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A B S T R A C T   

It is of significant importance to optimize the energy consumption of ships in order to improve economy and 
reduce CO2 emissions. However, the energy use of ships is affected by a series of navigational environmental 
parameters, which have certain spatial and temporal differences and variability. Therefore, the dynamic 
collaborative optimization method of sailing route and speed, which fully considers the spatial and temporal 
distribution characteristics of those factors, is of great importance. In this paper, the spatial and temporal dis-
tribution characteristics of the environmental factors and their related ship energy consumption profiles are first 
analyzed. Subsequently, a ship energy consumption model considering various environmental factors is estab-
lished to realize the prediction of energy use of ships within the navigation region. Then, a novel dynamic 
collaborative optimization algorithm, which adopts the Model Predictive Control (MPC) strategy and swarm 
intelligence algorithm, is proposed, to further improve the ship’s energy consumption optimization. Finally, a 
case study is conducted to demonstrate the effectiveness of the proposed method. The results show that the newly 
developed dynamic collaborative optimization method, which fully considers the continuously time-varying 
characteristics of environmental and operational parameters, could effectively reduce the energy consumption 
in comparison to the original operational mode. In addition, the adoption of the MPC strategy produces better 
performance results compared to the optimization method without the MPC strategy.   

1. Introduction 

As one of the world’s most important modes of transportation, 
seaborne transport undertakes most of the world’s trade (UNCTAD, 
2019; Zheng et al., 2019). However, it causes a huge consumption of 
fossil fuels and serious carbon emissions (Perera and Mo, 2016; Psaraftis 
and Kontovas, 2014; Johnson et al., 2014). The International Maritime 
Organization (IMO) continuously introduces regulations and measures 
such as energy Efficiency Design Index (EEDI), Ship Energy Efficiency 
Management Plan (SEEMP) and Energy Efficiency Operation Index 
(EEOI) to conserve energy and reduce emissions in the shipping industry 
(MEPC, 2014). The improvement in the energy efficiency level of ships 

mainly depends on the optimization of fuel consumption for each 
voyage, and the sailing route and speed have a significant impact on this 
(Lützen et al., 2017; Yan et al., 2018). Therefore, the goal of reducing the 
total energy consumption during a voyage can be achieved by opti-
mizing sailing parameters (speed, route), which can be promising 
methods of reducing carbon emissions and improving the shipping 
companies’ profits (Konstantinos and Gerasimos, 2018; Poulsen and 
Johnson, 2016). In recent years, a great deal of research has been con-
ducted in the areas of a ship’s energy consumption modelling and pre-
diction (Bialystocki and Konovessis, 2016; Tillig et al., 2018; Yang et al., 
2019), sailing speed optimization (Li et al., 2020; Psaraftis and Konto-
vas, 2013; Chang and Wang, 2014; Adland et al., 2016) and route 
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optimization (Kim and Kim, 2017; Ma et al., 2020; Kim et al., 2020), and 
this has laid solid foundations for the energy savings and emission re-
ductions of the shipping industry. 

The energy use of ships can be affected by the navigation environ-
ment parameters including the wind, waves, and currents. These factors 
have large spatial and temporal differences and a complex variability, 
which lead to large variations in a ship’s operating conditions and en-
ergy consumption levels under different navigational environments 
(Wang et al., 2018a). Therefore, research into the prediction and opti-
mization of energy consumption should fully consider impacts of these 
environment parameters, and some work has been conducted in this 
area. For example, Yan et al. (2015) established a neural network model 
to evaluate the energy efficiency, based on data collected from ships, 
which could realize the prediction and evaluation of a ship’s energy 
efficiency under different navigational environments. Furthermore, 
Meng et al. (2016) recommended a promising optimization model, 
which evaluate the parameters such as speed, displacement and envi-
ronment through the log data, then further investigate the relationship 
between energy consumption and each factor. Lee et al. (2018) proposed 
a speed optimization model by analyzing the big data of navigational 
environments, which could reduce the energy consumption of ships 
effectively. However, these optimization methods only focused on the 
energy consumption optimization under a specific route, and did not 
consider the spatial and temporal differences of the navigational envi-
ronment within a particular area to find a route that can contribute to a 
further reduction of the ship energy consumption to the minimum 
possible. Therefore, further research is demanded to optimize ships’ 
energy use efficiency. 

