
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Towards Efficient Deep
Learning Based Siren
Detection.
Towards Efficient Deep Learning Based Siren
Detection.

Master Thesis
Bollapragada Lalitha Sai Shraddha

Towards Efficient
Deep Learning Based

Siren Detection.
by

Bollapragada Lalitha Sai Shraddha

Student Name Student Number

Bollapragada Lalitha Sai Shraddha 5274081

Company Supervisor: Andreas Lenz
University Supervisors: Qun Song , K.G Langendoen
Project Duration: Dec, 2023 - July, 2024
Faculty: Faculty of EEMCS, Delft

Embedded
Systems

Preface

This thesis represents the culmination of my research and development work over the past 6 months
in the field of real-time embedded neural network-based audio classification systems. My primary goal
has been to develop a reliable and effective model that can accurately detect emergency response
vehicle sirens amidst a mixture of urban sounds. This work is not only an academic quest but also a
step towards enhancing public safety and improving emergency vehicle response times.
Embarking on this research journey, I have navigated a steep and enlightening learning curve. As
an embedded engineer fascinated by artificial intelligence, I began with limited knowledge of machine
learning and Python. Driven by the potential of integrating embedded systems with AI, I dedicated
myself to mastering these skills. This project has provided the perfect opportunity to combine my ex-
pertise in embedded engineering with my passion for AI, resulting in an intellectually stimulating and
rewarding process. I am deeply grateful for the guidance and support of my NXP supervisors, Andreas
Lenz and Dr. Bruno Defraene, whose expertise and encouragement have been invaluable. I extend
my heartfelt thanks to my TU Delft supervisors, Prof. dr. Koen Langendoen and Prof. dr. Qun Song, for
their critical insights, timely guidance throughout this project, and support in supervising me remotely.
Their contributions have been crucial in overcoming the many technical challenges encountered during
this journey.
I want to thank my family in particular for their patience and unwavering support during this demanding
process. I express my deepest gratitude to my father Sairam Bollapragda, mother Bhanurekha Bol-
lapragada, and sister Shravani Bollapragada for their constant encouragement, belief in my abilities,
and encouragement to take up my master’s in TU Delft. Additionally, I am deeply grateful to my grand-
parents for always looking out for me and showering me with their love and blessings. Without their
sacrifices, I wouldn’t be here.
I would also like to thank my friend Sandeep for introducing me to machine learning. His guidance
has helped me take up this project. I am grateful to Prof. Aadjan van der Helm for allowing me to
work under him and explore the integration of AI in embedded systems which led me to explore this
direction for my thesis. This preface would be incomplete without mentioning the broader community of
researchers and developers in the field of machine learning, audio processing and embedded systems.
Their pioneering work and open sharing of knowledge have been foundational, upon which this thesis
is built. As you read through the following chapters, I trust that you will find the research outlined in this
report both insightful and inspiring. It is my earnest hope that this work aids the continuing endeavors
to enhance emergency vehicle response systems and ignites further innovations in applying AI to em-
bedded systems for practical real-world challenges.
Thank you for taking the time to engage with my work.

Bollapragada Lalitha Sai Shraddha
Delft, July 2024

i

Summary

This thesis presents the development and evaluation of a real-time neural network-based audio clas-
sification system designed on an NXP HW board to distinguish emergency response vehicles by their
sirens from other vehicles. At the core of the system is a deep learning model that processes au-
dio inputs captured via a microphone, classifying them based on the presence of siren sounds. The
system achieves this by extracting audio features and running inference through the designed neural
network, followed by post-processing to detect sirens accurately. Audio signals are transformed into
mel-spectrograms, which represent the frequency spectrum over time using a specific window size for
analysis. The neural network leverages thesemel-spectrogram features to perform audio classification.

The deployment of this system involves several key steps. First, the model is trained on diverse au-
dio data, including siren and non-siren sounds. Audio signals are transformed into mel-spectrograms,
which capture the frequency spectrum over time. The neural network processes these features to clas-
sify the audio based on the presence of siren sounds. The classified results undergo post-processing to
enhance detection accuracy. The system is tested in real-world scenarios, demonstrating a turnaround
time of less than 3 seconds even under high noise conditions. Various trade-offs are evaluated to im-
prove efficiency, reduce memory size, and minimize latency, ensuring the system meets requirements
for model size, latency, and compute cycles
The custom dataset comprises 280 hours of audio, including well-known, publicly available datasets
such as ESC-50, Audioset, and UrbanSound. This dataset is enriched with both original and aug-
mented siren sounds and non-siren audio to enhance the model’s learning efficacy and robustness.
The system achieves a 96.19% test accuracy in identifying sirens and is suitable for deployment in
real-world scenarios, even for SNRs as high as -30 dB.

Although the system meets most requirements for model size, latency, and compute cycles, the false
positive rate needs improvement. This can be achieved by expanding the dataset and retraining the
model.

ii

Contents

Preface i

Summary ii

Nomenclature v

1 Introduction 1

2 Requirements 4
2.1 Functional Requirements . 4
2.2 Non-Functional . 5

3 Background and Related Work 7
3.1 Audio Event Detection . 7

3.1.1 Spectrogram . 8
3.1.2 Mel-Spectrogram . 9
3.1.3 Mel Frequency Cepstral Coefficients (MFCC) . 10
3.1.4 Gamma tone frequency cepstral coefficients (GFCC or GTCC) 11
3.1.5 Linear Predictive Coding (LPC) . 12
3.1.6 Wavelet Transform . 13
3.1.7 Deep Learning-based audio feature extraction 13

3.2 Deep Learning models considered in Acoustic Event Detection (AED) 14
3.2.1 Convolutional Neural Networks (CNN) . 14
3.2.2 Fully Connected Networks (FCN) . 14
3.2.3 Recurrent Neural Networks (RNN) . 15
3.2.4 Convolutional Recurrent Neural Networks (CRNNs) 15

3.3 Audio-based embedded AI solutions . 15
3.4 Challenges and Gaps . 16

4 Design Methodology 18
4.1 Data Gathering . 18
4.2 Feature Extraction . 19
4.3 Model Deployment . 20
4.4 Post Processing . 20

5 Design and Implementation 21
5.1 Step 1 - Data Overview . 21

5.1.1 Siren Datasets . 21
5.1.2 Urban Noise Datasets . 21
5.1.3 Data Augmentation . 22

5.2 Step 2 - Detailed Feature Extraction Process . 23
5.3 Step 3 - Identification of optimal architecture . 24

5.3.1 FCNN . 24
5.3.2 CNN . 25
5.3.3 LSTM . 27

5.4 Step 4 - Post-processing strategies . 28
5.4.1 Simple Thresholding . 29
5.4.2 Energy-Based Detection . 29
5.4.3 Window-Based Detection . 29
5.4.4 Savitzky-Golay Filter . 29
5.4.5 Adaptive Thresholding . 30
5.4.6 Majority Voting . 30

iii

Contents iv

5.4.7 Median Filter . 30

6 Evaluation 32
6.1 Training procedure . 32
6.2 Impact of Hyper-parameter tuning . 32
6.3 Impact of Quantization . 33
6.4 Impact of Window size . 33
6.5 Impact of Frequency bins . 34
6.6 Evaluation of Existing Neural Architecture Search (NAS) 34
6.7 Final System Evaluation: Satisfying Requirements . 35

6.7.1 Evaluation of different post-processing strategies 35
6.7.2 Tolerance to SNRS, latency tests . 36
6.7.3 False positives test . 36
6.7.4 Overall Evaluation of Postprocessing Strategies 38
6.7.5 SNR breaking point stress test . 39

7 Conclusion and Future Work 42
7.1 Evaluation of Satisfying NXP requirements . 44
7.2 Future Work . 45

7.2.1 Deployment and Field Testing . 45
7.2.2 Integration of Transformers . 45
7.2.3 Multi-Modal Detection Systems . 45
7.2.4 Improvements in TFLite Micro . 45
7.2.5 Enhanced Quantization Techniques . 45
7.2.6 Calibration . 46

References 47

A Source Code 50
A.1 Excerpt of CNN Hyperparameters . 51
A.2 Excerpt of FCNN Hyperparameter tuning . 52
A.3 Excerpt of LSTM hyperparameter tuning . 52
A.4 Architectures of the final models compared in Chapter 5 Section 3 53

Nomenclature

Abbreviations
Abbreviation Definition

ML Machine Learning
ADAS Advanced Driver Assistance System
LSTM Long Short Term Memory
MB Mega Byte
KB Kilo Byte
QAT Quantization Aware Training
NAS Neural Architecture Search
STFT Short Time Fourier Transform
MFCC Mel Frequency Cepstral Coefficients
GFCC Gamma tone Frequency Cepstral Coefficients
LPC Linear Predictive Coding
CNN Convolutional Neural Network
RNN Recurrent Neural Network
FCN Fully Connected Networks
SVM Support Vector Machine
AED Acoustic Event Detection
SNR Siren to Noise Ratio

v

1
Introduction

The detection of emergency vehicle sirens is a crucial intersection of public safety and technological
advancement. It is particularly significant in the context of automotive safety, public security, and emer-
gency response. This issue has gained prominence due to the increasing congestion in urban areas
and the heightened competition for auditory attention in modern vehicles [1] [2]. The incorporation
of siren detection mechanisms into embedded systems within vehicles and urban infrastructure repre-
sents a significant leap forward in public safety technology, as it ensures that emergency vehicles can
navigate through traffic more efficiently and safely, potentially resulting in lives being saved [3]. A pro-
lific amount of research into optimizing sophisticated audio event detection techniques and algorithms
is ongoing. In addition, embedded technology is being continually improved upon making embedded
systems more computationally powerful whilst limiting power consumption in the range of mW, enabling
Artificial Intelligence (AI) at the edge [4].

On-device Machine learning inference (ML) has heralded a trans-formative era in advancing the audio-
sensing capabilities of a vehicle. These advantages are put together to make us contemplate the real-
time capabilities of machine learning on existing edge devices, specifically in this research, the ability
of an electronic control unit (ECU) to detect sirens on the go [4]. This advancement is a significant
shift away from traditional methods that rely on cloud connectivity. By localizing data processing, this
approach enhances security by reducing exposure to data breaches and cyber-attacks such as denial
of service andman-in-the-middle attacks. In addition, it significantly reduces latency compared to cloud-
based systems, allowing for quicker actions upon siren detection, which can critically affect emergency
outcomes. Moreover, it helps conserve internet bandwidth by minimizing data transmission, which is
crucial in mitigating network congestion seen with the rise of connected devices. This is especially
beneficial in scenarios involving extensive networks, like fleets of vehicles or smart city infrastructures,
where it can lead to considerable savings on bandwidth and associated costs [5].

Furthermore, on-device ML promotes the development of more efficient and reliable embedded sys-
tems. Efficiency in this context refers not only to the speed of detection but also to the system’s ability
to operate continuously without the need for frequent updates or reliance on external servers. Reliabil-
ity is enhanced as the embedded system becomes self-contained, capable of operating even in areas
with poor network connectivity or during network outages.

However, the implementation of on-device ML for siren detection poses challenges. Developing al-
gorithms that can accurately identify siren sounds in diverse acoustic environments is a complex task.
The variability in siren sounds (varying from different kinds of emergency vehicles to different geograph-
ical locations, resulting in variations of tone, pitch, and frequency components), influenced by factors
such as distance, the Doppler effect, and ambient urban noise, requires sophisticated audio processing
techniques and robust machine learning models that can adapt to changing conditions [6].

Implementing ML models into environments with stringent resource constraints, such as embedded
systems in vehicles or portable electronic devices, presents unique challenges that require innovative

1

2

Figure 1.1: From left to right, different applications of the solution a) V2V and V2X scenarios; b) Industry setting; c) ADAS or
Autonomous driving, [the above images were generated by AI in Canva [9]]

solutions [7]. The field of TinyML has emerged as a response to these challenges, representing a
branch of machine learning focused on shrinking down AI models to fit into microcontrollers.

The development of advanced on-device ML systems for siren detection not only addresses the imme-
diate needs of automotive safety and public security but also lays the groundwork for a more connected
and responsive emergency response infrastructure in the smart cities of the future [8].

This research focuses on bringing TinyML onto resource-constraint embedded devices that have
memory, latency, and computational constraints for storing intermediate audio, processing it to
extract features, and housing the siren detection ML model. This research focuses on deploying
siren detection in vehicles as an advanced driver assistance system (ADAS) based solution.
Due to the real-time needs of this solution, this research aims to balance the trade-offs of latency
and memory with detection performance.

The findings in this research can be adapted to other devices and solutions, like siren detection in
the ear for workers in the industry where noise cancellation devices are mandatory, siren detection for
hearing impaired or low-focus individuals, or for an emergency response infrastructure in a city setting.

The thesis was done in cooperation with NXP Semiconductors. NXP is a leading supplier for the au-
tomotive industry, including software-defined radio and in-cabin audio solutions. The upcoming next-
generation infotainment platform features powerful neural network processing capabilities. Within the
scope of the thesis, a proof of concept shall be implemented to demonstrate the capabilities of the plat-
form and the benefits of ML-enhanced audio algorithms. Their requirements include stringent memory
constraints with a maximum size of 300 KB for the model and buffers and an option to dedicate up to
1 MB if unable to meet the 300KB limit. The system must ensure a machine learning cycle load of less
than 25%, and ideally under 5%, for efficient real-time processing. Performance requirements man-
date a reaction time of under 3 seconds in low-noise conditions and under 5 seconds in high-noise
conditions, with specific false-positive rate limits to ensure reliability. Non-functional requirements high-
light the need for demonstrators on NXP boards, the comparison of different network architectures, and
the assessment of optimization techniques for audio networks.

For the development of a TinyML-based streaming siren detection system, several significant research
challenges must be addressed to ensure efficacy and efficiency in diverse real-world applications:

• Handling Limited Computational Resources: The main difficulty lies in creating a reliable ma-
chine learning model that works efficiently within the strict memory limitations of embedded de-
vices, which have less than 1 MB of capacity to process and store data. This calls for dedicated
methods for designing model architecture and compression techniques to ensure they fit into
these parameters without compromising performance.

• Ensuring Robustness in Diverse Noise Environments: As the system will be used in different
vehicular scenarios, it needs to accurately detect sirens even when there is a lot of background
noise and varied environmental conditions. This can be particularly difficult because it requires

3

distinguishing siren sounds from other typical noises that occur in urban and industrial environ-
ments, which can have very different acoustic characteristics.

• Balancing Latency, Memory, and Accuracy: There is an inherent trade-off between these three
critical factors in embedded systems. The challenge lies in optimizing the model to minimize
response time (latency) and memory usage without compromising the accuracy necessary for
reliable siren detection.

• Adapting to Different Siren Types and Patterns: Sirens can vary greatly depending on geo-
graphical location and the type of emergency service. The systemmust be capable of recognizing
and adapting to various siren patterns, which may require sophisticated training.

