

Delft University of Technology

GDTS: GAN-Based Distributed Tabular Synthesizer

Zhao, Zilong; Birke, Robert; Chen, Lydia Y.

DOI
10.1109/CLOUD60044.2023.00078
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the 2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

Citation (APA)
Zhao, Z., Birke, R., & Chen, L. Y. (2023). GDTS: GAN-Based Distributed Tabular Synthesizer. In L.
O'Conner (Ed.), Proceedings of the 2023 IEEE 16th International Conference on Cloud Computing
(CLOUD) (pp. 570-576). IEEE. https://doi.org/10.1109/CLOUD60044.2023.00078

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/CLOUD60044.2023.00078
https://doi.org/10.1109/CLOUD60044.2023.00078

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

GDTS: GAN-based Distributed Tabular Synthesizer

Zilong Zhao
TU Delft

Delft, Netherlands

z.zhao-8@tudelft.nl

Robert Birke
University of Turin

Turin, Italy

birke@ieee.org

Lydia Y. Chen
TU Delft

Delft, Netherlands

lydiaychen@ieee.org

Abstract—Generative Adversarial Networks (GANs) are typi-
cally trained to synthesize data, from images and more recently
tabular data, under the assumption of directly accessible training
data. While learning image GANs on Federated Learning (FL)
and Multi-Discriminator (MD) systems has just been demon-
strated, it is unknown if tabular GANs can be learned from
decentralized data sources. Different from image GANs, state-
of-the-art tabular GANs require prior knowledge on the data
distribution of each (discrete and continuous) column to agree
on a common encoding – risking privacy guarantees. In this
paper, we propose GDTS, a distributed framework for GAN-
based tabular synthesizer. GDTS provides different system archi-
tectures to match the two training paradigms termed GDTS FL
and GDTS MD. Key to enable learning on distributed data
is the proposed novel privacy-preserving multi-source feature
encoding to capture the global data properties. In addition GDTS
encompasses a weighting strategy based on table similarity to
counter the detrimental effects of non-IID data and a validation
pipeline to easily assess and compare the performance of different
paradigms and hyper parameters. We evaluate the effectiveness
of GDTS in terms of synthetic data quality, and overall training
scalability. Experiments show that GDTS FL achieves better sta-
tistical similarity and machine learning utility between generated
and original data compared to GDTS MD.

Index Terms—Tabular GAN, federated learning, tabular data,
Non-IID

I. INTRODUCTION

Generative Adversarial Networks (GANs) [5] are an emerg-

ing methodology to synthesize data, ranging from images [11],

[12], to text [19], to tables [16], [22]. Key to training GANs are

two competing neural networks, i.e., generator and discrimina-

tor, where the former iteratively generates synthetic data and

the latter judges its quality. During the training process, the

discriminator needs to access the original data and provide

feedback to the generator by comparing it with the generated

data. However, such a privilege of direct data access may

no longer be taken for granted due to the ever increasing

concerns for data privacy. In response to such a demand, the

federated learning (FL) and multi-discriminator (MD) GAN

paradigms emerge. FL features decentralized local processing,

under which machine learning (ML) models can first be

trained in parallel on clients’ local data and subsequently be

securely aggregated by the federator. As such, the local data

is not directly accessed, except by the owner, and only the

intermediate local model is shared. MD leverages the nature

of GAN training where only the discriminator needs to see

the real data. Therefore, it locates one discriminator at each

clients’ with access to the local (real) data and centrally hosts

the generator. Prior art has explored these two paradigms for

image data [6], [7], but none tackles tabular data even if it is

the most dominant data type in industries [1].

Compared to image GANs, training state-of-the-art tabular

GANs (e.g., TVAE [22], CTGAN [22], CTAB-GAN [23],

CTAB-GAN [24], and IT-GAN [13]) from decentralized data

sources in a privacy-preserving manner presents toe crucial

additional challenges rooted in the global data properties.

