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Preliminaries and Notation

The current thesis is presented to obtain a masters degree in applied mathematics with specialisation
in analysis. The text presented here will thus assume some familiarity with the field of mathematical
analysis, in particular the theory of functional analysis, measure and integration theory, real
analysis and some probability theory of the level needed for and gained by completion of the
master course ‘Applied Functional Analysis’ at the TU Delft. Furthermore, while the text is
presented as a self-contained mathematical text, one can only appreciate the point made with at
least some level of familiarity with the theory of quantum mechanics. Concretely, I can recommend
the introductory lectures from the MIT course ‘8.04: Quantum Physics I’ by Barton Zweibach,
which are publicially available on YouTube. A more mathematical introduction into quantum
mechanics could then be provided by chapter 15 of Van Neerven’s ‘Functional Analysis’ [1] or
chapters 2, 4 and 5 in Landsman’s ‘Foundation of Quantum Theory, From classical Concepts to
Operator Algebras’ [2].

We aim to follow here mathematical convention where-ever possible. We hope to provide some
explanation of the symbols used in the text, even if most will be explicitly defined there.

Following convention, we donete by N,Z,Q,R,C, the natural, whole, rational, real and complex
numbers respectively. We will use T to denote the complex unit circle and R` “ r0,8q will be
used to denote the positive real numbers including 0. The natural numbers will not include 0 R N,
unless specified otherwise. We will denote complex conjugation by a bar over the number c (for
c P C). The aforementioned sets are assumed to be equipped with their standard topologies, which
we be denoted by use of the letter τ .

We will use capital letters F,G to denote sets, F ,G for σ-algebras and F for an algebra of sets.
The power set of a set Ω will be denoted by PpΩq. We will use pFλqλPΛ Ď F to denote as ordered
family of sets lying with a larger set F . We will use FC to denote the complement of a set, Y for
union, X for intersection, z for the difference and \ for the disjoint union. The Cartesian product
of two sets F,G will be denoted by F ˆ G. On a measurable space pΩ,Fq the set of probability
measure will be denoted by M`

1 pΩq. The indicator function of a set F will be denoted by 1F . The
topological closure will be denoted by writing a bar over a set F . For a set X with topology τX
we will use BpXq to denote its Borel σ-algebra. The Lebesgue measure will then be denoted by λ.

We use H to denote a complex Hilbert space with elements h P H. We use p | q to denote the
inner product, when relevant we take complex conjugation in the second coordinate (i.e. for L2pRq

pf |gq “
ş

fgdλ). The othogonal complement of a subspace G Ď H will be denoted by GK. Direct
sums of space are denoted by H1 ‘ H2. The set of bounded linear operators mapping from the
Hilbert space H to K will be denoted by LpH,Kq, where LpHq “ LpH,Kq. A will be used to refer
to a general or self-adjoint operator, U refers to a unitary operator, P an (orthogonal) projection
and lastly, I refers to the identity operator. The set of projection operators will be denoted by
PpHq.
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Introduction

In the current thesis we argue that quantum mechanics is best understood as a classical theory in
which each measurement hides a set of its states. Our aim will however not be to replace quantum
mechanical theory by a classical theory of hidden states or to avoid any of its possibly unfavourable
metaphysical implications by replacing the current paradigm by a different formulation of the
theory. The current thesis on hidden variables is rather guided by the question of how quantum
mechanical theory differs from classical mechanics than any attempt to overcome this difference.
In contrast to the standard approach to hidden variables, we argue that quantum mechanics in its
current formulation itself is best understood as a hidden states theory.

The program of Bohrification
Any attempt at a mathematically structured description of the experiments of physics relies on
assumptions and is guided by preferences. In this thesis, in our attempt to understand the set of
experiments described by the theory of quantum mechanics, we follow the so-called program of
Bohrification as outlined (in the introduction of) Landsman’s recent work ‘Foundation of Quantum
Theory, From classical Concepts to Operator Algebras’ [2, p. 1-19]. This program relies on the
assumption that the language of (non-commutative) operator algebras - rather than for example the
nonequivalent formalism of path integrals [2, p. 19] - is the right language to understand quantum
phenomena. Moreover, it is founded on the key assumption that the physically relevant aspects
of the non-commutative operator algebras of quantum mechanics are only accessible through the
commutative algebras [2, p .10]. This axiom is motivated by the assumption that a measurement
apparatus is to be understood classically [2, p. 8] and in some sense needs to be understood
classically. This last claim is then motivated by the ideas that (i) as humans equipped with a
human understanding of the world which simply grasps this world in classical terms, (ii) that
it grands a form of objectification to the theory in the sense that it is both able to account for
the classical results of a physical experimental set-up by specifying the commutative algebra and
is able to grant the physical system an independent existence in the form of a the larger set of
non-commutative elements existing independently of our inquiries and lastly, (iii) that all practical
applications of quantum mechanical theory in experiments (and engineering) can (and practically
are) understood in classical terms [2, p. 6,7]. As commutative algebras provide a natural classical
understanding, it is thus exactly through the interplay of non-commutative algebras and their
commutative subalgebras that the theory of quantum mechanics is to be understood.

We do however propose a slight modification to the program outlined in Landsman’s work.
We will work here with projection valued measures (and only marginally with their unsharp
extension to positive operator valued measures) rather than the direct use of the operators in
the commutative algebras. While we will operate under the same key assumption - that the
physically relevant aspects of the non-commutative operator algebras of quantum mechanics are
only accessible through commutative algebras -, we view that the projection valued measure allows
for a more natural link experimental reality. While the difference between the two approaches boils
down the conceptual difference between viewing the probability of event(s) A as the expectation of
the(ir) indicator function(s) Ep1Aq or viewing the expectation over a set of events as the weighted
sum of their outcomes and is as such only marginal, the main gain of the projection valued measure
is the flexibility it allows in formulating these events. In an experiment with outcomes labelled
‘blue’, ‘red’ and ‘yellow’, the first approach first has to construct a bijection between the set of event
and some set of real-valued outcomes which can then be used to construct an operator with the
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required spectral measure. In contrast, the framework of the projection valued measure can directly
assign measures to these (non-numerical) events. Moreover, the use of projection valued measures
allows for a more natural approach to experiments with an unbounded set of numerical outcomes,
which in a sense by-passes the convoluted construction of the unbounded operator and its spectral
calculus. While we regard these differences as clear reasons to favour the use of projection valued
measures over the use of self-adjoint operators, their difference is mostly conceptual. Namely, as
we will aim to show in our first chapter, each commutative (i.e. Abelian) Von Neuammn algebra
on a separable Hilbert space can be naturally associated with the spectral calculus of a projection
valued measure and vice versa.

The contrast with the ‘traditional’ approach to hidden variables
It may perhaps seem strange to the reader that we will here will discuss hidden variables as a
positive quality of quantum mechanical theory. Much of the discussion surrounding quantum
mechanics deals exactly with the theoretical exclusion of quantum mechanical hidden variable
theories. The central idea behind the ‘traditional’ approach to hidden variable theories is to find
a formulation compatible with the predictions of quantum mechanics (at least within the known
experimental bounds), which take more classical form. These attempts are motivated by a wish
to move away from the deemed unfavourable metaphysical implications the standard theory of
non-commutative algebras seems to imply. Already in his 1932 work ‘Mathematical Foundation of
Quantum Mechanics’ (Mathematische Grundlagen der Quantenmechanik) ( [3], cited from [2, p.
193]) Von Neumann proved a result excluding a class of classical theories (which are now known
as the class of non-contextual dispersion-free normalized hidden variable theories) mirroring the
predictions made by this theory of ‘rings of operators’ (now known as Von Neumann algebras) and
a series of results, including the famous Bell and Kochen-Specker theorems, have made this original
theorem by Von Neumann only stronger and more precise [2, p. 191]. These results excluding a
classical formulation of quantum mechanical theory do however not exclude all possible classical
theories of hidden variables. Even if Bohr may have believed it to be impossible, the formulation
of De Broglie-Bohm theory shows at least the theoretical possibility of formulating a deterministic
theory compatible with the outcomes of standard quantum mechanics [2, p. 7]. What is crucial
for us here, is that the discussion surrounding the idea of hidden variable theories in the context
of quantum mechanics (at least historically) seems to be founded on a mutual hostility. That is,
entering the discussion is either motivated by a refusal to accept the philosophical implication of
the standard theory of quantum mechanics on the side of the ‘traditional’ hidden variable theories
(e.g. de Broglie and Bohm) or by an aversion to the unwillingness to accept these implications as
they are on the side of Von Neumann and his followers.

To understand the non-commutative algebras themselves through hidden variables is thus
already in its outset different from the traditional conception of hidden variable theories. Our
insistence on the use of this term ‘hidden variables’, at least for the introduction here, is founded
on the belief that it more accurately captures what the concept ‘hidden’ variables, or more precisely
‘hidden’ states (which are closely related to variables in the classical case), actually seems to imply.
The fact of the matter is that - as strikingly enough Bricmont in his explanation on the (‘hidden
variable’) De Broglie-Bohm theory also remarks [4, p. 148] - the term ‘hidden variables’ is somewhat
misleading to describe the attempts made by these aforementioned theories. While they do aim
to replace the more standard operator algebra formulation of quantum mechanics by a classical
theory including as of yet undiscovered (and thus hidden) variables, these variables themselves
are not hidden. The ‘hidden’ variables exactly express themselves in the recorded outcome of
the experiment and as such are not hidden but revealed(!) by experimental results, albeit only
retroactively. As such in our view the adjective ‘undetermined’ or ‘unknown’ would have been a
more accurate concept to describe this class of theories. In contrast, our attempt here will deal with
the states that actually remain unseen by experimental results. That is, we deal with those states
(or variables) that exactly are not distinguishable by the experiment and as such are necessarily
hidden. In order to avoid the inevitable confusion between the two projects however (the ‘hidden
variable’ project and the current one), we have chosen to use somewhat forcefully the terminology
of ‘indistinguishable states’ - even if we believe that ‘hidden states’ describes our current project
here more accurately.
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Figure 1: A measurement of the (x,y) position of the quadrangle, denoted by the symbol G1,
compresses the states distinguished by the information of their z-coordinate of the original figure,
denoted by G. Figure taken from [5, fig. 1.3, p.19].

Holevo’s Hidden variables
How then do we aim to understand non-commutative algebras through hidden states? The
current thesis is inspired by Holevo’s recent work ‘Probabilistic and Statistical Aspects of Quantum
Theory’ [5] in which he proposes to understand a quantum mechanical measurement as a classical
model with ‘restricted class of measurement’. The core idea, at least in our interpretation, is that
analogue to an observable in the theory of statistics in which many states are compressed together in
relevant observables (the average age as compression of each individual age), a quantum mechanical
measurement also compresses the available state with its measurement. See figure 1. Quantum
mechanics then differs from classical mechanics in the regard that no measurement can detect the
whole phase space, but each measurement compresses the original phase space. As such it is thus
of ‘restricted class’ compared to the classical case in which measurements of all states (in the phase
space) is possible. A quantum mechanical measurement is then thus best understood as a classical
measurement hiding variables, since each measurement compresses some information held by a set
of variables (exactly as the information of the z-coordinate is hidden in the measurement displayed
in figure 1).

Holevo has expressed this core idea in his through showing that ‘any separated statistical
model (...) is a reduction of a classical model with restricted class of measurements’ [5, p. 29,
th. 1.7.1], where then the quantum mechanical measurements are separated statistical models
satisfying the conditions of the theorem in finite dimensions.1 Van Neerven, in his recent work
‘Functional Analysis’ [1] has given an adapted proof of Holevo’s statement and improved this result
by including the infinite dimensional case [1, p. 574, th. 15.32].2 It is on these results here that
we aim to expand by aiming to clarify how the commutative algebra can be viewed a compression
of states in the state space.

Outline of the thesis
Our aim in this thesis is thus to improve on the original idea of Holevo - to understand quantum
mechanical measurements as a classical measurement in which states are compressed - by providing
a systematic approach to these ideas. Concretely, our central claim will be to show that quantum
mechanics and classical mechanics differ in kind as a (i) in the formalism of classical mechanics,

1We refrain from giving a precise formulation of the thoerem as this would require the exposition of all technical
terms used by Holevo and lead us too far away from our main topic.

2Note that while the (current) printed edition contains only a sketch of proof, the online available corrections
contain a full formal proof of the theorem.
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at least theoretically, an observable exists that distinguishes all the states in its associated state
space and (ii) in all non trivial cases of Hilbert spaces with dimensional larger than one any
observable has associated indistinguishable states. It is then exactly through this difference that
the non-commutativity of quantum mechanics can be understood in classical language.

The current thesis consists of two chapters. The first chapter provides the crucial mathematical
theory for the aforementioned argument presented in the second chapter. As already mentioned
above, the main aim of the first chapter, aside from this introduction into the theory of Abelian
Von Neumann algebras, is to explain the tight relation between Abelian Von Neumann algebras
and projection valued measures on a separable Hilbert space. In the second chapter our main
argument is presented. There, an introduction into the difference between classical experiments
and quantum experiments is introduced, the concept of indistinguishable states is defined and the
above claimed difference is shown.
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1. On Abelian Von Neumann Algebras
and Projection Valued Measures

In this chapter we aim to clarify the precise relation between Abelian Von Neumann algebras and
projection valued measure on a seperable Hilbert space. As we aim to understand the quantum
mechanical observable through a projection valued measure rather than a self-adjoint operator,
much of the current chapter can be read as an exercise in recovering the crucial insights on self-
adjoint operators from the perspective of projection valued measures by passing through the Von
Neumann algebra generated by this projection valued measure. The result of theorem 1.4.12 stands
here as central achievement. Moreover, we aim to show that the use of projection valued measures
is not only a conceptual improvement over the algebra of self-adjoint operators, but that it has
also has mathematically more appealing structure. That is specifically, the case of the position
operator on multiple dimensions, here introduced in example 1.3.7, not only presents no extra
difficulty (over for example an observable defined on a compact outcome space), but also has the
nice property of being countably generated.

In the current chapter we are mainly concerned with Von Neumann algebras. These Von
Neumann however algebras fall in the larger class of C‹-algebras, which we mention only briefly
in the text below. The literature on these C‹-algebras is however quite large and they come with
their own set of techniques. As to avoid delving too deep is into the subject of C‹-algebras, we
have omitted the proofs referencing these techniques and use direct citations instead.

1.1 Projections on a Hilbert space

The smallest conceptual building block of nearly all our analysis will be the orthogonal projection.
As such we start by introducing the projection.

Definition 1.1.1. projection. Let H be a Hilbert space. A linear mapping P P LpHq is a
projection, if P 2 “ P .

We next define orthogonality.

Definition 1.1.2. Range and null space. For a linear mapping T P LpHq, we define the range
by RpT q :“ tTh | h P Hu and the null space by NpT q :“ th | h P H,Th “ 0u.

Definition 1.1.3. Orthogonal projection. A projection is orthogonal, if its null space is the
orthogonal complement of its range, that is RpP qK “ NpP q.

As orthogonal projections gives rise to orthogonal subspaces on the Hilbert space H, the
converse is also possible. That is, we can also define projections using orthogonal subspaces.

Definition 1.1.4. Range projection. For any closed subspace S Ď H, we define the range
projection P pSq as the operator which acts as the identity on S and as the zero operator on its
orthogonal complement. For an operator A P LpHq, we define its range projection P pAq as the
range projection onto its closed image, that is, P pAq “ P pRpAqq.

For these projections we then have the following proposition, taken from [1, p. 258, prop. 8.8].
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Proposition 1.1.5. Let P P LpHq be a projection. P is orthogonal if and only if P is self-adjoint.

Proof. For ‘if’, we note that if P is orthogonal and clearly h ´ Ph P NpP q and Ph P RpP q, we get
h ´ Ph K Ph1 for all h, h1 P H. Therefore

ph|Ph1q “ pPh|Ph1q ` ph ´ Ph|Ph1q “ pPh|Ph1q “ pPh|Ph1q ` pPh|h1 ´ Ph1q “ pPh|h1q (1.1.1)

Thus P is self-adjoint.
For the ‘only if’ part, we note that if P is self-adjoint, then

ph ´ Ph|Ph1q “ pP ‹ph ´ Phq|h1q “ pP ph ´ Phq|h1q “ 0 (1.1.2)

as P ph ´ Phq “ Ph ´ Ph “ 0. Now every element in NpP q is of the form h ´ Ph, we get that
NpP q K RpP q as required.

The set of orthogonal projections on a Hilbert space will in the remainder be denoted by PpHq.
The set PpHq comes with a natural ordering (which it inherits from the larger set of positive
operator as their spectrum σpP q Ď t0, 1u, as σpP q “ σpP 2q “ σpP q2).

Definition 1.1.6. Partial ordering of the projections. We define P ď P 1 if P 1 ´ P is again
an orthogonal projection.

This ordering mirrors the partial ordering of sets given by the inclusion relation Ď, as P ď P 1 if
and only if RpP q Ď RpP 1q. Clearly for all P P PpHq, we have O ď P ď I.

For commuting projections, we have the following result.

Proposition 1.1.7. Orthogonal projections P and Q commute if and only if their product PQ
is an orthogonal projection. In this case the range of PQ is the intersection of their respective
ranges.1

Proof. For our first claim we make twice use of proposition 1.1.5. For ‘only if’, we note that
PQ “ QP “ Q‹P ‹ “ pPQq‹. For the ‘if’ part, we note that PQ “ pPQq‹ “ Q‹P ‹ “ QP . For the
last claim, we see that if h P NpP qYNpQq, then PQh “ QPh “ 0, thus NpP qYNpQq Ď NpPQq. If
h R NpP qYNpQq, then RpPQq “ NpPQqK Ď pNpP qYNpQqqK “ RpP qXRpQq. Now for any h P H
we get PQh “ P pQhq P RpP q and PQh “ QPh “ QpPhq P RpQq, thus RpP q X RpQq Ď RpPQq,
proving our last claim.

As a closing remark: in the above section we have specified that our projections are orthogonal
projections. In the remainder we will often no longer do so: every projection, unless noted
otherwise, is from now taken to be an orthogonal projection.

1.2 Von Neumann Algebras

If projections form the basic elements of our analysis, then Von Neumann algebras are the mathematical
spaces in which they express their structure. Von Neumann algebras are not only useful for their
application in quantum mechanics, but they form a class of mathematical objects which display a
beautiful interplay between topological and algebraic concepts. We will take this observation as a
leitmotiv when working towards the definition of these algebras.

In this section we will introduce Von Neumann algebras by first proving Von Neumann’s famous
double commutant theorem. We include a full proof here as we deem the proof insightful into the
structure of the algebra. From there, motivated by the proof, we cite some initial results on the
relation between projections and Von Neumann algebras. Lastly, and after a short intermezzo on
Zorn’s lemma, we move towards the special class of Abelian Von Neumann algebras.

1.2.1 Von Neumann’s double commutant theorem
We start by making this ‘interplay between topological and algebraic concepts’ precise. First we
introduce our topological concepts, then introduce our algebraic concepts and lastly prove the
famous theorem.

1The following proof is adapted from the stackexchangepost: https://math.stackexchange.com/questions/2761101/condition-
that-the-product-of-orthogonal-projections-is-orthogonal, accessed on 31-3-2023.
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Topologies on the bounded operators
We start with our ‘topological concepts’. We remind the reader of the following definition.

Definition 1.2.1. Norm on the bounded linear operators. The norm on the space of linear
operators LpHq is given by

∥A∥ :“ sup
hPH,∥h∥“1

∥Ah∥ ă 8. (1.2.1)

As the above defines a norm, it induces a natural topology on the set of bounded operators:

Definition 1.2.2. Uniform topology. The topology generated by the norm of equation (1.2.1)
is called the uniform topology.

As this definition suggests, this however is not the only topology possible on the set bounded
linear operators. Two other frequently used topologies are the strong and the weak topologies. For
our purposes here, the strong topology and its contrast to the uniform topology are of central
importance, while the weak topology will only be used sparingly (but is mentioned here for
completeness).

Definition 1.2.3. Strong (operator) topology. The strong operator topology on LpHq is the
smallest topology τ on LpHq with the property that for all A P LpHq the map A Ñ Ah is continuous
for all h P H. The topology is thus generated by sets of the form tB | B P LpHq, ∥pB ´ Aqh∥ ă ϵu.

Definition 1.2.4. Weak (operator) topology. The weak operator topology on LpHq is the
smallest topology τ on LpHq with the property that for all A P LpHq the map A Ñ pAh|h1q

is continuous for all h P H. The topology is thus generated by sets of the form tB | B P

LpHq, ∥prB ´ Ash|h1q∥ ă ϵu.

The uniform and strong topology cannot be reduced to one another. Their relation can be
described as follows.

Proposition 1.2.5. Convergence in the uniform topology implies convergence in the strong topology,
but not necessarily the other way around. This means that given a set of operators, its norm closure
is contained is contained in its strong closure, but, again, not necessarily the other way around.