Thesis Structure
The structure of this thesis is organized as follows: Chapter 2 details the customer requirements. Chap-
ter 3 reviews the existing literature and foundational concepts in siren detection and on-device machine
learning. Chapter 4 gives an overview of the system design. Chapter 5 details the design choices and
implementation details. Chapter 6 evaluates the testing outcomes and the performance of the devel-
oped system. Finally, Chapter 7 provides a summary of the entire system and concludes with some
final observations and implications of the research and possible future work.

2
Requirements

In this chapter, the essential requirements for developing a real-time, on-device emergency vehicle
siren detection system are outlined. These requirements are divided into various categories, each
addressing specific aspects of the system’s performance, functionality, and integration. The following
sections detail the memory constraints, computational load, performance criteria, and non-functional
requirements necessary to achieve an efficient and reliable siren detection system. The requirements
tagged withShould are preferred requirements to bemet and the ones tagged withMust aremandatory
or can be read as the system shall at least satisfy these criteria.

2.1. Functional Requirements
Functional requirements define the core functionalities of the system. They specify what the system
must do and how it should perform.

1. Memory Constraints
For memory requirements, the NXP Product Hardware with 512KB should have a maximum size
of Model and Buffers limited to 300KB. The configuration with infotainment includes a total of
640KB. With 300KB for siren detection and the remaining 320KB for infotainment product soft-
ware.

• NXP Hardware only for this use-case (Must) If the above is not feasible, then the entire
memory can be dedicated to only the siren detection use case, and this means that the
maximum size of the model and buffers shall not exceed 1MB.

– Maximum size of Model+Buffers is 1MB

– No infotainment application running on other cores

• NXP Product Hardware - 512KB (Should)

– Maximum size of Model+Buffers should be 300KB.

– Remaining memory is reserved for Infotainment product software.

2. Cycles
Regarding cycles, the machine learning (ML) cycle load must be less than 25%, ensuring that 1
second of streaming audio requires fewer than 150 million cycles and real-time siren detection
utilizes less than 25% of the available cycles. Ideally, the ML cycle load should be under 5%,
meaning 1 second of streaming audio should take fewer than 30 million cycles, and real-time
siren detection should use less than 5% of the cycles.

• ML cycle load <25% (Must)

– 1 second streaming audio <150M Cycles.

– Real-time siren detection shall use less than 25% of the available cycles.

4

2.2. Non-Functional 5

• ML cycle load <5% (Should)

– 1 second streaming audio <30M Cycles

– Real-time siren detection shall use less than 5% of the available cycles.

3. Performance
Performance requirements dictate that the reaction time must be under 3 seconds in low noise
conditions at 0dB SNR and less than 5 seconds in high noise conditions at -6dB SNR, measured
from the start of the siren to its detection. The false positive rate for low noise must ensure no
more than one occurrence of false positives lasting over 1 second per 10 hours of audio and no
more than five occurrences of false positives under 1 second. These measurements apply when
driving outside the city in low noise, with ambiguous audio sections manually checked. In high
noise, the false positive rate should ideally be kept to the same standards per 5 hours of audio
when driving in a European city with noise sources.

• Reaction time <3s in low noise (Must)

– Reaction time must be less than 3 seconds at 0dB SNR

– Measured as time from the start of the siren to detection of the siren.

• Reaction time <5s in high noise (Must)

– Reaction time must be less than 5 seconds at -6dB SNR

– Measured as time from the start of the siren to the detection of the siren

• False positive rate low noise (Must)

– Per 10 hours of low noise audio there must be 1 or less than one false positive for a
duration of greater than 1 sec and less than 6 false positives lesser than 1 sec.

– False positive rate when driving outside the city in low noise.

– Does not need to be better as humans. Findings will be manually checked to exclude
ambiguous audio sections (e.g. alternating car horns)

• False positive rate high noise (Should)

– Per 5 hours of high noise audio there should be 1 or fewer false positives greater than
or equal to 1 sec and less than 6 false positives less than 1 sec

– False positive rate when driving in a European city with noise sources.

– Does not need to be better as humans. Findings will be manually checked to exclude
ambiguous audio sections (e.g. alternating car horns)

2.2. Non-Functional
1. Demonstrator on NXP board (Should)

• End-to-end real-time demonstrator on NXP development board with microphone and siren
detection visualization.

• Shall be usable for a showroom or demonstration to customers. All calculations shall happen
offline on board.

2. Comparison of network architectures (Should)

• Comparison of memory, compute, and precision metrics of different network architectures:
CNN, FC, RNN

3. Vigilance enhancement (Should)

• Breaking point of the siren detection performance in comparison to a human driver. As an
extension to reaction time tests with a ramp down of SNR.

2.2. Non-Functional 6

4. Assessment of optimization techniques (Should)

• Investigation into what optimization techniques can be applied to audio networks to reduce
the size of the network.

• Can be QAT, NAS, identifying where neural networks are inferior to other ML methods or
traditional programming.

3
Background and Related Work

This chapter focuses on state-of-the-art audio event detection/classification, the different kinds of fea-
ture extraction techniques, different deep learning models under consideration, and existing audio-
based Tiny ML solutions.

3.1. Audio Event Detection

Figure 3.1: Block diagram of the process of obtaining different audio features for siren detection considered for this research.

Recent research has made significant strides in addressing the challenge of applying deep learning
algorithms for acoustic event detection to resource-constrained devices. Cerutti et al. [10] and Mo-
haimenuzzaman et al. [11] both present methods for optimizing deep learning techniques on micro-
controllers, achieving around 68% and 87% accuracy n recognition on Urbansound8k respectively.
Research done by Veronica et al. [12] further contributes to this area by proposing data-efficient train-
ing methods for audio event detection, particularly in the context of limited availability of training data.
These studies collectively demonstrate the potential for the application of deep learning models to de-
vices with limited resources, such as microcontrollers in vehicles.

7

3.1. Audio Event Detection 8

Feature Extraction Techniques
To better decide the parameters for feature extraction it is necessary to understand the general char-
acteristics of a siren sound as described below.

Siren Acoustics

Two primary attributes characterize siren sounds and enable their detection: the Modulation Pattern
and Frequency Range. These attributes are designed to ensure that siren sounds are distinctive and
recognizable even in noisy environments, facilitating quick identification by both humans and automated
systems.

Modulation Pattern: Emergency vehicle sirens use a modulation pattern that alternates between dif-
ferent pitches and volumes. This modulation creates a rhythmic pattern that stands out from other urban
noises. The pattern typically includes cycles of high and low frequencies, often referred to as ”wail,”
”yelp,” and ”phaser” modes. Each mode has a unique frequency sweep and timing to ensure that the
siren can penetrate through background noise and catch the attention of both drivers and pedestrians.

• Wail: This mode features a slow, oscillating frequency that rises and falls over several seconds.
The wail mode is often used for long-distance alerts because its gradual frequency changes can
be heard from far away.

• Yelp: The Yelp mode has a faster oscillation between high and low frequencies. This mode is
effective in dense urban areas where quick changes in frequency can more easily cut through
ambient noise.

• Phaser: The phaser mode has a very rapid oscillation and is typically used when immediate
attention is needed. This high-intensity pattern is especially useful in situations requiring urgent
clearance of traffic.

Frequency Range: Siren sounds are designed to cover a broad frequency range, typically between
500 Hz and 1500 Hz. This range ensures that the siren can be heard over the common frequencies
present in urban noise. Lower frequencies are less likely to be blocked by obstacles, while higher
frequencies are more directional and can be pinpointed more accurately.
Low Frequencies (50-800 Hz): These frequencies can travel long distances and are less affected by
buildings and other obstructions. They help ensure that the siren can be heard even in areas where
high-frequency sounds might be blocked.
High Frequencies (800–7500 Hz): These frequencies provide the sharp, piercing sound that makes
the siren easily identifiable. They are effective at close ranges and help pinpoint the direction of the
siren.
Acoustic Propagation and Environmental Effects: The propagation of siren sounds can be affected
by various environmental factors, such as buildings, weather conditions, and ambient noise levels.
Urban environments with tall buildings can create echoes and reverberations, which might alter the
perceived direction and clarity of the siren. Weather conditions such as rain and wind can also impact
how far and clearly the siren sound travels.

Echo and Reverberation: In urban canyons formed by tall buildings, siren sounds can bounce off
surfaces, creating multiple echoes. This can sometimes make it challenging to identify the direction of
the siren but generally increases the overall volume, making it harder to ignore.
Weather Conditions: Rain and wind can either dampen the siren sound or carry it further, depending
on the direction and intensity. For example, a strong wind might carry the sound further in its direction,
while heavy rain might absorb some of the sound energy.

Figure 3.1 shows the process of obtaining different kinds of audio features that were considered for this
research. For those who wish to bypass the detailed feature explanations, a summary can be found in
Table 3.1

3.1.1. Spectrogram
A spectrogram is a visual representation of the spectrum of frequencies of a signal as it changes over
time. It is commonly used in audio processing to analyze the frequency content of audio signals over

3.1. Audio Event Detection 9

Figure 3.2: Audio features for non-siren (road noise- most common non-siren for this use case) v.s. siren, spectrogram,
mel-spectrogram, MFCC, GFCC, LPC and Wavelet Transform.

time. The process of generating a spectrogram involves computing the Short-Time Fourier Transform
(STFT) of the signal, which divides the signal into overlapping segments, applies a window function
to each segment, and then computes the Fourier transform. The resulting matrix represents the mag-
nitude of the signal’s frequency components over time. By visualizing how frequencies change over
time, spectrograms are useful for analyzing non-stationary signals like sirens. The intensity of colors
in a spectrogram indicates the amplitude of particular frequencies at different time intervals.

Spectrogram analysis for siren detection:

1. Detailed Frequency Information: Spectrograms provide a high-resolution view of the entire fre-
quency spectrum, capturing detailed information about the signal’s frequency content.

2. Versatility: This can be adapted to emphasize different frequency ranges depending on the spe-
cific requirements of the detection task.

3. Clear Visual Representation: Offers a straightforward visual representation of the signal’s time-
frequency characteristics, which can be useful for both manual inspection and automated analy-
sis.

4. Lower Computational Load: Generally requires fewer computational resources thanMel-Spectrograms
because it does not involve the additional Mel filter bank step. (refer to next section 3.1.2)

5. Potential for Overemphasis on High Frequencies: Without the logarithmic compression used
in Mel-Spectrograms, high-frequency components can dominate the representation, potentially
masking the relevant features of sirens.

3.1.2. Mel-Spectrogram
A mel-spectrogram is a spectrogram that has been wrapped to the mel scale, which approximates the
human ear’s perception of sound. This transformation compresses the frequency axis, giving more
emphasis to lower frequencies where human hearing is more sensitive [13].

Mel-Spectrogram analysis for siren detection:

1. Visualization of Frequency Changes: Mel-Spectrogram excels at portraying how sound frequen-
cies evolve over time. This is ideal for identifying the non-stationary characteristics of sirens like
pitch changes and rapid fluctuations.

3.1. Audio Event Detection 10

2. Focus on Human Hearing: Like MFCCs and spectrograms, Mel-Spectrogram prioritizes frequen-
cies relevant to human hearing, aiding in siren detection amidst background noise.

3. Efficient Feature Extraction: Mel-Spectrogram generation is computationally less expensive com-
pared to other techniques like wavelets or deep learning.

4. Information Overload: Spectrograms, including Mel-Spectrograms, can contain a vast amount
of information. Extracting the most relevant features for siren detection might require further
processing steps.

3.1.3. Mel Frequency Cepstral Coefficients (MFCC)
MFCC is a method that captures the short-term power spectrum of sound. They have been widely
used in various applications due to their ability to model human auditory perception and distinguish
between different sound signatures [14, 15]. It has been particularly effective in discriminating stutter-
ing dysfluencies [14], enhancing speaker recognition, and classifying underwater target radiation noise.
Furthermore, the integration of MFCC with statistical indicators has shown promise in classifying dif-
ferent types of sound, such as squeak and rattle noise [16]. The Mel Filter Bank M(m, k) is a crucial
component in the process of computing MFCC, widely used in speech and audio processing. This
filter bank consists of a set of triangular filters applied to the power spectrum of a signal. Each filter
is designed to pass a specific range of frequencies based on the Mel scale, approximating the human
auditory system’s response more effectively than linearly-spaced frequency bands.

The formula forM(m, k) defines the amplitude gain of the k-the frequency component when processed
by the m-th Mel filter as follows:

M(m, k) =


0 if f(k) < fc(m− 1)
f(k)−fc(m−1)
fc(m)−fc(m−1) if fc(m− 1) ≤ f(k) < fc(m)
f(k)−fc(m+1)
fc(m)−fc(m+1) if fc(m) ≤ f(k) < fc(m+ 1)

0 if f(k) ≥ fc(m+ 1)

(3.1)

where:

• f(k) is the frequency at the k-th bin,

• fc(m) is the center frequency of the m-th Mel filter,

• fc(m− 1) and fc(m+ 1) are the center frequencies of the adjacent filters.

Each filter is zero outside of its defined range between fc(m − 1) and fc(m + 1), ensuring that each
filter only affects a specific part of the spectrum. Within its range, the filter has a triangular shape:

• The filter increases linearly from zero at fc(m− 1) to its peak at fc(m),

• Then decreases linearly back to zero at fc(m+ 1).

The slopes of these increases and decreases are determined by the ratios given in the formula:

• The ascending slope is computed as f(k)−fc(m−1)
fc(m)−fc(m−1) , representing the filter value increase from

fc(m− 1) to fc(m).

• The descending slope is f(k)−fc(m+1)
fc(m)−fc(m+1) , detailing the decrease from fc(m) to fc(m+ 1).

When applied to a frequency spectrum, each filter shapes the spectrum by emphasizing the frequen-
cies around its center frequency and attenuating those farther away. This process effectively warps
the frequency scale to conform to the Mel scale, which is more perceptually relevant for human hearing.

3.1. Audio Event Detection 11

The entire set of filters forms an F × N matrix where F is the number of filters and N is the number
of frequency bins in the discrete Fourier transform of the audio signal. This matrix is used to transform
the linear frequency spectrum into a Mel frequency spectrum, providing the critical frequency-based
features needed for tasks such as speech recognition [17].

MFCC analysis for siren detection:

1. Efficient: Computationally efficient and can be extracted in real-time.

2. Effective for Speech: Widely used and effective for speech-related tasks, providing a compact
representation of the audio signal.

3. Less Effective for Non-Speech Sounds: Not specifically designed for non-speech sounds like
sirens, which might lead to less accurate detection.

4. Lack of Temporal Information: Loses some temporal resolution, which is crucial for capturing the
dynamic nature of sirens.