Images have a standard encoding, i.e. pixels of one/three

color channels for black-and-white/color images. Tables lack

such a priori knowledge and tabular GANs must explicitly

model each column, be it continuous or categorical, via

data-dependent encodings which leverage global data prop-

erties.Hence, the first challenge is determine global column

encoders from non-identically independently distributed (non-

IID) local data in a privacy-preserving manner1. The second

challenge is that the convergence speed of GANs critically

depends on how local models are merged [9]. For image

GANs [18], the merging weights are determined jointly by the

data quantity and (dis)similarity of a single class distribution

across clients. Tabular GANs instead must account for all

columns i.e., differences in every column across clients.

In this paper, we aim to design a first of its kind framework,

GDTS, that provides an infrastructure for privacy-preserving

training of tabular GANs on distributed data. GDTS uses

the PyTorch RPC framework to implement both FL and MD

training paradigms and adds algorithmic features that address

fine-grained privacy-preserving column modeling. First, the

novel feature encoding scheme of GDTS can reconstruct the

entire continuous column distribution via bootstrapping each

client’s partial information without privacy leakage. Secondly,

GDTS injects noise, formed by the definition of differential

privacy [4], to categorical column statistics to avoid individual

privacy leakage while building global feature encoder for

categorical column. Additionally, for the FL case, a more

precise weighting scheme can effectively merge local models

by considering the quantity and distribution dissimilarity for

every column across all clients.

After implementing FL and MD paradigm through GDTS,

we extensively evaluate GDTS FL and GDTS MD on a vast

number of client scenarios with disparate data distributions.

Specifically, GDTS FL and GDTS MD are compared with

1Privacy-preserving solutions refer to ones that do not require full knowl-
edge of the local data.

570

2023 IEEE 16th International Conference on Cloud Computing (CLOUD)

2159-6190/23/$31.00 ©2023 IEEE
DOI 10.1109/CLOUD60044.2023.00078

20
23

 IE
EE

 1
6t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
lo

ud
 C

om
pu

tin
g

(C
LO

U
D)

 |
 9

79
-8

-3
50

3-
04

81
-7

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
O

U
D6

00
44

.2
02

3.
00

07
8

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

(a) Centralized GAN (b) Multi-Discriminator structure (c) Federated Learning structure

Fig. 1: The architecture choices for training GANs.

three baselines including the centralized approach and three

ablated variants of GDTS FL. Each of the ablations shows the

efficacy of the corresponding feature component. The evalu-

ation is performed on four commonly used machine learning

datasets where the statistical similarity between generated

and real data are reported as evaluation metrics. Under an

unbalanced amount of local data among the clients, GDTS FL

converges significantly faster than its variants. And for scenar-

ios where data across clients is non-IID, the convergence of

GDTS FL is not only stable but also produces synthetic data

with 44.74% higher ML utility compared to GDTS MD.

II. DECENTRALIZED TABLE SYNTHESIZER

We propose a framework for decentralized tabular data

synthesizing, GDTS, which can train a GAN-based tabu-

lar data generator on decentralized data sources. There are

two paradigms of decentralized learning, GDTS MD and

GDTS FL, that show different advantages in model and sys-

tem performance of training of tabular GANs.

Overview Fig. 2 shows the high-level workings of GDTS.

At the start all data column statistics are collected and pro-

cessed by the global feature encoding component (details

in Sec.II-B). After unifying the encoding, GDTS MD or

GDTS FL can be chosen to train a distributed tabular GAN

synthesizer. Each paradigm has its unique functionality that is

specifically designed for tabular GAN training. G, D, S and

C denotes generator, discriminator, server and client. GDTS

contains a validation pipeline to assess the quality of synthetic

data, i.e., machine learning utility and statistical similarity.

Threat Model To design privacy-preserving algorithm, we

first define the threat model considered in this paper. Even

though tabular datasets are retained locally on each client, the

values used for building global feature encoders in GDTS are

still subject to revealing sensitive information if not designed

carefully, leading to risk of data leakage. Based on several

previous risk analysis studies [8], [15], [21] in federated

learning, our proposed GDTS architecture focuses on the

semi-honest model. We assume that the clients and server

are honest but curious, adhering to the GDTS protocol but

potentially seeking additional information during computation.

