator (·)∗ maps the set of functions f : H → [−∞,+∞] to
Γ(H).

Proof. See [32, Proposition 13.11].

Corollary 2.10.1. The conjugation operator (·)∗ maps the set of proper convex lower semicontinuous
functions acting on H onto itself, i.e. (·)∗ : Γ0(H)→ Γ0(H).

Proof. Proposition 2.10 together with [32, Proposition 13.9(ii)].



2.2. Conjugate or Legendre–Fenchel Transform 5

Theorem 2.11 (Fenchel–Moreau theorem [32]). Let f : H →] −∞,+∞] be proper. Then f is lower
semicontinuous and convex if and only if f = f∗∗. In this case, f∗ is proper as well.

Definition 2.12. Let H be a Hilbert space and K be a real Hilbert space. The infimal postcomposition
is defined as:

LB f : K → [−∞,+∞] : y 7→ inf f(L−1{y}) = inf
x∈H
Lx=y

f(x), (2.9)

for an operator L : H → K and function f : H → [−∞,+∞]. The infimal postcomposition is exact if
for all y ∈ H the infimum is reached, i.e. (LB f)(y) = minx∈L−1{y} f(x)

Definition 2.13. IfH is a Hilbert space and K is a real Hilbert space and T : H → K is a bounded linear
operator then the adjoint of T is the unique operator T adj : K → H that satisfies 〈Tx | y〉 = 〈x | T adjy〉
for all x ∈ H and all y ∈ K.

Remark 2.14. We deliberately avoid the usage of the symbols (·)> and (·)∗ to express the adjoint of an
operator, as it is otherwise common in literature. It is hoped that less confusion is generated this way.

In the future it will be extremely useful to have these lemmas.

Lemma 2.15. Let f : H → ]−∞,+∞], and L ∈ B(H,H) bijective, i.e. L−1 exists and unique. Then
(f ◦ L)∗ = f∗ ◦ (L−1)adj.

Proof. Let s ∈ H. Then:

(f ◦ L)∗(s) = sup
x∈H
{〈s | x〉 − (f ◦ L)(x)} (2.10)

= sup
x∈H

{
〈(L−1)adjs | Lx〉 − f(Lx)

}
(2.11)

= sup
x′∈H

{
〈(L−1)adjs | x′〉 − f(x′)

}
(2.12)

= f∗((L−1)adjs). (2.13)

Since L ∈ B(H,H) we have x′ = Lx ∈ H for all x ∈ H.

Lemma 2.16 (From [32]). Let f : H → ]−∞,+∞], and L ∈ B(H,K) with K real Hilbert space. Then
(LB f)∗ = f∗ ◦ Ladj.

Proof. The proof follows [32, Proposition 13.21(iv)]. Let s ∈ K. Then:

(LB f)∗(s) = sup
y∈K

〈s | y〉 − inf
x∈H
Lx=y

f(x)

 (2.14)

= sup
y∈K

sup
x∈H
Lx=y

{〈s | y〉 − f(x)} (2.15)

= sup
y∈K

sup
x∈L−1{y}

{〈s | Lx〉 − f(x)} (2.16)

= sup
x∈H

{
〈Ladjs | x〉 − f(x)

}
(2.17)

= f∗(Ladjs). (2.18)

We mean by x ∈ L−1{y} the preimage of L, that is x ∈ X ′ = {x ∈ H | Lx = y}. Because L maps
from H to K, and all elements of K are covered by the operator L, the two supremums can be merged
together.

Remark 2.17. The adjoint of an operator defined by matrix A ∈ Rn×m is Aadj = A> ∈ Rm×n. Thus
Lemma 2.15 reads (f ◦A)∗ = f∗ ◦A−>, and Lemma 2.16 yields (AB f)∗ = f∗ ◦A>.
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Lemma 2.18 (Conjugate of Hilbert sum). Let (Hi)i∈I be a totally ordered finite family of real Hilbert
spaces and, for every i ∈ I, let fi : Hi → ]−∞,+∞]. Then:(⊕

i∈I
fi

)∗
=
⊕
i∈I

f∗i . (2.19)

Proof. See [32, Proposition 13.27].

Corollary 2.18.1. We have (f1 ⊕ f2)∗(s1, s2) = f∗1 (s1) ⊕ f∗2 (s2) for fi : Hi → ]−∞,+∞] where
i ∈ {1, 2}.

2.3. Dynamic programming
Throughout the thesis we will talk about a system, be it a collection of real objects or some abstract
construction, which can be characterized by its states. These states define the particular properties of
the system and are denoted by xt. The subscript t hints that these states may change with respect to
time, and, in general, this change may be influenced by some action (ut) that we have full control over.
This relationship is captured by the dynamics of the system:

xt+1 = ft(xt, ut), (2.20)

for t = 0, 1, . . . , T − 1 with state xt ∈ Xt, control ut ∈ Ut and disturbance wt ∈ Wt. In this work, we
restrict ourselves to the deterministic case where given a state of and an input to the system we can
perfectly determine what the next state is. In general, the dynamics may be extended to incorporate
some external disturbances/noise (e.g. f(x, u, w) for disturbance w) but this lies outside of the scope
of this thesis.

The last pieces on the board are running cost (gt) and terminal cost (JT ). The former represents
the costs of being in state xt and applying action ut as gt(xt, ut) : Xt × Ut → R. The latter stands for
costs of being in state xT at the very end of the time horizon, and is JT (xT ) : XT → R. With these
definitions the overall costs can be defined as:

Ĵt(xt,ut) =
T−1∑
τ=t

gτ (xτ , uτ ) + JT (xT ), (2.21)

subject to (2.20) where xt = [x>t x>t+1 · · · x>T ]> and, likewise, ut = [u>t u>t+1 · · · u>T ]>. We are
interested in finding the best control in the following sense:

Jt(xt) = min
uτ∈Uτ

{
T−1∑
τ=t

gτ (xτ , uτ ) + JT (xT ),
}

(2.22)

subject to Eq. (2.20) which is referred to as cost function. It is well-known that Eq. (2.22) satisfies the
Bellman equation. Roughly speaking, if we would have perfect knowledge of the cost function in the
future, i.e. onwards t+ 1, we could evaluate our current cost function as:

Jt(xt) = min
ut∈Ut

{gt(xt, ut) + Jt+1(ft(xt, ut))}, (2.23)

or, more compactly,

Jt(xt)
4= DPt[Jt+1](xt), (2.24)

with non-linear operator DPt. Note that this DPt operator encompasses 3 main things, all with respect
to a particular time instant: the dynamics of the system, the running cost, and the “best” action
(minimization). Repeated application of this operator in a backward fashion for t = T − 1, . . . , 0 is
known as the backwards Dynamic Programming Algorithm (DPA). In particular, if the dynamics and
running costs are time-invariant then DPt = DP is also time-invariant and we have:

Jt(xt) = DP[DP[· · ·DP[JT ] · · · ]]︸ ︷︷ ︸
T−t times

(xt) = DPT−t[JT ](xt). (2.25)

We will abuse notation and drop subscripts t whenever possible. Furthermore, given the repetitive
nature of the DP operator our main focus will be reformulating a single step to gain computational
advantage.



3
Theory – Continuous spaces

The main objective in this chapter is to reformulate the DP problem using conjugates. Our motivation
is twofold: the similarity between Legendre–Fenchel transform in DP and Laplace transform in linear
system theory, as well as the computational ease of conjugation. Throughout this chapter we use x, x̃
for primal and s, s̃ for dual variables in the sense of conjugation. Figure 3.1 shows an overview of
the presented methods. First we set up the scene with introducing perturbed DP operator. Then
equivalence is shown between direct computation of the DP operator and biconjugation. Afterwards,
we focus on expressing DP operator in the conjugate domain under different assumptions, so that
biconjugation can be readily applied. We will show many variants to DP problem starting from a more
general one to more specific.

Figure 3.1: Summary of our approach. Our ultimate goal is to compute DP[J ](x) from J(x) indicated with
black arrow. Going “sideways” (blue arrows) accounts to simple linear operations (additions and linear trans-
formations) while going vertically (red arrows) accounts to Legendre–Fenchel Transform. There is a shortcut
(yellow arrow), which is a composite of LFT and linear transformation, that may be used to skip a step.

3.1. Setup
Unless stated otherwise, we assume the following throughout the chapter:

7



8 3. Theory – Continuous spaces

Assumption A.1.

X ⊆ Rn Hilbert space
U ⊆ Rm convex, compact
f(x, u) ∈ B(X × U ,X )
J(x) : Rn → ]−∞,+∞] J ∈ Γ0(X ) with dom J ⊆ X
g(x, u) : Rn × Rm → ]−∞,+∞] g ∈ Γ0(X × U) with dom g ⊆ X × U ,

where B(X × U ,X ) represents the set of linear bounded operators acting on X × U to X . We also
assume that there exists x ∈ X and u ∈ U such that f(x, u) ∈ dom J .

We repeat here the definition of the Dynamic Programming (2.23) for convenience.

Definition 3.1. The Dynamic Programming operator, DP, is defined as:

DP[J ](x) = min
u∈U
{g(x, u) + J(f(x, u))}, ∀x ∈ X , (3.1)

with given running cost g(x, u) : X × U → R and given dynamics f(x, u) : X × U → X .

We refer to Equation (3.1) as a single step in DP. Note that the very last assumption in (A.1) basically
implies that the minimum of a single step is real-valued at least once, thus making DP[J ] 6≡ +∞. This
assumption is necessary from a mathematical point of view – as we will see later – however, any real
system should satisfy this condition automatically. Without it, there would be no control/action that
would lead to a state with finite cost.

In the following it will be useful to define a perturbed Dynamic Programming operator.

Definition 3.2. The perturbed Dynamic Programming operator, D̃P, is defined as:

D̃P[J ](x, x̃) = min
u∈U
{g(x, u) + J(f(x, u) + x̃)}, ∀x ∈ X , (3.2)

with given running cost g(x, u) : X × U → R and given dynamics f(x, u) : X × U → X , similarly to
before.

From these definitions it is clear that DP[J ](x) = D̃P[J ](x, 0). We show that D̃P can expressed with
the Hilbert direct sum and infimal postcomposition.

Lemma 3.3. The perturbed DP operator D̃P can be expressed as:

D̃P[J ](x, x̃) = min
y∈Y

{
(g ⊕ J)(y) : Lfy =

[
x
x̃

]}
= (Lf B (g ⊕ J))(x, x̃), (3.3)

where

y =

y1
y2
y3

 =

 x
u

f(x, u) + x̃

 ∈ X × U × X =: Y (3.4)

and

Lf : Y → X ×X : y 7→
[

y1
y3 − f(y1, y2)

]
. (3.5)

Proof. Notice that x = [I 0][y>1 y>2 ]> and x̃ = y3 − f(y1, y2), with which we can write Lf as follows:[
x
x̃

]
=
[

y1
y3 − f(y1, y2)

]
= Lfy. (3.6)
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With these definitions Equation (3.2) becomes:

D̃P[J ](x, x̃) = min
u∈U
{g(x, u) + J(f(x, u) + x̃)}

= min
y∈Y

[I 0][y>1 y>2 ]>=x
y3−f(y1,y2)=x̃

{g(y1, y2) + J(y3)}

= min
y∈Y

Lfy=[x> x̃>]>

{(g ⊕ J)(y)}, (3.7)

which concludes the proof.

Proposition 3.4. Under assumptions (A.1) and J ∈ C (X ) the DP operators preserve convexity, i.e.
we have DP : C (X )→ C (X ) and D̃P : C (X )→ C (X 2).

