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A R T I C L E  I N F O   
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A B S T R A C T   

The component method for joint analysis relies on the formulation of stiffness and strength of individual parts to 
derive the global properties of the joint. One of these components is the web of an open I-section, or the face of a 
rectangular hollow section, hereby referred to as face plate. It is currently not codified despite its frequent 
occurrence in the engineering practice. Hereby, a new mechanical model is proposed to estimate the initial 
stiffness of the face plate component under out-of-plane loading, leading to closed-form analytical expressions. 
The model is validated against experimental test results and an extensive numerical parametric study, showing 
excellent agreement.   

1. Introduction 

The connection of steel members to the web of an open I-section, or 
the face of a rectangular hollow section, is characterized by the signif-
icant flexibility of the webs and face. This occurs due to the absence of a 
central stiffening element such as the web that is present in connections 
to the flanges of I-sections. This flexibility needs to be considered in the 
design of joints that present this active component [3]. Despite its 
practical relevance, Eurocode 3 part 1–8 [1], (EC3-1–8), does not 
contemplate this situation. Focusing on beam-to-column joints, Fig. 1 
and Fig. 2 illustrate several joint typologies that share this component, 
henceforth referred to as “face plate”, with various levels of demand, 
depending on the internal forces that are being transferred to the 
column. 

If only shear force transfer is desired, the fin plate connection illus-
trated in Fig. 1(a) and Fig. 2(a) is usually the preferred solution because 
of its ease of fabrication, erection (due to the straightforward positioning 
of the beam) and good tolerances. In addition, the new FprEN 1993-1-8 
[2], hereinafter referred to as FprEC3-1–8, provides guidance for fin 
plate joints connecting H- and I-sections in its Annex C, but only when 
connected to the column flange. Concerning RHS columns, no guidance 
is provided although the guidelines for welded T-joints in lattice struc-
tures connecting H- and I-sections through longitudinal plates to RHS 
chords could be adapted with respect to the chord resistance, but 
nothing is stated about the flexibility of these joints. 

In many cases, because some degree of fixity at the beam ends has a 
very favorable impact on the design of the beam and the control of de-
flections, partial moment transfer in addition to shear transfer is desired 
and endplate joints (Fig. 1(b) and Fig. 2(b)) are used. Again, neither 
EC3-1–8, nor FprEC3-1–8, give any guidance for these cases. Although 
not illustrated in Fig. 1 and Fig. 2, direct connection to the chord faces is 
also present in many joint configurations in welded lattice structures. 
Their design is covered in clause 7 of EC3-1–8 but only from a resistance 
point of view with an implicit deformation criterion built-in in a semi- 
empirical way. 

The joint typologies illustrated in Fig. 1 and Fig. 2 transfer forces 
from the beam to the column web/face in several ways depending on the 
specific connection detail. These vary from forces transferred by a plate 
welded to the web face, by direct contact over a certain area or by 
pulling associated with the contact from a bolt head or nut. Depending 
on the joint typology and the geometry of the connecting plate, the 
transferred load may be a force (exerted inwards or outwards) or a 
bending moment over a certain length, usually associated with the 
vertical shear force. Following the philosophy of the component 
method, the overall behavior for any of these situations can be obtained 
by analytical assembly of the individual components involved. 
Regarding the face plate of width b and thickness t, illustrated in Fig. 3 
(a), the component behavior is highly dependent on the way the load is 
applied, with the following basic cases: face plate connected to a single 
bolt row in tension, Fig. 3(b)(c)(d); face plate connected to a horizontal 
plate in tension or compression, Fig. 3(e); and face plate connected to a 
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fin plate in tension or compression, Fig. 3(f). These sub-figures introduce 
the basic notation used across the paper. 

All the cases shown in Fig. 1 and Fig. 2 present a common feature, 

namely, the presence of a plate subjected to transverse tension or 
compression, which generally is slender (and therefore very flexible) 
with respect to the applied force. This component is supported on its 
vertical edges, with a variable degree of rotational stiffness imposed by 
the concurrent plates (for the joints presented in Fig. 1 the flanges of the 
open-section column, whereas for the joints in Fig. 2 the lateral faces of 
the hollow section). Moreover, these restraining elements also impose a 
variable degree of in-plane restraint, whereupon membrane forces 
develop, strongly contributing to the resistance and deformability of the 
plate. Finally, it must be considered that the plate is embedded in the 
column and therefore participates in the overall deformation and 
resistance of the frame. 

The force− displacement behavior of the face plate component sub-
jected to transverse force can be characterized by three regions (Fig. 4):  

• the initial (elastic) region, dominated by plate bending, defined by 
the initial stiffness Kini and extending up to the plastic resistance Fpl;  

• the last region is defined by the membrane stiffness Km, which 
dominates the behaviour at a displacement u of the order of the plate 
thickness t. 

• In between, a transition region where the plate response progres-
sively changes from bending-type behaviour to membrane-type 
behaviour. 

This paper focuses on the initial stiffness of the face plate component. 
This value is relevant because for most of its working life the joint re-
mains within the elastic range, and therefore, its rotational behavior is 
dominated by the initial stiffness. Besides, an accurate characterization 
of this parameter is the first step of a full description of the force −
displacement curve of the component. Hence, first, a short literature 
review on the topic is presented, followed by the derivation of a closed- 
form solution of the problem. The formulation is comprehensively 
validated against the results of a wide range of numerical results. 
Finally, the expressions are successfully compared to recent experi-
mental results. 

2. Literature review 

2.1. Introduction 

There are limited options available for estimating the initial stiffness 
of out-of-plane loaded chords using analytical formulations. Solutions of 

Nomenclature 

Av shear area 
B axial force in bolt 
E Young’s modulus 
F transverse force from fin plate or horizontal plate 
Fpl plastic resistance 
G shear modulus 
I moment of inertia 
Kini initial stiffness 
Km membrane stiffness 
Leff length of equivalent strip 
b width of face plate 
bhp width of horizontal plate 
c length of area of patch load 
d width of area of patch load 
dm equivalent diameter of bolt head 
e width of beam 
fy yield strength 
hhp depth of fin plate 

k stiffness of the elastic foundation per unit length 
n distance between the bolt axis and the edge of the face 

plate; distance between the edge of a horizontal plate and 
the edge of the face plate; distance between the axis of a fin 
plate and the edge of the face plate; 

p bolt pitch 
s rotational stiffness per unit length of face plate 

longitudinal supports 
t thickness of face plate 
tfp thickness of fin plate 
thp thickness of horizontal plate 
α ratio between the length of the area of the patch load and 

the width of face plate 
β ratio between the width of the area of the patch load and 

the width of face plate 
θ dispersion angle 
μ ratio between the width of face plate and the thickness of 

the face plate 
ν Poisson coefficient 
fy yield strength  

Fig. 1. Typical cases of connections to the web of an I section: (a) fin plate; (b) 
end plate. 

Fig. 2. Typical cases of connections to the face of a tube: (a) fin plate; (b) 
end plate. 

J. Conde et al.                                                                                                                                                                                                                                   
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the differential equations of a rectangular plate subject to a transverse 
patch load are available but they usually consist of Fourier series solu-
tions that require a significant number of terms to achieve reasonable 
accuracy [12,17]; hence, they are not useful for engineering practice. 

Consequently, most authors have proposed simplified expressions based 
on beam strip models, numerically calibrated for a specific range of 
validity. In the following sub-sections, they are briefly reviewed. 

2.2. Previous studies 

2.2.1. Neves et al 
Neves [7] conducted tests on various end-plate beam-to-column joint 

specimens connecting I-section beams to both bare steel and infilled 
composite I-section columns and to concrete-filled tubular columns, 
subjected to monotonic and cyclic actions. Based on earlier numerical 
simulations and a simple equivalent strip analytical model [8], the 
initial stiffness of the column web in bending when subjected to a 
transverse load applied on a rigid area was derived using an equivalent 
strip model of length Leff, as shown in Fig. 5(a) for an infinite plate of 
span b and thickness t, supported on its long edges, with partial 

Fig. 3. Types of load application on a web/faced loaded with out-of-plane axial force: (a) face plate properties; (b)(c)(d) bolt row with end plate; (e) horizontal plate; 
(f) fin plate. 

Fig. 4. Typical force− displacement curve on a web/faced loaded out-of-plane.  

Fig. 5. Neves model and application to practical cases.  