Proof. Let pAnqnPN Ď LpHq be a sequence of operators. If limnÑ8 An “ A for some A P LpHq

in norm, then for each ϵ ą 0 there exists some N P N such that for all n ě N we have
suphPH,∥h∥“1 ∥pAn ´ Aqh∥ ă ϵ. In particular for each h P H, we have for all n ě N that
∥pAn ´ Aqh∥ ă ϵ. Thus convergence in norm implies convergence in the strong topology.

For a - maybe the - counter example of the converse claim, let l2pNq be the Hilbert space of
square summable sequences with basis en and define by Pn the projection onto the nth coordinate.
Then limnÑ8 Pn “ O strongly, but not in norm. To see this, let h P l2pNq and write h “

ř8

n“1 anen.
Then as by definition

ř8

n“1 |an|
2

ă 8, p|an|2qnPN converges to zero. That is, for each h there exists
some N such that for all n ě N , ∥Pnh∥ “ ∥anen∥ “ |an|2 ă ϵ, showing the strong convergence.
To see that pPnqnPN does not converge in norm, note that ∥Pn∥ ě ∥Pnen∥ “ 1 for all n P N.

While the strong topology in general turn LpHq into a locally convex space (a notion which we
will not deal with any more as of now), in the special case of the unit ball on a separable Hilbert
space a metric can be defined.

Definition 1.2.6. Unit ball of the bounded operators. Let LpHq be the space of bounded
operators. Its unit ball is defined as S “ tA | A P LpHq, ∥A∥ ď 1u.

The following proposition stems from [6, p. 134], where it is mentioned as an exercise.

Proposition 1.2.7. Let H be a separable Hilbert space with a countable dense set of norm-one
elements phnqnPN. Then the unit ball of bounded operators S with the topology generated by the
metric

dpA,Bq :“
8
ÿ

n“1

∥pA ´ Bqhn∥
2n

, (1.2.2)

equals the strong topology. Consequently, the unit ball of bounded operators on a separable Hilbert
space is strongly metrizable.
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Proof. Let pAnqnPN Ď LpHq be a sequence of bounded operators and A P LpHq. We prove that
limnÑN dpAn, Aq “ 0 if and only if limnÑ8 An “ A in the strong operator topology.

Let limnÑN dpAn, Aq “ 0. Let ϵ ą 0 and h P H of norm one. As phnqnPN is a dense subset,
we can write h “

ř8

n“1 anhn for some sequence panq8
n“1 Ď C with

ř8

n“1 |an|
2

“ 1. As such there
exists some N P N such that

ř8

n“N |an|2 ď ϵ
4 . Now as limnÑN dpAn, Aq “ 0, there exists some

M P N such that for all m ě M we have dpAm, Aq ă ϵ
2N`1 . In this case we get for n ď N

and m ě M that 1
2n ∥pAm ´ Aqhn∥ ď

ř8

n“1
∥pAn´Aqhm∥

2n ă ϵ
2N`1 and so we get ∥pAm ´ Aqhn∥ ă

ϵ
2 . Moreover, as An, A P S we get ∥pAm ´ Aqhn∥ ď 2 for all n P N, in particular n ě N .
Combining these results then gives for all m ě M that ∥pAm ´ Aqh∥ “

ř8

n“1 |an|
2∥pAm ´ Aqhn∥ “

řN
n“1 |an|

2∥pAm ´ Aqhn∥`
ř8

n“N |an|2∥pAm ´ Aqhn∥ ă
řN

n“1 |an|
2 ϵ
2 `

ř8

n“N |an|22 ă ϵ
2 ` ϵ

2 “ ϵ.
Thus limnÑ8 Anh “ Ah for all h P H, giving the required strong convergence.

Conversly, let An converge to A in the strong operator topology. Let ϵ ą 0. Now let 1
2N`1 ă ϵ.

As An converges strongly, we have for h1, h2, . . . hN that there exists some N P N such that for all
n ě N we have ∥pAn ´ Aqhn∥ ă ϵ

2 . Now, again note that ∥pAm ´ Aqhn∥ ď 2. This then gives for
all n ą N , that dpAn, Aq “

ř8

n“1
∥pAn´Aqhm∥

2n ă ϵ
2 ` ϵ

2 “ ϵ as required.

The commutant
Next we turn to our algebraic perspective. We start by noting that the bounded operators have a
natural algebraic structure.

Definition 1.2.8. (Bananch) Algebra, multiplication. A normed algebra is a normed vector
space with an associative submultiplicative bilinear map

¨ : A ˆ A Ñ A (1.2.3)
pa, bq Ñ ab,

where associtivity requires pa ¨ bq ¨ c “ a ¨ pb ¨ cq and submultiplicativity requires ∥ab∥ ď ∥a∥∥b∥ for all
a, b, c P A. The above map is called the multiplication map. A normed algebra is a Banach algebra
if it is complete with respect to its norm.

Definition 1.2.9. C‹-algebra, involution. A ‹-algebra is a (Banach) algebra A with a mapping

‹ : A Ñ A (1.2.4)
a Ñ a‹,

such that pa‹q‹ “ a and pabq‹ “ b‹a‹ for all a, b P A. The above map is called the involution. A
C‹-algebra A is a ‹-algebra, if ∥a‹a∥ “ ∥a∥2 for all a P A.

Remark 1.2.10. Note that the inequality ∥a‹a∥ ď ∥a∥2 follows from submultiplicativity required
in the definition of a Banach algebra, the inequalitiy ∥a∥2 ď ∥a‹a∥ is however non-trivial for the
definition of a C‹-algebra.

Definition 1.2.11. Banach-, C‹-subalgebra. A Banach subalgebra is a subspace of Banach
algebra, which is closed under its multiplication and moreover topologically closed (making it again
complete). A C‹-subalgebra is a Banach subalgebra of a C‹-algebra closed involution.

Proposition 1.2.12. The bounded linear operators on a Hilbert space LpHq with composition as
its bilinear map, that is ¨ “ ˝, and taking its adjoint as its involution is a C‹-algebra.

Proof. LpHq is a Banach space and complete with respect to its norm. The composition of two
linear mappings A,B P LpHq is a linear map, as pA ˝ Bqpc1h1 ` c2h2q “ Apc1Bh1 ` c2Bh2q “

c1ABh1 ` c2ABh2. Moreover its clearly associative. The submultiplicativity follows from

∥AB∥ “ sup
hPH,∥h∥“1

∥ABh∥ ď sup
hPH,∥h∥“1

∥Ah∥ sup
hPH,∥h∥“1

∥Bh∥ “ ∥A∥∥B∥, (1.2.5)

which also show the boundedness of the composition, making the multiplication map well defined
and continuous in both coordinates.
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We define its involution as taking the adjoint. This defines an involution as for all h, h1 P H,
we have pAh|h1q “ ph|A‹h1q “ ppA‹q‹h|h1q and pABh|h1q “ pBh|A‹h1q “ ph|B‹A‹h1q. That this
involution then defines a C‹-algebra can be seen by use of the Cauchy-Schwartz inequality. That
is,

∥A∥2 “ sup
hPH,∥h∥“1

pAh|Ahq “ sup
hPH,∥h∥“1

pA‹Ah|hq ď sup
hPH,∥h∥“1

∥A‹Ah∥∥h∥ (1.2.6)

“ sup
hPH,∥h∥“1

∥A‹Ah∥ “ ∥A‹A∥,

as required.

Remark 1.2.13. In the remainder we will write for A,B P LpHq A ˝ B as AB (and thus we omit
the composition symbol).

For this algebraic structure, we now define the double commutant as follows.

Definition 1.2.14. Commutator, Commuting operators. For the bounded linear operators
on a Hilbert space, we define the commutator by

r , s : LpHq ˆ LpHq Ñ LpHq (1.2.7)
pA,Bq Ñ AB ´ BA.

If for A,B P LpHq we have rA,Bs “ 0, we say A and B commute. Equivalently, we thus have
AB “ BA.

Using this structure of the commutator, we then define the commutant and double commutant.

Definition 1.2.15. (Double) commutant. Let A Ď LpHq be a set of bounded operators. Then
the set A1 :“ tB | B P LpHq, A P A, rA,Bs “ 0u is called the commutant. We call the communant
of the commutant its double commutant, that is A2 :“ pA1q1.

Note that almost directly by definition we have A Ď A2.
While the reader may have already been familair with the commutant and note that its

definition does not need the level of abstraction of the algebraic definitions 1.2.8 and 1.2.14, we
have chosen to include them here to explicate how the definition of a commutant arises from these
purely algebraic concepts.

The double commutant theorem
In this section we sketch the mentioned connection between our algebraic and topological definitions
and use this to define a Von Neumann algebra. The following proof is taken from [1, p. 303, th.
9.27]

Theorem 1.2.16. Let H be a Hilbert space and A Ď LpHq a ‹-subalgebra containing the identity
I. Then A is strongly dense in A2.

Proof. To prove our claim, we show that each strong neighborhood of a given operator A0 P A2

intersects with A. That is, let ϵ ą 0, we show that for any choice of th1, h2, . . . , hNu Ď H there
exists some A P A, such that we have ∥pA0 ´ Aqhi∥ ă ϵ for each i P t1, 2, . . . , Nu.

Let h0 P H and K “ tAh0 | A P Au. Our first claim is that K is an invariant subspace for
A. Let A P A and h P K that is h “ limnÑ8 Bnh0 for some sequence pBnq8

n“1 Ď A and some
h0 P H. In this case clearly Ah “ limnÑ8 ABnh0 and thus Ah P K, as K is closed and LpHq

a Banach algebra. Similarly, we have for all A P A and h1 P KK, then for all h2 P K we have
pAh1|h2q “ ph1|A‹h2q “ 0 and as A is a ‹-algebra, we have A‹ P A, from which conclude A‹h1 P KK.

Now define P “ P pKq as the range projection onto K. For all A P A and h P H, we then clearly
have APh P K and ApI ´ P qh P KK and therefore APh “ PAPh “ PApPh ` pI ´ P qhq “ PAh.
We conclude that P P A1.

As P P A1, we have A0P “ PA0, as A0 P A2 and thus A0Ph0 “ PA0h0 P K. Therefore, we
get that for each ϵ ą 0, we have that there exists some A P A, such that ∥pA0 ´ Aqh0∥ ă ϵ (as K
was the closure of tAh0 | A P Au).

11



To extend our argument to any choice of th1, . . . , hNu Ď H, we fix some choice of th1, . . . , hNu.
We then define

ρ : LpHq Ñ LpHN q (1.2.8)
A Ñ pA,A, . . . , Aq

where pA,A, . . . , Aqph1
1, h

1
2, . . . , h

1
N q :“ pAh1

1, Ah1
2, . . . , Ah1

N q. We now claim that ρpA0q P pρpAqq2.
To see this, let B “ pB1, B2, . . . , BN q P pρpAqq1, that is BρpAq “ ρpAqB for all A P A. Now
by looking at the restriction mapping onto each coordinate separately, we see that thus BiA “

ABi for all A P A and so Bi P A1 for all i P t1, 2, . . . , Nu. From this we conclude that in
particular BiA0 “ A0Bi for all i P t1, 2, . . . , Nu and so ρpA0q P pρpAqq2. The proof is now
finished by applying our original argument to HN to obtain some operator in ρpAq, such that
∥pρpA0q ´ ρpAqqph1, h2, . . . , hN q∥ ă ϵ. Thereby we get

∥pA0 ´ Aqhi∥ ď

N
ÿ

i“1

∥pA0 ´ Aqhi∥2 “ ∥pρpA0q ´ ρpAqqph1, h2, . . . , hN q∥ ă ϵ (1.2.9)

for all i P t1, 2, . . . , Nu, as required.

Note the crucial role played in the proof by the projection onto the space K above. This already
indicates how projections stand central in the analysis of both the double commutant and the
strong topology.

Corollary 1.2.17. Von Neumann’s double commutant theorem. Let H be a Hilbert space
and A Ď LpHq a ‹-subalgebra containing the identity I. Then A “ A2 if and only if A is strongly
closed.

Proof. Immediate from the above.

It may be obvious to the reader that Von Neumann did more than only formulate the corollary.
This crucial result then motivates in the broad sense the following definition. That is, not only

does it motivate its formulation, but it moreover motivates the interest is such objects.

Definition 1.2.18. Von Neumann Algebra. Let H be a Hilbert space. Then A Ď LpHq is Von
Neumann algebra, if it is a C‹-subalgebra of LpHq containing the identity and it is strongly closed
or, equivalently, equals its double commutant.

Remark 1.2.19. Note that in our definition we specify that every Von Neumann algebra consists
of bounded operators acting on some Hilbert space H.

A Von Neumann Algebra is sometimes, as in [6] for example, defined a strongly closed ‹-subalgebra
of LpHq. This definition is slightly broader then the result above as it allows for Von Neumann
algebras on closed subspaces of H. We here deal with this setting in the following way.

Definition 1.2.20. Von Neumann Algebra on a subspace. Let H be a Hilbert space and
K Ď H be a closed subspace. Then A Ď LpHq is Von Neumann algebra on K, if it is a C‹-
subalgebra of LpHq such that the closed image of all elements in the strong closure of the algebra
is contained in K and the algebra contains P pKq.

1.2.2 Projections in a Von Neumann algebra
As already noted above, the proof of the double commutant theorem shows the fundamental role
projections play in the analysis of Von Neumann algebras. In this section we cite some major
results further clarifying this relation.

Theorem 1.2.21. If A is a von Neumann algebra, then it contains the range projections of all if
its elements. That is, for all A P A, there exists a P P A such that P “ P pRpAqq, where RpAq

denotes the closure of the image of A.

Proof. See [6, p. 119, th. 4.1.9].
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The following results will be shown later on using the theory build there, but for now we mention
them with citations.

Theorem 1.2.22. Let A be a von Neumann algebra. Then it is the uniform closed linear span of
its projections.

Proof. For now see [6, p. 119, 120, th. 4.1.11].

Theorem 1.2.23. Let A be non-zero a von Neumann algebra. Then for all B P H we have B P A
if and only if B commutes with all of the projections in A1.

Proof. As A1 “ pA1q2, A1 is itself a Von Neumann algebra and thus by the above result it is the
linear closed span of its projections. Thus if B P LpHq commutes with all the projections in A1,
we see it commutes with all elements A1 and so B P A2 “ A as A is a Von Neumann algebra.

1.2.3 Intermezzo: Zorn’s lemma
In the next section we will discuss a special class of Von Neumann algebra’s: maximally Abelian
Von Neumann algebra’s. As their name implies, in some sense they are ‘maximal’. It may however
not be intuitively clear in which way we deal with maximality here. Zorn’s lemma is a way to
make this precise. As this maximality will be crucial to our argument further on, we present
here, without proof, the construction of Zorn’s lemma. This section is based in full on [1, p. 621,
appendix A].

Zorn’s lemma provides a sufficient condition for the existence of maximal elements in partially
ordered sets. We first introduce the relevant terminology and then the main result.

Definition 1.2.24. Relation. Let S be a set. A relation ď is a subset R of the Cartesian product
S ˆ S, where for x, y P S x ď y indicates that px, yq P R i.e. that x and y are related.

Definition 1.2.25. Partially ordered set. A partially ordered set is a pair pS,ďq of a set S
and a relation ď, such that for all x, y, z P S we have (i) x ď x, (ii) if x ď y and y ď x, then
x “ y and (iii) if x ď y and y ď z, then x ď z.

Remark 1.2.26. Note that in the above definitions not each pair of elements in S ˆ S need to be
related.

Example 1.2.27. As mentioned above, the set of orthogonal projections PpHq is partially ordered,
P ď P 1 if P 1 ´ P is again an orthogonal projection.

Definition 1.2.28. Totally ordered set. A totally ordered set is partially ordered set in which
each pair of elements is related.

Definition 1.2.29. Chain. A chain is subset of a partially ordered set that is totally ordered.

Definition 1.2.30. Maximal element. Let S be partially ordered. Then x P S is maximal if
x ď y implies x “ y.

Definition 1.2.31. Upper bound. Let S1 Ď S be a subset of a partially ordered set S. Then
x P S is a upper bound for S1 if y ď x for all y P S1.

Theorem 1.2.32. Zorn’s lemma. Let pS,ďq be a partially ordered set with the property that
each chain as an upper bound. Then S contains at least one maximal element.

While we have omitted the proof, it is important to note that the use of Zorn’s lemma relies on
the axiom of choice.
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1.2.4 (Maximal) Abelian Von Neumann algebras
A special class of Von Neumann algebra are the (maximal) Abelain Von Neumann algebras. As
we will show, all Von Neumann algebras generated by projection valued measures - which we will
come central in this thesis and which are to be defined below - are Abelian and as such they
are of special interest here. Abelian Von Neumann algebras have a lot of structure, which is
best expressed in a representation theorem showing that these Abelian algebras are isometrically
isomorphic to some space of measurable functions. Moreover, every Abelian Von Neumann algebra
comes with a separating vector, which is a useful tool in dealing with the strong convergence. In
the case of a maximal Abelian Von Neumann algebra, this vector is moreover cyclic, giving more
structure and thereby allowing for the improvement on the previous representation theorem. All
results, except proposition 1.2.38, in this section are taken from [6, p. 133-138, sec 4.4].

The maximalility of a maximal Abelian Von Neumann algebra
We start with our working definitions.

Definition 1.2.33. Abelian Von Neumann Algebra. A Von Neumann algebra A is Abelian
if all of its elements commute or, equivalently, A X A1 “ A.

Definition 1.2.34. Maximal Abelian Von Neumann Algebra. An Abelian Von Neumann
algebra acting on some Hilbert space H is maximal if it is not contained in any other Abelian Von
Neumann algebra acting on the same Hilbert space H, or, equivalently A “ A1.

Remark 1.2.35. Note that in the definition of a maximal Abelian Von Neumann algebra, the
inclusion A Ď A1 is trivial.

The following result, presented after recalling the Fuglede–Putnam–Rosenblum theorem, shows
that Abelian Von Neumann algebras can be easily constructed. After this result we show how
the adjective ‘maximal’ used in the above definition of maximal Abelian Von Neumann algebras is
consistent with the idea of maximility in Zorn’s lemma.

Definition 1.2.36. Normal operators. An operator is normal if it commutes with its adjoint.

Theorem 1.2.37. Fuglede–Putnam–Rosenblum. Let A P LpHq be normal and B P LpHq.
Then if AB “ BA, we get A‹B “ BA‹.

Proof. See [1, p. 265, th. 8.18].

Proposition 1.2.38. Let B Ď LpHq be some Abelian set of normal operators. Then B2 is an
Abelian Von Neumann algebra.

Proof. We start by showing that the C‹-algebra generated by B, denoted by C‹pBq, is an Abelian
C‹-algebra. Firstly, note that B Y tIu is again Abelian. Secondly, we first claim that the norm
closure of span of B Y tIu is again Abelian, as the commutator is a linear map. Moreover, its
completion with respect to the uniform topology is again Abelian as the commutator is continuous
in the uniform topology, since it is linear and bounded p∥rA,Bs∥ ď 2∥A∥∥B∥). As both the sum
and the product of two commuting normal operators is again normal, the set generated contains
only normal operators. As such, it is again Abelian under taking the adjoint by the above theorem.
This proves our first claim.

Now note that the commutant of a set of operators B1 is a ‹-algebra containing the identity.
Moreover, by following the definition of the commutant, we have B1 “ B3. Thus B1 is a Von
Neumann algebra. Now as B is Abelian, we get B Ď B1. But then we get by the double commutant
theorem that B2 “ C‹pBq

SOT
Ď B1

SOT
“ B1 and thus B2 is an Abelian Von Neumann algebra.

Proposition 1.2.39. Every Abelian Von Neumann algebra is contained in a maximal Abelian Von
Neumann algebra.

Proof. Here we use Zorn’s lemma. Let AAVN pHq be the set of Abelian Von Neumann algebras on
a given Hilbert space H. We now use set inclusion Ď as our partial order. We note that in this
case each chain C has a natural upper bound in the form of the strong closure of tA | A P A,A P
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Cu “
Ť

APC A. As each chain is ordered by inclusion we have that
Ť

APC A is Abelian, contains the

identity, is closed under multiplication and involution and
Ť

APC A
SOT

is again norm complete, as

the norm closure lies in the strong closure.
Ť

APC A
SOT

is thus a ‹-algebra containing the identity

and so
Ť

APC A
SOT

P AAVN pHq by (second argument of the) the above lemma. As such we have
sufficient conditions for the application of Zorn’s lemma and thereby we can assume the existence
of a maximal element AM . As by maximality we have AM Ď A for some A P AAVN pHq implies
AM “ A, we see that AM is not contained in any other Abelian Von Neumann algebra and so
we conclude that AM is maximal Abelian. Note that by construction this implies AM “ A1

M , as
if not then there exists some A P A1

MzAM and then AM Ă tA Y AMu2, which contradicts the
maximality of AM .