Proof. The proof follows [31, Chapter 3.2.5]. We work from inside out and we start with DP. From the
assumptions g+J ◦f is convex in both x and u since it is the sum of two convex functions. Consequently,
epi(g+J ◦ f) is convex. Taking the minimum with respect to u accounts to a projection of a convex set
on some of its components, which is in turn convex. Hence, minu g(x, u) + J(f(x, u)) is convex in x.

The proof is similar for D̃P with the addition that J(f(x, u) + x̃) is convex in x, u and x̃. Fix x̃ ∈ X ,
then f(x, u) + x̃ is just an affine composition which does not alter convexity of J(f(x, u) + x̃). This
holds for all x̃ ∈ X , thus, following the same steps as before, we get minu g(x, u) + J(f(x, u) + x̃) is
convex.

Another, perhaps more intuitive way of proving the statement is that the partial infimum of a jointly
convex function with respect to one of its arguments is also convex (see [35]).

Notice that remaining within the realms of convex functions after applying DP has remarkable
advantages in the context of conjugation.

Proposition 3.5. Under assumptions (A.1) we have

DP∗∗[J ] = DP[J ] and D̃P
∗∗

[J ] = D̃P[J ]. (3.8)

Proof. According to the Fenchel–Moreau theorem (Theorem 2.11), it suffices to prove that DP[J ] is
proper, convex and lsc. Convexity is proven in Proposition 3.4. We only have to show properness and
lower semicontinuity of DP[J ].

Properness follows directly from the assumptions: g > −∞ and J ◦ f > −∞ then g + J ◦ f > −∞.
Therefore, min g + J ◦ f > −∞. To show that min g + J ◦ f 6≡ +∞ it suffices to have an x ∈ X and
u ∈ U such that f(x, u) ∈ dom J , which is included in the assumptions as well.

To prove lower semicontinuity we invoke two lemmas from [32]. Lemma 1.27 of [32] says that
the (positive weighted) sum of lower semicontinuous functions is lower semicontinuous. In our case
g ∈ Γ0 is lsc by definition, and J ◦ f is lsc by of [32, Proposition 9.5], leading to g + J ◦ f being
lower semicontinuous as well. Lemma 1.29 of [32] states that the marginal function defined as x 7→
infc∈C φ(x, c) = minc∈C φ(x, c) for lower semicontinuous φ is lower semicontinuous when C ⊆ Rk is
compact space.1 In our case φ(x, u) = g(x, u) + J(f(x, u)), resp. φ(x, x̃, u) = g(x, u) + J(f(x, u) + x̃),
and U ⊆ Rm is compact by assumption therefore DP[J ], resp. D̃P[J ], is lower semicontinuous.

Remark 3.6. Convexity is necessary to ensure equality of DP[J ] and DP∗∗[J ] (and their perturbed
version) at all x. In general, f∗∗ ≤ f , for some proper function f , with equality only on points which
contribute to the convex hull of f if f has a continuous affine minorant (see [32, Proposition 13.39]).

Let us to emphasize the importance of Proposition 3.5 from a computational point of view. The
proposition suggests that DP[J ] can be directly computed from DP∗[J ], and similarly their perturbed
versions. Therefore, if DP∗[J ] is obtained more easily, it becomes DP[J ] at the cost of conjugation. This
1It is sufficient for C to be a compact Hausdorff space in order to guarantee lower semicontinuity of the marginal function.
This may lead to a more relaxed condition on U . In our case C = U ⊆ Rm, which is Hausdorff.
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is also hinted on Figure 3.1 by staying in Rn. Unfortunately, the conjugate of DP[J ] results in a similar
optimization problem as in Equation (3.1), but instead of minimization there is maximization:

DP∗[J ](s) = sup
x∈X
{〈s | x〉 − DP[J ](x)}

= sup
x∈X

{
〈s | x〉 −min

u∈U
{g(x, u) + J(f(x, u))}

}
= sup
x∈X

max
u∈U
{〈s | x〉 − g(x, u)− J(f(x, u))}

= sup
p∈X×U

{〈(s, 0) | p〉 − g(p)− J(f(p))} . (3.9)

Computing DP∗[J ] does not leverage computational complexity. The conjugate of the perturbed oper-
ator, however, becomes more tangible as we will see in the next section.

3.2. Expressing DP in the conjugate domain
With these preliminaries behind we are finally ready to derive what is the cornerstone of the thesis.

Theorem 3.7. The conjugate of the perturbed DP operator D̃P
∗
can be expressed as:

D̃P
∗
[J ](s, s̃) :=

(
D̃P[J ]

)∗
(s, s̃) =

(
(g ⊕ J)∗ ◦ Ladjf

)
(s, s̃) (3.10)

= g∗
(
(s, 0)− fadj(s̃)

)
+ J∗(s̃) (3.11)

for s, s̃ ∈ S ⊆ Rn, where S is the dual domain of X , Ladjf : X × X → X × U × X is the adjoint of Lf
given in (3.6), and fadj : X → X × U is the adjoint of f .

Proof. Let s, s̃ ∈ S ⊆ Rn. Using Lemma 2.16 and Lemma 2.16 the convex conjugate of D̃P can be
written as:

D̃P
∗
[J ](s, s̃) = (Lf B (g ⊕ J))∗(s, s̃)

= (g ⊕ J)∗(Ladjf (s, s̃))

= g∗(Ladjf (s, s̃))⊕ J∗(Ladjf (s, s̃)). (3.12)

The same result can be achieved with ordinary notations:

D̃P
∗
[J ](s, s̃) =

 min
y∈Y

Lfy=[x> x̃>]>

{(g ⊕ J)(y)}


∗

(s, s̃)

= sup
(w,w̃)∈X×X

{
〈(w, w̃) | (s, s̃)〉 − min

y∈Y
Lfy=[w> w̃>]>

{(g ⊕ J)(y)}
}

= sup
(w,w̃)∈X×X

max
y∈Y

Lfy=[w> w̃>]>

{
〈(w, w̃) | (s, s̃)〉 − (g ⊕ J)(y)

}
= sup

(w,w̃)∈X×X
max
y∈Y

Lfy=[w> w̃>]>

{
〈Lfy | (s, s̃)〉 − (g ⊕ J)(y)

}
= sup

(w,w̃)∈X×X
max

y∈L−1
f

[w> w̃>]>

{
〈Lfy | (s, s̃)〉 − (g ⊕ J)(y)

}
(3.13)

= sup
y∈Y

{
〈y | Ladjf (s, s̃)〉 − (g ⊕ J)(y)

}
= (g ⊕ J)∗(Ladjf (s, s̃))

= g∗(Ladjf (s, s̃))⊕ J∗(Ladjf (s, s̃)). (3.14)
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We mean by y = L−1
f [w> w̃>]> in Equation (3.13) the pre-image of Lf , that is y ∈ Y ′ = {y ∈ Y |

Lfy = [w> w̃>]>}. Now only Equation (3.11) needs to be shown. For that to hold the following needs
to be verified:

Ladjf (s, s̃) =

[s0
]
− fadj(s̃)

s̃

 . (3.15)

Indeed, this follows from the definition of Lf and that of the adjoint operator:

〈Lfy | (s, s̃)〉 = 〈y1 | s〉+ 〈y3 | s̃〉 − 〈f(y1, y2) | s̃〉
= 〈y1 | s〉+ 〈y3 | s̃〉 − 〈(y1, y2) | fadj(s̃)〉
= 〈y3 | s̃〉+ 〈(y1, y2) | (s, 0)− fadj(s̃)〉

=
[
y1 y2 y3

] [s0
]
− fadj(s̃)

s̃


= 〈y | Ladjf (s, s̃)〉, (3.16)

which concludes the proof.

Corollary 3.7.1. If f(x, u) = Ax+Bu for A ∈ Rn×n and B ∈ Rn×m then D̃P
∗
[J ] simplifies to

D̃P
∗
[J ](s, s̃) = g∗(s−A>s̃,−B>s̃) + J∗(s̃). (3.17)

Proof. In this case Lfy = (x, x̃) defined by Equation (3.6) becomes

Lfy =
[

y1
y3 − f(y1, y2)

]
=
[

y1
y3 −Ay1 −By2

]
=
[

I 0 0
−A −B I

]y1
y2
y3

 =: [L1 | L2]y. (3.18)

Using the fact that Ladjf = L> = [L>1 L>2 ]>, substitution into Equation (3.10) yields:

D̃P
∗
[J ](s, s̃) =

(
(g ⊕ J)∗ ◦ Ladjf

)
(s, s̃)

=
(
(g ⊕ J)∗ ◦ L>

)
(s, s̃)

= g∗(L>1 (s, s̃)) + J∗(L>2 (s, s̃))
= g∗(s−A>s̃,−B>s̃) + J∗(s̃).

Remark 3.8. There is a clear distinction between f∗ : S × V → S and fadj : X → X × U .
Remark 3.9. The existence of Ladjf is trivial when Lf can be represented by a matrix, i.e. Lf ∈
R(2n)×(2n+m). If T : H → K is a bounded non-linear operator then its adjoint can still be defined (see
for example [36] or [37]). It may be possible to use this fact to derive results similar to Equation (3.17)
for non-linear dynamics, however, this lies outside of the scope of the thesis and is left for future work.

Note that DP[J ](x) = D̃P[J ](x, 0) per definition and under Assumption A.1 the following holds
DP[J ](x) = D̃P

∗∗
[J ](x, 0). Combining this fact with Equation (3.17) we reach a method of computing

DP[J ](x) for linear dynamics which is outlined on Figure 3.2. Notice the shortcut from D̃P
∗
[J ] to DP[J ]

denoted with a yellow arrow. This is possible because when taking the conjugation there is a freedom
of choice at which points we would like to evaluate the conjugate. Thus, it is easy to compute points
belonging to (x, 0) instead of all possible (x, x̃).

3.3. Improving conjugate expression for the linear case
Our results in the previous section provide a crude way of computing solutions to DP problem with
linear dynamics using conjugation. In this section we dive deeper into the linear dynamics, and will
assume the following:
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Figure 3.2: Computation of DP[J ](x) by taking detour in the conjugate domain. There is a “shortcut” from
D̃P

∗
[J ] to DP[J ] indicated with the yellow arrow. We only need to evaluate D̃P

∗∗
[J ](x, 0), and thus going

directly from R2d to Rd.

Assumption A.2. Assume A.1, and that the dynamics of the system is linear, that is:

f(x, u) = Ax+Bu, (3.19)

where A ∈ Rn×n and B ∈ Rn×m.

Looking at Equation (3.17) it is apparent that minimization disappeared2, and D̃P
∗
[J ] became a

sum of two functions. However, evaluating g∗(s−A>s̃, ·) efficiently is difficult because points/sets need
to be computed on the so-called Minkowski-sum of S 3 s and S̃ 3 −A>s̃. The Minkowski-sum of
two sets A and B is defined as A + B = {a + b | a ∈ A, b ∈ B}. While the Minkowski-sum does not
increase the dimensionality of the resulting set, it is highly desirable to eliminate the Minkowski-sum
from any expression when thinking about discrete sets; in worst case, if |A| = NA and |B| = NB then
|A+B| = NANB . Unfortunately, the worst case prevails in most practical purposes as does in our case,
e.g. when the elements of A are not (small) integers or rationals with small denominators.

Our goal is to derive an expression for D̃P
∗
[J ] in which each function argument contains only a

single variable. To overcome the computational burden we modify the expression for the constraints
defined by Eq. (3.18) to our advantage. Let us introduce another modification to the DP operator.