J. Conde et al.                                                                                                                                                                                                                                   
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rotational stiffness per unit length s (N⋅mm/rad/mm); the load is applied 
as a patch load on an area c × d, leaving two unloaded areas on the edge 
of length n = (b − d)/2. The model can be used for cases where the 
transverse load is applied through a horizontal plate (Fig. 5(b)), bolts 
(Fig. 5(c)), or a fin plate (Fig. 5(d)). 

The model can be described with non-dimensional geometric pa-
rameters, α = c/b, β = d/b, μ = b/t. For fixed edges, taking the Poisson’s 
ratio as ν = 0.3, and introducing two coefficients k1 = 1.5, and k2 = 1.63 
that were calibrated against the results of a numerical study, the 
following expression was obtained: 

Kini,NEVES.fixed = 16
E t3

b2

α + (1 − β)tanθ
(1 − β)3

+ 10.4 k1 − k2β
μ2

(1) 

The term 10.4⋅(k1 − k2β)/μ2 is a correction for shear deformability in 
thick webs, and θ is a dispersion angle as shown in Fig. 5(a). Similarly, 
for partially restrained edges, the following expression was derived, not 
including shear deformation: 

Kini,NEVES,partial = 4
E t3

b2

α + (1 − β)tanθ + 6S 1− β
E t3

(1 − β)3
[
1 + 3S

2
1− β

E t3(α+(1− β)tanθ)

], (2)  

where S is the flexural rigidity of the boundary supports along the length 
Leff: 

S = s Leff = s[c + 2ntan(θ)]. (3) 

The angle θ was calibrated to the results of a parametric study [8] 
yielding: 

θ =

{
35 − 10β, β < 0.7
49 − 30β, β⩾0.7 (4) 

The validity range for the expressions is limited to the cases depicted 
in Fig. 5(c) and Fig. 5(d) and 10 ≤ μ ≤ 50, 0.08 ≤ β ≤ 0.75, 0.05 ≤ α ≤
0.20. For the face plate loaded by a row bolt, the author suggests the use 
of an equivalent rectangular area with d = p + dm and c = dm, where dm is 
the mean of the across points and across flats dimensions of the bolt head 
or nut. 

2.2.2. Park 
Jaspart et al. [9] adopted the proposal by Neves in a paper that 

contemplates the use of the component method for joints in tubular 

construction. However, Park [10,11] suggested that the formulations by 
Jaspart et al. for hollow sections have a limited range of application and 
also pointed out that the expressions cannot be applied for connections 
with more than two bolt rows. Furthermore, this author presented 
analytical equations with improved accuracy and practicality by treat-
ing each bolt row as one joint component and allowing for their appli-
cation with multiple bolt rows to estimate the initial stiffness, strength, 
and deformation capacity properties of joints to Rectangular Hollow 
Section (RHS) columns. The initial stiffness expression, proposed for 
each bolt row of a chord in transverse tension for hollow section columns 
with no concrete filling, is as follows: 

Kini,PARK = E
f1 t3

b2m cos
(

n π
2b

), (5)  

where f1 and m are adimensional parameters given by: 

f1 =
11.5 b kr + 5.7 E t3 × 1mm

2.024 b kr m − b kr + E m t3 × 1mm
, (6)  

kr =
4EI
h

(
1.5b + h
2.0b + h

)

=
Et3

3h

(
1.5b + h
2.0b + h

)

, (7)  

m = 0.143
(n

b

)2
− 0.306

(n
b

)
+ 1.076. (8) 

In these expressions, EI is the unit length bending stiffness of the 
plate, h is the depth of the RHS (measured orthogonally to the face 
plate), and all other parameters have already been defined. The 
expression is limited to hollow sections. 

2.2.3. Garifullin et al. 
Concluding that the range of applicability of the formulations by 

Neves [7] is very limited for the application to tubular T-joints, Gar-
ifullin et al. [13] proposed a simplified formulation for tube face in 
bending through a 2D beam analysis of a simply supported equivalent 
strip, see Fig. 6, assuming simple supports with no partial rotational 
stiffness. 

The study first obtained the only unknown parameter, the effective 
length, from finite element analyses and finally suggested an expression 
using the numerical results. The reported range of validity is 0.25 ≤ β ≤
0.85, 0.5 ≤ α ≤ 2.0 and 10 ≤ 2γ ≤ 35, where β = d / b0, α = c / d and 2γ 
= b0 / t. 

Kini,GARIFULLIN = E
4Leff t3

(b − d)3, (9)  

Leff = c(2 − β) + 1.25b0(1 − β). (10)  

2.2.4. Ghobarah et al. [14] and Mahmood et al. [15] 
Gohbarah et al. [14] studied hollow sections numerically and pro-

posed a deflection coefficient to estimate the face plate deflection at the 
bolt locations, starting from a simply supported plate with two row bolts 
and subsequently applying correction factors. Mahmood et al. [15] 
found that the bolt pitch does not significantly affect the stiffness, and 
therefore the formulation by Gohbarah can be specified for a single bolt 
row. The corresponding expression is: 

Kini,Ghobahra =
Et3

24 γf(b − 2t)2
(1 − ν2)

. (11)  

where γf is a numerical coefficient dependent on μ (=b/t) and β = n/(b −
2t). This coefficient is given graphically [15] for μ between 25–40, and β 
between 0.28–0.63. The range of available values of γf is small. 

Fig. 6. Model for chord face in bending according to Garifulli et al. [13].  

J. Conde et al.                                                                                                                                                                                                                                   
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3. Mechanical model for the initial stiffness 

3.1. Introduction 

The bending formulation of plate elements contains torsional com-
ponents that are not present in a beam formulation and introduce 
additional complexity in the analytical solutions. A classical simplified 
approach to plate bending is the use of grid models composed of inter-
twined beams in two orthogonal directions [16] that neglect torsional 
stiffness. Consequently, they are supposed to yield a lower-bound so-
lution, that is, smaller stiffness and resistance than the original plates, 
thus being on the safe side from an engineering point of view. This 
philosophy is applied to the face plate in this section. Moreover, because 
the face plate is assumed with infinite length, the corresponding parallel 
(infinite) grid beams can be considered as supported by the transversal 
grid beams and can be studied using the beam on elastic foundation 
theory [5], providing convenient closed-form solutions. The three 
canonic cases shown in Fig. 3(b)− (f), namely, face plate loaded by:  

• a bolt row (two bolts per row) in tension, Fig. 3(b)(c)(d);  

• a horizontal plate in tension or compression, Fig. 3(e);  
• a fin plate in tension or compression, Fig. 3(f); 

are treated with this rationale hereby, and the corresponding solu-
tions are presented in the following sub-sections, using the unified no-
tation of Fig. 3. In all cases, the face plate is transformed into a grid 
formed by a principal beam (referred to as ‘beam 1′) with total stiffness 
EI1 (kN⋅mm2) supported on an elastic foundation provided by the sec-
ondary beams (referred to as ‘beam 2′, ‘beam 3′, or ‘beam 4′), see Fig. 7. 
The stiffness k (kN/mm2) of the elastic foundation (per unit length) is 
found by analysis of the secondary beams of unit width and unit stiffness 
EI2 = EI3 = EI4 (kN⋅mm2/mm), with the appropriate boundary condi-
tions, represented by the support flexibility per unit length s (kN⋅mm/ 
rad/mm). Assuming that, for the applied load Q (kN/mm), the 
displacement at point D is dD (mm), the corresponding stiffness is: 

kD =
Q
dD

, (12)  

given in kN/mm2. The displacement can be calculated excluding or 
including shear deformability of the plate. For all cases, the face plate 

Fig. 7. Notation for grid model for face plate loaded by: (a) infinitely flexible bolted end plate; (b) infinitely rigid bolted end plate; (c) horizontal plate; (d) fin plate; 
(e) model for transverse beam 2; (f) model for transverse beam 3; (g) model for transverse beam 4. 

J. Conde et al.                                                                                                                                                                                                                                   
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with cross-section width b and plate thickness t, nominal material 
properties E (Young modulus), ν (Poisson coefficient) and fy (yield 
strength), is assumed as infinite in the longitudinal direction. In-plane 
forces and second-order effects are disregarded. For the first case (face 
plate loaded by a bolt row), two extreme solutions are discussed, namely 
a very (infinitely) flexible bolted end plate, and a very (infinitely) rigid 
bolted end plate. Both sub-cases differ in the rotation restraint of the 
load application area (washer area), free for the former and fixed for the 
latter. The actual behavior of the connection is expected to lie in be-
tween both extremes, but experimental results (discussed further below) 
indicate that it is closer to the second. 