3.1.4. Gamma tone frequency cepstral coefficients (GFCC or GTCC)
A range of studies have explored the application of GFCCs in various fields. Ahmed Krobba et al. [18]
introduced a Mixture Linear Prediction approach for robust GTCC extraction, which significantly im-
proved speaker verification performance under transmission channel noise. Changwei Zhou et al. [19]
proposed Gammatone Spectral Latitude (GTSL) features for pathological voice detection and classifi-
cation, achieving high accuracy and low computational complexity. Azza Moawad et al. [20] developed
a Cepstral Covariance Detector for spectrum sensing in cognitive radio, demonstrating reliable detec-
tion at low signal-to-noise ratio levels. These studies collectively highlight the potential of GTCCs to
enhance performance across a range of applications. From the literature, we can see that they better
MFCCs, in more specialized applications. The GFCCs are derived from the output of a bank of gamma-
tone filters, which approximate the human auditory system’s response. The output is then transformed
into cepstral coefficients, akin to MFCCs, but with a different filter bank.
The output of the gammatone filter bank is given by:

g(t) = a · tn−1 · e−2πbt · cos(2πfct+ ϕ) · u(t) (3.2)

where a is the amplitude, n is the filter order, b is the bandwidth, fc is the center frequency, ϕ is the
phase, and u(t) is the unit step function, ensuring causality [21]. After applying the gammatone filter,
the filtered signal g(t) undergoes the following steps to compute the GFCC:

GFCC = DCT (log(|FFT (g(t))2|)) (3.3)

GFCC analysis for Siren Detection:

1. Frequency Resolution: Designed to mimic the human auditory system more closely than other
methods, providing a more accurate representation of how humans perceive sounds, which can
be beneficial for distinguishing sirens.

2. Effective for Noisy Environments: Often more robust to noise compared to other features, making
them suitable for outdoor environments where sirens are typically found.

3. Temporal Dynamics: Can capture temporal dynamics effectively, similar to Mel-Spectrograms,
which is crucial for identifying the changing nature of siren sounds.

4. Computational Complexity: Generally more computationally intensive than MFCCs and LPC,
which can be a drawback for real-time applications on resource-constrained devices.

5. Implementation Complexity: More complex to implement compared to traditional methods like
MFCC, requiring more sophisticated processing steps.

6. Data Requirement: May require more data to effectively train models compared to simpler fea-
tures.

3.1. Audio Event Detection 12

3.1.5. Linear Predictive Coding (LPC)
Linear Predictive Coding (LPC) is a method used in audio signal processing and speech coding that
represents the spectral envelope of a digital signal of speech in compressed form using the information
of a linear predictive model. LPC is one of the most powerful speech analysis techniques and is widely
used in speech synthesis, speech compression, and speaker recognition.

In detailed research, LPC’s utility has been highlighted across various studies. For instance, its applica-
tion in Driving Fault Diagnosis, as explored by [22], demonstrates LPC’s effectiveness when integrated
with other methodologies, enhancing the overall performance of recognition systems. Similarly, [23]
identified the strength of LPC in speaker recognition systems, especially when combined with additional
feature sets, to improve identification accuracy.

Moreover, LPC’s versatility extends to the domain of language differentiation, as evidenced by [24],
who successfully applied LPC techniques to distinguish among Indian spoken languages. This wide-
ranging applicability underscores LPC’s significant contribution to the advancement of audio processing
technologies, offering a robust framework for tackling diverse challenges in speech and audio analysis.

Auto-correlation: Measures how well a signal matches a delayed version of itself, which is key for
predictive modeling. Linear Prediction: This involves estimating the spectral envelope of a digital signal
with linear predictive models. The LPC model predicts the current sample ŝ(n) based on a linear
combination of the previous samples and an error term, formulated as follows:

ŝ(n) =

p∑
i=1

ais(n− i) +G · e(n) (3.4)

where:

• ŝ(n) is the predicted sample value at time index n,

• ai are the LPC coefficients,

• s(n− i) are the previous signal samples,

• p is the order of the LPC model, indicating how many past samples are used in the prediction,

• G is the gain, a scalar that amplifies the error term,

• e(n) is the prediction error at time n.

This equation represents the core of LPC, where the current sample of the signal is estimated as a
weighted sum of past samples plus a correction term that scales the prediction error.
LPC analysis for Siren Detection :

1. Noise Sensitivity: Siren detection systems often operate in noisy environments. LPC can be sen-
sitive to noise, which may lead to inaccurate feature extraction and false positives or negatives.

2. Non-Stationary Signals: Sirens may vary in pitch, modulation, and duration. While LPC can
capture the spectral characteristics of stationary parts of the signal, it might struggle with rapid
changes, which are common in sirens.

3. Feature Discrimination: While LPC captures the spectral envelope well, it might not provide
enough discriminatory power by itself. Sirens have specific modulations and patterns that may
require additional features for robust detection.

4. Hybrid Approaches: Combining LPCwith other feature extractionmethods, such asMel-Frequency
Cepstral Coefficients (MFCCs) or Short-Time Fourier Transform (STFT) features, can improve ro-
bustness and accuracy. These additional features can capture temporal and frequency variations
more effectively.

3.1. Audio Event Detection 13

3.1.6. Wavelet Transform
Wavelet transforms are widely utilized in audio feature extraction, particularly for analyzing non-stationary
signals. By decomposing signals into components across different frequencies and resolutions, they
enable precise time-frequency analysis. This technique is adept at identifying transient features in var-
ious signals, offering deep insights into signal properties. Its adaptability and analytical depth make
wavelet transforms crucial in fields such as speech recognition, music analysis, biomedical signal pro-
cessing, and telecommunications, where understanding complex signal dynamics is essential [25].

Wavelet Transform analysis for Siren Detection:

1. Flexibility: Can use different wavelet functions to better capture specific features of the signal.

2. Complexity: The visual representation might be less intuitive and more complex to interpret than
a spectrogram.

3. Implementation Difficulty: More challenging to implement and fine-tune for specific applications.

Computational complexity for each of the feature extraction strategies are evaluated in Chapter 5, Fig-
ure 4.2

3.1.7. Deep Learning-based audio feature extraction
Shreya et al. [26] explore the use of neural networks in the feature extraction process for speech
classification tasks. Hyejin et al. [27] used a CNN-based encoder and transformer-based decoder for
automated audio captioning, which took raw audio data as the input and produced text describing this
audio. They discuss methods to enhance the performance of deep learning systems in audio catego-
rization, emphasizing data augmentation and comparative analysis of various audio feature extractors.
As part of the study, a system for identifying speakers that are highly accurate and suitable for use
in practical applications was also being developed. Audio data processing and classification are en-
hanced by robust feature extraction techniques, deep learning, discrete cosine transforms, and neural
networks. However, owing to their large size and computing complexity, deep learning-based feature
extraction will not be considered for this research.

3.2. Deep Learning models considered in Acoustic Event Detection (AED) 14

Technique Description Key Advantage Common Appli-
cation

Compute Power
Required

Final Analysis
for Siren Detec-
tion

MFCC (Mel Fre-
quency Cepstral
Coefficients)

Captures the
short-term power
spectrum of au-
dio signals based
on a logarithmic
(mel) scale.

Mimics human
auditory percep-
tion, effective in
capturing unique
sound character-
istics.

Speech and au-
dio recognition,
including siren
detection.

Moderate Effective but may
miss transient
features.

LPC (Linear Pre-
dictive Coding)

Models the vocal
tract as a digital
filter, predicting
the current sam-
ple based on past
samples.

Efficient in en-
coding speech
information with
a small set of
coefficients.

Speech analysis,
synthesis, and
compression.

High Less suitable
for capturing
transient siren
features.

GFCC (Gamma-
tone Frequency
Cepstral Coeffi-
cients)

Utilizes gamma-
tone filters to
mimic the human
ear’s response,
analyzing the
spectral content
of audio signals.

Robust in noisy
conditions, better
mimicking the hu-
man auditory sys-
tem than MFCC.

Sound classifica-
tion in challeng-
ing acoustic envi-
ronments.

Moderate- High Effective but
computationally
demanding and
complex to imple-
ment.

Wavelet Trans-
forms

Transforms the
signal into a
representation in
both time and fre-
quency domain
using wavelets.

Effective in
analyzing non-
stationary signals
with varying
frequency com-
ponents.

Signal pro-
cessing tasks
requiring detailed
time-frequency
analysis.

Moderate Effective but diffi-
cult to identify the
best kind for siren
sounds.

Mel-Spectrogram Captures the
power spectrum
of audio signals,
mapped onto the
mel scale and
represented over
time.

Emphasizes
frequencies rel-
evant to human
hearing, effective
for non-stationary
signals.

Speech and au-
dio recognition,
particularly in
noisy environ-
ments.

Low Very effective
for capturing
dynamic siren
features.

Spectrogram Represents the
power spectrum
of audio signals
over time.

Provides a de-
tailed view of
frequency con-
tent over time,
versatile.

General-purpose
audio analysis
and visualization.

Low Effective, compu-
tationally lite, but
may require tun-
ing for optimal re-
sults.

Table 3.1: Comparison of Advanced Audio Feature Extraction Techniques.

3.2. Deep Learning models considered in Acoustic Event Detection
(AED)

As this will be a TinyML-based solution, we discuss different deep-learning topologies enabled by the
TensorFlow Lite micro-library. The schemes are listed below:

3.2.1. Convolutional Neural Networks (CNN)
CNNs are a type of deep neural network that can learn features from raw data by applying multiple
layers of convolution and pooling operations. They are widely used for image recognition and computer
vision tasks, but they can also be applied to audio data by treating spectrograms, Mel-spectrograms,
or MFCCs as images. CNNs can capture local and global patterns in the frequency and time domains,
and they are robust to noise and variations in the input data. CNNs have been shown to achieve
high performance in audio event detection and classification tasks, such as siren detection [28]. In the
research work conducted by Kele Xu et al., [29], different CNN architectures were studied for the use
case of audio tagging.

3.2.2. Fully Connected Networks (FCN)
Typically Fully connected Networks were used only as baseline models for audio event detection as
they have always been outperformed by CNNs and other networks which have the ability to capture
spatial and temporal features of audio signals better than FCNs [30].

3.3. Audio-based embedded AI solutions 15

Year of
Publishing Application Feature extraction Deep Learning

Model
Model
Size

Model
performance Latency

Nov 2022 Ecological
Monitoring [32] Similar to MFCC SVM 163KB 95-97% -

Sep 2022 Sleep Bruxism
Diagnosis [33] Mel-spectrogram 2D CNN 148KB 79% 1.6ms for

1sec audio
April 2022 Fall Detection [31] Mel-spectrogram CNN 1.5MB 95% -

Jan 2020 Acoustic Event
Detection [9] Mel-spectrogram VGGish(CNN)

+RNN 34.3KB 69% 125ms for
1sec audio

Table 3.2: Summary of different Audio based embedded AI solutions.

3.2.3. Recurrent Neural Networks (RNN)
Unlike traditional neural networks, RNNs have “loops” in them, allowing information to persist from one
step in the sequence to the next. This characteristic makes them inherently deep in time and suited
to application on sequences. Numerous research efforts have delved into the application of Recurrent
Neural Networks (RNNs) in the field of audio classification. The authors in [31] utilized a Deep RNN
with Long-Short Term Memory (LSTM) units to classify construction site audio, achieving an impressive
accuracy of 97% for a 5-class classification of different vehicles and tools in the construction site. RNNs
are well-suited for audio classification problems as they can handle variable-length audio sequences
and learn temporal features from the audio signal. This makes them particularly effective in tasks such
as acoustic scene classification [32].

3.2.4. Convolutional Recurrent Neural Networks (CRNNs)
However, it is important to note that the choice between RNNs and other models like CNNs often
depends on the specific requirements of the task at hand. For some tasks, a hybrid approach that
combines the strengths of both RNNs and CNNs might be the most effective solution [33].

3.3. Audio-based embedded AI solutions
In this section we review, embedded neural networks for various audio-related applications, with the
aim to identify gaps and common practices in this field. Each of the research works leverages different
neural network architectures and techniques, a small survey on existing work helps identify the progress
and the challenges in deploying machine learning on embedded systems for a real-time audio event
detection use-case (siren detection).

• Recurrent Neural Network for Acoustic Event Detection: In this paper, the authors use the VG-
Gish feature extractor, which converts 960 ms audio into a mel spectrogram that can be used as
input for further classification. A two-stage student-teacher approach to compress a sound event
detection classifier composed of the VGGish feature extractor and a recurrent classifier is used
for classification. The paper reports that the smallest model (M20k) achieves 72.% accuracy on
the test set and 69% after quantization. The paper states that the smallest model (M20k) requires
only 34.3 KB of RAM and can run on an ARM Cortex M4 [10].

• Fall Detection: Kun Fang et al. [34] proves TinyML to be a valuable tool for healthcare applica-
tions; this research focuses on the monitoring of fall incidents among the elderly. By utilizing a
convolutional neural network (CNN), distinct auditory signals of falls can be separated from am-
bient sounds, a critical step in providing timely assistance. This was implemented on a portable
device, the CNN model can independently identify sounds associated with falls with a high de-
gree of precision, regularly surpassing a 95% accuracy threshold as claimed by the research.
However, the dataset used by them consists of a small pool of fall sounds of around ~1200 audio
samples of falling and noise.

• Ecological Monitoring: In ecological monitoring, the work by H.R. Sabbella et al. [35], TinyML
makes it possible to identify wildlife species by their sounds, which helps in the conservation of
endangered species. They use a template-based SVM classifier deployed on hardware such
as ARM Cortex-M4-based AudioMoth devices. This approach utilizes CAR-IHC based filters for
data pre-processing. The testing accuracy is claimed to be between 95-97%, which is impressive

3.4. Challenges and Gaps 16

considering the low amount of training data used.

• Sleep Bruxism Diagnosis: In medical diagnostics, Giacomo Peruzzi et al., [36] showcased that
leveraging audio signals through embedded ML can lead to early and remote diagnosis of condi-
tions like sleep bruxism. In this research, the authors use an open-source dataset with 389 audio
samples. This setup can distinguish Bruixism with an accuracy of ~79 to 80% The total memory
usage is ~476 KB for the complete model and ~148KB for the quantized version.

3.4. Challenges and Gaps
From the literature, it is observed that most solutions have either one or more of the following missing.

Paper
Data

Availabili-
ty/Quality

Model
Complexity

and
Resource
Constraint

Real-World
Generaliza-

tion

Inference
and Noise

End-to-End
Inference on
Embedded
Device

Real-time
deadlines

Ecological
Monitor-
ing[32]

3 3 3 3 3 7

Sleep
Bruxism[33] 7 3 7 7 7 3

Fall Detec-
tion[31] 7 7 7 7 7 7

Acoustic
Event

Detection[9]
3 3 7 7 7 3

This
research 3 3 3 3 3 3

Table 3.3: Evaluation of Papers Based on Various Criteria

1. Data Availability and Quality: High-quality, diverse, and extensive datasets are crucial for train-
ing robust models but are often challenging to obtain, especially for rare acoustic events like
sirens. Sometimes one of the classes has a lot of samples in comparison to the other, so learn-
ing with the right metrics becomes a challenge. In this research, a large collection of data of
around 280 hours is used.