A key example and classification
We next move towards (maybe) the example of a maximal Abelian Von Neumann algebra.

Definition 1.2.40. (µ-)bounded measurable functions. Let pΩ,F , µq be a measure space. We
say a function is µ-essentially bounded if there exists some R P R` such that µptω | |f | ą Ruq “ 0.
We define by L8pΩ, µq the equivalence classes of µ-essentially bounded functions, where f and g
are equivalent if µptω | |f ´ g| ą 0uq “ 0. We define the norm on this space by

∥f∥8 :“ inftR | R P R`, µptω | |f | ą Ruq “ 0u. (1.2.10)

We note that L8pΩ, µq is a Banach space [1, p. 49, th. 2.20]. In the remainder we will often omit
the specification µ and refer to such functions as bounded measurable functions.

Definition 1.2.41. (Algebra of) multiplication operators. Let pΩ,F , µq be a σ-finite measure
space, let L2pΩ, µq be its associated Hilbert space of square integrable functions and let L8pΩ, µq

be its associated Banach space of bounded measurable functions. Then we define the multiplication
operator Mf for f P L8pΩ, µq, by

Mf : L2pΩ, µq Ñ L2pΩ, µq (1.2.11)
h Ñ fh.

This algebra is referred to as the (Von Neumann) algebra of multiplication operators.

The following result is adapted from [2, p. 594, 595, th B.106-108].

Proposition 1.2.42. Let pΩ,F , µq be a measure space with σ-finite measure µ, let L2pΩ, µq be its
associated Hilbert space of square integrable functions and let L8pΩ, µq be its associated Banach
space of bounded measurable functions. Then the multiplication algebra is a maximal Abelian Von
Neumann algebra.

Proof. Let A P M1. As µ is σ-finite, there exists some sequence of pairwise disjoint sets such that
pFnqnPN and 0 ă µpFnq ă 8 for all n P N.

For now fix n P N . As µpFnq ă 8, we have 1Fn
P L2pΩ, µq. We now define fA,n “ A1Fn

and
claim that fA,n P L8pΩ, µq. We show this claim by contradiction. Assume fA,n R L8pΩ, µq. Then
for some R ą ∥A∥ there exists some FR P F such that |fA,npωq| ą R has µpFRq ą 0. Now as fA.n

has support in Fn, we get that also µpFR X Fnq ą 0. But then 1
µpFRXFnq

1FRXFn P L2pΩ, µq and is
of norm one and so

∥A∥ ă

∥∥∥∥fA,n1FRXFn

µpFR X Fnq

∥∥∥∥ “

∥∥∥∥A1Fn
1FRXFn

µpFR X Fnq

∥∥∥∥ “

∥∥∥∥ A1FRXFn

µpFR X Fnq

∥∥∥∥ ď sup
∥h∥ď1,hPH

∥Ah∥ “ ∥A∥, (1.2.12)

giving us the contradiction and thereby proving our claim. Moreover, we see that ∥fA,n∥8
ď ∥A∥.

As fA,n P L8pΩ, µq, MfA,n
P M. Now let g P L2pΩ, µq with ess supppgq Ď Fn. As L2pΩ, µq Ď

L8pΩ, µq, Mg is well defined as as such we get

Ag “ Ag1Fn
“ AMg1Fn

“ MgA1Fn
1Fn

“ MgfA,n1Fn
(1.2.13)

“ MgMfA,n
1Fn

“ MfA,n
Mg1Fn

“ MfA,n
g
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almost everywhere.
We now extend our argument to the whole of Ω. Set fA :“

ř8

n“1 fA,n. Then fA P L8pΩ, µq as

∥fA∥8 “

∥∥∥∥∥ 8
ÿ

n“1

fA,n

∥∥∥∥∥
8

ď

∥∥∥∥∥ 8
ÿ

n“1

psup
nPN

fA,nq1Fn

∥∥∥∥∥
8

“

∥∥∥∥∥psup
nPN

fA,nq

8
ÿ

n“1

1Fn

∥∥∥∥∥
8

(1.2.14)

“

∥∥∥∥psup
nPN

fA,nq1Ω

∥∥∥∥
8

“ sup
nPN

∥fA,n∥8
ď ∥A∥ ă 8

and as such MfA is well-defined. Using our relation above, we now get for general g P L2pΩ, µq

Ag “ Ag1Ω “ Ag

˜

8
ÿ

n“1

1Fn

¸

“

8
ÿ

n“1

Ag1Fn
“

8
ÿ

n“1

MfA,n
g1Fn

(1.2.15)

“

˜

8
ÿ

n“1

fA,n1Fn

¸

g “ Mř

8
n“1 fA,n1Fn

g “ MfAg

almost everywhere. Thus A “ MfA P M as required.

Theorem 1.2.43. Let H be a separable infinite dimensional Hilbert space and A a maximal Abelian
Von Neumann algebra, then A is unitarily equivalent to one the following cases:

1. the multiplication algebra on L2pr0, 1sq,

2. the multiplication algebra on l2pNq,

3. the multiplication algebra on L2pr0, 1sq ‘ l2pNq,

4. the multiplication algebra L2pr0, 1sq ‘DN pCq, with DN pCq the set of N -dimensional complex
diagonal matrices.

Moreover, these cases above are unitarily nonequivalent.

Proof. See [2, p. 601, th. B.118]. The idea of the proof is that two Von Neumann algebras A1,A2

on Hilbert spaces H1, H2 are unitarily equivalent if their projections say P1 P A1 and P2 P A2

can be written as the product of of a partial isometry U : H1 Ñ H2 such that P1 “ UU‹ and
P2 “ U‹U . The possibility of these partials isometry existing is argued for on the basis of the
cardinality of the rank of the image space of the projections. The four cases above then cover
the four possible combinations of these cardinalities. That is, case (1) contains only projections
of uncountable rank, (2) only projections of countable rank, (3) contains countably many sets of
projections uncountable rank and (4) contains countable many sets of projections uncountable
rank.

Results for Abelian Von Neumann algebras
Next we move to our two central results on Abelian Von Neumann algebras.

Definition 1.2.44. Cyclic vector, closed image space. For a Von Neumann algebra A a
Hilbert space element h P H is called cyclic, if its closed image space equals H, that is rAhs “

tAh | A P Au “ H.

Definition 1.2.45. separating vector. For a Von Neumann algebra A a Hilbert space element
h P H is called separating, if for all A P A Ah “ 0 implies A “ 0.

Theorem 1.2.46. Let A be a Abelian Von Neumann algebra on a separable Hilbert space, which
has a separating vector. Then there exists some second countable compact Hausdorff space ΩA,
a positive measure µA and unitary map UA : H Ñ L2pΩA, µAq, such that UAAU‹

A is the Von
Neumann algebra of multiplication operators Mf on L2pΩA, µAq.

Proof. See [6, p. 135, th. 4.4.3]
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Theorem 1.2.47. If A is an Abelian Von Neumann algebra acting on a seperable Hilbert space,
then there exists some h P H that is separating for A.

Proof. Let E be a maximal set in H of unit vectors such that the spaces rAhs with h P E are
pairwise orthogonal. This E exists by Zorn’s lemma. Now, if y P H is a unit vector orthogonal to all
rAhs, then rAys is also orthogonal to all rAhs, which contradicts the maximallity of E and the fact
that A is Abelian (and so all its projection commute). Hence H is the orthogonal sum of the spaces
rAhs. As H is seperable, the set E is necessarily countable, so we may write E “ thn | n P Nu,
where hn is a sequence of unit vectors in H. Now choose h :“

ř8

i“1
hn

2n . If A P A and Ah “ 0, then
Ahn “ 0 for all n, because the sequence Ahn consists of pairwise orthogonal elements. Hence, if
B P A, then ABh “ BAh “ 0 as A is Abelian and so ArAhns “ tABh | B P AP u “ t0u for all n.
It follows that A “ 0, so h is a separating vector for A.

Results for maximal Abelian Von Neumann algebras
These results are then improved for maximal Abelian Von Neumann Algebras.

Proposition 1.2.48. Let A Von Neumann algebra and let h P H be a separating vector for A1,
then h is cyclic for A.

Proof. To see this, let P denote the projection of H onto rAhs. As rAhs is an A-invariant subspace,
we have P P A1. Now as I P A, we have h P rAhs and so pI ´ P qh “ 0. But as h is separating for
A1, we get I ´ P “ 0 and so rAhs “ H.

Corollary 1.2.49. If A is maximal Abelian, then it separating vector is also cyclic.

Proof. By theorem 1.2.47 there exists a separating vector h P H for A and by proposition 1.2.48
h is also a cyclic vector for A1. As A is maximally Abelian, we have A “ A1 and thus h is both
separating and cyclic.

Corollary 1.2.50. Let A be a maximal Abelian Von Neumann algebra and acting on a separable
Hilbert space. Then there exists some second countable compact Hausdorff space ΩA, a positive
measure µA and unitary map UA : H Ñ L2pΩA, µAq, such that UAAU‹

A is the Von Neumann
algebra of multiplication operators on Mf on L2pΩA, µAq.

Proof. By theorem 1.2.47 every Abelian Von Neumann algebra has a separating vector, which is
also cyclic by corollary 1.2.49 and so theorem 1.2.46 can be applied.

1.3 Projection valued measures

The above section, through theorem 1.2.46, already indicates a connection between Von Neumann
algebras and measure spaces. The concept of a projection valued measure further expands on this
idea. Projection valued measures form a collection of projections which create measure spaces by
being applied to individual Hilbert space elements.

1.3.1 Definition and basic properties
The definition and the propositions are taken from [1, p. 285-287, sect. 9.2].

Definition 1.3.1. Projection valued measure. A projection valued measure on a measurable
space pΩ,Fq is a mapping P : F Ñ PpHq such that (i) P pΩq “ I and (ii) for all h P H the map

Ph : F Ñ r0,8q (1.3.1)
F Ñ pP pF qh|hq

defines a measure on pΩ,Fq.
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Directly, we see that if h P H is of norm one, then Ph is a probability measure as PhpΩq “

pP pΩqh|hq “ ph|hq “ 1. It is exactly in this context that projection valued measures will be used
here.

Remark 1.3.2. We will denote the image of a projection valued measure as

P pFq :“ tP pF q | F P Fu (1.3.2)

Before moving to the key properties of the projection valued measure, we prove a helpful lemma
taken from [1, p. 255, prop. 8.1].

Lemma 1.3.3. If A P LpHq satisfies pAh|hq “ 0 for all h P H, then A “ 0.

Proof. Let A P LpHq satisfy pAh|hq “ 0 for all h P H. Then all h, h1 P H we have pAph`h1q|h`h1q

= 0 and again using our assumption we thus get pAh|h1q`pAh1|hq “ 0. Now we replace h1 by ih1, to
obtain ´ipAh|h1q`ipAh1|hq “ 0. We multiply by i to gain the crucial result of pAh|h1q´pAh1|hq “ 0.
When we now add our two equation pAh|h1q ` pAh1|hq “ 0 and pAh|h1q ´ pAh1|hq “ 0, we obtain
pAh|h1q “ 0 for all h, h1 P H giving A “ 0 as required.

While the definition of the projection valued measure is quite lean, they inhered a lot of structure
from their measures. This is made precise in the following proposition.

Proposition 1.3.4. Let P : F Ñ PpHq be a projection valued measure. Then the following
assertions are true:

1. P pHq “ 0.

2. If F1, F2 P F are disjoint, then the ranges of P pF1q and P pF2q are orthogonal.

3. If F1, F2, ¨ ¨ ¨ P F are disjoint, then P p
Ť8

n“1 Fnq “
ř8

n“1 P pFnq, where the convergence
limNÑ8

řN
n“1 P pFnq “

ř8

n“1 P pFnq is in the strong operator topology.

4. For all F1, F2 P F , we have P pF1 X F2q “ P pF1qP pF2q “ P pF2qP pF1q.

5. If F1, F2 P F with F1 Ď F2, then P pF1q ď P pF2q.

Proof. Let h P H.
(1) As Ph is an additive function, we get

ph|hq “ PhpΩq “ PhpΩ Y Hq “ PhpΩ Y Hq “ PhpΩq ` PhpHq “ ph|hq ` PhpHq (1.3.3)

and so PhpHq “ pP pHqh|hq “ 0, which by lemma 1.3.3 implies P pHq “ 0 as desired.
(2) Let F1, F2 P F be disjoint. Now, using (2), we get

P pF1q`P pF2q “ P pF1YF2q “ P pF1YF2q2 “ P pF1q`P pF1qP pF2q`P pF2qP pF1q`P pF2q. (1.3.4)

and thus P pF1qP pF2q ` P pF2qP pF1q “ 0. Now using this result and P 2 “ P for all projections,
then following equalities give us the desired result.

pP pF1qP pF2qq2 “ P pF1qrP pF2qP pF1qsP pF2q “ ´P pF1qP pF1qP pF2qP pF2q “ ´P pF1qP pF2q

(1.3.5)
and so

pP pF2qP pF1qq2 “ ´P pF2qP pF1q (1.3.6)

giving
pP pF2qP pF1qq2 ` pP pF1qP pF2qq2 “ 0, (1.3.7)

then for any h P H we get

prP pF2qP pF1qs2h|hq “ pP pF2qP pF1qh|P pF1qP pF2qhq “ ´pP pF2qP pF1qh|P pF2qP pF1qhq (1.3.8)
“ ´∥P pF2qP pF1qh∥
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and
prP pF1qP pF2qs2h|hq “ ´∥P pF1qP pF2qh∥. (1.3.9)

Combining these equation then finally gives us

∥P pF1qP pF2qh∥ ` ∥P pF2qP pF1qh∥ “ 0 (1.3.10)

from which conclude
∥P pF1qP pF2qh∥ “ ∥P pF2qP pF1qh∥ “ 0 (1.3.11)

as desired.
(3) Now for a sequence of disjoint sets pFnq8

n“1, we get clearly that P p
ŤN

n“1 Fnq “
řN

n“1 P pFnq

for finite N . Again by additivity of their measures, we get for disjoint sets that

pP p

8
ď

n“1

Fnqh|hq “ Ph

˜

8
ď

n“1

Fn

¸

“

8
ÿ

n“1

PhpFnq “

8
ÿ

n“1

pP pFnqh|hq (1.3.12)

and so again ppP p
Ť8

n“1 Fnq ´
ř8

n“1 P pFnqqh|hq “ 0 for all h, so P p
Ť8

n“1q “
ř8

n“1 P pFnq, with
convergence in the strong topology.

(4) From (2) we gain that if F1, F2 P F are disjoint, then P pF1 X F2q “ P pHq “ 0 “

P pF1qP pF2q “ P pF2qP pF1q. Using this we get for general sets that

P pF1qP pF2q “ rP pF1zF2q ` P pF1 X F2qsrP pF2zF1q ` P pF1 X F2qs (1.3.13)
“ P pF1zF2qP pF2zF1q ` P pF1 X F2qP pF2zF1q

` P pF1zF2q ` P pF1 X F2qP pF2zF1q ` P pF1 X F2qP pF1 X F2q

“ P pF1 X F2q “ P pF2 X F1q “ P pF1qP pF2q

(5) Lastly, if F1 Ď F2, then F1 X F2 “ F1, so

P pF2q “ P pF1zF2q ` P pF1 X F2q “ P pF1zF2q ` P pF1q (1.3.14)

and thus P pF2q ´ P pF1q “ P pF1zF2q, which is a projection by definition, so P pF1q ď P pF2q.

Furthermore, projection valued measures can be constructed using other projection valued
measures.

Proposition 1.3.5. Let pΩ,Fq and pΩ1,F 1q be measurable space and let f : Ω Ñ Ω1 be a measurable
map. If P : F Ñ PpHq is a projection valued measure, then

Q : F 1 Ñ PpHq (1.3.15)

F 1 Ñ P pf´1pF 1qq

is also a projection valued measure.

Proof. As for any h P H, we have pQpΩ1qh|hq “ pP pf´1pΩ1qqh|hq “ pP pΩqh|hq “ ph|hq, we get
that QpΩ1q “ I. Moreover, QhpF 1q “ pQpF 1qh|hq “ pP pf´1pF 1qqh|hq “ Phpf´1pF 1qq is clearly a
measure for all h P H, as f is measurable.

We present here two examples of projection valued measures, which, as we will show in the
next section, differ in kind. This difference will form a leitmotif of the current thesis and we will
come back many times to these examples.

Example 1.3.6. As the natural numbers have discrete topology, the Borel σ-algebra is simply its
power set. The following function is a projection valued measure:

PN : BpNq Ñ Ppl2pNqq (1.3.16)

I Ñ
ÿ

iPI
eki

b̄eki
,
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where

eib̄ei : H Ñ H (1.3.17)
h Ñ ph|eiqei

and the convergence, in the case of I containing infinely many elements, of
ř

iPI eki
b̄eki

“

limNÑ8

řN
j“1 ekij

b̄ekij
is in the strong operator topology. That is, P pIqh “ P pIq

ř8

k“1ph|ekqek “
ř8

i“1ph|eki
qeki

limNÑ8

řN
j“1pekij

b̄ekij
qh.

Example 1.3.7. On pRk,BpRkq, λq (with Lebesgue measure λ and standard topology) for some
finite k P N, we define

PRk

: BpRkq Ñ PpL2pRkqq (1.3.18)
F Ñ 1F ,

where here 1F , with slight abuse of notation, is here the operator denoting a multiplication with
the indicator function 1F

1F : L2pRkq Ñ L2pRkq (1.3.19)
f Ñ 1F f.

1.3.2 Intermezzo: atomic and non-atomic measures
To see how these two projection valued measures differ, we need the concept of atomic measures.
We start by classifying atomic sets.

Definition 1.3.8. Atomic set. Let pΩ,F , µq be a measure space. A set F P F is atomic, if
µpF q ą 0 and if F “ F1 Y F2 with F1, F2 P F disjoint, then either µpF1q “ 0 or µpF2q “ 0.

Using this notion we define atomic and non-atomic measures.

Definition 1.3.9. Atomic measure. Let pΩ,F , µq be a measure space. The measure µ is atomic,
if every F P F with µpF q ą 0 contains some atomic set.

Definition 1.3.10. Non-atomic measure. Let pΩ,F , µq be a measure space. The measure µ is
non-atomic, if it has no atomic sets.

Note that a measure can fall in neither category and that only the zero-measure is both atomic
and non-atomic.

The above two examples coincide with these definitions in the following way.

Example 1.3.11. For any h P l2pNq, the measure PN
h is atomic.

Proof. Now as there exist no decomposition of tnu in disjoint sets and every set is the disjoint
countable union of sets of this form, the above definition is directly satisfied. That is, if we write
h “

ř8

n“1 hnen, then for any tnu, we have that

PN
h ptnuq “

ˆ

penb̄enq

8
ÿ

n“1

hnen

ˇ

ˇ

ˇ

ˇ

8
ÿ

n“1

hnen

˙

“ |hn|2. (1.3.20)

Now if |hn|2 “ 0, then the definition is satisfied and if |hn|2 ą 0, then there exists no subset of tnu

with smaller non-zero measure.

Example 1.3.12. For any f P L2pRkq, the measure PRk

h is non-atomic.

Proof. Let G “ ess supp pfq. Now for F P BpRkq we have PRk

f pF q ą 0 if and only if λpF XGq ą 0.
Now let λpF XGq ą 0 and moreover assume λpF XGq ă 8. We define FR,1 “ p8, RsˆRk´1. Using
this set, we define f1 : R Ñ R, R Ñ λppF X Gq X FR,1q. This function clearly maps surjectively
onto r0, λpF X Gqs. Now pick S “ f´1

1 p 1
2 q. Then λppF X Gq X FS,1q “ 1

2 as required.
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1.3.3 A projection valued measure on a separable Hilbert space has
strongly closed image

In this section we prove the claim that the image space of a projection valued measure is strongly
closed on a separable Hilbert space. The importance of this result is motivated by the following
insight.

Definition 1.3.13. Set limits. Let pΩ,Fq be a measurable space. Let pFnqnPN Ď F be a sequence
of sets. We then define its limit supremum by lim supnÑ8 Fn :“

Ş8

n“1

Ť8

k“n Fn and its limit
inferior by lim infnÑ8 Fn :“

Ť8

n“1

Ş8

k“n Fn. If these two limits converge to the same set, we
define this set as its limit, that is limnÑ8 Fn :“

Ş8

n“1

Ť8

k“n Fn “
Ť8

n“1

Ş8

k“n Fn.

Definition 1.3.14. Continuous with respect to set theoretic limits for measures. Let
pΩ,F , µq be a measure space. We say µ is continuous with respect to set theoretic limits, if
for a sequence of sets pFnqnPN Ď F for which the set limit exists, we have µplimnÑ8 Fnq “

limnÑ8 µpFnq.