Some researchers have also considered a sailing route optimization 
method that takes into account the navigational environment, as this is 
also an effective way of reducing a ship’s energy consumption (Vettor 
and Guedes Soares, 2016; Przemyslaw and Szlapczynska, 2018). For 
example, Shao et al. (2012) reported a meteorological alignment opti-
mization method with dynamic programming. Their results showed that 
a 3% reduction in fuel use can be achieved by optimizing the ship’s 
course and power simultaneously. Moreover, Sen et al. (2015) estab-
lished a model using the shortest path method, then validated the model 
for route optimization. Zhang et al. (2018) proposed an automatic route 
optimization method, and ascertained that the automatic programming 
of a ship’s optimal route could be realized by adopting a clustering al-
gorithm and ant colony algorithm based on the data analysis. Zaccone 
et al. (2018) recommended a Three-Dimensional dynamic programming 
method for ship’s voyage optimization aiming to select the optimal path 
and speed profile for a ship voyage on the basis of weather forecast 
maps. This method shows potential to improve the navigational safety 
and reduce a ship’s energy consumption effectively. Wang et al. (2019) 
suggested using a Three-Dimensional Dijkstra’s algorithm to achieve the 
planning of the ship’s waypoints and sailing speeds along each way-
point, which led to at least a 5% reduction of fuel consumption within 
the cases analyzed. But this method can only be used in less severe 
marine environment. Gkerekos et al. (2020) presented a novel frame-
work for vessel weather routing based on historical ship performance 
and current weather conditions, and a modified version of Dijkstra’s 
algorithm that has been fitted with heuristics is applied recursively until 
an optimal route is obtained. However, this method only analyzed the 
optimization results at two fixed given sailing speed and did not fully 
consider the influence of various sailing speeds on the optimization re-
sults. Although the aforementioned researches achieved the joint opti-
mization of the sailing rout and speed that considered navigational 
environment, these dynamic optimization algorithms do not fully 
consider the continuously time-varying characteristics and spatial and 
temporal differences of the environmental and operational information. 
Most of the existing weather routing methods rely on the prediction of 
the environmental information. However, as time goes by, the real-time 
actual environmental information may not be same as the predicted 
values at different time and space, thus influencing the optimization 

accuracy and robustness. Therefore, it is significant to consider the 
real-time updated environmental and operational information at each 
time step in a given time horizon, in order to improve the dynamic 
optimization performance of the sailing route and speed simultaneously. 

In summary, the dynamic collaborative optimization method incor-
porating speed and route that considers the continuously time-varying 
navigational and operational conditions can be applied to further 
explore the potential energy consumption optimization. However, due 
to the large spatial and temporal differences and complex variability of 
navigational environment parameters, any study of this nature is more 
complicated. Thus, it is necessary to analyze the spatial and temporal 
distribution characteristics from the environmental parameters and 
energy consumption. In addition, to our best knowledge, there is no 
study that adopt the MPC strategy to achieve the dynamic collaborative 
optimization of sailing route and speed, in order to fully consider the 
continuously time-varying characteristics of environmental and opera-
tional information. MPC is an online-based optimization control tech-
nique which updates decision making variables in response to real-time 
information over a given horizon (Negenborn and Maestre, 2014). 
Compared to other methods, MPC has its obvious advantages including: 
i) the adoption of rolling optimization strategy to compensate for dis-
turbances in time, thus improving the optimization accuracy and 
robustness; ii) its explicit way of handling constraints on actions, states 
and outputs; iii) suitability to systems with constraint, large delay and 
nonlinearity (Negenborn and Maestre, 2014). The main feature of MPC 
is the use of the rolling optimization strategy which can make up for the 
disturbances caused by uncertainties of the continuously varying pa-
rameters. Due to these advantages, it has been widely used in maritime 
transportation such as container handling and optimization control of 
waterborne AGVs (Xin et al., 2015; Zheng et al., 2016). MPC can also be 
used to deal with the dynamical collaborative optimization problem of 
sailing route and speed that considers the uncertainties and continu-
ously time-varying characteristics of the environmental and operational 
conditions. This method can make up for the disturbances caused by the 
continuously time-varying environmental and operational information, 
thus helps to improve the optimization accuracy and robustness, so as to 
fully exploit the energy efficiency improvement potential. 

This research is an extended version of previously reported papers 
(Wang et al., 2018a, 2020) and makes two main contributions: 1) the 
dynamic collaborative optimization model is established based on the 
analysis of the spatial and temporal distribution characteristics of the 
navigational environmental parameters and energy use. Both the 
interaction between route and speed and the spatial and temporal dif-
ferences of multiple environmental factors are fully accounted for, in 
order to achieve a higher energy use optimization potential; and 2) a 
novel dynamic collaborative optimization method incorporating speed 
and route based on the MPC strategy and swarm intelligence algorithm 
is developed. This MPC-based joint dynamic optimization method fully 
considers the continuously time-varying characteristics of the environ-
mental and operational information, and can achieve the dynamic 
collaborative optimization of the sailing route and speed under contin-
uously time-varying environmental conditions, thus improving the 
optimization accuracy and robustness. The case study results show that 
the newly developed optimization method could effectively reduce the 
fuel consumption about 6.8% in comparison to the original operational 
mode. In addition, the adoption of the MPC strategy produces better 
performance results compared to the optimization method without the 
MPC strategy. 

In this paper, Section 2 provides a brief analysis of the spatial and 
temporal distribution characteristics of the navigational environment 
parameters and energy use. Subsequently, predictive analytics of ship 
energy consumption is realized by establishing an energy use model that 
evaluates multiple influencing parameters in Section 3. Then, a dynamic 
collaborative optimization method incorporating speed and route is 
proposed in Section 4. On this basis, a case study has been carried out to 
verify the application of the model in Section 5. Finally, the conclusions 
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and suggestions for future work are presented in Section 6. 