2. Model Complexity andResourceConstraints: Deploying complexmodels on resource-constrained
devices like micro-controllers presents challenges in balancing accuracy and computational com-
plexity. Replicating parts of the network can easily increase the model size making it good for
accuracy, but unfit for micro-controllers. Optimized feature extraction plays a crucial role in decid-
ing the latency as well as the size of the solution. As can be seen from Figure 4.2 on a Linux-based
PC environment calculation time amounts to approximately 1/3rd of the total audio duration; this
time can be expected to be higher on a micro-controller, hence a custom solution for feature ex-
traction and model design has been employed. A general model already used for other use cases
is typically found to have unnecessary bulk. In this research, common and custom solutions are
analyzed to ensure lesser size whilst maintaining low latency.

3. Real-world Generalization: Many models struggle with generalization to real-world scenarios
due to over-fitting on training datasets or under-representation of real-world acoustic variability.
Keeping the training data close to the real world is essential in maintaining accuracy in real life,
not just on the training or testing datasets. In this research validation data is made to replicate
real-world scenarios of more noise and less siren. The model is also trained on various kinds of
sirens to ensure it can classify different types of sirens as sirens.

4. Interference and Noise: Background noise and overlapping sound sources can significantly
degrade model performance, which calls for either training with data that has noise or develop-

3.4. Challenges and Gaps 17

ing noise separation or reduction techniques that could be more compute-intensive for a micro-
controller-based application.

5. Lack of End-to-End Solutions: There is often a lack of end-to-end solutions where novel models
are shown deployed on the embedded device. Some use cases do not have real-time as well
as memory constraints and, hence not much is present in the literature where capturing real-time
audio, feature exaction, and immediate results are produced on embedded hardware. This gap
highlights the need for integrated approaches to handle the entire workflow on resource-limited
platforms.

4
Design Methodology

System Architecture
This chapter provides a high-level overview of the system architecture for real-time, on-device emer-
gency vehicle siren detection using deep learning on the Cadence Tensilica HiFi 5 DSP embedded
on the NXP SAF9100 [37] [38]. Detailed design aspects will be discussed in subsequent sections.
An overview of the system architecture is depicted in Figure 4.1 The system consists of 1) the micro-
phone array that gathers audio from the environment, 2) the NXP SAF9100 audio processor [38] for
computation that does feature extraction, 3) the deep learning-based classification algorithm and 4) the
post-processing block.

Figure 4.1: Siren Detection System Architecture.

4.1. Data Gathering
The efficacy of machine learning models is significantly influenced by the quality and quantity of the data
employed during the training phase. The data’s relevance and quality directly impact the performance
of the machine-learning model. It is crucial to gather data pertinent to the specific machine-learning
task at hand. High-quality, well-labeled data forms the foundation for training accurate and reliable
models. The total data that was collected was 93 hours (10 GB) and additional 186 hours (20GB)
was augmented to give a 278-hour (30GB) dataset of siren and non-siren data. More details on which
datasets were used shall be explained in Chapter 5.

18

4.2. Feature Extraction 19

Figure 4.2: Computation Complexity Analysis of different audio feature extraction techniques run on Desktop PC.

4.2. Feature Extraction
Feature extraction is a critical step in developing the siren detection system. It involves transforming raw
audio signals into a format suitable for machine learning models. This section explains the techniques
and methods used to extract relevant features from the audio data. These features are crucial for
accurate and efficient siren detection.

Several feature extraction techniques were considered and evaluated to identify the most effective
approach for the siren detection system. The computational complexity and the ability to differenti-
ate between siren and non-siren sounds are vital factors when analyzing different feature extractions.
Therefore, a preliminary analysis was conducted to shortlist a suitable feature extraction technique for
siren detection, as shown in the figure. 4.2 In conclusion, the Mel-spectrogram is highly effective for
siren detection due to its ability to capture dynamic audio features and emphasize frequencies rele-
vant to human hearing, making it suitable for distinguishing sirens from background noise. It is also
well-suited for real-time applications with moderate computational resources. MFCCs, derived from the
Mel-spectrogram, offer a good balance of computational efficiency and spectral characteristic capture,
making them a viable option for real-time siren detection. Spectrograms provide a detailed view of
the frequency content over time and are effective for general-purpose audio analysis, but may require
tuning for optimal results because spectrograms require more scaling compared to Mel-spectrograms
for siren detection due to their linear frequency representation and wider dynamic range. Proper scal-
ing techniques, such as logarithmic scaling and noise reduction, are essential to highlight the siren
frequencies, improve contrast, and enhance the signal-to-noise ratio. After deploying mel-spectrogram
feature extraction, it took (0.031 seconds to process 1 sec of audio data).

GFCCs are effective at capturing audio features and robust in noisy conditions, but they have a high
computational cost, making them less ideal for real-time applications. On the other hand, the Wavelet
Transform is powerful at capturing transient features such as the onset and offset of sirens, but it is
generally unsuitable for real-time applications due to its high computational demands. LPC, focused on
modelling speech, is not a great option for capturing the transient features of sirens and is less effective

4.3. Model Deployment 20

for this purpose. Therefore, Mel-spectrograms and MFCCs are recommended for siren detection, with
GFCCs, Wavelet Transforms, and Spectrograms as less ideal alternatives.

The detailed feature extraction process used for this research is explained in Chapter 5 in Section 2.

4.3. Model Deployment

Figure 4.3: Overview of Software Deployment process.

Figure 4.3 illustrates the workflow of the siren detection system from model training to deployment on
hardware. Initially, the model architecture is designed using Keras or TensorFlow and trained with
provided data on Ubuntu Linux, resulting in a floating-point siren detection model. This model is then
converted to TensorFlow Lite and quantized, producing a smaller model (239KB). An audio frontend
model preprocesses the audio data, leading to a combined end-to-end model size of 255 KB. On the
hardware side, a microphone captures audio signals (16-bit PCM at 16000 Hz), which are processed by
the Advanced Open Core SDK. The TensorFlow Lite Micro Audio Frontend Model extracts 80 features
from the audio in 30ms windows, quantized to 8-bit values. These features are fed into the Tensor-
Flow Lite Micro Siren Detection Model, which detects siren sounds. The output is further filtered and
smoothed to improve accuracy, and the final siren detection result triggers an alert or response. The
complete system, including audio preprocessing and detection, occupies 370KB on the hardware.
More details on what models were trained and evaluated are provided in Chapter 5.

4.4. Post Processing
The model performs effectively in detecting sirens in individual instances. However, real-world scenar-
ios involve continuous streaming of data. This presents the challenge of processing the data in defined
windows, while also allowing for a more refined system. Techniques such as adaptive thresholding, win-
dow methods, energy-based detection, and filtering can be utilized to enhance performance. Further
details are available in Chapter 6.

5
Design and Implementation

5.1. Step 1 - Data Overview
Table 5.1 provides a summary of the key datasets used in this research, and Table 5.2:

Dataset Name Description File
Format

Sample
Rate

No of
Files

File
Length Annotations

Emergency Vehicle Siren Sounds Contains siren sounds of ambulances,
fire trucks, and traffic noise. .wav 16kHz 597 1-20s Annotated by directory name,

SNR

Urban Sound 8K Labeled sound excerpts across
10 urban sound classes. .wav 16kHz 8,732 ≤4s Annotated with sound class

AudioSet Collection of siren samples
including various types of sirens. .wav 16kHz 4,000 10s Tagged with type of siren

ESC-50 Environmental recordings
across 50 different classes. .wav 16kHz 2,000 5s Labeled with sound class

Large-scale Audio Dataset for
Emergency Vehicle Sirens and Road Noises

Includes sirens and road noises
with varying background noise levels. .wav 16kHz 1,834 3-20s Annotated with type of noise

Table 5.1: Key Datasets used for siren detection.

5.1.1. Siren Datasets
1. Emergency Vehicle Siren Sounds: To train the network to recognize distinct emergency ve-

hicle sirens, a dataset of clean recordings was compiled. This dataset includes sounds from
ambulances (199 files), firetrucks (198 files), and traffic (200 files). All recordings are in 16kHz,
16-bit, mono, .wav format, with each file lasting 3 seconds. These recordings are ideal for training
models to differentiate between various types of emergency vehicle sirens, ensuring the dataset
encompasses a wide range of real-world variations to improve model robustness.

2. Urban Sound 8K : To provide a comprehensive auditory landscape for training, the Urban Sound
8K dataset was utilized. It contains 929 siren files, 429 car horn files, 374 gunshot files, and
approximately 7000 files across other urban noise categories such as air conditioners and children
playing. These recordings, up to 4 seconds long, are in 16kHz, 16-bit, mono, .wav format. This
dataset is particularly useful for teaching models how to distinguish between sirens and other
urban sounds.

3. Google AudioSet : The Google AudioSet provides a comprehensive collection of audio samples,
including a wide variety of siren sounds. This dataset includes 411 siren ambulance files and 639
siren police files, each being 10-second clips in 16kHz, 16-bit, mono, and .wav format. This
diversity is beneficial for enhancing model robustness. A key challenge with this dataset is that
some clips may contain periods without sirens, necessitating careful pre-processing to ensure
relevance and consistency.

5.1.2. Urban Noise Datasets
1. Road Noises: To accurately train the model to recognize sirens amid typical road noise, a large-

scale dataset of road and traffic sounds was collected. This dataset includes 902 files, each

21

5.1. Step 1 - Data Overview 22

ranging from 3 to 20 seconds in length, recorded in 16kHz, 16-bit, mono, and .wav format. These
recordings are essential for teaching models to distinguish between sirens and background road
noise. A significant challenge is ensuring the dataset captures a representative variety of road
noises without overshadowing the siren sounds.

2. Realistic Urban Sound Mixture Dataset: The Realistic Urban Sound Mixture Dataset contains
recordings of various urban environments, providing realistic mixtures of sounds found in cities.
With approximately 2000 files, each ranging from 15 seconds to 2 minutes in length and recorded
in 16kHz, 16-bit, mono, and .wav format, this dataset enhances model performance by training on
complex urban soundscapes. The primary challenge is managing long recordings and extracting
relevant segments for training.

3. ESC-50: The ESC-50 dataset is a labeled set of environmental recordings encompassing 50
different classes, including many urban noise sources. It contains 2000 files (40 clips per class),
each being 5-second clips in 16kHz, 16-bit, mono, and .wav format. This dataset serves as a
negative set to train models on distinguishing sirens from other environmental sounds. Ensuring
the dataset’s relevance to urban noise contexts is a critical challenge.

4. Animal Sounds (Sound similar to siren): This dataset includes sounds of animals that could be
mistaken for sirens, such as bird calls, dog barks, and other similar noises. The files vary in length
from 1 to 20 seconds and are recorded in 16kHz, 16-bit, mono, and .wav format. This dataset
is crucial for training models to accurately distinguish between animal sounds and emergency
sirens. Collecting a comprehensive set of diverse animal sounds is a significant challenge.

5. Bird Calls: The bird calls dataset is a large collection of bird calls, particularly those with siren-
like qualities, totaling 20GB in size. The recordings are in 16kHz, 16-bit, mono, .wav format. This
dataset helps reduce false positives in siren detection models by including potential confounding
bird calls. Reviewing and annotating this extensive dataset to ensure its quality and relevance is
an ongoing challenge.

5.1.3. Data Augmentation
A total of 93 hours of data were collected for the project, and an additional 186 hours of data were
generated using various augmentation techniques. These techniques help to artificially increase the
size and diversity of the dataset without collecting new data. Applying these transformations to the
existing data exposes models to a wider range of scenarios, thus improving their generalization and ro-
bustness. Time Stretching involves altering the speed of the audio without changing its pitch, allowing
the model to recognize sounds at different speeds, which is particularly useful in real-world scenarios
where the speed of sounds may vary. Gain Augmentation changes the amplitude of the audio signal
without affecting its pitch or speed. This technique is essential for situations where the identical sound
may be captured at various volume levels, making the model more adaptable to these differences.
Through gain augmentation, we replicate distinct loudness levels, which improves the model’s capacity
to manage a variety of audio inputs. Noise Injection adds random noise to the audio clips, simulating
background noise and making the model more robust to real-world conditions where background noise
is prevalent. This technique helps the model learn to distinguish the primary sound from the noise. Cut
and mix cutting and mixing, pieces together different kinds of sirens together, ensuring the model can
still identify the variations in sirens accurately.

Category Siren Background Noise
Training 80752 82503
Validation 2853 34221
Total 83605 116724

Table 5.2: Number of Samples of 5 sec audio

5.2. Step 2 - Detailed Feature Extraction Process 23

5.2. Step 2 - Detailed Feature Extraction Process

Figure 5.1: Process of feature extraction using the TensorFlow Signal Library.

The project employs a comprehensive pipeline for feature extraction, as depicted in Figure 5.1. This
methodology guarantees precise and efficient extraction of audio features for later classification tasks.

The following steps outline the feature extraction process depicted in the diagram:

• Signal Windowing: The raw audio signal is first divided into overlapping windows using a Sig-
nalWindow operation. This step segments the continuous audio stream into manageable frames,
typically 480 samples long with a shift of 160 (480-320=160) samples.

• Reshaping:The segmented audio windows are reshaped to match the input requirements of the
subsequent operations.

• Auto-scaling: The SignalFlatAutoScale operation normalizes the audio signal to ensure uniform
amplitude across all samples.

• Energy Calculation: The SignalEnergy operation computes the energy of each windowed seg-
ment, which helps in identifying significant sound events.

• Spectral Subtraction: The Signal Filter Bank Spectral Subtraction module applies spectral sub-
traction to enhance the signal-to-noise ratio (SNR). This step involves several sub-operations,
including smoothing, clamping, and gain adjustments to mitigate the impact of noise.

• Mel Filter Bank: The filtered signal is passed through a SignalFilterBank that applies a series
of Mel-scale filters. This step converts the frequency domain representation into the Mel scale,

5.3. Step 3 - Identification of optimal architecture 24

which better approximates human auditory perception.

• Logarithmic Scaling and Per-Channel Energy Normalization (PCAN): The SignalPCAN op-
eration performs per-channel energy normalization, followed by a logarithmic transformation to
compress the dynamic range of the signal. This step is crucial for emphasizing the relative differ-
ences in frequency components.

• Feature Scaling and Quantization: The final stages involve additional scaling (Add, Div, Add,
Minimum, Maximum) and casting operations to prepare the features for the neural network input.
The features are scaled to fit within the required input range and quantized to reduce memory
and computation requirements.