3.2. Case 1a: Face plate loaded by infinitely flexible bolted end plate 

3.2.1. Face plate in pure bending 
Fig. 7(a) shows the frontal view of a plate face, loaded by two bolts in 

tension, with nominal bolt diameter d, and corresponding hole diameter 
d0 (see also Fig. 3(b)(c)(d)). The corresponding bolted end plate is 
assumed as infinitely flexible, so that the loaded area is not restrained for 
rotation. The total load (transferred by the 2 bolts) is F. The load at each 
bolt, B = F/2, is transferred to the face plate by means of an annular 
surface of external diameter dm. The cross-section of beam 1 is defined 
by the width e. This parameter can be adjusted to improve the accuracy 
of the method, but for simplicity it can be taken as approximately equal 
to b/2. The cross-section of beam 2 is defined by the thickness t and a 
unit width. Beam 1 can be assumed of infinite length if the column ex-
tends at least 2b at each side of the load application, that is, a minimum 
column length of 4b [14]. This assumption is therefore reasonable in 
buildings, except at column ends, or whenever transverse stiffeners are 
present. 

The mechanical model corresponding to the transverse beams (beam 
2) is shown in Fig. 7(e). Depending on the support stiffness s (kN⋅mm/ 
rad/mm), three cases can be discussed: (a) the plate is fixed at the edges, 
s = ∞ kN/rad; (b) the plate is simply supported at the edges, s = 0 kN/ 
rad; (c) the edges present an intermediate unit rotational stiffness s. The 
last case allows for calibration of the true support conditions of the plate, 
based on the cross-sectional properties of the column. The first and 
second cases correspond to upper and lower bounds of the stiffness. In 
this model, the attached bolts and end plates are infinitely flexible, so it 
is assumed that the bolt does not restrain the rotation of the plate at 
points D and D’, therefore the model will, in theory, lead to a (conser-
vative) lower bound of the real stiffness of the plate. 

For the fixed case, s = ∞ kN/rad, the displacement d at point D is 
given by: 

dD,fixed =
Qn3

6EI2b
(2b − 3n), (13)  

where Q (kN/mm) is the unit load and 

EI2 = E
t3

12(1 − ν2)
, (14)  

whereupon the unit stiffness kD,fixed at point D is measured as: 

kD,fixed =
6EI2b

n2(2nb − 3n2)
=

E
1 − ν2

bt3

2n3(2b − 3n)
. (15) 

In the previous expressions, Q and d are auxiliary magnitudes used 

Fig. 8. Static model of beam 1 (beam on elastic foundation): (a) load applied as a point load; (b) load applied as two point loads, deformable segment; (c) load 
applied as two point loads, rigid segment. 

Table 1 
Closed-form solutions for the initial stiffness of a face plate loaded by bolt row in 
tension.  

Case A: Force applied as a point 
load 

K1,A = 8EI1λ3 (23) 
K1,A,fixed =

E
1 − ν2

2
3

et3
(

3b
2n2e(2ab − 3n2)

)0.75 
(24) 

K1,A,pinned =

E
1 − ν2

2
3

et3
(

3
2ne(3nb − 4n2)

)0.75 
(25) 

Case B: Force applied as two point 
loads, considering the loaded 
area as deformable 

K1,B =

2K1,A

1 + exp( − λdm)[cos(λdm) + sin(λdm) ]

(26) 

Case C: Force applied as two point 
loads, considering the loaded 
area as undeformable 

K1,C = K1,A + k2 dm. (27)  

Fig. 9. Face plate supporting a fin plate. Model for beam 1.  

J. Conde et al.                                                                                                                                                                                                                                   
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Table 2 
Proposed equations to estimate the initial stiffness of a face plate component subjected to transverse load.  

(i)  (ii)  (iii)  (iv)  (v)  (vi)  

(i) face plate and boundary conditions; (ii) face plate loaded by infinitely flexible bolted end plate (rear view); (iii)(iv) face plate loaded by infinitely rigid bolted end plate (rear 
and front view); (v) face plate loaded by horizontal plate in tension or compression; (vi) face plate loaded by fin plate in tension or compression.  

K = r
(
8EI1λ3 + k3 c

)
,EI1 = eEI2, λ = (k2/4EI1)0.25

,EI2 = Et3/12(1 − ν2),GAv = 2Gt/3,k2 = 1/d2,k3 = 1/d3.

case r e c d2 d3  

(ii)(iv) 2 b/2 dm n3s(2b − 3n) + 2EI2n2(4n − 3b)
6EI2(2EI2 + bs)

+
n

GAv 

=d2 

(iii)(iv) n3

12EI2
sn + 4EI2
sn + EI2

+
n

GAv  
(v) t + thp  

(vi) 1 b hfp b3(8EI2 + bs)
192EI2(2EI2 + bs)

+
b

4GAv  

= d2  

Fig. 10. General view of the FEM model for face plate loaded by: (a) bolted end plate (one bolt row); (b) horizontal plate; (c) fin plate.  

J. Conde et al.                                                                                                                                                                                                                                   
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only to obtain the stiffness. Likewise, for the simply supported case: 

kD,pinned =
6EI2

n(3nb − 4n2)
=

E
1 − ν2

t3

2n2(3b − 4n)
. (16) 

In the former expressions, the subscript ‘pinned’ is used to identify 
the simply supported case. Finally, for the partial fixity, identified with 
the subscript ‘partial’: 

kD,partial =
6EI2(2EI2 + bs)

n3s(2b − 3n) + 2EI2n2(3b − 4n)

=
E

1 − ν2
t3(Et3 + 6sb(1 − ν2))

2n2[6sn(1 − ν2)(2b − 3n) + Et3(3b − 4n)]
. (17) 

Derivation of this expression is given in Appendix A. If s = 0, the 
expression reduces to Eq. (16), whereas for s = ∞, Eq. (15) is obtained. 
Eq. (17) represents the unit stiffness of the supporting element for beam 
1 in Fig. 7(a), and therefore the behavior of beam 1 can be assimilated to 
an infinite beam on elastic foundation of unit stiffness k2 = kD, subjected 
to the point load B = F/2 corresponding to one bolt, as shown in Fig. 8, 
where three different possibilities are presented, depending on the load 
application: in Fig. 8(a) the load B is applied at one point (Case A); in 
Fig. 8(b), the area of load application is considered as deformable (Case 
B); finally, in Fig. 8(c), the area of load application is considered of 
infinite stiffness (case C). The derivation for each case, based on [5], is 
given in Appendix A. Hereby, only the main equations are summarized. 

The stiffness EI1 of beam 1 is: 

EI1 = E
e t3

12(1 − ν2)
. (18) 

As indicated, the width e must be chosen, with a maximum 
geometrical value of b/2. The behavior of the system is dependent on the 
parameter λ (see Appendix A), defined as: 

λ =

(
k2

4EI1

)0.25

, (19)  

which, applying Eqs. (15), (16) and (17) results in: 

λfixed =

(
3b

2en3(2b − 3n)

)0.25

, (20)  

λpinned =

(
3

2en2(3b − 4n)

)0.25

, (21) 

Fig. 11. Geometry of the tests.  

Table 3 
Estimate of initial stiffness.  

Column  HE400A HE400B HE600B W750x200 

b mm 306 301 483.2 701 
t mm 11 13.5 15.5 8 
p mm 90 165 200 200 
dm mm 44 44 44 44 
EI2 kN⋅mm2/mm 25,596 47,315 71,613 9846 
sb kN/rad 167.3 314.4 296.4 28.1 
s kN/rad 669.0 78.6 222.3 140.0 
ρ = s/sb  4 0.3 0.8 5.0 
F kN 27.2 60.7 38.5 17.5 
u mm 0.72 0.42 0.70 4.29 
K kN/mm 37.7 144.5 55.2 4.1  

Neves model (Eq. (2)) 
KN kN/mm 81.2 523.6 87.0 5.2 
KN/K kN/mm 216% 362% 158% 128%  

Proposed model, assuming rigid bolted end plate 
KC,V,rigid kN/mm 47.3 185.84 57.0 3.9 
KC,V,rigid/K kN/mm 125% 129% 103% 96%  

Proposed model, assuming flexible bolted end plate 
KC,V,flexible kN/mm 41.8 89.6 40.94 3.4 
KC,V,flexible/K kN/mm 111% 62% 74% 83%  
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λpartial =

(
3[Et3 + 6sb(1 − ν2)]

2en2[6sn(1 − ν2)(2b − 3n) + Et3(3b − 4n)]

)0.25

. (22) 

Again, the last expression, Eq. (22), reduces to Eq. (20) for s = ∞ kN/ 
rad, and to Eq. (21) for s = 0 kN/rad. Choosing λ as corresponding, the 
closed-form solutions for each of the three cases shown in Fig. 8 are 
summarized in Table 1: 

In the previous equations, k2 (lower case) denotes unit stiffness (kN/ 
mm/mm) whereas K (upper case) is used for stiffness (kN/mm), and the 

subscript ‘1′ indicates that this is for one of the two beams ‘beam 1′. Thus, 
the total stiffness for the face plate component, K, is: 

KX = 2K1,X , (28)  

where ‘X’ stands for A, B or C, and K1,X is K1,A, K1,B, or K1,C as chosen. K1, 

A is expected to lead to the most conservative (lowest) value, whereas K1, 

C will produce the less conservative (highest) value. The deformation Δ 
of the face plate component is given by: 

ΔX = F/KX . (29)  

where F is the total force corresponding to the two bolts, F = 2B. 