2. The spatial and temporal distribution characteristics of a ship 
voyage data 

2.1. Data acquisition 

In order to analyze the spatial and temporal distribution character-
istics of the navigational environment and the related energy con-
sumption, three types of the voyage data need to be collected: 1) The 
navigational data including the sailing speed and navigational trajec-
tory; 2) The energy efficiency related data including the main engine 
speed, shaft power and fuel consumption; and 3) Navigational envi-
ronment data, including wind speed and wind direction as well as wave 
height. The navigation speed is obtained by the odometer; the naviga-
tional trajectory is observed with a Global Positioning system (GPS); the 
shaft speed and shaft power are obtained by the shaft power sensor; and 
the ship energy use can be measured with a digital energy consumption 
sensor. For the acquisition of the meteorological environmental data, 
the data provided by the European Centre for Medium Range Weather 

Table 1 
Data acquisition form.  

Item Acquisition 
equipment 

Installation 
position 

Sketch 

Navigation position GPS instrument Bridge 

Sailing speed Speed log Bridge 

Shaft speed and 
power 

Shaft power sensor Shaft 

Fuel consumption Fuel consumption 
sensor 

Fuel lines 

Fig. 1. A schematic diagram of the ship’s energy efficiency data acquisition system.  

Fig. 2. A schematic diagram of the target ship and navigational area.  
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Forecasts (ECMWF) is used in this paper. The specific data acquisition 
details of the fuel efficiency related data and the installation position of 
the sensors used are summarized in Table 1. 

The onboard energy efficiency data acquisition system developed is 
shown in Fig. 1. The obtained data is stored in the onboard data 
acquisition system, to be used for real-time display and auxiliary 
decision-making analysis. Meanwhile, the data acquisition system will 
package the collected data and send it to a shore-based data information 
platform, in order to provide the data for the analysis and decision- 
making by operators. 

2.2. An analysis of the spatial and temporal distribution characteristics 

The complex and time-varying navigational environment in different 
sections within the navigational area has different effects on a ship’s 
sailing resistance and consequently its energy consumption. Therefore, 
it is necessary to analyze the distribution characteristics of the envi-
ronment and energy consumption within the navigational area, in order 
to perform the sailing parameters optimization (route, speed) to reduce 
the energy use. In this paper, the spatial and temporal distribution 
characteristics of the environment and energy consumption within the 
navigational area are analyzed using the target ship "YU ZHONG HAI" 
and navigational area from Sunda Strait in Indonesia (0.25 ◦ N, 107.875 
◦ E) to Zhoushan in China (26.875 ◦ N, 123 ◦ E). The hydrographic and 
meteorological conditions of this navigational area are complex and thus 
it is an appropriate choice. The target ship and navigational area are 

shown in Fig. 2. 
The target ship is equipped with the ship’s energy efficiency data 

acquisition system mentioned above, which can obtain the required 
navigational data, energy efficiency related data, and navigational 
environment data. In order to ensure the accuracy of the wave height, 
wind speed and wind direction, the environmental information 
measured from the ECMWF (www.ecmwf.int), with the minimum grid 
interval (i.e. 0.125◦× 0.125◦), is used as the data source. The acquisition 
interval of the meteorological data is once every six hours, and thus the 
frequency is four times a day. In order to ensure the validity of the data, 
data preprocessing was done, which included: 1) Identification and 
reprocessing of abnormal data (Yin and Zhao, 2017); 2) Then, due to the 
inconsistency of the time interval and the location data in the collected 
meteorological data which is recorded by ships, the real time meteoro-
logical dynamic data in various positions and times of the navigational 
area are recorded by the 3D linear interpolation method. Some of the 
usable data obtained after the above steps are taken are shown in 
Table 2. 

In addition, some of the spatial and temporal distribution charac-
teristics of the environmental information, including wind speed and 
wave height, are shown in Figs. 3–4, while the spatial and temporal 
distribution of the energy efficiency for the original sailing route within 
the navigational area is shown in Fig. 5. As it can be seen from Figs. 3–4, 
the wind speed and the wave height at different sailing positions and 
different time periods have obvious differences. These differences in the 
navigational environments would influence the ship’s energy 

Table 2 
Some of the usable data obtained.  

Date Longitude value 
/(◦) 

Latitude value 
/(◦) 

Shaft power 
/(kW) 

Sailing speed 
/(kn) 

Energy consumption 
/(g/m) 

Wind speed 
/(m/s) 

Wind direction 
/(◦) 

Wave height 
/(m) 