Definition 3.10. The modified perturbed DP operator, D̃PH , is defined as:

D̃PH [J ](w, w̃) = (D̃P[J ] ◦H)(w, w̃)

= min
y∈Y

{
(g ⊕ J)(y) : Lfy = H

[
w
w̃

]}
, ∀w, w̃ ∈ X , (3.20)

where H : X 2 → X 2 and H ∈ B(X 2,X 2) is bijective.

It is easy to verify from the definition that the relationship between all DP operators is given as:

DP[J ](x) = D̃P[J ](x, 0) = D̃PH [J ](w, w̃)
∣∣∣
(w,w̃)=H−1(x,0)

= D̃PH [J ](H−1(x, 0)). (3.21)

Note that since H is bijective, H−1 (uniquely) exists.

Proposition 3.11. Under Assumption A.1 we have:

D̃P
∗∗
H [J ] = D̃PH [J ]. (3.22)

2Disappeared is a word used rather loosely here: minimization is hidden behind the conjugation. However, if g∗ and J∗

are known – or are easily obtained – then D̃P
∗
[J ] really is simply a sum of functions.
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Proof. Similarly to Proposition 3.5, it is sufficient to show that D̃PH [J ] is proper, convex, lsc according
to the Fenchel–Moreau theorem. By [32, Proposition 9.5] D̃PH [J ] is convex and lsc since D̃P[J ] is convex
and lsc and H ∈ B(H,H). Properness is investigated next. Since the input is transformed (linearly)
first and D̃P[J ] > −∞, the transformation cannot alter the functions maxima and minima, leading to
D̃PH [J ] > −∞. Further, there has to be a point w, w̃ ∈ X for which D̃P[J ](w, w̃) < +∞ because of the
properness of D̃P[J ]. Hence, D̃PH [J ](H−1(w, w̃)) < +∞ and thus D̃PH [J ] is proper.

Proposition 3.12. Under Assumption A.2, the conjugate of the modified perturbed operator then can
be written as:

D̃P
∗
H [J ](z, z̃) = g∗(L>1 H−>(z, z̃)) + J∗(L>2 H−>(z, z̃)), (3.23)

for z, z̃ ∈ S, where L = [L1 L2] are given in Eq. (3.18).

Proof. Using Lemma 3.3 and Definition 3.10, the modified perturbed DP operator can be expressed as:

D̃PH [J ](w, w̃) = ((LB (g ⊕ J)) ◦H)(w, w̃). (3.24)

Applying Lemma 2.15, Lemma 2.16 and Lemma 2.18 yields the following for the conjugate:

D̃P
∗
H [J ](z, z̃) = ((LB (g ⊕ J)) ◦H)∗(z, z̃)

= ((LB (g ⊕ J))∗ ◦H−>)(z, z̃)
=
[
g∗ ◦ L>1 ◦H−> ⊕ J∗ ◦ L>2 ◦H−>

]
(z, z̃)

= g∗(L>1 H−>(z, z̃)) + J∗(L>2 H−>(z, z̃)).

Choosing H appropriately is not trivial and could be investigated in the future.

Corollary 3.12.1. Take H block triangular:

H =
[
I 0
C D

]
, H−1 =

[
I 0

−D−1C D−1

]
, (3.25)

with I the identity matrix of size Rn×n and D invertible of size Rn×n. Then combining Equations (3.21)
and (3.23) with the definition of H leads to:

DP[J ](x) = D̃PH [J ](x,−D−1Cx), (3.26)

D̃P
∗
H [J ](s, s̃) = g∗(s− (A+ C)>D−>s̃,−B>D−>s̃) + J∗(D−>s̃). (3.27)

Setting C = −A and D = I this further simplifies to

DP[J ](x) = D̃PH [J ](x,Ax) = D̃P
∗∗
H [J ](x,Ax), (3.28)

D̃P
∗
H [J ](s, s̃) = g∗(s,−B>s̃) + J∗(s̃). (3.29)

Figure 3.3 shows the steps of this approach. Notice that g∗(s,−B>s̃) is no longer evaluated at the
sum of sets. Consequently, it is no longer necessary to evaluate points belonging to the Minkowski-sum
of s and s̃.

3.4. Special case: cost function g separable
The results of the previous section become even nicer under these additional assumptions.

Assumption A.3. Extend Assumption A.2 by the running cost g being separable in terms of state
(x) and action (u):

g(x, u) = gx(x) + gu(u), (3.30)

where gx : X → ]−∞,+∞] and gu : U → ]−∞,+∞].
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Figure 3.3: Summary of the effect of introducing invertible H to the framework. The overall scheme closely
resembles that of Figure 3.4, however, going to and coming back from R2d need slightly different operations. In
turn, this difference allows us to eliminate computation of the Minkowski-sum.

In this case, we can express Equation (3.29) the following way.

Proposition 3.13. Under Assumption A.3 the conjugate of modified perturbed DP operator becomes:

D̃P
∗
H [J ](s, s̃) = (js ⊕ js̃)(s, s̃), (3.31)

where js(s) = g∗x(s) and js̃(s̃) = g∗u(−B>s̃) + J∗(s̃). Further, Equation (3.28) becomes:

DP[J ](x) = gx(x) + j∗s̃ (Ax). (3.32)

Proof. Using separability, Lemma 2.18 can be used to express the conjugate of g:

D̃P
∗
H [J ](s, s̃) = g∗(s,−B>s̃) + J∗(s̃)

= g∗x(s) + g∗u(−B>s̃) + J∗(s̃)
=: js(s) + js̃(s̃)
= (js ⊕ js̃)(s, s̃). (3.33)

This completes the first claim. The second claim is obtained by taking the conjugate once more:

DP[J ](x) = D̃PH [J ](x,Ax)

=
(

D̃P
∗
H [J ]

)∗
(x,Ax)

= j∗s (x) + j∗s̃ (Ax)
= gx(x) + j∗s̃ (Ax), (3.34)

where we used Lemma 2.18. Note that under Assumption A.1 – which is included in Assumption A.3
– we have j∗s = (g∗x)∗ = gx.

It is important to realize that all (intermediate) functions are “univariate”, meaning that they
either a function of x (resp. s) or x̃ (resp. s̃) but never of both. This is an enormous advantage from a
computational point of view since none of the functions need storage for the Cartesian product of the
sets X 2 or S2. Moreover, all computations can be done in X (or S). This advantage is indicated on
Fig. 3.4 by staying in Rd.
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Furthermore, if gx = 0 — and under other practical assumptions, such as nonnegative monotone A
and a discount factor of β = 1 — we get back the results of [30, Lemma 4.]3. Their method stays in
the dual domain for computing DPT [J ] as T →∞. Application of subsequent DP operations accounts
skipping the last addition in our case with gx set to 0 (see Figure 3.4), moreover, Lemma 2.15 allows
computation of j∗s̃ ◦ A = (js̃ ◦ A−>)∗ in the dual domain. Hence, there is no need to go back to the
primal domain.

Figure 3.4: Summary of our method when f(x, u) = Ax+Bu and g(x, u) is separable in x and u. Note that we
always stay in Rd and never go to R2d.

3In [30], concave functions and the “concave conjugate” is used as opposed to their convex counterparts here. By changing
J → −J and g → −g we get appropriate concave functions that satisfy conditions in [30].





4
Implementation – Discrete spaces

So far there has been no attempt to make a distinction regarding continuous or discrete sets for the
state and action space and their dual counterpart. However, we cannot easily simulate continuous sets
on a computer therefore a numerical approach needs to be taken. (This is further supported by the
fact that some functions do not have a closed form conjugate.) We investigate the shortcomings of the
methods described in Chapter 3 from a computational point of view. First the (reoccurring) problems
of discrete conjugation will be mentioned. Then, the algorithms will be presented along with their
computational issues. These issues are addressed either by the introduction of new algorithms, or in the
following section by approximation. There are also important considerations when choosing the dual
variables s and s̃ in terms of approximation error that we briefly explore in this chapter. Last, the time
and storage complexities of the algorithms will be discussed.

Instead of doing the calculations with X , U , S and S̃ we take Xd, Ud, Sd and S̃d which are finite
representations of the continuous sets. Formally, Xd ⊂ X and |Xd| = X < ∞, and, similarly, Ud ⊂ U
and |Ud| = U <∞, Sd ⊂ S and |Sd| = S <∞, S̃d ⊂ S̃ and |S̃d| = S <∞.

4.1. Discrete conjugation
Let us start by saying that a discrete subset of Rn is not a Hilbert space, therefore Legendre–Fenchel
transform is no longer well defined. However, the LFT can be naturally extended to the discrete case
which becomes an advantages of discretization: discrete conjugation becomes a maximization – instead
of supremum – meaning the maximum is always attained. This happens because given a finite set
Xd ⊂ X and a proper function f : X →]−∞,+∞], the function defined as hd(x, s) = 〈x, s〉 − f(x) will
have finitely many values for any given x ∈ Xd. Therefore, leading to the following definition.
Definition 4.1. The Discrete Legendre–Fenchel Transform (sometimes referred to as discrete LFT or
DLT in literature) of a proper function f : Xd →]−∞,+∞] and finite set Xd is given as:

f∗d (s) = sup
x∈Xd

(
〈x, s〉 − f(x)

)
= sup
x∈Xd

hd(x, s) = max
x∈Xd

(
〈x, s〉 − f(x)

)
, ∀s ∈ S, (4.1)

where hd(x, s) = 〈x, s〉 − f(x).
It is worth emphasizing that even though Xd, and consequently fd(xd), has finitely many elements,

the dual set S and dual function f∗d (s) can have infinitely many elements. This property may be
exploited to obtain an interpolation of fd at points lying in X d = X \ Xd, i.e. points in between of Xd,
by taking the biconjugate of fd. Although care should be taken when choosing the dual space S in this
case, as it will be explained later. Taking the biconjugate of fd at all points of X will result in the
convex hull defined by the points in Xd. This is illustrated on Figure 4.1 with a simple example.

Besides making the problem more tangible from a computational point of view, discretization also
brings complications with itself. For one, when the dual space is finite as well, i.e. Sd ⊂ S and |Sd| <∞,
the property f∗∗ = f may be lost. This is illustrated in the following example.
Example 4.2. Consider the continuous function in R:

f(x) = 3
4x

2 − 3
4x−

13
16 ,

17
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and its (continuous) conjugate
f∗(s) = 1

3s
2 + 1

2s+ 1.

x

f(x) fd(xd)

1

1

s

f∗(s) f∗d (s)

1

1

x

f∗∗(x) f∗∗d (x)

1

1

+∞

Figure 4.1: Example of discretization with f(x) = 3
4x

2 − 3
4x−

13
16 and its conjugate f∗(s) = 1

3s
2 + 1

2s+ 1. Here
we take X = R, Xd = {−1, 0, 1, 2}, and S = R.

x

f(x) fd(xd)

1

1

s

f∗(s) f∗d (sd)

1

1
x

f∗∗(x) f∗∗d (x)

1

1

Figure 4.2: Same example as on Figure 4.1 but with Sd = Xd = {−1, 0, 1, 2}. Note that f∗∗
d (xd) 6= fd(xd) for

all xd. Moreover, f∗∗
d does not “kink” at points of Xd, there is a change of slope of f∗∗

d at x = 1.5 in between
x = 1, 2 ∈ Xd.

x

f(x) fd(xd)

1

1

s

f∗(s) f∗d (sd)

1

1
x

f∗∗(x) f∗∗d (x)

1

1

Figure 4.3: Same example as on Figure 4.1 but with Sd = {− 3
2 , 0,

3
2}, which are exactly the discrete slopes of

(xd, fd(xd)). Note that f∗∗
d (xd) = fd(xd) for all xd. Moreover, f∗∗

d “kinks” only at points of Xd.