3.2.2. Shear correction 
Shear deformation can be included in the former expressions by 

correcting the beam stiffness. However, the largest part of the shear 
contribution is expected from beam 2 due to the reduced slenderness of 
this element. Thus, in the following derivation, shear deformation will 
only be considered in beam 2. This allows for an explicit solution (which 
is not possible if shear deformability is included in beam 1). The addi-
tional deformation of beam 2 due to shear at point D for any of the three 
boundary conditions is approximately given by [6]: 

dD,V =
Qn
GAv

, (30) 

where G = E/(2⋅(1 + ν)) is the shear modulus of the material and Av 
= 2 t/3 is the equivalent shear area of the rectangular cross-section per 
unit length. Thus, the total stiffness considering bending and shear 
deformation is: 

kD =
Q

dD,M + dD,V
, (31)  

where dD,M is the deflection due to pure bending of beam 2 under load Q, 
for the corresponding boundary conditions. This expression can be 
rewritten as: 

kD =
Q

dD,M

(
1 +

dD,V
dD,M

) = kD,M
dD,M

dD,V + dD,M
= kD,MβV, (32) 

Table 4 
Results of parametric study for face plate loaded by an infinitely flexible bolted end plate.  

Boundary condition Statistic Neves Proposed method 
without shear correction 

Proposed method 
with shear correction 

KN/KFE KA/KFE KB/KFE KC/KFE KA,V/KFE KB,V/KFE KC,V/KFE 

Fixed (48 cases) Max  8.811  1.095  1.248  1.431  1.092  1.096  1.212 
Min  1.190  0.813  0.933  1.062  0.780  0.916  1.042 
Mean  2.100  1.004  1.042  1.137  0.987  1.023  1.115 
C.o.V.  70.8%  7.3%  5.7%  5.4%  8.2%  5.2%  3.3% 
R2  –  0.996  0.949  0.831  0.988  0.997  0.956  

Pinned (48 cases) Max  6.952  0.908  0.911  0.957  0.907  0.910  0.954 
Min  0.708  0.635  0.681  0.771  0.632  0.678  0.766 
Mean  1.514  0.837  0.851  0.909  0.834  0.848  0.906 
C.o.V.  86.1%  8.1%  6.6%  4.4%  8.3%  6.8%  4.5% 
R2  –  0.908  0.937  0.980  0.899  0.929  0.974  

Partial fixity 
ρ = 0.5, 1, 2 
(144 cases) 

Max  5.859  0.997  0.999  1.037  0.995  0.998  1.035 
Min  0.926  0.641  0.695  0.789  0.636  0.690  0.783 
Mean  1.668  0.868  0.887  0.954  0.863  0.882  0.948 
C.o.V.  59.9%  8.8%  7.0%  4.9%  9.2%  7.4%  5.1% 
R2  –  0.975  0.989  1.000  0.967  0.983  0.998  

All (240 cases) Max  8.811  1.095  1.248  1.431  1.092  1.096  1.212 
Min  0.708  0.635  0.681  0.771  0.632  0.678  0.766 
Mean  1.723  0.889  0.910  0.981  0.882  0.903  0.973 
C.o.V.  68.8%  10.6%  9.9%  9.5%  10.7%  9.6%  8.8% 
R2  –  0.989  1.000  0.975  0.989  1.000  0.989  

Table 5 
Results of parametric study for face plate loaded by an infinitely stiff bolted end 
plate.  

Boundary condition Statistic Neves Proposal 

KN/KFE KC/KFE KC,V/KFE 

Fixed (48 cases) Max  5.806  1.389  1.097 
Min  1.127  0.665  0.606 
Mean  1.507  0.974  0.945 
C.o.V.  53.2%  12.77%  11.37% 
R2  –  0.868  0.988  

Pinned (48 cases) Max  3.614  0.913  0.913 
Min  0.685  0.437  0.427 
Mean  1.000  0.775  0.770 
C.o.V.  52.0%  13.53%  13.84% 
R2  –  0.933  0.904  

Partial fixity 
ρ = 0.5, 1, 2 
(144 cases) 

Max  3.331  0.997  0.996 
Min  0.885  0.441  0.430 
Mean  1.200  0.825  0.817 
C.o.V.  33.7%  13.15%  13.66% 
R2  –  0.987  0.973  

All (240 cases) Max  5.806  1.389  1.097 
Min  0.685  0.437  0.427 
Mean  1.221  0.845  0.833 
C.o.V.  45.1%  15.35%  14.90% 
R2  –  0.994  0.988  
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where kD,M is the stiffness considering only bending components and 

βV =
dD,M

dD,V + dD,M
, (33) 

is the shear correction coefficient, indicative of the relative impor-
tance of shear deflection, when compared to pure bending deflection. Its 
closed-form expression for the fixed supported beam is: 

βV,fixed = 1 −
3bt2

3bt2 + 2n2(1 − ν)(2b − 3n)
. (34) 

For the simply supported beam: 

βV,pinned = 1 −
3t2

3t2 + 2n(1 − ν)(3b − 4n)
. (35) 

Finally, for the partial fixity: 

βV,partial =
1

1 +
3t2 [Et3+6sb(1− ν2)]

2n(1− ν)[6sn(1− ν2)(2b− 3n)+Et3(3b− 4n)]

. (36) 

Again, in the previous derivations, Q and d are auxiliary magnitudes. 

3.3. Case 1b: Face plate loaded in tension by infinitely rigid bolted end 
plate 

This case is presented in Fig. 7(b). The formulation for beam 2 is 
identical to that of the previous case. A third beam of unit width and 
stiffness EI3, referred to as ‘beam 3′ and shown in Fig. 7(f), includes the 
local stiffening of the face plate due to the horizontal plate, by consid-
ering a central rigid region (with infinite stiffness). The model for beam 
1 presented as case C in Section 3.2, see Fig. 8(c), can be applied, but the 
stiffness below the central rigid area of the beam is k3 (kN/mm2) instead 
of k2. Eq. (27) can be reformulated as: 

K1 = 8EI1λ3 + k3 c, (37)  

K = 2K1, (38)  

where c is the width where beam 3 is considered, as shown in Fig. 7(b). It 
can be taken as dm for simplicity. The stiffness k3 = kD for the fixed, 
pinned and partial fixity, can be obtained as: 

kD,fixed =
12EI3

n3 =
E

1 − ν2

t3

n3, (39) 

Table B1 
Parametric study cases – face plate loaded by bolted plate.  