2015-12-28 
10:00 

108.4462 E 3.2261 N 10380 11.8 104.33 7.54 228.58 1.55 

2015-12-28 
10:10 

108.4660 E 3.2541 N 10450 11.9 100.87 7.60 228.05 1.57 

2015-12-28 
10:20 

108.4850 E 3.2806 N 10670 11.9 106.04 7.66 227.55 1.58 

2015-12-28 
10:30 

108.5042 E 3.3068 N 10610 11.8 99.11 7.73 227.07 1.60 

2015-12-28 
10:40 

108.5240 E 3.3346 N 10500 11.9 100.87 7.79 226.60 1.61 

2015-12-28 
10:50 

108.5433 E 3.3608 N 10390 11.8 106.94 7.86 226.15 1.63 

2015-12-28 
11:00 

108.5625 E 3.3870 N 10350 11.9 98.28 7.94 225.69 1.64 

… … … … … … … … …  

Fig. 3. Part of the spatial and temporal distribution characteristics of the wind speed.  
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consumption. Therefore, the obvious spatial and temporal differences 
within the navigational environment lead to different energy con-
sumption levels, as shown in Fig. 5. When the navigational environment 
becomes harsh, it will lead to an increase in the ship’s resistance and 
subsequently increase the ship’s energy consumption and vice versa. In 
addition, the ship’s energy consumption is also related to the sailing 
speed. Therefore, it is a complex problem to achieve the dynamical 
collaborative optimization of the sailing route and speed. The key is to 
achieve the ship’s energy consumption prediction under different sailing 
routes and speeds by taking full account of the spatial and temporal 
distribution characteristics of the navigational environment. On these 
bases, the MPC-based optimization algorithm can be adopted to achieve 
the dynamical collaborative optimization of the ship’s energy 
consumption. 

3. A Prediction of the ship energy consumption based on the 
distribution analysis 

3.1. The ship energy use model considering various factors 

A ship overcomes the resistance of water and air during sailing. To 
keep ship sailing at specific speed, main engine must provide a certain 
power to drive the propeller, in order to generate the thrust to push the 
ship forward. The effective thrust of the propeller should balance the 
hull resistance, as shown in Eqs. (1) and (2). 

TE = R = (1 − t)⋅T (1)  

PE = k⋅R⋅VS (2)  

where TE denotes the effective thrust of the propeller; R denotes the hull 
resistance; t denotes the thrust deduction fraction; T denotes the thrust 
from the main engine; PE denotes the propeller’s effective power; k de-
notes the number of propellers; and VS denotes the sailing speed. 

A ship sailing on the sea faces wind resistance above the waterline 

Fig. 4. Part of the spatial and temporal distribution characteristics of the wave height.  

Fig. 5. The spatial and temporal distribution characteristics of energy efficiency.  
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and water resistance below it. Water resistance is then divided into two 
parts: static and the added resistance attributed to the environment. The 
total resistance contains the static resistance, wave added resistance and 
wind resistance. Static resistance can be obtained by Eq. (3) (Holtrop 
and Mennen, 1982). 

RT = RF(1+ k1) + RAPP + RW + RB + RTR + RA (3)  

where RT is the static resistance; RF is the frictional resistance; RAPP is 
appendage resistance; RW is the wave- making resistance; RB is the 
bulbous bow additional resistance; RTR is the stern immersion additional 
resistance; RA is the relevant resistance; and k1 is the viscous resistance 
factor from different ship types. 

The wind resistance is calculated by Eq. (4) (Kwon, 2008). 

Rwind = Ca
1
2
ρaVwind

2As (4)  

where Ca is the air coefficient resistance; ρa denotes the density of air; 
Vwind denotes the wind speed; and As denotes the positive projected area 
on the ship above the waterline. 

The wave added resistance can be obtained through Eq. (5) (ITTC, 
2005). 

Rwave = 0.64ζA
2B2Cbρg

/
L (5)  

where ζA denotes the characteristic wave height; B denotes the ship’s 
breadth; Cb denotes the block coefficient; ρ denotes the density of the sea 
water; and L denotes the ship’s length. 

Finally, total resistance is obtained by Eq. (6). 

R = RT + Rwind + Rwave (6)  

where Rwind represents the wind resistance; Rwave represents wave added 
resistance. 

The power output of main engine is transmitted to the propeller by 
the shaft and other devices. Due to various frictional losses, the power 
received by the propeller is less than that from the ship’s main engine. 
After the propeller receives the power, it is converted into effective 
power to overcome the hull resistance through the interaction between 
the propeller and the hull. The relationships between the different kinds 
of power are shown as Eqs. (7) and (8). 

PB = PD/(ηS⋅ηG) (7)  

PD = PE/(ηO⋅ηH ⋅ηR) (8)  

where PB is the main engine power output; PD is the power received by 
the propeller; PE is the effective power to overcome the hull resistance; 
ηS is the shafting transmission efficiency; ηG is the gearbox efficiency; ηO 
is the propeller open water efficiency; ηR is the relative rotation effi-
ciency; ηH is the hull efficiency; and w is the wake fraction. 

In addition, the propeller thrust can be obtained by Eq. (9). 

T = KT ⋅ρ⋅n2⋅D4 (9)  

where KT is the thrust coefficient; ρ is the water density; n is the propeller 
speed; and D is the propeller diameter. 

Then, the propeller advance coefficient and the open water efficiency 
can be obtained by Eqs. (10) and (11), respectively. 

J =
VA

n⋅D
=

(1 − w)⋅VS

n⋅D
(10)  

η0 =
KT

KQ
⋅

J
2π (11)  

where J is the propeller advanced coefficient; VA is the advanced speed; 
and KQ is the torque coefficient. 

From Eqs. (1), (9), and (10), the following relationship can be 

ascertained. 

KT

J2 =
R

ρ⋅(1 − t)⋅(1 − w)2⋅VS
2⋅D2

(12) 

The main engine output power is calculated by Eq. (13). 

PB =
2πk⋅ρ⋅n3⋅D5⋅KQ

ηS⋅ηG⋅ηR
(13) 

According to Eq. (12) and the open water characteristic curve of the 
propeller in Fig. 6, the advanced coefficient of the propeller can be 
obtained, and then the corresponding torque coefficient can also be 
obtained from the open water characteristic curve of the propeller (Fan 
et al., 2016). 