The output of this pipeline is a set of Mel-spectrogram features that capture the essential characteristics
of the siren sounds, ready for classification by the machine learning model. As can be visualized from
Figure 5.2

Figure 5.2: Visualization of how the extracted features look.

5.3. Step 3 - Identification of optimal architecture
In this section, we explore the different neural network architectures evaluated in this study, focus-
ing on Fully Connected Neural Networks (FCNNs), Convolutional Neural Networks (CNNs), and Long
Short-Term Memory Networks (LSTMs). Each architecture was tested with various hyperparameters
to identify the optimal configuration, the model was quantized to evaluate its size constraints in order
to find and evaluate the right fit of under 300KB as per memory requirements from NXP.

5.3.1. FCNN
Fully Connected Neural Networks (FCNNs), also referred to as Dense Neural Networks, represent a
form of deep learning model in which each neuron in a given layer is linked to every neuron in the
subsequent layer. This design is generally applied to tasks where the spatial hierarchy of features is
not crucial, making them well-suited for different kinds of non-image data. In this research, extensive
experiments were performed to ascertain the ideal architecture and hyperparameters. The architecture
of an FCNN consists of multiple dense layers, with each layer fully connected to the next. These
networks are powerful due to their dense connectivity, allowing them to learn complex representations of
the data. The architecture used in this study varied across different trials to find the optimal configuration
for our specific tasks.

• Dense Layers:

– Number of Units: The number of neurons in each dense layer. This varied from 32 to 256 in
our trials.

5.3. Step 3 - Identification of optimal architecture 25

– Activation Function: The activation function used in dense layers was primarily ReLU (Rec-
tified Linear Unit), with some trials exploring Tanh and Leaky ReLU.

• Hyperparameter Tuning: The primary hyperparameters tuned were:

– Learning Rate: The learning rate controls the step size during the optimization process. The
learning rates tested were 1× 10−5, 7× 10−5, 1× 10−4, and 1× 10−3.

– Optimizer: Algorithms used to minimize the loss function. The optimizers tested included
SGD (Stochastic Gradient Descent), Adam, and RMSprop.

– Number of Dense Layers: The depth of the network, which was varied between 1 to 9 layers.

– Number of Units in Each Layer: The number of neurons in each dense layer, with possible
values ranging from 8 to 256.

• Performance Metrics The performance of each trial was evaluated using key metrics: accuracy,
precision, recall, and loss for both training and validation datasets. These metrics provided in-
sights into the model’s ability to generalize to unseen data. These experiments provide valuable
insights into performance and size as can be seen in Table 5.3 into evaluating FCNN model archi-
tectures for different hardware platforms, where constraints and performance requirements may
vary.

Metric 4-layer FCNN 9-layer FCNN
Loss 1.5455 0.4745
Precision 0.2418 0.3363
Recall 0.9614 0.9547
AUC 0.9173 0.9663
Accuracy 0.7267 0.8273
Model Size 198 KB 1951 KB

Table 5.3: Performance Metrics and Model Sizes for 4-layer and 9-layer FCNNs.

5.3.2. CNN
CNNs are a class of deep neural networks commonly applied to analyzing visual imagery. We will detail
the architecture used, the hyper-parameters tuned, and the performance metrics achieved through
various trials. The architecture of a Convolutional Neural Network consists of multiple layers designed
to automatically and adaptively learn spatial hierarchies of features from input images. The typical
layers in a CNN include convolutional layers, pooling layers, batch normalization layers, dropout layers,
and dense (fully connected) layers. The architecture used in this study varied across different trials to
find the optimal configuration for our specific tasks.

• Convolutional layers are the core building blocks of a CNN. These layers apply convolutional
operations to the input, passing the result to the next layer. Themain components of convolutional
layers used in our trials are:

1. Filters (Kernels): The number of filters in each layer defines how many feature maps are
produced. In our trials, the number of filters varied between 32 and 256.

2. Kernel Size: The size of the filter matrix. A common choice is a 3x3 kernel, which was used
in our trials.

3. Activation Function: Non-linear activation functions are applied after the convolution oper-
ation. The common activation functions used are ReLU (Rectified Linear Unit), Tanh, and
Leaky ReLU.

The number of convolutional layers ranged from 1 to 3 across different trials. Each layer was
followed by an activation function and a max pooling layer to downsample the feature maps,
reducing the computational load and controlling overfitting.

5.3. Step 3 - Identification of optimal architecture 26

• Dense Layers: After the convolutional layers, the output feature maps are flattened into a 1D
vector and fed into one or more dense layers. These layers perform the final classification based
on the learned features. The parameters for dense layers included:

1. Number of Units:The number of neurons in the dense layer. This varied from 32 to 256 in
our trials.

2. Activation Function: The activation function used in dense layers was primarily ReLU.

The final layer in the network was a dense layer with a softmax activation function, producing
probabilities for each class in the classification task.

• Hyperparameter Tuning Hyperparameters are crucial in determining the performance of a CNN.
In this study, various hyperparameters to optimize the network’s performance were experimented
with. The primary hyperparameters tuned were:

1. Learning Rate: Controls the step size during the optimization process. The learning rates
tested were 1× 10−5, 7× 10−5, 1× 10−4, and 1× 10−3.

2. Optimizer: Algorithms used to minimize the loss function. The optimizers tested included
SGD (Stochastic Gradient Descent), Adam, and RMSprop.

3. Number of Convolutional Layers: The depth of the network, which varied between 1 and
4 layers.

4. Number of Filters in Each Layer: The number of filters for each convolutional layer, with
possible values ranging from 32 to 256.

5. Kernel Size:The size of the convolutional filters, consistently set to 3x3 in our trials.

6. Number of Dense Units: The number of neurons in the dense layer, varied from 32 to 256
units.

• Performance Metrics The performance of each trial was evaluated using key metrics: accu-
racy, precision, recall, and loss for both training and validation datasets. These metrics provided
insights into the model’s ability to generalize to unseen data.

• Highest AchievedMetrics From the trials, the highest values achieved for the 1-layer and 3-layer
CNN test metrics were:

Metric 1-layer CNN 3-layer CNN
Loss 2.1711 0.1079
Precision 0.2109 0.7297
Recall 0.9615 0.9327
AUC 0.8840 0.9853
Accuracy 0.6744 0.9630
Model Size 441 KB 3150 KB

Table 5.4: Performance Metrics and Model Sizes for 1-layer and 3-layer CNNs.

**For some of the trials, check Appendix A

Reflection Point

The accuracy given by the four-layered CNN is very promising and seems to be the initial choice of
architecture for deploying on hardware. However, due to hardware constraints, it was not feasible to
store a 5-second-long audio file in real-time and then process it within 512KB; hence, further experi-
ments on LSTM were conducted to take advantage of its flexible nature. These experiments are given
below:

5.3. Step 3 - Identification of optimal architecture 27

5.3.3. LSTM
Long Short-Term Memory Networks (LSTMs) constitute an advanced variant of recurrent neural net-
works (RNNs) adept at capturing and preserving long-term dependencies within sequential data. LSTMs
demonstrate exceptional efficacy in applications where temporal dynamics are paramount, such as time
series forecasting, natural language processing, and sequence prediction. This research scrutinizes
the performance of diverse LSTM architectures through meticulous hyperparameter tuning to ascertain
the optimal configuration for our specific tasks.

The LSTM network was trained on 5-second data, but while converting it into TFLite models, the step
size was changed to give an output for every 50ms of audio it processes. This allowed smaller chunks
of audio to be processed, more quickly, owing to the improvement in the real-time response of the
system as a whole.

LSTM Architecture The architecture of an LSTM network typically consists of multiple LSTM lay-
ers, followed by dense layers and dropout layers. The fundamental components of an LSTM network
include:

• LSTM Layers:

– Number of Units: The number of neurons in each LSTM layer. This varied from 50 to 200
in our trials.

– Activation Functions: The tanh function is commonly used for the cell state, while sigmoid
functions are used for the input, output, and forget gates within the LSTM cells.

• Dense Layers:

– Number of Units: The number of neurons in each dense layer, varied from 32 to 256 in our
trials.

– Activation Function: The ReLU (Rectified Linear Unit) function was predominantly used,
except for the output layer, which used a softmax activation function for classification tasks.

• Dropout Layers: These layers help in regularizing the model by randomly setting a fraction of
input units to 0 at each update during training time, which helps prevent overfitting.

Hyperparameter Tuning The primary hyperparameters tuned included:

1. Learning Rate: Controls the step size during the optimization process. The learning rates tested
were 1× 10−5, 7× 10−5, 1× 10−4, and 1× 10−3.

2. Optimizer: Algorithms used to minimize the loss function. The optimizers tested included SGD
(Stochastic Gradient Descent), Adam, and RMSprop.

3. Number of LSTM Layers: The depth of the network, which was varied between 1 and 3 layers.

4. Number of Units in Each LSTM Layer: The number of neurons in each LSTM layer, ranging
from 50 to 200 units.

Performance Metrics The performance of each trial was evaluated using key metrics: accuracy,
precision, recall, and loss for both training and validation datasets. These metrics provided insights
into the model’s ability to generalize to unseen data. The highest-achieving metrics from the trials
were:

Key Observations

• Trial ID 0013 achieved the highest validation accuracy of 0.9619 refer to Appendix Table A.3.

• The optimal learning rate was found to be 1× 10−4.

• The Adam optimizer provided the best results in terms of stability and performance.

5.4. Step 4 - Post-processing strategies 28

Metric LSTM
Validation Loss 0.1005
Validation Precision 0.7891
Validation Recall 0.8687
Validation AUC 0.9723
Validation Accuracy 0.9237
Model Size 239 KB

Table 5.5: Validation Performance Metrics and Model Size for LSTM.

• The configuration with 2 LSTM layers, each having 120 units, yielded the highest metrics.

Figure 5.3: Comparison of all the main models’ metrics, model sizes in MB.

Conclusion The comprehensive hyperparameter tuning and architecture experimentation with LSTM
networks demonstrated that a well-configured LSTM could effectively capture long-term dependencies
in sequential data, leading to high performance on the given tasks. The study highlighted the impor-
tance of careful tuning of learning rates with the worst validation accuracy of 45% to the best of 97%,
optimizers, and layer configurations to achieve optimal results. This LSTM architecture is employed in
subsequent stages of our research to leverage its ability to handle complex sequential data efficiently.
CRNNs were not explored due to the fact that convolutional layers need the input size to be fixed, and
due to this nature, the flexibility to train on 5sec/3sec data and run inference on every window(30ms)
is lost. Hence, LSTMs proved to be the best option.

5.4. Step 4 - Post-processing strategies
For detecting sirens, post-processing methods are essential for improving the accuracy of machine
learning models’ predictions. These methods help in minimizing false positives and increasing the
detection accuracy in environments with a lot of noise. This chapter presents a thorough review of the
distinct post-processing approaches applied and tested for siren detection.

5.4. Step 4 - Post-processing strategies 29

5.4.1. Simple Thresholding
Simple thresholding is the most basic form of post-processing. It involves setting a fixed threshold
value, above which the model’s prediction is considered a positive detection (siren present).

Detection =

{
1 if prediction > threshold
−1 otherwise

• Simple to implement and understand.

• No computational cost.

• Does not account for the temporal continuity of siren sounds.

• Sensitive to noise, leading to higher false positives.

5.4.2. Energy-Based Detection
Energy-based detection accumulates the energy of the predictions over time. This method assumes
that the presence of a siren will result in consistently high prediction values over a period. Accumulate
energy:

E(t) =
(
E(t− 1) + prediction(t)2

)
Detection:

Detection =

{
1 if E > 5.0

−1 otherwise

• Takes into account the temporal nature of the siren sounds.

• Reduces false positives by requiring sustained high energy for detection.

• May introduce a delay in detection.

• Requires tuning of energy accumulation parameters. (The tuned value for the test data was set
to 5 by experimentation)

5.4.3. Window-Based Detection
Window-based detection uses a sliding window of fixed size to smooth out the predictions. It sums the
predictions within the window and applies a threshold to the sum.

Sliding window sum:
S =

∑
predictions in window

Detection:

Detection =

{
1 if S > threshold
−1 otherwise

• Smooth out short-term fluctuations in the predictions.

• Provides a balance between responsiveness and noise reduction.

• The choice of window size and threshold can significantly affect performance.

• May introduce some latency in detection.

5.4.4. Savitzky-Golay Filter
The Savitzky-Golay filter is a digital filter that can smooth a time series by fitting successive polynomials
to the data points[39]. This method is particularly useful for reducing noise in the predictions. Apply
Savitzky-Golay filter:

filtered_predictions = savgol_filter(predictions,window_length, polyorder)

5.4. Step 4 - Post-processing strategies 30

Detection:

Detection =

{
1 if filtered_predictions[−1] > 0.67

−1 otherwise

• Provides effective noise reduction.

• Maintains the shape of the signal better than simple moving averages.

• Computationally more intensive than simpler methods.

• Requires careful selection of filter parameters (window length and polynomial order).

5.4.5. Adaptive Thresholding
Adaptive thresholding adjusts the detection threshold dynamically based on the average prediction
values over a window. This method can adapt to varying noise levels.

Calculate the mean of predictions in the window:

µ = mean(predictions in window)

Detection:

Detection =

{
1 if prediction > µ+ 0.1

−1 otherwise

• Adapts to changes in background noise levels.

• Can reduce false positives in varying noise conditions.

• More complex than fixed thresholding.

• Performance depends on the characteristics of the noise environment.

5.4.6. Majority Voting
Majority voting involves taking a fixed-size window of predictions and classifying the window as a siren
if the majority of predictions within the window are positive.

Count positive predictions in the window:

C =
∑

(prediction > 0.5)

Detection:

Detection =

{
1 if C > window size

2

−1 otherwise

• Robust to occasional false positives within the window.

• Simple to implement and interpret.

• The window size needs to be appropriately chosen to balance between responsiveness and noise
reduction.

• May not be effective in rapidly changing noise environments.

5.4.7. Median Filter
The median filter post-processing technique uses a sliding window to compute the median of the predic-
tions within the window. This method is effective in reducing spikes and outliers. Compute the median
of predictions in the window:

M = median(predictions in window)

Detection:

Detection =

{
1 if M > 0.25

−1 otherwise

5.4. Step 4 - Post-processing strategies 31

• Effective in reducing outliers and spikes.

• Provides a robust measure that is less sensitive to extreme values.

• Requires maintaining a window of past predictions.

• The choice of window size and threshold can affect performance.

6
Evaluation

6.1. Training procedure
The final decided LSTM model was trained using the TensorFlow framework, leveraging its robust
support for neural network implementation and GPU acceleration. The following steps were adopted
for the training process:

1. Data Augmentation: Various data augmentation techniques were applied to increase the diver-
sity of the training data, including time stretching, pitch shifting, and adding background noise.