Collusion between clients and server is not considered.

A. Training Architecture Designs

1) GDTS MD: uses one single central generator and mul-

tiple discriminators distributed across the clients as illustrated

in Fig. 1b. Such a structure ensures that the client’s data does

not need to leave the clients’ machines. The downside of

the MD structure is that it induces significant communica-

tion overhead between the generator and discriminator, i.e.,

sending synthesized data to all discriminators, and returning

the discriminators’ gradients to the generator per each training

epoch. Communication burden can be lowered by allowing

multiple local training epochs for each global training round.

However, client discriminators tend to overfit to their local data

with increasing training epochs. To counter that, GDTS MD

allows clients to randomly swap their models in a peer-to-peer

way every several epochs.

2) GDTS FL: is composed of multiple GANs (composed

of both a discriminator and a generator), one at each client

(see Fig. 1c). Each GAN has access only to the data of the

corresponding client. Each client first trains his GAN using

the local data for a number of epochs, then sends the GAN

model to the server hosting the federator. The key roles of

the federator are: (i) during initialization to determine the

GANs architecture to use; and (ii) during training to collect

and aggregate the locally trained GANs models into a global

GAN model; and (iii) redistribute the global GAN model to

all the clients. Communication occurs when clients upload

their model weights to the federator and when the federator

redistributes the updated weights. Such a communication cycle

is commonly referred to as global training round in FL studies.

The resulting overhead depends on the local epochs and global

rounds needed to achieve the desired model performance.

Compared to the MD paradigm, this overhead tends to be

lower as transferring model weights is typically more efficient

than transferring synthesized data. Moreover, the FL paradigm

has a stronger scalability relative to the number of clients,

as the computation complexity of model aggregation is lower

than training the generator network. Finally, the FL paradigm

allows to easily weight local models against each other since

local models are all available at the same time for aggregation.

Weighting helps to accelerate the training convergence under

skewed data distributions among clients.

B. Privacy-Preserving Feature Encoding

Our privacy-preserving model initialization comprise three

steps (see Fig. 3a): 1) collecting statistics from clients to

the server, 2) creating the column encoders, and 3) encoding

local data at the clients. Fig. 3b illustrates the process detail

of creating global encoders for categorical and continuous

571

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: System overview of GDTS: decentralizing GANs training and validation pipeline.

columns. To protect the column statistics in step 1, The

Laplace Mechanism of differential privacy [4] is used. In this

paper, when we use the Laplace mechanism, we always choose

ε = 1 as the privacy budget.

Step 1. Each of the P clients extracts the statistical prop-

erties of the local data and sends them to the server. The

information sent is different based on the column type. For

any categorical column j, each client i first computes the

category frequency distribution Xij , then samples a Laplacian

noise vector ξij according to the Laplace mechanism, and

finally sends X̂ij = Xij + ξXij as the local category frequency

distribution to server. For any continuous column j, each client

i fits and sends in the parameters of the VGM model V GMij .

In addition, Each client i also sends in N̂i = Ni +ξNi where

Ni is the number of local data and ξNi is a Laplacian noise.

Step 2. The category frequency distribution is used in two

ways. First, the server uses all distinct categories to build the

label encoder LEj for column j. A label encoder is a table

which maps all possible distinct values of a categorical column

into their corresponding rank in one-hot encoding. Second,

the frequency information is used to build an aggregated

global frequency distribution Xj for column j. We use Nall

denotes the sum of N̂i across all clients. The global label

frequency distribution Xj , N̂i and Nall are needed to estimate

the similarity of clients’ local data for computing the clients’

weights for model aggregation in GDTS FL. For continuous

variables, the local VGM models V GMij are used to estimate

the global distribution of column j. The server uses V GM1j ,

V GM2j , . . . , V GMPj to sample the datasets D1j , D2j , . . . ,

DPj with N̂1, N̂2, . . . , N̂P data points where P is the number

of clients. We define Dj = { D1j , D2j , . . . , DPj }, then the

server uses Dj to fit a new global VGM model V GMj for

column j2. V GMj is used as the final encoder for column j.