Sample the continuous function on the discrete set Xd = {−1, 0, 1, 2} with continuous dual space,
i.e. Sd = R and apply (bi)conjugation (see Figure 4.1). Notice 3 things: (1) f∗d is piecewise affine with
slopes corresponding to elements of Xd, (2) f∗d is touching f∗ from below, and (3) how the biconjugate
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f∗∗d can be evaluated for all x even though fd was only defined at Xd. Furthermore, the original samples
are perfectly recovered, meaning f∗∗d (xd) = fd(xd) for all xd.

Now, take S 6= R but some discrete subset of R. Two of such cases are depicted in Figure 4.2 and
4.3. Depending on the choice of the dual space, perfect reconstruction – that is fd(xd) = f∗∗d (xd) – is
possible but not automatically present. Loosely speaking, the reason why this happens is that Sd does
not “represent” f∗ well enough, meaning that there are certain slopes of f∗d to which there is no points
in f∗d (sd). See, for example on Figure 4.2 f∗d (sd) has no point on the slope corresponding to −1, that is
why f∗∗d (−1) fails to recover its original value.

This example illustrates the main disadvantage of discretizing the problem: the dual space is also
discrete and biconjugate may not recover the original function. Since our methods derived so far are
essentially some form of biconjugation, this disparity is an issue. To tackle this, either the elements
of the dual space should be carefully chosen, or approximations have to be made and thus introducing
errors.

4.1.1. Linear-time Legendre–Fenchel algorithm
One of the main building blocks of DP is conjugation. Fortunately, there exists an algorithm developed
by Lucet [22] that is able to compute the discrete conjugate of any combination of input points (x), input
function (fd(x)) and output points (s). We refer to this algorithm as Linear-time Legendre–Fenchel
algorithm (LLT). Since discrete conjugation forms such a fundamental cornerstone in our approach it
is worth reiterating the algorithm here. In short, computing the conjugation consists of the following
steps:

1. Factorization. In a higher dimensional case, i.e. when Xd ⊂ Rn with n > 1, the conjugate can be
written as [22]:

f∗d (s) = max
x∈×ni=1 Xd,i

[
〈x, s〉 − f(x)

]
= max
x1∈Xd,1

[
x1s1 + max

x2∈Xd,2

[
x2s2 + · · ·+ max

xn∈Xd,n
[xnsn − fd(x)] · · ·

]]
.

Notice that every maximization concerns a single element xi of x. Furthermore, evaluating from
innermost maximization outwards the resulting functions no longer depends on xi, they are “max-
imized away”. This formulation allows us to handle higher dimensional cases similarly to one-
dimensional cases. However, it is important that the coordinates of x are independent along each
dimension, thus forming a hyper-rectangular grid, otherwise factorization may not take place.

2. Compute discrete slopes ci along a single dimension from consecutive points:

ci = fd(xi+1)− fd(xi)
xi+1 − xi

.

3. Merge sets (i.e. find optimizers); find indices i such that:

ci < sj < ci+1, ∀sj ∈ Sd.

4. Compute conjugate by simple substitution:

f∗d (sj) = ci(sj − xi)− fd(xi), ∀sj ∈ Sd.

A more in-depth explanation can be found in [22]. For us it is important that the LLT algorithm has
O(N +M) time and storage complexity for N pairs of input (xi, f(xi)) and M output/query points sj .

4.2. Algorithms and computational issues
Before jumping straight to the implementation, let us first start with identifying the underlying com-
putational issues of the methods in Chapter 3 with the focus on discrete state and action sets.
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4.2.1. General case
Recall the first algorithm presented in Section 3.2 for the general case to compute DP[J ] (see also
Figure 3.1):

DP[J ](x) = D̃P
∗∗

[J ](x, 0), (4.2)

D̃P
∗
[J ](s, s̃) = g∗(s−A>s̃,−B>s̃) + J∗(s̃). (4.3)

There is one main issue with computing single step of DP outlined here. It can be related to the
introduction of the auxiliary variables x̃ and s̃ and can be seen on Figure 3.1.

First, Equation (4.3) provides a way to compute D̃P
∗
[J ] from J∗, however, computing this directly

is computationally very expensive. Most notably, the term g∗(s − A>s̃,−B>s̃) causes problems as it
needs to be evaluated at points defined by s− A>s̃. As mentioned earlier, this accounts to computing
points that are part of the Minkowski-sum of the sets containing all s and s̃. If there are S and S̃ points
in Sd and S̃d, respectively, then cardinality of s−A>s̃ is O(SS̃). This presents an addressing/indexing
problem of computing g∗ with LLT since its arguments are not independent.

Second, from a storage point of view, a problem of the same origin is that in the dual domain both
s and s̃ are necessary for the computations while in the primal domain we only care about x and not
about x̃. If |Sd| ≈ |S̃d| ≈ |Xd| then evaluating and storing D̃P

∗
[J ](s, s̃) would lead to a similar explosion

of computation and storage.
The pseudo-code for implementing DP[J ](x) for time-variant dynamics and cost function is given

below (see Algorithm 1). The algorithm describes the most general case, however, it also has the poorest
performance: since g∗t needs to be (re)computed for each time instance, it is costly both in terms of
computation and storage (Minkowski sum).

Remark 4.3. If the dynamics are time-invariant, Algorithm 1 can be improved by computing g∗ outside
of the while loop (“offline”). Most notably, computing the term g∗(s − A>s̃,−B>s̃) becomes a one-
time cost if the dynamics and running cost are time-invariant. This happens when g,A and B are
not changing with the steps of DPA, i.e. ft = f and gt = g for all t < T . In other words, after
evaluating (and storing) the term g∗(s − A>s̃,−B>s̃), re-evaluation of it is no longer required for
subsequent application of the DP operator. Depending on the context of the problem, this property
may be exploited to compute many steps while saving immense amount of completion time. Not doing
so, in general, only adds computational complexity.

Algorithm 1: Linear time-variant dynamics and time-variant cost function
Data: States Xd, actions Ud, running costs gt(x, u), dynamics ft(x, u), terminal cost JT (x),

time horizon T
Result: J0(x) = DPT [J ](x) for x ∈ Xd
t := T
while t > 0 do

Fix discrete sets Sd, S̃d
foreach s ∈ Sd, s̃ ∈ S̃d do

Compute q(s, s̃) = s−A>t s̃
Compute v(s̃) = −B>t s̃

end
Use LLT to compute g∗t (q(s, s̃), v(s̃)) for all s, s̃ ∈ Sd from gt(x, u)
Use LLT to compute J∗t (s̃) for s̃ ∈ Sd from Jt(x)
D̃P
∗
[Jt](s, s̃) := g∗t (q(s, s̃), v(s̃)) + J∗t (s̃)

Use LLT to compute D̃P
∗∗

[Jt](x, 0) for x ∈ Xd from D̃P
∗
[Jt](s, s̃)

Jt−1(x) := D̃P
∗∗

[Jt](x, 0)
t := t− 1

end
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4.2.2. Improved conjugate expression
To combat this issue mentioned above, the modified perturbed operator, D̃PH , was introduced in Section
3.3. With it, the following method was derived:

DP[J ](x) = D̃P
∗∗
H [J ](x,Ax), (4.4)

D̃P
∗
H [J ](s, s̃) = g∗(s,−B>s̃) + J∗(s̃). (4.5)

The pseudo-code is given in Algorithm 2 for the time-invariant case. Similarly to before, the algorithm
can be extended to time-varying cases by placing everything inside the while loop. The Minkowski
sum vanished with a particular choice of H, leading to evaluation of g∗(s,−B>s̃) and D̃P

∗∗
H [J ](x,Ax).

Therefore, the indexing issue is no longer present. This, in turn, forms a problem of evaluating the
composite of conjugation and linear transformation, and will be explored next.
Algorithm 2: Linear time-invariant dynamics and time-invariant cost function
Data: States Xd, actions Ud, running cost g(x, u), dynamics f(x, u), terminal cost JT (x), time

horizon T
Result: J0(x) = DPT [J ](x) for all x ∈ Xd
Fix discrete sets Sd, S̃d
foreach s̃ ∈ S̃d do

Compute v(s̃) = −B>s̃
end
Use LLT to compute g∗(s, v(s̃)) for s, s̃ ∈ Sd from g(x, u)
t := T
while t > 0 do

Use LLT to compute J∗t (s̃) for s̃ ∈ Sd from Jt(x)
D̃P
∗
[Jt](s, s̃) := g∗(s, v(s̃)) + J∗t (s̃)

Use LLT to compute D̃P
∗∗

[Jt](x,Ax) for all x ∈ Xd from D̃P
∗
[Jt](s, s̃)

Jt−1(x) := D̃P
∗∗

[Jt](x,Ax)
t := t− 1

end

While the algorithm described above provides a powerful tool for evaluating DP[J ], it comes with
a few computational caveats. Namely, it is difficult to compute g∗(s,−B>s̃) and DP∗∗H [J ](x,Ax) with
LLT in a multidimensional setting, if A or B are noninvertible. In that case Lemma 2.15 cannot be
used to speed up the process. Further, the LLT algorithm works best when the output points lie on a
grid, or rather, more precisely, when the output points are independent along each dimension [22].

Consider the general setting, for a proper function h : X → ]−∞,+∞] and matrixM , the composite
h∗(Mx) needs to be computed. If the elements of M are not (small) integers or rationals with small
denominators, it is difficult, if not impossible, to construct a set of independent coordinates whose
cardinality is less than the cardinality of all input vectors combined. To illustrate this, take the following
example.

Example 4.4. Let:

M =
[
1 2
3 4

]
, x ∈ Xd = {−1, 0, 1}2, |Xd| = 9.

Then, it is easy to come up with:

y ∈ Yd = {−3,−2,−1, 0, 1, 2, 3} × {−7,−4,−3,−1, 0, 1, 3, 4, 7}, |Yd| = 7× 9 = 63,

that covers all possible values of Mx. The conjugate of h∗(Mx) for all x ∈ Xd can be thus computed
with h∗(y) for all y ∈ Yd with LLT, however, each point in Xd is computed |Yd|/|Xd| = 7 times and
those computations are wasted! Ideally, |Yd| ≈ |Xd| is wanted. The reason why LLT fails at computing
h∗(Mx) is that factorization can no longer be applied, hence the n-dimensional minimization problem
does not decouple into n 1-dimensional minimizations.
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4.2.3. Separable cost function g – Fast Dynamic Programming
Undoubtedly, the greatest advantage of separability is that all functions throughout the algorithm are
“univariate”, meaning they are only a function of x or s̃ but never of (x, x̃) or (s, s̃). This formulation
alleviates the problem of extending the (dual) space to R2n, which is illustrated on Figure 3.4. Staying
in Rn at all times is extremely helpful from a computational and storage point of view.

If the running cost is separable in state and action, i.e. g(x, u) = gx(x) + gu(u), the framework
described in Section 3.4 can be used which exploits the structure of underlying problem:

DP[J ](x) = gx(x) + j∗s̃ (Ax), (4.6)
js̃(s̃) = g∗u(−B>s̃) + J∗(s̃). (4.7)

The corresponding algorithm is outlined in Algorithm 3. Note that the problem of computing the
composite h∗(Mx) is still present here in g∗(−B>s̃) and j∗s̃ (Ax). In the next section possible approaches
will be discussed to compute the composite.