Proposition 1.3.15. Let pΩ,F , µq be a measurable space. Then µ is continuous with respect to
set theoretic limits.2

Proof. We first prove that µplim infnÑ8 Anq ď lim infnÑ8 µpAnq. Consider the sets Bn “
Ş8

k“n Fk.
Obviously, Bn Ď Fk for all k ě n, so µpBnq ď µpFkq for all k ě n. After taking the infimum we
get µpBnq ď infkěn µpFkq. Since Bn Ď Bn`1 for all n P N then the sequence tµpBnq : n P Nu is
non-decreasing, so there exist limnÑ8 µpBnq. Similarly the sequence tinfkěn µpAkq : n P Nu is non-
decreasing hence there exist limnÑ8 infkěn µpAkq. Since existence of limits is justified we write
limnÑ8 µpBnq ď limnÑ8 infkěn µpFkq “ lim infnÑ8 µpFnq. Now, again recall that Bn Ă Bn`1

for all n P N, so µp
Ť8

n“1 Bnq “ limnÑ8 µpBnq. It is remains to note that lim infnÑ8 Fn “
Ť8

n“1

Ş8

k“n Fk “
Ť8

n“1 Bn. Combining the above the gives µplim infnÑ8 Fnq ď lim infnÑ8 µpFnq,
as required.

Now in a similar way we can prove µplim supnÑ8 Fnq ě lim supnÑ8 µpFnq. This then gives us
the required result as by assumption we have

µp lim
nÑ8

Fnq “ µplim inf
nÑ8

Fnq ď lim inf
nÑ8

µpFnq ď lim
nÑ8

µpFnq ď lim sup
nÑ8

µpFnq ď µplim sup
nÑ8

Fnq

(1.3.21)

“ µp lim
nÑ8

Fnq,

giving µplimnÑ8 Fnq “ limnÑ8 µpFnq as required.

Definition 1.3.16. Continuous with respect to set theoretic limits for projection valued
measures. Let pΩ,Fq be a measurable space with projection valued measure P : F Ñ PpHq. We
say P is continuous with respect to set theoretic limits, if for a sequence of sets pFnqnPN Ď F for
which the set limit exists, we have P plimnÑ8 Fnq “ limnÑ8 P pFnq.

Example 1.3.17. Projection valued measures are not continuous under set limits in the uniform
topology.

Proof. Let PN as in example 1.3.6 and let en its associated orthonormal basis. Then set Fn “

tk P N | k ě nu. As Fn is non-increasing, we see that
Ť8

k“n Fn “ Fk and
Ş8

n“1 Fn “
Ť8

k“n Fn,
so

Ş8

n“1

Ť8

k“n Fn “
Ş8

n“1 Fn “
Ş8

k“n Fn “
Ť8

n“1

Ş8

k“n Fn. As such we conclude that the set
limit of Fn exists and limnÑ8 Fn “

Ş8

n“1 Fn “ H. As such we get P plimnÑ8 Fnq “ P pHq “ 0.
However, this convergence is not satisfied in norm, as sup∥h∥“1 ∥P pFnqh∥ ě 1 as P pFnqen “ en for
all n P N.

Proposition 1.3.18. Projection valued measures are continuous under set limits in the strong
operator topology.

2This result is an adaptation of the following stack-exchange post, https://math.stackexchange.com/q/171523,
accessed on 17-03-2023 .
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Proof. The strong continuity with respect to set theoretic limits follows from proposition 1.3.4
property (5), that is, if A,B P F then P pAq ď P pBq. Let pFnq8

n“1 Ď F be a sequence of sets
such that its set theoretic limit limnÑ8 Fn “ F exists. Following the argument we see that for all
h P H, we have P

`
Ş8

n“1

Ť8

k“n Fk

˘

ď P pFnq for all n P N and so P
`
Ş8

n“1

Ť8

k“n Fk

˘

´ P pFnq is
again a projection, giving∥∥∥∥∥

«

P

˜

8
č

n“1

8
ď

k“n

Fk

¸

´ P pFnq

ff

h

∥∥∥∥∥ “

˜«

P

˜

8
č

n“1

8
ď

k“n

Fk

¸

´ P pFnq

ff

h|h

¸

(1.3.22)

“

˜

P

˜

8
č

n“1

8
ď

k“n

Fk

¸

h|h

¸

´ pP pFnqh|hq

“ Ph

˜

8
č

n“1

8
ď

k“n

Fk

¸

´ PhpFnq,

which by the above proposition gives P
`
Ş8

n“1

Ť8

k“n Fk

˘

h “ P pF qh for every h P H. By similar
argument we can see that P

`
Ť8

n“1

Ş8

k“n Fk

˘

h “ P pF qh, giving the required.

The above example and proposition show that the norm topology is insufficient for dealing with
sequences of events. A larger topology, such as the strong topology needs to be considered.

It remains however to be shown that the strong topology does not add more projections than
we have events for. That is, we will show that in a separable Hilbert space the strong closure does
not add more projections which cannot be represented by an event in the σ-algebra F . Most of
the remainder of this section will contain a proof of the claim that the image space of a bounded
measure is closed. Our claim will then be shown from there.

We start with two propositions about the nature of atomic and non-atomic measures defined
in the above section.

Proposition 1.3.19. Let pΩ,F , µq be a σ-finite measure space. Then µ has at most countably
many pair-wise disjoint atomic sets.

Proof. If not, then there exists uncountably many pair-wise disjoint atomic sets. In particular
there will exist some N P N such that there exists uncountably many pair-wise disjoint atomic sets
pAλqλPΛ Ď F with Λ some uncountable set with µpAλq ą 1

N for all λ P Λ. But as pAλqλPΛ are
pair-wise disjoint and uncountable, each countable cover of Ω will contain uncountably many Aλ

and thus have infinite measure (by the additivity of the measure). This contradicts our assumption
that pΩ,F , µq was a σ-finite measure space.

Corollary 1.3.20. The image of a finite atomic measure is closed.

Proof. From the above proof follows that its image consists of discrete points, with the exception
of 0. As per definition H P F and µpHq “ 0, we conclude that the image is closed.

Now for non-atomic measure we can also prove that its image is closed.

Proposition 1.3.21. Let pΩ,F , µq be a bounded measure space. Then µ is non-atomic if and only
if its image maps surjectively onto r0, µpΩqs.

Proof. We first show that µ is non-atomic if and only if its image lies dense in r0, µpΩqs. As µ is
closed under countable unions, this is sufficient to show the above claim.

The ‘if’ direction, we prove by contraposition. Let the image space not be dense. Then there
exists some ϵ ą 0 and some x P r0, µpΩq´ϵs, such that rx´ϵ, x`ϵs is not in the image space of µ. As
B is the least upperbound, there must exists some Fu P F such that µpFuq “ inftµpF q | µpF q ą xu

and some Fl P F such that µpFlq “ suptµpF q | µpF q ą xu. We now claim that F :“ FuzFl is
atomic. To see this, note that µpF q ą 2ϵ and that for any disjoint F1 YF2 “ F we have µpF1q “ 0
or µpF2q “ 0, as if not this would contradict the definition of Fl or Fu.

For the ‘only if’ direction, we again use contraposition. Let A be some atomic set of measure
µpAq “ α ą 0. Then, note that rµpΩq ´ 2α

3 , µpΩq ´ α
3 s does not lie in the image space of µ and as

such its is image is clearly not dense in r0, µpΩqs (as no sequence can approximate µpΩq ´ α
2 ).
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To show that the image space of any bounded measure is closed, we show that all measures
allow for a decomposition into their atomic and non-atomic parts. This decomposition unique if
the two measures are required to fullfil some orthogonalility requirement. This paragraph is based
on [7] except for the last corollary.

Definition 1.3.22. Singular measures. Let pΩ,Fq be a measurable space with measures µ1, µ2.
Then µ1 is singular with respect to µ2, if for every F P F

µ1pF q “ suptµ1pF X Gq | G P F , µ2pGq “ 0u. (1.3.23)

Definition 1.3.23. Orthogonal singular measures. Let pΩ,Fq be a σ-finite measurable space
with measures µ1, µ2. Then µ1 and µ2 are orthogonal singular if µ1 is singular with respect to µ2

and µ2 is singular with respect to µ1.

For these measures we have the following result.

Theorem 1.3.24. Let pΩ,F , µq be a finite measure space. Then there exists a unique pair of
orthogonal singular measures µ1, µ2 such that µ “ µ1 ` µ2 with µ1 atomic and µ2 non-atomic.

Proof. Let M be the family of countable unions of atomic sets of the measure µ (clearly M Ď F).
We then define for each F P F

µ1pEq :“ suptµpE X Mq | M P Mu and (1.3.24)
µ2pEq :“ suptµpE X Nq | µ1pNq “ 0u.

In this case µ1 and µ2 are clearly measures and orthogonal singular.
We show that µ1 is atomic. Let F P F with µ1pF q ą 0. Note that if no such F exists, our

claim holds. If such F exists, then there also exists some M P M such that µpF X Mq ą 0. Now
by lemma 1.3.19, we write M “

Ť8

n“1 Mn, with Mn atomic for µ. As Mn being an atom implies
that F XMn is an atom for µ and as µ1pGq ď µpGq for all G P F , we get that F XMn Ď F is also
an atom for µ1 as required.

We now show that µ2 is non-atomic. Let F P F with µ2pF q ą 0. Note that if no such F exists,
again our claim holds. Then µ2pF X Nq ą 0 for some N P F with µ1pNq “ 0. Now clearly N is
non-atomic and thus so is F X N . As F X N is non-atomic, there exists some E P F , such that
µpN X pF X Eqq “ µppF X Nq X Eq ą 0 and µpN X pF zEqq “ µppF X NqzEq ą 0, from which we
get by definition that µ2pF X Eq ą 0 and µ2pF zEq ą 0 as required.

For the uniqueness claim we refer to [7, th. 2.5] (will not be used here).

Corollary 1.3.25. The image space of a finite measure is closed.

Proof. By the above theorem we can split our measure in an atomic and non-atomic part, which
are both clearly also bounded. As the union of two closed sets is again closed, we get our result
by corollary 1.3.20 and proposition 1.3.21.

This then leads to our desired result.

Theorem 1.3.26. Let P : F Ñ PpHq be a projection valued measure acting on a separable Hilbert
space H. Then its image P pFq is strongly closed.

Proof. Let AP “ tP pFqu2 be the Von Neumann algebra generated by P pFq. As, by property (4)
of proposition 1.3.4, P pFq is an Abelian set (of normal operators) and thus AP is an Abelian Von
Neumann algebra acting on a separable Hilbert by proposition 1.2.38. Now by theorem 1.2.47
there exists a separating vector k P H for AP , which is cyclic for A1

P by proposition 1.2.48.
Now let A P P pFq

SOT
. As P pFq is contained in the unit ball of bounded operators, its strong

limit also lies in this strong ball. As H is separable, this unit ball is metrizable by proposition
1.2.7. As such there exists a sequence of projections pP pFnqqnPN such that limnÑ8 P pFnqk “ Ak
for our separating vector k. The sequence P pFnqk is then a Cauchy sequence (in the Hilbert space
norm) and as such PkpFnq will converge. As by corollary 1.3.20, the image of the measure Pkp q

is closed and thus there exists some F P F such that limnÑ8 PkpFnq “ PkpF q.
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We now show that limnÑ8 P pFnqh “ P pF qh for all h P H. Let ϵ ą 0 and h P H with ∥h∥ ą 0
(the h “ 0 case is trivial). As k is cyclic for A1

P there exists some sequence pAnqnPN Ď A1 such
that limnÑ8 Ank “ h. In particular, there exists some N P N such that ∥ANk ´ h∥ ă ϵ

12∥h∥ and
∥ANk ´ h∥ ď ∥h∥ (such that ∥ANk∥ ď 2∥h∥). Furthermore, as limnÑ8 PkpFnq “ PkpF q, there
exists some M P N such that for all n ě M we have |PkpFnq “ PkpF q| ă ϵ

2∥A‹
NANk∥ . We then get

the following (rather long) calculation to show that for all n ě M we have

|prP pFnq ´ P pF qsh|hq| “ |prP pFnq ´ P pF qsph ´ ANk ` ANkq|hq| (1.3.25)
ď |prP pFnq ´ P pF qsANk|hq| ` |prP pFnq ´ P pF qsph ´ ANkq|hq|
ď |prP pFnq ´ P pF qsANk|hq| ` ∥rP pFnq ´ P pF qsph ´ ANkq∥∥h∥
ď |prP pFnq ´ P pF qsANk|hqq| ` ∥P pFnq ´ P pF q∥∥ph ´ ANkq∥∥h∥
ď |prP pFnq ´ P pF qsANk|ph ´ ANk ` ANkqq| ` 2∥ph ´ ANkq∥∥h∥
ă |prP pFnq ´ P pF qsANk|ANkq| ` |prP pFnq ´ P pF qsANk|h ´ ANkq| ` 2ϵ

12

ď |prP pFnq ´ P pF qsANk|ANkq| ` ∥P pFnq ´ P pF q∥∥ANk∥∥h ´ ANk∥ ` ϵ
6

ď |prP pFnq ´ P pF qsANk|ANkq| ` 4∥h∥∥h ´ ANk∥ ` ϵ
6

ă |prP pFnq ´ P pF qsANk|ANkq| ` 4ϵ
12 ` ϵ

6

“ |pAN rP pFnq ´ P pF qsk|ANkq| ` ϵ
2

“ |prP pFnq ´ P pF qsk|A‹
NANkq| ` ϵ

2

“ |pP pFnqk|A‹
NANkq| ´ |pP pF qk|A‹

NANkq| ` ϵ
2

ď ∥P pFnqk∥∥A‹
NANk∥ ´ ∥pP pF qk∥∥A‹

NANk∥ ` ϵ
2

“ ∥A‹
NANk∥|pPkpFnq ´ PkpF qq| ` ϵ

2

ă ϵ
2 ` ϵ

2 “ ϵ.

This then gives for all h P H that

|prA ´ P pF qsh|hq| “ lim
nÑ8

|prP pFnq ´ P pF qsh|hq| “ 0 (1.3.26)

and so A “ P pF q by lemma 1.3.3.

1.3.4 Carathéodory’s extension theorem for projection valued measures
This subsection is, except for the formulation of the classical Carathéodory taken from [1, p. 653,
th.E.9], in full based on [8, sec. 5].

We start by shortly recalling the classical formulation of Carathéodory’s extension theorem.

Definition 1.3.27. An algebra of sets. A algebra of sets F is a collection of sets that (i)
contains the empty set, (ii) is closed under taking the complement and (iii) is closed under taking
finite unions or finite intersections.

Definition 1.3.28. σ-finite measure. A measure on measurable space pΩ,Fq is σ-finite if Ω
can be written as the countable union of sets of finite measure.

Definition 1.3.29. µ-measurable sets. Let Ω be a set and let µ : PpΩq Ñ r0,8s be a map
satisfying µpHq “ 0. Then a set S P PpΩq is called µ-measurable, if µpAq “ µpS XAq `µpS XAcq

for all A P PpΩq.

Theorem 1.3.30. Let F Ď PpΩq be a collection of sets in Ω and let µ : F Ñ r0,8s be a map
satisfying µpHq “ 0. Then for S P PpΩq define

µ̃pSq :“ inf

#

8
ÿ

n“1

µpFnq | S Ď

8
ď

n“1

Fn with pFnqnPN Ď F

+

, (1.3.27)

where µ̃pSq “ 8 if the above set is empty. Lastly, let Sµ be the collection of µ-measurable sets.
Then Sµ is a σ-algebra and µ̃ is a measure on this σ-algebra.
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Proof. See [1, p. 652, 653, th. E.6, E.7]

Theorem 1.3.31. Let F be an algebra of sets and µ : F Ñ R` a countably additive mapping
that satisfies µpHq “ 0. Then the measure µ̃ of equation (1.3.27) above extends µ to the smallest
σ-algebra containing F . Moreover, if µ̃ is σ-finite then its extension is the unique σ-finite measure
extending F .

Proof. See [1, p. 655, th. E.9].

The main challenge of extending this result to projection valued measures is that our extension
has to be consistent both on the level of the projections and on the level of the measure spaces
the different projection valued measure give rise to. That is, if we extend our projection valued
measure on the level of its projections, we should check that all measures are consistent and if
we extend our projection valued measure on the level of its measures, we should check that these
measures give rise to a projection. The following constructions takes the second approach and
shows the consistency of the level of projections.

We first prove three lemmas, then our main result follows. For this recall that the range
projection of closed subspace S Ď H is denoted by P pSq.

Definition 1.3.32. Countable additivity for projection valued measures. Let Ω be some
set and let F be an algebra of subsets of Ω. Futhermore, let P : F Ñ PpHq be an additive mapping
sending sets to projections. Then P is countably additive, if pFnqnPN Ď F sequence of pair wise
disjoint sets, then P p

Ť8

n“1 Fnq “
ř8

n“1 P pFnq, where the convergence of the sum
ř8

n“1 P pFnq is
in the strong operator topology.

Lemma 1.3.33. Let pSiqiPN be a sequence of subspaces. (i) If this sequence is increasing, that is
Si Ă Si`1, then limnÑ8 P pSiqh “ P p

Ť8

n“1 Siqh for all h P H. (ii) If the sequence is decreasing,
that is Si`1 Ă Si, then limnÑ8 P pSiqh “ P p

Ş8

n“1 Siqh for all h P H.

Proof. For the first claim let ϵ ą 0 and denote S “
Ť8

n“1 Si. As clearly P pSqh P S,
Ť8

n“1 Si lies
dense in S and as the sequence of subspaces are increasing, we have that there exists some N P N
such that h1 P SN with ∥P pSqh ´ h1∥ ă ϵ

2 . Again, as the subspaces are increasing we have that for
any n ą N , that

∥P pSqh ´ P pSnqh∥ “
∥∥P pSqh ´ h1 ` h1 ´ P pSnqpP pSqh ` h1 ´ h1q

∥∥ (1.3.28)

ď
∥∥P pSqh ´ h1

∥∥ `
∥∥h1 ´ P pSnqh1

∥∥ `
∥∥P pSnqph1 ´ P pSqhq

∥∥
ă ϵ

2 ` 0 ` ϵ
2 “ ϵ,

proving our first claim. The second claim follows by taking complements of the first claim.

Lemma 1.3.34. Let tSλuλPΛ be a family of subspace closed under taking finite intersections. Then
for any h P H we have ∥∥∥∥∥P

ˆ

č

λPΛ

Sλ

˙

h

∥∥∥∥∥ “ inf
λPΛ

∥P pSλqh∥. (1.3.29)

Proof. For the infimum there must exist some sequence pSnqnPN such that limnÑ8 ∥P pSnqh∥ “

infλPΛ ∥P pSλqh∥. Now define recursively S̃1 “ S1 and S̃n “ S̃n´1 X Sn, then by the second claim
of the above lemma, we get

inf
λPΛ

∥P pSλqh∥ “ lim
nÑ8

∥∥∥P pS̃nqh
∥∥∥ ď lim

nÑ8
∥P pSnqh∥ “ inf

λPΛ
∥P pSλqh∥. (1.3.30)

Now as
Ş

λPΛ Sλ Ď
Ş8

n“1 S̃n, we thus clearly have∥∥∥∥∥P
ˆ

č

λPΛ

Sλ

˙

h

∥∥∥∥∥ ď

∥∥∥∥∥P
ˆ 8

č

n“1

S̃n

˙

h

∥∥∥∥∥ “ inf
λPΛ

∥P pSλqh∥. (1.3.31)

Furthermore, by definition we have infλPΛ ∥P pSλqh∥ ď limnÑ8

∥∥∥P p
˜̃Snqh

∥∥∥ for any sequence of

subspaces p
˜̃SnqnPN. Combining this with the above gives us the required result.
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Theorem 1.3.35. Carathéodory for projection valued measures. Let Ω be some set and let
F be an algebra of subsets of Ω. Futhermore, let P : F Ñ PpHq be an additive mapping sending
sets to projections, such that P pHq “ 0, P pΩq “ I and P is a countably additive mapping on F .
Then there exists a unique projection valued measure P˚ : σpF q Ñ PpHq extending P .

Proof. We define P˚ : PpΩq Ñ PpHq, by

P˚pSq :“ P

˜

č

#

8
à

n“1

P pFnqH

ˇ

ˇ

ˇ

ˇ

S Ď

8
ď

n“1

Fn with pFnqnPN Ď F

+¸

(1.3.32)

for each set S Ď Ω, where the second P denotes a range projection.
Now let h P H. Then Ph : F Ñ r0,8q defines a countably additive map satisfying PhpHq “ 0.