Step 3. The server distributes all the column encoders

LEj and V GMj to each client. Clients use this information

to encode the local data and initialize the local models.

Models initialized using the same encoders will have the same

input/output layers.

C. Training GDTS FL and GDTS MD

For training of GDTS FL, we propose a novel table-

similarity aware weighting scheme. After model initialization,

2It might be possible to fit the global model directly from the parameters
of the local models by, e.g., adapting [2]. This is left for future work.

the federator hosted on the server uses the collected global data

statistics to pre-compute weights for each client. These weights

are used in training during the model aggregation (shown in

Fig. 3c) to smooth convergence in the presence of skewed data

across clients. The weights calculation process is illustrated in

Fig. 4, the calculation details are as follows:
Step 0 is to build a P × Q divergence matrix S where P is

the number of clients and Q is the number of columns. Each

matrix element Sij is the divergence between distribution of

column j in client i and the estimated global distribution of

column j. The metric used depends on the type of column.
Categorical columns use the Jensen-Shannon Divergence

(JSD) [14]. The JSD between two probability vectors p and q is

defined as

√
D(p||m)+D(q||m)

2 where m is the point-wise mean

of p and q, and D is the Kullback-Leibler divergence [10].

The JSD distance metric is symmetric and bounded between

0 and 1 enabling a hassle-free interpretation of results. For

each categorical column j and client i we compute Sij as

JSD between Xij and Xj , i.e., Sij = JSD(Xij , Xj).
Continuous columns use the Wasserstein Distance

(WD) [17]. The first Wasserstein distance between two

distributions u and v is defined as WD(u, v) =
infπ∈Γ(u,v)

∫
R×R

|x − y|dπ(x, y) where Γ(u, v) is the set

of probability distributions on R × R whose marginals are

u and v on the first and second factors, respectively. It

can be interpreted as the minimum cost to transform one

distribution into another where the cost is given by amount

of distribution to shift times the distance it must be shifted.

For each continuous column j, we use the datasets Dij created

previously for each client i and Dj to compute Sij as the WD

between V GMij and V GMj .
Step 1 normalizes the matrix S across the P clients for

each table column j. This is done by dividing each matrix

element by the sum of the elements in the corresponding

matrix column. This step maintains the relative divergence

between different clients with respect to the global column

data distribution while allowing to give the same importance

to all columns (all columns sum up to 1).
Step 2 aggregates the divergence across the different table

columns j. This is done via a sum along the rows of the matrix.

For each client i the resulting score SSi can already represent

the divergence between client and global data distribution, but

it does not yet take into account possible difference in the

amount of local data available at each client.

572

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

(a) Collect distributions, create encoders (b) Global feature encoding of GDTS. (c) Training of GDTS FL

Fig. 3: Initialization and training process of GDTS FL and GDTS MD.

Step 3 fuses the divergence in data values and data quantity

at each client. Step 3 first normalizes the divergence metric be-

tween 0 and 1 across the clients. Then it uses the complement

to represent similarity instead of divergence and combines it

with the ratio of local data available with respect to the global

data, i.e., N̂i

Nall
. The resulting SDi take into account differences

in both number of values and distribution of values of the local

vs. global data.

Step 4 computes the final weights Wi. The Wi for each

client i are obtained by passing the SDi to a softmax function.

Wi is the weight that the federator will use when aggregating

the model from client i.
For training of GDTS MD, after the step of global feature

encoding, all clients can train their discriminators with local

data. The generator takes the turn to link with each discrim-

inator to compose a GAN and accumulates gradients. The

generator does not update its weights until it calculates one

round of gradients from all discriminators. At the end of each

training round, to avoid discriminators overfit on local data, all

discriminators randomly swap their weights with each other in

a peer-to-peer way.

D. Validation Pipeline

To evaluate the quality of the synthesized data, we design a

validation pipeline considering two key properties of the data:

(1) statistical similarity and (2) machine learning utility.

