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1
INTRODUCTION

To apply local interventions that may cure a particular disease,
we cannot avoid understanding the cells’ global organization.

A. L. Barabási [1]

1
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2 1. INTRODUCTION

1.1. BRIEF HISTORY OF CANCER RESEARCH
In contrast to popular belief, cancer is not a modern disease. Evidence of cancer cells is
found in dinosaur fossils living 70-80 million years ago [2–5]. Malignant tumor cells were
also found in Homo erectus, an extinct ancestor of modern humans that lived about 4
million years ago in Kenya [6]. At the same time, cancer therapy of patients has primeval
origin. The first evidence for cancer treatment is found in the Edwin Smith papyrus,
containing an ancient Egyptian medical text estimated to be from 3000 BCE. According
to this document, ancient physicians like Hippocrates (460 BC - 370 BC) believed that
cancer originates from the excess of black bile, one of the four “humors” thought to be
the basic substances of the human body. At the end of 18th century, pathologist Rudolph
Virchow (1821-1902) revealed that cancer cells originate from normal and healthy cells
[7]. In the past century, cancer research reached the consensus that this disease is likely
caused by damage to DNA. This long molecule in the cell’s nucleus contains instruc-
tions necessary for diverse functions in the cell. This understanding explains why DNA
damaging factors such as exposure to radiations (e.g. ultraviolet or gamma rays) and
chemical substances (e.g. those encountered in cigarette smoke) are common causes of
cancer.

It turned out that characterizing the origin of cancer is only the proverbial tip of the
iceberg. While in simple genetic diseases, such as cystic fibrosis or muscular dystrophy,
alteration of a sole base in the DNA was found to be associated with the phenotype (i.e.
monogenic diseases), comparison between normal and tumor cells demonstrated inde-
pendent mutations in several genes, suggesting that cancer is a polygenic disease. This
collusion between the so called oncogenes was first exemplified in embryonic fibroblast
cells harboring RAS mutations where their tumorigenic potential were conditioned on
impairment of a second oncogene MYC [8]. Meanwhile presence of tumor suppressors
in mouse and later in human cells were confirmed [9–11]. Collectively, these pieces of
evidence fueled the theory of multistage carcinogenesis which postulates that healthy
cells require several independent aberrations before they can become neoplastic cells
[12, 13].

Clonal evolution is the modern equivalent of the multistep carcinogenesis theory
[14]. In this model, few cells with acquired “advantageous” mutations overpower nearby
cells by taking over their resources and grow out into so called benign tumors. As their
name suggests, these benign tumors are often harmless. The malignant step occurs
when cells in these tumors acquire additional mutations allowing them to metastasize
(i.e. traveling to other organs) which accounts for as much as 90% of cancer mortality
[15]. Breast cancer presents an infamous example of this event where the majority of
deaths from this disease are not due to the primary (benign) tumor but from metasta-
sis [16]. Breast cancer is the most common type of cancer in women worldwide and
is the prime cause of death among them [17, 18]. Substantial efforts have been made
to discern the complex aberrations that are frequently observed in patients diagnosed
with this cancer. In Chapter 2 and 4, we will focus on breast cancer and investigate its
abnormalities.

It is believed that proliferating cells originated from the primary tumor in breast “in-
travasate” to blood or lymphatic vessels and later “extravasate” into the target organ [19].
These cells require ample resources due to their need to maintain high levels of prolif-
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eration, thus necessitating higher blood supply (achieved through angiogenesis) [20]. At
the same time, these cells must stay hidden from the immune system and ignore apop-
totic signals in order to sustain their expansion [21]. In a seminal paper, Hanahan and
Weinberg consolidated this theory into six cellular hallmarks including evading apopto-
sis, self-sufficiency in growth signals, insensitivity to anti-growth signals, sustained an-
giogenesis, limitless replicative potential, tissue invasion and metastasis [22]. In their
subsequent influential paper, Hanahan and Weinberg complemented this theory with
the additional hallmarks such as reprogramming of energy metabolism and immune de-
struction evasion [23].

1.2. GLOBAL VIEW OF CELL STATE
As Hanahan and Weinberg argued, the formation and spread of neoplastic cells rely on
disruption of diverse processes (i.e. hallmarks of cancer). Furthermore, each individual
mis-regulation is known to be essential for cancer development in these cells [21, 24]. It
should be noted that these perturbed processes might be result of abnormal expression
of many genes. Consequently, assessing aberrations in only few candidate genes may not
be sufficient to describe and further understand the underlying mechanisms driving the
progression and metastasis in cancerous cells [25]. Therefore, it is nowadays accepted in
cancer research that piecing together the cancer “puzzle” is nearly impossible without
considering the entire set of genes operating in the cell [26].

1.2.1. MEASURING THE TRANSCRIPTOME

Completion of the human genome project promoted several measurement techniques
with unprecedented capabilities. Microarrays [27, 28] in particular, have proved to pro-
vide a global view of transcribed genes at the level of messenger RNAs (mRNA). Using
this exciting technology, for the first time, investigation of aberrated cellular processes
and regulatory mechanisms in cancer cells at a genome-wide scale became possible.
This notable step forward, coupled with a relatively cheap and convenient laboratory
protocol, led to widespread application of microarrays in a variety of biological problems
and revolutionized cancer research [29]. Microarrays exploit the hybridization prop-
erty of DNA in which two complementary strands of DNA bind to each other to form a
double stranded molecule. A microarray chip contains probes, which are spots of single
stranded DNA representing all genes in a host of interest. These probes hybridize specif-
ically to their complementary mRNA originating from the host genes. Next, a laser beam
excites fluorescent dyes mounted on the mRNA molecules during library preparation.
The fluorescence emissions are then captured by a high resolution camera to provide a
genome-wide picture of expression for that particular sample.

In the past few years, next generation sequencing and in particular sequencing of
RNA-derived molecules (RNA-seq) gained popularity. This technology is specially in-
teresting as it is not limited to known sequences which enables exploration of organisms
with unknown transcripts or splice-variants. However in breast cancer research (which is
the focus of this thesis), the available datasets based on RNA-seq are still limited in num-
ber of samples. Most notably, The Cancer Genome Atlas (TCGA) [30] encompasses 1092
survival labeled breast cancer RNA-seq samples (at the moment of writing this thesis)
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which is still far fewer than available samples in microarray datasets such as METABRIC
[31, 32]. Nevertheless, number of publicly available RNA-seq samples are increasing at
a fast pace while subtle caveats and biases in this technology [33] are being identified
and resolved with computational methodologies [34, 35]. Therefore, It is expected that
RNA-seq technology will replace microarrays in transcriptome profiling if these datasets
grow in size and robust methods to process and normalize its data are introduced [36].
Considering recent reports, one could argue that this transition has already happened
[37]. It is worth noting that this shift will make a huge pile of microarray samples ob-
solete. Maybe the best approach in machine learning applications would be to develop
and utilize cross-platform normalization strategies to combine microarray and RNA-seq
datasets (see section 1.2.4 and [38]).

1.2.2. MACHINE LEARNING

Advances in sequencing platforms and microarrays provided affordable genome-wide
measurements for many laboratories. It was believed that all necessary pieces of the
cancer puzzle have finally become available [39]. However, the sheer amount of data
produced by these technologies and extracting the relevant information soon gave rise
to a series of unique challenges [40]. The complex nature of cancer combined with the
high dimensionality of genomic data required an automated approach to assemble the
puzzle pieces. This coincided with an explosion of computation power in personal com-
puters and a drop in their price. As a result, techniques like machine learning flourished
in genomic research. Soon after the introduction of microarrays, a flow of papers uti-
lizing machine learning methodologies to tackle various problems in cancer research
appeared in top journals.

Perou et al. pioneered one of the early applications of pattern recognition in genomic
research by demonstrating that these models can be used to segregate breast cancer pa-
tients into clinical groups (i.e. subtypes) with homogeneous patterns of expression in
each group [41]. This application of machine learning is commonly known as “unsuper-
vised” learning as no prior categorization (e.g. subtype) for patients is considered to de-
termine parameters of the model. Later, van ’t Veer et al. introduced a supervised appli-
cation of machine learning called outcome prediction. In contradiction to unsupervised
methods, a supervised method “learns” the relationship between expression patterns of
patients for which a phenotype of interest (in this case their outcome) is known and aims
to predict the phenotype for new patients. van ’t Veer et al.’s tool (called MammaPrint)
could classify patients into "good" (survival more than 5 years) or "poor" (survival less
than 5 years) prognosis by analyzing expression levels of 70 pre-defined genes. This al-
lowed breast cancer patients with expected good prognosis to be excluded from treat-
ments with drastic side effects (e.g. chemotherapy). Introduction of MammaPrint trig-
gered a great excitement in cancer research community because it aimed to address
the main limitation in clinical practices where each physician would rely on his or her
own criteria for determining chemotherapy administration, introducing inconsistencies
among prognosis [42].

As exemplified by MammaPrint, exploitation of genomic data has profound implica-
tions toward more personalized treatments for breast cancer patients. Within this thesis
we will study several classifiers (e.g. Lasso [43]) that were previously employed as out-
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come predictors in more detail and further utilize their extensions (e.g. Sparse Group
Lasso [44]) as models that can exploit existing knowledge about the cellular processes
and functions represented in gene-gene interaction networks. Classical outcome pre-
dictors (such as MammaPrint) are often linear models. In these models, for each patient,
gene expression levels are combined (with different weights) into a single value that rep-
resents patient’s membership to good/poor prognosis group. In the next section, we will
explore linear outcome predictors in more detail.

1.2.3. LINEAR REGRESSION
Consider a problem in which a researcher aims to explain a phenotype of interest yi 2R
from a set of d observations (genes) that are collected from n samples (patients) xi =£
xi1 , xi2 , . . . , xid

§
i 2 {1,2, . . . ,n} 1. Let Ø j represents the contribution (weight) of a gene j

to the patient’s outcome:

Ø=

2

66664

Ø1
Ø2
...
Ød

3

77775
, pi =

dX

j=1
Ø j xi j (1.1)

where pi is the predicted outcome by this linear model for sample xi . Optimal weights
for this problem minimizes the Mean Square Error (MSE) between prediction pi and the
observed phenotype yi , across all patients:

minL
°
Ø

¢
= 1

2

nX

i=1

√

yi °
dX

j=1
Ø j xi j

!2

= 1
2

∞∞y°XØ
∞∞2

2 (1.2)

where k.k2 is the L2 norm i.e.
∞∞Ø

∞∞
2 = 2

q
Ø2

1 +Ø2
2 +·· ·+Ø2

d . Furthermore, X 2 Rn£d 2 is

an expression matrix containing n patients and d genes while y 2 Rn£1 is a vector of n
phenotypes of interest for all patients. cost function (1.2) is known as Ordinary Least
Square (OLS) problem. Owing to its simplicity, optimal coefficients Ø j in this minimiza-
tion problem can be found by a few linear algebra operations:

L(Ø) =
∞∞y°XØ

∞∞2
2 = (y°XØ)T (y°XØ)

= y T y °2ØT X T y +ØX T XØ (1.3)

Differentiating equation (1.3) with respect to Ø and equating the result to zero gives:

°X T y + (X T X )Ø§ = 0 (1.4)

where Ø§ indicates the optimal vector of values that minimizes cost function (1.2). Fur-
ther reordering of these terms yields:

Ø§ = (X T X )°1 X T y (1.5)

1In this thesis, boldface letters are used to represent vectors.
2In this thesis, capital boldface letters represent matrices.
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Precise calculation of (X T X )°1 requires X to have full rank. Meaning that this ma-
trix has to satisfy several prerequisites (see [45] for details). Most notably, the number
of rows (patients) should be at least as large as the number of columns (genes). This
is why having many samples to train an outcome predictor is a major factor in the ac-
curacy of the trained model. At the same time, having many samples assists the model
to disregard the technical noise that may be introduced during the preparation of sam-
ples or expression measurements [46]. Unfortunately, despite substantial progress [47],
it is still expensive to produce such massive datasets for outcome prediction and conse-
quently most datasets for this problem are limited to few thousand patients at best while
encompassing several tens of thousands of genes [48].

1.2.4. BATCH EFFECTS
One basic solution to acquire more samples is to pool data from different studies [49].
However, this approach brings its own challenges. The primal difficulty in sample pool-
ing is that technical variations in expression profiles are often study-specific [50]. Many
sources of such variations can be attributed to e.g. a difference in library preparation,
microarray (or RNA-seq) platform or image acquisition [51]. These disparities often re-
sult in study-specific alterations of expression levels. This variation can be observed even
in early microarrays datasets with an ordinary visualization method like t-SNE [52]. For
example Figure 1.1.a represents a t-SNE visualization of a dataset formed by pooling the
original expression data measured by Perou et al. as well as van ’t Veer et al.. In this fig-
ure, one can see that patients in the Perou et al. dataset are more similar to each other
compared to patients in the van ’t Veer et al. dataset. In this example, outcome predic-
tion of a linear regression model that is trained using the van ’t Veer et al. data would not
be better than a random guess when applied to patients in the Perou et al. dataset. To
overcome these study-specific effects several pre-processing methods have been devel-
oped. COMBAT [53] is one of the commonly used methods to remove batch effects from
microarray data. Figure 1.1.b demonstrates the same dataset after correction of expres-
sion levels (using COMBAT) showing that study-specific clusters of patients do not exist
anymore.

In Chapter 4, we show that although apparent batch effects can be removed (e.g. us-
ing COMBAT) from an expression dataset that is formed by pooling samples from inde-
pendent studies, more subtle batch effects remain in the dataset. More critically, recent
studies reported evidence for new batch effects that are introduced by batch effect re-
moval methods themselves [54]. In fact, dealing with these batch effects is expected to
be the next major challenge in the large-scale analysis of biological datasets [55].

1.2.5. MODERATING COMPLEXITY OF THE MODEL
It should be noted that, finding the optimal parameters for an outcome predictor is not
the final goal. This is because the optimal Ø§ coefficients only guarantee precise pre-
diction of yi across all "seen" patients (training set). Yet, such an optimization does not
warrant accurate prediction of survival for "unseen" patients (test set). This concept is
often known as the generalization capability of a classifier. Many factors can have neg-
ative impact on the generalization competence of a classifier. For example, the intrinsic
batch effects discussed previously can hamper generalization of an outcome predictor
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Figure 1.1: Due to variations in library preparation and data pre-processing across studies, pooling datasets
is challenging. Methods like COMBAT can potentially mitigate the cross-study variation. To visualize this
variation, t-SNE can be used to represent the patients in a 2-dimensional space in a way that patients with
similar expression profile reside closer in 2D space while disparate patients end up far away from each other.
a. t-SNE visualization of gene expression data pooled from Perou et al. and van ’t Veer et al.. b. Visualization of
the same datasets after reducing batch effects using COMBAT.

to a large degree. In those cases, the classifier usually overfits to the training set meaning
that the prediction accuracy of the training samples are noticeably higher than samples
in the test set.

Overfitting is also prevalent when the utilized dataset has many features (genes) and
few samples (patients) (curse of dimensionality) which is a typical property of biological
datasets [44].

Additionally in medical applications, it is crucial to identify genes whose expression
levels are mostly associated to the phenotype of interest (i.e. interpretation of the trained
model). However, the sheer number of measurements that loosely correlate to the phe-
notype of interest make it challenging to discern the involved genes. Accordingly in such
applications, it is commonly sought to determine a smaller subset of elements that ex-
hibits the strongest effect at the expense of accuracy of the model (in the training sam-
ples). Empirical evidence showed that this procedure improves the generalization of the
model [56].

To mitigate these issues, Tibshirani devised LASSO (Least Absolute Shrinkage and
Selection Operator) which aims to reduce the number and influence of the parameters
(genes) in the linear model by “shrinking” the Ø j while preserving the prediction power
(minimal MSE). The resulting cost function is designed to be a mixture of the OLS prob-
lem with a term that regularizes the non-essential (or expendable) Ø j to zero. Tibshirani
proposed the following cost function [43]:

L
°
Ø

¢
= 1

2

∞∞y °XØ
∞∞2

2 +∏
∞∞Ø

∞∞
1 , ∏∏ 0 (1.6)
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where k.k1 is the L1 norm e.g.
∞∞Ø

∞∞
1 =

dP
j=1

ØØØ j
ØØ. The added penalty term effectively en-

courages sparsity in the weights of the solution vectorØwhich leads to feature selection.
At the same time, ∏ provides a balance between the MSE and the shrinkage.

1.2.6. CROSS STUDY GENERALIZATION
As described, pooling datasets (which increases the number of samples) [49] and regu-
larization of coefficients (which reduces the number and influence of genes) [56, 57] is
reported to improve the generalization in outcome predictors. But model generalization
in these reports is often measured in a single study (i.e. within-study generalization).
Meaning that cross-study variation which is a typical property in real world applications
of outcome predictors is not considered in the evaluation procedure. In real world appli-
cations, predictors trained on expression profiles obtained in one hospital, by a certain
preparation protocol or measurement technology, are expected to perform well when
applied to data from a different hospital, protocol or technology. Unfortunately, empiri-
cal evidence showed that such variations substantially impede performance of outcome
predictors [58]. In fact, lack of performance in cross-study validation greatly hampered
the clinical application of outcome predictors [59, 60]. Thus, generalization of an out-
come predictor should be assessed in a cross-study validation procedure to closely sim-
ulate real world application of these models [61, 62].

One may argue that once suitable batch effect removal methods are developed, clas-
sical outcome predictors could be readily used with high generalization [58]. However, if
batch effect is the only limiting factor, then independent analysis of each cohort should
have found similar sets of genes associated with the outcome of patients. Yet, several
studies reported lack of overlap between survival markers identified by independent
analysis of different datasets [63]. Notably, from 70 markers identified by Wang et al.
only three genes were in common with markers identified by van ’t Veer et al. in her in-
dependent dataset [65]. Even more striking, it was shown that many random gene sets
can be predictive as long as this set contained sufficient (i.e. >100) genes [66]. Together
these findings suggest that irrespective of intrinsic batch effects, the characterized mark-
ers are not describing the primary driver mechanisms of the disease and are limited to
secondary passenger manifestations which may differ substantially from patient to pa-
tient [67].

1.3. CELL WIRING DIAGRAM: A VIABLE RESOURCE FOR OUT-
COME PREDICTION

During the past few decades, cancer research has unraveled various pathways that are
often mis-regulated in carcinogenic cells. Perturbations in such diverse driver processes
manifest in extensive expression profile heterogeneity of breast cancer tumors [68]. Sim-
ilarly, deregulation of multiple pathways can have impact on the expression of an indi-
vidual gene. A notable example is TP53 (responsible for apoptosis) which is shown to be
inactivated by many different pathways [69]. Therefore, pathway membership of genes
could be potentially informative for the role a gene can have in the risk of developing
cancer.



1.3. CELL WIRING DIAGRAM: A VIABLE RESOURCE FOR OUTCOME PREDICTION

1

9

1.3.1. EXTENDING THE CLASSICAL OUTCOME PREDICTORS
However, classical outcome predictors do not enforce prior constraints on these rela-
tionships. Considering the number of genes, this flexibility in the classical models could
identify many spurious markers as long as their mixture is predictive. For example, genes
that are related to positive feelings in humans or genes active in localization of skin fi-
broblast in mice were shown to be viable markers in outcome prediction of breast cancer
patients [66]. These findings encouraged a new type of predictive model that promotes
the predictive variables to be formed from sets of genes with priory known relationships
[67].

1.3.2. GENE INTERACTOMES TO GOVERN PREDICTOR MODELS
One way to present gene relationships is to conceptualize genes (as well as proteins or
other metabolites in the cell) as nodes and their interactions as links in a network, giving
rise to many different biological networks [70, 71]. For example in a metabolic network,
directed edges can be used to connect reaction substrates to products [72]. Alternatively,
the physical binding of two proteins can be depicted using an undirected edge which
collectively form a physical Protein–Protein Interaction (PPI) network [73]. Networks
can also depict relationships between genes and their regulators (such as other genes,
transcription factors, RNA or other small molecules) [74] or organize them into sets of
overlapping modules commonly known as pathway networks [75]. Generally, sources
of interaction evidence could be experimental [76], literature mined [77, 78], extracted
from expression analysis [79, 80], or even combination of these methodologies [81]. Such
network representations are conceptually appealing in computational biology as many
well-established concepts in network theory can be directly applied on these represen-
tations. Notably, it has been reported that many biological networks are scale-free (i.e.
enclosing few hubs which are highly connected nodes) [82, 83]. Additionally, hubs are
shown to perform well to predict survival of patients [84].

1.3.3. NETWORK BASED OUTCOME PREDICTORS
An intracellular interactome could be a valuable source of information for an outcome
predictor to identify groups of genes that once perturbed could give rise to breast cancer
and its metastasis [67]. This was the dawn of Network-based Outcome Predictor (NOP)
models [85]. These models often incorporate network information in two steps: gene
set formation (selections) and expression aggregation (integration) [86]. The initial step
utilizes a network and outputs gene sets each of which representing (part of) a cellular
process or pathway [87]. In the integration step, the expressions of genes in each set
are combined (often by averaging) to produce a single “meta-gene” [88]. These meta-
genes are then considered as typical features and (similar to a classical model) are used
to train an outcome prediction model [89]. Figure 1.2 depicts a schematic overview of
this procedure.

1.3.4. MODELING EXPRESSIONS IN GENE SETS
While the NOP concept is promising, devising a network-aware model has proven to be
difficult. This is mainly because selection and integration steps in a NOP are interdepen-
dent. Specifically, it is difficult to group genes without knowing 1) how these genes are
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Figure 1.2: Schematic overview of NOPs. NOPs are usually trained in multiple steps. a. Groups of genes are
identified (often through clustering). b. Performance of each gene set is measured. c. Meta-genes are formed
by aggregating the expressions of genes (usually by averaging). d. Final model is trained using produced meta-
genes.

integrated into meta-gene and 2) how the produced meta-gene would perform in collab-
oration with other meta-genes in the final model. In Chapter 2, we propose FERAL that
exploits a derivative of lasso called Sparse Group Lasso (SGL) to simultaneously pick the
most suitable meta-genes from each gene set while aggregating the chosen meta-genes
to form appropriate markers for predicting breast cancer outcome. In the next section,
we will briefly describe the cost functions and properties of these lasso derivatives.

1.3.5. LASSO DERIVATIVES TO SUPPORT GENE GROUPS
Suppose the d genes are divided into G groups and mk where k = {1,2, . . . ,G} denotes
the number of genes in kth group. To simplify the notation, we utilize X k to represent
the expression matrix of genes residing in the kth group while Øk corresponds to the
coefficient vector for this particular group. For clarity, we assume that the patient’s out-
come (y) and the gene expression matrix (X ) are centered (i.e. zero column mean). The
Group Lasso (GL) proposed by Yuan and Lin solves the following convex cost function to
identify the optimal coefficients for each group [90]:

L
°
Ø

¢
= 1

2

∞∞y °XØ
∞∞2

2 +∏
GX

k=1

p
mk

∞∞Øk

∞∞
2 , ∏∏ 0 (1.7)

GL is structurally similar to lasso (which regularize features) but applies regulariza-
tion at the group level. That is, an entire group of predictors may drop out of the model.
The group lasso is a generalization of the standard lasso because if the group sizes are
all equal to one, cost function (1.7) reduces to the classical lasso cost function shown in
equation (1.6).

One limitation in the GL model is its inability to select relevant genes within each
group. That is, if group j is active (i.e. its corresponding coefficients in Ø j are non-zero),
individual coefficients in this group are free to have any arbitrary value (i.e. it becomes
similar to the OLS in equation (1.3)). To mitigate this issue, Friedman et al. proposed
Sparse Group Lasso (SGL), which is formed by coupling the penalty terms of lasso and
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GL, yielding sparsity at both individual feature (gene) and group (i.e. pathway) level.
This cost function is defined as follows [91]:
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SGL is capable of achieving a simultaneous selection of genes and groups (or meta-
genes). In Chapter 2, we investigate such a model (i.e. FERAL) and show its superior
performance compared to several existing NOPs.

1.4. REFINING NETWORKS TO THE PROBLEM OF INTEREST
In Chapter 2, we reproduce two previously reported observations. Initially, we (among
others) note that most (if not all) models trained using meta-genes do not outperform
classical models trained using individual features [88, 92, 93]. This result on the one
hand may suggest that meta-genes do not add to predictive power of trained models.
On the other hand and even more surprising is the observation where a shuffled network
does not reduce NOPs performance. This is clearly in contrast with the promise of NOPs
(i.e. exploiting network information to guide the model) and calls for a fundamental
reevaluation of NOPs structure and how these models are usually trained.

In Chapter 4, we take a critical look at NOPs structure to provide an explanation for
these observations. We point out that biological networks capture only a partial picture
of the cell’s multifaceted system. For example, such networks describe gene expression
correlations or known signaling pathways, but not both at the same time. This incom-
plete perspective may not be sufficient to link the wide range of aberrations that may
occur in a complex and heterogeneous disease such as breast cancer [94, 95]. In ad-
dition, many links in these networks are experimentally obtained from model organ-
isms such as yeast and therefore not specific for humans [96–98]. Finally, it should be
recognized that many links in these networks are unreliable [99, 100], missing [101] or
redundant [102]. For this reason, considerable efforts have been made to refine these
networks [103]. Additionally, interactions are often biased towards well-studied genes
while many other genes are rarely connected to the rest of the network. Taken together,
the employed networks may have little (or insufficient) relevance to outcome prediction
potentially explaining why a shuffled network provides a comparable performance to
biological networks.

To address this issue, we will effectively turn the problem around in Chapter 4. In-
stead of using a generic biological network to improve outcome prediction, we use the
expression data to identify a network of genes that truly improves outcome prediction.
To this end, we search for synergistic gene pairs, i.e. genes whose joint prediction power
is beyond what is attainable by both genes individually [104]. The resulting network,
called SyNet, is specific to the phenotype under study and will be used to govern a NOP
model. In this chapter, we show that integrating genes according to SyNet provides su-
perior accuracy and stability (in terms of performance and marker consistency) and we
also demonstrate that shuffling nodes in SyNet results in a substantial performance drop
which confirms relevance of SyNet links to outcome prediction. Further, while SyNet is
inferred without use of prior biological knowledge, we show that its genes are markedly
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enriched for well-known factors in survival of breast cancer. These findings suggest that
compared to general purpose gene networks, phenotype-specific networks provide valu-
able mechanistic insights into the aetiology of breast cancer that is missed when restrict-
ing towards well-studied genes.

1.5. MULTI-WAY VS. PAIRWISE INTERACTIONS
Due to computational burden, we limited SyNet to pairwise interactions. Downstream
analysis of SyNet revealed that highly connected (hub) genes in this network are in fact
well-known driver genes in breast cancer. This observation corroborates previous find-
ings that these driver genes are involved in multiple fundamental mechanism in this
disease [105]. Based on this observation, it would be interesting to investigate if synergy
could become stronger in triplets of genes. To this end, we selected a limited set of the
top 1000 highly variable genes in a collected cohort of more than 4000 patients (1 billion
gene triplets). Next, we searched for synergistic triplets that did not show predictivity
(i.e. average AUC across 5 repeats of cross-study validation) when constitute genes were
analyzed separately or in pairs. Intriguingly, we found many triples to have such a prop-
erty. Figure 1.3 represents the performance of the top 100 triplets with highest synergy.
Most notably, the top triplet consists of RPL5, SORBS and DDX5 genes, well-known for
their role in invasive capacity of tumor cells in breast cancer patients and their response
to chemotherapy treatment [106–108]. This preliminary evidence suggests that the pair-
wise representation of gene interactions (which are used in most if not all biological net-
works), might be insufficient to truly depict gene relationships. Specially in a complex
disease such as cancer, complete characterization of the cell wiring diagram may require
a more complex representation of the interactions between genes. Nonetheless, repre-
sentation and integration of these higher order interactions are only trivial parts of this
problem. The primal challenge is to experimentally identify and validate these com-
plex multi-way interactions [109, 110]. In fact, inefficiency of measurement techniques
and their low throughput is currently the limiting factor in multi-way interaction assess-
ments [111–114].
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Figure 1.3: Gene triplets may reveal performance that cannot be captured by individual or pairs of genes. Red
bars represents cross-validated performance of top 100 gene triplets. Gray bars represent individual perfor-
mance of the same set of genes. Blue bars represent gene pair performance of selected genes.

1.6. SPATIAL CONFORMATION OF THE GENOME AS A CELLULAR

NETWORK
In the previous sections, we discussed how biological networks represent a myriad of in-
tertwined regulatory mechanisms by which gene expression in the mammalian genome
is regulated. One important process by which a gene’s expression is regulated is through
promoter enhancer loops. An enhancer is a short (50-1500 bp) piece of DNA that attracts
transcription factors and thereby increases the expression of genes that are brought into
its 3D vicinity through the looping of DNA. A genome wide sketch of such relationships
can be represented as a network of interconnections between enhancers and their tar-
get genes. It has been reported that a similar network made for 3D proximity of genes
resembles co-expression network of genes [115], which we showed to be a suitable can-
didate for guiding network based outcome predictors [93]. Further, it has been shown
that perturbation in 3D conformation of the genome could promote neoplasm in cells
[116–118]. Consequently, employing a 3D proximity interactome could potentially guide
existing network based predictors to identify abnormal activity in expression profiles of
carcinogenic cells.

CHROMATIN FOLDING

It is widely established that packing of DNA in the nucleus is not just a compaction
mechanism [119]. In fact, this “conformation” is known to be responsible for fine-tuning
activity of many genes in mammalian cells [120]. This important function entails careful
organization of functional elements in the nucleus even at chromosome level. As de-
picted in Figure 1.4.a, each chromosome preferentially occupies a territory in the nu-
cleus [121]. Active and gene dense chromosomes tend to be positioned in the cen-
ter while other chromosomes are mostly found close to the nuclear periphery [122].
Zooming-in to chromosome territories, one can observe Topologically Associating Do-
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Figure 1.4: Hierarchical organization of the DNA within the nucleus of the mammalian cells. a. Chromosome
territories. b. Chromosome domains and topologically associated domains or TADs. c. Enhancer-promoter
loops

mains (TADs) that are 200kb - 1mb regions within which regulatory DNA elements (i.e.
enhancers and promoters) are often stationed close together in 3D space and form chro-
matin “interactions” [123]. At the boundaries of these TADs, architectural proteins like
the CCCTC-binding factor (CTCF) are located that focus chromatin interactions to intra
TADs and reduce inter-TAD interactions. TAD configurations are stabilized by a ring-
shaped protein called Cohesin, which is believed to hold distantly bound CTCF sites to-
gether [124]. CTCF sites are known to have directionality preferences where chromatin
loops are often found to be formed between convergent CTCF sites.

Proper formation and dynamics of such a complex and hierarchical organization is
known to be essential for appropriate gene activity, and perturbation of these regulatory
mechanisms has been shown to promote cancer development [116, 125]. For breast can-
cer, the role of these chromatin interactions in the deregulation of pathways is subject of
research [126].

Taken together, the current understanding of genome organization states that these
deleterious factors may reside far away from the location of gene sequence. Such a dis-
tal associations between genes (and other functional elements) can be represented in
a genome wide network of elements that collectively govern the expression profile of a
cell in its nucleus. Therefore, such a network may provide another view of the cell wiring
diagram that can be readily used in NOPs. It should be noted that such a comprehensive
understanding of this regulatory system is acquired by at least two decades of intensive
world-wide research. In the next section, we will give a brief overview of these efforts.



1.6. SPATIAL CONFORMATION OF THE GENOME AS A CELLULAR NETWORK

1

15

Cell
nucleus

DNA

Formaldehyde

Restriction
cuts

Cross-linking Digestion

Distal
Fragments

Ligation
a b c

De-crosslinking
d

2nd digestion
e

Circularization
f

Inverse PCR
g

Sequencing
h

Viewpoint
fragment

De-crosslinking

i
Sonication

j
pull down

k
Paired-end sequencing

l

B
B

B
B

B

B

B

B

B

B

B

B B

3C

4C

Hi-C

Figure 1.5: Schematic overview of Chromatin Conformation Capture (3C) methodologies. a. Native 3D con-
formation of DNA within nucleus of cell is fixed by Formaldehyde (beige circles). b. DNA are digested using
restriction enzymes (grey rectangles). Type of restriction site used determines the cut sites. c. Cut sites are
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1.6.1. 3C TECHNOLOGIES

Exploring the cell nucleus and its content using the microscope has been subject of in-
terest since 1873 [127, 128]. However, due to limitations of light microscopy, these find-
ings were mostly limited to large events such as chromosome separation. The study of
chromatin conformation entered a new era after the introduction of Chromatin Con-
formation Capture (3C) based technologies (Figure 1.5a-c), which allowed probing the
relative interaction frequency between a pair of DNA elements within a population of
cells [129]. To measure this, 3C initially fixates the DNA fiber (using formaldehyde cross-
linking) so that its conformation would not be disrupted during later steps. Next, the
chromatin is digested into fragments using restriction enzymes that cut the DNA at par-
ticular enzyme-specific recognition sites. Further, by catalyzing the DNA ligation (via
DNA ligase), fragments in close spatial proximity fuse together and form a concatemer
(i.e. a collection of fragments linked together) (Figure 1.5c). Removing the cross-links
from the concatemer produces the so-called 3C template [130]. Several million nuclei
can be simultaneously treated this way to obtain genome-wide spatially linked DNA
concatemers in a population of cells. These concatemers are later analyzed using se-
quencing platforms (or PCR in classical 3C) to reveal enclosed fragments that were in
close spatial distance at the moment of fixation. The premise in 3C technology (and
other proximity ligation based methods) is that the observed number of fragment liga-
tions are a proxy for the 3D interaction frequency of corresponding elements and their
preferential looping in the genome. This technology formed the basis of several fun-
damental discoveries in genome organization including experimental confirmation of
chromatin loops in transcription regulation [131].