We now define Sh, by

Sh :“ tF | PhpAq “ PhpF X Aq ` PhpF X Acq for all A P PpΩqu. (1.3.33)

As P is a countably additive map sending set to projections, we get that Ph is a countably additive
map. As such the map

P̃h : PpΩq Ñ r0,8s (1.3.34)

S Ñ inf

#

8
ÿ

n“1

PhpFnq | S Ď

8
ď

n“1

Fn with pFnqnPN Ď F

+

defines as outer measure for Ph, which is a measure on the σ-algebra given by Sh.
Now for every S P PpΩq, we have

P̃hpSq “ inf

#

8
ÿ

n“1

PhpFnq

ˇ

ˇ

ˇ

ˇ

S Ď

8
ď

n“1

Fn with pFnqnPN Ď F

+

(1.3.35)

p1q
“ inf

#
∥∥∥∥∥P

˜

8
à

n“1

P pFnqH

¸

h

∥∥∥∥∥
ˇ

ˇ

ˇ

ˇ

S Ď

8
ď

n“1

Fn with pFnqnPN Ď F

+

p2q
“

∥∥∥∥∥P
˜

č

#

8
à

n“1

P pFnqH

ˇ

ˇ

ˇ

ˇ

S Ď

8
ď

n“1

Fn with pFnqnPN Ď F

+¸
∥∥∥∥∥

“ ∥P˚pSq∥.

The numbered equalities are then justified as follows. For (1), note that for every sequence of
sets pFnqnPN Ď F , we have that there exists a pair-wise disjoint sequence pGnqnPN Ď F , such
that

Ť8

n“1 Gn “
Ť8

n“1 Fn. We define pGnqnPN by G1 :“ F1, G2 :“ F2zF1, G3 :“ F3zpF2 Y F3q,
etc.. Now by argument similar to proposition 1.3.4, we have that disjoint sets have disjoint ranges,
which by Parsevals equality then gives

ř8

n“1 PhpGnq “
ř8

n“1 ∥P pGnqh∥2 “
∥∥ř8

n“1 P pGnqh
∥∥2 “∥∥∥P p

À8

n“1 P pGnqHqh
∥∥∥. Now as clearly S Ď

Ť8

n“1 Fn implies S Ď
Ť8

n“1 Gn our equality of
infimums follows from the above. For (2) we apply lemma 1.3.34, for which we note that if
S Ď

Ť8

n“1 Fn and S Ď
Ť8

n“1 Gn for pFnqnPN, pGnqnPN Ď F , then S Ď p
Ť8

n“1 Fn X
Ť8

n“1 Gnq and
thus S Ď

Ť8

n“1p
Ťn

m“1 FnX
Ťn

m“1 Gnq “ p
Ť8

n“1 FnX
Ť8

n“1 Gnq and p
Ťn

m“1 FnX
Ťn

m“1 GnqmPNĎF .
Our proof is now completed by the Caratheordory theorem for classical measures. That is,

as Sh is a σ-algebra containing F for every h P H, we have that σpF q Ď Sh for every h P H.
Therefore, when we now restrict our map P˚ to σpF q, we get by equation (1.3.35) that this map
gives the Caratheodory extension for every Ph with h P H. Thus P : σpF q Ñ PpHq is a map
such that (i) P pΩq “ I and (ii) for all h P H the map P˚

h : σpF q Ñ r0,8q defines a measure on
pΩ, σpF qq. The uniqueness claim then follows from the fact that P˚

h is a bounded measure for
every h P H and the uniqueness of the classical Caratheordory extension.

1.3.5 Kolmogorov’s extension theorem for projection valued measures
The famous extension theorem by Kolmogorov deals with a problem concerning the next two
definitions.3

3The following section is, except for the application to projection valued
measures, in full an adaptation of the online lecture notes by K.C. Border, see:

26



Definition 1.3.36. Kolmogorov consistent. A sequence tpFn,PnqunPN of a pair of σ-algebra’s
Fn and probability measures Pn is Kolmogorov consistent, if for all n we have Fn Ď Fn`1 and
Pn`1æFn “ Pn.

Remark 1.3.37. For each such sequence, we set F0 as the trivial σ-algebra, that is F0 “ tH,Ωu,
and P0 as the trivial probability measure.

Definition 1.3.38. Kolmogorov extension. Let tpFn,PnqunPN be a Kolmogorov consistent
sequence, then a measure P on the combined σ-algebra σp

Ť8

n“1 Fnq is a Kolmogorov extension
tpFn,PnqunPN if PæFn

“ Pn for all n P N.

The problem is now: when does such an extension exist? Kolmogorov’s famous theorem shows
that the existence of a compact subclass in the union of all σ-algebras is a sufficient condition to
assume the existence of a Kolmogorov extension.

The condition of being compact class if defined as follows.

Definition 1.3.39. Compact class. A collection C of sets in Ω is of compact class, if for all
sequences pKnqnPN Ď C with

Ş8

n“1 Kn “ H, there exists some N such that
ŞN

n“1 Kn “ H.

For these sets of compact class, we have the following crucial lemma.

Lemma 1.3.40. If P is a finite additive set of probability functions on some algebra A of subsets
with a compact subclass C, with

PpEq “ suptPpCq | C P C, C Ă Eu (1.3.36)

for all E P A , then P is countably additive.

Proof. For our claim it is sufficient to show that if tEnunPN has En Ó H, then limnÑ8 PpEnq “ 0 [1,
p. 654, prop. E. 10].

Let ϵ ą 0 and choose Cn Ă En with PpEnq ď PpCnq ` ϵ
2n . As we have Cn Ă En, we get

ˆ n
č

m“1

Em

˙

z

ˆ n
č

m“1

Cm

˙

Ď

ˆ n
ď

m“1

EmzCm

˙

(1.3.37)

and clearly

En “

„ˆ n
č

m“1

Em

˙

z

ˆ n
č

m“1

Cm

˙ȷ

Y

ˆ n
č

m“1

Cm

˙

(1.3.38)

as tEnunPN is a non-increasing sequence. Now as
Şn

m“1 Cm Ă
Şn

m“1 Em “ En Ó H, we have, by
C being of compact class, that there exists some N such that

ŞN
m“1 Cm “ H. But then for all

n ě N , we have

PpEnq ď PpEN q “ P
ˆ„ˆ n

č

m“1

Em

˙

z

ˆ n
č

m“1

Cm

˙ȷ

Y

ˆ n
č

m“1

Cm

˙˙

(1.3.39)

ď Pp

n
ď

m“1

EmzCmq ` PpHq ď

N
ÿ

m“1

pPpEmq ´ PpCmqq “

N
ÿ

m“1

ϵ
2m ă ϵ

as required.

With this lemma we can show the desired result.

Theorem 1.3.41. Let tpFn,PnqunPN be a Kolmogorov consistent sequence and let C Ď
Ť8

n“1 Fn

be of compact class. Moreover, let for every n P N and every F P Fn

PnpF q “ suptPnpCq | C P C, C Ă Eu. (1.3.40)

Then there exists a unique Kolmogorov extension to the σ-algebra σp
Ť8

n“1 Fnq.
https://web.archive.org/web/20150226030616/http://people.hss.caltech.edu/%7Ekcb/Notes/Kolmogorov.pdf,
accessed on 31-3-2023.
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Proof. Let F P
Ť8

n“1 Fn, then there exists some N such that F P FN . We now define the function
P, by

P :
8
ď

n“1

Fn Ñ r0, 1s (1.3.41)

F Ñ PN pF q.

We show that P can be extended to a measure over the σ-algebra σp
Ť8

n“1 Fnq.
For this, we firstly note that as Ω P F0 “ tΩ,Hu and P0 is a probability measure, we see that

PpΩq “ P0pΩq “ 1. Moreover, P is finitely additive, as for any finite disjoint union
Ťk

n“1 Fn, there
exists some N “ maxtN1, . . . , Nku such that Pp

Ťk
n“1 Fnq “ PN p

Ťk
n“1 Fnq “

řk
n“1 PN pFkq “

řk
n“1 PpFkq. Lemma 1.3.40 now shows, that P is countably additive on

Ť8

n“1 Fn. Then by,
Carathéodory’s extension theorem we get that P has unique extension to the σ-algebra σp

Ť8

n“1 Fnq.

We will now use this result to construct an analogue for projection valued measures. As can
be seen in the proof above, much of the result is preparing for and then applying Carathéodory’s
theorem. As we have already proven this crucial result in theorem 1.3.35, adapting the proof
above to the setting of projection valued measures should be an easy step. We start with adapting
the above two definition to the setting of projection valued measures and then the main result is
proven.

Definition 1.3.42. Kolmogorov consistent sequence of projection valued measures A
sequence tpFn, P

nqunPN of a pair of σ-algebra’s Fn and projection valued measures Pn is Kolmogorov
consistent, if for all n we have Fn Ď Fn`1 and Pn`1æFn

“ Pn.

Definition 1.3.43. Kolmogorov extension for projection valued measures Let tpFn, P
nqunPN

be a Kolmogorov consistent sequence of projection valued measures, then a projection valued measure
P on the combined σ-algebra σp

Ť8

n“1 Fnq is a Kolmogorov extension tpFn, P
nqunPN if PæFn “ Pn

for all n P N.

The above theorem now becomes.

Theorem 1.3.44. Kolmogorov’s extension theorem for projection valued measures.
Let tpFn, P

nqunPN be Kolmogorov consistent sequence of projection valued measures and let C Ď
Ť8

n“1 Fn be of compact class. Moreover, let for every n P N, every F P Fn and every h P H

Pn
h pEq “ suptPn

h pCq | C P C, C Ď Eu. (1.3.42)

Then there exists a kolmogorov extension P on the σ-algebra F :“ σp
Ť8

n“1 Fnq.

Proof. Let F P
Ť8

n“1 Fn, then there exists some N such that F P FN . We now define the map P ,
by

P :
8
ď

n“1

Fn Ñ PpHq (1.3.43)

F Ñ PN pF q.

We show that P can be extended to a projection valued measure over the σ-algebra σp
Ť8

n“1 Fnq.
For this, we firstly note that as Ω P F0 “ tΩ,Hu and P0 is a projection valued measure, we see

that P pΩq “ P0pΩq “ I. Moreover, P is finitely additive, as for any finite disjoint union
Ťk

n“1 Fn,
there exists some N “ maxtN1, . . . , Nku such that Pp

Ťk
n“1 Fnq “ PN p

Ťk
n“1 Fnq “

řk
n“1 PN pFkq “

řk
n“1 P pFkq. Lemma 1.3.40 now shows, that Ph is countably additive on

Ť8

n“1 Fn for every h P H.
By an argument similar to proposition 1.3.4 property (3), P is countably additive. Then by theorem
1.3.35, we get that P has unique extension to the σ-algebra σp

Ť8

n“1 Fnq.
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1.3.6 Application of Kolmogorov’s extension theorem to example 1.3.7.

In this section we will show that PRk

of example 1.3.7 is the Kolmogorov extension of a sequence
of finitely generated projection valued measures and as such is countably generated. That is

Definition 1.3.45. Finitely generated. A σ-algebra F is finitely generated if there exists a finite
collection of sets such that σptF1, . . . , FNuq “ F . A projection valued measure is finitely generated,
if its σ-algebra is finitely generated.

Definition 1.3.46. Countably generated. A σ algebra F is countably generated if there exists
a countably collection of sets such that σppFnqnPNq “ F . A projection valued measure is countably
generated, if its σ-algebra is countably generated.

Again, we first prove a helpful lemma, after which we present our main result.

Lemma 1.3.47. Let Ω be a topological Hausdorff space with topology τΩ. Then

C “ tK | K P τΩ and K compactu (1.3.44)

is of compact class.4

Proof. Let tKnunPN Ă C be some sequence such that
Ş8

n“1 Kn “ H. Define Lk “
Şk

n“1 Cn. Now
define τK1

as the subspace topology of K1, where we note that K1 is still a compact set. Moreover,
as pΩ, τΩq is Hausdorff, so is pK1, τK1

q and thus each Lk will be closed as it is compact. As such
the sequence Ok “ K1zLk`1 will a sequence of open sets, as each complement is closed, and form
a cover as

8
ď

k“1

Ok “

8
ď

k“1

K1zLk`1 “ K1z

8
č

k“1

Lk`1 “ K1 (1.3.45)

as
Ş8

k“1 Lk`1 “
Ş8

n“1 Kn “ H by assumption. As K1 is compact, this open cover will have a finite
subcover. But as Ok “ K1zLk`1 Ď K1zLk`2 “ Ok`1, we have that

ŞN
n“1 Ok “ ON “ K1zLN`1 “

K1. As such
ŞN`1

n“1 Kn “ LN`1 “ H as required.

Proposition 1.3.48. PRk

is the Kolmogorov extension of a sequence of finitely generated projection
valued measures.

Proof. Note that Qk lies dense in Rk and that Qk is countable. Let pqnqnPN be a counting of
Qk. We now construct our Kolmogorov sequence of projection valued measures tpFn, P

nqunPN as
follows. Let us with slight abuse of notation denote by r0, as the interval with endpoints 0, a, even
if a ă 0. Now define recursively F1 “ σpr0, q1sq and Fn “ σpFn´1, r0, qnsq. Each Fn has atmost
2n elements and is thus finite. We furthermore define Pn “ PRk

æFn .
Let τQk be the restricted topology of τRk , which is then still clearly Hausdorff. Let C be the

collection of compacts sets, which by lemma 1.3.47 is of compact class. Moreover, we clearly have

Pn
h pEq “ suptPn

h pCq | C P C, C Ď Eu. (1.3.46)

As such, theorem 1.3.44 can be applied and thus the existence of a Kolmogorov extension P can
be assumed.

As we clearly have BpQkq Ď σp
Ť8

n“1 Fnq and P pσp
Ť8

n“1 Fnq is strongly closed, we see that P is
defined on BpRkq. Moreover, as Pn “ PRk

æFn
on this dense subset, we conclude that P “ PRk

.

While a more direct construction for the above proposition may be possible (as we will show below),
the proposition rather shows the broad application of theorem 1.3.44. That is, it shows that not
all countably generated are atomic and that moreover, even projection valued measures for which
Ph is non-atomic for every h P H can be countably generated.

4The following proof was adapted from the following stack-exchange discussion
https://math.stackexchange.com/questions/1724984/help-with-proof-that-a-set-of-compact-spaces-is-a-compact-
class, accessed on 21-3-2023.
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1.4 Spectral calculus

The key connection between projection valued measures and the normal operators of a Von
Neumann algebra’s is given by spectral calculus.

1.4.1 Bounded functional calculus
This section will aim to clarify this connection by showing both how normal operators can be
constructed from projection valued measures and, conversely, how normal operators naturally give
rise to a projection valued measure.

Definition 1.4.1. Bounded measurable functions. Let pΩ,Fq be a measurable space. We
define ∥f∥8 “ supωPΩ |fpωq|

BbpΩ,Cq “ tf : Ω Ñ C | f measurable and ∥f∥8 ă 8u. (1.4.1)

For this space ∥ ∥8 is a complete norm.

Remark 1.4.2. The above definition differs from definition 1.2.40 in that it is defined point-wise.
Furthermore, in the remainder we will from now no longer specify the complex image of the bounded
measurable functions, that is BbpΩq :“ BbpΩ,Cq.

The following result is taken from [1, p. 287, 288, th. 9.8].

Theorem 1.4.3. Let P : F Ñ PpHq be a projection valued measure. Then there exists a unique
linear mapping ΦP : BbpΩq Ñ LpHq with the following properties:

1. for all F P F , we have Φp1F q “ P pF q,

2. for all f, g P BbpΩq, we have Φpfgq “ Φpfqpgq,

3. for all f P BbpΩq, we have Φpfq “ Φpfq‹,

4. for all f P BbpΩq, we have ∥Φpfq∥ ď ∥f∥8,

5. for all bounded sequences pfnqnPN Ď BbpΩq with fn Ñ f pointwise, we have limnÑ8 Φpfnqh “

Φpfqh for all h P H,

6. for all h P H and f P BbpΩq, we have pΦpfqh|hq “
ş

Ω
fdPh and ∥Φpfqx∥ “

ş

Ω
|f |2dPh.

Proof. We construct the mapping Φ first for indicator functions, then for simple functions and
lastly for measurable functions. We start by setting Φp1F q “ P pF q for all F P F . We then
extend this definition to simple functions by linearity. That is for a finite partition pFnqNn“1 Ă F
let f “

řN
n“1 cn1Fn

. Then we have Φpfq “ Φp
řN

n“1 cn1Fn
q “

řN
n“1 cnP pF q. As the sets in a

partition are disjoint, their projections will have orthogonal range and thus for all h P H we have

∥Φpfqh∥2 “

N
ÿ

n“1

|cn|2∥P pFnqh∥2 ď max
nPt1,...,Nu

|cn|2∥h∥ “ ∥f∥28∥h∥2. (1.4.2)

Now let f be a measurable functions and let fn be a sequence of simple functions such that
limnÑ8 fn “ f . As pfnqnPN is clearly Cauchy and ∥Φpfnq ´ ϕpfmq∥ ď ∥fn ´ fm∥8 by the above
relation, the sequence pΦpfnqqnPN is also Cauchy. We define Φpfq as its limit. The uniqueness of
this limit again follows from the uniqueness of the limit in BbpΩq and equation (1.4.2).

The claimed properties of this construction now follow routinely by finding approximating
sequences of simple functions, showing the property there and then concluding that their limit
maintains this property. As an example, we will show here the last claim of property 6. Let
f P BbpΩq and h P H. Let pΦpfnqqnPN be a sequence of approximating simple functions for f .
Then for fn “

řN
m“1 cm1Fm

, we have

∥Φpfnqh∥2 “

N
ÿ

m“1

|cm|2∥P pFmqh∥2 “

N
ÿ

m“1

|cm|2PhpFmq2 “

ż

Ω

|fn|2dPh. (1.4.3)

As this equality holds for all n P N, it follows from the uniqueness of limits that limnÑ8 ∥Φpfnqh∥2 “

limnÑ8

ş

Ω
|fn|2dPh.
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combining property (2) and (3) of the above proposition shows how every operator created by
functional calculus is normal.

The result of property (5) can be improved if we introduce the following definition. The next
definition and proposition are taken from [1, p. 290, def.9.10 and prop. 9.11].

Definition 1.4.4. P-essentially bounded functions. Let P be a projection valued measure.
A measurable function f : Ω Ñ C is P -essentially bounded if there exists some R P R` such that
P ptω | |fpωq| ą Ruq “ 0 (where 0 here denotes the 0 operator). We define the space of equivalence
classes of P -essentially bounded functions by L8pΩ, P q, where we identify measurable functions f
and g when P ptω | |pfpωq ´ gpωq| ą 0uq “ 0. Lastly, we define the norm for the P -essentially
bounded functions by ∥f∥L8pΩ,P q :“ infR` tR | P ptω | |fpωq| ą Ruq “ 0u. With respect to this
norm, L8pΩ, P q is a Banach space.

Note that the above definition mirrors that of the µ-essentially bounded functions given in definition
1.2.40, but on the level of operators. This space of P -essentially bounded functions can now be
used to improve property (5) to an equality of norms.

Proposition 1.4.5. Let P : F Ñ PpHq be a projection valued measure. Then for all f P L8pΩ, P q

we have ∥Φpfq∥ “ ∥f∥L8pΩ,P q.

Proof. We show ∥Φpfq∥ ď ∥f∥L8pΩ,P q. Let ϵ ą 0. We now define Fϵ :“ tω | |fpωq| ą p1 ´

ϵq∥f∥L8pΩ,P qu. Then for all h P RpP pFϵqq, we get

∥Φpfqh∥ “

ż

Ω

|f |2dPh ě p1 ´ ϵq2∥f∥L8pΩ,P q

ż

Ω

1Fϵ
dPh (1.4.4)

“ p1 ´ ϵq2∥f∥L8pΩ,P q∥P pFϵqh∥ “ p1 ´ ϵq2∥f∥L8pΩ,P q∥h∥

and so ∥Φpfqh∥ ě p1 ´ ϵq2∥f∥L8pΩ,P q. As this bound holds for any ϵ ą 0, we conclude ∥Φpfq∥ ď

∥f∥L8pΩ,P q, as required.

The above theorem 1.4.3 shows that a projection valued measure gives rise to a natural set of
normal operators. We now show that the converse also holds, that is each normal operator gives
naturally rise to a projection valued measure.

Theorem 1.4.6. Spectral theorem for bounded normal operators. Let A P LpHq be a
normal operator. Then there exists a unique projection valued measure P on σpAq such that

A “

ż

σpAq

fλdP pλq. (1.4.5)

where fλ : σpAq Ñ σpAq with fλpzq “ z.

Proof. See [1, p. 293-296, th. 9.14].

While we have omitted the proof here, the importance of the above result should not be underestimated
- its proof is simply very long. The result will be fundamental in the remaining construction.