The Specific Fuel Oil Consumption (SFOC) of the main engine is 
closely related to the engine power. The characteristic curve of the SFOC 
is shown in Fig. 7, which illustrates the SFOC of the main diesel engine 
under different operational loads. Overall, the main engine energy use is 
calculated by Eq. (14). 

q =
k⋅PB⋅gmain

3600⋅Vs
(14)  

where q denotes the energy consumption per unit of distance travelled 
by the ship; and gmain is the SFOC of the main engine. 

In summary, the modelling process of the ship’s energy consumption 
is shown in Fig. 8, and includes the following steps. 

(1) Calculate the ship’s hull resistance according to the environ-
mental factors and the ship’s sailing speed; 

Fig. 6. The propeller open-water characteristic curve.  

Fig. 7. The SFOC curve of the main engine.  
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(2) Then, obtain the propeller advanced coefficient through Eq. (12) 
and the open water characteristic curve in Fig. 6. Meanwhile, obtain the 
torque coefficient using a similar method through Eq. (12) and Fig. 6; 

(3) Subsequently, obtain the corresponding propeller speed using 
Eq. (10); 

(4) After that, obtain the main engine output power through Eq. (13), 
and the SFOC of the main engine by using the characteristic curve of 
main engine in Fig. 7; 

(5) Finally, the main engine energy use is calculated by Eq. (14). 
According to the ship energy use model established above, the fuel 

consumption of a ship per unit sailing distance changes with the ship 
resistance, which is mainly affected by voyage speed, wind speed, wind 
direction and wave height. Thus, to obtain the optimum energy use ef-
ficiency, it is crucial to reduce the ship’s energy consumption by 

following an optimized route within the navigational area and using 
optimal sailing speed in each section of the route according to the 
environmental characteristics at different positions. 

3.2. The ship’s energy use prediction within the navigational area 

Given the speed and specific navigational environment, the energy 
consumption within the navigational area can be analyzed and pre-
dicted, from traditional energy consumption method and the spatial and 
temporal distribution characteristics of the navigation conditions. The 
fuel consumption prediction results of the target ship within the navi-
gational area under a specific speed (taking the sailing speed 5.3 m/s as 
an example) and the real-time navigational environment are provided in 
Fig. 9. As can be seen, the ship’s energy consumption is different under 
different navigational conditions at different locations. The area with a 
milder environment is conducive for reducing energy consumption, thus 
reducing the ship’s CO2 emissions. However, the harsh environment in 
some sections will increase fuel consumption due to the high resistance 
of the ship, which will lead to higher CO2 emissions. Therefore, deter-
mining the optimal route and sailing speed jointly within the navigation 
area is vital for achieving the optimization of the ship’s energy use. 

4. The dynamic collaborative optimization method 
incorporating speed and route 

4.1. The dynamic collaborative optimization 

The joint dynamic optimization in terms of sailing route and sailing 
speed not only evaluates both the interaction and influence between the 
two parameters, but also fully considers the time-varying dynamic 
characteristics of the navigational environment. The processes involved 
in the development of the joint dynamic optimization are depicted in 
Fig. 10. 

The environmental information of the entire navigational area from 
port A to port B can be obtained before the ship’s departure. The optimal 
sailing waypoints and speed between adjacent waypoints at different 
time steps is calculated by the reported energy consumption and opti-
mization method. The ship will sail to the first determined navigational 
position Pt(lat1, lon1), namely A1, with the determined sailing speed V 
(1, 1) at the first time step. When the navigational environment changes, 
the navigational environmental information within the navigational 

Fig. 8. The calculation processes for the ship’s energy consumption.  

Fig. 9. The energy use prediction results for the navigational region.  
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area from position A1 to port B should be respectively updated. When 
reaching Pt(lat1, lon1), the newly determined optimization results from 
the updated navigational environmental information can be achieved 
again at the second time step. When the ship reaches A1, it will move to 
the re-optimized position Pt(lat1, lon1) with the re-determined sailing 
speed V (1, 2) as the second time step. Similarly, the continuous opti-
mization at different time steps will continue until the ship arrive its 
target port B. This joint dynamic optimization fully considers time- 
varying information of navigation environment and ensures an opti-
mized system for each step; which means that the ship sail at optimized 
route and speed at each time step, which reduces its energy use and 
emissions effectively in the route. 

When the ship sails from port A to port B, the distance between every 
point is expressed as Eq. (15). 

St = R⋅2⋅asin
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

sin(at/2)2
)
+ cos(xt− 1⋅π/180)⋅cos(xt⋅π/180)⋅sin(bt/2)2

√ )

(15)  

where S denotes the sailing distance of each segment; t denotes the time 
step; x denotes the latitude value; y denotes the longitude value; and R 
denotes the earth radius. at and bt can be calculated by Eqs. (16) and 
(17), respectively. 

at = xt− 1⋅π/180 − xt⋅π/180 (16)  

bt = yt− 1⋅π/180 − yt⋅π/180 (17) 

The total energy use is calculated by Eq. (18). 