n g (mm) t (mm) b (mm) a (mm) t/d b/g b/t b/a a/t 

1 80 8 160 40 0.5  2.00 20  4.00  5.00 
2 80 8 200 60 0.5  2.50 25  3.33  7.50 
3 80 8 240 80 0.5  3.00 30  3.00  10.00 
4 80 8 280 100 0.5  3.50 35  2.80  12.50 
5 80 8 320 120 0.5  4.00 40  2.67  15.00 
6 80 8 360 140 0.5  4.50 45  2.57  17.50 
7 80 8 400 160 0.5  5.00 50  2.50  20.00 
8 80 12 180 50 0.75  2.25 15  3.60  4.17 
9 80 12 240 80 0.75  3.00 20  3.00  6.67 
10 80 12 300 110 0.75  3.75 25  2.73  9.17 
11 80 12 360 140 0.75  4.50 30  2.57  11.67 
12 80 12 420 170 0.75  5.25 35  2.47  14.17 
13 80 12 480 200 0.75  6.00 40  2.40  16.67 
14 80 12 540 230 0.75  6.75 45  2.35  19.17 
15 80 12 600 260 0.75  7.50 50  2.31  21.67 
16 80 16 160 40 1  2.00 10  4.00  2.50 
17 80 16 240 80 1  3.00 15  3.00  5.00 
18 80 16 320 120 1  4.00 20  2.67  7.50 
19 80 16 400 160 1  5.00 25  2.50  10.00 
20 80 16 480 200 1  6.00 30  2.40  12.50 
21 80 16 560 240 1  7.00 35  2.33  15.00 
22 80 16 640 280 1  8.00 40  2.29  17.50 
23 80 16 720 320 1  9.00 45  2.25  20.00 
24 80 16 800 360 1  10.00 50  2.22  22.50 
25 96 8 160 32 0.5  1.67 20  5.00  4.00 
26 96 8 200 52 0.5  2.08 25  3.85  6.50 
27 96 8 240 72 0.5  2.50 30  3.33  9.00 
28 96 8 280 92 0.5  2.92 35  3.04  11.50 
29 96 8 320 112 0.5  3.33 40  2.86  14.00 
30 96 8 360 132 0.5  3.75 45  2.73  16.50 
31 96 8 400 152 0.5  4.17 50  2.63  19.00 
32 96 12 180 42 0.75  1.88 15  4.29  3.50 
33 96 12 240 72 0.75  2.50 20  3.33  6.00 
34 96 12 300 102 0.75  3.13 25  2.94  8.50 
35 96 12 360 132 0.75  3.75 30  2.73  11.00 
36 96 12 420 162 0.75  4.38 35  2.59  13.50 
37 96 12 480 192 0.75  5.00 40  2.50  16.00 
38 96 12 540 222 0.75  5.63 45  2.43  18.50 
39 96 12 600 252 0.75  6.25 50  2.38  21.00 
40 96 16 160 32 1  1.67 10  5.00  2.00 
41 96 16 240 72 1  2.50 15  3.33  4.50 
42 96 16 320 112 1  3.33 20  2.86  7.00 
43 96 16 400 152 1  4.17 25  2.63  9.50 
44 96 16 480 192 1  5.00 30  2.50  12.00 
45 96 16 560 232 1  5.83 35  2.41  14.50 
46 96 16 640 272 1  6.67 40  2.35  17.00 
47 96 16 720 312 1  7.50 45  2.31  19.50 
48 96 16 800 352 1  8.33 50  2.27  22.00  
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kD,pinned =
3EI3

n3 =
E

1 − ν2

t3

4n3, (40)  

kD,partial =
12EI3

n3

sn + EI3

sn + 4EI3
=

Et3

1 − ν2

Et3 + 12ns(1 − ν2)

4n3(Et3 + 3ns(1 − ν2))
, (41)  

where n = 0.5⋅(b − p). The effect of shear deformability of the plate can 
be included in beams 2 and 3 as discussed in Section 3.2.2. 

3.4. Case 2: Face plate loaded in tension or compression by horizontal 
plate 

This case is presented in Fig. 3(e) and Fig. 7(c), where the face plate 
is centrically loaded by a horizontal plate of width bhp and thickness thp. 
The previous formulation can be applied, but with c taken as thp + t, and 
n = 0.5⋅(b − bhp). The stiffness k3 can be obtained from Eqs. (39) to (41). 
The effect of shear can be considered as indicated in section 3.2.2. 

Fig. 12. Verification of the proposed methods for face plate loaded by an infinitely flexible bolted end plate: (a) KN (Neves); (b) KC; (c) KC,V.  

Fig. 13. Verification of the proposed methods for face plate loaded by an infinitely stiff bolted end plate: (a) KN (Neves); (b) KC; (c) KC,V.  
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3.5. Case 3: Face plate loaded in tension or compression by fin plate 

This case is presented in Fig. 3(f) and Fig. 7(d), in which the face 
plate is centrically loaded by a fin plate of height hfp and thickness tfp in 
tension or compression. The model developed in the previous sections 
can be applied, with the following nuances: first, there is only one lon-
gitudinal beam (beam 1), and its effective width e can, for simplicity, be 
assumed equal to b; second, for this longitudinal beam 1 the model 
presented in Fig. 9 applies, assuming that the fin plate is rigid in its 
plane; third, for the transverse beam (beam 4) the model presented in 

Fig. 7(g) applies, with n = b/2, and a total load Q, leading to the 
following simplified equations: 

kD,pinned =
48EI2

b3 =
E

1 − ν2
4t3

b3 , (42)  

kD,fixed =
192EI2

b3 =
E

1 − ν2
16t3

b3 , (43)  

kD,partial =
192EI2(2EI2 + bs)

b3(8EI2 + bs)
=

E
1 − ν2

8t3[Et3 + 6sb(1 − ν2)]

b3[2Et3 + 3sb(1 − ν2)]
. (44) 

From these stiffness values, application of the model shown in Fig. 9 
is similar to case C discussed in Section 3.2, see Fig. 8(c). Therefore, Eq. 
(18), with e ≤ b can be used to find EI1, λ is found by Eq. (19) replacing k2 
with k4 = kD, and Eq. (27) can be reformulated as: 

K = 8EI1λ3 + k4 c, (45)  

where c is defined in Fig. 7(c) and can be adopted as c = hfp for 
simplicity. The effect of shear deformability of the plate can be included 
as discussed in section 3.2.2. The shear deformability for beam 4 is 
formulated as: 

dD,V =
Qb

4GAv
, (46)  

and the total stiffness including bending and shear can be found by 
application of Eq. (31). 

3.6. Summary of expressions 

Table 2 presents a summary of the equations to estimate the initial 
stiffness of a face plate component subjected to transverse load (tension 
or compression), for the cases discussed above. 

4. Validation of the proposed model 

In this Section, the proposed models are validated with a set of recent 

Table 6 
Results of parametric study for face plate loaded by a horizontal plate.  

Boundary condition Statistic Neves Proposal 

KN/KFE KC/KFE KC,V/KFE 

Fixed (48 cases) Max  2.102  2.004  1.411 
Min  0.987  0.881  0.871 
Mean  1.093  1.020  0.983 
C.o.V.  17.04%  17.46%  9.16% 
R2  0.017  0.218  0.867  

Pinned (48 cases) Max  1.290  0.958  0.871 
Min  0.621  0.630  0.626 
Mean  0.723  0.782  0.776 
C.o.V.  16.45%  9.19%  8.93% 
R2  0.932  0.978  0.961  

Partial fixity 
ρ = 0.5, 1, 2 
(144 cases) 

Max  1.414  1.311  1.036 
Min  0.810  0.743  0.735 
Mean  0.930  0.874  0.860 
C.o.V.  10.40%  8.85%  6.48% 
R2  0.942  0.994  0.996  

All (240 cases) Max  2.102  2.004  1.411 
Min  0.621  0.630  0.626 
Mean  0.921  0.885  0.867 
C.o.V.  18.52%  14.62%  10.80% 
R2  0.975  0.997  0.998  

Fig. 14. Verification of the proposed methods for face plate loaded by a horizontal plate: (a) KN; (b) KC; (c) KC,V.  
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experimental results. This validation is further extended by comparison 
with the results of a parametric study carried out with high-quality FE 
models. In both cases, the agreement was good, surpassing the current 
existing expressions. The proposed model is also compared with the 
Neves model. It is not compared with the other methods reviewed in the 
state-of-the-art because they were only validated for tubular sections. 

4.1. Verification of the FE models 

4.1.1. Description of the FE models 
To enable the full characterization of the plate behavior and its 

components, detailed finite element models (FEM) were developed in 
Abaqus [4], as shown in Fig. 10. The modelled plates have a width b and 
a length L equal to 4b, except for the models representing the fin plate 
case, for which L is taken as hfp + 4b. The adopted value of L was defined 
from a sensitivity analysis, in which it was shown that a value larger 
than 4b had negligible influence on the initial stiffness. Thus, the models 
represent well a plate of infinite length, a conclusion confirmed by other 
existing studies [14]. The double symmetry of the plate was considered, 
i.e., only a quarter of the plate was modelled with the appropriate 
symmetry boundary conditions. 

The lateral edge of the plate was simply supported in-plane and in 
the out-of-plane directions, and linear rotational springs (about y, see 
Fig. 10) were included to simulate the support rotational stiffness. The 
spacing ps between the springs was of the order of 2t, with a rotational 
stiffness per spring ps⋅s. For the simply supported case (s = 0) and the 
fixed case (s = ∞) the springs were removed, and in the fixed case a 
rotational restraint was added. The top of the plate was free. 