1) Statistical similarity: We use two metrics to measure the

statistical similarity between the real and synthetic data:

Average Jensen-Shannon divergence (Avg-JSD). Used for

categorical columns. First, we compute the JSD between the

synthetic and real data for each categorical column. Second,

we average the obtained JSDs to obtain a compact compre-

hensible score, abbreviated as Avg-JSD.

Average Wasserstein distance (Avg-WD). Used for contin-

uous columns3. Unlike JSD, WD is unbounded and can vary

greatly depending on the scale of the data. To make the WD

scores comparable across columns, before computing the WD

3We use WD over JSD for continuous columns since JSD is not well-
defined when the synthetic values lie outside of the original value range from
the real dataset, i.e., the KL divergence is not defined when comparing the
similarity of probability distributions with non-overlapping support.

we fit and apply a min-max normalizer to each continuous

column in the real data and apply the same normalizer to the

corresponding columns in the synthetic data. We average all

column WD scores to obtain the final score.

2) Machine learning utility: F1-score is used to quantify

the ML utility between the synthesized and real data

F1-score difference. We compare the performance achieved

by 4 widely used ML algorithms: decision tree, random forest,

logistic regression and MLP. This list can be easily adapted.

The original data is split into train dataset and test dataset.
We use the train dataset to train all GANs algorithms and

synthesize a dataset of the same size. Then we use again the

train dataset and the synthetic dataset to train two separate

instances of the 4 ML models listed above and evaluate them

by the same test dataset. The ML utility is measured via

difference in F1-score between each model pair trained by

train dataset and the synthetic dataset.

III. EXPERIMENTAL ANALYSIS

Our algorithm GDTS MD and GDTS FL are evaluated on

four commonly used datasets, and compared with centralized

approach. Statistical similarity and ML utility are evaluated

between real and synthetic data. Three ablation analyses are

implemented to highlight the efficacy of the proposed client

weighting strategies of GDTS FL and the influence of Lapla-

cian noise injected during categorical encoder initialization for

GDTS FL. A training time analysis is reported in the end, to

show the time efficiency of GDTS MD and GDTS FL.

A. Experimental Setup

Datasets. We test our algorithm on four commonly used

machine learning datasets. Adult, Covertype and Intrusion –

are from the UCI machine learning repository [3], and Credit

is from Kaggle [20]. Due to our computational limitation, we

randomly sample 40k and 10k data as train and test datasets

from each of above datasets.

Baselines. We compare GDTS MD and GDTS FL against

3 baselines: (i) GDTS FL without similarity weights, (ii)

GDTS FL without Laplacian noise and (iii) centralized ap-
proach abbreviated as GDTS FL\SW, GDTS FL\LN and

Centralized, respectively. GDTS FL\SW removes the data

573

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Weights calculation of GDTS FL. Starting with a divergence matrix: (1) normalizes scores by column; (2) aggregates the

scores per client (by row); (3) incorporates differences in local data quantities; and, (4) performs the final weight normalization.

similarity factor in the calculation of the aggregation weights

for GDTS FL, the aggregation weight of client i equals to

the ratio of the number of data rows to the global number of

data rows, i.e., N̂i

Nall
. GDTS FL\LN sends in the information

such as category frequency vector and number of data rows

without injecting Laplacian noise in feature encoding step. The

aim of all the experiments is to learn a CTGAN model from

distributed clients using above mentioned frameworks on the

basis of CTGAN’s default settings for encoding features [22].

We use VGM encoders for each continuous column and one-

hot-encoding for categorical columns.

GDTS MD clients swap discriminator models with each

other at the end of each training epoch [7]. For a fair

comparison with GDTS MD, we force GDTS FL and its

variants to share the model weights with the federator at the

end of each training epoch. Due to this, the notion per round
commonly referred in FL studies equals to per epoch in this

paper. Due to the different learning speed per epoch of the

all frameworks, for a fair comparison we preset the number

of epochs for each algorithm to ensure that the total training

time is similar. We use 500 epochs for centralized approach,

GDTS FL and its variants, and 150 epochs for GDTS MD.

We repeat each experiment 3 times and report the average.