1.6.2. 4C, THE NEXT STEP: CHROMATIN CONFORMATION CAPTURE ON CHIP

3C can only examine contacts formed by few pre-selected regions of the genome. To al-
leviate this limitation, 4C (Chromatin Conformation Capture on Chip) was introduced
which is capable of interrogating interactions between a restriction fragment of interest
(often called viewpoint) and any other restriction fragment in the genome [132] (Fig-
ure 1.5; 4C). To this end, 4C uses two primers that are designed to bind to each end of
the viewpoint. Next, inverse PCR is employed to amplify and enrich for reads that carry
the viewpoint. Inverse PCR necessitates circularization and shortening of reads which
is achieved by a secondary digestion and a subsequent re-ligation of each read. The
PCR products (or concatemers) then need to be prepared for microarray quantification.
With the introduction of next-gen sequencing, this technology was adopted by 4C to
simplify the protocol and enhance its throughput [133]. Nowadays, 4C is widely used
to identify promoter-enhancer [134] or architectural loops [135]. Inspired by 3C and 4C
approaches, many other methods were developed. Notably, Hi-C was proposed to in-
vestigate a genome-wide view of DNA interactions (at the expense of resolution) [136].
To achieve this, Hi-C exploits particular restriction enzymes that are capable of incorpo-
rating magnetic molecules in the cut sites (Figure 1.5; Hi-C) and then employ magnets
to enrich for concatemers that contain concatemers with cut sites.
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reduce abundance of undigested circles d. Circles containing the view point fragment are amplified using
inverse PCR. e. Libraries are then prepared and sequenced in MinION device. f. Sequenced reads enclose
fragments that were in close proximity at the moment of fixation.

1.6.3. UNRAVELING MULTI-WAY INTERACTIONS

In contrast to PPI research which is still focused on pairwise interactions between pro-
teins, the value of higher order 3D interactions (i.e. more than pairwise; see section
1.5) in the genome was well recognized in the genome conformation community [129].
There are two fundamental challenges for multi-way interaction appraisal. Primarily,
higher order assessment requires exponentially higher throughput (i.e. number of se-
quenced reads). Using the latest advances in sequencing technology, the throughput is
still insufficient, even to characterize the full genome wide pairwise interactions [137–
139]. At the same time, multi-way interactions require a complex preparation protocol
[140, 141]. Therefore, research in 3D conformation was focused on pairwise interactions
[142]. In the wake of the 3rd generation sequencing revolution it has become possible
to start interrogating the multi-way interaction landscape of the genome. In Chapter 6,
we layout the first steps in revealing this higher level DNA interaction by exploiting the
long-read sequencing platform MinION. Our approach, called Multi-Contact 4C (MC4C)
(Figure 1.6), targets a specific region of the genome and unravels the multi-way interac-
tions of functional elements in this locus [143].

Specifically, we focus on Ø-globin and PCDHa locus in mice where multi-way inter-
actions between its genes and enhancers was speculated but never experimentally vali-
dated [144–148]. Using MC4C, we provide the first experimental validation that the in-
dividual enhancers of the Ø-globin locus in liver cells can cooperatively interact to form



1

18 1. INTRODUCTION

a spatial enhancer hub (i.e. commonly known as LCR). Additionally, we confirmed that
the collection of enhancers in this LCR can physically accommodate two genes at a time.

It should be noted that 3D interactions between elements in the genome is spec-
ulated to be governed by numerous factors (e.g. CTCF, cohesin, etc.) many of which
are still unknown [130, 149]. Another component in this complex regulatory system is
Wings APart-Like (WAPL) protein, which is cohesin’s DNA release factor. Without WAPL,
cohesin remains bound to chromatin for longer periods of time [150]. Therefore, it was
speculated that absence of WAPL would enable a given CTCF to engage with new CTCF
partners over much larger distances (i.e. loop extension) [151]. However, experimental
confirmation of this hypothesis required the assessment of multi-way interactions be-
tween multiple CTCF sites which, until now, was impossible due to the pairwise nature
of the state of the art methods (interaction between A and B in addition to A and C do
not imply interaction between all three elements). To address this question, we applied
MC4C on WAPL deficient Hap1 cells to ascertain the validity of the loop extension hy-
pothesis. Our experiments suggest that in the absence of WAPL, the reeled in CTCF sites
are immobilized in the Cohesin loops. Ultimately, this “trapping” of CTCF sites in the
Cohesin loops brings together distal CTCF sites and form a CTCF “traffic jam”.

1.6.4. CONTRIBUTIONS OF THIS THESIS
The contributions of this thesis can be summarized as follows. In Chapter 2 and 3 we de-
scribe several limitations in current Network-based Outcome Prediction (NOP) models
and propose a novel method called FERAL that exploits various aggregation operators to
represent diverse aberrations that may occur in tumors. In Chapter 4 and 5, we intro-
duce SyNet which initially infers a gene network and then builds a NOP from the same
data, exploiting synergistic effects between pairs of genes. We demonstrate how such
a network not only improves performance beyond individual genes but also stabilizes
the performance across independent datasets. We further show that SyNet corroborates
well with existing biological networks which suggests that it can be used to discover new
pathways that were missed in generic interactions networks.

In Chapter 6, we focus on DNA-DNA interactions and take the first steps in expan-
sion from the pairwise to multi-way view of these networks. We demonstrate how these
multi-way interactions can reveal higher order relationships between elements that were
missed when assessing pairwise interactions. In Chapter 7, we focus on the computa-
tional aspect of multi-way 3D interactions analysis and explore prospective avenues to
augment its efficiency and fidelity.

Taken together this thesis provides further insights into how networks can be in-
ferred and used to improve breast cancer outcome prediction and delineates the starting
point for further multi-way interaction assessments that could bring our understanding
of complex diseases one step closer to elucidation.
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[103] T. Rolland, M. Taşan, B. Charloteaux, S. J. Pevzner, Q. Zhong, N. Sahni, S. Yi, I. Lem-
mens, C. Fontanillo, R. Mosca, A. Kamburov, S. D. Ghiassian, X. Yang, L. Ghamsari,
D. Balcha, B. E. Begg, P. Braun, M. Brehme, M. P. Broly, A.-R. Carvunis, D. Convery-
Zupan, R. Corominas, J. Coulombe-Huntington, E. Dann, M. Dreze, A. Dricot,
C. Fan, E. Franzosa, F. Gebreab, B. J. Gutierrez, M. F. Hardy, M. Jin, S. Kang, R. Kiros,
G. N. Lin, K. Luck, A. MacWilliams, J. Menche, R. R. Murray, A. Palagi, M. M. Poulin,
X. Rambout, J. Rasla, P. Reichert, V. Romero, E. Ruyssinck, J. M. Sahalie, A. Scholz,
A. A. Shah, A. Sharma, Y. Shen, K. Spirohn, S. Tam, A. O. Tejeda, S. A. Trigg, J.-C.
Twizere, K. Vega, J. Walsh, M. E. Cusick, Y. Xia, A.-L. Barabási, L. M. Iakoucheva,
P. Aloy, J. De Las Rivas, J. Tavernier, M. A. Calderwood, D. E. Hill, T. Hao, F. P. Roth,
and M. Vidal, A proteome-scale map of the human interactome network, Cell 159,
1212 (2014).



REFERENCES

1

27

[104] J. Watkinson, X. Wang, T. Zheng, and D. Anastassiou, Identification of gene inter-
actions associated with disease from gene expression data using synergy networks,
BMC Syst. Biol. 2, 10 (2008).

[105] B. K. Rajendran and C.-X. Deng, Characterization of potential driver mutations in-
volved in human breast cancer by computational approaches, Oncotarget 8, 50252
(2017).

[106] N. Wortham, E. Ahamed, S. Nicol, R. Thomas, M. Periyasamy, J. Jiang, A. Ochocka,
S. Shousha, L. Huson, S. Bray, et al., The dead-box protein p72 regulates erÆ-
/oestrogen-dependent transcription and cell growth, and is associated with im-
proved survival in erÆ-positive breast cancer, Oncogene 28, 4053 (2009).

[107] C. Ploeger, N. Waldburger, A. Fraas, B. Goeppert, S. Pusch, K. Breuhahn, X. W.
Wang, P. Schirmacher, and S. Roessler, Chromosome 8p tumor suppressor genes
sh2d4a and sorbs3 cooperate to inhibit interleukin-6 signaling in hepatocellular
carcinoma, Hepatology 64, 828 (2016).

[108] L. Song, R. Chang, C. Dai, Y. Wu, J. Guo, M. Qi, W. Zhou, and L. Zhan, Sorbs1
suppresses tumor metastasis and improves the sensitivity of cancer to chemotherapy
drug, Oncotarget 8, 9108 (2017).

[109] R. A. Beagrie, A. Scialdone, M. Schueler, D. C. A. Kraemer, M. Chotalia, S. Q. Xie,
M. Barbieri, I. de Santiago, L.-M. Lavitas, M. R. Branco, J. Fraser, J. Dostie, L. Game,
N. Dillon, P. A. W. Edwards, M. Nicodemi, and A. Pombo, Complex multi-enhancer
contacts captured by genome architecture mapping, Nature 543, 519 (2017).

[110] S. A. Quinodoz, N. Ollikainen, B. Tabak, A. Palla, J. M. Schmidt, E. Detmar, M. M.
Lai, A. A. Shishkin, P. Bhat, Y. Takei, V. Trinh, E. Aznauryan, P. Russell, C. Cheng,
M. Jovanovic, A. Chow, L. Cai, P. McDonel, M. Garber, and M. Guttman, Higher-
order inter-chromosomal hubs shape 3d genome organization in the nucleus, Cell
(XXXX), 10.1016/j.cell.2018.05.024.

[111] S. Schoenfelder, T. Sexton, L. Chakalova, N. F. Cope, A. Horton, S. Andrews, S. Ku-
rukuti, J. A. Mitchell, D. Umlauf, D. S. Dimitrova, C. H. Eskiw, Y. Luo, C.-L. Wei,
Y. Ruan, J. J. Bieker, and P. Fraser, Preferential associations between co-regulated
genes reveal a transcriptional interactome in erythroid cells, Nature Genetics 42, 53
EP (2009), article.

[112] N. Gheldof, E. M. Smith, T. M. Tabuchi, C. M. Koch, I. Dunham, J. A. Stamatoy-
annopoulos, and J. Dekker, Cell-type-specific long-range looping interactions iden-
tify distant regulatory elements of the cftr gene, Nucleic Acids Research 38, 4325
(2010).

[113] E. Apostolou, F. Ferrari, R. Walsh, O. Bar-Nur, M. Stadtfeld, S. Cheloufi, H. Stu-
art, J. Polo, T. Ohsumi, M. Borowsky, P. Kharchenko, P. Park, and K. Hochedlinger,
Genome-wide chromatin interactions of the <em>nanog</em> locus in pluripo-
tency, differentiation, and reprogramming, Cell Stem Cell 12, 699 (2013).

http://dx.doi.org/10.1002/hep.28684
http://dx.doi.org/10.1038/ng.496
http://dx.doi.org/10.1038/ng.496
http://dx.doi.org/10.1016/j.stem.2013.04.013


1

28 REFERENCES

[114] C. Sinoquet, Probabilistic graphical models for genetics, genomics, and postge-
nomics (OUP Oxford, 2014).

[115] S. Babaei, W. Akhtar, J. de Jong, M. Reinders, and J. de Ridder, 3D hotspots of re-
current retroviral insertions reveal long-range interactions with cancer genes, Nat.
Commun. 6, 6381 (2015).

[116] D. Hnisz, A. S. Weintraub, D. S. Day, A.-L. Valton, R. O. Bak, C. H. Li, J. Goldmann,
B. R. Lajoie, Z. P. Fan, A. A. Sigova, J. Reddy, D. Borges-Rivera, T. I. Lee, R. Jaenisch,
M. H. Porteus, J. Dekker, and R. A. Young, Activation of proto-oncogenes by disrup-
tion of chromosome neighborhoods, Science 351, 1454 (2016).

[117] P. C. Taberlay, J. Achinger-Kawecka, A. T. Lun, F. A. Buske, K. Sabir, C. M.
Gould, E. Zotenko, S. A. Bert, K. A. Giles, D. C. Bauer, G. K. Smyth,
C. Stirzaker, S. I. O’Donoghue, and S. J. Clark, Three-dimensional dis-
organization of the cancer genome occurs coincident with long-range
genetic and epigenetic alterations, Genome Research 26, 719 (2016),
http://genome.cshlp.org/content/26/6/719.full.pdf+html .

[118] M. J. Zeitz, F. Ay, J. D. Heidmann, P. L. Lerner, W. S. Noble, B. N. Steelman, and A. R.
Hoffman, Genomic interaction profiles in breast cancer reveal altered chromatin
architecture, PLOS ONE 8, 1 (2013).

[119] C. L. Woodcock and S. Dimitrov, Higher-order structure of chromatin and chromo-
somes, Curr. Opin. Genet. Dev. 11, 130 (2001).

[120] S. V. Razin and S. V. Ulianov, Gene functioning and storage within a folded genome,
Cell. Mol. Biol. Lett. 22, 18 (2017).

[121] T. Cremer and M. Cremer, Chromosome territories, Cold Spring Harb. Perspect.
Biol. 2, a003889 (2010).

[122] A. J. Fritz, A. R. Barutcu, L. Martin-Buley, A. J. van Wijnen, S. K. Zaidi, A. N. Im-
balzano, J. B. Lian, J. L. Stein, and G. S. Stein, Chromosomes at work: Organization
of chromosome territories in the interphase nucleus, J. Cell. Biochem. 117, 9 (2016).

[123] J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and B. Ren,
Topological domains in mammalian genomes identified by analysis of chromatin
interactions, Nature 485, 376 (2012).

[124] A. Gonzalez-Sandoval and S. M. Gasser, On TADs and LADs: Spatial control over
gene expression, Trends Genet. 32, 485 (2016).

[125] A.-L. Valton and J. Dekker, TAD disruption as oncogenic driver, Curr. Opin. Genet.
Dev. 36, 34 (2016).

[126] N. H. Dryden, L. R. Broome, F. Dudbridge, N. Johnson, N. Orr, S. Schoenfelder,
T. Nagano, S. Andrews, S. Wingett, I. Kozarewa, I. Assiotis, K. Fenwick, S. L.
Maguire, J. Campbell, R. Natrajan, M. Lambros, E. Perrakis, A. Ashworth, P. Fraser,
and O. Fletcher, Unbiased analysis of potential targets of breast cancer susceptibility
loci by capture Hi-C, Genome Res. 24, 1854 (2014).

http://dx.doi.org/10.1101/gr.201517.115
http://arxiv.org/abs/http://genome.cshlp.org/content/26/6/719.full.pdf+html


REFERENCES

1

29

[127] A. F. Schneider, Untersuchungen über Plathelminthen / von Anton Schneider (J.
Ricker„ Giessen :, 1873).

[128] J. R. McIntosh and T. Hays, A brief history of research on mitotic mechanisms, Biol-
ogy 5 (2016).

[129] J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, Capturing chromosome confor-
mation, Science 295, 1306 (2002).

[130] A. Denker and W. de Laat, The second decade of 3C technologies: detailed insights
into nuclear organization, Genes Dev. 30, 1357 (2016).

[131] O. I. Kulaeva, E. V. Nizovtseva, Y. S. Polikanov, S. V. Ulianov, and V. M. Studitsky,
Distant activation of transcription: mechanisms of enhancer action, Mol. Cell. Biol.
32, 4892 (2012).

[132] M. Simonis, P. Klous, E. Splinter, Y. Moshkin, R. Willemsen, E. de Wit, B. van
Steensel, and W. de Laat, Nuclear organization of active and inactive chro-
matin domains uncovered by chromosome conformation capture-on-chip (4c), Nat.
Genet. 38, 1348 (2006).

[133] H. J. G. van de Werken, G. Landan, S. J. B. Holwerda, M. Hoichman, P. Klous,
R. Chachik, E. Splinter, C. Valdes-Quezada, Y. Oz, B. A. M. Bouwman, M. J. A. M.
Verstegen, E. de Wit, A. Tanay, and W. de Laat, Robust 4c-seq data analysis to screen
for regulatory DNA interactions, Nat. Methods 9, 969 (2012).

[134] E. de Wit, B. A. M. Bouwman, Y. Zhu, P. Klous, E. Splinter, M. J. A. M. Verstegen,
P. H. L. Krijger, N. Festuccia, E. P. Nora, M. Welling, E. Heard, N. Geijsen, R. A. Poot,
I. Chambers, and W. de Laat, The pluripotent genome in three dimensions is shaped
around pluripotency factors, Nature 501, 227 (2013).

[135] E. de Wit, E. S. M. Vos, S. J. B. Holwerda, C. Valdes-Quezada, M. J. A. M. Verste-
gen, H. Teunissen, E. Splinter, P. J. Wijchers, P. H. L. Krijger, and W. de Laat, CTCF
binding polarity determines chromatin looping, Mol. Cell 60, 676 (2015).

[136] E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy,
A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bern-
stein, M. A. Bender, M. Groudine, A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny,
E. S. Lander, and J. Dekker, Comprehensive mapping of long-range interactions
reveals folding principles of the human genome, Science 326, 289 (2009).

[137] S. Schoenfelder, M. Furlan-Magaril, B. Mifsud, F. Tavares-Cadete, R. Sugar, B.-
M. Javierre, T. Nagano, Y. Katsman, M. Sakthidevi, S. W. Wingett, E. Dimitrova,
A. Dimond, L. B. Edelman, S. Elderkin, K. Tabbada, E. Darbo, S. Andrews,
B. Herman, A. Higgs, E. LeProust, C. S. Osborne, J. A. Mitchell, N. M. Lus-
combe, and P. Fraser, The pluripotent regulatory circuitry connecting promot-
ers to their long-range interacting elements, Genome Research 25, 582 (2015),
http://genome.cshlp.org/content/25/4/582.full.pdf+html .

http://dx.doi.org/10.1101/gr.185272.114
http://arxiv.org/abs/http://genome.cshlp.org/content/25/4/582.full.pdf+html


1

30 REFERENCES

[138] T.-H. S. Hsieh, A. Weiner, B. Lajoie, J. Dekker, N. Friedman, and O. J. Rando, Map-
ping nucleosome resolution chromosome folding in yeast by micro-c, Cell 162, 108
(2015).

[139] S. Sati and G. Cavalli, Chromosome conformation capture technologies and their
impact in understanding genome function, Chromosoma 126, 33 (2017).

[140] L. Yao, B. P. Berman, and P. J. Farnham, Demystifying the secret mission of en-
hancers: linking distal regulatory elements to target genes, Crit. Rev. Biochem. Mol.
Biol. 50, 550 (2015).

[141] P. Olivares-Chauvet, Z. Mukamel, A. Lifshitz, O. Schwartzman, N. O. Elkayam,
Y. Lubling, G. Deikus, R. P. Sebra, and A. Tanay, Capturing pairwise and multi-way
chromosomal conformations using chromosomal walks, Nature 540, 296 (2016).

[142] W. de Laat and F. Grosveld, Spatial organization of gene expression: the active chro-
matin hub, Chromosome Res. 11, 447 (2003).

[143] A. Allahyar, C. Vermeulen, B. Bouwman, P. Krijger, M. Verstegen, G. Geeven,
M. van Kranenburg, M. Pieterse, R. Straver, J. Haarhuis, H. Teunissen, I. Renkens,
W. Kloosterman, B. Rowland, E. de Wit, J. de Ridder, and W. de Laat, Locus-specific
enhancer hubs and architectural loop collisions uncovered from single allele dna
topologies, bioRxiv (2017), 10.1101/206094.

[144] M. A. Bender, M. Bulger, J. Close, and M. Groudine, Beta-globin gene switching
and DNase I sensitivity of the endogenous beta-globin locus in mice do not require
the locus control region, Mol. Cell 5, 387 (2000).

[145] X. Hu, S. Eszterhas, N. Pallazzi, E. E. Bouhassira, J. Fields, O. Tanabe, S. A. Gerber,
M. Bulger, J. D. Engel, M. Groudine, and S. Fiering, Transcriptional interference
among the murine beta-like globin genes, Blood 109, 2210 (2007).

[146] S. Esumi, N. Kakazu, Y. Taguchi, T. Hirayama, A. Sasaki, T. Hirabayashi, T. Koide,
T. Kitsukawa, S. Hamada, and T. Yagi, Monoallelic yet combinatorial expression of
variable exons of the protocadherin-Æ gene cluster in single neurons, Nat. Genet.
37, 171 (2005).

[147] P. Kehayova, K. Monahan, W. Chen, and T. Maniatis, Regulatory elements required
for the activation and repression of the protocadherin-alpha gene cluster, Proc. Natl.
Acad. Sci. U. S. A. 108, 17195 (2011).

[148] S. Yokota, T. Hirayama, K. Hirano, R. Kaneko, S. Toyoda, Y. Kawamura,
M. Hirabayashi, T. Hirabayashi, and T. Yagi, Identification of the cluster control
region for the protocadherin-beta genes located beyond the protocadherin-gamma
cluster, J. Biol. Chem. 286, 31885 (2011).

[149] E. de Wit and W. de Laat, A decade of 3C technologies: insights into nuclear organi-
zation, Genes Dev. 26, 11 (2012).

[150] H. Yu, Chromosome biology: Wapl spreads its wings, Curr. Biol. 23, R923 (2013).

http://dx.doi.org/10.1007/s00412-016-0593-6
http://dx.doi.org/10.1101/206094


REFERENCES

1

31

[151] J. H. I. Haarhuis, R. H. van der Weide, V. A. Blomen, J. O. Yáñez-Cuna, M. Amendola,
M. S. van Ruiten, P. H. L. Krijger, H. Teunissen, R. H. Medema, B. van Steensel, T. R.
Brummelkamp, E. de Wit, and B. D. Rowland, The cohesin release factor WAPL
restricts chromatin loop extension, Cell 169, 693 (2017).





2
FERAL: A NETWORK BASED

CLASSIFIER

Amin Allahyar
Jeroen de Ridder

This chapter is published in Bioinformatics (2015) 31 (12): i311-i319 [1].

33



2

34 2. FERAL: A NETWORK BASED CLASSIFIER

FERAL: Network Based Classifier with Application to Breast
Cancer Outcome Prediction
Amin Allahyar and Jeroen de Ridder

2.1. ABSTRACT
Breast cancer outcome prediction based on gene expression profiles is an important
strategy for personalized patient care. To improve performance and consistency of dis-
covered markers of the intial molecular classifiers, Network based Outcome Prediction
methods (NOPs) have been proposed. In spite of the initial claims, recent studies re-
vealed that neither performance nor consistency can be improved using these meth-
ods. NOPs typically rely on the construction of meta-genes by averaging the expres-
sion of several genes connected in a network that encodes protein interactions or path-
way information. In this paper, we expose several fundamental issues in NOPs that im-
pede the prediction power, consistency of discovered markers and obscure biological
interpretation. To overcome these issues, we propose FERAL, a network-based classifier
that hinges upon Sparse Group Lasso which performs simultaneous selection of marker
genes and training of the prediction model. An important feature of FERAL, and a sig-
nificant departure from existing NOPs, is that it uses multiple operators to summarize
genes into meta-genes. This gives the classifier the opportunity to select the most rel-
evant meta-gene for each gene set. Extensive evaluation revealed that the discovered
markers are markedly more stable across independent datasets. Moreover, interpreta-
tion of the marker genes detected by FERAL reveals valuable mechanistic insight into
the aetiology of breast cancer.
All scripts used in this manuscript are available for download at:
http://homepage.tudelft.nl/53a60/resources/FERAL/FERAL.zip.

2.2. INTRODUCTION
Breast cancer is the most frequently diagnosed type of cancer and one of the leading
causes of death in women [2]. The main cause of death in these patients is, however,
not the primary tumor, but its metastases at distant sites (e.g. in bone, lung, liver and
brain) [3]. Typical risk factors such as lymph node status and tumor size are insufficient
to accurately predict the risk of metastasis in patients [3, 4]. Over the last few years,
substantial efforts have been made in deriving molecular classifiers to predict clinical
outcome based on gene expression profiles obtained from the primary tumor [3, 5, 6].

A fundamental limitation of breast cancer outcome prediction is that it proved very
difficult to obtain a robust classifier performance across different datasets. It was found
that, despite properly cross-validated classifier training, prediction performance decreases
dramatically when a classifier trained on one dataset is applied to another one [7, 8].
Moreover, the prognostic gene signatures identified using these classifiers have poor
concordance across different studies [9, 10]. This points to a lack of a unified mecha-
nism through which clinical outcome can be explained from gene expression profiles,
which is still a major hurdle in clinical cancer biology.

Several studies ascribe the lack of classification robustness to insufficient patient
sample size [11]. Other causes may be the inherent measurement noise in microarray
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experiments or heterogeneity in the samples [9, 12]. To mitigate these issues breast can-
cer datasets are often pooled in order to capture the information of as many samples
as possible in the predictor [10, 13]. It remains, however, an open question how many
samples are sufficient to account for all the noise and heterogeneity.

One of the hallmarks of cancer is that it is caused by deregulation of several processes
or cellular pathways through multiple somatic mutations [14, 15]. More recent efforts of
outcome prediction aim to exploit this hallmark by taking existing knowledge on rela-
tions between genes and pathways into account in the classifier. A common approach
is to aggregate several functionally related genes to produce discriminative meta-genes
or subnetworks [16–20]. Often, functional relationships between genes are determined
based on the topology of a pre-defined biological network such as a co-expression net-
work [21], cellular pathway map [22] or Protein-Protein Interaction (PPI) network [23].
Therefore we refer to such approaches as Network-based Outcome Prediction methods
(NOPs).

The approach proposed by Park et al. is among the first NOPs [21]. Initially, the co-
expression network is partitioned into gene sets using a linkage algorithm. Next, meta-
genes are formed by taking the average expression of the genes in each gene set. Conse-
quently, highly correlated genes will be aggregated which reduces the number of features
as well as co-linearity among genes. The appropriate number of clusters, which deter-
mines the scale at which meta-genes are assembled, is determined by cross-validation.

Chuang et al. exploit the PPI network to identify predictive gene sets (called sub-
networks in their work) [23]. Gene sets are constructed by a greedy procedure which
starts with a gene (i.e. seed gene) and extends iteratively by adding the neighboring gene
that provides the highest mutual information between corresponding average meta-
gene and target label.

Taylor et al. exploit the topology of the PPI network [19]. In this method, predictive
hub genes (i.e. genes with more than five connections) are ranked based on the abso-
lute difference in within-class correlation between the hub and its neighbors. The cor-
responding meta-genes are constructed by taking the difference of expression between
the hub and its neighbors.

Unfortunately, contrary to previous claims, recent studies reported that many NOPs
do not outperform a model trained over single gene features [24–26]. Notably, in the
analysis carried out by Staiger et al., no significant improvement of classification per-
formance nor an improvement of gene signature stability was observed, despite the fact
that these authors examined many different methods and experimented with several bi-
ological networks [26]. Perhaps even more striking is the finding that utilizing random
networks [25] or integrating random genes as markers [27] performs on par with complex
NOPs. Taken together, it appears that current NOPs have produced very limited progress
on solving the issue of robust classification performance and robust prognostic gene sig-
nature selection. This also casts doubt on the potential to extract useful insights from the
derived prognostic gene signatures into the mechanisms underlying the disease.

The main goal of this paper is to identify and alleviate several fundamental issues
in current NOPs that impede on reaching robust prediction performance and identify a
stable prognostic gene signature. We find that the main bottleneck in current NOPs is
that the frequently used average operator is a poor choice to integrate the expression of
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Figure 2.1: Overview of the proposed model (FERAL). a. Current models follow a similar path in which sev-
eral nearby genes (according to a given network) are selected and then integrated using an average operator
resulting in a meta-gene. These meta-genes are then ranked based on a pre-defined scoring function and top
candidates are presented to the final classifier. b. Instead of being limited to average-based meta-genes, FERAL
computes several meta-genes using different operators and employs the sparse group lasso to select the most
appropriate meta-gene for each specific gene set while simultaneously performing selection, integration and
classification.

functionally related genes. Moreover, the use of a single operator may not be sufficient
to capture and summarize the aberration of higher level functions in cell. In addition, we
conclude that decoupling the training of the classifier from the selection of genes to be
used in meta-genes or the selection of the meta-genes themselves hampers the stability
of gene signature identification.

To address these issues, we propose FERAL (DelFt nEtwoRk bAsed cLassifier), a new
NOP method that is based on the Sparse Group Lasso (SGL) [28, 29]. SGL exploits groups
of features (i.e. gene sets) and yields sparsity at both group (i.e. gene set) and feature
(i.e. gene / meta-genes) levels [30]. In this way, simultaneous selection of features and
training of the prediction model is achieved. Furthermore, instead of using a single oper-
ator to integrate gene-expression into meta-genes, FERAL exploits a wide range of such
operators, including a previously unexplored supervised integration strategy.

We present extensive experiments using a compendium dataset called ACES (Ams-
terdam Classification Evaluation Suite), which was recently used for NOP model evalu-
ation [26]. FERAL achieves statistically significant performance improvement, owing to
the regularization of the SGL and inclusion of multiple integration operators. We more-
over find substantially improved stability of the selected prognostic gene sets. Taken
together, these feats enable biological interpretation of the trained classifier which, we
find, results in highly relevant mechanistic insights.

2.3. METHOD
To motivate the design choices of FERAL we start by outlining the basic properties of
existing NOPs. We focus on three well-known models proposed for network-based out-
come prediction. Nonetheless, there are numerous network based methods which we
do not take into consideration. A closer look at these methods reveals that in fact they all
take two main steps to incorporate network information: gene set selection and integra-
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Figure 2.2: Evaluation of different integration operators. a. Visualization of the consistency in the direction of
association with the target label for connected gene pairs in the I2D network. The x-axis represents the magni-
tude of difference, defined as abs
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, where Cx denotes the correlation between gene x

and the target label and Sgn is sign function. The y-axis is the correlation between two genes. b. Performance
comparison between 11 operators including (from left to right): Average, Average of differences between seed
gene and its interactors (implemented in Taylor), Variance, Minimum, Maximum, Median, Regression, Lasso,
Direction Aware Average (DA2), Decision tree (DT) and Support Vector Machine (SVM) with a RBF kernel. To
generate each violin plot, 5000 randomly selected gene sets were integrated into a meta-gene using one of
the operators, and the predictive performance (AUC) is determined. The y-axis represents the improvement
log-ratio of the AUC obtained with the meta-gene with the highest AUC of the individual genes. Purple lines
indicate maximum ratio obtained in each distribution. This comparison shows that other operators are able
to provide similar or even better performance compared to average operator. Interestingly, adjusting the di-
rection of genes before taking the average can improve the performance considerably.

tion (Figure 2.1.a). The selection step should result in gene sets that represent (part of) a
cellular process or pathway that collectively exhibit aberrant behavior. In the integration
step the selected genes are summarized to produce a meta-gene capable of representing
the aberrant behavior in the corresponding cellular process. Typically, this is followed by
an additional round of selection and integration in which meta-genes are selected and
integrated to produce a final prediction.

2.3.1. INTEGRATION OF GENE SETS INTO META-GENES

Most NOPs use the average operator to summarize gene expression into meta-gene ex-
pression. However, other biologically inspired operations, such as the max/min (to model
AND/OR relations) or the variance (to capture variability of expression levels among
genes close in the network) might also be suitable for representing higher level functions
in cell. The assumption in many NOPs is that the directionality of the aberrant activity
is the same (i.e. over/under expression) for nearby genes in the network. This may be
inappropriate, for instance when genes exhibit opposite association w.r.t. the class label.
In such cases the average operator can even cancel out their predictive contribution. By
assessing the expression correlation of protein-protein interactions we established that
this is a frequent event (Figure 2.2a and S3).