Algorithm 3: Linear time-invariant dynamics & separable time-invariant cost function (Fast
Dynamic Programming)
Data: States Xd, actions Ud, running cost g(x, u), dynamics f(x, u), terminal cost JT (x), time

horizon T
Result: J0(x) = DPT [J ](x) for all x ∈ Xd
Fix discrete set S̃d
foreach s̃ ∈ S̃d do

Compute v(s̃) = −B>s̃
end
Use LLT to compute g∗u(v(s̃)) for all s̃ ∈ S̃d from gu(u)
t := T
while t > 0 do

Use LLT to compute J∗t (s̃) for all s̃ ∈ S̃d from Jt(x)
js̃(s̃) := g∗u(v(s̃)) + J∗t (s̃)
Use LLT to compute j∗s̃ (Ax) for all x ∈ Xd from js̃(s̃)
Jt−1(x) := gx(x) + j∗s̃ (Ax)
t := t− 1

end

4.3. Error analysis of implementation
The question we will answer in this section is how the results of brute-force and fast DP compare to
each other.

4.3.1. Discrete Dynamic Programming
It makes little sense to compare the results of Fast DP applied to a discretization of some continuous
function. The discrete nature of Fast DP prohibits finding the same optimizer as the continuous.
Example 4.5. Take discrete sets Xd = Ud = {−1, 0, 1}, and their continuous counterparts Xc = Uc =
[−1, 1], as well as these quadratic cost functions: g(x, u) = x2 + u2 and J(x) = x2 and dynamics
f(x, u) = x+ u. For the continuous case we have DP[Jc] = 3

2x
2 with uopt = − 1

2x, while in the discrete
case DP[Jd] takes values 2, 0, 2 with uopt = {0, 1}, {0}, {−1, 0} for x = −1, 0, 1 respectively.

Therefore the discrete DP operator needs to be defined.

Definition 4.6. The discrete DP operator or brute-force minimization, DPd, is defined as:

DPd[J ](x) = min
u∈Ud
{g(x, u) + J(f(x, u))}, ∀x ∈ Xd, (4.8)

with given running cost g(x, u) : Xd × Ud → R and given dynamics f(x, u) : Xd × Ud → Xd.

Perturbed versions of DPd can be obtained similarly.
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4.3.2. Computational problems with evaluating h∗(Mx)
Notice that all algorithms use LLT extensively and, perhaps, in a multidimensional setting. Since we
have some freedom of choice of the dual parameters, namely Sd, we may introduce errors if not the ideal
Sd is chosen, as also illustrated on Figures 4.1 through 4.3. Given that the LLT gives only a numerical
approximation of f∗, the choice of Sd is not obvious.

Previously, we deliberately left out the details of computing the composite of conjugation and
linear transformation, e.g. g∗(−B>s̃). This step is non-trivial in the discrete case, and there are two
fundamentally different options:

1. Error-free: One computes the composite without introducing errors. Since the output points
(e.g. Ax) may not necessarily have independent coordinates along each dimension, the computa-
tion may be burdensome. There are several ways to tackle this issue – while ensuring error-free
operation – but they all suffer immense penalty, either time, storage or both. Here we list a few
of these options:

• Direct computation of the conjugate at every possible Ax point: this can be achieved by
running through every x, then calculating Ax, and computing the conjugate at a single
point with LLT, see Figure 4.4a. There areX points and each LLT takes O(S+1) operations.
Hence we have O(X(S + 1)) = O(XS) complexity.

• Repeatedly compute the conjugate for points lying on a line, see Figure 4.4b. Since
the input set is a boxed set and the output space is its linear transformation, points lying
on a line in the input space will also be on a line in the output space. Each query takes
O(S +X) time and this should be repeated n

√
X
n−1 times to cover all points in the output

space – assuming there are equal number of points along each dimension. Hence we have
O( n
√
X
n−1(S +X)) ≈ O(XS +X2) complexity.

• Compute conjugate over all possible combinations of coordinates in the output space.
This approach has time complexity of O(S+X2) because the output space has X coordinates
(compared to the “original” n

√
X coordinates), see Figure 4.4c.

As the number of dimensions (n) grow, these options become worse and worse.

2. With errors: Set Sd a grid, such that |Sd| ≈ |Xd| and compute the conjugate on those points.
Use (linear) interpolation to evaluate points lying in between elements of Sd.

y1

y2

(a) Single point.

y1

y2

(b) Points on line.

y1

y2

(c) All possible coordinate pairs.

Figure 4.4: Possible realizations of the query f∗(Ax) in R2. White represents all y = Ax, red are points at
which the conjugate is computed in each iteration, blue shows the points of which we get information in each
iteration.

Under certain (strict) conditions, perfect reconstruction of the algorithm may be guaranteed, that
is, DPd[J ](x) can be computed directly by evaluating its perturbed versions.

Proposition 4.7. By ensuring

1. the discrete state/control sets are control invariant (∀xd ∈ Xd,∃ud ∈ Ud such that Axd + Bud ∈
Xd), and
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2. the discrete dual spaces Sd and S̃d are such that ∃s ∈ Sd,∃s̃ ∈ S̃d such that ∀u ∈ Ud, the following
holds:

s−A>s̃ ∈ ∂xg(x, u), and s̃ ∈ ∂J(Ax+Bu),

we have perfect reconstruction, i.e. DPd[J ](x) = D̃P
∗∗
d [J ](x, 0).

Proof. In the continuous case, we established DP[J ](x) = D̃P[J ](x, 0) = D̃P
∗∗

[J ](x, 0) from Equation 3.2
and Proposition 3.5. However, due to the discrete nature of the state and action sets, equality may not
always hold. Hence, we can no longer use this to prove equality, but we can express the the discrete
version of D̃Pd[J ]. Thus:

D̃P
∗∗
d [J ](x, 0) = max

s∈Sd
s∈S̃d

{〈[
x
0

] ∣∣∣ [s
s̃

]〉
− D̃P

∗
d[J ](s, s̃)

}

= max
s∈Sd
s∈S̃d

{〈[
x
0

] ∣∣∣ [s
s̃

]〉
− g∗(s−A>s̃,−B>s̃) + J∗(s̃)

}

= max
s∈Sd
s∈S̃d


〈[
x
0

] ∣∣∣ [s
s̃

]〉
− max
w1∈Xd
u∈Ud

{〈[
s−A>s̃
−B>s̃

] ∣∣∣ [w1
u

]〉
− g(w1, u)

}
−

− max
w2∈Xd

{〈s̃ | w2〉 − J(w2)}
}

= max
s∈Sd
s∈S̃d

min
w1,w2∈Xd
u∈Ud

{
〈x | s〉 −

〈
w1 | s−A>s̃

〉
−
〈
u | −B>s̃

〉
− 〈s̃ | w2〉+ g(w1, u) + J(w2)

}
= max

s∈Sd
s∈S̃d

min
w1,w2∈Xd
u∈Ud

{〈x− w1 | s〉 − 〈s̃ | Aw1 +Bu− w2〉+ g(w1, u) + J(w2)} . (4.9)

Swapping the min and max operators we obtain:

D̃P
∗∗
d [J ](x, 0) ≤ min

w1,w2∈Xd
u∈Ud

max
s∈Sd
s∈S̃d

{〈x− w1 | s〉 − 〈s̃ | Aw1 +Bu− w2〉+ g(w1, u) + J(w2)} . (4.10)

By setting w1 = x and w2 = Ax+Bu we have:

D̃P
∗∗
d [J ](x, 0) ≤ min

u∈Ud
{g(x, u) + J(Ax+Bu)} = DPd[J ](x), ∀x ∈ Xd. (4.11)

Since w2 ∈ Xd we need to have ∀x ∈ Xd,∃u ∈ Ud such that Ax + Bu ∈ Xd, which is exactly our first
requirement. In other words, this means that the discrete sets have to be control invariant. To finish
the proof, we need to show D̃Pd[J ]∗∗ ≥ DPd[J ]:

max
s∈Sd
s̃∈S̃d

min
w1,w2∈Xd
u∈Ud

{〈x− w1 | s〉 − 〈s̃ | Az1 +Bu− z2〉+ g(w1, u) + J(w2)} ≥ min
u∈Ud

{g(x, u) + J(Ax+Bu)} ,

(4.12)

which holds if there exists s ∈ S, s̃ ∈ S̃d such that for all w1, w2 ∈ Xd:

min
u∈Ud

{〈x− w1 | s〉 − 〈s̃ | Aw1 +Bu− w2〉+ g(w1, u) + J(w2)} ≥ min
u∈Ud

{g(x, u) + J(Ax+Bu)} . (4.13)

This, in turn, can be guaranteed if for each u ∈ Ud there exists s ∈ S, s̃ ∈ S̃d such that for all w1, w2 ∈ Xd:

〈x− w1 | s〉 − 〈s̃ | Aw1 +Bu− w2〉+ g(w1, u) + J(w2) ≥ g(x, u) + J(Ax+Bu)
〈x− w1 | s〉 − 〈s̃ | Aw1 +Bu− w2 +Ax−Ax〉+ g(w1, u) + J(w2) ≥ g(x, u) + J(Ax+Bu)〈

x− w1 | s−A>s̃
〉

+ g(w1, u)− g(x, u)+
+ 〈s̃ | Ax+Bu− w2〉+ J(w2)− J(Ax+Bu) ≥ 0. (4.14)
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Split the inequality in two: 〈
x− w1 | s−A>s̃

〉
+ g(w1, u)− g(x, u) ≥ 0, (4.15)

〈s̃ | Ax+Bu− w2〉+ J(w2)− J(Ax+Bu) ≥ 0, (4.16)

and rearrange:

g(w1, u) ≥
〈
w1 − x | s−A>s̃

〉
+ g(x, u), (4.17)

J(w2) ≥ 〈s̃ | w2 − (Ax+Bu)〉+ J(Ax+Bu). (4.18)

Per definition of the subgradient, Equations (4.17) and (4.18) mean that if s − A>s̃ ∈ ∂xg(x, u), and
s̃ ∈ ∂J(Ax+Bu) for all pairs (x, u) ∈ Xd ×Ud then D̃P

∗∗
d [J ] ≥ DPd[J ]. Together with Equation (4.11)

this concludes the proof.

Remark 4.8. The equivalence D̃P
∗∗
H,d = DPd as well as in the case when separable cost function g is

used, can be derived following the same steps, arriving to the same conditions as in Proposition 4.7.
Remark 4.9. The first condition in Proposition 4.7 is rather difficult to ensure for given arbitrary
dynamics A,B and given arbitrary sets Xd,Ud. On the other hand, if the sets Xd,Ud can be chosen,
then given a set Xd with |Xd| = X, the action set Ud can be constructed such that the first condition
hold for all x ∈ Xd. For example, by taking the pseudo-inverse of B:

u = B†(xk −Axj),

for all j ∈ {1, 2, . . . , X} and – not necessarily different – k ∈ {1, 2, . . . , X}. In best case this gives
|Ud| = X meaning for each xj there is exactly one ui that satisfies the first condition.

To ensure the second condition in Proposition 4.7 for |Xd| = X and |Ud| = U we need |Sd| ≥ XU
and |S̃d| ≥ XU . This is because |Ax + Bu| = XU for all pairs (x, u) and thus |S̃d| ≥ XU . Then, for
each s̃(x, u) ∈ S̃d an s can be found by, for example,

s(x, u) = ∂xg(x, u) +A>s̃(x, u).

In practice, one could compute the set of (discrete) slopes of g and JT based on the data points
available and use those slopes for Sd. However, when multiple steps of DP are required, this would
imply the (costly) computation of, for instance, g∗u(−B>s̃t) for all s̃t ∈ S̃d,t. Depending on the particular
function gu, this may be not be feasible to do in each step. Therefore, to save on computational time, a
fixed Sd,t = Sd would be more advantageous. Care should be taken when choosing a fixed Sd, because
as DPt[J ] evolves in a rather complex way so does its slopes, and thus when st /∈ ∂ DPt[J ] a significant
error is introduced.