Using the spectral theorem we define plentiful operators. We define for A P LpHq normal and
f P L8pσpAqq

fpAq :“

ż

σpAq

fpλqdPApλq “ ΦPapfq, (1.4.6)

where ΦPa
denotes the functional calculus defined above.

1.4.2 Spectral calculus and Abelian Von Neumann algebras on seperable
Hilbert spaces

In section 1.2.2 we have already mentioned some results hinting at the deep connection between
Von Neumann algebras and its projections. Here we expand on this idea, by showing how Abelian
Von Neumann algebras are the functional calculus of some projection valued measure and vice
versa.

We start by making our first claim precise.
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Proposition 1.4.7. Let P : F Ñ PpHq be a projection valued measure acting on a separable
Hilbert space and let AP “ pP pFqq2 the double commutant of all projections in the image of this
projection valued measure. Furthermore, let ProjpAq :“ tP | P P A, P a projectionu be the set of
projections in a Von Neumann algebra. Then P pFq “ ProjpAP q.

Proof. Clearly, we have P pFq Ď ProjpP pFq2q. Now for the converse claim, note that by theorem
1.2.21, we get that ProjpAq “ tP pAq | A P A, RpAq “ NpAqKu. Now as P pΩq P P pFq, we get by
theorem 1.2.16 that the ‹-algebra generated by P pFq is strongly dense in AP . Lastly, note that
by theorem 1.3.26 P pFq is strongly closed when acting on a separable Hilbert space. Combining
these claims, we see that ProjpAq “ tP pAq | A P A, RpAq “ NpAqKu Ď P pFq

SOT
“ P pFq, as

required.

Theorem 1.4.8. Let P : F Ñ PpHq be a projection valued measure acting on a separable Hilbert
space, then

AP “ tΦP pfq | f P BbpΩqu “ spanCpP pFqq, (1.4.7)

where in the second presentation ΦP is the mapping associated with bounded functional calculus,
using the projection valued measure P , and the third presentation denotes the norm-closure of the
span of projections.

Proof. By the above proposition we have P pFq “ ProjpAP q. We start by showing the first equality
of equation (1.4.7). The inclusion tΦP pfq | f P BbpΩ,Cqu Ď AP is directly clear. For the converse
let A P AP . As A P AP is Abelian, we have that A is both normal and bounded. Then by the
spectral theorem for bounded normal operators, we have

A “

ż

σpAq

fλdP̃ pλq (1.4.8)

for some projection valued measure P̃ , σpAq the spectrum of A and fλ : σpAq Ñ σpAq with
fλpzq “ z as in equation (1.4.5). Now let F̃ P BpσpAqq be some measurable set. Then

ş

σpAq
1F̃ dP̃ pλq

forms a projection in AP . As this projection is clearly in AP , we have that it is in the double
commutant of all projections. Now, as P pFq “ ProjpAP q, we get that

ş

σpAq
1F̃ dP̃ pλq P P pFq.

That is, for any F̃ P BpσpAqq there exists some F P F such that P pF q “
ş

σpAq
1F̃ dP pλq P P pFq.

Now as A is bounded, σpAq is compact and thus there exists some sequence of simple functions
0 ď fn Ò fλ uniformly. Therefore, there exists some fA P BbpΩ,Cq such that

A “

ż

σpAq

fλdP̃ pλq “

ż

σpAq

lim
nÑ8

fndP̃ pλq
p1q
“ lim

nÑ8

ż

σpAq

fndP̃ pλq (1.4.9)

“ lim
nÑ8

ż

σpAq

n
ÿ

i“1

ci1F̃i
dP̃ pλq “ lim

nÑ8

n
ÿ

i“1

ci

ż

σpAq

1F̃i
dP̃ pλq

“ lim
nÑ8

n
ÿ

i“1

ciP pFiq “ lim
nÑ8

ż

Ω

n
ÿ

i“1

ci1FidP
p2q
“

ż

Ω

fAdP,

where the numbered equalities are justified as follows. (1) The changing of limit and integral is
justified by functional calculus, that is property (4) of theorem 1.4.3. That is, as fn Ò fλ uniformly
and ∥Φpfn ´ fλq∥ ď ∥fn ´ f∥8, we get Φpfnq Ñ Φpfλq uniformly. (2) The existence of fA is
justified by moving to the P -essentially bounded functions. That is, by proposition 1.4.5 we get∥∥∥∥∥ n

ÿ

i“1

ci1Fi
´

m
ÿ

i“j

cj1Fj

∥∥∥∥∥
L8pΩ,P q

“

∥∥∥∥∥
ż

Ω

n
ÿ

i“1

ci1Fi
dP ´

ż

Ω

n
ÿ

j“1

cj1Fj
dP

∥∥∥∥∥ (1.4.10)

“

∥∥∥∥∥ n
ÿ

i“1

ciP pFiq ´

m
ÿ

j“1

cjP pFjq

∥∥∥∥∥.
Now, as

řn
i“1 ciP pFiq converges in norm, the sequence is Cauchy in norm and thus by the above

equality we get that
řn

i“1 ci1Fi is a Cauchy sequence. As L8pΩ, P q is a Banach space, this sequence
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will converge to some f̃A P L8pΩ, P q. Now choose some fA P Bb such that fA is an element of the
equivalence class of f̃A. Then clearly limnÑ8 Φpfnq “ ΦpfAq, as required.

The second equality follows directly from the above argument.

From this result we deduce the following corollaries directly.

Corollary 1.4.9. Let P be a projection valued measure acting on a separable Hilbert space and AP

be its Von Neumann algebra. Then for all A P AP , if we have
ş

Ω
fAdP “ A, then impfAq “ σpAq.

Proof. This follows directly from equation (1.4.9).

Corollary 1.4.10. Let A P LpHq be normal operator acting on a separable Hilbert space H. Then

tAu2 “ tΦPA
pfq | f P BbpΩqu. (1.4.11)

Proof. Let PA be the projection valued measure associated with A by the spectral theorem. Then
clearly

tAu2 “ tPApBpσpAqqqu2 “ APA
“ tΦPA

pfq | f P BbpΩqu, (1.4.12)

where in the last equality we use the above result.

We now move towards the converse claim. That is, we aim to show that there exists some
projection valued measure such that its double commutant equals our Abelian Von Neumann
algebra. The following result by Von Neumann himself makes this an easy step.

Theorem 1.4.11. Every Abelian Von Neumann algebra acting on a separable Hilbert space A
there exists a self-adjoint operator A such that tAu2 “ A.

Proof. See [2, p. 599, th. B.117].

Theorem 1.4.12. A Von Neumann algebra A acting on a separable Hilbert space H is Abelian if
and only if there exists some projection valued measure PA such that A “ tΦPApfq | f P BbpΩqu.

Proof. The ‘only if’ claim is shown in theorem 1.4.8. For the ‘only if’ claim, we use the theorem
above. Let A be an Abelian Von Neumann algebra acting on a separable Hilbert space H and let
A be the self-adjoint operator such that tAu2 “ A. Then by corollary 1.4.10, we get A “ tAu2 “

tΦPA
pfq | f P BbpΩqu, where PA denotes the spectral measure of self-adjoint operator A.

The above then forms a variation of theorem 1.2.46.

1.4.3 A projection valued measure on a separable Hilbert spaces is
countably generated

In this section we prove the claim that projection valued measures on separable Hilbert spaces
are countably generated up to its non-zero projections. We here then apply this claim to example
1.3.7. This then contrasts our earlier approach of subsection 1.3.6, as this argument moves from
the topology of the measurable space pΩ,Fq “ pRk,BpRkqq and uses this to show that PRk

is a
countably generated projection valued measure. The current argument starts from the image space
of this projection valued measure, namely the separability of the Hilbert space H, to show that it
is countably generated.

The following proof is adapted from [2, p. 599, th. B.117].

Proposition 1.4.13. Let A be an Abelian Von Neumann algebra acting on a seperable Hilbert
space. Then there exists a countable set of projections pPnqnPN that is strongly dense in ProjpAq.

Proof. As H is seperable there exists a countable subset S such that its linear span is dense in
H. Then as A is Abelian, by theorem 1.2.47, there exists a separating vector k P H that, by
proposition 1.2.48 is cyclic for A1. Now as H is separable, so is ProjpAqk “ tPk|P P ProjpAqu, and
thus there exists some countable subset S “ pPnqnPN Ď ProjpAq such that spanCSk “ ProjpAqk.

We now claim that S is strongly dense in ProjpAq. Let h P H, P P ProjpAq and ϵ ą 0. Now as k
is cyclic for A1, we have that there exists some sequence pAnqnPN Ď A1 such that limnÑ8 Ank “ h.
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In particular there exists some N0 such that ∥AN0
nk ´ h∥ ă ϵ

3 . As spanCSk “ ProjpAqk, there
exists some subsequence pPnk

qkPN such that for some N ě N0 we have that for all nk ě N that
∥Pk ´ Pnk

∥ ă ϵ

3∥AN0∥
. In this case we have for all nk ě N that

∥Ph ´ Pnk
h∥ “ ∥Ph ´ PAN0k ` PAN0k ´ Pnk

AN0k ` Pnk
AN0k ´ Pnk

h∥ (1.4.13)
ď ∥Ph ´ PAN0k∥ ` ∥PAN0k ´ Pnk

AN0k∥ ` ∥Pnk
AN0k ´ Pnk

h∥
ď ∥P∥∥h ´ AN0k∥ ` ∥AN0∥∥Pk ´ Pnk

k∥ ` ∥Pnk
∥∥AN0k ´ h∥

ă ϵ
3 ` ∥AN0∥ ϵ

3∥AN0∥
` ϵ

3 “ ϵ,

as required.

Proposition 1.4.14. Any projection valued measure P : F Ñ PpHq acting on a seperable Hilbert
space H is countably generated up to non-zero projections. That is there exists some sequence of
sets pFnqnPN Ď F such that P pFq “ P pσpFnqq.

Proof. Let AP be the Von Neumann algebra generated by P , which is clearly Abelian, and
let pPnqnPN be a countable set of projections that is strongly dense in ProjpAq, which exists
by proposition 1.4.13. Now by proposition 1.4.7, we have that there exists a sequence of sets
pFnqnPN Ď F , such that Pn “ P pFnq for all n P N. Then we have P pFq “ ProjpAq “ pPnqnPN

SOT
Ď

pP pFnqqnPN
SOT

Ď P pσppFnqnPNqq Ď P pFq, as required.

Our claim now follows as a simple corollary.

Corollary 1.4.15. PRk

is countably generated up to non-zero projections.

Proof. L2pRkq is a seperable Hilbert space and thus by the above proposition, PRk

is countably
generated up to non-zero sets.
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2. The indistinguishable States of a
Quantum Observable

In this chapter we turn to the main topic of this thesis: understanding the theory of quantum
mechanics through its indistinguishable states. Our argument here will take the following form.
We will start by sketching the structure we expect a mathematical theory related to physical
experiments to take. We will argue here that such a theory should, by a combination of a state
- i.e. the state in which a system ‘is’ - and an observable - i.e. a question posed to the set of
possible states of the system -, produce a probability measure on a set of outcomes by which the
frequency of measured events can be predicted. Concretely, we will express this structure through
the construction of the ‘assignment function’ of a given observable. Given some observable, the
assignment function will assign states to their relevant outcome measures. We will then use this
assignment function to make our central point. That is, we show that (i) the structure of the
classical assignment function, at least theoretically, allows for the existence of an observable that
distinguishes all the states in its associated state space and (ii) the structure of the quantum
mechanical assignment function does not allow such an observable to exists. That is, in all
non trivial cases of Hilbert spaces with dimension larger than one any observable has associated
indistinguishable states.

This main argument is presented in sections 2.1 and 2.2. Section 2.3 then shortly touches on the
relation between indistinguishable states and non-commuting observables. The last two sections
are in some sense dedicated to Holevo’s original idea. Section 2.4 presents a quantum analogue to
the classical assignment function, vaguely mirroring Holevo’s result that ‘any separated statistical
model (...) is a reduction of a classical model with restricted class of measurements’ [5, p. 29,
th. 1.7.1]. The last paragraph applies the results of section 2.1 and 2.2 to a finite dimensional
case and aims to construct a (higher dimensional) geometrical object for which the quantum
mechanical measurement can be understood as a compression analogue to the idea of figure 1 from
the introduction.

2.1 Measurements and hidden states

As mentioned above, we start by comparing measurements in classical theory and quantum theory.

2.1.1 Measurements in measure theoretic language
Before moving towards the more mathematically precise definitions in the next section, we first
take a moment to clarify the basic structure of an experiment in physics. The application of our
mathematical definitions to these experiment then is argued for on the basis of said structure.

A physics experiment
The following section is loosely based on [9, p. 1-3].

The setting of a physics experiment is (not accidentally so), comparable to that of a (criminal)
interrogation. That is, a physical system is so to say forcefully brought into a set state, a specific
quality is investigated and an outcome is recorded. Our mathematical theory should thus consist of
three distinct elements: (1) a space to represent the ways in which the system can be prepared, or
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more generally, ‘brought into forcefully’, (2) a space to represent the different types of qualities the
state could possesses and (3) a connection between the two spaces by which we catalogue the status
of these qualities. As an example, we could have (1) a dice with six numbered sides (one to six),
(2) the quality of whether the outcome of dice, the number pointing upwards, is ‘even’ or ‘uneven’
and (3) a connection between the two states describing how the numbers one, three and five are
‘uneven’ outcomes and how the numbers two, four and six are ‘even’. While this example might
seem somewhat redundant, this is mostly a consequence of the simplicity of the dice. When we aim
to describe a more complex system, say a set of interacting fundamental particles, the interplay
between the aformentioned elements becomes clearer: the space of states and its connection to the
recorded outcomes can only retroactively be constructed based on these recorded outcomes, but
these states and their connection to the outcomes are then proactively used to predict recorded
results. This back-and-forth is the exactly the predicament of (experimental) physics.

The ‘function’ combing these three elements to model (many consecutive) measurements, may
abstractly be denoted by

wO
s pF q “ lim

NÑ8

nF

N
, (2.1.1)

where s denotes some state of the system, O denotes some observable - some way of connecting
the state to the set of outcomes - and F some concrete set of outcomes. This, for now unspecified,
function connecting said elements should equal the fraction nF

N for large N . Here nF denotes
the number of times the outcome F is recorded and N is the number of times the experiment is
performed. As we can only base our prediction on before recorded results, the fraction nF

N will be
a stochastic of which we assume convergence in a manner analogue to the law of large numbers (of
which retroactively demand that our model should satisfy the demands of this theorem).

As our prediction of the recorded outcomes of an experiment depends on the state of our system,
it depends on the practical manner in which we are able to control the conditions of preparing
this state. As such we distinguish between a sharp measurement and an unsharp measurement.
In the first case we (theoretically) demand perfect control over our system, in the second case we
assume that the distribution of possible states of the system is known. Between these cases we
see the same interplay as before: while perfect control of our system is practically almost never
possible and the sharp case is as such retroactively reconstructed by approximating with unsharp
measurements, the unsharp case is predicatively understood as a collection of sharp measurements
of which the distribution of states is known. So even if the setting of a sharp measurement may
be practically too demanding, it harbours the theoretical essence of how theory in physics comes
to its predictions.

The assignment functions
If our aim is to understand the difference in the mathematical structure of classical and quantum
mechanics, then we need to understand the way in which both theories give rise to the measurement
‘function’ wO

s pF q. We will here call these measurement ‘functions’ assignment functions.
We start with the structure of the space of outcomes. This structure will be the same for both

classical and quantum mechanics. From the description above, we could reasonably expect that
our experimental ‘function’ wO

s pF q takes the form of a probability measure on some σ-algebra of
events. This choice is here loosely justified by noting that the operations in an algebra of sets
correspond to our standard logical operations: union corresponds to ‘or’, taking the complement
to ‘not’, etc.. A σ-algebra then allows us to perform these logical operations countably many times,
while keeping the more deviant set theoretic constructions in check (see [2, ap. D, p. 777-804] for
a more in depth discussion on the link between set-theory and logic). We will therefore denote our
outcome space as the measurable space pΩ,Fq. A probability measure is then used to assign to
a collection of events F a ratio corresponding to the ratio 0 ď nF

N ď 1. The space of probability
measures on this outcome space will here be denoted by M`

1 pΩq.
How the theories of classical and quantum mechanics give rise to these outcome measures

M`
1 pΩq differs. We will now turn to this topic. While we have motivated that a theory in physics

should be seen as a way to construct probability measures on the space of outcomes on the basis
of the structure of an experiment, the question of why these constructions assigning observables
and states to measure are as they are will not be addressed here. This topic is simply too broad
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and complex to address here in any meaningful way: the question goes to the heart of physics as
such.

We start with our description of the classical assignment function. The definitions are taken
from [1, ch. 15, p. 543, 544].

Definition 2.1.1. Classical state space. Let pX,X q be a measurable space. A classical state is
a probability measure on pX,X q. We denote this space of probability measures by M`

1 pXq.

As in the case of the sharp measurement the state of the system is perfectly controlled, we refer to
such state as a pure state, or say that the system is in a pure state. As we understand an unsharp
measurement as a collection of sharp measurements of which the distribution is known, the pure
states, correspondingly, are taken to be the extreme points of the set of states. Recall that in the
previous chapter, we defined an atomic measure as follows.

Definition 2.1.2. Atomic measure. Let pX,X q be a measurable space. For a measure µ P

M`
1 pXq a set A P X is atomic, if µpAq ą 0 and if A “ A1 Y A2 with A1, A2 P X disjoint, then

either µpA1q “ 0 or µpA2q “ 0. The measure µ is atomic, if every A P X with µpAq ą 0 contains
some atomic set.

Proposition 2.1.3. The extreme points of the set of probability measures are the atomic measures.

Proof. See [1, p. 144, ex. 4.35].

Therefore we define the pure states as follows.

Definition 2.1.4. Classical pure states. Let pX,X q be a measurable space. A classical pure
state is an atomic probability measure on pX,X q. We denote the set of atomic measures on pX,X q

by spM`
1 pXqq.

This space of states is now connected to the space of outcomes by a measurable function.

Definition 2.1.5. Classical observable. Let pX,X q and pΩ,Fq be measurable spaces. A classical
observable is a measurable function f : X Ñ Ω.

Definition 2.1.6. Classical (sharp) assignment function. Let pX,X q and pΩ,Fq be measurable
spaces and f : X Ñ Ω be a measurable function. Then the classical assignment function is given
by the map

Φf : M`
1 pXq Ñ M`

1 pΩq (2.1.2)

µp q Ñ µpf´1p qq.

A classical sharp measurement is now given by this map restricted to the pure states. We define
the classical sharp assignment function by

Φf : spM`
1 pXqq Ñ M`

1 pΩq (2.1.3)

µAp q Ñ µApf´1p qq.

This assignment function is interpreted in physic as our abstract measurement function by

µpf´1pF qq “ wf
µpF q “ wO

s pF q “ lim
NÑ8

nF

N
. (2.1.4)

Next, we turn to the quantum mechanical assignment function. The definitions are again taken
from [1, ch. 15, p. 543, 544]. We start with the state. For our next definition we have to deal with
a slight inconvenience, as the term state has an already standard definition in the theory on Von
Neumann algebras, which almost, but not exactly corresponds to its use in physics.

Definition 2.1.7. Normal bounded positive linear functional. Let H be a Hilbert space. A
bounded linear positive functional is normal, if ϕpsupνPNAνq “ supνPNϕpAνq for any ordered set
N .
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Definition 2.1.8. Quantum state. Let H be a Hilbert space. A quantum state is a normal
bounded positive linear functional satisfying ϕpIq “ 1.

These state are thus not to be confused with their common mathematical definition of states as
bounded positive linear functionals. If we here refer to a state in the context of Hilbert spaces,
we always take our state to be normal. For these states, the pure states are again given as their
extreme points.

Proposition 2.1.9. The extreme points of the set of normal bounded positive linear functionals
with ϕpIq “ 1 are the rank one projections.

Proof. See [1, p. 553, prop. 15.12].

The rank-one projections are of the form hb̄h, where h P H a norm-one vector and

hb̄h : H Ñ H (2.1.5)
h1 Ñ ph1|hqh.

As such there exists a correspondence between the pure quantum states and the norm-one vectors.
However, as we have hb̄h “ eiϕhb̄eiϕh for any ϕ P r0, 2πq, the norm-one vectors h and eiϕh give
rise to the same state. We now define a global equivalence relation on the norm one vectors by

h „ h1 if there exists some c P T such that h “ ch1. (2.1.6)

This equivalence is referred to as the global phase in most introductory physics books on quantum
mechanics. Let B1pHq be the set of norm-one vectors. Using this notation, we define the
equivalence class of norm-1 vectors by

spHq “ B1pHq{ „, (2.1.7)

which consists of the sets
rhs :“ tch | ∥h∥ “ 1, |c| “ 1, c P Cu. (2.1.8)

As this set gives, given a Hilbert space H, a direct grasp on the set of pure states, we often use
these equivalence classes of norm-one vectors as representation of the normal bounded positive
linear functionals.