Qtotal =
∑M

t=0
(qt⋅St) (18)  

where Qtotal represents the total energy use for the entire voyage; and qt 

represents the energy use per unit distance between position Pt-1(x, y) 
and Pt(x, y) at the time step t, and is the function of the sailing speed Vt 

and the environmental factors between position Pt-1(x, y) and Pt(x, y). 
Overall, the dynamic collaborative optimization incorporating the 

route and speed is a multi-dimensional nonlinear optimization strategy. 
The optimization target and its constraints are calculated in Eqs. (19)– 
(23). 

min Qtotal =
∑M

t=0
(qt⋅St) (19)  

PM(xi, yi) = P
(
latfinal, lonfinal

)
(20)  

Ttotal =
∑M

t=0
(St /Vt) ≤ Tlimit (21)  

Vmin < Vt = St/T < Vmax (22)  

Nmin < Nt < Nmax (23)  

where Tlimit is the sailing time constraint; Ttotal is the total sailing time 
periods for the entire voyage; M is the total time steps for the entire 
voyage; T is the time period for one time step; Nmin and Nmax are the 
minimum and maximum engine speed respectively; and Vmin and Vmax 
denote the minimum and maximum sailing speed respectively. 

Eq. (19) describes the optimization objective function with the sail-
ing waypoints in various steps as the optimization parameters. Con-
straints (20) and (21) ensures that the ship can arrive at the destination 
within the given time period. Constraints (22) and (23) are the physical 
limits related to the sailing and engine speeds, respectively, in order to 

Fig. 10. A schematic diagram of the dynamic collaborative optimization processes.  
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prevent overloading. 
For the proposed joint dynamic optimization problem of the sailing 

route and speed, the system’s state information at time step t mainly 
includes the current position of the ship and the current environmental 
information, namely, the system disturbance, which is calculated by 
Eqs. (24) and (25). Then, at time step t, the state equation of the system 
can be expressed by Eq. (26). 

Ys(t) = Pt(xi, yi) (24)  

ds(t) =
{

Vg,t,Vwind, t,Dwind, t,Ht,Pt(xi, yi)
}

(25)  

Ys(t+ 1) = Fs(Ys(t), us(t), ds(t)) (26)  

where Ys(t) is the system state; t means the time step; Vg,t is the sailing 
speed to the ground; Dwind,tis the wind direction; Ht is the wave height; 
Pt(xi, yi) is the sailing waypoint; ds(t) is the system disturbance; and us(t)
is the system input of the ship. 

4.2. The dynamic optimization algorithm and controller design 

(1) The dynamic optimization algorithm 
Based on the model established above, a novel dynamical collabo-

rative optimization of the sailing route and sailing speed is proposed, by 
adopting the MPC strategy and Particle Swarm Optimization (PSO), as 
shown in Algorithm 1. Solving the optimization problem using PSO al-
gorithm mainly includes the following steps (Wang et al., 2018b). 

Step 1): Initialize NS particles having 2(M-k) dimensions (k means the 
kth time step). The former M-k dimensions represent the latitude 
points at each time step, and the latter M-k dimensions represent the 
longitude points at each time step. The particles’ fitness values are 

calculated by Eq. (18), and optimized values of individual particles 
and populations are determined by comparing the fitness values. 
Step 2): Update the velocities and positions of these particles. The 
position of a particle varies with the velocity. The update of the 
velocity and position of the particle can be obtained through Eqs. 
(27) and (28). 

Ṽ
τ+1

= w⋅Ṽ
τ
+ c1⋅r1⋅

(

p̃best
τ
− X̃

τ
)

+ c2⋅r2⋅
(

g̃best
τ
− X̃

τ
)

(27)  

X̃
τ+1

= X̃
τ
+ Ṽ

τ+1
(28)   

where τ is the current iterating number; p̃best represents the individual 
optimal value; g̃best represents the global optimal value; X̃ and Ṽ repre-
sents the particle’s position and speed respectively; r1 and r2 are random 
numbers (between 0 and 1); c1 and c2 represent learning factors; and w is 
the inertia weight. 

Step 3): Recalculate the fitness value of each particle that meets re-
quirements of Eqs. (20)–(23), and update the optimal values of in-
dividual particles and populations. 
Step 4): Iterate Step 2 and Step 3 until the algorithm meets the 
stopping criteria. Finally, all the optimal particles are obtained; that 
is, the optimal longitude and latitude points within the navigational 
area at each time step. 

(2) The controller design for the energy use optimization 
According to the above algorithm, the designed joint dynamic opti-

mization controller for the sailing route and speed based on MPC 
strategy is shown in Fig. 11. The controller calculates the optimized 
solution once for each step, and then feeds the value back to the system, 
so that it can compensate for the optimization error caused by the 
continuously time-varying environment parameters. Through the 
designed controller, the dynamic collaborative optimization of sailing 
condition in terms of route and speed can be achieved, and the dynamic 
optimization of the ship energy use can be realized, thus ensuring the 
real time optimization of ship’s energy use. 

Fig. 11. A schematic diagram of the dynamic collaborative optimization controller.  

Table 3 
The major factors of the ship “YU ZHONG HAI”.  