This problem arises because the aforementioned operators are unsupervised, i.e. an
identical meta-gene would be produced using shuffled sample labels. This can be re-
solved by using a linear or non-linear regressor that considers the labels for achieving
the best performance. In spite of their superior performance (See Figure 2.2b; S4), su-
pervised integration operators may promote overfitting. This issue is apparent when
linear operators are compared to non-linear ones (e.g. Decision Tree and SVM). Hence,
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in the integration procedure a trade-off exists between performance and complexity.
To alleviate this issue, we propose the Direction Aware Average (DA2) operator which

adjusts the direction of genes before taking the average. DA2 for each gene g is defined
as:

DA2g =
1ØØ™g

ØØ
X

j2√g

sgn
°
C j

¢
£E j ,

where ™g is the gene set of seed gene g and E j and C j contain the expression and cor-
relation values with the class label of gene j , respectively. Just like all supervised meta-
gene constructors, DA2 only uses training samples for calculating C j . The DA2 provides
a balance between stability of unsupervised operators (owing to its simplicity) and per-
formance of supervised operators. It suffers less from overfiting due to the fact that la-
bels are only employed to detect the direction of genes which is more stable compared
to their individual predictive power. This is also apparent from our experiment (Figure
2.2b), as the DA2 provided a comparable performance to top integrating operators (e.g.
regression and the Lasso).

It is worth noting that different integration operators offer different representations
of higher level cellular functions. The proper operator for each gene set is not known a
priori. It might be beneficial to use multiple of such operators, and allow the classifier
to select the appropriate operator to describe a gene set, or allow a single gene set to be
described using multiple operators. In addition to potentially achieving better perfor-
mance, it provides insights into the underling aberrant behavior of each gene set. To the
best of our knowledge, there are no NOPs that use multiple integration operators.

In FERAL, gene sets are formed by the individual gene expression profiles extended
with several meta-genes produced by aggregating gene expression of these genes. We
included the following unsupervised aggregations. The average operator, to model the
overall expression level of the gene set in a fully unsupervised way. The median opera-
tor, similar to average but with reduced sensitivity to outliers. The variance operator, to
measure the fluctuation in expression of interacting genes as this may point to a loss of
regulation due to rewiring. Min and max, to model the AND/OR relationship between
genes. In addition to these unsupervised operators, also supervised operators were in-
cluded. The linear integration is implicitly provided by the SGL. DA2, as described above
was also included. The non-linear integration methods, which are included in the anal-
ysis presented in Figure 2.2b were not included, since it was observed that they were
prone to overfitting (data not shown).

2.3.2. SELECTION OF GENES IN GENE SETS
To determine which genes will be summarized in a meta-gene, Park selects all genes in
a correlation cluster whereas Taylor uses all genes that are connected to the same hub
gene in the PPI network. Both of these methods are likely to produce a highly skewed
cluster size distribution, with a few very large clusters and many smaller ones [31, 32].
These large clusters will contain a substantial number of irrelevant genes that may not
only hamper the performance, but also limit the interpretability of the meta-gene as it is
difficult to identify the driver genes amongst all genes in the gene set [33]. Moreover, in



2.3. METHOD

2

39

Te
st

Tr
ai

n

AV
G

Va
r

M
in

M
ax

M
ed

ia
n

DA
2

…

…

La
be

ls

AUC
Genes

Sa
m

pl
es SGL

FERAL

Trained 
Model

b c
a

d

e

Figure 2.3: Schematic of the training and testing procedures of FERAL. a. In the first step, 10 genes are se-
lected using given network. b. Corresponding genes in expression dataset are selected and normalized using
z-score. c. Meta-genes are computed using the expression profiles of the gene set and target label (in case of a
supervised integration). The expression of the individual genes are retained within the gene set. d. The Sparse
Group Lasso is trained using training samples. e. Test samples are used to assess the prediction performance
(in terms of AUC) in the current fold.

case of Taylor, only genes connected to hub genes can appear in a meta-gene, which a
priori greatly limits the repertoire of genes that can be used in the final predictor.

Instead, in FERAL the gene set size is kept constant. This is achieved by defining gene
sets as groups of ten genes - a seed gene with nine of its closest neighbors. Moreover, all
genes were considered as seed genes, resulting in a total of N gene sets and ensuring
each gene is included in at least one gene set. In case a seed gene has more than nine
neighbors, the gene set is reduced to a total of ten genes by randomly removing genes.
In case a seed gene has less than nine neighbors, the neighbors of the neighbors are
considered in a similar fashion. When a weighted network is used, the edge weights are
taken into account while determining the closest neighbors.

Chuang employs a greedy search to define subnetworks. This is done by iteratively
extending the network from a seed gene guided by a supervised performance criterion.
Because label information is used to guide the network growing, this increases the risk
of overfitting and thereby reduces the stability of selected gene sets. Moreover, this pro-
cedure also critically depends on the accuracy of gene-gene interactions, which may be
problematic as concerns exist about the reliability of individual interactions in these net-
works [34, 35].

Instead of including all genes in a group (Park and Taylor) or using a greedy search
in a noisy network (Chuang), FERAL leverages the fact that the SGL performs embedded
feature selection. This is realized because SGL provides regularization both at the level
of the individual genes as well as the gene set level. As a result, selection of the most
relevant genes will be performed if sufficiently large gene sets are provided. Because fea-
ture selection and classifier training are performed simultaneously, classifiers that offer
embedded feature selection often provide improved performance and select more rele-
vant features [36]. This approach also eliminates the need for additional cross-validation
round that is often incorporated when a feature selection procedure is employed to re-
duce overfitting.

2.3.3. PRE-RANKING AND INTEGRATION OF META-GENES

After producing the meta-genes, most NOPs employ a ranking step. This step can be
considered as a second selection step at the meta-gene level. Typically, each meta-gene



2

40 2. FERAL: A NETWORK BASED CLASSIFIER

is assessed based on a pre-defined ranking function (e.g. mutual information, t-test or
permutation test) and the top candidates will be used in the final prediction step (akin
to so-called individual feature selection). Evaluation of meta-genes in the methods of
Chuang and Taylor is performed one at a time. Hence, the ranking procedure cannot
identify multiple synergistic meta-genes when they have poor individual performance
nor can it determine if several meta-genes contain the same information and are there-
fore redundant (see Figure S2.2 for an example of such cases in Chuang’s method).

As FERAL employs the SGL, which performs embedded feature selection at the gene
set level, the need of meta-gene selection is circumvented altogether. This greatly im-
proves gene set stability.

2.3.4. IMPROVEMENTS ON STANDARD NOPS
To compare against, we use the methods from Park, Chuang and Taylor, henceforth re-
ferred to as standard methods. Based on our discussion so far it seems reasonable to
change a few parts of these standard methods that evidently impede their performance.
The original version of each method (prefixed by “o”) is implemented by strictly follow-
ing the procedure described in the author’s paper. Additionally, we implemented an
improved version (prefixed by “i”) which includes obvious improvements beneficial for
their performance and stability (See S2 for details). More specifically for Park’s method,
instead of training individual Lasso over the meta-genes produced in each level of hier-
archical tree, single Lasso was trained over all meta-genes collected from levels of hier-
archical tree. For Taylor’s method, similar to Staiger et al., we took the average of differ-
ences between hub and its interactor for corresponding meta-gene. Finally, we removed
the ranking procedure in Taylor and Chuang methods and, similar to Park, used the
Lasso to achieve a simultaneous selection and integration of the meta-genes. To assess
the utility of biological networks in the outcome prediction problem we also included a
Lasso trained on the individual genes, i.e. without exploiting network information.

2.3.5. RANKING AND SCORING OF MARKER GENES
One of the main objectives in NOPs is to detect marker genes that play a role in driv-
ing this complex disease. This can be achieved by ranking them on a pre-defined score
that captures the contribution of the genes on the final prediction performance. In the
Chuang method, gene sets (i.e. sub-networks) are ranked based on p-value that is ob-
tained using a permutation test. In Taylor, the average difference of the correlation co-
efficient between classes is used. Finally in Park, the coefficients provided by lasso are
used as gene sets score, which are subsequently propagated to the genes in the cluster.
In FERAL, genes are scored based on the coefficients of the SGL. In addition, to take into
account the contribution of the meta-genes in each feature group the largest meta-gene
coefficient value is added to the score of the genes in the gene set. If a gene receives mul-
tiple scores, which is possible due to overlapping gene sets, the scores are averaged (See
S5 for more details on the ranking of methods).

2.3.6. IMPLEMENTATION OF FERAL
The implementation of the Sparse Group Lasso in this work is based on SLEP [37]. We
further added a wrapper around this package to implement sample weighting to mitigate



2.4. RESULTS AND DISCUSSION

2

41

unbalanced classes along with a search for estimating the optimal parameters using an
inner cross-validation. The following steps are taken to train FERAL (Figure 2.3). Initially,
for all genes, nine of its closest neighbors are selected based on a gene network. After z-
score normalization of the expression data, meta-genes are computed. Next, the SGL
classifier is trained using the training samples. The parameters ∏1 and ∏2, which control
the sparsity at the group level and within the groups, respectively, are determined by an
inner cross-validation. Finally, the performance of the current fold is determined using
the AUC measure.

2.4. RESULTS AND DISCUSSION
For evaluation of FERAL we use the Amsterdam Classification Evaluation Suite (ACES)
[25], a cohort of 1606 breast cancer samples collected from 12 studies in NCBI’s Gene
Expression Omnibus (GEO) (see S7 for details). The label for each patient corresponds
to recurrence free survival time with respect to a 5-year threshold (“good” vs. “poor”
outcome). Three different networks are used in the evaluation: I2D, a PPI network also
employed in Staiger et al., a co-expression network and a random network. The co-
expression network was defined on training data only, and thresholded at a correlation of
0.6. To produce the random network, we shuffle the nodes in the I2D network to destroy
any biological knowledge while keeping its structure.

We used Area Under Curve (AUC) as the main measure of performance throughout
the paper. Two types of cross-validation are considered. In the first type (sub-type strati-
fied CV), the ratio of breast cancer sub-types is kept constant in the training and test set.
In the second type (sampled leave-one-study-out CV), half of samples in each study is
randomly selected (with replacement) while all samples from one study is excluded from
selection and kept hidden as a test set. This configuration forms 12 folds, equal to the
number of studies available in ACES. For both cross-validations, the indices of training
and testing samples in each fold are kept identical across all methods.

2.4.1. PERFORMANCE COMPARISON

Figure 2.4a shows the obtained average AUCs for 10 repeats of the subtype stratified CV.
As a first observation we note that the improved versions of the standard methods of-
fer better performance, demonstrating the importance of simultaneous selection and
integration of meta-genes. Interestingly, this improvement is most notable for Park’s
method, which achieves this improved performance despite the fact that the clearly sub-
optimal average operation was used to construct meta-genes. A likely explanation for
this improvement is that iPrk includes meta-genes at several different levels (i.e. meta-
gene scales) in the hierarchical clustering tree. Apparently, it is important that the Lasso
predictor can choose the best scale at which meta-genes are defined, suggesting that
scale is another key factor in the performance of NOPs.

We moreover observe that FERAL offers superior performance across all three net-
works considered. This performance improvement is very significant (p-value < 7 ·10°8;
paired t-test), obtained for the comparison with the best other method, iPrk using the co-
expression network. This demonstrates that the SGL approach applied to gene sets con-
taining several meta-gene definitions are beneficial in terms of predictive performance.
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a.

b.
Figure 2.4: Performance evaluation (AUC). Performance of the methods under study for the protein-protein
interaction network (I2D), a co-expression network (Co-Expr) and a random network (Random). We also
added the result when a classical Lasso is employed (Single). Error bars denote the 95% confidence inter-
val. The heatmaps indicate the p-value of the paired t-test between pairwise comparison of the AUCs of the
individual CV folds. a. Sub-type stratified CV. b. Sampled leave-one-study-out CV.

Figure 2.4b shows the results for 10 repeats of the sampled leave-one-study-out CV.
As expected, all classifiers showed performance reduction, but the general trends re-
main the same, that is, the standard methods performed poorly compared to their im-
proved counterparts and FERAL significantly outperforms all other classifiers. It should
be noted that, although FERAL achieves a better overall performance, the overall classifi-
cation performance is relatively modest. It is likely that there is a limit on the maximum
performance that can be achieved for the problem at hand ( 70% AUC). This is in line
with previous observations [10, 26, 27].
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Figure 2.5: Stability measurement (using Fisher’s exact test) for three different networks including I2D, Co-
Expr and random network. The original version of the standard methods produced a much a lower overlap
between folds due to pre-ranking of meta-genes. Similarly, Lasso produced a low overlap due to random se-
lection of correlated features. FERAL obtained a higher gene set stability across folds for the I2D and Co-Expr
network.

An interesting observation can be made from the performance of methods when the
random network is utilized. As a general trend, all methods produced a comparable per-
formance when networks that contain some biological information are used. The only
exception is the oPrk method, which performs better when random network is used.
Further investigation showed that genes with higher prognostic power often had higher
degree in I2D network. For this reason, these genes would show up in large clusters di-
luting their predictive power after average integration. On the other hand, in the random
network, they will mostly appear in the smaller clusters and can therefore contribute to
the prediction of the Lasso [9, 25, 26]. The lack of a positive contribution on predictive
performance of NOPs that use a biological network has been previously observed. The
most likely explanation for this is the presence of large number of genes that are corre-
lated with the target label which, in turn, makes it possible to construct many alternative
features with comparable performance [9, 27].

2.4.2. STABILITY OF MARKER GENES
Finding robust marker genes is one of the key challenges in breast cancer research as
prognostic gene signatures identified in independent datasets often show little to no
overlap. To assess how FERAL and the (improved) standard methods perform in terms of
signature stability we follow Staiger et al. and assess the stability of selected gene across
folds by means of a Fisher’s exact test. To this end, we measured the overlap between the
top 100 genes selected by each of the methods in every fold (see S5 for details on these
score functions). The leave-one-study-out CV was used without subsampling, resulting
in a 12-fold cross-validation.

Figure 2.5 shows box plots of the marker gene stability for all pairwise comparisons
between the 12 folds. It is striking to see that FERAL as well as the improved standard
methods clearly have better marker gene stability compared to the standard methods
(least significant p-value: 1.7 ·10°52), which perform poorly, irrespective of the network
employed. For the oChg and oTyl methods this can be explained by the fact that only very
few meta-genes are used in the classifier, which apparently vary substantially between
folds. The poor consistency for the oPrk method is caused by a combination of variability
of the linkage tree and unstable regression coefficients resulting from the Lasso.

The concordance is highest for FERAL, which even has significantly improved marker
gene stability compared to the improved standard methods (least significant p-value:
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1.8·10°10). This demonstrates that FERAL’s approach to refrain from a pre-filtering of top
genes or gene sets and providing the embedded feature selection of SGL with all genes
and many meta-genes using different operators is beneficial for marker gene stability.

Marker gene stability is also improved compared to the single gene classifier. This
method performs a Lasso using all genes as predictors and therefore also no pre-filtering
is applied in this method. Nevertheless, the overlap of marker genes between folds is still
much lower than that obtained with FERAL (p-value: 5.3 ·10°53). One explanation is that
Lasso randomly selects features if they are highly correlated [38]. Another reason is that
in different samples different - yet functionally related - genes play a role. As a result, in
any subset of the data different marker genes will be selected. FERAL (and to some ex-
tent also the improved standard methods) are able to mitigate this by exploiting network
information and summarize functionally related or interacting genes into meta-genes.
This is supported by the observation that marker gene stability is significantly reduced
when the random network is used (p-value: 1.6 ·10°29). For the improved standard mea-
sures there is no significance different in case the random network is used. Thus, while
utilizing network information does not improve performance, it is helpful in producing
more stable sets of marker genes.

2.4.3. FUNCTIONAL ENRICHMENT OF MARKER GENES
If a NOP attains reasonable and robust performance and the marker genes selected across
the folds are stable, the selected genes may be amenable to interpretation. This facil-
itates improved understanding of the underlying aberrant processes that play a role in
this complex disease. One way to assess whether the methods under study are capa-
ble of detecting relevant genes is to compare the identified gene sets to already known
cancer-related genes. To accomplish this, we collected nine cancer-related gene sets, in-
cluding six cancer related GO terms. To measure the enrichment of cancer-related genes
in a ranked list of genes produced by each method, we use an AUC measure. We also in-
cluded a rankings based on a gene’s individual AUC (indicated by Ind*) and one random
ranking (indicated by Rnd*).

The observed enrichments obtained using the I2D network are depicted in Figure
2.7a. The results show that all methods have very modest enrichments not exceeding 0.6
for all but one cancer-related gene set. The notable exception is the enrichment obtained
with FERAL, which is vastly superior and close to 0.7 for most cancer-related gene sets
and 0.75 for two of them. The enrichment obtained using the Ind* ranking is generally
poor, which confirms that differential expression analysis is unsuitable for finding genes
involved in the disease. Surprisingly, we observed a severe reduction of gene enrichment
using the Co-Expression network for all methods (See S6). This corroborates previous
findings that protein-protein interaction networks capture regulatory interaction and
functional relations [39].

Taken together, these observations support those made in Section 2.4.1 and 2.4.2,
that is, incorporating network information does not improve performance, but it does
contribute to stabilizing the marker gene sets and finding the biologically relevant genes.

Finally, we used BiNGO [40] to determine enrichment across all available gene sets.
The hypergeometric test with a Benjamini Hochberg false discovery rate of 5% is per-
formed for detecting over representation of the top 400 genes in the GO_Biological_Process
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b.

a.

Figure 2.6: Gene enrichment. a. Gene enrichment of top genes for each method when the I2D network is em-
ployed. The values on top of each group represent the number of genes in each gene set. A notably increased
enrichment is obtained using the gene sets produced by FERAL b. Result of top 15 gene enrichments by BiNGO
applied to top 400 genes provided by FERAL.

category. The top 15 most enrichment GO categories are summarized in Figure 2.7b.
Very significant enrichments are observed in various functional categories related to reg-
ulation, signaling and proliferation. This finding suggests that FERAL is able to uncover
a wide diversity of genes that may play a role in the processes underlying breast cancer
metastasis.

2.4.4. INTERPRETATION OF META-GENES IN FREQUENTLY SELECTED NET-
WORKS

Next, we investigated the selected gene sets and meta-genes by FERAL and determine
whether they provide new insights into the mechanisms of breast cancer metastasis. To
this end, we trained FERAL using the leave-one-study-out CV and obtained optimized
∏1 and ∏2. In this model, still about 1000 gene sets received non-zero coefficients. In an
effort to reduce this further, while retaining the most essential ones, ∏2 was increased
until the number of selected gene sets was less than 100 in each fold. The majority (66)
of the selected gene sets were selected in at least 10 of the 12 folds, demonstrating that
the selected gene sets were stable across folds. These 66 gene sets were then investigated
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a. b. c. d.

Figure 2.7: Frequently identified gene-sets by FERAL. The bars represent the median coefficient across folds,
normalized to the range {°1,1} and represented along the x-axis. Y-axis represents four selected gene sets
(10 genes) along calculated operators (e.g. Avg, std, etc.). Text background colors along y-axis indicate the
expression correlation of corresponding gene with patient prognosis ranging from positive correlation (+1, full
blue) to negative correlation (-1, full red).

for relevance to breast cancer in general and metastasis in particular.
We performed gene set enrichment for all 66 gene sets using BiNGO. The vast ma-

jority of gene sets (94%) were enriched (hypergeometric test with a Benjamini Hochberg
false discovery rate of 5%) for key processes involved in cancer development, such as
signaling of cell growth and survival, (regulation of) cell cycle, cell division, proliferation
and apoptosis. This shows that FERAL is able to retrieve coherent sets of genes that are
involved in cancer.

Figure 2.7 displays four of the selected gene sets, along with their median coefficient
across the folds (horizontal bars) and association of the individual genes with the sur-
vival label (shading behind the gene names). We observe that for all gene sets, at least
one of the genes was selected as a predictor in the final model. In the complete set of 66
gene sets there were 11 that exclusively used expression of individual genes. This corrob-
orates the finding that it is important to supply the classifier with the actual expression
profiles of the genes [16, 18]. Interestingly, in all four gene sets the direction of associa-
tion with the class label was inconsistent between genes in the set. The average operator
is therefore a poor choice to construct a meta-gene, and is consequently not used by the
classifier.

In all four gene sets (and in 83% of all gene sets) a meta-gene obtained a non-zero
coefficient. In three cases (and in 62% of all gene sets) even more than one meta-gene
was selected. This demonstrates the importance of including multiple summarizations
of the gene expression in addition to expression profiles of the genes. Finally, we note
that the simple, yet effective, DA2 operator was selected in gene set (a). This was the case
in 33% of all gene sets. Taken together, we observe that the final predictor was able to
exploit both the raw gene expression profiles as well as a number of carefully constructed
meta-genes.

Next we investigated each of the gene sets in Figure 2.7 using Ingenuity Pathway
Analysis (IPA). Gene set (a) is strongly enriched for p38 MAPK signaling (p-value=1.4 ·
10°14). There is ample evidence to suggest that MAPK signaling plays an important role
in breast cancer, specifically through Notch regulation [41]. Interestingly, among the
genes in this gene set is P53, which typically is not detected through differential expres-
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sion analysis [23]. In this gene set P53 is also not directly selected, but is included in the
final prediction model through the meta genes that are constructed using the DA2 and
Median constructors. IPA also suggested a strong involvement of these genes in prolif-
eration of T-lymphocytes (p-value= 1.5 · 10°12). This is of particular interest as tumor-
infiltrating lymphocytes may be a good biomarker and have recently been implicated in
predicting response to neoadjuvant chemotherapy in breast cancer [42].

Gene set (b) was most enriched for PI3K / AKT signaling (p-value=8.4 ·10°8), which
is one of the major pathways directly related to proliferation and cancer, and for which
there exist promising therapeutic intervention possibilities [43]. For the genes in gene set
(c), IPA revealed a strong enrichment for breast cancer regulation by stathmin-1, a down-
stream target of CDK1, which is included in gene set (c) (p-value=1.4 ·10°6). This gene
set also included RCGAP1, which was recently shown to have prognostic significance in
high-risk early breast cancer [44]. Finally, the gene set (d) was significantly enriched for
estrogen-mediated S-phase entry (p-value=2.9 ·10°13). Estrogen is strongly implicated
in breast cancer risk due to its role in promoting division of breast cells [45].

2.5. CONCLUSION
In this work, we proposed a network based outcome prediction method FERAL, that ex-
ploits network information in molecular classification of breast cancer outcome. Our
method deviates from traditional NOPs in two important aspects. First of all, FERAL in-
cludes several different integration strategies to construct meta-genes, including a novel
supervised integration strategy. Our results indicate that the final classification model
frequently uses meta-genes produced by these constructors, often even multiple meta-
genes based on the same gene set. This underscores the importance of extending tra-
ditional meta-genes based on a simple average. The second important improvement is
that FERAL performs simultaneous selection and training of the classifier by employing
the SGL. This mitigates the need for pre-ranking of genes and/or meta-genes, which is
likely to severely reduce the stability of selected genes.

FERAL reached a significant performance increase compared to all standard NOP
methods, including those that contained significant improvements made by us. This
improvement was also obtained using a random network, leading to the conclusion that
the biological knowledge encoded in the network is not used to obtain these improve-
ments. The stability of marker genes improves substantially as a result of the procedure
implemented in FERAL. This improvement was not observed when the random network
was used, indicating that the biological knowledge contributes to the stability of the gene
signatures.

Because FERAL attains robust performance and stable marker gene selection, the se-
lected genes and gene sets might reveal insight into the underlying aberrant processes
that play a role in this complex disease. We find that almost all of the gene sets used in
the final model were enriched for cancer related processes. The four gene sets that were
studied in more detail revealed very strong suggestive evidence for their involvement
in breast cancer, with clear links to MAPK, PI3K and AKT signaling and regulation by
stathmin-1. In summary, while classification performance of breast cancer outcome ob-
tained with NOPs is unlikely to improve beyond ª70% AUC, we have shown that FERAL
achieves much more stable marker gene selection that enables valuable mechanistic in-
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sight into the aetiology of breast cancer.
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3.1. LASSO AND ITS VARIANTS
To avoid redundancy, this section is omitted in the thesis. Please refer to supplemen-
tary material in the original publication [1], or to the introduction chapter of this thesis
(Chapter 1) for details about Linear Regression (section 1.2.3), Lasso (section 1.2.5) and
its derivatives Group Lasso and Sparse Group Lasso (section 1.3.5).

3.2. A BRIEF OVERVIEW OF PREVIOUS NETWORK BASED OUT-
COME PREDICTION MODELS

In this section we will provide a brief overview of previous network based methods pro-
posed for breast cancer outcome prediction problem. The aim is to explain their proce-
dure with focus on providing an insight on how they are essentially similar. We will also
mention their strong and weak points.

3.2.1. PARK
The main goal in Park’s method is to reduce the collinearity among the genes, which
results in large variance of the estimates and inaccurate prediction [2]. They proposed
a simple yet efficient method which utilizes the noise reduction property of the aver-
age operator to solve this issue. In the first step, they applied hierarchical clustering
with correlation as similarity measure. This will produce dendrogram that exposes the
nested correlation structure. At each level, a meta-genes will be constructed per set by
computing the average expression of genes in that particular set. In other words, they
simply aggregated the highly correlated genes, which not only eliminate the co-linearity
among genes but also reduces the number of features. As the next step, they trained a
Lasso regression over each level of dendrogram and selected the best level using cross-
validation.

Although the collinearity among genes can be reduced using Park’s method, the stan-
dard average linkage will provide a highly skewed distribution of cluster sizes with few
large clusters along with thousands of small ones many of which even contain only a
single gene [3]. In this situation, the constructed meta-gene might potentially lose its
performance if enclosing genes have a different sign of correlation with the target label
(See 3.3). On top of that, a single Lasso is trained on the meta-genes obtained for one
level of the hierarchical clustering tree (Figure 3.1.a). Therefore, this model cannot ex-
ploit synergies from two meta-genes that arise at different levels of the clustering tree.
This is not in line with biology, as cellular functions arise at different scales [4, 5] (Figure
3.1.b).

To validate the multi-scale property of the problem at hand, we constructed all possi-
ble meta-genes using every levels of the given linkage hierarchical tree. In the next step,
Lasso is trained over all of these meta-genes. It should be noted that in the new method,
the scale parameter is eliminated from model. Therefore, only the Lambda parameter
should be determined automatically using an inner cross-validation step. The result of
this experiment is represented in Figure 3.1. It can be observed that useful meta-genes
might be found at different levels. It is interesting to observe that Lasso identified few
parent meta-genes in addition to their child. In other words, a predictive meta-gene can
further produce new information in higher levels of hierarchical tree when aggregated
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with other meta-genes. This shows that outcome prediction is not only multi-scale but
also hierarchical.

Based on the observed improvement, we considered this strategy to add the multi-
scale support to the improved version of Park method.
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a. Single level meta-genes

b. Meta-genes from all levels

Figure 3.1: Multi-scale property of breast cancer outcome prediction. a. Demonstration of 79 selected meta-
genes (in color) and their corresponding parents (in black and white) in a level (7752 clusters) of hierarchical
tree in original version of Park’s method. b. Result of employing all possible meta-genes for training single
Lasso. The meta-genes with non-zero coefficient is demonstrated in color. The height of each cluster repre-
sents the level in which it is selected. It is clear that predictive meta-genes are identified in different levels
which signify the multi-scale property of problem at hand.

3.2.2. CHUANG
Chuang et. al used sub-networks of Protein-Protein Interaction (PPI) network to iden-
tify several predictive sub-networks (a set of functionally related genes) [6]. A meta-
gene is constructed by taking the average expression of genes in the corresponding sub-
network. Each sub-network has a score which is defined as the mutual information be-
tween labels and the corresponding meta-gene. The sub-network selection procedure
is a greedy method. In each step, the current sub-network will be expanded by adding
the nearest gene in the corresponding PPI network. The expansion will end when its
score (mutual information) stops increasing. This is a powerful method to quickly find
discriminative sub-networks and it also supports overlapping gene sets. At end, the top
meta-genes are sequentially added to a logistic regression model until no further im-
provement in the performance is observed.

Apart from being limited to average operator, assessing gene sets and using top sub-
networks solely based on their discriminative power in the training set might cause the
final model to over fit. In addition, greedy search for predictive sub-network over a noisy
network might not provide an ideal solution. Finally, sequential selection of top sub-
networks for final model might select sub-networks with identical enclosed information.

In order to evaluate the effect of pre-ranking meta-genes, we considered the top 500
meta-genes produced in original method of Chuang. Following the corresponding def-
inition we sequentially added these genes and its corresponding performance is mea-
sured using AUC (Figure 3.2; blue curve). On the other hand, we trained a lasso over
all of these meta-genes and measured its performance (Figure 3.2; red line). Based on
this experiment, Lasso achieved higher performance compared to logistic regression. It
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is interesting to observe that the predictive meta-genes are selected irrespective of their
ranking. This demonstrates that ranking is inadequate in this method. For the improved
version of this method, we followed a similar path and applied Lasso to all identified
meta-genes instead of the top ones.
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Meta-genes sorted by individual performance

Figure 3.2: Performance comparison for sequential vs. global selection of meta-genes. Blue curve represents
the step by step performance of logistic regression when i-th top meta-gene is added to the model. In the
original version of this method, the addition terminates when performance stops increasing (marked with
yellow star). However, the performance can be improved if all these meta-genes are utilized using Lasso (ª71%;
represented with red horizontal line). The vertical lines represent the identified meta-genes. The wideness and
color of these lines represent the prominence and sign of corresponding coefficient (red and blue represent
negative and positive respectively). Interestingly, it can be observed that predictive features are not identified
from top meta-genes and many important feature are positioned after breaking point.

3.2.3. TAYLOR
Taylor et al. looked for predictive hub genes (i.e. genes with more than five connections).
Each hub is scored based on the absolute difference of within-class correlation between
the hub and its neighbors:

Sh =
P

i2N (h) Cr°1 (Eh ,Ei )°Cr+1 (Eh ,Ei )

|N (h)|
Where Eh indicates the hub’s expressions and Cr k (Eh ,Ei ) indicates the Pearson’s corre-
lation of h and i genes calculated from samples of class k. In addition, N (i ) produces a
set of genes that have a direct link to gene i . In addition |.| specify the number of items
in a set. The corresponding meta-genes are constructed by taking the average difference
of expression between the hub and its neighbors:

Fh =
P

i2N (h) Eh °Ei

|N (h)|
The Taylor method can detect the sub-networks that change in the correlation of

their enclosing genes is prognostic of metastasis. While this is in line with biology, the
top ranked sub-networks using this procedure might not be predictive. This is because a
strong change of correlation between classes does not indicate the separability of classes.
On the other hand, two completely separated classes might show a similar correlation
between features.

Apart from that, the hub genes regularly have high degrees and most probably not all
of these interactions are predictive. In order to investigate this issue, we applied Lasso to
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the BRCA1 and SP1 interactors that was identified in the author’s paper [7]. Surprisingly,
we observed that a model using 111 genes (Figure 3.3.a) deliver a similar performance
compared to a model which uses only two genes (i.e. CCNB1 and ESR1) (Figure 3.3.b).
These genes are known to be important in breast cancer sub-typing.

In addition, the meta-gene integration operator is in fact a special case of linear inte-
gration where hub and its interactors are averaged with °1 and +1 weights respectively.
Finally, in the Taylor method, similar to Park and Chuang a pre-ranking and incremen-
tal addition of top meta-genes are considered for meta-genes before the final training
step which might impede the performance and stability of identified genes. In the im-
proved version of this method (i.e. iTyl), we excluded the ranking procedure and used all
meta-genes to train Lasso classifier.

C
C
N
B
1

ESR1

a. b.

Figure 3.3: Distribution selection (Taylor) vs. Predictive selection (Lasso). a. Demonstration of a predictive
sub-network identified by Taylor’s method and corresponding predictive genes found by Lasso. While Tay-
lor achieved 0.682 AUC with 111 genes, Lasso identified two genes which produces a similar performance
(AUC=0.679). b.Visualization of two gene expressions (i.e. ESR1 and CCNB1) which was identified by Lasso.
These genes are known to be important in sub-type breast cancer identification.