2. Batch Processing: The training data was divided into mini-batches with a size of 64 to optimize
the learning process and ensure efficient memory usage.

3. Optimization Algorithm: The RMSProp optimizer was used to update the model weights itera-
tively, maximizing the validation precision.

4. Loss Function: The binary cross-entropy loss function was utilized to measure the performance
of the classification model.

5. Learning Rate Schedule: 1 × 10−4 learning rate was used to improve convergence and prevent
overfitting.

6. Regularization Techniques: Dropout was applied to mitigate overfitting and improve themodel’s
generalization capability.

7. Number of Epochs: Themodel was trained for 10,000 epochs with early stopping and a patience
level of 50, ensuring sufficient iterations for the convergence of the learning process.

8. Evaluation Metrics: Recall, precision, AUC, F1 score, and accuracy on the hold-out test dataset
were evaluated.

6.2. Impact of Hyper-parameter tuning
Goal: To optimize performance Hyper-parameter tuning consists of methodically modifying the LSTM
model’s hyper-parameters to attain optimal performance. Throughout this process, different hyper-
parameters like the learning rate, batch size, and the number of epochs were adjusted to enhance the
model’s accuracy.
The tuning process involved using techniques like grid search and random search to find the optimal
combination of hyper-parameters. This resulted in a significant improvement in the model’s accuracy,
demonstrating the importance of fine-tuning hyper-parameters for achieving better performance. Orig-
inal model accuracy: 90% Optimized model accuracy: 97%

32

6.3. Impact of Quantization 33

6.3. Impact of Quantization
Post Training Quantization (PTQ)
Goal: To reduce memory footprint Quantization is a technique used to reduce the model size and
increase inference speed by converting the model weights from floating-point numbers to lower preci-
sion formats, such as Int16 or Int8. Quantizing the model to Int16 resulted in a modest reduction in size
(only 1.93%), owing to the fact that not all operators support Int16 quantization while quantizing to Int8
resulted in a significant reduction in model size by 73.37%.

Description Original Value Optimized Value Change
Model Size (Original) 556KB
Model Size (Quantized Int16) 545 KB -1.93%
Model Size (Quantized Int8) 148 KB -73.37%

Table 6.1: Effects of Quantization on model size.

Quantization Aware Training (QAT)
Attempts to apply QAT were unsuccessful due to the necessity of maintaining flexible input sizes for
the LSTM networks used in the model. The flexibility in input size is essential for training the model on
sequences of varying lengths and for saving the model in different sizes. QAT typically requires fixed
input sizes to effectively simulate the effects of quantization during training. Both Q_Keras and tfmot
libraries were tried for QAT. The dynamic nature of LSTM input sequences, which can vary in length,
posed a challenge for this approach. As a result, the expected benefits of QAT could not be realized
for this particular model architecture.

6.4. Impact of Window size
Goal: To balance performance, model size of audio extraction, and improve latency.

The window size in signal processing directly affects the model’s performance and accuracy. A series
of experiments were conducted to determine the optimal window size for the siren detection system.

Figure 6.1: Evaluation to find the optimal window size.

Figure 6.1 illustrates that as the window size increases from 30ms to 80ms, all performance metrics
(Sensitivity, Precision, Accuracy, and F1 Score) exhibit a downward trend. This suggests that using
smaller window sizes enhances the model’s overall performance. However, using a very fine value for
window size increases compute requirements linearly. (as can be seen in Table 6.2) because the more
windows, more is the processing needed for each chunk.

6.5. Impact of Frequency bins 34

Window Size Model Interpreter Ticks per File Change %
30 ms 4,294,060 N/A
50 ms 2,572,966 -40.08%

Table 6.2: Ticks and Change Percentage for Different Window Sizes

6.5. Impact of Frequency bins
Goal: To improve performance without impacting the model size of audio extraction.

The number of frequency bins used in the feature extraction process impacts the model’s ability to
detect sirens accurately. Figure 6.2 illustrates that while Sensitivity shows a slight decrease, all other
performance metrics (Precision, Accuracy, and F1 Score) improve with an increase in the number of
feature bins. This suggests that increasing the number of feature bins enhances the model’s overall
performance, particularly in terms of Precision and Accuracy, even though it might slightly compromise
its ability to detect actual positives. This information is valuable for optimizing the model for the best
overall performance based on the specific requirements of the siren detection task.

Figure 6.2: Evaluation finds the optimal frequency bins.

• 1 second audio: The input size for 1 second of audio is 33x80. The model outputs predictions
for each second.

• 3 seconds audio: For a 3-second audio input, the size becomes 99x80. The outputs are com-
bined and checked against a threshold to decide the final prediction.

• Performance: The model achieves 92.5% accuracy with a file size of 94KB for a 1-second audio
input and 72% accuracy with a file size of 88KB for a 3-second audio input.

6.6. Evaluation of Existing Neural Architecture Search (NAS)
Neural Architecture Search (NAS) is an automated process for designing neural network architectures.
In this optimization, NanoNAS [40] was used to discover a more efficient architecture for the siren
detection system as can be seen in Figure 6.3 The process involved using reinforcement learning and
evolutionary algorithms to explore various network topologies. However, most publicly available NAS
techniques are based on convolutional neural networks (CNNs). For this application, converting the
audio data of 2D arrays to an image suitable for CNNs did not show significant improvement. This
approach still required a minimum chunk of 3 seconds of audio data, which is memory intensive. While
CNNs did not yield the expected improvements, the exploration suggested that other neural network
architectures, such as Recurrent Neural Networks (RNNs) like LSTM discussed in 5 Section 5.3.3 or
Transformer-based models, might be better suited for this type of task. These architectures can handle
sequential data more effectively.

6.7. Final System Evaluation: Satisfying Requirements 35

(a) Neural Architecture Search (Left)

(b) Neural Architecture Search (Right)

Figure 6.3: NanoNAS Neural Architecture Search.

6.7. Final System Evaluation: Satisfying Requirements
6.7.1. Evaluation of different post-processing strategies
Key Observations: The examination of the Figure 6.4, displaying the performance metrics for diverse
siren detection techniques based on four primary metrics (Precision, Recall, F1 Score, and Accuracy),
uncovers numerous insights. The Savitzky-Golay approach emerges as the most effective, securing
the highest recall, F1 score, and accuracy, which highlights its well-balanced and dependable nature.
The Energy-Based approach also excels, attaining the highest precision along with strong recall, F1
score, and accuracy, positioning it as a formidable option. Conversely, the Simple Threshold technique
is the least effective, showing the lowest precision, recall, F1 score, and accuracy, suggesting it is
not reliable for siren detection. The Adaptive Threshold, Window-Based, Majority Voting, and Median
Filter techniques exhibit similar performance, indicating good balance and reliability across all metrics.
In summary, techniques like Savitzky-Golay and Energy-Based are preferred for siren detection due
to their superior performance, whereas the Simple Threshold technique needs to be combined with
another method to be considered viable.

Figure 6.4: Post-Processing Strategies comparison for low noise audio. It can be observed that the best-performing strategies
are Savitzky-Golay, Energy-based, and Majority Voting.

6.7. Final System Evaluation: Satisfying Requirements 36

Figure 6.5: System latency comparison, a general trend of increasing turn around time with the same audio with more noise
can be observed.

6.7.2. Tolerance to SNRS, latency tests
To test the tolerance to SNRs, ensuring that at -6dB most tests pass the 3 secs turnaround time, along-
side measuring the effect of post-processing on latency, multiple test audio files of a total length of 30
seconds were created where the first 10 seconds were noise, next 10 seconds were siren followed by
the last 10 seconds being noise again. An excerpt of how these audio files looked can be visualized
from Figure 6.6 and the full analysis is presented in Table 6.3. This shows that as the noise goes down,
the ability of the model to react and understand the siren increases.

Figure 6.6: This Audio tests the latency vs SNR of audio where the first 10 seconds are noise(-10 to 0), the next 10 sec are
Siren (0 to 10) and the last 10 seconds are noise (10 to 20). The audio is a mix of Police sirens with driving noise.

6.7.3. False positives test
The primary objective of this test is to assess and compare the false positive rates of multiple siren
detection strategies when deployed in diverse noise environments. For each defined detection strat-
egy, the test systematically evaluates its performance across various noise profiles (specified as noise
files). It applies each strategy to aggregated noise data extracted from each environment and quanti-
fies the occurrence of false positives, where the algorithm erroneously detects a siren signal despite its
absence. By analyzing these results, this test aims to determine the most effective detection strategy

6.7. Final System Evaluation: Satisfying Requirements 37

that exhibits the lowest false positive rate across different noise conditions, providing critical insights
for optimizing and selecting robust siren detection algorithms. Figure 6.7 shows the number of false

Figure 6.7: For different noise soundscapes, post-processing results and false positives were tested, the most effective being
Savitzky-Golay and simple thresholding filtering.

positives detected across various noise environments using different post-processing strategies. Each
strategy’s effectiveness can be assessed by examining the height of the bars, where a lower number
of false positives indicates a more reliable method.

• Adaptive Threshold: This method consistently shows the highest number of false positives across
all environments. Particularly high in environments like Driving, Outdoor City, and SF Cablecar,
indicating its unreliability in noisy settings.

• Energy Based: This method demonstrates relatively low false positives in most environments. It
is one of the more reliable methods, especially in environments such as Calm City, Rainy Busy
Street, and Suburban Park.

• Majority Voting: Shows moderate performance, with fewer false positives compared to Adaptive
Threshold but more than Energy Based. Performs better in controlled environments like Calm
City and Road Market.

• Median Filter: This method has a low number of false positives, indicating good performance.
Particularly effective in environments like Traffic, and Town Square.

• Savitzky-Golay: Shows similar performance to the Median Filter, with low false positives in most
environments. Effective in environments such as Road Noise, SF Trolleycar, and Town Square.

• Simple Threshold: This method also performs well, with low false positives in many environments.
Shows effectiveness in environments like SF Cablecar, SF Trolleycar, and Suburban Park.

• Window Based: Demonstrates moderate performance with a varied number of false positives. Ef-
fective in environments like Calm City and Road Noise but higher false positives in environments
like Outdoor City and Town Square.

The Energy Based, Median Filter, Savitzky-Golay, and Simple Threshold methods are the most reliable
post-processing strategies, exhibiting the least number of false positives across various noise environ-
ments. Adaptive Threshold consistently shows the highest false positives, indicating it is the least

6.7. Final System Evaluation: Satisfying Requirements 38

reliable method. For environments with high noise levels, the Energy Based and Median Filter meth-
ods are particularly effective. These insights help in selecting the most appropriate post-processing
strategy for siren detection in different real-world noise environments, ensuring a balance between
sensitivity and reliability.

6.7.4. Overall Evaluation of Postprocessing Strategies

Figure 6.8: For different noise soundscapes, post-processing results and false positives were tested, the most effective being
Savitzky-Golay filtering.

Figure 6.8 compares various postprocessing methods (Energy Based, Simple Threshold, Adaptive
Threshold, Savitzky-Golay, Majority Voting, Window Based, and Median Filter) using three evaluation
metrics: inverse F1 Score, Latency scaled down by a factor of 2, and scaled number of False Positives
(scaled down by a factor of 3000). Each method is represented by a distinct colored line, and the goal is
to minimize the area enclosed by each line on the chart, indicating better overall performance. Lower
values in inverse F1 Score and Scaled Latency, along with fewer scaled False Positives, contribute
to a smaller area, signifying a more effective postprocessing method. The energy-based method ap-
pears to have balanced performance with moderate scores in F1 Score and False Positives but slightly
higher latency. The Simple Threshold method shows lower performance in terms of F1 Score and
False Positives but benefits from low latency. The Adaptive Threshold method has a similar pattern

6.7. Final System Evaluation: Satisfying Requirements 39

to the Simple Threshold but performs slightly better in some metrics. The Majority Voting method and
Median show better performance in F1 Score and False Positives but suffer from higher latency. The
Window Based method exhibits moderate performance across all metrics, similar to Energy Based.
Lastly, the Savitzky-Golay method demonstrates a well-rounded performance with good scores in all
metrics. Overall, the chart suggests that the Savitzky-Golay method is a good choice due to its bal-
anced performance, while other methods involve trade-offs between accuracy (F1 Score and False
Positives) and latency.

6.7.5. SNR breaking point stress test
The threshold for Signal-to-Noise-Ratio (SNR) at which the system fails to achieve the 3-second re-
sponse time for a siren was identified to be approximately -40 dB. At this SNR level or lower, the
system’s capacity to detect and respond to the siren within the designated 3 seconds becomes incon-
sistent or entirely inadequate. An example of this breaking point can be seen in Figure 6.9. In a hectic
urban setting with loud traffic and other background noises, the signal-to-noise ratio (SNR) might de-
crease to -40 dB, causing the system to either respond late or miss the siren altogether. This threshold
is crucial in making sure that the system functions effectively within its intended performance limits. It
underscores the importance of maintaining an appropriate SNR range for dependable siren detection
and response.

6.7. Final System Evaluation: Satisfying Requirements 40

Figure 6.9: High SNR stress test: The test was conducted on a randomly chosen noise sample and siren sample, tested up to
a high SNR of -54dB, The system deteriorated around -42 dB SNR for this sample and in general around -30 dB SNR. While

the target SNR threshold was only -6dB.

6.7. Final System Evaluation: Satisfying Requirements 41

Audio File Name SNR
(dB)

Latency
(sim-
ple
thresh-
old)

Latency
(en-
ergy
based)

Latency
(win-
dow
based)

Latency
(ma-
jority
vot-
ing)

Latency
(adap-
tive
thresh-
old)

Latency
(sav-
itzky
golay)

Latency
(me-
dian
filter)

german ambulance
2+noon traffic

-24 2.81 2.87 2.48 2.81 2.00 2.81 2.87

german ambulance
2+noon traffic

-20 2.96 2.66 2.33 2.63 1.82 2.96 2.57

german ambulance
2+noon traffic

-16 1.97 2.15 2.09 2.27 1.67 2.00 2.21

german ambulance
2+noon traffic

-12 1.85 2.06 1.97 2.15 1.55 1.82 2.09

german ambulance
2+noon traffic

-8 1.76 1.97 1.88 2.06 1.43 1.76 2.00

german ambulance
2+noon traffic

-4 1.79 1.97 1.82 2.03 1.31 1.79 2.03

german ambulance
2+noon traffic

0 1.35 1.53 1.79 2.15 1.22 1.35 2.09

police siren+ Driv-
ing

-24 1.07 1.28 1.22 1.40 0.83 1.07 1.34

police siren+ Driv-
ing

-20 0.92 1.10 1.04 1.22 0.68 0.92 1.19

police siren+ Driv-
ing

-16 0.83 1.01 0.95 1.13 0.59 0.83 1.10

police siren+ Driv-
ing

-12 0.95 1.10 1.01 1.19 0.62 0.95 1.19

police siren+ Driv-
ing

-8 0.98 1.16 1.01 1.22 0.59 1.01 1.22

police siren+ Driv-
ing

-4 0.92 1.07 0.92 1.13 0.53 0.95 1.10

police siren+ Driv-
ing

0 0.92 1.07 0.92 1.13 0.50 0.92 1.10

German ambu-
lance 1 + city traffic

-24 2.45 2.57 2.00 2.54 2.48 2.48 2.63

German ambu-
lance 1 + city traffic

-20 1.73 1.76 1.58 1.80 1.73 1.73 1.76

German ambu-
lance 1 + city traffic

-16 1.13 1.34 1.25 2.00 1.10 1.10 1.37

German ambu-
lance 1 + city traffic

-12 1.07 1.25 1.16 1.45 1.07 1.07 1.31

German ambu-
lance 1 + city traffic

-8 1.04 1.22 1.04 1.37 1.04 1.04 1.28

German ambu-
lance 1 + city traffic

-4 2.36 2.39 1.10 1.25 2.39 2.39 2.45

German ambu-
lance 1 + city traffic

0 0.98 1.19 0.95 1.22 1.01 1.01 1.25

Table 6.3: Latency vs. SNR vs. impact of post-processing on latency.