Item Parameter Item Parameter 

Length of the ship 327 m Design speed 14.5 kn 
Breadth of the ship 29 m Number of blades 5 
Width of the ship 55 m Diameter of propeller 9.7 m 
Deadweight 297959 t Rated power of the engine 19000 kW 
Draft of the ship 21.4 m Rated speed of the engine 73 rpm  
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5. Case study 

5.1. Study case description 

Based on the characteristics of navigation environment and energy 
efficiency distribution in the South China Sea, the validity of the pro-
posed dynamic collaborative optimization model is verified by a case 
study. The case study takes aforementioned target ship “YU ZHONG 
HAI” and the navigation area from Sunda Strait to Zhoushan as the 
research objects. The major factors of the target ship are shown in 
Table 3. 

5.2. The joint dynamic optimization results and analysis 

For the joint dynamic optimization algorithm, the parameters 
required by the PSO method are given in Table 4. In addition, the time 
constraint is set as 179.67 hours based on the original operating data. 
The optimization results based on the above-established algorithm such 
as the optimized position and speed in each time step along the route are 
obtained. 

The optimal sailing speed in each time step along the route are shown 
in Table 5. From the optimization results, the optimized routes and 
speeds are jointly calculated at each time step by the proposed joint 
dynamic optimization method. This dynamic collaborative optimization 
algorithm can optimize the sailing route and also the ship sailing speed 
at various segments during the whole trip simultaneously. Meanwhile, 
the spatial and temporal distribution characteristics of the navigational 
environment and energy efficiency are also examined by this method. 
This method can provide an automatic way to avoid extreme weather, 
which can cause a higher energy use, and thus reduce ships fuel con-
sumption and CO2 emissions. 

As it can be seen from Table 5, the data in each row represents the 
optimized sailing speed at each time step. In addition, the optimization 
results of the sailing speed in the first row of Table 5, i.e., the optimi-
zation results at the first time step, denotes the optimization results 
without the MPC strategy. The optimization without the MPC strategy 
only executes the optimization results in the first time step. Therefore, 
the continuously time-varying conditions would result in a deviation of 
the optimization results and thus can not be used to obtain the optimal 

energy efficiency at every time step. Comparatively, the optimization 
results shown by the first entry in each row of Table 5, namely the first 
optimization results at each time step, denote the dynamic optimization 
results of the sailing speed with the adoption of the MPC strategy. The 
dynamic optimization results are obtained from real-time updated pa-
rameters for each time step, so as to improve the optimization accuracy 
and robustness, leading to a better energy efficiency. There are obvious 
differences among the optimization results of the different optimization 
methods, namely between the results in the first row and the first entry 
in each row in Table 5. This results from the deviation between the 
predicted and actual values of the navigational environmental factors. 

To validate the dynamic collaborative optimization method, a 
comparative analysis including the energy consumption and emissions 
was performed. The original and optimal sailing routes for the joint 
optimization method without the MPC strategy, for the same trip, were 

Table 4 
The required parameters for PSO algorithm.  

Parameters c1 c2 wmax wmin itermax 

Values 2 2 0.9 0.4 100  

Table 5 
The optimal sailing speeds at each time step along the sailing route (kn).  

Time 
steps 

The different sailing segments at each time step 

1 2 3 4 5 6 7 8 9 10 …… 23 24 25 26 27 28 

1 12.13 7.17 11.08 9.29 11.16 9.64 10.94 10.05 10.92 10.81 …… 10.21 9.12 10.34 10.50 10.13 11.08 
2  9.41 11.16 10.92 9.89 9.29 9.80 10.24 9.60 9.84 …… 11.24 11.57 9.62 10.94 10.75 10.92 
3   10.77 10.56 9.41 10.83 11.29 9.49 9.91 11.12 …… 10.21 8.73 9.84 10.94 10.42 11.08 
4    10.75 9.56 9.84 10.59 10.40 10.63 10.07 …… 10.87 10.67 9.87 10.50 10.50 11.08 
5     11.29 11.27 10.71 8.24 10.22 10.77 …… 9.62 10.75 9.70 10.59 10.38 11.04 
6      11.00 10.07 10.26 9.80 9.91 …… 10.17 10.17 10.42 10.44 10.42 10.96 
7       9.91 10.63 9.78 9.84 …… 10.22 10.40 9.95 10.44 10.50 11.24 
8        10.85 10.44 9.86 …… 10.22 10.42 10.13 10.38 10.44 11.12 
9         10.17 10.28 …… 10.75 9.93 9.84 10.63 10.21 11.08 
10          10.52 …… 10.61 9.29 10.22 10.42 10.19 11.12 
……           …… …… …… …… …… …… …… 
23            10.32 9.23 9.84 10.50 10.52 11.25 
24             9.23 9.82 10.63 10.21 11.31 
25              9.74 10.50 10.36 11.33 
26               10.50 10.36 11.33 
27                10.36 11.41 
28                 11.49  

Fig. 12. The original sailing route and optimized sailing route without 
MPC strategy. 
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compared (Fig. 12). Additionally, the original and optimal sailing routes 
of the MPC-based joint dynamic optimization model are summarized 
(Fig. 13). Furthermore, the total energy consumption and emissions 
using the original operational mode and different optimization methods 
are shown in Table 6. 