Because it is inefficient to have the perfect reconstruction from a computational and storage point
of view for large cardinalities, we have to resort to approximation. Preliminary results suggest the error
is proportional to the step-sizes of the primal and dual grids, as well as the Lipschitz-constants of the
used cost functions. It is left for future work to put rigorous bounds on the error generated this way.

4.4. Time complexity
For brevity, we will denote the cardinalities as follows: for the states |Xd| = X in the primal domain,
|Sd| = S and |S̃d| = S̃ in the dual domain; for actions |Ud| = U in primal domain.

We also assume the coordinates of the elements in these discrete sets are equidistant along each
dimension. This makes the cost of interpolation O(1) for steps that include the composite of conjugation
and linear transformation. If the coordinates are not equidistant, linear interpolation has O(logN)
time assuming binary tree was used to store the data. Technically this alters the derived complexities,
however, in practice O(logN) grows slowly.

The brute-force minimization has O(TXU) time complexity: at each step of the DP (T ) the objective
function needs to be optimized for all x. Fixing x leads to O(U) computations to find the optimum,
which needs to computed for all x, hence a single step costs O(XU). As for storage, strictly speaking,
only O(X) storage is necessary. If one finds the optimizer “in-place” always keeping track of the current
optimum, uopt, for a fixed x and update the contents of J(x) based on the value of the optimum.
However, this may lead to slower execution times. With modern hardware it is often more advantageous
to compute and store g(x, u) for all (x, u) and in one go, and then access it each step of DP. Doing so
leads to O(XU) storage complexity, but (possibly) faster execution time.
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Proposition 4.10. The time complexity of Algorithm 1 is O(T (XU + SS̃)) and it needs O(SS̃ + X)
storage, if the system is time-invariant it needs O(XU + T (X + SS̃)) computations and the same
O(SS̃ +X) storage.

Proof. Computing points q(s, s̃) accounts to O(S+S̃) computations and storing q needs O(SS̃) memory.
Computing g∗(s − A>s̃,−B>s̃) with LLT has time complexity of O(XU + SS̃) if error is introduced,
and (O(XU +XU ×XU) = O(X2U2) without errors (see Remark 4.9). Storing g∗ needs O(SS̃) space
in memory. These are one-time costs in the time-invariant case. In each further steps of DP one has to
compute two LLT’s and an addition. The first LLT has complexity O(S̃+X), the second is O(SS̃+X).
Addition in this step is O(SS̃). Storing intermediate results, Jt requires O(X) memory. All in all, the
algorithm has

O(T (S + S̃ +XU + SS̃ + S̃ +X + SS̃ +X + SS̃) = O(T (XU + SS̃))
computations and needs

O(SS̃ + SS̃ +X) = O(SS̃ +X)
storage space in the time-varying case. In the time-invariant case the algorithm has

O(S + S̃ +XU + SS̃ + T (S̃ +X + SS̃ +X + SS̃) = O(XU + T (X + SS̃))
computations and needs

O(SS̃ + SS̃ +X) = O(SS̃ +X)
storage space.

Corollary 4.10.1. Algorithm 2 has time complexity O(XU + T (X + SS̃)) and storage complexity
O(S̃S +X).

Proof. The while loop of Algorithm 2 is essentially the same as the while loop of Algorithm 1 in the
time-invariant case. Before this loop, only g∗ is computed, which has O(S̃+XU+SS̃) time complexity,
and storing it requires O(SS̃) space. All things considered, Algorithm 2 has

O(S̃ +XU + SS̃ + T (X + SS̃)) = O(XU + T (X + SS̃))
time complexity, and needs

O(SS̃ + SS̃ +X) = O(SS̃ +X)
memory.

Comparing time complexities O(XU + T (X + SS̃)) of Algorithm 1 and O(T (XU)) of brute-force,
there is essentially no computational gain of using Algorithm 1 for the time-variant case. Only if the
system is time-invariant, T is large (so that one-time costs vanish), and if X + SS̃ < XU then there is
a gain. Referring back to Remark 4.9 it is difficult to choose Sd and S̃d such that brute force is beaten
in terms of accuracy and speed, and therefore Algorithm 1 is not a preferred method of computing DP.

We now analyse the case with separable cost function.
Proposition 4.11. The time complexity of Fast Dynamic Programming (Algorithm 3) is O(U+T (X+
S̃)) and it needs O(S̃ +X) storage.

Proof. Computing points v(s̃) accounts to O(S̃) computations and storing v needs O(S̃) memory. g∗u
can be computed with O(U + S̃) operations and storing the result amounts to O(S̃) memory. This is
a one-time cost. In the iteration, we need to compute the conjugate of two functions, these require
O(X + S̃) and O(S̃ + X) operations respectively. Addition costs O(S̃). The immediate results need
O(S̃) and O(X) memory. Altogether, the algorithm has

O(S̃ + U + S̃ + T (X + S̃ + S̃ +X)) = O(U + T (X + S̃))
operations and requires

O(S̃ + S̃ +X) = O(S̃ +X)
memory.

Again, comparing the time complexities of Fast Dynamic Programming’s O(U + T (X + S̃)) and
naive O(T (XU)) we see an enormous advantage. Simply put, if we construct S̃d such that S̃ < XU ,
which is generally easy to achieve, for example, by taking S̃ ≈ X, FDP greatly outperforms brute-force
minimization.
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Numerical examples

Previously, we claimed superior performance of Fast DP compared to brute-force minimization. To
support our claims three examples will be discussed. The first is a more traditional example in R
showing input constrained system with quadratic costs under perfect reconstruction. The second show-
cases approximating solutions of a system with non-quadratic cost functions in R. The last example
demonstrates the scalability of our method through a system with quadratic costs in R3.

In all examples the results will be compared to results obtained by brute-force minimization of
DPd[J ]. Throughout this chapter direct minimization will be referred to as brute-force (BF). Because of
their poor theoretical performance, Algorithms 1 and 2 will not be considered. Thus, only Algorithm 3,
which will be referred to as Fast DP (FDP), will be matched against BF. For simplicity, their respective
outputs will be denoted with Jt,BF = DPtd[JT ] and, similarly for Jt,FDP . Furthermore, the algorithms
were implemented in MATLAB® and were run on a personal computer with Intel® i5-750 2.66 GHz
processor and 6 GB RAM.

Note that setting the sets to be between some lower and upper limits, e.g. X ∈ [a, b]n for some
a < b ∈ R, amounts to solving the continuous problem with additional constraints restricting the
states, actions or both. Knowing this is useful for implementing state/action constraints of the same
kind. Furthermore, this restriction does not necessarily take away the properties of Hilbert spaces.
Recall from Section 2.1.1 that for a proper function f : X → ]−∞,+∞] one could define a function
fX : H → R as:

fX (x) =
{
f(x) if x ∈ X ,
+∞ otherwise.

This extension does not alter convexity, properness or (lower) semicontinuity of f as long as X is closed
and convex, hence all theory derived so far can be applied. As mentioned in the previous chapter,
the situation changes dramatically when Xd ⊂ X is discrete, which, in general, is not a convex subset.
Thus, similar extension of f to fXd would, strictly speaking, not be a convex function.

5.1. Simulation results
5.1.1. Quadratic costs, simple dynamics in R
Example 5.1. Consider the following system in R with quadratic costs.

X = [−1, 3],
U = [−1, 2],

f(x, u) = x+ u,

JT (x) = (x− 2)2,

g(x, u) = x2 + (u− 1)2.

Note that this system complies with Assumption A.3 (separable running cost; linear dynamics;
convex, proper, lsc cost functions), therefore Fast Dynamic Programming (Algorithm 3) can be used

27
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for computations. The analytical results for two steps of DP are given as:

DP[JT ](x) = 3
2x

2 − x+ 1
2 , −1 ≤ x ≤ 3, (5.1)

DP2[JT ](x) =
{

8
5x

2 + 4
5x+ 3

5 , −1 ≤ x ≤ 8
3 ,

5
2x

2 − 4x+ 7, 8
3 ≤ x ≤ 3.

(5.2)

In this case, the general solution DPt[J ](x) is (piecewise) quadratic but a closed form solution is difficult
to obtain due to the state and control constraints.

According to Proposition 4.7 and Remark 4.8 we have perfect reconstruction for these choices of
discrete sets:

Xd = {−1,−1 + ∆,−1 + 2∆, . . . , 3} ⊂ [−1, 3], (5.3)
Ud = {−1,−1 + ∆,−1 + 2∆, . . . , 2} ⊂ [−1, 2]. (5.4)

For properly chosen ∆, this particular choice of Xd and Ud guarantees the first condition.1 The dual
variable can be obtained by, for example,

s̃(x, u) = 2x+ 2u− 4 + ∆, ∀x ∈ Xd,∀u ∈ Ud. (5.5)

This leads to S̃d = {−8 + ∆,−8 + 3∆, . . . , 6 + ∆} which satisfies the second condition. Note that this
set of dual variables only guarantees equality to the brute-force method for applying DPd only once,
however, perfect reconstruction happens for multiple steps in some cases.

We show performance – both time complexity and error – for different values of ∆, see Table 5.1.
Iteration and setup times for both BF and FDP were measured, as well as the largest absolute difference
between BF and FDP, i.e. ε̄t := max εt = max |Jt,BF −Jt,FDP |. Some of results are compared to brute-
force method, see Figures 5.1 and 5.2.

As expected, there is no difference between BF and FDP for the first step. When ∆ = 1, equality
holds for multiple steps as well. The reason behind this is that Sd is able to cover the subdifferentials ∂g
and ∂Jt as Jt changes. For ∆ 6= 1 there is an error emerging. Looking at the graph of Jt (Figure 5.2) it
is apparent that the difference between BF and FDP only persists near the extremities, i.e. near x = 3.
Here, the slope of Jt is the largest, which possibly lies outside of the range of S̃d. By increasing the
boundaries of S̃d – say S̃d ⊂ [−8, 10] instead of the current S̃d ⊂ [−8, 6] – the difference between BF
and FDP for multiple steps may be reduced.

Table 5.1: Time comparison of brute-force minimization (BF) and Fast Dynamic Programming (FDP) for
solving Example 5.1. The running times are given in milliseconds, were averaged over 20 runs, and each run
computed solutions for T = 20. The largest difference between BF and FDP is measured as ε̄t := max εt =
max |Jt,BF − Jt,F DP |.

∆ X U S̃
Setup
BF
[ms]

Iter
BF
[ms]

Setup
FDP
[ms]

Iter
FDP
[ms]

ε̄1 ε̄3 ε̄20

1 5 4 8 0.03 0.17 1.69 0.45 0 0 0
0.1 41 31 71 0.13 0.23 2.54 0.46 0 0.18 1.02
0.01 401 301 701 2.33 4.22 2.82 0.60 0 0.22 1.08
0.001 4001 3001 7001 410.02 578.32 7.47 2.11 0 0.22 1.09

Remark 5.2. For this particular example, the iteration converges in the sense that DP[J ] = J +α up to
a constant α. This convergence is attained after T = 6 steps, more explicitly, max |DP6

d[J ]−DPTd [J ]| <
10−4 for any T > 6.

1As long as ∆ is chosen such that the upper bounds of the sets are also included in the discrete sets, the result will cover
the intended continuous sets. For example, ∆ = 0.1 covers both X and U , but ∆ = 11

28 does not.
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(a) 1 step. (b) 3 steps. (c) 20 steps.