7
Conclusion and Future Work

This research focused on the development of an on-device machine learning (ML) system for real-time
siren detection, specifically targeting resource-constrained embedded devices in vehicles for advanced
driver assistance systems (ADAS). The problem statement addresses the need for accurate and real-
time siren detection to enhance automotive safety and public security, moving from traditional cloud-
based methods to localized data processing.

The solution proposed in this thesis involves a robust neural network model integrated with advanced
signal processing techniques. The model processes audio inputs captured via a microphone and classi-
fies them based on the presence of siren sounds by transforming audio signals into mel-spectrograms,
which represent the frequency spectrum over time. The custom dataset used for training includes 280
hours of audio, comprising well-known, publicly available datasets such as ESC-50, Audioset, and
UrbanSound8K, enriched with both original and augmented siren sounds alongside non-siren audio
to enhance learning efficacy and robustness. Optimization techniques, such as determining the opti-
mal window size and number of frequency bins and employing post-processing strategies like Savitzky
Golay and energy-based methods, were utilized to improve detection accuracy and computational effi-
ciency.

The siren detection system demonstrated in this research showcases the feasibility and effectiveness
of deploying deep learning models on edge devices for real-time audio event detection. Through com-
prehensive hyperparameter tuning and architecture experimentation, especially with LSTM networks, it
was evident that a well-configured LSTM can effectively capture long-term dependencies in sequential
data, achieving a high performance of 96.19% accuracy in the detection of siren. The various opti-
mizations applied, such as quantization and adjustments in window size, frequency bins, etc. further
enhanced the model’s efficiency, making it suitable for deployment on resource-constrained devices.

The project successfully fulfilled all its functional and non-functional requirements except one, demon-
strating robust performance and efficiency (refer to Table 7.1). The memory constraints of the model
size were satisfied, with the model staying within 300KB (the final model was 230KB) and the allow-
able memory limits on the SAF9100 audio processor [38]. The ML cycle load was well below 5% and
requires 11MIPS for model inference. This ensured real-time processing capabilities. Reaction time
requirements were met under various noise conditions (tested beyond the requirements), showcasing
themodel’s responsiveness to high-noise environments. The false positive rate for low-noise audio was
achieved with different strategies. However, the false positive rate for high noise audio was not met,
suggesting a need for further retraining on sounds similar to sirens, such as engine noises and bells, to
enhance performance. The non-functional requirements were also fulfilled, including the development
of an end-to-end real-time demonstrator (see Figure 7.1) on the NXP board, comprehensive compar-
isons of different network architectures, assessments of vigilance enhancement compared to human

42

43

Figure 7.1: Hardware Demonstrator of the end-to-end solution.

drivers, and evaluations of optimization techniques like Quantization Aware Training (QAT) and Neural
Architecture Search (NAS) to reduce network size. Overall, the project demonstrates strong adherence
to the specified requirements, with ongoing improvements anticipated for high-noise scenarios.

7.1. Evaluation of Satisfying NXP requirements 44

7.1. Evaluation of Satisfying NXP requirements
Requirement Category Requirement Description Status
Functional Requirements
Memory Constraints Maximum size of Model and

Buffers limited to 300KB on NXP
Product Hardware with 512KB;
up to 1MB if needed.

Satisfied. The first version of the
model used only 270KB, and the
later version with updated mem-
ory used 370KB.

Cycles ML cycle loadsmust be less than
25%, ideally under 5% for real-
time processing.

Satisfied. 0.007 seconds pro-
cessing time for one second of
audio

Performance Reaction time are under 3 sec-
onds in low noise (0dB SNR) and
under 5 seconds in high noise (-
6dB SNR).

Satisfied. All the SNR values
till -24dB showed <3sec Turn-
Around-Time.

False positive rate: <1 per 10
hours of low noise audio (>1
sec); <6 per 10 hours of low
noise audio (<1 sec).

The test audio was conducted
for 6.8hrs of test audio and the
total false positives were 24 secs
for simple threshold, 42 secs
for energy-based, 195 secs for
window-based, 38 secs for ma-
jority voting, 1252 secs for adap-
tive, 23 secs for Savitzky-Golay,
33 secs for median filter.

False positive rate: <1 per 5
hours of high noise audio (>1
sec); <6 per 5 hours of high
noise audio (<1 sec).

-

Non-Functional Requirements

Demonstrator on the SAF9100
audio processor

End-to-end real-time demonstra-
tor on the NXP SAF9100 au-
dio processor board with micro-
phone and siren detection visu-
alization.

Satisfied
Comparison of architectures Comparison of memory, com-

pute, and precision metrics of
different network architectures:
CNN, FC, and RNN.

Satisfied

Vigilance enhancement Comparison of the breaking
point of siren detection perfor-
mance with human drivers.

Satisfied

Optimization Assessment Investigation of optimization
techniques like QAT, and NAS
for reducing network size.

Satisfied

Table 7.1: Summary of customer requirements satisfied.

This work covers all the gaps discussed in Chapter 3, Data Availability and Quality are met by using
an extensive dataset of audio of 278 hrs. The complexity of the model and the resource constraints
discussed in the requirements of Chapter 2.2 in terms of model size (<300 KB), Cycle count <5%,
overall turn around time of <3secs for high noise audio, etc. were met. The model was evaluated in
real-world audio and showed a promising accuracy of more than 85% (varying according to the kind of
audio) and this can be further improved by retraining on additional audio sounds such as engine sounds,
trumpet bells or other siren-alike sounds. The breaking point SNR where the system no longer satisfies
the 3 sec response time to siren was found to be in the range of -40dB. The entire processing happens

7.2. Future Work 45

in real time, from capturing raw audio, extracting features, model inference, and post-processing.

7.2. Future Work
Looking ahead, several avenues for future research and development can be pursued to further en-
hance the capabilities and performance of the siren detection system.

7.2.1. Deployment and Field Testing
Extensive field testing in diverse real-world environments is necessary to validate the robustness and
reliability of the system. Collaborating with the automotive and public safety industries for pilot deploy-
ments can provide valuable feedback and drive iterative improvements to the system. For example, in
the tests, it was found that the model assumed a certain kind of tram engine pick-up sound to be a siren
as it was siren-like. The model can then be retrained with such data to improve its overall robustness.

7.2.2. Integration of Transformers
The potential of transformer-based architectures in audio processing is vast. Future research can ex-
plore the integration of transformer models for siren detection, which might offer improved performance
over LSTMs by better handling long-range dependencies and capturing more intricate patterns in au-
dio signals. A transformer-based architecture was attempted, a variable-size transformer could not be
designed like the case for LSTM due to unsupported parameters by TFLite micro-library. Hence the
idea was to deploy a transformer model-based architecture designed to handle varying lengths of audio
inputs as can be seen in Figure 7.2. Figure 7.2 illustrates a possible architecture and the data flow for
both 1-second and 3-second audio inputs. However, deploying a 2 model architecture on the hard-
ware was complicated and gathering test data to evaluate such an architecture was also challenging.
Overall, this is a good direction to explore in future work.

Figure 7.2: Transformer-based architecture for processing 1-second and 3-second audio inputs.

7.2.3. Multi-Modal Detection Systems
Integrating audio detection with other sensors (e.g., visual, radar, or vibration) can create a more com-
prehensive emergency vehicle detection system. Multi-modal approaches can leverage the strengths
of different sensing modalities, improving overall reliability and accuracy.

7.2.4. Improvements in TFLite Micro
TFLite Micro currently provides a robust platform for deploying machine learning models on microcon-
trollers. However, further improvements can be made, like developing some custom operators which
need some development time for example to enable flexible transformer architectures, Int16 support for
some of the operators, etc. TFLite Micro can enable the deployment of larger and more sophisticated
models without compromising performance.

7.2.5. Enhanced Quantization Techniques
While quantization significantly reduces model size and increases inference speed, exploring advanced
quantization techniques like post-training quantization and quantization-aware training (QAT) tailored

7.2. Future Work 46

for dynamic input sizes can provide further improvements. These techniques can help maintain the
model’s accuracy while making it more suitable for deployment on low-power devices. For this a custom
solution could be developed as QKeras and tfmot that were attempted in this research needed the input
size to be fixed values.

7.2.6. Calibration
The calibration process involves adjusting system parameters to account for different conditions, such
as ambient noise levels, various types of siren sounds, and the specific characteristics of the deploy-
ment environment.

During the initial setup, the system needs to be calibrated in a controlled environment to establish
baseline parameters. This includes testing the system with different known siren sounds (specific to the
region) and various noise levels to determine the best threshold values and sensitivity settings. Once
the initial calibration is finished, the system should have mechanisms for dynamic adjustment to adapt
to changing environmental conditions. Real-time monitoring of ambient noise levels and automatic
adjustment of detection thresholds are crucial for maintaining high accuracy.

Regular maintenance and re-calibration are essential to account for any changes in the system or the
environment. This can be scheduled periodically or triggered by significant changes in performance
metrics, ensuring that the system continues to operate effectively over time.

By addressing these future work areas, the siren detection system can be significantly enhanced,
paving the way for more advanced and reliable audio event detection solutions in various safety-critical
applications.

References

[1] Michela Cantarini et al. “Acoustic Features for Deep Learning-BasedModels for Emergency Siren
Detection: An Evaluation Study”. In: 2021 12th International Symposium on Image and Signal
Processing and Analysis (ISPA). 2021, pp. 47–53. DOI: 10.1109/ISPA52656.2021.9552140.

[2] Nikolaos Schizas et al. “TinyML for Ultra-Low Power AI and Large Scale IoT Deployments: A
Systematic Review”. In: Future Internet 14.12 (2022). ISSN: 1999-5903. DOI: 10.3390/fi14120
363. URL: https://www.mdpi.com/1999-5903/14/12/363.

[3] D Chirag Chinvar et al. “Ambulance Siren Detection using an MFCC based Support Vector Ma-
chine”. In: 2021 IEEE International Conference on Mobile Networks and Wireless Communica-
tions (ICMNWC). 2021, pp. 1–5. DOI: 10.1109/ICMNWC52512.2021.9688340.

[4] Gianmarco Cerutti et al. “Compact Recurrent Neural Networks for Acoustic Event Detection on
Low-Energy Low-Complexity Platforms”. In: IEEE Journal of Selected Topics in Signal Processing
14.4 (2020), pp. 654–664. DOI: 10.1109/JSTSP.2020.2969775.

[5] Zaffar Haider Janjua et al. “IRESE: An intelligent rare-event detection system using unsupervised
learning on the IoT edge”. In: Engineering Applications of Artificial Intelligence 84 (2019), pp. 41–
50. ISSN: 0952-1976. DOI: https://doi.org/10.1016/j.engappai.2019.05.011. URL:
https://www.sciencedirect.com/science/article/pii/S0952197619301113.

[6] Michela Cantarini et al. “Beware the Sirens: Prototyping an Emergency Vehicle Detection Sys-
tem for Smart Cars”. In: Applied Intelligence and Informatics. Ed. by Mufti Mahmud et al. Cham:
Springer Nature Switzerland, 2022, pp. 437–451. ISBN: 978-3-031-24801-6.

[7] Islam Gomaa et al. “A Framework for Intelligent Fire Detection and Evacuation System”. In: Fire
Technology 57 (2021), pp. 3179–3185.

[8] Himanshu Sharma, Ahteshamul Haque, and Frede Blaabjerg. “Machine Learning in Wireless
Sensor Networks for Smart Cities: A Survey”. In: Electronics 10.9 (2021). ISSN: 2079-9292. DOI:
10.3390/electronics10091012. URL: https://www.mdpi.com/2079-9292/10/9/1012.

[9] Canva Pty Ltd. Canva. https://www.canva.com/. 2024.
[10] Gianmarco Cerutti et al. “Compact Recurrent Neural Networks for Acoustic Event Detection on

Low-Energy Low-Complexity Platforms”. In: IEEE Journal of Selected Topics in Signal Processing
14.4 (2020), pp. 654–664. DOI: 10.1109/JSTSP.2020.2969775.

[11] Md Mohaimenuzzaman et al. “Environmental Sound Classification on the Edge: A Pipeline for
Deep Acoustic Networks on Extremely Resource-Constrained Devices”. In: Pattern Recognition
133 (2023), p. 109025. ISSN: 0031-3203. DOI: https://doi.org/10.1016/j.patcog.2022.
109025. URL: https://www.sciencedirect.com/science/article/pii/S0031320322005052.

[12] Veronica Morfi and Dan Stowell. “Data-efficient weakly supervised learning for low-resource au-
dio event detection using deep learning”. In: ArXiv abs/1807.06972 (2018). URL: https://api.
semanticscholar.org/CorpusID:49867825.

[13] S. S. Stevens, J. Volkmann, and E. B. Newman. “A Scale for the Measurement of the Psycho-
logical Magnitude Pitch”. In: Journal of the Acoustical Society of America 8.3 (1937), pp. 185–
190.

[14] P. Mahesha and D. S. Vinod. “LP-Hillbert transform based MFCC for effective discrimination of
stuttering dysfluencies”. In: 2017 International Conference on Wireless Communications, Signal
Processing and Networking (WiSPNET). 2017, pp. 2561–2565. DOI: 10.1109/WiSPNET.2017.
8300225.

[15] Zrar Kh. Abdul and Abdulbasit K. Al-Talabani. “Mel Frequency Cepstral Coefficient and its Ap-
plications: A Review”. In: IEEE Access 10 (2022), pp. 122136–122158. DOI: 10.1109/ACCESS.
2022.3223444.