Testbed. Experiments are run under Ubuntu 20.04 on two

machines. Each machine is equipped with 32 GB memory,

RTX 2080 Ti GPU and 10-core Intel i9 CPU. The machine

are interconnected via 1G Ethernet links. One machine hosts

the server, the other all the clients. When not otherwise stated,

both federator and clients use the GPU for training.

Evaluation Metrics Recall the validation pipeline in

Sec. II-D. Two factors are considered (1) statistical similarity

and (2) machine learning utility. Avg-JSD and Avg-WD are

used for evaluating statistical similarity between real and

synthetic data for categorical and continuous columns. And

difference of F1-score between real and synthetic data is

reported for ML utility.

B. Result Analysis

We first designs an experiment where all the clients contain

the whole dataset, this is to test the performance of each

framework under the ideal case. Then we implement a scenario

where data on clients are IID, but quantities of data are

highly imbalanced across all the clients. The objective of this

experiment is to show the effect of our model aggregation

weighting method. In the end, an ablation analysis is designed

where one of the clients has much higher amount of data, but

(a) Avg-JSD by epoch (b) Avg-JSD by time

(c) Avg-WD by epoch (d) Avg-WD by time

Fig. 5: GDTS MD, GDTS FL, GDTS FL\LN and Central-

ized: 5 clients each with a complete data copy.

the data quality is low. We want to show the efficacy of table-

similarity aware weighting method in the calculation of model

aggregation weights.

1) Ideal case of full dataset: This experiment uses one

server (or federator) and 5 clients. Each client is provided

with a copy of the full real dataset. This represents the

ideal case with perfectly identical clients, i.e. each client

has identical IID data. We compare in particular GDTS FL,

GDTS MD and Centralized. Since in this case the aggregation

weights in GDTS FL are the same, we skip the baselines:

GDTS FL\SW. In order to show the influence of Laplacian

noise injected in feature encoding step, we include the base-

line: GDTS FL\LN.

Results for the Intrusion dataset are shown in Fig. 5. Avg-

JSD and Avg-WD are presented by both epoch and time

(in seconds) as different architectures spend vastly different

time per epoch. For categorical columns, GDTS FL converges

faster both by epoch and by time (see Fig.5a and 5b). More-

over, the Avg-JSD of GDTS MD converges quite slowly after

epoch 24. For continuous columns, from the perspective of

number of epochs, Avg-WD for GDTS FL converges faster at

the beginning, then becomes slightly worse than the Avg-WD

for GDTS MD (see Fig. 5c). However, inspecting the result by

time, GDTS FL not only converges faster, but also achieves

a slightly lower Avg-WD than the other two architectures

574

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Results for GDTS MD, GDTS FL, GDTS FL\LN and Centralized: 5 clients each having a complete data copy.

Dataset Avg JSD Avg WD F1-score diff.
MD FL FL\LN Centr. MD FL FL\LN Centr. MD FL FL\LN Centr.

Adult 0.072 0.061 0.059 0.117 0.014 0.014 0.012 0.015 0.101 0.050 0.026 0.056
Covertype 0.035 0.021 0.018 0.075 0.022 0.022 0.021 0.086 0.493 0.390 0.376 0.460

Credit 0.083 0.004 0 0.012 0.006 0.006 0.006 0.041 0.064 0.070 0.050 0.075
Intrusion 0.095 0.032 0.031 0.032 0.027 0.024 0.020 0.026 0.085 0.076 0.074 0.075

TABLE II: Final similarity for GDTS MD, GDTS FL and

GDTS FL without similarity weights: 4 clients have 10k

sampled IID data, 1 client has 40k rows of Non IID data.

Dataset Avg JSD Avg WD F1-score diff.
MD FL FL\SW MD FL FL\SW MD FL FL\SW

Adult 0.454 0.152 0.265 0.132 0.034 0.040 0.230 0.084 0.117
Covertype 0.097 0.056 0.067 0.151 0.054 0.062 0.636 0.476 0.496

Credit 0.076 0.030 0.068 0.041 0.012 0.017 0.165 0.149 0.165
Intrusion 0.210 0.071 0.075 0.131 0.039 0.047 0.557 0.108 0.148

(see Fig. 5d) in the end. The performance gap between

the centralized approach and GDTS FL may look counter-

intuitive. However, similar results are reported by FeGAN [6].