Figure 5.1: Results of simulation of Example 5.1 with ∆ = 1. In this particular case we have equality for all
steps in the given time horizon.

(a) 1 step. (b) 3 steps. (c) 20 steps.

Figure 5.2: Results of simulation of Example 5.1 with ∆ = 0.01. The graph of BF covers that of FDP for most
x since they are essentially the same. As the conditions of Proposition 4.7 are not fulfilled for all t – note that
S̃ is fixed in this example, – the solution of Fast DP tends to drift off near x = 3.

5.1.2. Non-quadratic cost function
Example 5.3. Consider the following system in R with non-quadratic costs:

X = [−2, 2],
U = [−2, 2],

f(x, u) = ax+ bu = 0.7343x+ 1.1313u,
J(x) = cosh(x)− 1,

g(x, u) = cosh(x/2) + 0.9513 cosh(1.1892u)− 1.9513.

For this example there is no closed form analytical solution available. The cost functions g and JT
in this example contain constant additive terms to make x = 0 the optimum solution with Jt(0) = 0.
Ensuring this is not necessary and could be left out without any penalty whatsoever. The motivation
behind including such constants is that the graph of the cost functions Jt will have the same optimizer
(uopt = 0 at x = 0), and thus changes in the graphs may be compared more easily.

The state spaces were covered with equidistant points starting from −2 and ending at 2 for Xd. As
for the action and dual spaces, 3 cases are presented:

I Ud and S̃d are such that Proposition 4.7 holds. As expected, the error is (close to) zero after the
first step (see Figure 5.3a), however, the error accumulates for multiple steps. There is still a non-
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zero error after the first step for larger cardinalities of Xd that may be caused by (1) numerical
errors in computation of the correct elements of Ud, or (2) some deeper underlying issue that
Proposition 4.7 failed to uncover. Note that in this case U ≈ X2, and therefore S ≈ X2. For
larger X this made infeasible to compute BF within reasonable time, hence the NaNs in Table 5.2.
Further, computing all possible u such that the first condition of Proposition 4.7 holds is really
expensive as can be seen from the starred element of Table 5.2.

II Ud = Xd. Doing so fails the first condition of Proposition 4.7. Meanwhile, S̃d is kept such that
the second part of the same proposition is still satisfied. Error comes into play immediately after
the first step (see Figure 5.3b). However, the computational time required to compute the result
using FDP with great accuracy dwarfs that of BF for large cardinalities.

III Ud = Xd and the dual space was chosen to be S̃d ∈ [−6, 6] with the same spacing as that of Xd
and Ud. This interval and spacing was purposefully chosen such that S of case II is the same as
S of this case, making case II and III more comparable in terms of complexity. Similarly to case
II, error is present after the first step of DP (see Figure 5.3c).

In all cases and g∗(−bs̃) and j∗s̃ (ax) were computed exactly. In R, computing the composite of con-
jugation and linear transformation only marginally increases time complexity: direct computation is
possible with LLT, only reordering of entries may be needed b > 0 or a < 0.

The execution times and maximum absolute errors ε̄t := max εt = max |Jt,BF − Jt,FDP | – whenever
available – can be found in Table 5.2. In terms of absolute error, case I dominates as expected. However,
since U has to be large to comply with the requirements, case I takes the longest amount of time to
compute for the same X. Case II and case III show minor differences in terms of execution time, which
is reasonable since they operate with the same cardinalities. These differences originate from the extra
computations necessary to compute the elements of S̃d. For these runs, this contributed to a 3–5 %
increase in setup time of FDP compared to case III. More importantly, the absolute error is lower on
average for case II than for case III – about 57 % better compared to case III, – but not exclusively.
This suggests that partially satisfying Proposition 4.7 can be still beneficial. It is up to the designer to
weigh the benefits of time complexity and error in the one dimensional case, and choose between cases
I, II and III.

This example reaches a steady-state after about 7 steps. The solution changes insignificantly after
about 7 steps, meaning max |JT−7 − JT−20| < 10−4, for both BF and FDP.

(a) Case I, U = 21, S = 29. (b) Case II, U = 5, S = 13. (c) Case III, U = 5, S = 13.

Figure 5.3: JT −1(x) for Example 5.3 with X = 5 for different cases. The difference between BF and FDP is at
its highest near the boundaries for cases I and II, i.e. when x = ±2, while for case III the largest difference is
at x = ±1.

5.1.3. Example in R3

In the following example we demonstrate the scalability of Fast DP.



5.1. Simulation results 31

Table 5.2: Time comparison of brute-force minimization (BF) and Fast Dynamic Programming (FDP) for
solving Example 5.3. The running times were averaged over 20 runs, and each run computed solutions for
T = 20. The largest difference between BF and FDP is measured as ε̄t := max εt = max |Jt,BF − Jt,F DP |.

Case X U S̃
Setup
BF
[ms]

Iter
BF
[ms]

Setup
FDP
[ms]

Iter
FDP
[ms]

ε̄1 ε̄3 ε̄20

I 5 21 29 0.04 0.18 5.20 0.45 0 5.75E-2 7.10E-2
I 21 377 417 0.39 0.54 12.39 0.50 1.63E-6 6.80E-4 1.13E-3
I 101 8893 9093 21.05 40.52 351.22 1.68 3.65E-8 7.47E-6 1.62E-5
I 501 219697 220697 NaN NaN 44594* 41.15 NaN NaN NaN
II 5 5 13 0.04 0.16 4.53 0.45 1.41E-1 1.64E-1 2.30E-1
II 21 21 61 0.10 0.19 6.10 0.46 2.00E-2 8.72E-3 1.12E-2
II 101 101 301 0.75 0.64 8.63 0.51 5.11E-4 5.15E-4 6.52E-4
II 501 501 1501 12.10 9.95 18.85 0.75 3.98E-5 2.10E-5 3.48E-5
II 2501 2501 7501 299.60 284.66 78.84 2.22 1.58E-6 8.70E-7 1.60E-6
III 5 5 13 0.03 0.16 4.38 0.44 3.99E-1 9.29E-1 9.18E-1
III 21 21 61 0.11 0.18 5.81 0.46 1.53E-2 3.90E-2 6.11E-2
III 101 101 301 0.75 0.62 8.23 0.50 8.54E-4 1.70E-3 4.27E-3
III 501 501 1501 11.83 9.75 18.14 0.71 3.73E-5 7.94E-5 1.98E-4
III 2501 2501 7501 294.38 285.69 76.38 2.00 1.60E-6 3.28E-6 1.01E-5

Example 5.4. Consider the following system in R3 with quadratic costs:

X = [−2, 2]3,
U = [−4, 4]2,

f(x, u) = Ax+Bu,

JT (x) = (x− x0)>P (x− x0),
g(x, u) = x>Qx+ (u− u0)>R(u− u0),

where

A =

 1.1123 0.7038 −1.1879
−0.9585 0.9226 −0.9054
0.7233 −0.2692 1.5495

 , B =

 0.9920 −0.2552
−0.2778 −1.3998
0.4704 0.8058

 , x0 =

−1
0
1

 ,
P =

5.9932 3.6069 0.7188
3.6069 2.5632 0.9088
0.7188 0.9088 1.5555

 , Q =

1.8016 2.7613 0.9746
2.7613 5.8743 0.0903
0.9746 0.0903 2.0239

 ,
u0 =

[
0
1

]
, R =

[
1.1036 −0.2157
−0.2157 1.3525

]
.

Note that matrices P , Q, and R are symmetric positive definite, thus making JT and g convex
functions. Table 5.3 shows the execution times and errors associated with this example. Figure 5.4
further details the error distribution for some selection of cardinalities of the discrete sets.

Similarly to before, the discrete state and action spaces were set with equidistant points including
their respective limits. The dual space was chosen to be S̃d ∈ [−20, 20]3 with equal spacing. Referring
to Proposition 4.7, this discrete dual space is not adequate for error-free solutions. Furthermore, an
additional dual space is introduced in this case: Vd with |Vd| = V which is the dual of U . Since
g∗(−B>s̃) needs to be computed for all s̃ and S̃ � U , it is costly to compute it exactly. Therefore,
we first compute g∗(v) for all v ∈ Vd and then apply the same approximation (i.e. linear interpolation)
to obtain g∗(−B>s̃) from the samples of g∗(v). For this example, Vd was chosen as a rectangular box
with limits vi,min = mins̃(−B>s̃)i and vi,max = maxs̃(−B>s̃)i for the two dimensions of the action
space, i.e. i ∈ {1, 2}. Although the choice of Vd should affect the error, it only marginally improves
the error. The number of points between vi,min and vi,max is what ultimately defines how the error of
interpolation comes to play in the end result.
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Looking at Table 5.3, a clear advantage of FDP can be seen for the execution times: in all cases BF
is slower and, with increasing cardinalities, its iteration time becomes orders of magnitude worse than
that of FDP. Moreover, the iterations times support our claims of time complexity in Corollary 4.10.1.

The maximum error, ε̄t := max εt = max |Jt,BF − Jt,FDP |, seems to be disproportionally large for
small cardinalities (see Table 5.3). Since S̃d is only a crude representation of ∂g and ∂Jt when S̃ is
small, this is to be predicted. Interestingly, increasing S̃ alone does not necessarily yields better results
proportional to the increase, see for example the runs with S̃ = 213 = 9261 and S̃ = 413 = 68921.
In these cases, the error decreased by 12–60% at the expense of increasing the amount of points to be
computed by 413/213 = 7.44 times. Consequently, there is a diminishing return in terms of accuracy
when increasing S̃.

The reason why the maximum relative error remains large (> 40%) in Figure 5.4 is because while
the absolute error decreases (see last columns of Table 5.3), it is still present near the optimum which
is close to zero. This way the absolute error gets magnified around the optimum, resulting in large
relative error. However, in general, the mean (relative) error tends to zero for increasing cardinalities:
on Figure 5.4 the mean relative errors are 36.88%, 3.81%, and 1.89% respectively.

Table 5.3: Time comparison of brute-force minimization (BF) and Fast Dynamic Programming (FDP) for the
solutions Example 5.4. The running times show a single run, and each run computed solutions for T = 2. The
largest difference between BF and FDP is measured as ε̄t := max εt = max |Jt,BF − Jt,F DP |.

X U S̃ V
Setup
BF
[s]

Iter
BF
[s]

Setup
FDP
[s]

Iter
FDP
[s]

ε̄1 ε̄2

125 81 1331 121 <0.01 0.21 0.03 0.02 48.67 58.18
125 81 9261 441 <0.01 0.21 0.07 0.05 43.67 47.40
125 289 1331 121 <0.01 0.49 0.03 0.02 11.48 21.15
125 289 1331 441 <0.01 0.49 0.03 0.02 6.59 11.60
125 289 9261 441 <0.01 0.49 0.07 0.05 4.22 6.92
125 289 68921 441 <0.01 0.49 0.33 0.17 3.41 5.72
125 289 68921 1681 <0.01 0.49 0.33 0.17 2.91 3.52
729 289 68921 1681 <0.01 2.88 0.33 0.19 5.55 7.71
729 625 9261 1681 <0.01 5.63 0.08 0.06 3.44 4.18
729 625 68921 1681 <0.01 5.55 0.33 0.19 3.01 3.28
729 1089 9261 1681 <0.01 9.21 0.08 0.06 2.51 3.62
729 1089 68921 1681 <0.01 9.26 0.34 0.19 1.49 2.58
4913 1089 68921 1681 0.02 62.11 0.36 0.24 2.38 3.69
4913 1089 531441 1681 0.02 62.09 2.53 0.78 2.26 3.53
4913 1089 531441 6561 0.02 62.36 2.55 0.78 1.82 2.90
4913 4225 9261 6561 0.02 231.73 0.10 0.09 1.91 3.24
4913 4225 68921 6561 0.02 237.32 0.39 0.24 0.78 1.26
4913 4225 4173281 6561 0.02 231.73 21.12 3.22 0.66 0.99

5.2. General remarks
Two instances of the most common type of examples were shown: systems with quadratic costs. These
are well-studied and well-understood problems with analytical results available for unconstrained states
and actions.