The FEA models were meshed with first-order 3D 8-node quadrilat-
eral solid elements (C3D8RH), with reduced integration, hourglass 
control using the artificial stiffness method, and a hybrid formulation. A 
minimum of four elements were considered across the plate thickness, 
with a minimum 2 mm size of the element. The aspect ratio of the ele-
ments was controlled to vary between 1 and 3. A sensitivity analysis 
with different element types, mesh sizes and number of elements across 
the thickness was performed, leading to the options described, chosen to 
balance model size, computational time, and accuracy. Material and 
geometrical non-linearities were included in the model, although they 
hardly affect the value of the initial stiffness. The material was modelled 
as elastic-perfectly-plastic. The analysis was displacement-controlled 
with respect to a specified reference point located at the center of 
either the bolt or the loaded area. 

The sensitivity analysis to determine the previously discussed model 
features was performed in the following way: a family of models was 
produced, in which only a certain parameter (for example, the plate 
length L) was varied and all other parameters were fixed. The force-
− displacement curve of all such models was compared, and the mini-
mum value of the parameter producing no significant differences (i.e., 
less than 1%) in the response curve from the softest one was chosen. For 
instance, for L it was determined that no significant difference in results 
was obtained if L was larger than 4b. This process was repeated for: plate 
length, number of elements across thickness, size of element, and 
element type. The C3D8RH element was chosen because it enhances 
convergence and therefore reduces the computation time, while 
requiring less disk space when compared to elements without reduced 
integration. 

4.1.2. Partial fixity at the supports 
The rotational stiffness sbeam of the transverse beam (beam 2) for the 

simply supported case is: 

sbeam =
2EI2

b
, (47)  

and is the inverse of the rotation at the support for a simply supported 
beam of span b and stiffness EI2, subjected simultaneously to unit hog-
ging bending moments at both supports. The ratio ρ between the support 
stiffness and the beam stiffness, neglecting the shear deformability of the 
lateral beams, is: 

ρ =
s

sbeam
. (48) 

In the parametric study, values of ρ = s/sbeam ≈ [∞, 2, 1, 0.5, 0] are 
adopted, deemed to represent appropriately the range of real rotational 
restraints; the first and last cases are exact and correspond to fixed 
support and pinned support, respectively. 

Table B2 
Parametric study cases – face plate loaded by fin plate.  

n t (mm) b (mm) hp (mm) b/t hp/b 

1 10 100 50 10  0.50 
2 10 150 75 15  0.50 
3 10 200 100 20  0.50 
4 10 250 125 25  0.50 
5 10 300 150 30  0.50 
6 10 350 175 35  0.50 
7 10 400 200 40  0.50 
8 10 450 225 45  0.50 
9 10 500 250 50  0.50 
10 10 100 100 10  1.00 
11 10 150 150 15  1.00 
12 10 200 200 20  1.00 
13 10 250 250 25  1.00 
14 10 300 300 30  1.00 
15 10 350 350 35  1.00 
16 10 400 400 40  1.00 
17 10 450 450 45  1.00 
18 10 500 500 50  1.00 
19 10 100 200 10  2.00 
20 10 150 300 15  2.00 
21 10 200 400 20  2.00 
22 10 250 500 25  2.00 
23 10 300 600 30  2.00 
24 10 350 700 35  2.00 
25 10 400 800 40  2.00 
26 10 450 900 45  2.00 
27 10 500 1000 50  2.00  

Table 7 
Results of parametric study for fin plate.  

Boundary condition Statistic Neves Proposal 

KN/KFE KC/KFE KC,V/KFE 

Fixed (27 cases) Max  1.308  1.193  1.145 
Min  0.987  1.045  1.009 
Mean  1.090  1.111  1.088 
C.o.V.  7.81%  3.17%  3.62% 
R2  0.888  0.979  0.997  

Pinned (27 cases) Max  1.047  1.020  1.019 
Min  0.712  0.920  0.919 
Mean  0.824  0.989  0.984 
C.o.V.  9.71%  2.20%  2.42% 
R2  0.986  0.999  0.998  

Partial fixity 
ρ = 0.5, 1, 2 
(81 cases) 

Max  1.240  1.079  1.064 
Min  0.854  0.919  0.918 
Mean  1.011  1.019  1.010 
C.o.V.  8.14%  2.35%  2.32% 
R2  0.969  0.999  1.000  

All (135 cases) Max  1.308  1.193  1.145 
Min  0.712  0.919  0.918 
Mean  0.989  1.032  1.020 
C.o.V.  12.17%  4.75%  4.36% 
R2  0.989  0.999  1.000  
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4.2. Validation against experimental results 

Table 4 compares the results of the proposed model against some 
recent experimental results carried out at the University of Coimbra [18] 
to study the response of the web/chord/face in both open and tubular 
columns, including welded and hot-rolled profiles, subjected to out-of- 
plane tension. The tests included the four open sections (3 rolled & 1 
welded girder) shown in Fig. 11, that featured connections with single 
and double bolt rows with variable pitch and gauge distances. 

The values of the normalized stiffness ρ of the test prototypes were 
recalculated as follows: First, advanced FEA models of the test speci-
mens, reported elsewhere [19], were produced and calibrated with the 
experimental results. An excellent match was observed in terms of web 
panel displacements and force–displacement curves between the nu-
merical models and the experimental values (measured by Digital Image 
Correlation) for the same applied total force F. Then, a simple plate 
model corresponding to the flat part of the web with uniform support 
rotational stiffness s, was produced, and the value of s was iteratively 

adjusted until the displacement u of the detailed model under the 
applied force F was matched. Finally, the models presented in sections 
3.2 (KC,V,flexible) and 3.3 (KC,V,rigid) were applied, with the as-measured 
geometrical values and support rotational stiffness s as derived in the 
previous step. For the cases with two bolt-rows, the rigid segment at the 
center of beam 1 was taken with a length (in mm) c = 90 + dm. The 
Neves model was also applied, with d = p + dm and c = dm (single bolt 
row) or 90 + dm (two bolt rows). Table 3 shows the results. The actual 
stiffness of the connection lies between the stiffnesses predicted by the 
flexible and rigid end plate models, but in general closer to the latter. 
The results show a good match between the proposed model and the 
experimental results, while the Neves model shows a very poor match. 

4.3. Validation against FE models 

4.3.1. Parametric study. Face plate loaded by an infinitely flexible bolted 
end plate 

The results for the initial stiffness obtained with the proposed 

Fig. 15. Verification of the proposed methods for fin plates: (a) KN; (b) KC; (c) KC,V.  

Fig. 16. Variation of the expressions’ accuracy with support stiffness for face plate loaded by bolt row in tension: (a) KN; (b) KC,V.  
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equivalent grid model were compared to those of FE analyses for 240 
different cases representing usual configurations of bolts on a face plate, 
with different boundary conditions. The rotation of the load application 
area was not restrained, simulating an infinitely flexible end plate (Case 
1a). For all cases E = 210kN/mm2, ν = 0.3, d = 16 mm, dm = 28.4 mm. 
Three values of the plate thickness t were adopted (8 mm, 12 mm, 16 
mm), corresponding to ratios t/d of (0.50, 0.75, 1.00), respectively. Two 
different values of p (80 mm, 96 mm) were included, resulting in p/ 
d ratios of 5 and 6, respectively. For each plate thickness, 9 values of 
slenderness b/t (10, 15, 20, 25, 30, 35, 40, 45, 50) were considered. 
These values correspond to the usual range of face plate slenderness. 
Some values of b resulting in unrealistic constructive conditions were 
eliminated (small widths not capable of accommodating the two bolts 

Fig. 17. Variation of the accuracy of the expressions with support stiffness for face plate loaded by fin plate in tension: (a) KN; KC,V.  

Fig. 18. Variation of the accuracy of the expressions with support stiffness for face plate loaded by horizontal plate in tension: (a) KN; (b) KC,V.  

Table 8 
Influence of the support stiffness for different cases.    