3.3. DIRECTION OF ASSOCIATION OF NEARBY GENES
In NOPs, meta-genes are often constructed by average operator. However, this operator
would lose its prediction power if included genes in the gene set have different sign of
correlation with the target label. In this experiment we would like to assess the proba-
bility of observing this situation in the nearby genes. Let ci be the correlation between
expression of gene i and target label. It is easy to check that the average meta-gene pro-
duced from gene i and j lose its predictive power if ci £ c j < 0. In order to assess the
frequency of this event in I2D network, we selected all non-singleton genes available in
ACE as seed (n = 9871) along with their closest neighbor. For each pair, we computed
two values as follows:

xaxi s = abs
°
ci ° c j

¢
£ si g n

°
ci £ c j

¢

yaxi s = cor r
°
ei ,e j

¢

Where ei represents the expression of gene i and ci denote the correlation between
ei and target label. In addition, si g n and cor r signify the sign and correlation functions
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respectively. It is worth noting that the first term in xaxi s provides a magnitude for this
issue. Result of plotting these measures is represented in Figure 3.4.a. We observed a
different direction between gene pairs in roughly 49.3% of the cases (4866 out of 9871).
It is important to note that this high frequency is observed in gene pairs only. Gener-
ally, gene sets consist of more than two genes and hence chance of observing different
sign of correlation increases accordingly. Based on this result, it is evident that average
operator would frequently lose performance in gene sets created using I2D. To remove
the effect of this network, we plotted the same measures for all combination of genes
included in ACE dataset in Figure 3.4.b. We observed a similar frequency in this experi-
ment (49.9% vs. 50.1% for negative vs. positive sign respectively). As a final note, it can
be observed from two experiments that an average meta-gene constructed from corre-
lated genes suffers less from this issue compared to uncorrelated ones. This suggests the
utility of Co-Expression networks in NOPs which utilize average based meta-gene.

a. b.

Figure 3.4: Direction of nearby genes. a. Distribution of direction for 9871 seed genes and their closest neigh-
bor. Nearly half of the nearby genes (4866 vs. 5005) showed a different sign of correlation with target label
compared to the seed gene. b. Distribution of genes for all combination of genes (n = 81274875) included in
ACE. Similar frequency (ª50%) for observing a different sign of correlation with target label for gene pairs is
observed.

3.4. PERFORMANCE COMPARISON OF DIFFERENT OPERATORS
In order to compare the average-based aggregation with other aggregation operators and
methods, we created 5000 gene sets based on one randomly selected gene (i.e. a seed
gene) and its 10 closest neighbors according to the PPI network. For each gene set, we
computed meta-genes using 11 different aggregation operators. To determine the per-
formance of these meta-genes, we calculated the ratio of AUC (Area Under Curve) ob-
tained using the produced meta-gene and the gene with highest individual AUC in the
gene set. Hence, values larger than one indicate improvement of the meta-gene over the
best individual gene in the gene set. Result of such experiment is demonstrated in Figure
2.3.b.

We repeated the same experiment for Co-Expression and random network. Results
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of such experiment are demonstrated in 3.5. We also find no improvement if we utilize a
random network for finding neighbor genes.

a. Co-expression network

b. Shuffled network

Figure 3.5: Comparison between operators for 5000 gene sets. a. Co-expression network produces a better
gene sets compared to I2D and random network. b. A comparable performance could be observed when
random network is utilized.

3.5. SCORING FUNCTIONS
Each method under study has its own ranking strategy. The following procedures are
considered for identifying top genes:

• oPrk/iPrk: After training Lasso over generated meta-gene and determining the op-
timal Lambda, each meta-gene has a corresponding coefficient in the optimal
model. The corresponding coefficients are assigned to enclosing genes within
each meta-gene.

• oChg/iChg: The p-values obtained from the final permutation test in Chuang’s
method is considered for score of each sub-network. Next, these scores are propa-
gated to the enclosing genes inside each sub-network. For original version of this
method we only considered the p-values of sub-networks that are included in the
final model (i.e. incremental addition of sub-networks) are considered.
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• oTyl/iTyl: For each sub-network, the difference of correlation between hub and
its interactors is considered as it’s score. Next, these scores are propagated to the
enclosing genes inside each sub-network. For original version, we only considered
the p-values of sub-networks that are included in the final model (i.e. incremental
addition of sub-networks) are considered.

• Std: After training Lasso and determining its optimal Lambda, each gene has a
dedicated coefficient which can be considered as its score for current fold.

• FERAL: After training the SGL for current fold and determining its corresponding
optimal∏1 and∏2, the∏1 in SGL increased while the optimal∏2 kept constant until
less than 100 groups have at least one non-zero coefficient. Then for each gene
set, the maximum coefficient value of its meta-genes are added to the coefficient
of encompassing genes. In other words, each gene gets two scores for each gene
set: its individual coefficient and the maximum value of coefficient of meta-genes.

After collecting the scores, if multiple scores are assigned to a gene (resulted from
overlapping gene sets), average of these scores are considered for the final score of this
gene in current fold. On the other hand, if no score is assigned to a gene, a random value
that is smaller than smallest score in the set is assigned for this gene.

3.6. RESULTS OF GENE ENRICHMENT USING CO-EXPRESSION
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Figure 3.6: Gene enrichment for Co-Expression and a shuffled version. a.Enrichment of markers identified by
FERAL when co-expression network is employed. b. Similar enrichment is obtained when a shuffled version
of network is utilized.
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3.7. DETAILS OF ACES STUDIES

Table 3.1: Collected studies in ACES and their specifications

Dataset Geo accession (GSE) No. of poor No. of good
Ivshina 4922 30 72
Hatzis-Pusztai 25066 102 48
Desmedt-June07 7390 56 127
Minn 2603 21 44
Miller 3494 21 68
WangY-ErasmusMC 2034 88 169
Schmidt 11121 24 145
Pawitan 1456 33 114
Symmans 17705 37 187
Loi 6532 24 33
Zhang 12093 9 112
WangY 5327 10 42
Total 445 1161
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A data-driven interactome of synergistic genes improves network-
based cancer outcome prediction
Amin Allahyar, Joske Ubels and Jeroen de Ridder

4.1. ABSTRACT
Robustly predicting outcome for cancer patients from gene expression is an important
challenge on the road to better personalized treatment. Network-based outcome predic-
tors (NOPs), which considers the cellular wiring diagram in the classification, hold much
promise to improve performance, stability and interpretability of identified marker genes.
Problematically, reports on the efficacy of NOPs are conflicting and for instance suggest
that utilizing random networks performs on par to networks that describe biologically
relevant interactions. In this paper we turn the prediction problem around: instead of
using a given biological network in the NOP, we aim to identify the network of genes
that truly improves outcome prediction. To this end, we propose SyNet, a gene net-
work constructed ab initio from synergistic gene pairs derived from survival-labelled
gene expression data. To obtain SyNet, we evaluate synergy for all 69 million pairwise
combinations of genes resulting in a network that is specific to the dataset and phe-
notype under study and can be used to in a NOP model. We evaluated SyNet and 11
other networks on a compendium dataset of >4000 survival-labelled breast cancer sam-
ples. For this purpose, we used cross-study validation which more closely emulates
real world application of these outcome predictors. We find that SyNet is the only net-
work that truly improves performance, stability and interpretability in several existing
NOPs. We show that SyNet overlaps significantly with existing gene networks, and can
be confidently predicted (ª85% AUC) from graph-topological descriptions of these net-
works, in particular the breast tissue-specific network. Due to its data-driven nature,
SyNet is not biased to well-studied genes and thus facilitates post-hoc interpretation.
We find that SyNet is highly enriched for known breast cancer genes and genes related
to e.g. histological grade and tamoxifen resistance, suggestive of a role in determining
breast cancer outcome. All corresponding scripts are publicly available through github:
https://github.com/UMCUGenetics/SyNet.

4.2. INTRODUCTION
Metastases at distant sites (e.g. in bone, lung, liver and brain) is the major cause of death
in breast cancer patients [2]. However, it is currently difficult to assess tumor progres-
sion in these patients using common clinical variables (e.g. tumor size, lymph-node
status, etc.) [3]. Therefore, for 80% of these patients, chemotherapy is prescribed [4].
Meanwhile, randomized clinical trials showed that at least 40% of these patients survive
without chemotherapy and thus unnecessarily suffer from the toxic side effect of this
treatment [4, 5]. For this reason, substantial efforts have been made to derive molecular
classifiers that can predict clinical outcome based on gene expression profiles obtained
from the primary tumor at the time of diagnosis [6, 7].

An important shortcoming in molecular classification is that ‘cross-study’ general-
ization is often poor [8, 9]. This means that prediction performance decreases dramati-
cally when a classifier trained on one patient cohort is applied to another one [9]. More-
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over, the gene signatures found by these classifiers vary greatly, often sharing only few or
no genes at all [10–12]. This lack of consistency casts doubt on whether the identified sig-
natures capture true ‘driver’ mechanisms of the disease or rather subsidiary ‘passenger’
effects [13].

Several reasons for this lack of consistency have been proposed, including small sam-
ple size [12, 14, 15], inherent measurement noise [16] and batch effects [17, 18]. Apart
from these technical explanations, it is recognized that traditional models ignore the
fact that genes are organized in pathways [19]. One important cancer hallmark is that
perturbation of these pathways may be caused by deregulation of disparate sets of genes
which in turn complicates marker gene discovery [20, 21].

To alleviate these limitations, the classical models (i.e. outcome predictors that use
ordinary classifiers) are superseded by Network-based Outcome Predictors (NOP) which
incorporate gene interactions in the prediction model [22]. NOPs have two fundamental
components: aggregation and prediction. In the aggregation step, genes that interact,
belong to the same pathway or otherwise share functional relation are aggregated (typ-
ically by averaging expressions) into so called “meta-genes” [23]. This step is guided
by a supporting data source describing gene-gene interactions such as cellular path-
way maps or protein-protein interaction networks. In the consequent prediction step,
meta-genes are selected and combined into a trained classifier, similar to a traditional
classification approach. Several NOPs have been reported to exhibit improved discrim-
inative power, enhanced stability of the classification performance and signature and
better representation of underlying driving mechanisms of the disease [19, 24–26].

In recent years, a range of improvements to the original NOP formulation has been
proposed. In the prediction step, various linear and nonlinear classifiers have been eval-
uated [27, 28]. Problematically, the reported accuracies are often an overestimation as
many studies neglected to use cross-study evaluation scheme which more closely re-
sembles the real-world application of these models [8]. Also for the aggregation step,
which is responsible for forming meta-genes from gene sets, several distinct approaches
are proposed such as clustering [24] and greedy expansion of seed genes into subnet-
works [19]. Moreover, in addition to simple averaging, alternative means by which genes
can be aggregated, such as linear or nonlinear embeddings, have been proposed [18, 29].
Most recent work combines these steps into a unified model [9, 30]. Meanwhile, efforts
that extend these concepts to sequencing data by exploiting the concept of cancer hall-
mark networks have also been proposed [31].

Despite these efforts and initial positive findings, there is still much debate over the
utility of NOPs compared to classical methods, with several studies showing no perfor-
mance improvement [22, 32, 33]. Perhaps even more striking is the finding that utiliz-
ing a permuted network [33] or aggregating random genes [11] performs on par with
networks describing true biological relationships. Several meta-analyses attempting to
establish the utility of NOPs have appeared with contradicting conclusions. Notably,
Staiger et al. compared performance of nearest mean classifier [34] in this setting and
concluded that network derived meta-genes are not more predictive than individual
genes [22, 33]. This is in contradiction to Roy et al. who achieved improvements in out-
come prediction when genes were ranked according to their t-test statistics compared
to their page rank property [35] in PPI network [29, 36]. It is thus still an open question
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Figure 4.1: Schematic overview of SyNet inference and NOP training. For every 69 million combinations of
gene pairs (a) we compute three criteria including synergy (Si j , purple), average AUC (Mi j , pink), and corre-
lation (Ci j , blue) (b). These three criteria form a three-dimensional space (c) from which Fitness (Fi j ) can be
calculated for each pair. Top pairs (green dots) in this space are considered as SyNet (d). SyNet is subsequently
used in a NOP (e), in which the links in SyNet guide the construction of “meta-genes”. Within a NOP, groups
of genes are formed (f ) and then integrated into meta-genes (typically using averaging) (g). The constructed
meta-genes are then used as regular features to train standard classifiers (h). The phenotype of interest is
patient outcome (i.e. 5-year survival).

whether NOPs truly improve outcome prediction in terms of predictive performance,
cross-study robustness or interpretability of the gene signatures.

A critical - yet often neglected - aspect in the successful application of NOPs is the
contribution of the biological network. In this regard, it should be recognized that many
network links are unreliable [37, 38], missing [39] or redundant [40] and considerable ef-
forts are being made to refine these networks [39, 41–43]. In addition, many links in these
networks are experimentally obtained from model organisms and therefore may not be
functional in human cells [44–46]. Finally, most biological networks capture only a part
of a cell’s multifaceted system [47]. This incomplete perspective may not be sufficient
to link the wide range of aberrations that may occur in a complex and heterogeneous
disease such as breast cancer[48, 49]. Taken together, these issues raise concerns regard-
ing the extent to which the outcome predictors may benefit from inclusion of common
biological networks in their models.

In this work, we propose to construct a network ab initio that is specifically designed
to improve outcome prediction in terms of cross-study generalization and performance
stability. To achieve this, we will effectively turn the problem around: instead of using
a given biological network, we aim to use the labelled gene expression datasets to iden-
tify the network of genes that truly improves outcome prediction (see Figure 4.1 for a
schematic overview).

Our approach relies on the identification of synergistic gene pairs, i.e. genes whose
joint prediction power is beyond what is attainable by both genes individually [50]. To
identify these pairs, we employed grid computing to evaluate all 69 million pairwise
combinations of genes (see section 4.3.5 for details). The resulting network, called SyNet,
is specific to the dataset and phenotype under study and can be used to infer a NOP
model with improved performance.
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To obtain SyNet, and allow for rigorous cross-study validation, a dataset of substan-
tial size is required. For this reason, we combined 14 publicly available datasets to form
a compendium encompassing 4129 survival labeled samples. To the best of our knowl-
edge, the data combined in this study represents the largest breast cancer gene expres-
sion compendium to date. Further, to ensure unbiased evaluation, sample assignments
in the inner as well as the outer cross-validations folds are kept equal across all assess-
ments throughout the paper.

In the remainder of this paper, we will demonstrate that integrating genes based
on SyNet provides superior performance and stability of predictions when these mod-
els are tested on independent cohorts. In contrast to previous reports, where shuffled
versions of networks also performed well, we show that the performance drops sub-
stantially when SyNet links are shuffled (while containing the same set of genes), sug-
gesting that SyNet connections are truly informative. We further evaluate the content
and structure of SyNet by overlaying it with known gene sets and existing networks, re-
vealing marked enrichment for known breast cancer prognostic markers. While overlap
with existing networks is highly significant, the majority of direct links in SyNet is ab-
sent from these networks explaining the observed lack of performance when NOPs are
guided by the phenotype-unaware networks. Interestingly, SyNet links can be reliably
predicted from existing networks when more complex topological descriptors are em-
ployed. Taken together, our findings suggest that compared to generic gene networks,
phenotype-specific networks, which are derived directly from labeled data, can provide
superior performance while at the same time revealing valuable insight into etiology of
breast cancer.

4.3. MATERIALS AND METHODS

4.3.1. INFERRING A SYNERGISTIC NETWORK (SYNET )
We hypothesized that, in order to improve outcome prediction by network-based clas-
sification, interconnections in the network should correspond to gene pairs for which
integration yields a performance beyond what is attainable by either of the individual
genes (i.e. synergy). Accordingly, we formulated the synergy Si j between gene i and
gene j as

Si j =
Ai j

M ax(Ai , A j )

where Ai , A j and Ai j respectively represent the Area Under Curve (AUC) of gene i ,
the AUC of gene j and the AUC of meta-gene i j formed by aggregation of gene i and
gene j . Meta-gene formation is carried out by a linear regression model which demon-
strated superior performance in our experiments (see Chapter 5, supplementary figure
5.1 for details). Cross-validation performance of the linear regression (see section on
Cross validation design for details) is obtained and the median of 65 AUCs (13 folds and
5 repeats) is used as the final score Ai j for each pair. The AUC of the individual genes
(i.e. Ai and A j ) is obtained in a similar fashion.

Defining the synergy as a function of AUC yields a phenotype-specific (i.e. label-
specific) measure which effectively ignores extraneous relationships between gene pairs
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that are not relevant in outcome prediction. The synergy measure Si j depends on the
performance of individual genes where poorly performing genes tend to achieve higher
degree of synergy compared to two predictive genes (see Chapter 5, supplementary fig-
ure 5.2 for corresponding analysis). In order to account for this effect, the average AUC
of individual genes is included as a second criterion. Furthermore, our preliminary tests
confirmed previous findings [9, 23, 50], that integrating highly correlated genes (which
reduces meta-gene noise) may improve survival prediction. For this reason, we added
correlation of pairs as a third criterion. To combine these three measures, each measure
is normalized independently between [0, 1] and then combined into an overall fitness
score Fi j for gene pair ij:

Fi j =° 2
q

(1°Si j )2 + (1°Mi j )2 + (1°Ci j )2

Here, Mi j and Mi j represent mean AUC and absolute spearman correlation of gene
i and j respectively. Bars above letters indicate that the corresponding values are nor-
malized to the [0 , 1] interval. Employing the Dutch grid infrastructure, we quantified
the fitness for all 69 million possible pairs of genes (n=11748). Figure 4.1.c visualizes the
fitness of all pairs in a three-dimensional space. Finally, the top 50,000 pairs with highest
fitness are considered as SyNet.

4.3.2. EXPRESSION DATA

Accurately estimating survival risk and identifying markers relevant for progression of a
complex disease such as breast cancer requires a large number of samples [12]. To this
end, samples from METABRIC [51] (n=1981) are combined with 12 studies collected in
ACES [22] (n=1606) as well as samples from the TCGA breast invasive carcinoma dataset
[52] (n=532) (see supplementary text for details). Collectively, these datasets, spanning
14 distinct studies, form a compendium encompassing 4129 samples. To the best of our
knowledge, the data combined in this paper represents the largest breast cancer gene
expression compendium to date. As a result, our compendium should capture a large
portion of the biological heterogeneity among breast cancer patients, as well as technical
biases originating from the variability in platforms and study-specific sample prepara-
tions [53]. This variability will assist the trained models to achieve better generalization
which is crucial in real world application of the final classification model [10, 14, 54].
To correct for technical variations that may arise during the library preparation, initially
the expression data within each study is quantile normalized and then batch-effect cor-
rected using Combat [55] where the outcome of patients was modeled as an additional
covariate to maintain the variance associated with the prognostics. This procedure was
shown to perform well among many batch effect removal methods [56, 57]. Successful
removal of batch effects was confirmed using t-SNE visualization [58] (see Chapter 5,
supplementary figure 5.4 for details). The label for each patient corresponds to overall
survival time (or recurrence free survival if available) with respect to a 5-year threshold
(good vs. poor outcome).
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4.3.3. REGULAR CLASSIFIERS AND NETWORK BASED PREDICTION MODELS

Ascertaining the relevance of networks in outcome prediction should be performed us-
ing a robust predictor capable of providing adequate performance in prognostic pre-
diction. Previous assessments in this regard have been limited to only few classifiers
[22, 24, 29, 35]. To identify the optimal predictor, we have compared performance of
wide range of linear and nonlinear classifiers (see Chapter 5, supplementary figure 5.3
for details). Supporting our previous findings [9], this evaluation demonstrates that sim-
ple linear classifiers outperform the more complex ones, with the regularized linear clas-
sifier (Lasso) reaching the highest AUC. This classifier supports both classical as well as
network-based prediction by its derivative called Group Lasso (GL) [59]. The GL is struc-
turally analogous to standard Lasso with the exception of the way in which the regular-
ization is performed; Lasso applies regularization to genes while GL enforces selection
of groups of genes (See supplementary text for details). In order to incorporate network
information in the GL, similar to our previous work [9], each gene in the corresponding
network is considered as seed gene and together with its K neighbors the group struc-
ture provided to the GL. Priority of neighbor selection is determined by edge weights
between each neighbor and corresponding seed gene. The hyperparameters for each
classifier (e.g. K in the GL) are determined by means of a grid search in the inner cross
validation loop (see Chapter 5, supplementary figure 5.5 for schematic overview).

For comparison, we include three well-known NOPs in our analysis. Park et al. uti-
lized hierarchical clustering to group highly correlated genes [24]. Each group is sum-
marized into a meta-gene by averaging the expression profile of the genes in that group.
These meta-genes are then employed as regular features to train a Lasso classifier. The
optimal cluster size for hierarchical clustering is identified by iterative application of
Lasso in an inner cross-validation. Chuang et al. employs a greedy search to define sub-
networks [19]. This is done by iteratively expanding a sub-network initiated from a seed
gene guided by a supervised performance criterion which halts when performance no
longer increases (in the training set). After groups are formed, the meta-genes are con-
structed by averaging expression of each gene within each group similar to Park et al.
Finally, Taylor et al. focus on hubs (i.e. highly connected genes, degree>5) in a network
[25]. To identify dysregulated subnetworks, the change in correlation between each hub
and its direct neighbors across two classes of outcome (poor vs. good) is assessed. Meta-
genes are formed from candidate subnetworks similar to the procedure employed by
Park et al.

4.3.4. NETWORKS

In addition to SyNet, we considered a range of publicly available networks, including
generic networks (HumanInt, BioPlex, BioGRID, IntAct and STRING) as well as a cor-
relation network (Corr) which was previously shown to be an effective network in out-
come prediction [9, 24]. Additionally, we assessed five tissue-specific networks (includ-
ing brain, kidney, ovary, breast, lymph node) that are recently introduced by Greene et
al. [45]. These tissue-specific networks are inferred by integrating protein-protein in-
teractions collected from Human Protein Reference Database [60] and tissue-specific
information from BRENDA tissue ontology [61] and then filtered using expert-selected
Gene Ontology (GO) terms. The tissue-specificity of each network is then validated by
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a comprehensive collection of expression and interaction datasets encompassing about
38000 conditions collected from approximately 14000 publications. To the best of our
knowledge, our study is the first to evaluate tissue-specific networks in the context of
NOPs. To maintain a reasonable network size, we utilized only the top 50,000 links (based
on the link weight) in each network (similar to number of links in SyNet). For the only
unweighted network, HumanInt [39], all interactions (n=ª14k) were included and links
were weighted according to the average degree of the two interacting genes. Moreover,
a randomized version of each network is constructed by shuffling nodes in the network
which destroys the biological information of the links while preserving the overall net-
work structure (see supplementary text for full details on preparation of networks).

4.3.5. CROSS VALIDATION DESIGN

In order to ascertain if network information truly aids outcome prediction, the evalua-
tion should be based on a rigorous cross-validation that closely resembles the real-world
application of these models. To this end, we perform cross-study validation in order to
mimic a realistic situation in which a classifier is applied to data from a different hospital
than it was trained on [8]. Briefly, one study is taken out for validation of the final perfor-
mance (outer loop test set). SyNet inference and NOP training are carried out on the 13
remaining studies (outer loop training set). Within each fold of the outer loop training
set, again one study is left out to obtain the inner loop test set and the rest of studies for
inner loop training set. The inner loop training set is sub sampled (with replacement)
to 70% and regression is performed for every gene as well as gene pairs (identical set of
samples are used across all genes and pairs). The AUC scores (Ai , A j and Ai j ) are cal-
culated on the inner loop test set. This is repeated 5 times. To train a NOP for this fold,
a new inner loop training set is formed by redrawing 70% of the samples from the outer
loop training set. This set is also used to infer correlation network. To assess the final
performance of the NOP the outer loop test set is used (see Chapter 5, supplementary
figure 5.5 for a detailed schematic). Our initial experiments showed a large variation of
performance across studies (see Chapter 5, supplementary figure 5.6 for details). To pre-
vent this variation from influencing our comparisons, assignment of samples to folds
in both inner and outer cross-validation loops are kept identical across all comparisons
throughout the paper. We used Area Under the ROC Curve (AUC) as the main measure
of performance in this paper.

4.4. RESULTS

4.4.1. SYNET IMPROVES NOP PERFORMANCE

We first evaluated NOP performance for three existing methods (Park, Chuang and Tay-
lor) and the Group Lasso (GL) when supplied with a range of networks, including generic
networks, tissue-specific networks and SyNet. As a baseline model, we used a Lasso
classifier trained using all genes in our expression dataset (n=11748) without network
guidance. The Lasso exhibits superior performance among many linear and non-linear
classifiers evaluated on our expression dataset (see Chapter 5, supplementary figure 5.3
for details).

The AUC of the four NOPs, presented in Figure 4.2, clearly demonstrates that SyNet
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Figure 4.2: Performance comparison of NOPs for 4 methods and 12 networks including SyNet. Bars represent
the averaged performance in terms of the AUC and error bars represent the standard deviation of performances
across 10 repeats. The rightmost bar represents the performance of standard Lasso which considers all indi-
vidual genes as features (i.e. no network is used in this model).

improves the performance of all NOPs, except for the Park method in which it performs
on par to the Correlation (Corr) network. Notably, SyNet is inferred using training sam-
ples only, which prevents ‘selection bias’ in our assessments [62]. Furthermore, com-
parison of baseline model performance (i.e. Figure 4.2, rightmost bar) and other NOPs
supports previous findings that many existing NOPs do not outperform regular classi-
fiers that do not use networks [9, 22, 33].

The GL clearly outperforms all other methods, in particular when it exploits the in-
formation contained in SyNet. This corroborates our previous finding [9] that existing
methods which construct meta-genes by averaging are suboptimal (see Chapter 5, sup-
plementary figure 5.1 for a more extensive analysis). The GL using the Corr network also
outperforms the baseline model, albeit non-significantly (p'0.6), which is in line with
previous reports [24]. It should be noted that across all these experiments an identical
set of samples is used to train the models so that any performance deviation must be
due to differences in (i) the set of utilized genes or (ii) the integration of the genes into
meta-genes. In the next two sections, we will investigate these factors in more details.

4.4.2. SYNET PROVIDES FEATURE SELECTION CAPABILITIES
Networks only include genes that are linked to at least one other gene. As a result, net-
works can provide a way of ranking genes based on the number and weight of their
connections. One explanation for why NOPs can outperform regular classifiers is that
networks provide an a priori gene (feature) selection [33]. To test this hypothesis and
determine the feature selection capabilities of SyNet, we compare classification perfor-
mances obtained using the baseline classifier (i.e. Lasso) that is trained using enclosed
genes in each network. While this classifier performs well compared to other standard
classifiers that we investigated (see Chapter 5, supplementary figure 5.3 for details), it
cannot exploit information contained in the links of given network. So, any performance
difference must be due to the genes in the network. The number of genes in each net-
work under study is optimized independently by varying the threshold on the weighted
edges in the network and removing unconnected genes (see 4.3 for network size op-
timization details). The edge weight threshold and the Lasso regularization parameter
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were determined simultaneously using a grid search cross-validation scheme (see Chap-
ter 5, supplementary figure 5.5 for details). Figure 4.3 provides the optimal performances
for 12 distinct networks along with number of genes used in the final model (i.e. genes
with non-zero Lasso coefficients). We also included the baseline model where all genes
(n=11748) are utilized to train Lasso classifier (rightmost bar).

The results presented in Figure 4.3.a demonstrate that SyNet is the only network that
performs markedly better than the baseline model which is trained on all genes. Interest-
ingly, we observe that SyNet is the top performing network while utilizing a comparable
number of genes to other networks. The second-best network is the Corr network. We
argue that superior performance of SyNet over the Corr network stems from the disease
specificity of genes in SyNet which helps the predictor to focus on the relevant genes
only. It should be noted that the data on which SyNet and the Corr network are con-
structed are completely independent from the validation data on which the performance
is based due to our multi-layer cross-validation scheme (see Methods and Chapter 5,
supplementary figure 5.5) which avoids selection bias [62]. We conclude that dataset-
specific networks, in particular SyNet which also exploits label information, provides a
meaningful feature selection that is beneficial for classification performance.

Our result show that none of the tissue-specific networks outperform the baseline.
Despite the modest performance, it is interesting to observe that performance for these
networks increases as more relevant tissues (e.g. breast and lymph node networks) are
utilized in the classification. Additionally, we observe that tissue-specific networks do
not outperform the generic networks. This may be the result of the fact that generic
networks predominantly contain broadly expressed genes with fundamental roles in cell
function which may still be relevant to survival prediction. A similar observation was
made for GWAS where SNPs in these widely-expressed genes can explain a substantial
amount of missed heritability [63].

In addition to classifier performance, an important motivation for employing NOPs
is to identify stable gene signatures, that is, the same genes are selected irrespective of
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the study used to train the models. Gene signature stability is necessary to confirm that
the identified genes are independent of dataset specific variations and therefore are true
biological drivers of the disease under study. To measure the signature consistency, we
assessed the overlap of selected genes across all repeats and folds using the Jaccard In-
dex. Figure 4.3.b shows that a Lasso trained using genes preselected by SyNet, identifies
more similar genes across folds and studies compared to other networks. Surprisingly,
despite the fact that the expression data from which SyNet is inferred changes in each
classification fold, the signature stability for SyNet is markedly better than for generic
or tissue-specific networks that use a fixed set of genes across folds. Therefore, our re-
sults demonstrate that synergistic genes in SyNet truly aid the classifier to robustly select
signatures across independent studies.

4.4.3. SYNET CONNECTIONS ARE BENEFICIAL FOR NOP
The ultimate goal of employing NOPs compared to classical models that do not use net-
work information is to improve prognosis prediction by harnessing the information con-
tained in the links of the given network. Therefore, we next aimed to assess to what ex-
tent also connections between the genes, as captured in SyNet and other networks, can
help NOPs to improve their performance beyond what is achievable using individual
genes. As before, we utilized identical datasets (in terms of genes, training and test sam-
ples) in inner and outer cross-validation loops to train all four NOPs as well as the base-
line model which uses Lasso trained using all genes (n=11748). Our results presented in
Figure 4.4.a, clearly demonstrate that compared to other NOPs under study, GL guided
by SyNet achieves superior prognostic prediction for unseen patients selected from an
independent cohort. To confirm that NOP performance using SyNet is the result of the
network structure, we also applied the GL to a shuffled version of SyNet (Figure 4.4.a). We
observe a substantial deterioration of the AUC, supporting the conclusion that not only
the genes, but also links contained in SyNet are important to achieve good prediction.
Moreover, this observation rules out that the GL by itself is able to provide enhanced per-
formance compared to standard Lasso. The result of a similar assessment for the Corr
network is given in Chapter 5, supplementary figure 5.12. Additionally, we found that
SyNet remains predictive even when the dataset is down sampled to 25% of samples (see
Chapter 5, supplementary figure 5.13 for details). We also evaluated a recently developed
set of subtype-specific networks for breast cancer [31] and found that SyNet markedly
outperforms these networks in predictive performance (see Chapter 5, supplementary
figure 5.18 for details). We next assessed the performance gain of the network-guided
model compared to a Lasso model that cannot exploit network information. To this end,
the GL was trained based on each network whereas the Lasso is was trained based on the
genes present in the network. Figure 4.4.b demonstrates the results of this analysis. We
find that the largest gain in GL performance is achieved when using SyNet (Figure 4.4.b,
x-axis), indicating that the links between genes in SyNet truly aid classification perfor-
mance beyond what is obtained as a result of the feature selection capabilities of Lasso.
Figure 4.4.c provides the Kaplan-Meier plot when each patient is assigned to a good or
poor prognostic class according to frequency of predicted prognosis across 10 repeats
(ties are broken by random assignment to one of the classes) for Lasso as well as Group
Lasso. Result of this analysis suggests that superior performance of the GL compared to
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Figure 4.4: Performance of NOP models trained using SyNet compared to a shuffled version of this network
(i.e. the same genes are present but randomly connected while keeping their degree intact). a. Bars indicate
average performance of models across repeats and error bars denote the corresponding standard deviation.
Solid bars represent average performance of models trained using SyNet. Dashed bars denote performance of
the same model using shuffled SyNet. b. Improvement of performance (x-axis) and stability (in terms of the
standard deviation of the AUC; y-axis) compared to the baseline model. Square and circle markers represent
performance obtained using genes only (i.e. Lasso) and the network (i.e. GL), respectively. c. Kaplan-Meier
plot for patients predicted to have good or poor prognosis. Dashed lines represent the Lasso prediction and
solid lines the Group Lasso (GL) prediction.

the Lasso is mostly stemming from GLs ability to better discern the patients with poor
prognosis.

An important property of an outcome predictor is to exhibit constant performance
irrespective of the dataset used for training the model (i.e. performance stability). This
is a highly desirable quality, as concerns have been raised regarding the highly variable
performances of breast-cancer classifiers applied to different cohorts [8, 64]. To measure
performance stability, we calculated the standard deviation of the AUC for Lasso and
GL. The y-axis in Figure 4.4.b represents the average difference of standard deviation for
Lasso and GL across all evaluated folds and repeats (14 folds and 10 repeats). Based on
this figure, we conclude that a NOP model guided by SyNet not only provides superior
overall performance, it also offers improved stability of the classification performance.