We now turn to the observables and the assignment function.

Definition 2.1.10. Quantum observable. Let H be a Hilbert space and let pΩ,Fq be a measurable
space. Then we define a quantum observable as a projection valued measure P : F Ñ PpHq.

Definition 2.1.11. Quantum mechanical (sharp) assignment function. Let H be a Hilbert
space and let pΩ,Fq be a measurable space. Let ΞpHq be the set of normal positive linear bounded
functionals on H, then the quantum mechanical assignment function is given by

ΦP : ΞpHq Ñ M`
1 pΩq (2.1.9)

ϕ Ñ ϕpP p qq.

A quantum mechanical sharp measurement is again given by the restriction of this map to the state
space, however using the identification mentioned above our assignment function is written as

ΦP : spHq Ñ M`
1 pΩq (2.1.10)

rhs Ñ pP p qh|hqp“ ϕhpP p qqq.

Again our quantum assignment function of the sharp measurement is used to interpret our abstract
measurement function by

pP pF qh|hq “ wP
rhspF q “ wO

s pF q “ lim
NÑ8

nF

N
. (2.1.11)

Remark 2.1.12. From now on, unless stated otherwise, every state, classical or quantum mechanical,
is taken to be a pure state. Moreover, again both in the classical and quantum mechanical case,
when we use the term assignment function, we from now on refer to the sharp assignment function.
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2.1.2 The equivalence classes of states
Central to our argument will be a comparison between equations (2.1.3) and (2.1.10). We now turn
towards our main tool for our comparison between these two assignment functions: the equivalence
classes of indistinguishable states.

We again start with our construction for classical mechanics.

Definition 2.1.13. Classical indistinguishable states. Let pX,X q a measurable space and let
spM`

1 pXqq be the set of atomic measures. Let f be a measurable function. Then the states µA1
, µA2

are indistinguishable if µA1
pf´1pF qq “ µA2

pf´1pF qq for all F P F . We denote this property by
µA1

„f µA2

It can easily be seen that the indistinguishability relation „f defines an equivalence relation on
the set of classical states. As such we can define the equivalence class of indistinguishable states
by taking the quotient over the indistinguishable states. That is, we define

sf pM`
1 pXqq :“ spM`

1 pXqq{ „f , (2.1.12)

with elements

rµAsf “ tµB | µB P spM`
1 pXq, µBpf´1pF qq “ µApf´1pF qq for all F P Fu. (2.1.13)

When we now restrict our classical assignment function, with slight abuse of notation, to the
equivalence classes of indistinguishable states, then Φfæsf pM`

1 pXqq
becomes an injective map. That

is, if µA1
„f µA2

then Φf pµA1
q “ Φf pµA2

q. As such, in an experimental setting, each state
produces a different measure on the outcome space and as such, possibly after many repeated
experiments, can be distinguished.

For quantum mechanics we present a similar construction.

Definition 2.1.14. Quantum mechanical indistinguishable states. Let H be a hilbert
space and spHq the set of states. The states rh1s, rh2s are indistinguishable, if pP pF qh1|h1q “

pP pF qh2|h2q for all F P F . We denote this property by h1 „P h2.

Again this produces an equivalence relation on the set of states for which we define equivalence
classes by

sP pHq :“ spHq{ „P , (2.1.14)

with sets of the form

rhsP “ trh1s | rh1s P spHq s.t. pP pF qh|hq “ pP pF qh1|h1q for all F P Fu. (2.1.15)

Again when we now restrict our quantum assignment function, with slight abuse of notation, to
the equivalence classes of indistinguishable states, then ΦP æsP pHq becomes an injective map. As
such, in a experimental setting, each state produces a different measure on the outcome space and
can thus be distinguished (possibly after many repeated experiments) by these outcome measures.

These equivalence classes thus group in a sense what is ‘seen’ by an observable. That is, the
difference between two states is either detected or remains hidden and as a such we will also say
that indistinguishable states are hidden states. It is on the basis of these equivalence classes that
we will argue that quantum mechanics hides states. More precisely, we will aim to show that there
exists a classical observable, where each equivalence class rµAsf “ tµAu. Moreover, we will aim to
show that in all non-trivial cases, this is not the case in quantum mechanics, as in all non-trivial
cases there will exist some states h, h1 P spHq such that h ȷ h1 (recall equation (2.1.7)) but h „P h1.

2.2 Maximal distinguishing observables

In order to show the two claims (put in the languague introduced above) - that (1) in the classical
case there exists some observable such that rµAsf “ tµAu and (2) in the quantum case for every
(non-trivial) observable exist some states h, h1 P spHq such that h ȷ h1 but h „P h1 - we will
develop the notion of a maximal distinguishing observable. This notion aims to specify the set of
observables that have minimal indistinguishable states. Using this concept we will then show our
claim.
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2.2.1 Definition
In our attempt to show that the classical case there exists some observable such that rµAsf “ tµAu,
we note that the crucial logical quantifier is here “some”. That is, not all classical measurements
have this property, but there exists a class of measurements that does so. We will here call these
observables the maximal distinguishing observables, as these measurements clearly distinguish as
many states as they could possibly distinguish.

To be precise we formally define this property as follows.

Definition 2.2.1. maximal distinguishing classical observable. We call a measurable function
f : X Ñ Ω maximal distinguishing, if for every µA1

, µA2
P spM`

1 pXqq, with µA1
‰ µA2

, there exists
some F P F , such that fpA1q Ď F and fpA2q Ď ΩzF .

Our claim (1) then follows almost directly from our definition.

Proposition 2.2.2. Let f be a maximal distinguishing observable. Then for all µA P spM`
1 pXqq

we have rµAsf “ tµAu.

Proof. Let µA1
, µA2

P spM`
1 pXqq, with µA1

‰ µA2
. Then as f is maximal distinguishing there

exists some F P F , such that fpA1q Ď F and fpA2q Ď ΩzF and thereby we get µA1
pf´1pF qq ‰

µA2pf´1pF qq and thus µA1 ȷf µA2 , as required.

For classical observables we then have the following result showing that this definition arises in a
context relevant to physics experiments. That is, as the classical state spaces in physics are given by
differentiable manifolds [2, p. 84, 88], which are topologically Hausdorff, the following proposition
provides sufficient and necessary conditions for the existence of a maximal distinguishing observable.

Proposition 2.2.3. Let X be some topological Hausdorff space with measurable sets BpXq and let
f : X Ñ Ω be a measurable function. Moreover, Let pΩ,Fq be a sufficiently large space such that
for each disjoint G1, G2 P X with fpG1q, fpG2q disjoint, there exists some disjoint F1, F2 such that
fpG1q Ď F1 and fpG2q Ď F2. Then f is injective if and only if it is maximal distinguishing.

Proof. Let f be injective and let µA1
, µA2

P spM`
1 pXqq, with µA1

‰ µA2
. Now, direct from the

definition of an atomic measure, we see that in this case we have A1 X A2 “ H. Now as f in
injective we thus have fpA1q X fpA2q “ fpA1 X A2q “ H. Then by assumption we get that there
exists some F P F such that fpA1q Ď F and fpA2q Ď ΩzF .

Now if f is not injective, then there exist some x1, x2 P X with x1 ‰ x2 and fpx1q “ fpx2q.
Let A1, A2 P X be some sets such that x1 P A1 and x2 P A2 and A1 X A2 “ H, which exist as X
is Hausdorff. Moreover, we can take A1, A2 sufficiently small such that µA1

and µA2
are atomic

probability measures. In this case, fpA1q X fpA2q ‰ H and thus there exists no F P F such that
fpA1q Ď F and fpA2q Ď ΩzF .

Thus as soon as such an injective function f : X Ñ Ω to such a sufficiently large space of outcomes
exists, all the states in the phase space can be distinguished and, as a results, the classical setting
has no indistinguishable states. This proposition thus directly shows the possibility of constructing,
at least theoretically, a classical measurement that is maximally distinguishing as if we pick the
same measurable space as outcome and state space, that is pΩ,Fq “ pX,BpXqq, then the identity
function clearly satisfies the conditions of the above proposition. This shows the first part of our
claim.

In the classical case the idea of maximal distinguishing measurement can be defined with
relative ease as the case exists where equivalence classes of states consist simply of one element.
The observable thus, put bluntly, distinguishes all there is to distinguish. In the quantum case
such an observable will only exist in the trivial case of a one dimension (as there is only one state
in this case). As such it is not at all trivial to define a sense of ‘maximal distinguishing’.

Intuively, however that if a classical observable f is injective (and thus maximal distinguihsing),
it has in a sense the maximal amount of different points in its image. By analogy, it is then
natural to demand of a maximal distinguishing quantum observable that it has maximal amount
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of projections in its image space. However, not every set of projections gives rise to a projection
valued measure. Under this restriction, we could define a maximal distinguishing projection valued
measure P : F Ñ PpHq as a projection valued measure such that its image is not contained in
the image of any other projection valued measure. That is, for any projection valued measure
P̃ : F̃ Ñ PpHq, if P pFq Ď pF̃q then P pFq “ pF̃q. Now as we have seen in the previous chapter, by
theorem 1.4.12, projection valued measures are deeply linked to Abelian Von Neumann algebras
and for such Abelian Von Neumann algebras a sense of maximallity is well-defined. Using this
identification, we define our maximal distinguishing observables as follows. We use the following
notation for a projection valued measure P : F Ñ PpHq:

P pFq :“ tP pF q | F P Fu (2.2.1)

and
P pFq˝ :“ tP | P P PpHq, PP pF q “ P pF qP for all F P Fu. (2.2.2)

Here P pFq˝ can be understood as the analogue of the commutator set in the set of projections on
our Hilbert space. We now present our definition as follows.

Definition 2.2.4. Maximal distinguishing quantum mechanical observable. We call a
quantum mechanical observable P : F Ñ PpHq maximally distinguishing, if P pFq “ P pFq˝.

Remark 2.2.5. As is the case with Abelian Von Neumann algebras, the inclusion P pFq Ď P pFq˝

is trivial, but the converse inclusion is not.
This definition has the following, now obvious, connection with maximal distinguishing Von

Neumann algebras.

Proposition 2.2.6. A quantum mechanical observable P is maximal distinguishing if and only if
the Von Neumann algebra it generates AP is maximal Abelian.

Proof. For the ‘only if’ part, note that by theorem 1.4.8, we have A1
P “ spanCtProjpA1

P qu “

spanCtProjpP pFq˝qu “ spanCtProjpP pFqqu “ spanCtProjpAP qu “ AP . Conversly, for the ‘if’
part, note that if we have AP “ A1

P , then AP “ tΦP pfq | f P BbpΩqu “ A1
P . Thus P P P pFq˝ if

only if there exists some 1F P BbpΩq such that ΦP p1F q “ P if and only there exists some F̃ P F
such that ΦP p1F q “ P pF̃ q, so P pFq “ P pFq˝.

From this result follows the connection of our previous ‘intuitive definition’ of P being maximal
distinguishing if, for any projection valued measure P̃ : F̃ Ñ PpHq, if P pFq Ď P̃ pF̃q then P pFq “

pF̃q.

Corollary 2.2.7. Let P : F Ñ PpHq be a quantum observable. Then P is maximal distinguishing
if and only if for any projection valued measure P̃ : F̃ Ñ PpHq, if P pFq Ď P̃ pF̃q then P pFq “ pF̃q.

Proof. As for any maximal Abelian Von Neumann A, we have that if Ã Abelian and A Ď Ã, then
A Ď Ã. Thus if for some Abelian Von Neumann algebra Ã, we have ProjpAq Ď ProjpÃq, then
ProjpAq “ ProjpÃq. Our claim now follows from the proposition above.

2.2.2 Key examples
In this section we prove that examples 1.3.6 and 1.3.7 from the previous chapter are both maximal
distinguishing.

We start with example 1.3.6, which can be directly shown using our definition 2.2.4.

Proposition 2.2.8. The operator defined by

PN : BpNq Ñ Ppl2pNqq (2.2.3)

I Ñ
ÿ

iPI

eki
b̄eki

,

where

eib̄ei : l
2pNq Ñ l2pNq (2.2.4)

h Ñ ph|eiqei

is maximal distinguishing.
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Proof. Let P P PNpBpNqq˝, we have for each Fi :“ tiu with i P N that P and P pFiq commute and
thus that range of P pFiq either lies with the range of P or not. Now as P pFiq has one dimensional
range and as it is the unique projection onto its range. Thus PP pFiq “ P pFiq or PP pFiq “ O.
Choose G :“

Ť

tFi|PP pFiq “ P pFiqu P PpNq “ BpNq, then clearly

P “ PP pGq ` PP pΩzGq “ P
ÿ

FiPG

P pFiq ` P
ÿ

FiPΩzG

P pFiq (2.2.5)

“
ÿ

FiPG

PP pFiq `
ÿ

FiPΩzG

PP pFiq “
ÿ

FiPG

P pFiq “ P pGq

and so P P PNpBpNqq.

For our second example, we will use proposition 2.2.6.

Proposition 2.2.9. The projection valued measure

PRk

: BpRkq Ñ PpL2pRkqq (2.2.6)
F Ñ 1F ,

defined on pRk,BpRkq, λq (with Lebesgue measure λ and standard topology) for some finite k P N,
where here 1F , with slight abuse of notation, is here the operator denoting a multiplication with
the indicator function 1F

1F : L2pRkq Ñ L2pRkq (2.2.7)
f Ñ 1F f,

is maximal distinguishing.

Proof. It is clear that the Von Neumann algebra generated by PRk

is the multiplication algebra M
on L2pRkq and as pRk,BpRkq, λq is a σ-finite measure space its multiplication algebra is maximal
Abelian by the proposition 1.2.42. By proposition 2.2.6 PRk

is then maximal distinguishing.

These observables are key examples, as they cover all the possible projection valued measures
associated with maximal Abelian Von Neumann algebras by theorem 1.2.43. Recall that these four
unitarily nonequivalent maximal Abelian Von Neumann algebras are given by: (1) the multiplication
algebra on L2pr0, 1sq, (2) the multiplication algebra on l2pNq, (3) the multiplication algebra on
L2pr0, 1sq ‘ l2pNq and (4) the multiplication algebra L2pr0, 1sq ‘ DN pCq, with DN pCq the set of
N -dimensional complex diagonal matrices. In the finite dimensional case all Abelian Von Neumann
(matrix) algebras are (obviously) equivalent to the multiplication algebra on DN pCq. The above
examples now cover these cases as follows. Case (2) is directly given by proposition 2.2.8 and
the final dimensional case can be seen with the same argument. Case (3) is explicitly shown in
proposition 1.2.42, case (1) is directly contained in the proof of the same proposition and case (4)
is only a slight modification (wherein one moves from infinite to finite making the argument only
more simple).

2.2.3 The existence of quantum mechanical indistinguishable states
We now move to the second part of our first initial claim: we state that even a maximal distinguishing
quantum mechanical observable will in all non-trivial cases, that is for Hilbert space of dimension
larger than two, hide some of its states.

We start with the following definition and result on direct sums of closed subspaces.

Definition 2.2.10. Direct sums of projection valued measures. Let H1, H2 Ď H be two
closed orthogonal subspaces and let P1 : F1 Ñ PpH1q be a projection valued measure on the
first subspace and P2 : F2 Ñ PpH2q be a projection valued measure onto the second. We define
F1 \ F2 :“ tF1 \ F2 | F1 P F1, F2 P F2u on Ω1 \ Ω2, where \ denotes the disjoint union. We now
define P1 ‘ P2 : F1 \ F2 Ñ PpH1 ‘ H2q by P1 ‘ P2pF1 \ F2q “ P pF1q ` P pF2q.
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Proposition 2.2.11. Let A1,A2 be maximal Abelian Von Neumann algerbras on closed orthogonal
subspaces H1, H2 respectively. Then A1 ‘ A2 :“ tA1 ‘ A2 | A1 P A1, A2 P A2u is maximal
Abelian. Consequently, if P1, P2 are maximal distinguishing projection valued measures on H1, H2

respectively, their direct sum is again maximal distinguishing.

Proof. A1 ‘ A2 is clearly Abelian, so A1 ‘ A2 Ď pA1 ‘ A2q1 is directly clear. Now let A P

pA1 ‘ A2q1 and let P pH1q, P pH2q be the projections onto H1, H2 in H1 ‘ H2 respectively. Then
as P pH1q ` P pH2q “ IH1‘H2

, we get A “ AP pH1q ` AP pH2q “ P pH1qAP pH1q ` P pH2qAP pH2q

as A P pA1 ‘ A2q1. Now clearly P pH1qAP pH1q P A1
1 and so P pH1qAP pH1q P A1 as A1 is

maximal Abelian. Now by the same argument for P pH2qAP pH2q we get A “ P pH1qAP pH1q `

P pH2qAP pH2q P A1 ‘ A2, as required. The second claim then follows directly from proposition
2.2.6.

Example 2.2.12. Let h1, h P H, with ∥h∥ “ ∥h1∥ “ 1 and h1 ‰ ´h. There exists a projection with
one-dimensional range such that for this projection and any projection orthogonal to it, we have

pPh|hq “ pPh1|h1q. (2.2.8)

Proof. As h1 ‰ ´h, we have h1 ` h ‰ 0. We now set

hbis :“
h ` h1

∥h ` h1∥
(2.2.9)

and use this to define Pbis “ hbisbhbis. By construction this projection will have one dimensional
range. We now claim that Pbis had the desired property. To see this, firstly note that

pPbish|hq “ |ph|hbisq|2 “
|ph|h ` h1q|2

∥h ` h1∥
“

|ph1|h ` h1q|2

∥h ` h1∥
“

∣∣ph1|hbisq
∣∣2 “ pPbish

1|h1q, (2.2.10)

which proves our first claim. For our second claim, we write h “ ph|hbisqhbis ` h ´ ph|hbisqhbis

and the same for h1. Now note that h ´ ph|hbisqhbis “ ´ph1 ´ ph1|hbisqhbisq. As any projection P̃
orthogonal to Pbis acts only on this second part, we have

pP̃ h|hq “ pP̃ ph ´ ph|hbisqhbisq|P̃ hq “ p´P̃ ph1 ´ ph|hbisqhbisq| ´ P̃ ph1 ´ ph|hbisqhbisqq “ pP̃ h1|h1q.
(2.2.11)

Thereby, we conclude that Pbis acts as required.

We now shot the existence of indistinguishable states for a quantum mechanical observable.
Recall that by construction an observable P will hide states h1, h2 P spHq if pP pF qh1|h1q “

pP pF qh2|h2q for all F1, F2 P F , which we denoted by h1 „P h2. Furthermore, recall that the norm
one vectors h1, h2 P H repesent the same state if h1 “ ch2 for some c P T, which we denoted by
h1 „ h2.

Proposition 2.2.13. If dimpHq ě 2, there exists an maximal distinguishing observable P : F Ñ

PpHq such that for some h1 ȷ h2 we have h1 „P h2.

Proof. If dimpHq ě 2, there exist some norm one vectors h1, h2 P H such that h1 ‰ ch2 for
some c P T, that is h1 ȷ h2. then in particular h1 ‰ ´h2 and thus hbis :“ h`h1

∥h`h1∥ is non-zero.
Now H1 :“ hbisb̄hbisH is a closed subspace and so is its orthogonal complement H2 :“ HK

1 .
As H1 is of dimension one, its trivial projection valued measure, from now on denoted by P1 is
maximal distinguishing. Let P2 be some maximal distinguishing projection valued measure onto
H2. Let P :“ P1 ‘ P2, which by proposition 2.2.11 is again maximal distinguishing. Now, As
any projection onto H2 is by definition orthogonal to Pbis, we see by example 2.2.12, that then
pP pF qh1|h1q “ pP pF qh2|h2q for all F1, F2 P F , as required.

2.2.4 Classification of the indistinguishable states of a quantum observable
The above section shows the existence of indistinguishable states for a quantum observable. Here
we prove a natural identification between the indistinguishable states and the unitary operators in
the Von Neumann algebra generated by the observable.
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Theorem 2.2.14. Let P : F Ñ PpHq be maximal distinguishing acting on a seperable Hilbert
space H. Then h1 P rhsP if and only if there exists some U P AP unitary such that Uh “ h1 and
U‹P pF qU “ P pF q for all F P F .