The CO2 emissions in Table 6 are calculated by multiplying the fuel 
consumption by its CO2 conversion rate (the used Heavy Fuel Oil is 
3.114) (Baumler et al., 2014). The sailing trip and speed in the original 
operational mode, which does not fully evaluate the impact of envi-
ronmental parameters on the energy use, are therefore not the most 
energy efficient because of the severe environmental parameters. The 
joint sailing route and speed optimization method without the MPC 
strategy can decrease the use of fuel and emissions by about 6.4% in 
comparison to the original operational mode. However, this model could 
not obtain the optimal optimization results, because it does not consider 
the continuously time-varying characteristics of the navigational envi-
ronment. Consequently, the proposed MPC-based joint dynamic opti-
mization method exhibited better optimization results, with an 
optimized figure of about 6.82% compared to the original method. Be-
sides, the MPC-based joint dynamic optimization method could also 
decrease energy use and CO2 emissions more efficiently than the joint 
optimization method without the MPC strategy, because it fully con-
siders the continuously time-varying environmental conditions. Despite 
the MPC-based optimization method showing a longer sailing distance, 
hence a higher average sailing speed compared to the original opera-
tional mode, better optimization results were still achieved due to the 
milder environmental factor associated with the determined route, 
which in turn contributed to a reduced sailing resistance, thus reducing 

the ship’s energy consumption. Accordingly, about 28 tons reduction in 
fuel consumption, and 87 tons CO2 emissions reduction could be real-
ized for a single voyage, using this joint dynamic optimization model. 
Therefore, the use of this model could significantly enhance a shipping 
company’s market competitiveness due to the operational expenses’ 
reduction. It can also be noted that the energy use reduction, thus CO2 
emissions reduction, can be achieved for the original voyage with worse 
as well as more obvious time-varying environmental conditions at 
different time steps. 

6. Conclusions and future work 

There is an urgent need to meet the energy saving and emission 
reduction requirements of the shipping industry. An effective way of 
improving the energy use efficiency of ships is the application of the 
joint dynamic optimization whilst considering multiple time-varying 
environmental factors. To fully exploit the potential of energy conser-
vation and emission reduction from ships, a dynamic collaborative 
optimization model which evaluates a series of time-varying environ-
ment parameters is proposed. Based on the spatial and temporal distri-
bution characteristics analysis of the navigation environment and the 
ship fuel efficiency, the predictive analytics for ships energy consump-
tion is realized by the established energy consumption model. Based on 
this, a nonlinear dynamic model and control algorithm of the sailing 
parameters obtained from the MPC strategy and PSO algorithm is 
established. The case study demonstrates that this newly developed 
MPC-based joint dynamic optimization model can reduce the fuel use 
and CO2 emissions by about 6.8% in comparison to the original navi-
gational mode. Therefore, this method can save about 28 tons of fuel for 
a single voyage. It also greatly reduces the ship’s operating expenses and 
improves the shipping company’s competitiveness in the market. 
Furthermore, the MPC-based joint dynamic optimization method can 
also produce better optimization results than the joint optimization 
method without the MPC strategy under same navigational time con-
straints. Therefore, the method proposed in this paper has an important 
practical importance to promote efficient energy utilization and reduce 
emissions from the shipping industry. 

The proposed dynamic collaborative optimization method in this 
paper is only based on the ship’s navigational optimization, thus not 
limited to a particular type of ship. Therefore, it can also be applied to 
other types of ships. Furthermore, the joint dynamic optimization 
method in this paper that simultaneously considers multiple time- 
varying factors can be further extended to the joint dynamic optimiza-
tion of an entire fleet. Therefore, the joint dynamic optimization of a 

Fig. 13. The original sailing route and optimized sailing route with 
MPC strategy. 

Table 6 
Analysis of the energy use and emissions comparison.  

Items Total distance (km) Average speed (kn) Fuel consumption (t) CO2 emissions (t) Optimized percent 

Original operational mode 3442.5 10.35 410.80 1279.23 – 
Joint optimization without MPC strategy 3385.2 10.17 384.39 1196.99 6.43% 
Joint optimization with MPC strategy 3389.1 10.19 382.77 1191.95 6.82%  

Algorithm 1 
The dynamic collaborative optimization algorithm based on MPC strategy.  

1. When the time step k=1, initialize the system state and system disturbance 
(including the navigational environment and initial navigational waypoint); 

2. While k ≤ M do 
3. When measuring the k time step, the current state Ys(k) and the disturbance ds(k) of 

the system are obtained by Eqs. (24) and (25); 
4. Solve the Multi-dimension nonlinear optimization model in Eqs. (19)–(23) by 

adopting the PSO algorithm. The optimal solutions (xk, …, xM, yk, …, yM) at time step 
k are obtained as the system input us(k); 

5. The first step (xk, yk) of the optimal solutions is carried out by using Eq. (26) to 
obtain a new system state Ys(k+1); 

6. k←k+1 and return to step 2; 
7. End while  
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fleet of ships energy use, which is a more complex optimization decision- 
making problem, should be considered for future research. Moreover, 
the integrated management planning and control of a fleet’s energy use 
could be realized by studying the joint dynamic optimization method 
whilst considering various time-varying influencing factors, so as to 
promote the environmentally-friendly development of the shipping 
industry. 
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