Finally, we investigated the importance of hub genes in SyNet (genes with >4 neigh-
bors) and observe that a comparable performance can be obtained with a network con-
sisting of hub genes exclusively at the cost of reduced performance stability (see Chap-
ter 5, supplementary figure 5.14 for details). Moreover, we did not observe performance
gain for a model that is governed by combined links from multiple networks (either by
intersection or unification, see Chapter 5, supplementary figure 5.15 for details). We fur-
ther confirmed that the performance gain of the network-guided GL is preserved when
networks are restricted to have equal number of links (see Chapter 5, supplementary fig-
ure 5.7 for details), or when links with lower confidence are included in the network (see
Chapter 5, supplementary figure 5.16 for details). We also considered the more complex
Sparse Group Lasso (SGL), which offers an additional level of regularization (see Supple-
mentary text for details). No substantial difference between GL and SGL performance
was found (see Chapter 5, supplementary figure 5.8 for details). Likewise, we did not
observe substantial performance differences when the number of genes, group size and
regularization parameters were simultaneously optimized in a grid search (see Chapter
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5, supplementary figure 5.9 for details). Together, these findings can be considered as
the first unbiased evidence of true classification performance improvement in terms of
average AUC and classification stability by a NOP.

4.4.4. GENE ENRICHMENT ANALYSIS FOR SYNET
Many curated biological networks suffer from an intrinsic bias since genes with well-
known roles are the subject of more experiments and thus get more extensively and ac-
curately annotated [65]. Post-hoc interpretation of the features used by NOPs, often by
means of an enrichment analysis, will therefore be affected by the same bias. SyNet does
not suffer from such bias, as its inference is purely data driven. Moreover, since SyNet is
built based on gene pairs that contribute to the prediction of clinical outcome, we expect
that the genes included in SyNet not only relate to breast cancer; they should play a role
in determining how aggressively the tumor behaves, how advanced the disease is or how
well it responds to treatment.

To investigate the relevance of genes contained in SyNet in the development of breast
cancer and, more importantly, clinical outcome, we ranked all pairs according to their
median Fitness (Fi j ) across 14 studies and selected the top 300 genes (encompassing
3544 links). This cutoff was frequently chosen by the GL as the optimal number of genes
in SyNet (see section 3.1). Figure 4.5 visualizes this network revealing three main subnet-
works and a few isolated gene pairs. We performed functional enrichment for all genes
as well as for the subcomponents of the three large subnetworks in SyNet using Ingenuity
Pathway Analysis (IPA) [66].

IPA reveals that out of 300 genes in SyNet, 287 genes have a known relation to cancer
(2e-06<p<1e-34) of which 222 are related to reproductive system disease (2e-06<p<1e-
34). Furthermore, according to IPA analysis, the top five upstream regulators of genes in
SyNet (orange box, Figure 4.5) are CDKN1A, E2F4, RABL6, TP53 and ERBB2, all of which
are well known players in the development of breast cancer [67–71]. The mean degree
of the 300 genes in SyNet is 24, but there are 12 genes which have a degree of 100 or
above: ASPM [72], BUB1 [73], CCNB2 [74], CDKN3 [75], CENPA [76], DLGAP5 [77], KIF23
[78], MCM10 [79], MELK [80], RACGAP1 [81], TTK [82] and UBE2C [83]. All these genes
play a vital role in progression through the cell cycle and mitosis, by ensuring proper
DNA replication, correct formation of the mitotic spindle and proper attachment to the
centromere.

In addition to a clear involvement of genes linked to breast cancer generically, IPA
also finds clear indications that the genes in SyNet are relevant to clinical outcome and
prognosis of the disease. For instance, the most highly enriched cluster (Figure 4.5; green
cluster) is found by IPA to be associated to histological grade of the tumor (p=6e-201).
The histological grade, which is based on the morphological characteristics of the tumor,
has been shown to be informative for the clinical behavior of the tumor and is one of
the best-established prognostic markers [84]. Notably, the blue cluster is enriched for
genes involved in tamoxifen resistance (p<2e-3), one of the important treatments of ER-
positive breast cancer.

Two other sub-clusters (yellow and purple in Figure 4.5), contain genes from dis-
tinctly different biological processes than the main cluster. In these clusters we also ob-
serve clear hub genes: SLC7A7 and CD74 in the yellow and ACKR1 and MFAP4 in the
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Figure 4.5: Visualization of SyNet. SyNet consists of three main subnetworks (a, b and c) and five separated
gene pairs (d). Node size represents degree of node and link thickness indicates fitness of the corresponding
pair. a. The largest subnetwork encompassing 223 genes is enriched for histologic grade of invasive breast
cancer tumors. b. The second subnetwork is directly connected to the first cluster and contains risk factors
for developing breast cancer. c. The third cluster is enriched for genes upregulated in normal-like subtype of
breast cancer. d. Out of five pairs, only TFF3 and TFF1 pair is enriched for genes up-regulated in early primary
breast tumors.

purple cluster. ACKR1 is a chemokine receptor involved in the regulation of the bio-
availability of chemokine levels and MFAP4 is involved in regulating cell-cell adhesion.
The recruitment of cells, as regulated by chemokines, and reducing cell-cell adhesion
both play an important role in the process of metastasis. CD74 has also been linked to
metastasis in triple negative breast cancer [85]. Metastasis, and not the primary tumor,
is the main cause of death in breast cancer [4].

IPA highly significantly identifies the SyNet genes as upstream regulators of canoni-
cal pathways implicated in breast cancer (Figure 4.5), such as Cell Cycle Control of Chro-
mosomal Replication (8e-18), Mitotic Roles of Polo-Like Kinase (4e-15), Role of CHK Pro-
teins in Cell Cycle Checkpoint Control (6e-12), Estrogen-mediated S-phase Entry (2e-
11), and Cell Cycle: G2/M DNA Damage Checkpoint Regulation (5e-10). Although all
cancer cells deregulate cell cycle control, the degree of dysregulation may contribute to
a more aggressive phenotype. For instance, it is recognized that the downregulation of
certain checkpoint regulators is related to a worse prognosis in breast cancer [86, 87]. In
summary, SyNet predominantly appears to contain genes relevant to two main processes
in the progression of breast cancer: increased cell proliferation and the process of metas-
tasis. Although many genes have not previously been specifically linked to breast cancer
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Figure 4.6: Similarity of existing biological networks to SyNet in terms of a. genes and b. links. The x-axis
represents the percentage of top gene/links used, the y-axis the z-score of observed vs. expected number of
gene/links. The z-score is calculated by relating the observed number of SyNet gene/links that are present
in existing biological networks to the expected distribution. To calculate the expected distribution, genes in
biological networks are shuffled.

prognosis, their role in regulating different stages of replication and mitosis points to a
genuine biological role in the progression and prognosis of breast cancer.

4.4.5. SIMILARITY OF SYNET TO EXISTING BIOLOGICAL NETWORKS
We next sought to investigate the similarity between SyNet and existing biological net-
works that directly or indirectly capture biological interactions. To enable a compari-
son with networks of different sizes, we compare the observed overlap (both in terms
of genes as well as links) to the distribution of expected overlap obtained by shuffling
each network 1000 times (while keeping the degree distribution intact). Overlap is de-
termined for varying network sizes by thresholding the link weights such that a certain
percentage of genes or links remains. Results are reported in terms of a z-score in Figure
4.6.

Figure 4.6.a shows that for the majority of networks a significantly higher than ex-
pected number of SyNet genes is contained in the top of each network. The overlap is
especially pronounced for the tissue-specific networks, in particular the Breast-specific
and Lymph node-specific networks, supporting our observation that SyNet contains links
that are relevant for breast cancer. The enrichment becomes even more significant when
considering the overlap between the links (Figure 4.6.b). In this respect, SyNet is also
clearly most similar to the Breast-specific and Lymph node-specific networks. We con-
firmed that these enrichments are not only driven by the correlation component of SyNet
by repeating this analysis with a variant of the SyNet network without the correlation
component (i.e. only average and synergy of gene pairs are used for pair-ranking; see
Chapter 5, supplementary figure 5.10 for details). It should moreover be noted that, al-
though a highly significant overlap is observed, the vast majority of SyNet genes and links
are not present in the existing networks, explaining the improved performance obtained
with NOPs using SyNet. Specifically, out of the 300 genes in SyNet, only 142 are con-
tained within the top 25% of genes (n=1005) in the Breast-specific network, and 151 in
the top 25% of genes (n=1290) in the Lymph node-specific network. Similarly, out of the
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Figure 4.7: Comparison of three topological measures calculated over biological networks. Each color repre-
sents a network. Gray boxes represent the same topological measures calculated on the shuffled network.

3544 links in SyNet, only 1182 are contained within the top 25% of links (n=12500) in the
Breast-specific network, and 617 in the top 25% (n=12500) of the Lymph node-specific
network (see Chapter 5, supplementary figure 5.11 for details). We further confirmed
that the overall trend in observed overlaps between SyNet and other networks does not
change when the size of these networks (in terms of the number of links) are increased
or reduced (see Chapter 5, supplementary figure 5.17 for details).

4.4.6. HIGHER ORDER STRUCTURAL SIMILARITY OF SYNET AND EXISTING

BIOLOGICAL NETWORKS

In addition to direct overlap, we also aimed to investigate if genes directly connected
in SyNet may be indirectly connected in existing networks. To assess this for each pair
of genes in SyNet, we computed several topological measures characterizing their (indi-
rect) connection in the biological networks. We included degree (Figure 4.7.a), shortest
path (Figure 4.7.b) and Jaccard (Figure 4.7.c) (see Supplementary text for details). To
produce an edge measure from degree and page rank (which are node based), we com-
puted the average degree and page rank of genes in a pair respectively. Furthermore,
we produced an expected distribution for each pair by computing the same topological
measures for one of the genes and another randomly selected gene. The results from this
analysis supports our previous observation that the information contained in the links
of SyNet is markedly - yet only partially - overlapping with the information in the exist-
ing networks. Notably, the similarity increases for networks of increased relevance to the
tissue in which the gene expression data is measured (i.e. breast tissue).

4.4.7. PREDICTING SYNET LINKS FROM BIOLOGICAL NETWORKS

Encouraged by the overlap with existing biological networks, we next asked whether
links in SyNet can be predicted from the complete collection of topological measures
calculated based on existing networks. To this end, we characterized each gene-pair by
a set of 12 graph-topological measures that describe local and global network structure
around each gene-pair. In addition to the degree, shortest path and Jaccard, we included
several additional graph-topological measures including direct link, page rank (with four
betas), closeness centrality, clustering coefficient and eigenvector centrality (see Supple-
mentary text for details). While converting node-based measures to edge based mea-
sures, in addition to using the average, we also used the difference between the score
for each gene in the pair, similar to our previous work [88]. We applied these measures
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Figure 4.8: Characterizing SyNet links by a range of graph topological measures. a. t-SNE (unsupervised) visu-
alization of the combined 180 topological measures. Each dot represents one gene pair. Green dots indicate
SyNet links while gray markers represent an equal number of random pairs. b. Performance of Lasso model
trained over all topological measure for different networks and all networks combined (rightmost bar).

to all 10 networks in our collection yielding a total of 210 features. The gene-pairs are
labeled according to their presence or absence in SyNet. Inspection of this dataset using
the t-SNE [58] reveals that the links in SyNet occupy a distinct part of the 2D embedding
obtained (Figure 4.8.a).

We trained a Lasso and assessed classification performance in a 50-fold cross valida-
tion scheme where in each fold 1/50 of pairs in SyNet is kept hidden and the rest of pairs
is utilized to train the classifier. To avoid information leakage in this assessment, we re-
moved gene pairs from the training set in case one of the genes is present in the test set.
Based on this analysis we find that a simple linear classifier can reach ª85% accuracy
in predicting the synergistic gene relationships from SyNet (Figure 4.8.b, rightmost bar).
The contribution from generic networks is notably smaller than for the tissue-specific
networks. In particular the networks relevant to breast cancer are highly informative,
to the extent that combining multiple networks no longer improves prediction perfor-
mance. Further investigation of feature importance revealed that the page rank topo-
logical measure was commonly used as a predictive marker across folds. Apparently,
while direct overlap between SyNet and existing networks is modest, the topology of the
relevant networks (i.e. breast-specific and lymph node-specific networks) are highly in-
formative for the links contained in SyNet. This corroborates findings from Winter et al.
in which the page rank topological measure was proposed to identify relevant genes in
outcome prediction [35, 36, 89].

4.5. DISCUSSION AND FUTURE WORK
Although the principle of using existing knowledge of the cellular wiring diagram to im-
prove performance, robustness and interpretability of gene expression classifiers ap-
pears attractive, contrasting reports on the efficacy of such approach have appeared in
literature [22, 29, 33, 36]. Consensus in this field has particularly been frustrated by an
evaluation of a limited set of sub-optimal classifiers [22, 24, 29, 36], small sample size
[19, 25, 27], or the use of standard K-fold cross-validation instead of cross-study evalua-
tion schemes, which results in inflated performance estimates [25, 27]. For this reason, it
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remained unclear if network-based classification, and in particular network-based out-
come prediction, is beneficial. Here, we present a rigorously cross-validated procedure
to train and evaluate Group Lasso-based NOPs using a variety of networks, including
tissue-specific networks in particular, which have not been evaluated in the context of
NOPs before.

Based on our analyses, we conclude that none of the existing networks achieve im-
proved performance compared to using properly regularized classifiers trained on all
genes. In this work we therefore present a novel gene network, called SyNet, which is
computationally derived directly from the survival-labeled samples. The links in SyNet
connect synergistic gene pairs. We followed a cross-validation procedure in which the
inference of SyNet and validation of its utility in a NOP is strictly separated. We find
that SyNet-based NOPs yields superior performance with higher stability across the folds
compared to both the baseline model trained on all genes as well as models that use
other existing gene networks. We therefore conclude that at least in outcome prediction
problem, network guidance can improve model performance, but only if this network
is phenotype-specific. Supporting this conclusion, we also show that a correlation net-
work, which is dataset-specific but not phenotype specific, also improved performance
but much less compared to SyNet.

A major benefit of SyNet over manually curated gene networks is that its inference is
purely data driven, and therefore not biased to well-studied genes. Post-hoc interpreta-
tion of the genes selected by a NOP that utilized SyNet is therefore expected to provide
a more unbiased interpretation of the important molecular players underlying breast
cancer and patient survival. Analysis of the genes contained in SyNet shows strong en-
richment for genes with known relevance to breast cancer. More importantly, the largest
subcomponent of SyNet is strongly linked to patient prognosis as it includes many genes
with a known relation to the histological grade of the tumor.

To investigate if SyNet captures known biological gene interactions, we extensively
compared SyNet with existing networks. We find highly significant overlaps between
links, indicating that SyNet connects genes that also have a known biological interaction.
Despite this significant overlap, the majority of the SyNet links are not recapitulated by
direct links in the existing networks. However, we find that accurate prediction of links
in SyNet are possible if more complex graph topological descriptions of the indirect con-
nections in the existing networks are employed. Interestingly, accurate predictions are
only obtained when using the breast specific networks. Apparently, although the in-
formation contained in SyNet is similar to other gene interaction networks, the wiring
of SyNet much better supports GL-based classification. This might explain why using
existing biological networks in NOPs directly is unsuccessful and why graph topologi-
cal measures have been successful in identifying relevant genes in outcome prediction
[35, 36, 89]. Taken together, our results underline that network-based outcome predic-
tion is a promising approach to improving patient prognosis prediction and therefore
can provide an important contribution towards more personalized healthcare. At the
same time, the SyNet approach provides an unbiased interactome which makes the NOP
more amenable for model interpretation, thus providing important insights into the eti-
ology of the disease under study.
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GENE EXPRESSION PREPROCESSING
For the METABRIC dataset, clinical data was collected from the Synapse Commons archive
(syn2133322; www.synapse.org) and normalized gene expression profiles were retrieved
from the European genome-phenome archive (EGAS00000000083). For this study, gene
expression was measured using Illumina HT-12 v3 platform. For the ACES dataset (see
Supplementary table 5.1 for accession number of individual studies in ACES), apart from
quantile normalization and batch effect removal, no preprocessing was performed. TCGA
breast invasive carcinoma (BRCA) gene expression profiles were retrieved from UCSC
Xena Browser [1]. These data were obtained using Agilent 244K custom gene expression
(G4502A073) microarrays.

Table 5.1: GEO accession and number of samples per study in ACES

Study # Patients Geo accession
Ivshina 102 4922
Hatzis-Pusztai 150 25066
Desmedt-June07 183 7390
Minn 65 2603
Miller 89 3494
WangY-ErasmusMC 257 2034
Schmidt 169 11121
Pawitan 147 1456
Symmans 224 17705
Loi 57 6532
Zhang 121 12093
WangY 52 5327

NETWORK PREPROCESSING
The Human Interactome (HumanInt, vII-14) network [2] is collected from
interactome.baderlab.org. This network does not have weighted links and hence all in-
teractions are utilized (n=14057). BioPlex v2.0 [3] is obtained from
bioplex.hms.harvard.edu. The weights for each pair of genes is collected from a column
with header of "p(Interaction)" which reflects the likelihood of an interaction to be a true
positive. The organism specific version of BioGRID (Homo sapiens, v3.4.155) [4] was ob-
tained from thebiogrid.org and the “score” column is used for link weights. The Homo
Sapiens version of the STRING network (9606, v10) [5] is collected from string-db.org and
the “combined score” is utilized for link weights. The tissue specific networks are down-
loaded from the HumanBase [6] website (hb.flatironinstitute.org). Each link in these net-
works has a weight which reflects the tissue specificity of that interaction. UniProt (used
by IntAct) and Ensembl gene IDs (used by STRING) are converted to HGNC IDs using En-
sembl Biomart [7]. Entrez IDs (used by BioPlex, HumanBase and BioGRID) are mapped
to HGNC using the Hugo server (genenames.org). HumanInt uses HGNC IDs to refer to
genes and hence no further conversion is needed for this network.



5

91

LASSO AND LASSO DERIVATIVES
To avoid redundancy, this section is omitted in the thesis. Please refer to supplemen-
tary material in the original publication [8], or to the introduction chapter of this thesis
(Chapter 1) for details about Linear Regression (section 1.2.3), Lasso (section 1.2.5) and
its derivatives Group Lasso and Sparse Group Lasso (section 1.3.5).

TOPOLOGICAL MEASURES
In our work, a range of graph topological measures are calculated that describe local
graph structure around a node or a edge. The degree is defined as the number of edges
connected to the node. The shortest path between two nodes is defined as smallest num-
ber of edges from one node that need to be traversed to reach the other node. Pairs
of nodes that are not connected have a shortest path equal to infinity. Betweenness of
a node is the number of times that node resides on a shortest path of any other pair
of nodes in the network normalized by total number of possible pairs in the network.
Closeness of a node measures the inverse sum of distances from that node to all other
nodes in the network. The Jaccard index between two nodes is defined as number of
shared neighbors between two nodes normalized by the total number of unique neigh-
bors of those nodes. The clustering coefficient of a node computes the number of links
between direct neighbors of that node normalized by total number of possible links be-
tween those direct neighbors. The eigenvector centrality of a node is equal to its compo-
nent of the related eigenvector of the network. The page rank of a node corresponds to
probability of a random surfer to visit that particular node [9]. At each step, this surfer
visits a direct neighbor of current node (with probability of Ø) or restarts its walk from a
randomly chosen node in the network (with probability of 1°Ø). Pagerank is known to
be statistically similar to node degree [10].

GENE ENRICHMENT ANALYSIS FOR SYNET CLUSTERS
Gene enrichment analysis is performed using GSEA [11] for genes in each individual
cluster of SyNet. Each row refers to a study in which given genes are enriched. Columns
respectively represent study name (Gene set name), number of genes in the study (#
Genes in Gene Set (K )), a brief explanation of the enriched set (description), number of
genes in the given SyNet cluster that overlap with get set in the study (# Genes in Overlap
(k)), chi-square statistics for significance of enrichment (k/K ), p-value of correspond-
ing chi-square statistics (p-value) and corrected q-value after false discovery rate control
(FDR q-value).
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Table 5.2: Gene enrichment analysis for SyNet clusters

Gene set source # total genes (K) # overlap (k) k/K p-value FDR q-value
Sotiriou et al. 151 99 0.6556 1.38E-204 6.55E-201
Kobayashi et al. 251 103 0.4104 8.78E-184 2.08E-180
Shedden et al. 456 115 0.2522 4.88E-178 7.71E-175
Fischer et al. 929 131 0.141 6.31E-170 7.47E-167
Pescini Gobert et al. 570 116 0.2035 1.28E-167 1.21E-164
Rosty et al. 140 82 0.5857 2.01E-161 1.59E-158
Dutertre et al. 324 91 0.2809 1.09E-142 7.39E-140
Dodd et al. 1375 124 0.0902 3.33E-134 1.97E-131
Kinsey et al. 1278 121 0.0947 5.25E-133 2.77E-130
Graham et al. 181 72 0.3978 1.83E-124 8.65E-122

5.1. SUPPLEMENTARY FIGURES

5.1.1. DETERMINING THE OPTIMAL OPERATOR FOR META-FEATURES FOR-
MATION

In this section, we will investigate how integration of gene expressions using different
operators could influence the yielded performance. Result of this analysis is represented
in Figure 5.1.

5.1.2. POOR GENES TEND TO YIELD MORE SYNERGY COMPARED TO PREDIC-
TIVE GENES

In this analysis, we will show that an anti-correlated relationship exists between highly
predictive genes and degree of synergy that can be observed when combined to best
synergistic gene. Result of this experiment is represented in Figure 5.2.
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Figure 5.1: Performance gained from meta-genes assembled with different operators. To form a gene set, each
gene is selected as “seed” along with its closest 20 neighbor genes according to STRING network. A meta-gene
is constructed by averaging the genes (Avg distribution), taking the standard deviation (Std), taking the largest
principal component (PCA1), negating the expression of genes that are anti-correlated with outcome before
averaging (DA2 [22]) and finally for the Reg meta-gene a linear regression is trained on 50% of patients (ran-
domly selected) and applied to the test set (other 50%) to form the meta-gene. In this figure, the AUC of each
meta-gene is compared to the AUC of the best gene in the set (determined in the training set). As a control,
we also included a meta-gene where a random gene in the gene set is chosen as the best gene (Rnd). The gray
distributions indicate performance gained by a shuffled version of the STRING network (as described in the
Methods). The number below each pair of distributions, represents the p-value of a one-sided t-test compar-
ing the distributions. This result shows that the average operator performs on par with the random operator
although it is widely used in NOPs. Meanwhile, the DA2 operator, which simply adjust gene directions accord-
ing to outcome, performs substantially better in improving performance of meta-genes. The top performing
operator is regression.
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Figure 5.2: Poorly performing genes tend to yield more synergy compared to predictive genes. The top 10k pair
in SyNet is selected and grouped into 5 non-overlapping bins according to max(Ai , A j ) where Ai and A j are
the AUC of gene i and gene j respectively. For each group, bars represent distribution of synergy (Si j ). This
result show that for higher individual AUCs, synergy is reduced.
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5.1.3. PERFORMANCE OF CLASSICAL PREDICTORS
In order to identify a baseline model, we investigated performance of 12 common regu-
lar classifiers for predicting outcome of patients in our collected dataset. Result of this
analysis is represented in Figure 5.3.
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Figure 5.3: Performance of standard classifiers trained using individual features (no network information is
utilized). The cross-study validation scheme is employed to evaluate range of linear and nonlinear classi-
fiers including Naive Bayes (NB) , Nearest Mean Classifier (NMC), Linear Discriminant Analysis (LDA), Linear
Regression (LR), Lasso, K-Nearest Neighbors (KNN), Support Vector Machine (SVM) using linear and Radial
Basis Functions (RBF), Decision-Tree (DT), Random Forest (RF) and Neural Networks (NN) (Mitchell 1997).
The hyperparameters of each model (e.g. the gamma parameter in SVM) is optimized by means of inner fold
cross-study evaluations. Samples used to train and validate these classifiers are identical to the samples used
for the performance evaluations in the main manuscript. According to these results, linear classifiers offer
improved performance compared to non linear (and more complex) classifiers (with exception of LDA). The
best performing classifier is the Lasso which regularises gene weights to perform a simultaneous selection and
integration of gene expressions. Therefore, performance is improved by marginal increase of complexity.

5.1.4. BATCH EFFECT REMOVAL USING COMBAT
We employed COMBAT to remove the expected batch effects from our collected dataset.
To confirm reduction of batch effects, we visualized expression profile of patients using
t-SNE [23]. Result of this analysis is represented in Figure 5.4.
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Figure 5.4: COMBAT is successfully employed to remove batch effects between studies. a. Expression data
(n=4109) is first quantile normalized within each study and then visualized using t-SNE (perplexity=20) in two-
dimensional space. Based to this visualization, METABRIC data is clearly occupying a different part of gene
expression space compared to other studies. b. Batch effect removed data after applying COMBAT. According
to t-SNE visualization, data from different studies show homogenous patterns in the expression space.

5.1.5. CROSS-VALIDATION SCHEME
Figure 5.5 demonstrates an schematic overview of cross-validation procedure we con-
sidered to evaluate performance of models under study.
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Figure 5.5: The utilized cross-validation scheme to investigate performance of NOPs.
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5.1.6. PERFORMANCE VARIATION IN LEAVE ONE STUDY OUT CROSS VALIDA-
TION

Even after rigorous batch effect removal (see 5.1.4), we identified a substantial bias for
performance of samples collected from individual studies (see Figure 5.6). This indicates
that batch effects are still present in our collected dataset. Another explanation could be
study specific quality of samples where some studies provided expression profiles with
better (more homogeneous expression) compared to others.
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Figure 5.6: Performance of Lasso for predicting survival risk of patients is highly variable across studies. To
calculate Lasso performance, this classifier is trained using 70% of samples from 13 studies and tested over the
entire samples in the left out study. This procedure is repeated 10 times for each study.

5.1.7. COMPARISON OF PERFORMANCE FOR NETWORKS AND GROUPS OF

IDENTICAL SIZE
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Figure 5.7: Similar trend of performance is observed when number of links in networks are kept identical
(n = 10000). No grid search for group size is performed in this analysis and group size is kept constant (K=5).

5.1.8. SPARSE GROUP LASSO PERFORMANCE COMPARED TO GROUP LASSO
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Figure 5.8: While Sparse Group Lasso is computationally more expensive than group Lasso, it does not out-
perform group Lasso in terms of performance. Identical set of Lambda for both feature level and group level
regularization of sparse group lasso is considered. These two parameters are optimized in an inner loop cross-
validation fashion as explain in the paper.

5.1.9. PERFORMANCE OF SYNET DOES NOT CHANGE IF #GENES AND GROUP

SIZE ARE OPTIMIZED SIMULTANEOUSLY
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Figure 5.9: Performance of SyNet does not change substantially if number of genes and group size are opti-
mized simultaneously. Instead of optimizing group size and number of genes separately (which is done in the
paper, red bar), one can optimize these parameters simultaneously (at the cost of computation time). To this
end, a grid search is employed to search across set of group sizes (2, 3, 5, 7 and 10) and number of genes (100,
300, 700, 1000, 1500 and 3000) to compare performance of GL in these two settings (i.e. separate vs. simultane-
ous optimization). The results indicates that performance of this concurrently optimized model (orange bar)
does not change substantially compared to a case when these parameters (group size and number of genes)
are optimized separately.

5.1.10. SIMILARITY BETWEEN BIOLOGICAL NETWORKS AND SYNET WITH-
OUT THE CORRELATION CRITERION
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Figure 5.10: Overlap of SyNet links with existing biological networks is not purely driven by correlation crite-
rion. To investigate this, Fitness (Fi j ) of all pairs are calculated only using synergy (Si j ) and average AUC (Mi j )

while ignoring correlation component (i.e. Fi j =° 2
q

(1°Si j )2 + (1°Mi j )2). Similar to the analysis presented
in the main paper, the existence of top SyNet pairs (n = 3544, according to the new Fitness) in existing biologi-
cal networks is assessed by randomly sampling equal number of links (n = 3544) in the biological network. The
frequency of observing overlapping links are depicted as boxplots. Gray box plots indicate the same analysis
performed on the shuffled version of the biological networks.

5.1.11. PRECISION RECALL CURVES FOR OVERLAP BETWEEN SYNET AND

EXISTING NETWORKS
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Figure 5.11: Precision recall curves for overlap between SyNet and existing networks. Existing biological net-
works miss many a. genes and b. links necessary for outcome prediction. The curves demonstrate the degree
of similarity between SyNet genes and links that are also present in biological networks across set of thresholds
(5%-100% of total genes/links with steps of 5%). Large markers indicate the threshold with maximum F1-score
(computed from precision and recall at each threshold) across considered thresholds.

5.1.12. PERFORMANCE OF CORR NETWORK COMPARED TO SHUFFLED VER-
SION
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Figure 5.12: Performance of correlation network do not show deterioration in existing NOPs but it does when
group lasso used. This indicates that existing NOPs do not effectively incorporate interactions in the given
network.

5.1.13. PERFORMANCE OF TOP OUTCOME PREDICTORS WITH LIMITED SAM-
PLES (SUB-SAMPLING ANALYSIS)

We focused only on the top three predictive networks (i.e. STRING, Correlation and
SyNet) and trained a Group Lasso model using an identical set of (training and test)
samples as used in the main manuscript for each network. Additionally, we evaluated
performance of the baseline model (i.e. Lasso using all genes available in our collected
dataset, n=11748). Results of this experiment are represented in Figure 5.13. As expected,
our assessment shows reduced classification performance for all models. This reduction
is most severe for models that use the training data to infer corresponding network (i.e.
Correlation and SyNet). Interestingly, we found that even using 25% of training data,
a Group Lasso model guided by SyNet performs better than a model that is guided by
Correlation network (the second-best performing network). This shows that, even with
a limited number of samples, data-driven gene networks can guide training of outcome
predictors.
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Figure 5.13: Performance of top three predictive networks (as well as the baseline model) when trained using
25% or 50% of samples available in our dataset. SyNet outperforms other models even though it uses only 25%
of samples to infer its synergistic network.

5.1.14. PERFORMANCE OF HUB GENES IN SYNET
We selected genes in SyNet with at least 5 neighbors (i.e. degree >=5) and trained Lasso
as well as Group Lasso across 14 folds and 10 repeats using identical samples as the anal-
yses in the main manuscript. The median number of genes used in each fold was 175,
meaning that nearly half of genes in the original SyNet were given to these “hub-based
models”. Results of this experiment are visualized in Figure 5.14. Our results show that
both Lasso and Group Lasso provide similar performance if they are limited specifically
to hub (i.e. degree >=5) genes. However, these models exhibit a slightly larger standard
deviation of the performance indicative of a reduced stability of the performance. There-
fore, we argue that although “core” genes are important in performance of outcome pre-
dictors, proper expression integration of core genes and their (synergistic) neighbors can
plays a crucial role in performance and stability of the outcome predictors.
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Figure 5.14: Performance of Lasso and Group lasso when only hub (degree >= 5) genes are used. The average
and standard deviation of the performance for each model across 14 studies and 10 cross-validation repeats
are represented by bars and error bars respectively. These values (i.e. mean and standard deviation) are also
represented by numbers above each bar respectively.

5.1.15. PERFORMANCE OF MERGED NETWORKS

To investigate whether a combination of networks would provide a better performance
compared to individual networks, we merged 100,000 top links from the top perform-
ing networks including STRING, Breast and LymphNode (in total of 202237 links after
removal of duplicates) and trained Lasso and Group Lasso to predict survival of unseen
patients across independent studies. For this assessment, we utilized an identical set of
training and test samples that are also used in the main manuscript. Figure 5.15 rep-
resents the result of this experiment. According to these results, combining links from
multiple network does not improve performance of classical or network-based outcome
predictors. This could be result of excessive number of links that are used from these
networks (i.e. curse of dimensionality), or lack of confidence for the included links (as
threshold is reduced to include 100k links) which further masks the predictive informa-
tion in the utilized links. To investigate whether using links with high confidence helps
to boost performance of these models, we formed a new network using top one million
links in STRING, LymphNode and Breast (in total 3 million links) and selected pairs that
are present in all three networks (n=77961 links connecting n=5986 genes). Next, we
trained Lasso and Group Lasso using the identical settings as the main manuscript (14
folds, 10 repeats). Corresponding model performances are depicted in Figure 5.15 (dark
blue bars). Our analysis shows that using links that are shared by multiple networks have
a modest positive impact on Group Lasso’s performance. However, reduction of Lasso
performance (which only uses genes in this network) hints to lower performance of (in-
dividual) genes included in the newly formed network. This could be explained by the
fact that intersecting genes from diverse networks would result in selection of broadly
active genes that may have a lower specificity to the tissue or even more importantly the
disease of interest. In agreement with our conclusion in this paper, we argue that a dis-
ease specific measure of selection should be implemented in NOPs to ensure that genes
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and more crucially their corresponding links contain predictive information that could
be extracted by the final classifier.
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Figure 5.15: Performance of top three networks compared to a case when top 100k links from each network are
combined into a single aggregated network (#link= 202k) as well as when top shared links in these networks
are used in a cross-study validation procedure. SyNet substantially outperforms these networks although it
contains only 300 genes and 3000 links.