KC,V/KFE KN/KFE 

Face plate loaded by bolt row in tension Mean  0.967  1.542 
C.o.V  5.90%  10.14%  

Face plate loaded by fin plate in tension Mean  1.026  1.018 
C.o.V  2.68%  7.31%  

Face plate loaded by horizontal plate in tension Mean  0.905  0.944 
C.o.V  6.80%  11.10%  

Fig. A1. Compatibility equations for transverse beams.  
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with proper edge distances and spacings). These options resulted in 48 
different representative cases, listed in Annex B (Table B.1), analyzed for 
three different boundary conditions, namely: fixed (48 cases), pinned 
(48 cases) and partial fixity (3 values of partial fixity, 3 × 48 = 144 
cases). The initial stiffness KFEA was obtained at the first load step of the 
analysis. It was compared with the average of the secant stiffness 
calculated for the first 5 steps and found to be practically identical. The 
initial stiffness according to the proposed method neglecting shear (KA, 
KB, KC), and considering shear deformation (KA,V, KB,V, KC,V) were 
calculated adopting for simplicity e = b/2 (further refinement of this 
parameter is possible). Additionally, the stiffness was calculated with 
the Neves formulation (KN), Eq. (2), for comparison purposes, although 
this expression is not strictly applicable to this case, as it assumes a rigid 
behavior of the plate between bolts. The ratio KX/KFEA was obtained, 
where KX refers to any of the previously listed stiffness values (A, B, C, 
AV, BV, CV, N). A value of KX/KFEA = 1 indicates that the proposed 
method is accurate, whereas values larger or smaller than 1 indicate 
overprediction or underprediction of the stiffness, respectively. 

Fig. 12(a)− (c) presents KX/KFEA for the whole set and 3 methods (KN, 
KC, KC,V). In each sub-plot, vertically aligned points correspond to the 
same combination of geometrical parameters and different values of ρ. 
The vertical scale of the figures is the same to facilitate the comparison 
between results. Statistics for KX/KFEA are shown in Table 4, including 
the R2 values of the proposed methods (for the Neves method R2 results 
in negative values, corresponding to worse predictions than the baseline 
[20], highlighting the poor performance of the method). These results 
show a good agreement between the stiffness values predicted by the 
proposed methods and those obtained by the FEA model. The best 
expression to approximate the results is KC,V, Eqs. (18)− (19), for which 
KC,V/KFEM presents a mean value of 0.973 and a coefficient of variation 
of 8.8%. Regarding this expression, the method tends to underpredict 
the stiffness values for the pinned case and to overpredict for the fixed 
case. The expression follows clear trends but with some unexpected 
results, such as those presented for cases 16 and 40, that correspond to 
very low values of b/t and n/t, for which torsional components of the 
plate behavior can be very relevant. The dispersion of the predictions 
(measured by the C.o.V.) is very moderate, so the expressions provide a 
consistent level of accuracy across the whole range of cases under study. 

4.3.2. Parametric study. Face plate loaded by an infinitely stiff bolted end 
plate 

The same cases defined for the previous study were used to simulate 
a face plate loaded by an infinitely stiff bolted end plate, simply by 
restraining the rotation of the load application area. Only the most ac-
curate expressions KC and KC,V were considered. The results, shown in 
Table 5 and Fig. 13, indicate that the proposed method gives good re-
sults and exhibits a much smaller scatter of the results when compared to 
the Neves model, Eq. (2), (14.9% vs 45.1%) and leads to safe sided re-
sults, in contrast to the Neves model that highly overestimates the initial 
stiffness. The R2 values confirm the accuracy of the proposed model. 

4.3.3. Parametric study. Face plate loaded by a horizontal plate 
The cases considered for the verification of the face plate loaded by a 

horizontal plate are the same as for the previous case, but the width of 
the horizontal plate is taken as bhp = b, and the thickness of the hori-
zontal plate is assumed constant with thp = 8 mm. The corresponding 
results are listed in Table 6 and Fig. 14, showing average values similar 
to those obtained with the Neves model, Eq. (2), but with a consistent 
reduction in variability and better R2 values. 

4.3.4. Parametric study. Face plate loaded by a fin plate 
The initial stiffness values obtained with the proposed method were 

compared to those of FEA for different cases representing usual config-
urations of fin plates attached to face plates, with different support 
conditions. For all cases E = 210kN/mm2, ν = 0.3, t = tfp = 10 mm; nine 
different values of slenderness b/t were adopted (10, 15, 20, 25, 30, 35, 
40, 45, 50), resulting in nine values of b (100, 150, 200, 250, 300, 350, 
300, 450, 500) (mm); three different ratios of hfp/b (0.50, 1, 2) were 
considered; e was consistently taken as b. These options resulted in 27 
different representative cases, listed in Annex B (Table B.2), analyzed 
under three different boundary conditions, namely: fixed (27 cases), 
pinned (27 cases) and partial fixity (3 values of partial fixity, 3 × 27 =
81 cases). In these results e has been taken as b. Overall (see Table 7 and 
Fig. 15), the new expression provides consistent accuracy and dispersion 
across the whole range of boundary conditions, improving the pre-
dictions of the Neves model, Eq. (2), for all cases, with an excellent R2 

value. 

4.3.5. Influence of support stiffness on the accuracy of the expressions 
The influence of the support stiffness is studied for one single case 

with the three main loading forms previously discussed. The selected 
dimensions for a face plate loaded by a bolt row in tension and a hori-
zontal plate in tension are b = 300 mm, t = 12 mm. Additionally, for the 
face plate loaded by a bolt row in tension, p = 96 mm, d = 16 mm, dm =

28.4 mm, and for the face plate loaded by a horizontal plate in tension 
thp = 8 mm, bhp = 96 mm. The selected dimensions for a face plate 
loaded by a fin plate in tension are b = 250 mm, t = 10 mm, hfp = 250 
mm, tfp = 10 mm. The following 16 support stiffness values are studied: 
ρ = [0 (pinned), 0.50, 0.56, 0.64, 0.75. 0.90, 1.13, 1.50, 1.80, 2.25, 3, 
4.5, 6, 9, 18, ∞ (fixed)]Section 4.1.2. 

For the face plate loaded by a bolt row in tension the results of 
Kmethod/Kini,FEM are shown in Fig. 16. Fig. 17 shows the results for the 
face plate loaded by a fin plate in tension, and Fig. 18 displays the results 
for the face plate loaded by a horizontal plate in tension. Statistics across 
all values of support stiffness considered in each case are summarized in 
Table 8. The results show that the average differences between the 
models and the numerical values are small for both methods (except for 
the Neves model in case of a bolt row loaded in tension), but the 
dispersion for the proposed method is much lower. This results from the 
empirical nature of the Neves model in terms of the width of the 
equivalent beam strip, unlike the proposed method that uses a 2D (grid) 
model to account for the contributing width. Furthermore, since most 
real cases of steel joints exhibit small support stiffness, with values of ρ 
< 5 (see Table 3, where all cases present a value of ρ below 5 and two 
cases even have values of 0.3 and 0.8), Fig. 16 to Fig. 18 show a much 
better agreement of the numerical results with the proposed method (Eq. 

Fig. A2. Compatibility equations for transverse beams.  
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(2)). 

5. Conclusions 

The face plate is a joint component that appears in common engi-
neering practice, for instance in weak-axis connections of beams to 
open-section columns, or in connections to tubular columns. Despite its 
frequent occurrence, the component is not codified. This paper proposes 
a model for the estimation of the initial stiffness of the face plate sub-
jected to out-of-plane tension, as a first step towards its complete 
characterization. The model is based on a simplified grid in which a 
main beam in the face plate longitudinal direction is continuously sup-
ported by transverse beams and leads to relatively simple closed-form 
analytical solutions (summarized in Table 2), for loading produced by 
very rigid or very flexible bolted end plates in tension, horizontal plates 
in tension or compression, and fin plates in tension or compression. The 
predictions obtained by the model have been checked against those 
obtained with finite elements for a large dataset of realistic cases. The 
method provides a good estimate of the initial stiffness and a very low 
dispersion across the cases considered. Comparison with experimental 
results for bolted end plates indicates that the proposed method for 
flexible and rigid end plates provides suitable lower and upper bounds of 
the actual connection stiffness. 
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Appendix A:. Derivations 

A.1 Stiffness of elastic foundation (transverse beams) 

The elastic foundation stiffness of the adopted grid model is calculated as the stiffness of beams 2, 3 and 4 at the point of load application, and can 
be easily derived using the compatibility method. Consider the beams displayed in Fig. 7(e)− (g). The compatibility method can be applied, dividing 
the beam from the supporting springs as shown in Fig. A1(a)− (c). In all cases, the rotation of the unit spring at the left side θs is: 

θs = − m/s, (A.1)  

where m (kN⋅mm/mm) is the internal bending moment, considered positive as displayed (whereas θ is considered positive if counterclockwise), and s 
(kN/rad) is the support partial stiffness. Focusing on Fig. A1(a), the corresponding rotations at the left side of the simply supported beam for are: 

θv = [ − Qn(b − n)/2 + mb/2]/EI2, (A.2)  

where Q (kN/mm) is the applied load per unit length. Equating both expressions: 

m =
Qns(b − n)
bs + 2EI2

, (A.3)  

and the corresponding displacement at point D can be calculated using the superposition principle as: 

dD,partial = Q
sn3(2b − 3n) + 2EI2n2(3b − 4n)

6EI2(2EI2 + bs)
, (A.4) 

whereupon Eq. (17) is derived as Q/dD,partial. Eqs. (15) and (16) are found specializing Eq. (A.4) for s = ∞ and s = 0, respectively, and replacing EI2 
by Eq. (14). 