The reason is that, GDTS FL can see the data five times per

epoch as compared to the centralized approach which only

sees it once. This boosts the diversity of samples seen by

GDTS FL thereby providing superior performance. Regards

to the impact of Laplacian noise, it is minor.

We summarize the final statistical similarity and ML util-

ity results of all three approaches and all four datasets in

Tab. I. The scores are taken at the time in seconds when

Centralized finishes 500 epochs training. One can see that ex-

cluding GDTS FL\LN, GDTS FL consistently achieves same

or higher similarity (lower Avg-JSD and Avg-WD values)

than the other two approaches. Similar results are obtained

for ML utility. F1-score difference shows that GDTS FL

outperforms (lower F1-score difference) GDTS MD and Cen-

tralized on all datasets except Intrusion where GDTS FL is

slightly worse than Centralized. GDTS FL\LN marginally

improves the performance of GDTS FL on all metrics, which

is expected. Because its calculation of aggregation weights is

more accurate. Meanwhile, we also observe that the influence

is not significant, that is because we choose a less strict privacy

budget (i.e., ε) in Laplace mechanism. A lower privacy budget

can further worsen the aggregation weights calculation.

2) Imbalanced amount of Non IID data: Recall the weights

calculation process in Fig. 4. The SDi is composed of two

parts: (1) the ratio of the number of data rows locally available

at the client i to global number of data rows, i.e., N̂i

Nall
; and

(2) the similarity calculated between the local data distribution

of client i and the global distribution, i.e., 1− SSi∑P
i=1 SSi

. The

contribution of data number ratio part is intuitive. Therefore

in this ablation analysis, we design a scenario where for

GDTS FL, the client weights are only calculated using data

number ratio of each client, without using the similarity

weights. To better show the importance of similarity weights,

we design a specific scenario for this experiment. Still with

5 clients, 4 of them containing 10k IID data sampled from

original data, the last client is modified to contain 40k rows

of data by repeating one row sampled from the original dataset

40k times. One can imagine, this last client has a large number

(a) Avg-JSD by epoch (b) Avg-JSD by time

(c) Avg-WD by epoch (d) Avg-WD by time

Fig. 6: GDTS MD, GDTS FL and GDTS FL\SW: 4 clients

have 10k IID data, 1 client has 40k sampled Non IID data.

of rows, but contains little information in them. Fig. 6 shows

the results on Intrusion dataset. One can already notice that

this scenario badly hits GDTS MD since it treats all clients

equally while updating the generator’s weights. Moreover,

for the results in Fig. 6c and 6d, one can see the client

with 40k repeated data introduces oscillation to the curves

of GDTS FL with and without the similarity weights. As

expected, the curve for GDTS FL\SW naturally performs

worse than GDTS FL. Results in Tab. II (scores are taken

at the time when GDTS MD finishes 150 epochs training)

show that GDTS FL averagely outperforms GDTS MD and

GDTS FL\SW by 44.74% and 17.24 on F1-score with all

datasets. Therefore, similarity weights in GDTS FL give more

stability for model convergence.

IV. CONCLUSION

This paper proposes, GDTS, a first of its kind decentralized

architecture and prototype for tabular GANs, overcoming

specific challenges related to tabular data. Two main features

of GDTS are (i) privacy preserving feature encoding to enable

model initialization across heterogeneous data sources, and

(ii) table-similarity aware weighting for merging local models.

We extensively evaluate two variants of GDTS, GDTS MD

and GDTS FL, using a SOTA tabular GAN and compare it

with four baselines. Our results show that GDTS can generate

synthetic tabular data with high similarity to the original data,

even in the challenging case of Non-IID data among clients.

575

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. O. Arik and T. Pfister. Tabnet: Attentive interpretable tabular learning.
arXiv preprint arXiv:1908.07442, 2019.

[2] P. Bruneau, M. Gelgon, and F. Picarougne. Parameter-based reduction
of gaussian mixture models with a variational-bayes approach. In IEEE
International Conference on Pattern Recognition ICPR, pages 1–4, 2008.