5.1.16. PERFORMANCE OF MODELS UNDER STUDY DO NOT CHANGE WITH

MORE POPULATED NETWORKS
In the analyses throughout our manuscript, we limited networks under study to have
maximum of 50k links to maintain a reasonable network size (in terms of number of
links) which results in reducing computational burden. As gene groups in our analyses
are formed according to the top weighted neighbors for each gene, reducing confidence
threshold (which results in more links in each network) may have little to no influence
in the final set of gene groups formed. To demonstrate this effect, we increased number
of links for the top three networks (i.e. STRING, LymphNode and Breast) from 50k to
100k, 250k and 500k and trained Lasso and Group Lasso using identical settings as the
analyses in the original manuscript (i.e. 14 folds and 10 repeats). Result of this experi-
ment is represented in Figure 5.16. This result demonstrates the minor influence of this
threshold on the performance of models under study.
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Figure 5.16: Performance of the models under study show minor changes when confidence threshold is re-
duced to include more links in the network. Mean and standard deviation of performances across 10 repeats
are denoted by bars and error bars respectively. Numbers below each bar represent number of links used.

5.1.17. OVERLAP BETWEEN EXISTING NETWORKS AND SYNET ACROSS VAR-
IOUS LINK WEIGHT THRESHOLDS

To investigate whether network size threshold has an impact in our conclusions, we per-
formed an overlap analysis for all 10 networks under study (i.e. BioGRID, Breast, Lymph
node, etc.) using four smaller and larger thresholds (namely: 10k, 100k, 250k and 1000k
links). To form a binary network for each threshold X, we utilized top X number of links in
each network. Next, we randomly selected 3544 links (equal to number of links in SyNet)
and asked how many of these selected links are also present in SyNet. This procedure is
repeated 1000 times to produce an “observed” number of SyNet links in the networks un-
der study. To estimate an expected distribution of SyNet links, we repeated the same ex-
periment while nodes in each thresholded network were randomly swapped with other
nodes in the network in each selected round. A summary result of this analysis is rep-
resented in Figure 5.17. As expected, the distribution of observed vs. expected number
of SyNet links become more similar when network size increases (due to presence of
more irrelevant and low confidence links). According to this result, changing network
size threshold has a minor effect in the observed trend in the main paper. Therefore,
in corroboration with our argument in the main paper, we conclude that more related
tissue-specific networks (i.e. Breast and Lymph node) show larger overlap with SyNet
compared to other networks (i.e. other tissue specific or generic networks).
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Figure 5.17: Overlaps between phenotype-naive networks and SyNet show a similar trend across smaller or
larger network sizes. Overlap analysis between links for network under study when limited to a. 10k links, b.
50k links, c. 100k links, d. 250k links and e. 1000k links. As expected, observed vs. expected number of SyNet
links are more similar for larger network sizes.

5.1.18. PERFORMANCE OF SUBTYPE-SPECIFIC NETWORK IN OUTCOME PRE-
DICTION

We collected three subtype specific networks (i.e. Basal-A, Basal-B and Luminal) inferred
by Zaman et al. [24]. These networks are collected from http://www.bri.nrc.ca/wang/
and combined to form a Subtype Specific Breast Cancer network (SSBC). We utilized
all genes and links in SSBC network to train and test both Lasso and Group Lasso clas-
sifiers across 14 folds and 10 repeats using identical (train/test) samples as the main
manuscript. The result of this experiment is represented in Figure 5.18.
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Figure 5.18: Performance of Subtype Specific Breast Cancer (SSBC) network compared to SyNet.
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6.1. ABSTRACT
Chromatin folding contributes to the regulation of genomic processes such as gene ac-
tivity. Existing conformation capture methods characterize genome topology through
analysis of pairwise chromatin contacts in populations of cells but cannot discern whether
individual interactions occur simultaneously or competitively. Here we present multi-
contact 4C (MC-4C), which applies Nanopore sequencing to study multi-way DNA con-
formations of individual alleles. MC-4C distinguishes cooperative from random and
competing interactions and identifies previously missed structures in subpopulations
of cells. We show that individual elements of the Ø-globin superenhancer can aggre-
gate into an enhancer hub that can simultaneously accommodate two genes. Neighbor-
ing chromatin domain loops can form rosette-like structures through collision of their
CTCF-bound anchors, as seen most prominently in cells lacking the cohesin-unloading
factor WAPL. Here, massive collision of CTCF-anchored chromatin loops is believed to
reflect ’cohesin traffic jams’. Single-allele topology studies thus help us understand the
mechanisms underlying genome folding and functioning.

6.2. INTRODUCTION
The invention of chromatin conformation capture (3C) technology [2] and derived meth-
ods [3] has greatly advanced our knowledge of the principles and regulatory potential
of 3D genome folding in vivo. Insights obtained from genome-wide contact maps de-
rived from Hi-C data include the discovery of topologically associated domains (TADs),
structurally insulated units of chromosomes of on average a megabase in size [4–6], and
of compartments, nuclear environments in which TADs with similar epigenetic signa-
tures spatially cluster [7]. TADs and nuclear compartments are believed to contribute to
genome functioning, whereas chromatin loops are thought to influence genome func-
tioning in a more deterministic, direct fashion. Such loops can only be detected when
zooming to a much finer scale than whole chromosomes and TADs, either by ultra-deep
Hi-C sequencing or by the application of targeted high-resolution approaches such 4C,
5C or capture-C technologies. Chromatin loops include architectural loops, often an-
chored by bound CTCF proteins, that form structural chromosomal domains [8, 9] and
regulatory chromatin loops that bring distal enhancers in close physical proximity to tar-
get gene promoters to control their transcriptional output. Detailed topological studies
and genetic evidence have further indicated that individual enhancers can contact and
control the expression of multiple genes. Conversely, single genes are often influenced
by multiple enhancers [10, 11]. Similarly, in population-based assays, individual CTCF
sites can be seen contacting multiple other CTCF sites. Based on such observations it
has been hypothesized that DNA may fold into spatial chromatin hubs [12, 13]. How-
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ever, current population-based pair-wise contact matrices cannot distinguish clustered
interactions from mutually exclusive interactions that independently occur in different
cells. To investigate the existence and nature of specific hubs formed between regula-
tory sequences, CTCF-binding sites and/or genes, targeted high-resolution and high-
throughput strategies are needed for detection, analysis and interpretation of multi-way
DNA contacts.

Recently, several 3C procedures have been modified for the study of multi-way con-
tacts between selected genes and regulatory sequences, but so far these approaches
have been inherently limited in contact complexity, complicating the interpretation of
their data [14–17]. At the genome-wide level, recent breakthroughs in the analysis of
multi-way contacts have been made. These technologies give insight into the types
of genomic sequences that tend to co-occupy nuclear compartments. For example, a
new genome-wide approach for multi-contact analysis, called C-Walks (chromosomal
walks) [17], gave a glimpse of the nuclear aggregation of genomic loci, indicating that,
at the compartment level, cooperative aggregation between dispersed intra- and inter-
chromosomal sequences may be rare but may occur, for example, at Polycomb bodies.
C-walks, three-way Hi-C contact analysis [15] and genome architecture mapping [18]
are all genome-wide methods that do not offer the local coverage necessary to study the
functionally most relevant fine-scale topologies formed at individual genes, individual
regulatory sequences and individual domain anchors. To enable this analysis and to
dissect the spatial interplay between multiple individual regulatory DNA elements and
genes, we developed multi-contact 4C sequencing (MC-4C).

6.3. RESULTS

6.3.1. MC-4C ENABLES INVESTIGATION OF MULTI-WAY DNA CONFORMA-
TIONS.

MC-4C is premised on the fact that 3C-based protocols generate aggregates of DNA seg-
ments that reside in each other’s 3D proximity in the nucleus. These ‘DNA hairballs’
are created via in situ formaldehyde cross-linking of chromatin, followed by restriction
enzyme-mediated DNA fragmentation and proximity-based re-ligation of cross-linked
DNA fragments. The resultant DNA concatemers are characteristically sized >10 kb [19].
Conventional 3C protocols trim these products further to enable efficient analysis of sin-
gular ligation junctions only. The MC-4C protocol is designed to keep these concatemers
large, enabling the analysis of multi-way contacts for selected genomic sites of interest
through third-generation sequencing, such as the Oxford Nanopore Technologies (ONT)
MinION. In brief, MC-4C entails the following steps. Like 4C-seq [20] and targeted lo-
cus amplification technology [21], MC-4C selectively PCR-amplifies concatemers with
primers specific to a fragment of interest (the ’viewpoint’). For this PCR to be sufficiently
effective, 3C PCR template in the range of 2-5kb is made by digesting the large concate-
mers with a six-cutter restriction enzyme and re-ligation under conditions supporting
self-circularization. To reduce prevalent rolling circle amplification and eliminate abun-
dant uninformative undigested products, Cas9-mediated in vitro digestion of the view-
point fragment (between the inverse PCR primers) and its two neighbor fragments is
performed before PCR. After PCR, the product is size-selected (>1.5kb) and sequenced
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on the MinION sequencing platform (Figure 6.1.a).

An integral component of MC-4C is its elaborate computational analysis strategy (ex-
plained in detail in the Methods), which provides the necessary pre-processing of the
ONT data and downstream analysis to enable meaningful interpretation of allelic co-
occurrence frequencies. To appreciate local multi-way contacts at the level of individ-
ual alleles, it is key to filter and select for the informative reads that have two or more
contacts within a pre-defined chromosomal region of interest. Such analysis requires
substantial coverage, as reads having less than two local contacts are not informative for
our multi-way analysis. To compute reliable statistics, it is also essential to efficiently re-
move all reads originating from PCR duplicates. For this, we designed a PCR duplicate re-
moval strategy that is guided by co-captured fragments far outside the region of interest
(Supplementary Fig. 1): the chance of independently capturing a given such fragment
more than once is extremely small, implying that these sequences can serve as genom-
ically contributed unique molecular identifiers in MC-4C. After this ultra-conservative
but very reliable PCR filtering strategy, every remaining read represents a unique micro-
topology derived from an individual allele. MC-4C contact profiles are thus a direct
reflection of single allele measurements, which in principle makes them quantitative,
albeit limited still by technically inherent variation that may arise from differences in
cross-linking, digestion, ligation and mapping ability between fragments.

To explore new biology that may be identified by MC-4C we applied the technique to
three different genetic systems. We chose the mouse Ø-globin and PcdhÆ loci, both con-
stituting multiple gene promoters and enhancer and superenhancer (SE) elements that
act in concert to control defined developmental and cellular expression patterns. We
also selected cohesin-looped topological domain boundaries that, upon cohesin stabi-
lization, show extended loops with much more distal anchor sites in population-based
Hi-C [22]. We performed a total of 20 MC-4C experiments (27 MinION sequencing runs)
to obtain an average of 13,000 individual allelic micro-topologies, spanning an average
total of 80,000 spatial contacts, per viewpoint (Supplementary Table 1).

Figure 6.1 summarizes results from a typical MC-4C experiment. Because of PCR,
which has a strong bias for small amplicons, and size selection, which we perform to
remove the small amplicons before sequencing, the average raw read size is approxi-
mately 2 kb (Figure 6.1.b and Supplementary Fig. 2). Most span three or four spatial
contacts, some up to ten (Figure 6.1.c and Supplementary Fig. 3), with spatial contacts
being scored based on ligation events between restriction fragments that are not imme-
diately juxtaposed in the reference genome. To further reduce the effect of PCR-related
over- or under-representation of fragments, we divided the region of interest into 200
bins and quantified the relative interaction frequencies per bin. As in all other 3C meth-
ods, the great majority of captured sequences (from raw reads) localize to the immedi-
ate chromosomal vicinity of the viewpoint (Figure 6.1.d and Supplementary Fig. 4). The
contact profiles derived from sequences directly ligated to the viewpoint (i.e., those that
one would analyze in conventional 4C-sequencing) are almost indistinguishable from
those created from the indirectly ligated partners (Supplementary Fig. 5). Collectively
this indicates that the additional fragments that we capture and analyze by MC-4C are
the result of 3D proximity-based ligation events and represent topologically meaningful
genomic multi-way contacts made with the viewpoint fragment.
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6.3.2. EVIDENCE FOR AN ENHANCER HUB AT THE Ø-GLOBIN LOCUS.
We first studied higher order conformations of the genetically well-characterized mouse
Ø-globin locus. It carries two embryonic globin genes (Hbby and Hbb-bh1) that com-
pete with two downstream adult globin genes (Hbb-b1 and Hbb-b2) for activation by
the upstream Ø-globin SE [23–25] during development. This SE, also known as the locus
control region, is composed of five regulatory elements (hypersensitivity sites (HS) 1-5),
of which HS1-HS4 show enhancer activity [26]. Genetic studies in mice further demon-
strate that the two developmentally distinct sets of genes compete for activation between
sets, but not among members of each set, and that the four enhancer elements of the SE
can compensate to a high degree for each other’s activity [27, 28]. We performed MC-
4C experiments in mouse fetal liver, where the adult genes are highly expressed, and in
mouse fetal brain, where the Ø-globin locus is transcriptionally silent. As viewpoints, we
included Hbb-b1, HS2 and HS5, as well as HS3 exclusively in liver. When all fragments
captured by the HS2 experiment are aggregated across all individually analyzed alleles
in a so-called overall MC-4C contact profile, we find pronounced and precise interac-
tions with the other SE constituents, as well as with the active gene promoters, specif-
ically in expressing (fetal liver) but not in nonexpressing (fetal brain) primary mouse
cells (Figure 6.1.e). A similarly detailed and tissue-specific topology is appreciable from
the overall MC-4C contact profiles that we obtained when using HS5, Hbb-b1 or HS3
as viewpoints (Figure 6.1.f and Supplementary Fig. 6). MC-4C therefore accurately re-
capitulates in a qualitative manner the previously observed conformational features of
the Ø-globin locus [13, 29, 30] and additionally specifies contacts within the SE with high
precision (see also Supplementary Fig. 6). Results were reproducible between biological
replicates, even those sequenced on another third-generation sequencing technology
(the Pacific Biosciences sequencing platform) (Supplementary Fig. 7a–d). Nevertheless,
in our hands the latter platform provided insufficient reads for the generation of robust
contact profiles (Supplementary Fig. 7e), which led us to focus on Nanopore sequencing.

To analyze specific multi-way chromatin conformations adopted by the mouse Ø-
globin locus, we selected from each MC-4C dataset the allelic conformations that con-
tain its viewpoint in contact with a second site of interest (SOI). We then quantified and
visualized the contact frequencies with the remaining co-occurring sequences. Figure
6.2.a, b shows two examples of such viewpoint–SOI plots (see also Supplementary Fig.
8). The highly localized peaks exactly at the individual enhancer elements of the SE sug-
gest that alleles that fold to have Hbb-b1 (Figure 6.2.a) or HS5 (Figure 6.2.b) in contact
with HS2 are likely to also interact with other SE elements. This would be indicative
of enhancer hub formation. We tested this with a statistical method that distinguishes
favored from random or disfavored (competitive) multi-way interactions. This method
compares through a z-score calculation for each sequence its observed three-way co-
occurrence frequency with a given viewpoint–SOI combination to its co-occurrence fre-
quency in conformations where the viewpoint is not in contact with the SOI (6.2a,b and
Supplementary Fig. 9). By doing so, we analyze whether the chance of being in contact
with any third sequence across the region of interest is increased (favored) or decreased
(disfavored) when the viewpoint is interacting with a given SOI. Sequences immediately
flanking such SOIs are always found to be enriched in this analysis. This is expected as
they cannot be spatially separated from the SOI, but we ignore such immediate neigh-
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boring sequences here as their favored detection is not reflective of spatial genome or-
ganization. Based on our comparative analysis, we find that contacts with the individual
elements of the Ø-globin SE are significantly favored in conformations that already in-
volve one of them. This preferred co-occurrence is appreciable in allelic conformations
involving the distal downstream Hbb-b1 gene, as well as in those involving the upstream
HS5 (6.2.c). Particularly for the non-neighboring enhancer elements this seems not the
result of mere linear proximity, but a consequence of spatial proximity (Fig. 2c and Sup-
plementary Fig. 8). To further rule out the possibility that preferred co-occurrence is
a reflection of linear proximity, we repeated the MC-4C experiments on the same lo-
cus in nonexpressing tissue (fetal brain). Here no preferred multi-way interactions were
observed beyond the directly neighboring constituents (6.2.d and Supplementary Fig.
8). This shows that the preferred aggregation of Ø-globin SE constituents seen in ex-
pressing cells is not just the consequence of linear proximity. Preferred clustering of
active enhancer elements is found even though these sequences are less cross-linkable
when active (formaldehyde-assisted isolation of regulatory elements (FAIRE) identifies
enhancers through this principle [31]). We thus conclude that the individual elements of
the active Ø-globin SE can form a higher order enhancer hub.

This SE hub will be visited by the globin genes for their activation. To investigate the
number of genes the hub can simultaneously accommodate, we analyzed the likelihood
of Hbb-b2 and the two embryonic globin genes being in contact with the SE when it is
interacting with the adult Hbb-b1 gene (Figure 6.2.f and g). Despite their linear posi-
tion between the SE and Hbb-b1, the embryonic genes are clearly hindered in contacts
with the SE when it is engaged with Hbb-b1, particularly in an active tissue (Figure 6.2.f
and g). This suggests that they physically compete with Hbb-b1 for interactions with
the active enhancer hub. For Hbb-b2, the other adult globin gene, which is more distal
from the SE, we find no indication of physical competition with Hbb-b1 (Figure 6.2.e).
Its presence is either normally tolerated or even slightly stimulated in topologies having
both SE elements and Hbb-b1 (Figure 6.2.f). MC-4C therefore provides evidence for two
higher order topological phenomena. The first is that the individual elements of a single
SE, the active Ø-globin locus control region, can cooperatively interact (i.e., show statis-
tically increased co-occurrence frequencies) to form a spatial enhancer hub. The second
is that this single enhancer hub can physically accommodate two genes simultaneously
(Figure 6.2.h). We find that, in concordance with detailed gene competition studies at
this locus [26–28], partnering at the enhancer hub is allowed between developmentally
synchronized genes, but not between genes active at different stages of development.
These higher order conformational features therefore provide a topological framework
that helps to interpret genetic observations.

Evidence for an enhancer hub at the PcdhÆ locus. Higher order topologies may
also help control allelic expression patterns in the mouse protocadherin-Æ (PcdhÆ) gene
cluster. Per allele, 1 of 12 alternative promoters (those for Pcdha1–Pcdha12) is selected
for expression. This ensures that individual neurons express a unique repertoire of membrane-
exposed protocadherin molecules, which is essential for axon avoidance [32, 33]. Aside
from the variable promoters, two constant promoters are active in every neuron (those
for PcdhÆC1 and PcdhÆC2). The activity of nearly all promoters is regulated by two
downstream enhancers, HS7 and HS5-1 (onlyÆC2 seems not to be influenced by HS5-1)
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[34, 35]. Forward-oriented CTCF binding to all promoters and reverse-oriented CTCF
binding to HS5-1 positively contribute to gene expression [36]. Alternative promoter
DNA methylation, which prevents CTCF binding, has been proposed to influence al-
lelic promoter choice [37]. We designed viewpoint primers in both enhancers HS5-1 and
HS7 and on the promoters of PcdhÆ4 and PcdhÆ11 and performed MC-4C analysis in
mouse E14.5 fetal brain neurons, which express both PcdhÆ variants (Supplementary
Fig. 10), and in E14.5 fetal liver cells and NIH-3T3 cells, which do not express from any of
the PcdhÆ promoters. Data from PcdhÆ4 and PcdhÆ11 and from HS5-1 and HS-7 were
pooled owing to the high similarity between overall profiles. All overall contact profiles
showed that contacts between the enhancer and each of the promoter regions were per-
haps slightly elevated in brain cells, but overall without dramatic differences in locus
topology between fetal brain and inactive cells. This suggests that there is no dominant
tissue-specific structure conserved in either fetal brain or inactive cells (Figure 6.3.a and
b).

By selectively analyzing the allelic topologies having any of the enhancers in con-
tact with a given alternative promoter in brain cells, we reasoned we could get insight
into the specific folding of alleles expressing this particular alternative promoter. As
an example, Figure 6.3.c shows how the other sequences of the locus participate in the
microtopologies centered around contacts between the PcdhÆ4 or PcdhÆ11 promoter,
when these are contacting HS7. In neurons, these configurations were specifically en-
riched for the other enhancer, HS5-1 (39kb downstream of HS7), as well as for the con-
stitutively active PcdhÆc2 promoter (34 kb upstream of HS7). In liver cells, the corre-
sponding microtopologies did not specifically engage the HS5-1 enhancer, nor any of
the genes, as expected if assuming that here these contacts are a reflection of nonfunc-
tional, random collisions. The brain-specific enhancer hub involving cooperative inter-
actions between HS7 and HS5-1 is similarly appreciable when studying other relevant
subsets of allelic conformations (Figure 6.3.d). Additionally, PcdhÆc2 is preferentially
found at microtopologies involving interactions between the enhancers and an alterna-
tively transcribed PcdhÆ promoter, while PcdhÆc1 is not necessarily evicted from them.
The PcdhÆ active chromatin hub therefore appears capable of physically accommodat-
ing two or more genes at a time. We would have liked to test whether physical competi-
tion for enhancer contacts between the PcdhÆ1–PcdhÆ12 promoters may underlie their
mutually exclusive allelic expression in neuronal cells. However, the Pcdha1–Pcdha12
promoters are too close together on the linear chromosome template to observe such
mutually exclusive contacts, at least at the current resolution of MC-4C (Supplementary
Fig. 11). In summary, as seen for the Ø-globin SE, the active linearly dispersed individ-
ual enhancers HS7 and HS5-1 and the PcdhÆc2 promoter of the PcdhÆ locus cooper-
atively interact to form a tissue-specific active chromatin hub that can simultaneously
be contacted by at least one additional gene promoter (PcdhÆc1 or PcdhÆ1–PcdhÆ12).
Notably, our studies on the PcdhÆ locus further show that MC-4C can be used to char-
acterize the interaction profiles of rare subpopulations of alleles, identifying topological
features that are missed by population-based pairwise contact analysis methods.

WAPL depletion leads to collision of CTCF-anchored loops and to cohesin cluster-
ing. As a third model system to study multi-way chromatin interactions, we focused on
CTCF and cohesin-anchored chromatin loops. Cohesin is a ring-shaped protein com-
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Figure 6.3: MC-4C uncovers PcdhÆ hub conformations in tissue-specific subsets of cells. a-b. Overall (panal-
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plex that is necessary to form loops between CTCF-bound domain boundaries [38, 39].
The ‘loop extrusion’ model [40, 41] predicts that cohesin forms loops by a process in
which the chromatin fiber is pulled through its lumen. The loop is then progressively
enlarged until two compatible roadblocks (convergently oriented CTCF-bound sites) are
reached, where the loop is stably anchored. Without WAPL, cohesin remains bound
to chromatin for longer periods of time, which enables CTCF sites to engage with new
CTCF partners over much larger distances, as measured by Hi-C across the population of
WAPL-deficient (¢WAPL) HAP1 (human chronic myeloid leukemia) cells cells[22]. One
possibility is that these additional ultra-long-range interactions are the result of cohesin
progressing beyond original CTCF roadblocks to mediate direct pairing between more
distal CTCF sites. An alternative explanation would be that distant sites are reeled in
through the aggregation of CTCF loop anchors (loop ‘collision’), which ultimately brings
together distal CTCF sites. Population-based pairwise contact studies cannot distin-
guish between these two scenarios.
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MC-4C, which allows quantification of allelic co-occurrence frequencies, does en-
able disentanglement of these two scenarios. We selected a region that clearly showed
new long-range contacts in ¢WAPL cells based on Hi-C data (Figure 6.4.a) and applied
MC-4C to two CTCF sites that anchor these loops. A comparison between their panal-
lelic contact profiles in wild type (WT) and¢WAPL cells shows that MC-4C recapitulates
the published Hi-C results; it also identifies these long-range contacts specifically in the
¢WAPL cell population (Figure 6.4.b). If they occur as a result of the skipping of CTCF
roadblocks, we would expect a severe depletion of intervening CTCF sites from the allelic
microtopologies having these distal CTCF sites together. We find the opposite: interven-
ing CTCF sites show a strong preference to aggregate with these structures, something
we observe irrespective of the combination of new long-range contacts we interrogate
at this locus (Figure 6.4.c-d and Supplementary Fig. 12). To exclude the possibility that
the effects are locus-specific, we applied MC-4C to another locus showing profound new
contacts between distal CTCF sites in ¢WAPL cells. Here as well we find no evidence for
mutual exclusivity between CTCF sites that at the cell-population level all seem to in-
teract with each other. Instead, they are again preferentially found clustered at single
alleles (Supplementary Figs. 12 and 13). Therefore, rather than—or at least in addition
to—the skipping of CTCF roadblocks, our data strongly suggest that WAPL depletion re-
sults in loop collision, with distal CTCF sites coming into contact because of progressive
aggregation of loop domain anchors. With Hi-C it was also noted that, in the absence
of WAPL, contacts between ‘illegally’ (non-convergently) oriented CTCF sites are more
frequently observed [22]. This now seems partially explained as an inevitable result of
cluster formation: when three or more CTCF sites form topological aggregates, at least
one is in the ‘wrong’ orientation.

WAPL serves to destabilize, but not to prevent, loop formation, and therefore loop
anchor clusters may also exist, albeit less frequently, in WT cells. To investigate this, we
selected alleles from WT cells that had the same long-range CTCF contacts interrogated
earlier in ¢WAPL cells. Notably, these interactions were too rare in WT cells to stand
out in population-based Hi-C and panallelic MC-4C contact profiles (Figure 6.4.a and
b). Strikingly, however, in WT cells these rare allelic conformations also showed a strong
enrichment of intervening CTCF-based loop anchors. Quantification of alleles show-
ing simultaneous clustering of three or more distinct CTCF anchors showed an increase
from 5.6% to 8.6% (for the downstream viewpoint) and from 6.8% to 10.9% (for the up-
stream viewpoint) in ¢WAPL as compared to WT cells. We therefore conclude that loop
collision and anchor aggregation also occur in WT cells, but less frequently, as a result of
the counteracting effect of WAPL (Figure 6.4.e,f and Supplementary Fig. 13).

We then searched for an orthogonal methodology that could provide independent
evidence for global domain boundary aggregation upon WAPL depletion. For this, we
studied the distribution of cohesin in both WT and ¢WAPL cells by means of super-
resolution immunofluorescence microscopy. Visual inspection of nuclear images shows
a striking reduction of the distance between cohesin molecules in ¢WAPL cells (Figure
6.5.a). A systematic analysis of their distance distribution patterns confirmed the in-
creased proximity between individual cohesin complexes in these cells (Figure 6.5.b).
Collectively our data strongly suggest that in the absence of WAPL, cohesin-associated
domain boundaries massively collide to form rosette-like chromatin structures in inter-
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Figure 6.4: Depletion of WAPL stimulates collision of CTCF-anchored domain loops. a. Hi-C contact matrix
of a genomic region in wild-type (upper right) and ¢WAPL (lower left) HAP1 cells. Position and orientation of
CTCF-binding sites are indicated. Arrows point at new long-range contacts that appear upon WAPL knockout.
b. Overall MC-4C contact profiles of forward-oriented CTCF site E (top) and reverse-oriented CTCF site K (bot-
tom). The number of unique reads for each experiment is indicated in each plot. ¢WAPL cell CTCF chromatin
immunoprecipitation (ChIP)-sequencing profile (from Haarhuis et al.20) and CTCF site orientation are shown
below. c. Microtopologies from¢WAPL cells having CTCF site E (forward) in contact with CTCF site K (reverse).
Gray line and zone indicate negative distribution (mean ± s.d.). z-scores are plotted below, showing preferred
clustering of CTCF sites I and J. d. Selected microtopologies from ¢WAPL cells having CTCF site K (reverse) in
contact with CTCF site A (forward). z-scores are plotted below, showing preferred clustering of CTCF sites C
and G. e. Selected microtopologies in WT HAP1 cells having CTCF site K (reverse) in contact with CTCF site A
(forward). z-scores are plotted below, indicating that the rare allelic conformation wherein K interacts with A
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Figure 6.5: Super-resolution microscopy shows cohesin clustering in WAPL-depleted cells. a. Representative
example super-resolution images of wild-type and ¢WAPL cells. Scale bars 5 µm (top) and 1 µm (bottom,
showing magnifications of boxed regions). The experiment was performed twice, with similar results. b. Ratio
of the proximity between cohesin particles in wild-type and ¢WAPL cells. For each particle, the distance is
measured to all other particles per cell. The graph depicts the proximity enrichment up to a distance of 500
nm. The data shown are the distance measured from 5 cells of each genotype. For dot plots of the distances in
individual genotypes, see Supplementary Fig. 13. c. Schematic of the proposed traffic jam model explaining
the increased incidence of CTCF cluster formation in ¢WAPL cells.

phase nuclei. In light of the loop extrusion model, our findings could be explained by
assuming a ‘cohesin traffic jam’. Any cohesin ring that is extruding a DNA loop (or slid-
ing over the DNA strands) will eventually be released from DNA by WAPL. If not, it will
encounter and presumably be stopped by another cohesin ring that was already immo-
bilized at a CTCF roadblock. Subsequent cohesin rings could then start reeling in other
CTCF sites from both directions or as nested loops (loops within larger loops), eventually
leading to the spatial aggregation of CTCF-bound loop anchors. Collisions from inside
and outside an existing loop would then result in a cohesin traffic jam (Figure 6.5.c). Al-
though just a theory, loop collisions resulting in a cohesin traffic jam fit well not only
with the high frequency of illegal loops seen by Hi-C in ¢WAPL cells but also with the
‘vermicelli’ cohesin staining patterns observed in ¢WAPL cells [22, 42].
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6.4. DISCUSSION

We present MC-4C, which allows high-resolution analysis of spatial DNA sequence co-
occurrence frequencies at the single-allele level. MC-4C contact counts represent rel-
ative, not absolute, contact frequencies, as one cannot assume that not being captured
(i.e., not being cross-linked, digested, ligated and mapped to the genome) equals not be-
ing together. We present a method that, for chosen genomic regions, allows one to statis-
tically distinguish cooperative from random and competitive interactions. In this report
we show results directed exclusively toward three-way interactions. Analysis of four-way
interactions and beyond poses exponentially increasing demands for the number of an-
alyzed alleles, which is beyond the aims of this study. However, long reads containing
more than three fragments are routinely identified, and their content is employed ex-
tensively to populate the three-way interaction profiles and to identify PCR duplicates.
The data show that, by this method, sequences that directly neighbor each other on
the linear chromosome are being scored as obligatorily together in 3D space (cooper-
ative interactions). This is not only as expected (physically connected sequences simply
cannot spatially escape each other), but can also be biologically meaningful: it is not
without reason that only when transcription factor binding motifs cluster on the linear
chromosome can they form functional regulatory motifs. It does emphasize, though,
that for correct interpretation of MC-4C results resolution must be high enough to dis-
cern spatial clustering as the mere consequence of linear physical proximity from that
driven by biological processes. Here we accomplish this by analyzing often more than
10,000 independent allelic conformations per experiment and by comparing allelic co-
occurrence frequencies of the same locus in its active versus inactive configuration. The
study of higher order chromatin topologies at such high resolution uncovers new biol-
ogy: individual elements of an SE can aggregate to form an enhancer hub that can ac-
commodate multiple genes simultaneously. Observations such as these highlight the ar-
chitectural context of SE elements, which combined with their combinatorial deletions
will help in understanding their functional hierarchy21–23. Similarly, we also find that
cohesin drives aggregation of CTCFbound domain boundaries, which is counteracted
by WAPL. Our studies on domain boundary clustering, as well as our work on PcdhÆ,
further demonstrate that MC-4C can identify and analyze relevant structures missed by
population-based contact methods such as Hi-C or 4C because they are present in only
a small percentage of cells. High-resolution multi-way contact analysis methods such as
MC-4C promise to uncover how the multitude of regulatory sequences and genes truly
coordinate their action in the 3D spatial context of the genome. For the visualization
of co-occurrence frequencies of any site of interest with a given MC-4C viewpoint and
the calculation of the significance of such three-way interactions, we refer the reader
to the interactive viewer that we made available, together with the data shown in this
manuscript (see URLs).