The algorithms work also with non-quadratic costs as it is demonstrated in Example 5.3. As long as
Assumption A.1 is fulfilled, the algorithms presented here can be used. In fact, for a finite set of points
{xi}i∈I and {uj}j∈J , if the points on the cost functions JT (xi) and g(xi, uj) contribute to the convex
hull of JT and g for all i ∈ I and j ∈ J , then our algorithms could be used. In other words, there need
not be a (closed form) function that describes the relationship between xi, uj and JT (xi) and g(xi, uj);
everything can be data-driven.

The setup times of Example 5.1 and Example 5.3 that can be seen in Table 5.1 and 5.2 require some
comments:
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(a) X = 125, U = 81, S̃ = 1331, V = 121.

(b) X = 729, U = 289, S̃ = 68921, V = 1681.

(c) X = 4913, U = 4225, S̃ = 68921, V = 6561.

Figure 5.4: Distribution of relative error as a percentage compared to BF in Example 5.4. Different cardinalities
are shown. The number of occurrences of εt = 1− (Jt,F DP /Jt,BF ) are in blue, the mean relative error,

∑
εt/X,

is represented as a red vertical line, and the maximum relative error, max εt, is the black vertical line.

• It turned out that for these particular examples and implementation, BF performed better in
the iterations when g(x, u) was precomputed and stored before entering the loop. Hence the
setup time of BF is of O(XU), and this showcases a “best-case” scenario for BF. On the other
hand, this required storage of all g(x, u) which prohibited large-scale tests (X ≈ U > 104) due to
memory limitations. For example, observe the last row of case I in Table 5.2 where BF failed to
compute because of insufficient memory. While FDP could perform in such an extreme situation,
its setup time was greatly penalized due to the computation of points −bs̃ (see starred element of
Table 5.2).

• The comparably large setup time for FDP for small cardinalities in this case is due to the overhead
of computing g(x, u) and g∗(−bs̃) with LLT. To this end, a custom code was implemented that
would work in the general case, for multiple dimensions at a cost of additional overhead. This is
why the BF needs less setup time than FDP for small cardinalities.

• The setup times of the last example used a different implementation of BF to allow larger discrete
sets to be tested. Note that this has put a heavy penalty on the iteration times of BF: for
X = 2501 and U = 2501 (Example 5.3) each iteration cost around 280 ms, while this for X = 729
and U = 625 (Example 5.4) is around 5 s(!).

It is apparent from Table 5.1 that FDP is not always the fastest solution to solve DP problems
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numerically. Namely, for small state and action spaces it is better to compute the optimal cost by
naive minimization because of the reasons mentioned above. However, the performance of brute-force
minimization quickly becomes inferior if the cardinality of the state and action spaces reach about
100. Keep in mind that this holds also in higher dimensions meaning that this border is reached rather
quickly – assuming the sets have roughly the same elements along all dimensions. This is also supported
by the execution times of Example 5.4 which can be seen in Table 5.3.

The choices of Sd and S̃d are difficult. When fixed, g∗ can be precomputed which places the burden
of costly computations outside of the loop. However, when the dual spaces are fixed, they may be no
longer capable of covering the subdifferentials of evolving cost functions Jt leading to FDP being smaller
than BF for extreme slopes. This, in turn, introduces unwanted error as can be seen, for example, from
Figure 5.2. After 3 steps (Figure 5.2b), the dual space becomes “obsolete” and loses its ability to cover
the subdifferentials of Jt. The effect is more pronounced after 20 steps (Figure 5.2c). As a rule of
thumb, ST = ∂g ∪ ∂JT may be extended to twice or three times its size to accommodate the growth
of ∂ DPt[J ] without sacrificing much performance. Note that the algorithm has linear time complexity
in |S| so doubling its size “only” costs double the time. Another ad-hoc way of determining the size of
S for longer horizon is to look at the slopes of the solution after t steps. If they saturate around the
extremes – near the edges of the bounding box of x – then the dual sets likely need to be extended.

On the other hand, if the dual spaces can be varied with t, then, in principle, S and S̃d can be
chosen such that they provide adequate coverage of the dual space. This is not an issue for problems
in R, however, when the dimension of the problem increases, computing such dual sets is expensive.
In general, there are X coordinates along each dimension for such error-free Sd and S̃d which leads to
|Sd| = Xn. This quickly becomes impractical, even for small n > 1. Moreover, the setup times of FDP
indicated in Tables 5.1 and 5.3, would transfer to the iteration times. In all cases this is a significant
increase of the overall algorithm. Possible mitigations to this could be to:

• update Sd after every kth step,

• choose the (convex) domain of Sd larger than necessary before starting the algorithm, and fix it,

• approximating s /∈ Sd from samples within the set (this is what we did in Example 5.4),

• some combination of the above.

Unsurprisingly, there is a trade-off between error and time complexity (“There is no free lunch”).
Leaving no room for error leads to problems and plausible solutions mentioned above, all of which
increase execution time of the algorithms considerably. In turn, if one allows error the running times of
FDP beats that of BF by a huge margin as the problem scales. On top of this, the error shrinks to zero
with finer levels of discretization.2 This means that for problems with large number of states/actions,
the results obtained by FDP come close to the results of BF at a fraction of the time! For instance,
observe the last rows of Table 5.3. The mean error in those cases were less than about 1–2%, however, the
computational time was around 70–2450 times faster(!) not including the setup time. The discrepancy
of decreasing error and execution time compared to BF for growing cardinalities puts FDP truly in a
greatly desired spot for computing solutions to DP problems.

2This holds if the convex hull of S covers all subdifferentials of Jt. Choosing such S is not difficult, only the boundaries
of ∂Jt has to be known.
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Conclusion

In this chapter we reiterate what has been achieved in the thesis and give directions for future work.
First, the dynamic programming (DP) problem was reformulated using the Legendre–Fenchel con-

jugate in the continuous domain. Under different levels of assumptions, alternative routes were derived
to solve DP. The most general case concerned with convex, lower semicontinuous, proper cost functions.
Equivalence of direct minimization and “biconjugation” was proven under mild assumptions using the
Fenchel–Moreau theorem. In order to handle the constraints imposed by the dynamics, perturbed ver-
sions of solution operator were introduced. Doing so allowed the problem to be solved more conveniently
in the dual domain by simple addition, and, because of the aforementioned equivalence, by applying
conjugation once more to the dual problem.

Further, we showed the true potential of our approach when the running costs are separable in
state and action. In this case, the cost of introducing perturbations disappeared, leading to no state
expansion. This later proved to be an enormous advantage from a computational and storage point of
view and has lead to the foundations of Fast Dynamic Programming (FDP) algorithm. Note that, in
the realms of optimal control, it is not uncommon to have such separable cost function; think about
LQ control.

Second, the continuous results were further refined to be able to handle discrete sets, thus giving
rise to numerical algorithms. Implementation of the theory proved to be a challenge due to the discrete
nature of the problem: the equivalence of direct minimization and biconjugation is only guaranteed
under much stricter conditions – compared to the continuous case. Ensuring these conditions, however,
is rather costly in general, therefore approximations are made to enjoy the computational gain of our
framework. These approximations appeared when the composite of conjugation and linear transforma-
tion needed to be computed, and with them errors were introduced to the algorithms.

For separable running cost functions, FDP was derived which has O(U+T (X+S)) time complexity
for U actions, X states, S dual states and T time-horizon.

All these detours from direct optimization hid the burden of minimization behind conjugation,
and the solution operator became a combination of addition and (linear) transformations in the dual
domain. We utilized Linear-time Legendre–Fenchel (LLT) algorithm [22] to compute the conjugates of
the functions.

Last, numerical examples were shown supporting theoretical derivations. We demonstrated superior
performance compared to direct minimization. While for small state and action spaces brute force
minimization provides more accurate – and in some cases faster – results than FDP, this advantage of
the brute force method quickly diminishes with growing state/action spaces.

Our work provides a way to compute DP using conjugation, however, we believe that there is much
more to explore in this topic. First, how to chooseH appropriately such that a computational advantage
is gained for D̃PH which forms the foundation of FDP? Generally, H, or more precisely H−1 and its
transpose, controls 3 things: (1) DP[J ](x) = D̃PH [J ](H−1(x, 0)), i.e. which points of D̃PH [J ] need to
be calculated to get DP[J ]; (2) where g∗ is evaluated in D̃P

∗
H ; and (3) where J∗ needs to be computed

in D̃P
∗
H . Ideally, we want to avoid creating Minkowski-sums of the dual spaces in (2) and (3), as well

as avoid creating computation of the composite of conjugation and linear transformation (h∗(Mx)) for
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all cases. The former causes explosion of states in the discrete algorithms, while the latter generates
problems in the evaluation of the composite with boxed grids. Managing H to satisfy all our needs is
complicated and the “optimal” solution may require H to depend on (the type of) the problem.

Another question related to the algorithms presented here is how to choose (discrete) dual sets Sd
and S̃d such that these algorithms are fast, accurate, most desirably both? Can they be chosen a
priori such that they produce no/minimal error for multiple steps; if so, how? We demonstrated with
numerical examples that choosing a fixed S̃d may lead to (approximation) errors under quicker execution
times compared to brute-force minimization. While error-free definition of the dual spaces is possible,
doing so in each step of DP hinders the potential gain in execution times of the algorithms. This could
be circumvented by introducing approximations, but it remains to be shown how the trade-off between
speed and accuracy may be balanced in an optimal way.

Additionally, here are some unanswered questions, in no particular order, that came up during
development and that may be worth pursuing in the future:

• How may state and/or action constraints, other than e.g. x ∈ [a, b], be incorporated in our
framework?

• How can the composite of conjugation and linear transformation, for example g∗(−B>s̃), be
computed in an efficient way? Can it be exact without a great hit on the performance? If not,
how can the error be improved?

• How does the error propagate through multiple steps? Does it stay bounded if T → +∞? Under
what conditions does it have bounded error? What modifications need to take place in the
algorithm – possibly by choosing dual discrete sets and/or H more carefully – to ensure bound
on the error?

• Convergence? Under what (minimal) conditions do the algorithms presented here converge to
a “steady-state” solution after T � 1 steps, i.e. DP[J ] = J? Is it possible to compute this
steady-state solution efficiently using our framework, by possibly “skipping” multiple steps in one
computation?

• Could these theoretical results be in some way expanded to:

– Nonlinear cases? What if the dynamics, f , is nonlinear?
– Nondeterministic cases, i.e. Stochastic Dynamic Programming?
– Non-convex cost functions?

• Is it possible to remain in the conjugate domain for multiple steps – similarly to [30] – under less
restrictive conditions than in [30]?

• By involving results from max-plus algebra, is it possible to extend the theoretical part?

• Quadratic functions of the form q = (1/2)‖ · ‖2 are eigenfunctions of the conjugation, i.e. q = q∗.
Could this be in some way incorporated in our framework to derive results for quadratic cost
functions?

• How does our algorithms presented here compare to other state-of-the-art algorithms in terms of
computational time, storage, and accuracy?

It is hoped that these questions get their answers in the future.
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