Beam 4 shown in Fig. A1(c) can be seen as a particular case of these equations for n = b/2, with half the load (Q instead of 2Q), resulting in Eqn. 
(44), which can be specialized for s = ∞ and s = 0, to render Eqs. (42) and (43), respectively. 

Finally, for the case shown in Fig. A1(b), the corresponding equations are: 

θv =
[
− Qn2/4 + mn

]/
EI3, (A.5)  

m =
Qn2s

4(ns + EI3)
, (A.6) 
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dD,partial = Q
n3(8EI3 + 5ns)
24EI3(EI3 + ns)

, (A.7)  

A.2 Stiffness of main beam (beam 1) 

Beam 1 can be represented as an infinite member supported by an elastic foundation whose stiffness k is that of beam 2, 3 or 4, Fig. A2. The 
differential equation for the displacement y(x) of a beam with stiffness EI on an elastic foundation of stiffness k under distributed load q is [34]: 

EI
d4y
dx4 + ky − q = 0. (A.8) 

The homogeneous counterpart of this equation (q = 0) admits the following explicit solution: 

y = exp[λx](C1cosλx + C2sinλx)+ exp[− λx](C3cosλx + C4sinλx), (A.9)  

where exp[⋅] is the exponential function, C1 to C4 are constants depending on boundary conditions and λ is the parameter relating the beam and 
foundation stiffnesses: 

λ =

(
k

4EI

)0.25

. (A.10) 

Eq. (A.9) can be solved explicitly for the three cases displayed in Fig. 8, using different assumptions, and taking EI = EI1, k = k2. For the force 
applied as a point load, Fig. 8(a), y(∞) = 0; y’(0+) = 0; V(0 + ) = B/2, which leads to Eq. (23). For the force applied as two point loads, Fig. 8(b), the 
solution can be found superimposing the solutions for two point loads at ±dm/2, leading to Eq. (26). Finally, for the force applied as two point loads 
with infinite stiffness in between, Fig. 8(c), the stiffness of the central part, k2⋅dm, is added, resulting in Eq. (27). 

Appendix B:. Description of parametric studies 

B.1 Face plate loaded by bolted end plate and horizontal plate 

Table B.1 defines the 48 basic cases included in the parametric studies described in Sections 4.3.1, 4.3.2, And 4.3.3. These 48 cases were then 
calculated with 5 different support conditions ranging from fixed to pinned, adding up to a total of 240 cases. The cases were used for the parametric 
study for a face plate loaded by an infinitely flexible end plate, an infinitely rigid end plate, and a horizontal plate, as described in the main text. 

B.2 Fin plate 

Table B.2 defines the 27 basic cases included in the parametric study described in Section 4.3.4 These 27 cases were calculated with 5 different 
support conditions ranging from fixed to pinned, adding up to a total of 135 cases. 
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[5] Hetényi M. Beams on elastic foundation. The University of Michigan Press; 1946. 
[6] Timoshenko S. Strength of materials. 2nd ed. New York: D. Van Nostrand 

Company; 1940. 
[7] Neves LC. Static monotonic and cyclic behavior of minor axis and tubular joints in 

steel and composite structures (in Portuguese). University of Coimbra; 2004. PhD 
Thesis. 

[8] Neves LC. Semi-rigid behaviour of beam-to-column minor-axis joints (in 
Portuguese). University of Coimbra; 1996. MSc Thesis. 

[9] Jaspart JP, Pietrapertosa C, Weynand K, Busse E, Klinkhammer R, Grimault JP. 
Development of a full consistent design approach for bolted and welded joints in 
building frames and trusses between steel members made of hollow and/or open 
sections-application of the component method. Appl Compon method Draft Final 
Rep 2005;1. 

[10] Park AY, Wang YC. Development of component stiffness equations for bolted 
connections to RHS columns. J Constr Steel Res 2012;70:137–52. https://doi.org/ 
10.1016/J.JCSR.2011.08.004. 

[11] Park AY. Semi-rigid joints to tubular columns and their use in semi-continuous 
frame design; 2012. 

[12] Szilard R. Theories and applications of plate analysis: classical, numerical and 
engineering methods. John Wiley & Sons; 2004. 

[13] Garifullin M, Bronzova M, Pajunen S, Mela K, Heinisuo M. Initial axial stiffness of 
welded RHS T joints. Elsevier; 2019. 

[14] Ghobarah A, Mourad S, Korol RM. Moment-rotation relationship of blind bolted 
connections for HSS columns. J Constr Steel Res 1996;40:63–91. https://doi.org/ 
10.1016/S0143-974X(96)00044-2. 

[15] Mahmood M, Tizani W. A component model for column face in bending of 
extended HolloBolt connections. J Constr Steel Res 2021;182:106655. https://doi. 
org/10.1016/j.jcsr.2021.106655. 

[16] Hillerborg A. Strip method of design. Cement and Concrete Association 1974. 
[17] Reddy JN. Theory and analysis of elastic plates. Taylor and Francis; 1999. 
[18] Lemma MS, Silva LS, Rebelo C. Experimental campaign: column web/face 

characterization under out-of-plane and transverse loads [internal test report]. 
Portugal: University of Coimbra; 2023. 

[19] Lemma MS, Silva LS, Conde J, Rebelo C. Experimental and numerical studies on 
characterization of column webs/faces loaded out-of-plane in steel joints. Internal 
Report. Portugal: University of Coimbra; 2023. 

[20] Draper NR, Smith H. Applied regression analysis. Wiley-Interscience; 1998. 

J. Conde et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0141-0296(23)01251-8/h0005
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0005
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0015
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0015
https://help.3ds.com/HelpProductsDS.aspx
https://help.3ds.com/HelpProductsDS.aspx
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0070
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0075
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0075
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0085
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0085
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0085
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0090
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0090
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0100
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0100
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0100
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0100
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0100
https://doi.org/10.1016/J.JCSR.2011.08.004
https://doi.org/10.1016/J.JCSR.2011.08.004
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0120
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0120
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0125
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0125
https://doi.org/10.1016/S0143-974X(96)00044-2
https://doi.org/10.1016/S0143-974X(96)00044-2
https://doi.org/10.1016/j.jcsr.2021.106655
https://doi.org/10.1016/j.jcsr.2021.106655
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0140
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0145
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0150
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0150
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0150
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0155
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0155
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0155
http://refhub.elsevier.com/S0141-0296(23)01251-8/h0160

	A model for the initial stiffness of the face plate component
	1 Introduction
	2 Literature review
	2.1 Introduction
	2.2 Previous studies
	2.2.1 Neves et al
	2.2.2 Park
	2.2.3 Garifullin et al.
	2.2.4 Ghobarah et al. [14] and Mahmood et al. [15]


	3 Mechanical model for the initial stiffness
	3.1 Introduction
	3.2 Case 1a: Face plate loaded by infinitely flexible bolted end plate
	3.2.1 Face plate in pure bending
	3.2.2 Shear correction

	3.3 Case 1b: Face plate loaded in tension by infinitely rigid bolted end plate
	3.4 Case 2: Face plate loaded in tension or compression by horizontal plate
	3.5 Case 3: Face plate loaded in tension or compression by fin plate
	3.6 Summary of expressions

	4 Validation of the proposed model
	4.1 Verification of the FE models
	4.1.1 Description of the FE models
	4.1.2 Partial fixity at the supports

	4.2 Validation against experimental results
	4.3 Validation against FE models
	4.3.1 Parametric study. Face plate loaded by an infinitely flexible bolted end plate
	4.3.2 Parametric study. Face plate loaded by an infinitely stiff bolted end plate
	4.3.3 Parametric study. Face plate loaded by a horizontal plate
	4.3.4 Parametric study. Face plate loaded by a fin plate
	4.3.5 Influence of support stiffness on the accuracy of the expressions


	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A: Derivations
	A.1 Stiffness of elastic foundation (transverse beams)

	A.2 Stiffness of main beam (beam 1)
	Appendix B: Description of parametric studies
	B.1 Face plate loaded by bolted end plate and horizontal plate

	B.2 Fin plate
	References