6.5. URLS

MC-4C processing pipeline, https://github.com/UMCUGenetics/pymc4c/;
MC-4C visualization tool, http://www. multicontactchromatin.nl/;
ImageJ macro and corresponding raw images, https://github.com/aallahyar/MC-4C_SRMl;

https://github.com/UMCUGenetics/pymc4c/
https://github.com/aallahyar/MC-4C_SRMl
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Temporal median filter for structured background subtraction,
https://github. com/rharkes/Temporal-Median-Background-Subtraction;
ImageJ, http://imagej.nih.gov/ij/;
Thunderstorm plugin for ImageJ, https://github.com/zitmen/thunderstorm;
raw sequencing MC-4C data, https://www.ebi.ac.uk/ena/data/view/PRJEB23327;
MC-4C processed data, https://doi.org/10.17632/wbk8hk87r2.1.

6.6. METHODS

Methods, including statements of data availability and any associated accession codes
and references, are available at https://doi.org/10.1038/s41588-018-0161-5.
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7.1. BRIEF OVERVIEW OF MC-4C LIBRARY PREPARATION AND

SEQUENCING
For Ø-globin experiments, mouse embryos were harvested from surplus pregnant ani-
mals at 14.5 days post conception. Their livers and brains were manually dissected. For
WPL experiments, wild-type Hap1 cells and WAPL knockout Hap1 cells were cultured
and harvested as described in Haarhuis et al.. MC-4C template was prepared following
the regular 4C protocol (described in van de Werken et al., Splinter et al.), with several ad-
justments. Notably, 6-base pair restriction enzymes (e.g. HindIII) were used to shorten
the MC-4C template to approximately 2kb and then circularized.

We amplified (i.e. duplicated) concatemers that contain view point fragment by per-
forming inverse PCR on two primers that were designed on each end of view point frag-
ment. One major difficulty in performing the inverse PCR on circularized templates is
that short circles (often formed from view point fragment ligating to itself) tend to am-
plify extensively compared to other concatemers. Additionally, DNA polymerase contin-
ues to copy the strand by "rolling" around the circle over and over again (also known
as "rolling circle amplification") which generates a long but uninformative read. By
exploiting CRISPR-Cas9 technology, we cut the view point fragment to stop the DNA
polymerase from rolling circle amplification of small circles. Additionally, the fragments
neighboring the view point are cut to reduce the prevalence of circles containing the
view point and its neighbor fragments.

To selectively sequence long reads, Pippin HT size selection within a 1.5-8kb range
was performed on PCR products. Subsequently, libraries were prepared using the Oxford
nanopore sequencing kits and sequenced with appropriate flow cells. After sequencing,
"squiggle" signals were base called using latest versions of either Metrichor or Albacore
depending on their market availability. Typically, such a procedure produced approxi-
mately 1-2 million reads with average read size distribution around 1.5kb (as expected).
Figure 7.2 demonstrates such a distribution for two exemplary runs of MC-4C in liver
and brain cells using Ø-major as the view point.

7.2. OVERVIEW OF MC-4C DATA PROCESSING PIPELINE
In order reveal the multi-way DNA interactions captured by MC-4C, sequenced reads
need to undergo a few pre-processing steps. These steps ensure read integrity and more
crucially filters the reads for PCR duplicates, enabling quantitative analysis of the con-
formation of micro-topologies (see 7.16 for corresponding schematic).

7.3. READ VALIDITY CHECK
To validate fidelity of the sequenced reads, we identified primers as well as their orienta-
tions in each read. To this end, Bowtie2 v2.2.6 [9] was employed in local alignment mode
(settings: -D 20 -R 3 -N 0 -L 15 -i S,1,0.50 –rdg 2,1 –rfg 2,1 –mp 3,2 –ma 2 -a). We allowed
20% mismatches to take into account errors in Nanopore sequencing. To improve effi-
ciency of this step, we grouped reads into batches of 10,000 reads and mapped primer
sequences to reads within batches in parallel. This step is likely to take about 30 seconds
on average for each batch.
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Figure 7.1: Schematic overview of PCR filtering step. Scheme shows the removal of (1) reads with less than two
captured fragments in the region of interest (ROI), (2) reads with less than one far-cis/trans fragment and (3)
PCR duplicate reads, as guided by the capture of identical far-cis/trans fragments (genomically contributed
unique molecular identifiers (UMIs)).
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Figure 7.2: MC-4C read size distribution. Read size distribution plots of ten representative MC-4C experiments,
using viewpoints inside the Ø-globin and PcdhÆ locus in primary mouse fetal liver and fetal brain cells and
viewpoints at CTCF sites in wild type and WAPL knockout human HAP1 cells.

Analyzing primer arrangements in the sequenced reads showed that some reads ( 1%
on average) are formed by ligation of two or more individual molecules. We therefore
implemented a correction procedure in which read-ligation events (i.e. two divergent
primers within a read) are identified and reads containing such events are cleaved into
two sub-reads. The produced sub-reads are treated as independent reads in downstream
analysis. We discarded any reads that contained more than four primers or more than
one read-ligation event. These requirements ensured that only those configurations that
clearly arise as a result of a read ligation event go through the correction procedure. The
produced sub-reads were discarded if their primer configuration did not validate (e.g.
identification of non-convergent primers on either ends of a read). In this stage, we also
discarded any reads (or sub-reads) that were smaller than 500bp as they are unlikely to
be of sufficient complexity (i.e. in terms of the number of fragments) to be informative
for multi-contact analysis (see table 7.1 corresponding statistics per experiment).
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Figure 7.3: Number of captured fragments per read. Plots show number of captured fragments (i.e. number
of identified contacts) per read, for representative MC-4C viewpoints inside the Ø-globin and PcdhÆ locus in
primary mouse fetal liver and fetal brain cells and viewpoints at CTCF sites in wild type and WAPL knockout
human HAP1 cells. Note that restriction fragments which map immediately next to each other on the reference
genome are together counted as a single fragment (i.e. single contact).

7.4. SPLITTING READS INTO FRAGMENTS BASED ON RESTRIC-
TION ENZYME SEQUENCES

MC-4C reads are expected to be concatemers of multiple distinct fragments, and should
therefore be mapped using an aligner with split-read mapping capabilities (i.e. splitting
a single query read and mapping to multiple coordinates). However, as many reads will
consist of more than two fragments and splits are expected to occur at known restriction
sites in the genome, we pre-split the reads into prospective fragments using restriction
enzyme recognition sequence. This procedure showed improved efficacy in mapping
fragments compared to relying only on the split-read mapping capabilities of the aligner
(see Figure 7.15). Due to sequencing errors, extra restriction sites (i.e. observing GATC
while it should have been GAAC) might be erroneously recognized. To consider such
cases, the split fragments that map directly adjacent in the reference genome are further
fused together in later stages of the pipeline (see section 7.6). For the same reason, re-
striction sites may be missed. In this case, we relied on the split-read capability of the
aligner to correctly identify sub-fragments.
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Figure 7.4: Number of captured fragments per informative read. Plots show number of captured non-
viewpoint fragments (i.e. number of identified contacts) for all reads that have passed the filtering and se-
lection pipeline.
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Figure 7.5: Genomic distribution of MC-4C captured fragments. a. Chromosomal distribution of captured
fragments for ten representative MC-4C experiments. b. Distribution of captured fragments across chromo-
somal intervals at increased distance from the viewpoint, for ten representative MC-4C experiments.
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Figure 7.6: Similarity between primary and secondary ligation products. a. Cartoon explaining the difference
between primary ligation products (as analyzed by Hi-C and 4C-seq) and the secondary ligation products that
are additionally captured, sequenced and analyzed in mC-4C. b. Overlay of pan-allelic contact profiles of
primary and secondary ligation products, for four representative MC-4C experiments. c. Comparison of the
distribution of primary and secondary captured fragments across chromosomal intervals at increased distance
from the viewpoint, for four individual representative, MC-4C experiments.
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Figure 7.7: Overall (pan-allelic) contact profiles generated by MC-4C and a comparison with 4C-seq. a. In
E14.5 fetal liver, the hbb-b1 and hbb-b2 genes are the predominantly active globin genes, while hbb-y expres-
sion is being silenced. In fetal brain cells, all globin genes are silenced (but residual expression may come
from contaminating circulating blood cells). b. MC-4C (top) and 4C-seq (bottom) were applied to the Hbb-
b1 gene in E14.5 mouse fetal liver. MC-4C data were collected and plotted (bin sizes 0.7kb) as described in
this manuscript. 4C-seq data were collected from GEO (GSE40420) and processed as described in the original
paper [3, 5]. 4C-seq PCR amplification biases necessitate data normalization, which is done using a running
mean operator with a window size of 21 fragment-ends. As a consequence, the resolution of 4C-seq contact
profiles is lower than that of MC-4C. Since 4C-seq involves the mapping and analysis of small fragment ends
(instead of complete restriction fragments, as is done in MC-4C), not all sequenced fragment ends can be
uniquely mapped to the repetitive sequences of the Ø-globin locus, hence explaining the gaps in the 4C-seq
contact profile.
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Figure 7.8: Reproducibility between independent experiments and sequencing platforms. a. Plots show the
correlation between independent replicates using cells from different embryos. a and b show results obtained
in fetal liver cells and the Hbb-b1 viewpoint. a. Compares an experiment where 10 PCR reactions were pooled
and sequenced, with an experiment where 96 PCR reactions were pooled and sequenced. b. Compares an ex-
periment on a Pacific biosciences Single Molecule Real-time sequencer with the pooled 96x and 10x nanopore
data. c and d show the same comparison for the HS5 viewpoint in liver cells. Spearman correlations are shown
in the top-left of each plot. e. Hbb-b1-HS2 and Hbb-b1-HS4 VP-SOI plots generated by Nanopore (top) and
PacBio (bottom) sequencing. Contact profiles look similar overall, but Nanopore sequencing gave us at least
10-fold more sequences, making the profiles more reliable (e.g. represented by smaller standard deviations in
the negative set) and the z-score calculations more robust. Grey line and area indicate the negative set (mean
± SD)
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Figure 7.9: Allelic co-occur frequencies at the active and inactive Ø-globin locus. Complete overview of co-
occur significance scores found between any pair of genes and/or super enhancer constituents in experiments
using Hbb-b1, HS2, HS3 and HS5 as viewpoints, in E14.5 fetal liver and E14.5 fetal brain cells. Numbers in each
square represent (in order of appearance): Numbers in each square represent (in order of appearance): z-score
of the association test used to assess significance of preferential contacts observed between each genomic
pair (in presence of the view point), number of reads containing queried SOI (x-axis) in the positive set (see
Methods), average number of reads containing queried SOI in 1000 draws of the negative set, percentage of
reads containing the queried SOI in the positive set, average percentage of reads containing the queried SOI in
the negative set in 1000 draws along with the standard deviation.
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Figure 7.10: Distinguishing cooperative from random and competitive DNA interactions. Schematic overview
of association analysis performed for determining preferential contacts formed in the region of interest. a
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of n reads from the negative set, consisting of reads that contain the SOI, repeated 1000 times. The mean and
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Figure 7.11: PcdhÆ expression in E14.5 fetal brain cells. a. Alternative exon-specific primers were used for a
PCR (n=1) on cDNA to test which promoters are active in E14.5 fetal brain cells. Primers are listed in Supple-
mentary Table 2. b. Overall profiles of PcdhÆ4, PcdhÆ11, HS5-1 and HS7 viewpoints in liver (inactive) and
brain (active) cells.
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Figure 7.12: Allelic co-occur frequencies at the active and inactive PcdhÆ locus. Complete overview of co-
occur significance scores found between any pair of genes and/or enhancers constituents in experiments using
PcdhÆ4, Æ11, HS7 and HS5-1 as viewpoints, in E14.5 fetal liver (PcdhÆ inactive) and E14.5 fetal brain cells
(PcdhÆ active). Color of each square represents z-score of the association test used to assess significance of
preferential contacts observed between corresponding genomic pair (in presence of the view point). Please
refer to original publication to see association scores for each pair of sites [1].
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Figure 7.13: Micro-topologies uncovered in the MAN1A locus in ¢WAPL Hap1 cells. a. HiC data obtained in
WT and ¢WAPL Hap1 cells, in the MAN1A locus, showing multiple novel long-range loops formed exclusively
in absence of WAPL. Forward and reverse CTCF sites are indicated, as well as the viewpoint used in MC-4C
experiments and the CTCF sites used as SOI b. Viewpoint-SOI profiles for the MAN1A viewpoint, using three
different CTCF sites as SOI, showing CTCF clustering. z-scores are plotted below the profiles. Color of each
square represents z-score of the association test used to assess significance of preferential contacts observed
between corresponding genomic pair (in presence of the view point). Please refer to original publication to see
association scores for each pair of sites [1].
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Figure 7.14: Allelic co-occur frequencies of architectural loops in presence or absence of WAPL. a. HiC plot of
a region of interest on chromosome 6 that shows clear extended loop formation between WT (bottom left) and
¢WAPL Hap1 cells. CTCF sites are separated on orientation and indicated on the top and left axes. An MC-4C
viewpoint was chosen (indicated as an anchor) and the three SOIs that are shown in b are indicated with mag-
nifying glasses. b. Complete overview of co- occur significance scores found between pairs of CTCF sites in the
selected region on chromosome 6, in WT hap1 cells and ¢WAPL Hap1 cells. Green line indicates frequencies
observed in ¢WAPL VP-SOI selection, gray areas indicate the background (negative selection) profile (mean ±
SD), blue/red bars indicate the z-score for each bin. CTCF sites are indicated below the top-most plot, with
arrows indicating their direction. c. Dot plot showing the cumulative frequency for the distance between in-
dividual Cohesin proteins relative to the total number of distance measurements. Dots indicate frequency for
each of the five analyzed cells per genotype, and lines indicate average frequency per genotype.
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For mapping, BWA-SW was used with identical parameters for both methods. Bars represent read size distribu-
tion (in terms of the number of mapped fragments). Fragments were considered to be mapped if their Mapping
Quality (MQ) is >= 20. The adjacent fragments in reads were merged together if they map closer to 30bp in the
reference genome. Based on this result, pre-splitting reads yield 15% more mapped fragments compared to
directly mapping reads (31161 vs. 35779). This plot also quantifies the number of times the aligner decided
to split a given read or fragment (# aligner split) as well as number of times the MC4C pipeline merged two
adjacent fragments (# pipeline merge). These statistics show the decrease in split-read mapping when reads
are pre-split (23129+1889 vs. 2547+12664).
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Figure 7.16: Schematic representation of pre-processing steps in MC-4C after sequencing. a. Read split: Reads
are split into fragments according to the restriction enzyme recognition sequence (only DpnII is depicted in the
figure). b. Fragment mapping: Fragments are mapped to the reference genome. Due to sequencing errors or
short length of fragments, some fragments may not be mapped confidently and are discarded. After mapping,
fragments are extended (or shrunk) to the nearest restriction site in the genome. c. PCR filter: Reads that have
two or more mapped fragments (in addition to the viewpoint) are selected for PCR filtering to ensure that each
read represents a single allele (see also Supplementary Figure 1). d. Association analysis: PCR filtered reads
are employed to assess multi-contact associations between elements in the region of interest (see also Figure
7.10).
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Figure 7.17: Performance assessment of state of the art aligners. 5000 fragments were randomly selected and
mapped to a shortened reference genome of ±1MB around the viewpoint using three aligners including BWA-
SW [6], Graphmap [7] and Yaha [8] with default settings. Percentage of base pairs mapped (MQ >=20) for each
aligner is depicted. This procedure is repeated 15 times to assess sampling bias (represented by dots). To avoid
dataset specific performance bias, fragments from different tissue type and viewpoints are used including:
Brain-HS2, Liver-HS2, Liver-BMaj. A repeated sequencing of Liver-HS2 is also included to investigate protocol
specific variation.

Table 7.1: Statistics of the MC-4C experiments. Shown, per experiment, are the total number of reads se-
quenced per experiment (Raw read column), number of reads with more than one fragment - excluding VP - in
the region of interest (Informative), number of reads with at least one UMI fragment allowing to check for PCR
duplicity (Has far cis /trans UMI), number of independent alleles after removing PCR duplicates (PCR filtered
unique reads), and the number of MinION sequencing runs that were pooled for each experiment (Sequence
runs). The numbers in parentheses are percentage of reads remained after each step of filtering compared to
total number of reads sequenced.

Dataset name Raw reads Informative Has far cir/trans UMI PCR filtered unique reads
Fetal Liver HS5 985391 129239 (13.1%) 74119 (7.5%) 8149 (0.83%)
Fetal Liver HS3 1200081 57462 (4.8%) 26378 (2.2%) 7854 (0.65%)
Fetal Liver HS2 1571364 136600 (8.7%) 105423 (6.7%) 5970 (0.38%)
Fetal Liver Hbb-b1 1154371 128496 (11.1%) 89369 (7.7%) 9775 (0.85%)
Fetal Brain HS5-1 1190411 140087 (11.8%) 89992 (7.6%) 23478 (1.97%)
Feral Brain HS7 1821435 64505 (3.5%) 39454 (2.2%) 25583 (1.40%)
Fetal Brain Pcdh-a11 2031143 312377 (15.4%) 202415 (10.0%) 24186 (1.19%)
Fetal Brain Pcdh-a4 1361631 149871 (11.0%) 95417 (7.0%) 17602 (1.29%)
Fetal brain HS5 2690060 64882 (2.4%) 43679 (1.6%) 7016 (0.26%)
Fetal brain HS2 3329153 90382 (2.7%) 74271 (2.2%) 3061 (0.09%)
Fetal brain Hbb-b1 5777087 81136 (1.4%) 61232 (1.1%) 6390 (0.11%)
Fetal Liver HS5-1 1857223 53952 (2.9%) 38346 (2.1%) 15172 (0.82%)
Fetal Liver Pcdh-a11 2245836 51733 (2.3%) 36817 (1.6%) 16761 (0.75%)
Fetal Liver Pcdh-a4 2888720 41661 (1.4%) 32932 (1.1%) 14341 (0.50%)
WT E 5511511 325057 (5.9%) 108278 (2.0%) 22820 (0.41%)
¢WAPL E 5239363 588116 (11.2%) 186585 (3.6%) 23878 (0.46%)
WT K 2491602 110958 (4.5%) 43296 (1.7%) 14322 (0.57%)
¢WAPL K 3339213 199430 (6.0%) 67365 (2.0%) 15491 (0.46%)
Average 2593644 151441 (5.8%) 78632 (3.0%) 14547 (0.56%)
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7.5. MAPPING READS TO REFERENCE GENOME
In order to map the partial reads to the reference genome, we utilized BWA v0.7.16a41 in
SW mode (setting: -b 5 -q 2 -r 1 -T 15). Furthermore, the Z-best heuristic of this aligner is
set to 10 (i.e. -z 10). This heuristic increases accuracy of the aligner at the cost of speed.
On average, mapping one million fragments takes about an hour using a 64 core system
running Linux CentOS v7.0. BWA-SW performed best among several tested split-aligners
(see Figure 7.17).

7.6. FRAGMENT EXTENSION AND NEIGHBOR FUSION
Fragments are extended to nearest restriction site (either the 4-cutter or 6-cutter restric-
tion site) in the reference genome. Extension is continued to next restriction site in the
reference genome if a given fragment is mapped more than 10 bases after an identified
restriction site. Any fragments that map closer than 30bp in the reference genome are
fused together and considered to be a single fragment in the rest of analysis. Finally, any
fragment with mapping quality below 20 is considered as unmapped. Figure 7.3 demon-
strates read size distribution of two representative experiments inØ-globin (i.e. liver and
brain cells) in terms of number of contacts after extension and fusion and preservation
of confidently mapped fragments.

7.7. DUPLICATE REMOVAL
In order to detect PCR duplicates, we utilized a conservative approach which is based on
the premise that in MC-4C, fragments that map far away from the viewpoint are unlikely
to be found more than once (see 7.5). Therefore, these far-cis/trans fragments can be
directly used as Unique Molecular Identifiers (UMI)s. Therefore, if these UMI fragments
are identified in two reads, those reads are far more likely to be the result of a PCR du-
plication than of two independent ligation events. A schematic representation of this
approach is depicted in (see 7.1).

Once a duplicate is found, we removed the read with smaller number of local frag-
ments (i.e. fragments that are mapped within the locus of interest). Locus of interest
is defined as a region around the viewpoint that contains expected interacting partners
in the locus. Finally, reads that have less than two fragments within the locus of inter-
est are discarded as they are not informative in multi-way contact analysis. Once du-
plicated reads are filtered, we confirm the validity of MC-4C data by comparing overall
profiles with standard 4C (see 7.7) ). This is further confirmed by comparing primary
vs. secondary ligations (see Figure 7.6). Finally, we compared reproducibility of profiles
generated by nanopore sequencing technology to the same profile generated by PacBio
sequencing technology. While overall profiles in both platforms show high degree of
similarity, nanopore sequencing yielded 10 times more unique reads and was chosen as
the primary platform for MC-4C (see 7.8).

7.8. ASSOCIATION ANALYSIS
To uncovered contact predisposition between the Viewpoint (V) and two other Sites Of
Interest (SOI), say X and Y, we hypothesized that if preferential contact between X and Y
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(in presence of V) exists, this propensity should be absent when X is not present in the
concatemer (V and Y but not X). Accordingly, this preference can be revealed by com-
paring profiles of reads that contain V and Y and X (positive set, Figure 7.10.a) versus a
background profile that is formed from reads that contain V and Y but not X (negative
set, Figure 7.10.b). To determine if a read contains a SOI (i.e. V, Y or X), the locus of inter-
est is divided into 200 bins and the SOI perimeter is defined by 3 bins centered around
the SOI center. The frequency of observing a SOI is determined by the number of reads
that contain a fragment within the SOI or overlapping the SOI boundary.

To account for conformational variation that may occur across the population of
cells, we subsampled reads from the negative set to the number of reads in the positive
set. This procedure is repeated 1000 times. Moreover, we implemented a correction for
the fact that - by definition - reads in the positive set already contributed a fragment to
SOI X. Therefore, the positive profile is effectively produced by smaller reads (i.e. #frag-
ments - 1 for each read). Hence, on average, each read in the negative set supplies an
extra fragment to the profile compared to reads in the positive set. To compensate for
this, and ensure both negative and positive profiles are constructed based on the same
distribution in terms of fragments per read, one fragment from each negative read is
randomly removed in every random subsampling of the negative set. Finally, the mean
and standard deviation of the frequency at which SOI Y is observed in the negative set is
calculated. Using these statistics, a z-score can be determined to estimate significance
of the (un-)favored contacts formed between V, X and Y. While a modest (close to zero)
z-score indicates a random contact frequency between X and Y when V is present (Fig-
ure 7.10.d), a positive or negative z-score implies a favored (Figure 7.10.c) or unfavored
(Figure 7.10.e) contact between these three elements, respectively.



7

152 7. MC-4C: COMPUTATIONAL ASPECT

Table
7.2:Prim

ers
u

sed
in

th
is

stu
dy.T

h
e

p
rim

ers
u

sed
for

each
in

dividu
alview

p
oin

t,an
d

th
e

coordin
ates

ofeach
region

ofin
terest.FW

an
d

R
V

p
rim

ers
are

u
sed

for
M

C
-4C

PC
R

.

V
iew

p
oin

t
R

egion
ofin

terest
FW

D
R

EV
H

bb-b1
ch

r7:110933500-111066500
G

C
A

G
TA

G
T

G
AT

T
C

TAT
T

C
A

AT
T

T
T

T
G

G
G

AT
C

C
C

A
G

AT
T

T
G

T
G

A
G

C
T

C
A

G
G

G
T

T
TA

C
H

S2
ch

r7:110933500-111066500
C

A
G

AT
G

T
T

T
T

C
A

G
C

T
G

T
G

A
C

T
G

AT
C

T
T

G
G

A
C

A
G

T
G

G
TA

C
T

G
C

A
ATA

AT
T

H
S3

ch
r7:110933500-111066500

C
A

A
A

G
C

A
G

C
C

T
C

T
C

T
C

A
G

T
C

C
C

C
T

T
C

T
C

AT
T

C
T

C
T

C
A

G
C

TAT
G

T
G

A
A

A
A

C
A

A
C

C
H

S5
ch

r7:110933500-111066500
G

G
AT

T
T

T
T

C
A

A
A

G
G

C
C

T
G

A
A

C
T

C
A

A
A

C
C

G
T

C
T

G
TA

G
G

C
T

C
C

ATA
ATA

AT
T

G
T

C
T

T
C

C
C

Pcdh
Æ

4
ch

r18:37060000-37400000
T

T
C

T
C

A
C

C
A

G
T

G
A

C
T

G
TAT

G
T

G
AT

C
AT

G
AT

G
T

C
G

C
T

C
T

T
TA

C
C

G
T

C
A

A
ATA

Pcdh
Æ

11
ch

r18:37060000-37400000
C

G
C

T
C

T
T

TA
C

T
T

G
G

T
G

G
A

A
A

G
A

C
C

T
TA

G
C

TAT
G

TA
G

G
T

T
T

G
C

AT
T

C
T

Pcdh
Æ

H
S7

ch
r18:37060000-37400000

T
T

T
G

T
G

G
A

C
T

G
A

C
T

G
G

A
G

A
A

G
C

A
G

C
C

T
C

T
G

G
ATA

C
T

C
A

C
AT

G
C

A
A

Pcdh
Æ

H
S5-1

ch
r18:37060000-37400000

G
G

A
G

G
A

G
G

T
TA

A
A

G
C

A
A

A
G

A
C

TA
A

G
AT

C
T

C
T

G
G

TAT
T

G
TA

A
A

G
T

G
G

T
C

G
A

W
ap

lC
T

C
F

E
ch

r8:120800000-122075000
C

A
A

A
G

G
G

A
G

A
G

C
G

C
C

AT
C

TA
C

T
C

C
T

G
C

T
C

T
T

C
A

C
AT

C
T

C
A

A
G

W
ap

lC
T

C
F

K
ch

r8:120800000-122075000
A

G
C

T
G

G
A

C
AT

T
C

T
T

C
A

A
C

T
G

C
G

A
C

AT
G

A
C

G
T

T
T

G
G

C
T

C
C

AT
G

M
an

1A
ch

r6:119250000-120750000
C

A
C

AT
G

TA
A

A
G

A
C

TA
AT

TAT
G

A
G

A
C

G
C

G
C

T
C

C
A

G
A

A
AT

G
A

A
AT

T
T

TA
G

G
G

A
G



REFERENCES

7

153

REFERENCES
[1] A. Allahyar, C. Vermeulen, B. A. M. Bouwman, P. H. L. Krijger, M. J. A. M. Verstegen,

G. Geeven, M. van Kranenburg, M. Pieterse, R. Straver, J. H. I. Haarhuis, K. Jalink,
H. Teunissen, I. J. Renkens, W. P. Kloosterman, B. D. Rowland, E. de Wit, J. de Rid-
der, and W. de Laat, Enhancer hubs and loop collisions identified from single-allele
topologies, Nature Genetics (2018), 10.1038/s41588-018-0161-5.

[2] J. H. I. Haarhuis, R. H. van der Weide, V. A. Blomen, J. O. Yáñez-Cuna, M. Amendola,
M. S. van Ruiten, P. H. L. Krijger, H. Teunissen, R. H. Medema, B. van Steensel, T. R.
Brummelkamp, E. de Wit, and B. D. Rowland, The cohesin release factor WAPL re-
stricts chromatin loop extension, Cell 169, 693 (2017).

[3] H. J. G. van de Werken, P. J. P. de Vree, E. Splinter, S. J. B. Holwerda, P. Klous, E. de Wit,
and W. de Laat, 4C technology: protocols and data analysis, Methods Enzymol. 513,
89 (2012).

[4] E. Splinter, E. de Wit, H. J. G. van de Werken, P. Klous, and W. de Laat, Determining
long-range chromatin interactions for selected genomic sites using 4c-seq technology:
from fixation to computation, Methods 58, 221 (2012).

[5] H. J. G. van de Werken, G. Landan, S. J. B. Holwerda, M. Hoichman, P. Klous,
R. Chachik, E. Splinter, C. Valdes-Quezada, Y. Oz, B. A. M. Bouwman, M. J. A. M.
Verstegen, E. de Wit, A. Tanay, and W. de Laat, Robust 4c-seq data analysis to screen
for regulatory DNA interactions, Nat. Methods 9, 969 (2012).

[6] H. Li and R. Durbin, Fast and accurate long-read alignment with burrows–wheeler
transform, Bioinformatics 26, 589 (2010).
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8
DISCUSSION

The more we learn about the universe the simpler it seems, but the cell isn’t like that.
The more we find out the more complicated things get

Prof. Steve Jones, University College in London
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High-throughput expression assays such as microarrays opened a new era in biomed-
ical research. Nowadays, the study of the transcriptional landscape of cancer cells by
exploiting massive datasets enclosing several thousand samples is common in genomic
research. It is infeasible to manually process, analyze and extract relevant information
from this ’Big data’. Computational biology therefore has become an integral part of
these investigations. This interdisciplinary collaboration substantially facilitated knowl-
edge discovery and revolutionized modern biology. Nonetheless, combining pieces of
information from independent datasets to complete the puzzle and reach the sought
knowledge remains challenging. Intending to accelerate knowledge acquisition, a myr-
iad of computational methods were designed in the recent years to integrate data from
variety of sources.

In this thesis, we initially focused on integration of gene expression data and biolog-
ical networks (such as protein-protein interaction networks or gene co-expression net-
works) and how such a integration could be exploited to estimate survival risk of breast
cancer patients. On the second part of this thesis, we took preliminary steps in forming a
new biological network that captures multi-way DNA interactions which occur between
multiple functional elements of the genome (such as genes or enhancers) in the cell nu-
cleus.

While this thesis explores several aspects of inferring and integrating biological net-
works for analyzing gene expression data to predict disease outcomes, there are still
numerous angles that were not investigated and will be addressed here. On the other
hand, whilst proposed methods are developed to tackle specific problems, there appli-
cation reaches far beyond the initial biological question. Consequently, several other
area of research that could benefit from methodologies developed in this thesis will be
surveyed. Finally, we will discuss our future perspective on data integration frameworks
and network-based models and how we envision advances in such techniques to cat-
alyze our understanding of the underlying working mechanism of cell system.

8.1. NETWORK BASED OUTCOME PREDICTION
To carry out the analysis required for Chapter 2 and 4, diverse types of data and methods
were utilized. The corresponding parameters for each method were sought to be based
on proper side-analysis to make sure downstream conclusions are as rigorous as possi-
ble. At the same time, to make these analyses feasible, choices were needed to be made
(or details ignored) without in-depth investigation. In this section, we aim to elaborate
on some of these aspects that may have more profound implications on the aforemen-
tioned analyses. We approach these details from two different standpoints: data and
methods.

8.1.1. CHALLENGES IMPOSED BY DATA CHARACTERISTICS

As described in Chapter 1, large datasets can be formed by pooling expression profiles
from independent studies [1]. The expected study-specific expression variations then
need to be removed. Due its popularity and ease of use, we utilized COMBAT [2] to
achieve this in Chapter 2 and 4. However, many other methods exist that could be used
to achieve this (see [3, 4] for survey). Hence it is necessary to investigate whether these
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models can identify and correct more subtle study-specific variations in the collected
cohort.

It is essential to recognize that these "transformative" procedures have detrimental
effects as (parts of) the discarded expression variations could have intrinsic (biologi-
cal) origin. For instance, some studies may have targeted different subtypes of breast
cancer which could potentially skew the transformation. Notably, the ACES dataset [5]
suffers from this effect since the Desmedt et al. cohort investigated outcome markers of
node-negative patients [6], while the Loi et al. cohort targeted estrogen receptor positive
tumors and studied their latent molecular subtypes [7].

Another source of inconsistency can be seen in the "time-to-event" clinical outcome
variable. Currently, diverse definitions for this variable are used in clinical trials [8].
Problematically, such variable is often vaguely described in the original article [9]. This
diversity and ambiguity in published variable challenges the post interpretation and col-
lection of this variable which in turn induces disagreement in patient outcome [10].

The outcome inconsistency combined with the relatively small publicly available co-
horts (fewer patients than variables; genes) made it difficult to form a large and coherent
expression dataset which is required for reliable training of the Network-based Outcome
Predictors (NOPs). In particular, the collected datasets in this thesis utilized two different
“time to event” outcome variables: Overall and Recurrence/Relapse Free survival. Overall
survival indicates the time between diagnosis of cancer and the date in which that pa-
tient was last known to be alive (used in METABRIC and TCGA). The recurrence/relapse
Free survival denotes the duration between primary treatment and first signs/symptoms
for return of that cancer (Used in ACES). Although combining these datasets increased
the number of samples by a factor of two, we resorted to ignore the “time to event” dif-
ferences and regarded this variable as a single entity of survival time. This is of course
not ideal. Specially because the given labels are considered to be the “truth” in standard
classifiers [11].