[3] D. Dua and C. Graff. UCI machine learning repository. http://archive.
ics.uci.edu/ml, 2017.

[4] C. Dwork and A. Roth. The algorithmic foundations of differential
privacy. Found. Trends Theor. Comput. Sci., 9(3–4):211–407, aug 2014.

[5] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, page 2672–2680, Cambridge, MA, USA,
2014.

[6] R. Guerraoui, A. Guirguis, A.-M. Kermarrec, and E. Le Merrer. Fegan:
Scaling distributed gans. In ACM/IFIP Middleware, 2002, 2020.

[7] C. Hardy, E. Le Merrer, and B. Sericola. Md-gan: Multi-discriminator
generative adversarial networks for distributed datasets. In 2019 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 866–877, 2019.

[8] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep models under the gan:
information leakage from collaborative deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications
security, pages 603–618, 2017.

[9] J. Huang, R. Talbi, Z. Zhao, S. Boucchenak, L. Y. Chen, and S. Roos.
An exploratory analysis on users’ contributions in federated learning.
In 2020 Second IEEE International Conference on Trust, Privacy and
Security in Intelligent Systems and Applications (TPS-ISA), pages 20–29,
2020.

[10] J. M. Joyce. Kullback-Leibler Divergence, pages 720–722. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

[11] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for
generative adversarial networks. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4396–4405, 2019.

[12] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila.
Analyzing and improving the image quality of stylegan. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
8107–8116, 2020.

[13] J. Lee, J. Hyeong, J. Jeon, N. Park, and J. Cho. Invertible tabular gans:
Killing two birds with one stone for tabular data synthesis. Advances
in Neural Information Processing Systems, 34:4263–4273, 2021.

[14] J. Lin. Divergence measures based on the shannon entropy. IEEE
Transactions on Information Theory, 37(1):145–151, 1991.

[15] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In 2019 IEEE
symposium on security and privacy (SP), pages 691–706. IEEE, 2019.

[16] N. Park, M. Mohammadi, K. Gorde, S. Jajodia, H. Park, and Y. Kim.
Data synthesis based on generative adversarial networks. Proc. VLDB
Endow., 11(10):1071–1083, 2018.

[17] A. Ramdas, N. G. Trillos, and M. Cuturi. On wasserstein two-sample
testing and related families of nonparametric tests. Entropy, 19(2), 2017.

[18] M. Rasouli, T. Sun, and R. Rajagopal. Fedgan: Federated generative
adversarial networks for distributed data. CoRR, abs/2006.07228, 2020.

[19] S. Semeniuta, A. Severyn, and S. Gelly. On accurate evaluation of gans
for language generation. arXiv preprint arXiv:1806.04936, 2018.

[20] M. L. G. ULB. Kaggle - anonymized credit card transactions labeled as
fraudulent or genuine. https://www.kaggle.com/mlg-ulb/creditcardfraud,
2018.

[21] H. Wu, Z. Zhao, L. Y. Chen, and A. Van Moorsel. Federated learning
for tabular data: Exploring potential risk to privacy. In 2022 IEEE 33rd
International Symposium on Software Reliability Engineering (ISSRE),
pages 193–204. IEEE, 2022.

[22] L. Xu, M. Skoularidou, A. Cuesta-Infante, and K. Veeramachaneni.
Modeling tabular data using conditional gan. In Advances in Neural
Information Processing Systems, 2019, volume 32, pages 7335–7345.
Curran Associates, Inc., 2019.

[23] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen. Ctab-gan: Effective table
data synthesizing. In Proceedings of The 13th Asian Conference on
Machine Learning, volume 157, pages 97–112, 17–19 Nov 2021.

[24] Z. Zhao, A. Kunar, R. Birke, and L. Y. Chen. Ctab-gan+: Enhancing
tabular data synthesis. arXiv preprint arXiv:2204.00401, 2022.

576

Authorized licensed use limited to: TU Delft Library. Downloaded on October 19,2023 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