Proof. We start with the ‘if’ part. This part is easy to see as, this follows from the fact that for
all F P F we have

pP pF qh1|h1q “ pP pF qUh|Uhq “ pU‹P pF qUh|hq “ pP pF qh|hq, (2.2.12)

as U‹P pF qU “ P pF q, so h1 P rhsP .
Now for the ‘only if’ part, we use the representation of corollary 1.2.50. Let h1 P rhsP . As

P is maximally distinguishing, its associated Von Neumann algebra AP is maximally Abelian on
a seperable Hilbert space. Now, by use of the notation and result of corollary 1.2.50, we define
fh :“ UAP

h and let fh1 :“ UAP
h1. As fh : ΩAP

Ñ C, we define Rh : ΩAP
Ñ r0,8q as its radius

and Φh : ΩAP
Ñ T as its complex phase, where if tω | Rhpωq “ 0u is measurable, we set Φhpωq “ 1

on this set. Similarly let fh1 “ Rh1Φh1 .
Now let ϕ “ Φh1Φh and, as clearly ϕ P L8pΩAP

, µAP
q define U :“ U‹

AP
ϕUAP

. Now we show
that Uh “ h1. Now recall that as h1 P rhsP , we have that pP pF qh|hq “ pP pF qh1|h1q and recall that
as P pFq generates the Von Neumann algebra AP , we have that for any F 1 P BpΩAq there exists
some F P F such that 1F 1 “ UP pF qU‹. So for any F 1 P BpΩAq we have

ż

ΩAP

1F 1R2
hdµAP

“

ż

ΩAP

1F 1fhfhdµAP
“ pUAP

P pF qU‹
AP

fh|fhq “ pP pF qh|hq “ pP pF qh1|h1q

(2.2.13)

“ pUAP
P pF qU‹

AP
fh1 |fh1 q “

ż

ΩAP

1F 1fh1fh1dµAP
“

ż

ΩAP

1F 1R2
h1dµAP

and so R2
h “ R2

h1 µAP
-almost everywhere and so we have Rh “ Rh1 µAP

-almost everywhere. This
then gives us

Uh “ UAP
ϕU‹

AP
h “ UAP

ϕfh “ UAP
Φh1ΦhRhΦh “ UAP

Rh1Φh1 “ UAP
fh1 “ h1, (2.2.14)

as ΦhΦh “ 1ΩAP
. Furthermore, as U P AP , which is Abelian, we have UP pF q “ P pF qU for all

F P F and, lastly, as Impϕq Ď T we have σpUq Ď T and as such U is unitary. This concludes the
‘only if’ part.

Corollary 2.2.15. Let P : F Ñ PpHq be some observable. Then h1 P rhsP if and only if there
exists some U P A1

P unitary such that Uh “ h1 and U‹P pF qU “ P pF q for all F P F .

Proof. Again the ‘if’ claim is trivial. For the ‘only if’ part, we note that as the Von Neumann
algebra AP is Abelian, it is contained in some maximal Abelian Von Neumann algebra AM . Then
by theorem 1.4.12 and the above theorem there exists some U P AM unitary, such that Uh “ h1 and
U‹PAM

pF qU “ PAM
pF q for all F P FAM

. Now as AP Ď AM , we have that P pFq Ď PAM
pFAM

q

and so in particular U‹P pF qU “ P pF q for all F P F . Moreover, as AM Ď A1
P , we get U P A1

P .

These results give us a firm grasp on the hidden variables through the unitary operators in their
Von Neumann algebras, which can again be described through functional calculus.

2.3 Non-commuting observables

Next, we compare the way in which these assignment functions allow for the combining of two
observables. That is, allow for the combination of two observables into a larger observable. We
then relate this to the way in which they interact with their respective classes of indistinguishable
states.

We again start with the classical case.

44



Example 2.3.1. Let f1 : X Ñ Ω1 and f2X Ñ Ω2 be classical observables. Then we define
f1,2 : X Ñ Ω1 ˆ Ω2 by f1, 2pxq “ pf1pxq, f2pxqq. f1,2 is measurable for the σ-algebra F1 ˆ F2 :“
tF1 ˆ F2 | F1 P F1, F2 P F2u. Moreover, we clearly have for µA1 , µA2 P spM`

1 pXqq that if
µA1 „f1,2 µA2 , we have both µA1 „f1 µA2 and µA1 „f2 µA2 .

In the classical case, we thus have that every pair of observables acting on the same state space X
can be combined into a classical observable which distinguish more or equal the amount of states
which made up the combination. Thus each combination of observables only allows us to see (equal
or) more of the state space.

In analogy to the classical case, we have for the quantum case that two observables can be
combined if they commute.

Definition 2.3.2. Commuting quantun observables. Let P1, P2 be two quantum mechanical
observables. We say these observables commute if all of the projections in their respective images
commute.

Example 2.3.3. Let P1 : F1 Ñ PpHq, P2 : F2 Ñ PpHq be commuting quantum mechanical
observables acting on a separable Hilbert space. Then their images form a set of commuting normal
operators and thus by proposition 1.2.38, we get that tP1pF1q, P2pF2qu2 generates an Abelian Von
Neumann algebra. As such, by theorem 1.4.12, there exists a projection valued measure P : F Ñ

PpHq such that P1pF1q Ď P pFq and P2pF2q Ď P pFq. As such if for h, h1 P H we have h „P h1,
then both h „P1 h1 and h „P2 h1.

In constract to the classical case such a natural construction only exists in the case of commuting
observables. In the case of non-commuting observables the outcome of these observable may
accidentally still be describable with some measure on the outcome space, but there exist cases in
which the construction of such a measure is explicitly excluded. As a full discussion of this topic
would take us to far astray, Landsman’s recent work on the foundations of quantum mechanics
contains an (excellent) introduction into these results on the exclusion of classical measures describing
the outcome space of non-commuting observable [2, chapter 6, p. 191-245] (especially [2, esp. sec
6.5, p. 213-220] where in the discussion of Bell’s theorem an explicit case of a set of observables
whose resulting measures can not be unified into a single measure is given).

What we wish to expand on here further is the relation between the non-commuting observables
and their respective hidden states.

Proposition 2.3.4. Let P1 : F1 Ñ PpHq, P2 : F2 Ñ PpHq be maximal distinguishing quantum
mechanical observables on a separable Hilbert space H. Then P1 and P2 commute if and only if
they give rise to the same projections, that is P1pF1q “ P pF2q.

Proof. The ‘if’ claim is trivial, as the image of a projection valued measure is Abelian. For the only
if claim, AP1 “ A1

P1
as P1 maximal distinguishing and thus AP1 is maximal Abelian by proposition

2.2.6. Thus A P AP1
if and only if it commutes with all projections in P1pF1q by theorem 1.2.23.

Let A P AP2
. Now as again by theorem 1.2.50 we have that AP2

“ spanCtP2pF2qu, we see that
A “ limNÑ8

řN
n“1 anP2pFnq for some sequence panqnPN Ď C and pFnqnPN Ď F2. Now we thus have

for every F1 P F1 that rA,P1pF1qs “ limNÑ8

řN
n“1 anrP2pFnq, P1pF1qs “ 0 by our assumption that

P1 and P2 commute and thus A commutes with all projections in P1pF1q. By the above argument
we thus get A P AP1

. By reversing the roles of P1, P2 in this argument, we get AP1
“ AP2

.
Our claim now follows from proposition 1.4.7, that is, P1pF1q “ ProjpAP1q “ ProjpAP2q “

P2pF2q as claimed.

Proposition 2.3.5. Let P1, P2 be maximal distinguishing quantum mechanical observables on a
separable Hilbert space H with dimpHq ě 2. Then h1 „P1

h2 but h1 ȷP2
h2 for some h1, h2 P spHq

if and only if P1, P2 fail to commute.

Proof. If h1 „P1
h2 but h1 ȷP2

h2 for some h1, h2 P spHq, then clearly there exists some P P P2pF2q

such that P R P1pF1q. By the above theorem we then get that P1, P2 fail to commute. Conversely,
if P1, P2 fail to commute, then P1pF1q ‰ P2pF2q and so there exists some projection such that
P P P2pF2q but not in P1pF1q. Consequently, there exists some unitary U P AP1 such that
U ‰ cI for some c P T and U does not commute with P (which will exist as dimpHq ě 2). Then
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as U‹PU ´ P ‰ 0 (and U‹PU ` P ‰ 0), there exists some h P H with ∥h∥ “ 1 such that
|∥U‹PUh∥ ´ ∥Ph∥| ‰ 0. Then for h clearly pP1pF1qUh|Uhq “ pP1pF1qh|hq for all F1 P F1 as
U P AP1 “ A1

P1
, but pPUh|Uhq ‰ pPh|hq. Thereby, h „P1 Uh but h ȷP2 Uh, as required.

From the perspective of indistinguishable states, the interpretation of non-commuting observables
is thus that they reveal what was previously indistinguishable (and as consequence will also lose
the ability to distinguish other states).

2.4 A quantum analogue of the classical assignment function

Recall the equivalence classes rhsP of section 2.1.2. We now use these equivalence classes to
construct a map from the equivalence classes sP pHq to the measures on outcome space M`

1 pΩq.
We will argue that this map is comparable to classical observable in a certain regard (specified
below).

For classical analogue we define the following map

π1
P : spHq Ñ sP pHq (2.4.1)

rhs Ñ rhsP .

Using this above function π1, we can define by

fP : sP pHq Ñ M`
1 pΩq (2.4.2)

rhsP Ñ pP p qh|hq for some h P rhsP ,

a map such that the following diagram commutes

spHq sP pHq

M`
1 pΩq.

π1
P

ΦP
fP

For this construction we then get the following structure for fP . Let s`pHq denote the closed
set of convex combinations of spHq.

Proposition 2.4.1. The map fP is injective and has natural convexity preserving extension to
the space of unsharp states s`pHq.

Proof. For injectivity, we assume that if fP prhs1P q “ fP prhs2P q for some rhs1P , rhs2P P sP pHq. In
this case we will have pP p qh1|h1q “ fP prhs2P q “ fP prhs2P q “ pP p qh2|h2q for some h1 P rhs1P and
h2 P rhs2P . As such we however get h1 „P h2 as then pP pF qh1|h1q “ pP pF qh1|h1q for all F P F .
But then rhs1P “ π1

P prh1sq “ π2
P prh2sq “ rhs2P , showing that fP is injective.

Now for the convexity of the extension we use the commutation of the above diagram. Let
p1 ` p2 “ 1 for some p1, p2 P r0, 1s. We then can simply note that p1ΦP prh1sq ` p2ΦP prh2sq “

p1fP prh1sq ` p2fP prh2sq will hold and so fP will have a well-defined natural extension to unsharp
states, matching the extension of the assignment function ΦP .

While the above construction allows only in some more trivial cases for the construction of
a true pull-back measure using fP analogue to the classical assignment function, making it a
complete analogue function. (This construction can fail in infinite dimensional cases as orthogonal
complements are no longer necessarily closed.) That being said, it does posses some properties
justifying its comparison to a classical function. As we have seen in proposition 2.2.3, classical
observables are characterized by the fact that (at least theoretically) a classical observable exists
such that rµAsf “ tµAu for all states µA P spM`

1 pXqq. The function fP mirrors the classical
observable in this regard as, with slight abuse of terminology, we have rrhsP sfP “ trhsP u, where
rhsP „fP rh1sP if ΦP prhsP q “ ΦP prhsP q. Moreover, like a classical sharp state, it can be naturally
extended to the unsharp measurements. We therefore see this function as the proper classical
mechanical analogue to a quantum observable.
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2.5 Application to a finite dimensional Hilbert space

As much of this thesis relies for its inspiration on figure 1 presented in Holevo’s work, we would
like to present the relation of the construction presented above to this idea. This we will do by
applying our construction to the setting of a observable with finite distinct outcomes acting on
a finite dimensional Hilbert space. Our goal is to, using the theory presented above, construct
a geometrical figure such that a quantum mechanical measurement can be understood as the
geometrical compression of this figure. This figure can then be understood as a higher dimensional
analogue to the famous two dimensional Bloch sphere. See figure 2.1.

The setting of a finite dimensional observable is the following. Let us define our outcome
space by Ω “ tω1, ω2, . . . , ωNu, where each ωi, i P t1, . . . , Nu, denotes an outcome. In this case
F :“ BpΩq “ PpΩq, where we write Fi “ tωiu for each i P t1, . . . , Nu. We now assume that our
observable is maximal distinguishing. Like in example 1.3.6, in this case our observable is defined
by

PN : tF1, F2, ..., FNu Ñ PpHq (2.5.1)
Fi Ñ P pFiq “ fib̄fi (2.5.2)

where

fib̄fi : H Ñ H (2.5.3)
h Ñ ph|fiqfi

and fi is some orthonormal basis of the finite dimensional Hilbert space H.
As we have only finitely many measurement outcomes, the space of all possible probability

distributions over these measurement outcomes can be described as the n-simplex Sn :“ tp :“
pp1, p2, ..., pN q | 0 ď p1, p2, ..., pN ď 1,

řn
i“1 pi “ 1u, where p1 represents the probability of finding

ω1, p2 the probability of finding ω2, etc.. Onto this space our assignment function now becomes

ΦPN : spHq Ñ Sn (2.5.4)
rhs Ñ p “ ppP pF1qh|hq, pP pF2qh|hq, ..., pP pFnqh|hqq.

Now as each projection P pFiq with i P t1, 2, . . . , Nu is of range one and pfiqiPt1,2,...,Nu forms
an orthonormal basis the convexity of simplex will match the linearity on the set of states.
That is,

ř8

i“1 aifi P spHq, then ΦPN p
ř8

i“1 aifiq “ p|a1|2, |a2|2, . . . , |aN |2q. Therefore, we get for
ř8

i“1 aifi,
ř8

i“1 bifi P spHq, that
ř8

i“1 aifi „PN

ř8

i“1 bifi if and only if p|a1|2, |a2|2, . . . , |aN |2q “

p|b1|2, |b2|2, . . . , |bN |2q.
Using this identification, we can write out the ‘shape’ of the space of indistinguishable states.

We will use theorem 2.2.14. Now by noting that the Von Neumann generated PN is unitarily
equivalent to the multiplication algebra on DpCq and as such the unitaries are isomorphic to TN

(with point-wise multiplication). That is, the unitaries in the Von Neumann generated PN are
given by the set UP :“ t

řN
i“1 ciP pFiq | ci P T,@i P t1, ..., nuu and this bijection is given by

ϕ : TN Ñ UpAP q (2.5.5)

pc1, c2, . . . , cN q Ñ

N
ÿ

i“1

ciP pFiq

Now as we have to account for the equivalence of states due to the global phase, we get that
the unitaries changing the state are isomorphic to TN{T “ TN´1. Furthermore, we can track
whether a unitary operator changes a given state or not. That is, for

ř8

i“1 aifi P spHq with aj “ 0
for some j P t1, 2, . . . , Nu, then this coordinate is in a sense ‘not affected’ by cjP pFjq for cj .
Combining all these insight we define any ordered set pi1, i2, . . . , ikq, with i1, . . . ik P t1, . . . , N ´ 1u

and i1 ă i2 ă ¨ ¨ ¨ ă ik for some k ď N ´ 1

ξpi1,i2,...,ikq : Tk Ñ TN´1 (2.5.6)

pα1, α2, . . . , αkq Ñ

#

αij “ αj , j P t1, . . . , ku

0, else,
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such that for example if N ´ 1 “ 3, then ξp1,3qpi,´1q “ pi, 0,´1q. Let Sn be the n-simplex as
above and let BSn be its boundary. Using this function we can then construct the shape of the
state space with the indistinguishable states attached to points on the simplex:

• if ΦPN maps h to a vertex (a 0-face) ppiq, i P t1, ..., nu, then ΨrhsPn prhsPN q “ trhsu.

• if ΦPN maps h to an edge (a 1-face) ppi, pjq, with i, j P t1, ..., nu and i ă j, then ΨrhsPn prhsPN q –

ξipTq.

• if ΦPN maps h to a face (a 2-face) ppi, pj , pkq, with i, j, k P t1, ..., nu and i ă j ă k, then
ΨrhsPn prhsPN q – ξpi,jqpT2q.

• . . .

• if ΦPN maps h to an (n-1)-face ppi1 , pi2 , . . . , pin´1
q, with ij P I Ď t1, 2, . . . n uztlu some

ordered labelling, then in ΨrhsPn prhsPN q – ξIpTN´2q.

• if ΦPN maps h to SnzBSn, then ΨrhsPn prhsPN q – TN´1.

While this approach may seem somewhat convoluted, its outcomes are actually quite concrete:
from the construction we can recover the shape of the bloch sphere.

Example 2.5.1. A qubit. The space of hidden variables of a maximal distinguishing two dimensional
Hilbert space, that is for a spin- 12 particle or a qubit, is congruent to a sphere. That is a line
segment, with circles on its non-end points. See figure 2.1.

Moreover, we can use the above result to speculate the shape a higher dimensional geometric
representation should take.

Example 2.5.2. Two qubits. The space of hidden variables of a maximal distinguishing four
dimensional Hilbert space, that is for two spin- 12 particles or two qubits by C2 b C2 – C4, is
congruent to the figure constructed above, that is a tetrahedron S4, with circles on the vertices,
spheres on the faces and 3-spheres on the centre points from an object in 7-dimensional space.

Figure 2.1: Graphic representation of the hidden states of the projection valued measure associated
to the Pauli-σZ operator. When projecting on the set of states, represented by the Bloch sphere,
along its central axis by applying this projection valued measure, we lose the ability to distinguish
its original location along the vertical circle. Except for the north and south poles of the sphere,
where there is no information lost, the space of indistinguishable states is thus congruent to a circle
S1 – T.
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Conclusion

Our comparison between quantum and classical mechanics, was here motivated by the abstract
structure we expect a measurement to take. That is, a measurement can abstractly be understood
a function assigning states and observables to different measures on the relevant space of outcomes.
We have called these functions the assignment functions. This then tied in to our original ‘program
of Bohrification’ as exactly the projection valued measures, which, on a separable Hilbert space,
stand in a direct correspondence to commutative algebras as shown in theorem 1.4.12, form the
basis of the quantum mechanical assignment function. By applying the the projection valued
measure to a state, we gain a probability measure on the set of outcomes predicting recorded
frequencies of events. As such we can, now retroactively, argue that indeed the physically relevant
aspects of the non-commutative operator algebras of quantum theory are accessible only through
their commutative subalgebras.

In order to then compare quantum mechanics and classical mechanics, we have compared the
structure of their relevant assignment functions. The quantum mechanical assignment function, as
we have seen, differs from a classical function with respect to the fact that classical functions allow
for an assignment function in which the observable assigns a different outcome measure to each
classical state, which in the (non-trivial) quantum mechanical case is not possible. Even quantum
mechanical observables which hide the maximal amount of states, have a set of indistinguishable
states associated to their assignment function. The quantum mechanical assignment function, in
contrast to the classical one, thus hides states.

How then does this difference help us to understand the non-commutative aspect of quantum
mechanics? While we have been mostly concerned with the commutative aspect of the projection
valued measure, it is exactly the fact that each quantum mechanical assignment function hides
states that allows for a non-commutative physics theory. We can see this point in an argument
from the absurd. If there was only one quantum mechanical experiment, then one maximal
distinguishing quantum mechanical observable would give rise to all the possible outcome measures.
As a consequence, the indistinguishable states of the observable would form a theoretical excess
or residue. That is, as a shorter, more concise theory needing less states would exist (possibliy
constructed using our classical analogue of equation (2.4.2)), we would, by an occam’s razor type
argument, simply argue for a theory predicting the same outcomes, but assigning these measures
directly to their states (exactly as the classical assignment function does). However, exactly
as different two quantum observables only allow for a natural combination extending the two
observables if they commute, such an observable does not exsist. In some rarer cases - as the
theory on hidden variables has shown - non-commuting observables even exclude the formation of
a classical measure all together. It is exactly as one quantum mechanical observable (or rather one
classical observable) cannot tell the complete tale that quantum mechanics is non-commutative.
The non-commutative observables can thus exactly be understood in classical terms due to the
fact that different measurements hide and detect different sets of states.

As a closing note, we would like to point in some directions for further research. Firstly,
we like to note the possibility for some technical improvement of some of the proofs presented.
In particular, the prove of theorem 2.2.14, makes use of the representation of a Von Neumann
algebra as a multiplication algebra, but the approach of Chapter 1, with theorem 1.4.12 as a main
result, seems to suggest that more direct approach should be possible. Moreover, the result of
theorem 1.4.12 makes use of Von Neumann’s theorem showing that an Abelian Von Neumann
algebra acting on a separable Hilbert space is singly generated. As an Abelian Von Neumann
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algebra acting on a separable Hilbert space has a countable strongly dense set of projections an
opening for a direct proof of the existence of suitable projection valued measure using Kolmogorov’s
extension theorem seems possible, improving the directness of the obtained result. Lastly, there
is the possibility of the integration of symmetries into the argument. The relation between the
hidden states and the unitaries in (the commutant of) its Von Neumann algebra (which have
natural conneection to conserved symmetries) seems to point in a direction deeply linked with
the specific use of representation theory in quantum mechanics (the repesentation of local Abelian
groups as in [1, chapter 15]), but this is, as of yet, insufficiently understood.
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