It should be noted that outcome discrepancy is not the only complicating factor for
dataset pooling. Preparation of samples in the lab requires numerous intricate steps
which increases the chance of mislabeling samples. Such errors in labeled datasets can
be identified by correlation analysis. For example, we utilized the collected cohort in
Chapter 4 and probed for highly correlated patients with opposite prognosis. To our sur-
prise, we found several samples satisfying the aforementioned criteria. A notable exam-
ple was “MB-0228” sample in the METABRIC data with a very poor prognosis (survival
time of 325 days). The expression profile of this sample was highly correlated (min(Ω)=0.79)
with multiple good prognosis samples (see Figure 8.1.a). Interestingly, the most cor-
related patient profile in our cohort had ID of “MB-0282” which seems very similar to
former patient with ID of “MB-0228” (see Figure 8.1.b), suggestive of incorrect survival
time for this patient. One potential solution for this problem could be the incorporation
of probabilistic labels representing our confidence in correctness of the sample labels
[11, 12]. Such methods explicitly model the uncertainty of labels and by that may im-
prove performance of NOPs. Transfer learning is a relatively new concept in machine
learning that can rectify such inconsistencies [13]. These models are designed to learn
an abstraction from one problem and then “transfer” the extracted information with the
aim of solving a different but related problem [14, 15]. Here, we could use this concept to
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train a predictor using samples with overall survival labels and then transfer the learned
model to predict outcome of patients that are represented with recurrence/relapse free
survival labels.
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Figure 8.1: Mis-labeled samples can reduce performance of outcome predictors. a. Expression profile of a
patient with very poor prognosis (red node, survival=325 days) is highly correlated (min()=0.79) with many
patients (green nodes) with good prognosis. The top 15 highly correlated patients with this patient in our co-
hort are visualized. Node colors represent survival of patients and numbers along the edges denote spearman
correlation between pair of patients. b. Expression profile visualization of top highly correlated patient with
“MB-0228” ID.

In this thesis we employed leave-one-study-out cross validation to resemble real-
world application of outcome prediction models. However, the entire dataset (training
and test set) were analyzed together to identify and remove the batch effects. Yet, in real-
world applications, the intrinsic batch effects would be known only in the test phase
(i.e. in the clinic). Accounting for this aspect in the assessment of outcome predictors
is challenging (if not impossible) as technical variation in the test set can be exerted by
innumerable environmental factors with diverse magnitudes. The recent efforts in pro-
moting standardized preparation protocols and processing procedures could have con-
siderable impact in reducing these effects which in turn simplifies assessment of out-
come predictors [16].

8.1.2. CHALLENGES RELATED TO MODELS
To analyze the expression data in Chapter 2 and Chapter 4 we focused on the two class
(binary) classification problem to discern between patients categorized as poor or good
prognosis. The patient prognosis is determined by dichotomizing corresponding sur-
vival times according to a (clinically established) five years threshold. This discretization
may result in loss of relevant information. Although we utilized Lasso (and its deriva-
tives) as classifiers, they are in fact regression models capable of directly incorporating
continuous labels. Therefore, it may seem reasonable to drop the discretization step and
directly predict survival time of patients instead. Although, such models may perform
poorly due to the unreliability of clinical variables (see section 8.1.1). Another difficulty
in utilizing standard classifiers in survival analysis related to the censoring of patients
which is very common in clinical trial datasets. Censoring occurs when the time of event
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(i.e. death) for a patient is not known. For such datasets, Cox proportional hazards mod-
els are advised that are capable of incorporating censored survival times as well [17].

To ascertain performance of the proposed models, we utilized the cross-study eval-
uation to better resemble real world application of these models. We motivated this ap-
proach in Chapter 2 by demonstrating that all models under study show inflated per-
formance if standard cross-validation scheme is used. To explain this observation, we
argued that standard cross-validation allows the classifier to “see” the intrinsic batch ef-
fects in the data which can be further exploited to improve performance. Another likely
explanation for this observation can be the utilized “stratified” cross validation scheme
which keeps the ratio of subtypes in the training and test set comparable. In contrast,
in cross-study validation each study in the collected cohort may contain a different ra-
tio of subtypes and therefore change of subtype composition in the training and test set
can be substantial (see Figure 8.2.a). This in turn may deteriorate the performance of
the trained models [18]. Similarly, the cost function in classifiers assumes a comparable
ratio of classes (good vs. poor outcome) in the training and test set and penalizes miss-
classification errors according to this ratio. However, such a property is often violated in
pooled cohorts (see Figure 8.2.b). If the test set contains more samples of the “harder-to-
classify” class, this will result in the deterioration of performance for that particular test
set, even though a good (cross-validation) generalization was achieved during the train-
ing phase. One way to mitigate this effect would be to stabilize frequency ratios across
training and test set using down sampling of the frequent category. The drawback for
this approach is that not all samples are used in the training phase of the classification
which could be specially an issue when the number of samples is already small. Another
way to circumvent this issue is to explicitly assign weights to samples in the training set
according to ratio of samples in the test set. The downside of this approach is that the test
set is utilized to assign a parameter in the model which is known to yield over-estimated
performance. Another approach would be to have subtype-specific error assignments
which balances the occurred error rates according to the frequency of subtypes in the
test set.
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Figure 8.2: Instabilities in the category (either subtype or outcome) frequencies across test and training set.
This variation can substantially deteriorate performance of models. a. Frequency of subtypes in collected
cohort changes across studies. b. Number of samples categorized in prognosis vs. poor outcome changes
noticeably across datasets.

In Chapter 2 and Chapter 4 we focused our analysis on two different variants of lasso
namely group lasso and sparse group lasso to incorporate network information in out-
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come prediction models. The main restriction in these classifiers is the fixed group size
that needs to be defined prior to training. Although in Chapter 4 we addressed this issue
by optimizing the group size in the training phase, all gene sets in our model were con-
fined to a constant size (in terms of number of enclosed genes). Yet, number of genes
per functional modules or pathways in the cell could vary substantially [19]. One way to
circumvent this problem is to infer the number of genes per group in a greedy fashion
similar to Chuang et al.. In each iteration of greedy expansion, a linear regression model
can be trained (using training set) and then its prediction vector could be used as the
“meta-gene”. In this case, the regularization can be left out as the number of genes in
each group are often small compared to number of patients [20]. The drawback of such
a model is its tendency to "overfit". This is because sample labels (in training set) are
used many times during the greedy procedure and top modules in the training set may
not faithfully represent the test set. To circumvent this, the greedy procedure can draw
inspiration from boosting approaches utilized in Random Forest [21] where a small (we
propose <25% as a role of thumb) number of samples are employed in each iteration.
This can be further improved by limiting samples to a single study in each iteration to
make sure the observed performance is stable across studies.

Another factor that is not investigated in this thesis is that accuracy of prognosis
varies depending on the subtypes of breast cancer [22, 23]. It is known that the Luminal A
subtype in breast cancer is associated with good prognosis [24]. This means that there is
a higher chance for a patient with Luminal A subtype to be in the good prognosis class.
Consequently, a classifier can gain an overall better performance simply by exploiting
this property and associating all samples from Luminal A subtype to good outcome [22].
Such a criticism has been made against predictors incorporated in MammaPrint [25]
and Oncotype DX [26], two commercially available prognosis predictors in the market
[27, 28]. A similar issue can arise when subtypes are not represented with compara-
ble frequencies in the dataset (also known as "class priors" imbalance). A classifier can
exploit this property of the dataset and fine tune its parameters to deliver accurate prog-
nosis for frequent subtypes and thereby enhancing its overall performance. Our further
investigation into this issue revealed no correlation between the performance of group
lasso (guided by SyNet) and different subtypes (see Figure 8.3.a). We speculate that the
cross study validation procedure may have prevented this bias as studies in our dataset
represented diverse class priors (see Figure 8.2.a) which in turn prevented the classifiers
to adapt to a specific subtype.

Another interesting question that was overlooked in Chapter 4 was to investigate
the extent to which subtypes of breast cancer benefit from incorporation of network
information in the model. To this end, we compared the performance of lasso to its
network-based version (GL) that utilizes SyNet to govern its predictions. Figure 8.3.b
represents performance gain of (PAM50) subtypes sorted according to their mortality
rate [24]. Based on this result, network-based prediction of survival can improve accu-
racy of Luminal A, B and Normal-like patients much better than Her2 and basal that are
often associated with poor survival. This is an exciting finding as many efforts are being
done to identify low risk patients with higher accuracy to spare them the toxic effect of
chemotherapy [28].

The analyses performed in this thesis were limited to gene expression data. However
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Figure 8.3: Performance of network based outcome predictors to estimate survival risk of patients. a. Network
based predictions are not biased toward frequency of samples in the cohort. b. Network information provides
better recognition of markers for patients with low risk of cancer development.

such a single perspective of this complex disease (even after incorporation of network
knowledge) may not be enough to untangle the wide range of misregulations that can
occur in tumor cells. A notable example is the Basal-like subtype. In the Figure 8.3.b,
we showed that the Basal-like subtype has the least benefit from incorporation of net-
work knowledge to the model. Yet, Dai et al. reported that combined analysis of gene
and MicroRNA expression (a non-coding RNA with regulatory activities on target genes)
can specifically improve prognosis accuracy of breast cancer patients with basal sub-
type [29]. Therefore, it can be concluded that for each subtype, we may need to com-
bine different types of data to improve performance of outcome predictors. Recognizing
this potential, many aspect of these tumors are currently being measured and the corre-
sponding data are made publicly available. A notable example is the TCGA consortium
which apart from gene expression profiles, provides multiple views of the same samples
including copy number, SNP profiles and DNA methylation [30]. Utilizing such a com-
prehensive view of tumors can have a radical impact on the novel insights that can be
extracted from computational models.

While the multi-view analysis of tumor profiles is promising, implementing this ap-
proach has its own set of challenges. The primary difficulty is normalization of these
views into a single coherent dataset [31]. In particular, each view yields features following
a particular distributions. For example, while gene expression values are continues and
(assumed) normally distributed, SNPs are binary and follow an exponential distribution
[32, 33]. One way to circumvent this issue is to design a framework that is aware of these
"incompatibilities" across views [34]. To this end and inspired by the Lasso concept,
Yang et al. proposed a linear regularization model that can perform "multi-view" Lasso
[35]. Briefly, this approach learns a low-rank representation of each given view while si-
multaneously selecting informative features across views. To the best of our knowledge,
no group or sparse group regularization is proposed for multi-view analysis.

Another often utilized multi-view approach is Multiple Kernel Learning (MKL) [34].
A kernel is a matrix that represent the pairwise similarity between samples (analogous to
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a correlation matrix). In MKL, multiple kernels for each view (i.e. mRNA or SNP data) are
computed and then optimal weights for a linear combination of these kernels are iden-
tified to predict the target label. However, to compute these kernels a suitable similarity
function (that preserves discriminative informative) for each particular view needs to be
defined which is not a trivial task. Taken together, incorporation of data with diverse
nature into a single robust framework is still an open question. It is worth noting that
several methods are proposed to perform multi-view outcome prediction by “mapping”
gene sets to pathways by averaging expressions [36]. However, as explained in this thesis,
this approach may induce substantial information loss and is not recommended.

In this thesis, we essentially regarded wide range of gene relationships as a single
entity of “interactions” and did not differentiate between different types of interactions
(e.g. physical binding of proteins, protein sequence similarity or their chemical modifi-
cations). In addition, each type of interactions may be only meaningful for a particular
gene set in our model. This poses a challenging multi-network classification approach
where diverse groups are formed according to different network information and then
used in outcome prediction.

8.1.3. FUTURE PERSPECTIVES
Owing to the explosion of publicly available data, machine learning is going to be the
driving force in personalized treatments of patients and other applications in the clinics
[37, 38]. In this section, we will share our future perspective on this topic and speculate
on new areas of research that will be possible in the forthcoming years.

Throughout Chapter 2 and Chapter 4, we investigated integration of interaction (such
as PPI network) and expression data. To this end, the interaction between two proteins
is assumed to be representative of the relationship between their corresponding genes.
However, these two types of data are measuring different aspects of intracellular prop-
erties. While gene expression represents the relative abundance of mRNA, physical in-
teractions represented in a PPI network describe binding associations between proteins.
Within a cell, the abundance of mRNA is related to physical interactions of its protein
only after many levels of regulation (e.g. protein translation, folding, transport, stability,
etc.) has taken place. To make our analysis feasible in this thesis, such incompatibilities
between data types are essentially ignored. How such differences should be incorpo-
rated in the model is an open question.

In many (if not all) outcome prediction methodologies, a single profile is considered
to represent a complete transcription profile of that patient across all cells. Nonetheless,
recent single cell transcriptome profiles of breast cancer tumors revealed a high degree
of heterogeneity across cells within a tumor [39]. Similarly, a single time point is utilized
to represent the overall cell state of a patient while temporal transcriptome analysis of
breast cancer patients has established the dynamic nature of expression profiles through
time [40]. This complication is also valid for interaction networks where functional ele-
ments in the genome interact dynamically over time. Many methods are proposed that
utilize temporal expression data to construct such “time-aware” networks [41]. Consid-
ering the heterogeneity across samples, temporal single cell expression data from tu-
mors would be required to infer such a network. Even then, such interactions merely
represent correlation associations between genes which is only one aspect of cellular
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state [42].
Another promising application of machine learning in genomic research is treatment

response prediction [43]. Essentially, these models analyze (survival and treatment la-
beled) expression profiles of patients and aim to determine the best treatment for newly
admitted patients to improve their survival [44]. In this context, network based predic-
tion of treatment response is an understudied problem. Our proposed framework in
Chapter 4 can be directly incorporated in this problem. To this end, an interaction net-
work can be inferred that connects genes that show synergism with respect to treatment
response.

Although, outcome predictor models are well-established within the research do-
main, they did not find wide application in clinics due to time consuming and labor
intensive preparation protocols and computational requirements [45]. With the advent
of mobile sequencing technologies like MinION, this desire could be potentially satis-
fied. Recently, many proof of concept applications for mRNA profiling using these tech-
nologies have appeared in the literature [46–48]. We expect that the mobility of these
technologies would be a milestone in incorporation of molecular profiling in the clinic
in the near future.

8.2. MULTI-CONTACT 3D CONFORMATION OF THE GENOME
In Chapter 6 and 7 we introduced a novel method called Multi-Contact 4C (MC-4C) to
investigate the higher order (i.e. more than pairwise) interactions between functional
elements in single alleles in a targeted region of interest. Using MC-4C, we demon-
strated the existence of an Active Chromatin Hub (ACH) in the Ø-globin locus and re-
vealed multi-component architectural clusters in Hap1 cells.

Multi-contact analysis of DNA interactions involves complex laboratory routines and
computational obstacles that need to be dealt with. With a special attention to the com-
putational aspect, we briefly review these challenges in the following sections and pro-
pose solutions to address these hurdles. Additionally, we describe routes that have the
potential for future investigations.

8.2.1. CHALLENGES IN THE DATA
In our multi-contact analysis, cells were collected from liver or brain tissue of mice, 14.5
days after their conception. However, accurate dissection and collection of these cells
are difficult. In fact, harvested cells are often polluted with other cell types (e.g. brain
cells are often mixed with many blood cells) which may have entirely different interac-
tion profiles compared to the cells of interest.

In addition, no cycle synchronization for cells has been performed before library
preparation. Consequently, fixed cells may be in different cycle states which blurs the
measured conformations [49].

Using MC-4C we revealed synergistic hubs that are formed between individual en-
hancers in theØ-globin locus. This is in contrast with recent findings by Olivares-Chauvet
et al. [50]. One explanation for this discrepancy is the difference between assessed cell
types i.e. Olivares-Chauvet et al. studied human K562 cell lines, surrogates of erythroid
cells expressing the globin genes at considerably lower levels whereas we used primary
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mouse liver cells that are rich in red blood cells with highly active globin genes.
It is important to note that many (if not all) “C” methodologies (including MC-4C)

are unable to measure dynamic interactions that occur through time. Recent prelimi-
nary reports supported the existence of these dynamics [51]. There is however, still a
great inconsistency between insights generated by proximity ligation methods and mi-
croscopy imaging techniques (e.g. fluorescence in situ hybridization (FISH) analyses)
and no widely accepted explanation exists in the community [52].

While we showed a clear clustering between Ø-globin enhancers when contacting Ø-
globin gene, no functional implications could be concluded. In fact, existence of such
a promoter-enhancer hub could merely be an alternative pairwise interaction of the Ø-
globin promoter and its enhancers, passively forcing the promoter and enhancer ele-
ments to frequently end up in the same nuclear space in the cells with active Ø-globin
gene.

8.2.2. CHALLENGES IN THE MODEL
Establishing the 3D conformation of the genome, required a precise preparation proto-
col to form and maintain long concatemers. After nanopore sequencing, a multitude
of computational obstacles were needed to be dealt with to reach a robust framework
capable of exploring this untouched area of genome organization.

The first challenge rose in converting the raw output of MinION (called Squiggle)
to corresponding bases through a procedure called base calling. Due to rapid develop-
ments, new flow cells were quickly depreciating older versions and their corresponding
base caller. Additionally, the nanopore community released several new software tools
for base calling [53]. It can be expected that each base caller would introduce its own bi-
ases [54]. The frequent updates made it however impossible to investigate these subtle
biases in MC-4C data or at least identifying the best performing method for base calling.
Inevitably, we resorted to use the default software distributed by Oxford Nanopore Tech-
nologies, effectively ignoring such technical biases in base calling as is done by many (if
not all) other researchers.

A similar challenge was encountered when an appropriate aligner had to be chosen
for mapping MC-4C fragments. Through preliminary analysis, we identified BWA-SW
to be a suitable candidate for mapping fragments. However, this aligner is designed to
map short reads and optimized to deal with biases expected in Illumina sequencing and
not for the technical biases that are specifically present in reads sequenced using Min-
ION technology. To address this issue, a variety of aligners have been designed in the
recent years to map reads from MinION and thus could potentially perform better than
BWA-SW for long reads. However, fragments produced in MC-4C are small which is not
often considered in long-read aligners. Consequently, there is a great need for designing
aligners that can map small fragments that are affected with high error rate as expected
in MinION sequencing.

Sequenced reads in MC-4C contain several fragments that need to be mapped to dif-
ferent locations in the reference genome (known as split-mapping). However, standard
aligners are not capable of recognizing fragment boundaries within a read and try to map
the entire sequence to a single location in the genome. We resolved this by pre-splitting
reads into fragments. This strategy is, however, not perfect due to read errors (see sec-
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tion 7.4 and Figure 7.15). It worth noting that the split-mapping is partially supported by
aligners such as BWA [55] and Bowtie2 [56]. However, these aligners do not assume mul-
tiple fragments to be enclosed in the read and generally split the given read only into two
fragments. It is expected that an aligner that supports multi-split-mapping can make a
notable contribution to genome conformation research considering the current interest
in development of multi-contact methodologies.

Perhaps the greatest challenge on the computational side of MC-4C was to develop a
robust statistical model. In many (if not all) 3C based technologies, the chance of captur-
ing a contact between a fragment close to the viewpoint is much higher than a fragment
that resides far away from the view point. Unfortunately, the biological elements under
investigation (such as enhancers or promoters) are also often close to the view point.
Therefore, a robust statistical model is needed to differentiate between a biological in-
teractions and the expected contact of linearly close regions in the genome. A similar
(but more complex) bias exists in multi-contact reads. Once a fragment is mapped to a
specific region (say A) in the genome, there is a higher chance for other fragments in the
read to map in the vicinity of A compared to other locations in the genome. Therefore,
in order to segregate biological from random interactions, one needs to compute a null
distribution for each fragment representing the expected frequency of observing other
nearby fragments. Collectively, these distributions represent the “bendability” of DNA
which could be directly used in significance estimation of the multi-contact analysis.

The expected frequency of capturing a neighbor fragment in MC-4C could be ex-
ploited to improve mapping efficiency of fragments that show high alignment scores for
several locations in the genome. The linear distance of a confidently mapped fragment
within a read is a good proxy to identify the correct location for mapping other low qual-
ity fragments within that particular read. Caution should be exercised to keep the false
discovery of mapped fragments in the vicinity to an acceptable level.

8.2.3. FUTURE OUTLOOK
A genome wide multi-contact view of DNA interactions can boost our understanding
of genome architecture and elucidate how individual modules of this organization (e.g.
CTCF-CTCF clusters, enhancer-promoter loops, TADs, etc.) work in concert to regulate
expression of genes. For example, such an approach is particularly needed to resolve
contradicting hypotheses regarding the inter-chromosomal interactions that currently
exist in the literature [57]. These debates are specially fueled by FISH experiments that
support functional role of interactions between chromosomes [58, 59].

Owing to the similarity of the preparation protocol in many 3C based methodologies,
the multi-contact support in MC-4C can be easily extended to its sister approaches. A
notable example is Targeted Locus Amplification (TLA) technology which provides read
coverage for a targeted region of interest [60]. This method enables robust detection of
genetic variations such as single point mutations or structural aberrations [61]. How-
ever, as standard TLA uses Illumina sequencing platform which yields short reads, it is
still challenging to find allele-specific variations that are required for accurate haplo-
typing [62]. Nanopore sequencing of TLA products can produce longer reads which in
turn increases the chance of identifying variation markers on a single read. Additionally,
reads in MC-4C uniquely represent single alleles which allow quantitative assessment of
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observed haplotype links and their frequencies in the population of cells.
Another interesting application of MC4C is to investigate how the co-localisation of

elements changes through time. By performing multiple standard Hi-C through time,
Rao et al. already showed that interactions are dynamic [51]. However, this approach is
again based on measuring pairwise interactions. It is interesting to extend these findings
to multi-way interactions by performing MC-4C on the genomic locations that showed
high variation through time. Another potential approach to add time dimension to Hi-
C data is to progressively cross-link contacting fragments. Inspired by encapsulating
chemical drugs in Micelles [63], one can encapsulate and release formaldehyde in the
cell nucleus through time [64, 65]. This gradual release immobilizes interactions during
a certain period of time which then captures the dynamical interactions within the cell
nucleus. Once the cross-linking procedure is finished, the digestion and ligation steps
can be followed similar to standard 3C template preparation protocols. The main diffi-
culty in this idea is to identify the time point in which each concatemer is formed after
sequencing.

8.3. CONCLUDING REMARKS
Computational methodologies are nowadays a recognized part of genomic research, fa-
cilitating knowledge extraction from massive multi-modal datasets [66]. Nonetheless,
there is still a vault of treasures in the biological literature that can not be easily exploited
by computational methods and has to be handled manually [67]. This is by far the most
time-consuming part of computational biology and data science [68]. In Chapter 4 for
example, many articles were needed to be read to interpret the top pairs in SyNet mak-
ing it a tedious and inefficient process. A Persian proverb fits this situation very well:
“we are seeking for water in the sea”. We believe that recent initiatives like European
Open Science Cloud (EOSC) [69] can fundamentally resolve this issue by promoting the
distribution of linked data and semantics where machines can "understand" and query
databases, facilitating knowledge discovery in medical and biological research [70, 71].

The pace of development in genomic measurement techniques has never been this
high. Within two decades, the genome wide transcriptomic measurements has advanced
to the 3rd generation (from microarrays to RNA-seq and now to direct RNA sequencing
[72]). While many computational labs (including us) are still investigating the biases
and challenges in the first generation techniques, (motivated by competition) sequenc-
ing companies are fully focused to the 2nd and 3rd generation sequencing technolo-
gies. Furthermore, there is a great motivation for using the latest “hot” technologies
in the research community to be able to publish in high impact journals which indi-
rectly devalues older technologies. In this situation, if new technologies keep depre-
cating older technologies with this momentum, efficiently large expression datasets (in
terms of number of samples) for clinical predictions may never be assembled. In paral-
lel, this trend also prevents findings to be reproduced and confirmed by independent
groups. Unless a concrete strategy for dealing with this problem is designed, we ex-
pect that exploring (technology-specific) biases will get less attention than before in the
community. Ignoring the biases in turn reduces robustness of methods that utilize such
polluted data. In this situation, the reproducibility in science is going be an even more
serious problem soon.
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SUMMARY

In the last two decades, our understanding of the molecular mechanisms within the cell
has witnessed a great leap forward. For the most part this is due to the fast innovation of
the genomic measurements technologies and widespread usage of computational meth-
ods which enables knowledge extraction from the massive datasets produced by these
measurements. A notable example of a field that has substantially benefitted from this
progress is cancer patient outcome prediction, in which the aim is to predict patient
prognosis from common clinical variables such as tumor size, age or histological pa-
rameters. With the application of machine learning methods to gene expression profiles
of the tumor a major improvement of the prediction accuracy could be realized. These
models are later succeeded by Network based Outcome Predictors (NOP) that consider
the cellular wiring diagram of cell in the model to identify stable and relevant mark-
ers that can accurately estimate outcome of patients. Problematically, after a decade of
research in this area, NOPs did not find extensive application compared to the classical
models due to contradicting reports regarding their performance, stability and relevance
of markers in the literature.

In this thesis, we introduce a new NOP - called FERAL - that alleviates several funda-
mental issues in state-of-the-art NOPs which prevented these models to reach the op-
timal prediction performance, stability and marker relevance. We furthermore demon-
strate that generic biological networks do not contain sufficiently informative interac-
tions to truly aid NOP. We therefore infer a phenotype-specific network called SyNet
which connects pairs of genes that together achieve patient outcome prediction per-
formance beyond what is attainable by individually genes. We show that a NOP that
use identical gene expression datasets, yields superior performance merely by consider-
ing groups of genes suggested by SyNet. We, moreover, show that model performance
is severely reduced if nodes in SyNet are shuffled, which confirms that also the links in
SyNet are relevant to outcome prediction.

An important limitation of current biological networks is that they are restricted to
pairwise interactions. We show that higher order interactions between functional el-
ements in the cell are relevant in outcome prediction. We later introduce a novel ge-
nomics method called Multi-Contact 4C (MC-4C) to measure and investigate multi-way
interactions between functional elements. In contrast to existing methods, MC-4C ex-
ploits long-read 3rd generation sequencing technologies and detects higher order inter-
actions that occur in a region of interest at the level of a single allele. We further devise
a well-founded statistical model that is required for significance estimation of observed
interactions. Using MC-4C, we experimentally confirm a 26 years old hypothesis regard-
ing the looping and co-localization of enhancers in the Ø -globin region in the mouse
genome. Additionally, we provide the first experimental explanation for the “vermicelli”
phenomenon that was observed through microscopic inspection of cells depleted of
WAPL (the element responsible for unwinding of loops in mammalian cells). Therefore,
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targeted multi-way conformation analysis methods like MC-4C promise to uncover how
the multitude of regulatory sequences and genes coordinate their activity in the spatial
context of the genome.
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should also thank you for your caring attitude toward your colleagues. At times, this was
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to acquire/analyze/interpret on your behalf (!). Thank you for opening for me a door to
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an amazing source of insights which I frequently profited from. Erik, you were one of
the few colleagues who spent a considerable amount of time on the outcome prediction
models. Thank you for sharing many experiences and insights regarding these models
with me. I hope you keep using your (awesome) green bag. I loved that iconic color!
Good luck in Leiden, although you don’t need one. Sjoerd, at any point when I did not
understand some statistical model, you were always there to help me out. Thank you for
being an awesome colleague. And thank you for reminding me that there is a life beside
PhD. Looking at you keeping yourself busy with music and site-seeing was definitely a
poke in the ribs to wake me up and stopping me from becoming a single dimensional
graduate. I am grateful for this. Wouter (Kouw), mate I can finally tell you this. Thank
you for making my PhD an envious experience. There wasn’t even a single occasion
when I was brainstorming with you and I could feel that I am contributing something, or
think to myself "oh, I am as good as Wouter in this". Zero, zilch, zip, nada, none! In every
meeting we had, I had to sit and watch you writing a complex set of formulas and cost
functions and later try to make an "I-understand" face when you were calculating the
corresponding derivatives. Meanwhile I had no clue what you are doing! I am sure you
are going to amaze people in Copenhagen. I hope to have another opportunity to work
with you. Undoubtedly, its going to be another fun project. Marcel (van den Broek),
I always loved the early morning conversations we had on Tuesdays. During my PhD,
you were the only colleague who I could spend several hours seriously discussing a non-
scientific and life/society related topic. Thank you for sharing your thoughts with me.
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Thank you for being an invaluable colleague during my PhD journey. I learned many ba-
sics of biology from you and you were always there to help. Thank you. At the same time,
any expat needs a close friend to help him/her survive in desperate moments. Thank
you for being open, caring and willing to help at all times. Finally, I loved our collabo-
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without you! Glen and Chris, thank you for being a caring colleague during my time in
UMC. Whenever I encountered a difficulty in the Dutch bureaucracy, I knew I can count
on you to help me out. Alessio, man your impressive talent in combining wet and dry lab
was always fascinating to me. I hope I can find a project with which I get the opportunity
to work with you. Mircea, you proved me that it is possible to have a life while doing a
PhD. You made this challenging process (at least for me) enjoyable in a level that I have
never imagined to be feasible. I am 100% sure that I cant do it like you did and for that
I envy your life style. I hope at some point I learn to live like you. Well done man. Ivo,
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Britta, Carlo for sharing their biological expertise and knowledge with me which helped
me to learn the basics of genome conformation techniques in the beginning of our col-
laboration. Also I must express my gratitude to Marjon and Mark (Pieterse) for being an
amazing support staff/technician during our many projects including MC-4C and now
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laboratory techniques were key ingredients for the success of these projects. Further-
more, I appreciate every tips and tricks shared by Geert and Valerio during my involve-
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Throughout this dissertation, I babbled about science (as I am supposed to!). Yet, I
must not (and will not) forget that my research career has became only possible through
continuous support of my family and their colossal sacrifices. This has specially rein-
forced tremendously during my stay in the Netherlands. Therefore, I feel obliged to
heartedly express my gratitude toward these folks. First and foremost my beautiful and
caring wife, Maryam. My darling, it has been and will be impossible to express in words
how grateful I am in every day of my life for every bit of love you selflessly shared with me.
I am utterly confident that nobody on this planet could have filled up my heart the way
you did. Your absolute devotion to our small family is the primary reason for its evident
prosperity. This assures me a bright future ahead and I am impatiently looking forward
to it. Let me also apologize for every morning that I left early as well as every late evening
that I came back home. I am deeply sorry for every one of them! Honestly, it was quite
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me with your passion during my PhD journey. I am proud to be your partner and will do
my best to be "the one" for you for the rest of my life. Meanwhile, I am thankful to my
larger family. My father Hossein, from whom I learned how to be a man. I am always in
your debt dad. Thank you for everything you did for me. You are unequivocally the best
dad in the world. My mother Zahra, who showed me how far should I go, if I truly care
about somebody. You are the whitest color in my universe mom, thank you! And last but
not least, my sister Elham. From whom, I learned countless life-saving lessons, scientific
or otherwise. Thank you for taking care of mom and dad while I was away. I know how
difficult this responsibility has been and I am sorry that you were single-handed along
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Propositions
accompanying the dissertation

MOLECULAR INTERACTOMES
NETWORK-GUIDED CANCER PROGNOSIS PREDICTION & MULTI-WAY CHROMATIN

INTERACTION ANALYSIS

by
Amin ALLAHYAR

1. Expression averaging to represent the expression of a set of genes in outcome
prediction removes most (if not all) predictive power (chapter 2).

2. Network-based outcome predictors guided by a generic interaction network can
never outperform standard classifiers (chapter 4).

3. Unless effective batch effect removal methods are developed, clinical applica-
tion of outcome predictors is meaningless (chapter 2 & 4).

4. Significant progress in chromatin conformation research is heavily hampered
by excessive competition (chapter 6).

5. The possibility of “fooling” deep learning models necessitates the introduction
of an “unknown” class with several order of magnitude more samples.

6. Having a supplementary section called “attempts that did not work” does not
impose redundancy to a scientific paper.

7. Scientific funds should be allocated to ideas chosen through a "Reddit/Wikipedia"
like server where scientists can comment, contribute or vote to submitted pro-
posals.

8. Considering the continuous increase in treatment cost, soon it will be cheaper
to clone yourself and start over after being diagnosed with a serious disease.

9. Surprisingly, political practices do not require an ethics committee.

10. A hierarchical voting system can solve the problem of uninformed people elect-
ing unfit candidates.

These propositions are regarded as opposable and defendable, and have been approved
as such by the promoter prof. dr. ir. M.J.T Reinders.
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