47

https://doi.org/10.1109/ISPA52656.2021.9552140
https://doi.org/10.3390/fi14120363
https://doi.org/10.3390/fi14120363
https://www.mdpi.com/1999-5903/14/12/363
https://doi.org/10.1109/ICMNWC52512.2021.9688340
https://doi.org/10.1109/JSTSP.2020.2969775
https://doi.org/https://doi.org/10.1016/j.engappai.2019.05.011
https://www.sciencedirect.com/science/article/pii/S0952197619301113
https://doi.org/10.3390/electronics10091012
https://www.mdpi.com/2079-9292/10/9/1012
https://www.canva.com/
https://doi.org/10.1109/JSTSP.2020.2969775
https://doi.org/https://doi.org/10.1016/j.patcog.2022.109025
https://doi.org/https://doi.org/10.1016/j.patcog.2022.109025
https://www.sciencedirect.com/science/article/pii/S0031320322005052
https://api.semanticscholar.org/CorpusID:49867825
https://api.semanticscholar.org/CorpusID:49867825
https://doi.org/10.1109/WiSPNET.2017.8300225
https://doi.org/10.1109/WiSPNET.2017.8300225
https://doi.org/10.1109/ACCESS.2022.3223444
https://doi.org/10.1109/ACCESS.2022.3223444

References 48

[16] Asith Abeysinghe et al. “Mel frequency cepstral coefficient temporal feature integration for clas-
sifying squeak and rattle noise”. In: The Journal of the Acoustical Society of America 150 (July
2021), pp. 193–201. DOI: 10.1121/10.0005201.

[17] Sunil Kumar Kopparapu and M. Laxminarayana. “Choice of Mel filter bank in computing MFCC
of a resampled speech”. In: May 2010, pp. 121–124. DOI: 10.1109/ISSPA.2010.5605491.

[18] Ahmed Krobba, Mohamed Debyeche, and Sid Ahmed Selouani. “Mixture linear prediction Gam-
matone Cepstral features for robust speaker verification under transmission channel noise”. In:
Multimedia Tools and Applications 79 (July 2020). DOI: 10.1007/s11042-020-08748-2.

[19] Changwei Zhou et al. “Gammatone spectral latitude features extraction for pathological voice
detection and classification”. In: Applied Acoustics 185 (2022), p. 108417. ISSN: 0003-682X. DOI:
https://doi.org/10.1016/j.apacoust.2021.108417. URL: https://www.sciencedirect.
com/science/article/pii/S0003682X21005119.

[20] Azza Moawad et al. “Spectrum Sensing by Cepstral Covariance Detection”. In: IEEE Communi-
cations Letters 26.6 (2022), pp. 1323–1327. DOI: 10.1109/LCOMM.2022.3157773.

[21] Roy D. Patterson et al. “Complex Sounds and Auditory Images”. In: Pergamon, 1992, pp. 429–
446. DOI: 10.1016/B978-0-08-041847-6.50054-X.

[22] Cihun-Siyong Alex Gong et al. “Deep Learning with LPC and Wavelet Algorithms for Driving
Fault Diagnosis”. In: Sensors 22.18 (2022). ISSN: 1424-8220. DOI: 10.3390/s22187072. URL:
https://www.mdpi.com/1424-8220/22/18/7072.

[23] Amit Moondra and Poonam Chahal. “Improved Speaker Recognition for Degraded Human Voice
using Modified-MFCC and LPC with CNN”. English. In: International Journal of Advanced Com-
puter Science and Applications 14.4 (July 2023). Copyright - © 2023. This work is licensed un-
der http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest
Terms and Conditions, you may use this content in accordance with the terms of the License;
Last updated - 2023-11-27. URL: https://login.libauth.mskcc.org/login?url=https:
//www.proquest.com/scholarly- journals/improved- speaker- recognition- degraded-
human-voice/docview/2819915906/se-2.

[24] Aankit Das et al. “A Hybrid Meta-Heuristic Feature Selection Method for Identification of Indian
Spoken Languages From Audio Signals”. In: IEEE Access 8 (2020), pp. 181432–181449. DOI:
10.1109/ACCESS.2020.3028241.

[25] Yancai Xiao et al. “Low-Pass Filtering Empirical Wavelet Transform Machine Learning Based
Fault Diagnosis for Combined Fault of Wind Turbines”. In: Entropy 23.8 (2021). ISSN: 1099-4300.
DOI: 10.3390/e23080975. URL: https://www.mdpi.com/1099-4300/23/8/975.

[26] Shreya Chakravarty, Richa R. Khandelwal, and Kanchan M. Dhote. “Feature Extraction Tech-
niques for Deep Learning based Speech Classification”. In: 2023 14th International Conference
on Computing Communication and Networking Technologies (ICCCNT). 2023, pp. 1–6. DOI:
10.1109/ICCCNT56998.2023.10307237.

[27] Hyejin Won et al. “Using various pre-trained models for audio feature extraction in automated
audio captioning”. In: Expert Systems with Applications 231 (2023), p. 120664. ISSN: 0957-4174.
DOI: https://doi.org/10.1016/j.eswa.2023.120664. URL: https://www.sciencedirect.
com/science/article/pii/S0957417423011661.

[28] Bhavi Dave and Kriti Srivastava. “Convolutional Neural Networks for Audio Classification: An En-
semble Approach”. In: Proceedings of the 6th International Conference on Advance Computing
and Intelligent Engineering. Ed. by Bibudhendu Pati et al. Singapore: Springer Nature Singapore,
2023, pp. 253–262. ISBN: 978-981-19-2225-1.

[29] Kele Xu et al. “General audio tagging with ensembling convolutional neural networks and statis-
tical features”. In: The Journal of the Acoustical Society of America 145.6 (June 2019), EL521–
EL527. ISSN: 0001-4966. DOI: 10.1121/1.5111059. eprint: https://pubs.aip.org/asa/jasa/
article-pdf/145/6/EL521/14075439/el521_1_online.pdf. URL: https://doi.org/10.
1121/1.5111059.

[30] Xinhao Mei et al. “Audio Captioning Transformer”. In: Detection and Classification of Acoustic
Scenes and Events 2021. 2021.

https://doi.org/10.1121/10.0005201
https://doi.org/10.1109/ISSPA.2010.5605491
https://doi.org/10.1007/s11042-020-08748-2
https://doi.org/https://doi.org/10.1016/j.apacoust.2021.108417
https://www.sciencedirect.com/science/article/pii/S0003682X21005119
https://www.sciencedirect.com/science/article/pii/S0003682X21005119
https://doi.org/10.1109/LCOMM.2022.3157773
https://doi.org/10.1016/B978-0-08-041847-6.50054-X
https://doi.org/10.3390/s22187072
https://www.mdpi.com/1424-8220/22/18/7072
https://login.libauth.mskcc.org/login?url=https://www.proquest.com/scholarly-journals/improved-speaker-recognition-degraded-human-voice/docview/2819915906/se-2
https://login.libauth.mskcc.org/login?url=https://www.proquest.com/scholarly-journals/improved-speaker-recognition-degraded-human-voice/docview/2819915906/se-2
https://login.libauth.mskcc.org/login?url=https://www.proquest.com/scholarly-journals/improved-speaker-recognition-degraded-human-voice/docview/2819915906/se-2
https://doi.org/10.1109/ACCESS.2020.3028241
https://doi.org/10.3390/e23080975
https://www.mdpi.com/1099-4300/23/8/975
https://doi.org/10.1109/ICCCNT56998.2023.10307237
https://doi.org/https://doi.org/10.1016/j.eswa.2023.120664
https://www.sciencedirect.com/science/article/pii/S0957417423011661
https://www.sciencedirect.com/science/article/pii/S0957417423011661
https://doi.org/10.1121/1.5111059
https://pubs.aip.org/asa/jasa/article-pdf/145/6/EL521/14075439/el521_1_online.pdf
https://pubs.aip.org/asa/jasa/article-pdf/145/6/EL521/14075439/el521_1_online.pdf
https://doi.org/10.1121/1.5111059
https://doi.org/10.1121/1.5111059

References 49

[31] Michele Scarpiniti et al. “Deep Recurrent Neural Networks for Audio Classification in Construction
Sites”. In: 2020 28th European Signal Processing Conference (EUSIPCO). 2021, pp. 810–814.
DOI: 10.23919/Eusipco47968.2020.9287802.

[32] Pablo Gimeno et al. “Multiclass audio segmentation based on recurrent neural networks for broad-
cast domain data”. In: EURASIP Journal on Audio, Speech, and Music Processing 2020.1 (2020),
pp. 1–19.

[33] Chieh-Chi Kao et al. “R-CRNN: Region-based Convolutional Recurrent Neural Network for Audio
Event Detection”. In: arXiv preprint arXiv:1808.06627 (2018).

[34] Kun Fang et al. “A Fall Detection using Sound Technology Based on TinyML”. In: 2021 11th
International Conference on Information Technology in Medicine and Education (ITME). 2021,
pp. 222–225. DOI: 10.1109/ITME53901.2021.00053.

[35] H.R. Sabbella et al. “An Always-On tinyML Acoustic Classifier for Ecological Applications”. In:
2022 IEEE International Symposium on Circuits and Systems (ISCAS). 2022, pp. 2393–2396.
DOI: 10.1109/ISCAS48785.2022.9937827.

[36] Giacomo Peruzzi, Alessandra Galli, and Alessandro Pozzebon. “A Novel Methodology to Re-
motely and Early Diagnose Sleep Bruxism by Leveraging on Audio Signals and Embedded Ma-
chine Learning”. In: 2022 IEEE International Symposium on Measurements Networking (MN).
IEEE. 2022, pp. 1–6.

[37] https://www.cadence.com/en_US/home/tools/silicon-solutions/compute-ip/hifi-dsps/hifi-5.html.
[38] NXP. One Chip Solution: Scalable Audio DSP Processing with AI/ML Capability. https://www.

nxp.com/products/audio-and-radio/audio-processors/one-chip-solution-scalable-
audio- dsp- processing- with- ai- ml- capability:SAF9100. Accessed: [Insert the date of
access here].

[39] Abraham Savitzky and M. J. E. Golay. “Smoothing and Differentiation of Data by Simplified Least
Squares Procedures”. In: Analytical Chemistry 36.8 (1964), pp. 1627–1639. DOI: 10.1021/ac6
0214a047. URL: https://doi.org/10.1021/ac60214a047.

[40] Andrea Mattia Garavagno et al. “Running hardware-aware neural architecture search on em-
bedded devices under 512MB of RAM”. In: 2024 IEEE International Conference on Consumer
Electronics (ICCE). IEEE. 2024, pp. 1–2.

https://doi.org/10.23919/Eusipco47968.2020.9287802
https://doi.org/10.1109/ITME53901.2021.00053
https://doi.org/10.1109/ISCAS48785.2022.9937827
https://www.nxp.com/products/audio-and-radio/audio-processors/one-chip-solution-scalable-audio-dsp-processing-with-ai-ml-capability:SAF9100
https://www.nxp.com/products/audio-and-radio/audio-processors/one-chip-solution-scalable-audio-dsp-processing-with-ai-ml-capability:SAF9100
https://www.nxp.com/products/audio-and-radio/audio-processors/one-chip-solution-scalable-audio-dsp-processing-with-ai-ml-capability:SAF9100
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047

50

A.1. Excerpt of CNN Hyperparameters 51

A
Source Code

A.1. Excerpt of CNN Hyperparameters
loss precision recall accuracy val_loss val_precision val_recall val_accuracy trial_id score

0.951807 0.888405 0.887536 0.888562 0.261431 0.866748 0.775994 0.973854 58 0.973854
0.429042 0.905576 0.902797 0.90479 0.155321 0.858078 0.765414 0.972492 59 0.972492
0.246793 0.921987 0.915073 0.919211 0.134355 0.882537 0.720905 0.971437 13 0.971437
0.229661 0.922212 0.895297 0.910322 0.096505 0.808604 0.809194 0.970881 30 0.970881
0.228701 0.92096 0.912338 0.917417 0.10715 0.88706 0.707771 0.970881 46 0.970881
0.2504 0.910896 0.885661 0.899995 0.092204 0.822248 0.78475 0.970686 11 0.970686
0.226362 0.917684 0.906057 0.912812 0.095702 0.865017 0.727107 0.970575 14 0.970575
0.272813 0.920865 0.916852 0.919419 0.124499 0.784553 0.844947 0.97052 45 0.97052
4.234832 0.877371 0.877099 0.877843 1.189941 0.809138 0.801167 0.970464 41 0.970464
0.315829 0.914306 0.910714 0.913097 0.126469 0.811314 0.79533 0.970325 53 0.970325
0.916987 0.882674 0.881314 0.88265 0.260989 0.797537 0.803356 0.969492 37 0.969492
2.162869 0.859707 0.859819 0.860426 0.54855 0.865264 0.705217 0.969186 19 0.969186
0.197533 0.933105 0.91346 0.924351 0.112304 0.769564 0.843123 0.968825 25 0.968825
0.171743 0.94209 0.923336 0.933609 0.113123 0.807942 0.771981 0.968658 2 0.968658
0.201192 0.933127 0.911621 0.923513 0.113078 0.830731 0.737687 0.968575 22 0.968575
0.882877 0.846505 0.844069 0.846248 0.173136 0.818037 0.751186 0.968325 55 0.968325
3.939658 0.89193 0.89193 0.892448 1.368258 0.80747 0.765049 0.968213 32 0.968213
0.217572 0.922503 0.904206 0.914535 0.102334 0.753346 0.862459 0.968019 0 0.968019
0.169965 0.943622 0.92459 0.934988 0.122661 0.828216 0.728201 0.967797 23 0.967797
4.789254 0.857168 0.857383 0.857943 1.338289 0.806742 0.750821 0.967324 15 0.967324
0.265719 0.911133 0.89021 0.902164 0.116246 0.77292 0.799708 0.966852 33 0.966852
0.254221 0.907562 0.886114 0.89842 0.112306 0.754987 0.82853 0.966463 42 0.966463
0.17364 0.939672 0.921628 0.931559 0.120083 0.778955 0.777818 0.966268 28 0.966268
0.219897 0.923204 0.899656 0.91283 0.116667 0.822052 0.704487 0.965879 36 0.965879
0.223927 0.927876 0.914081 0.921891 0.129539 0.767064 0.7749 0.964935 8 0.964935
0.265922 0.902077 0.878066 0.891896 0.124568 0.711814 0.870485 0.963295 16 0.963295
0.311199 0.883102 0.851413 0.869981 0.128433 0.720697 0.814301 0.961823 29 0.961823
0.24559 0.913857 0.887786 0.90252 0.130644 0.703983 0.851149 0.961406 17 0.961406
0.189622 0.936784 0.923372 0.930864 0.1369 0.723588 0.7946 0.961239 12 0.961239
0.424711 0.865527 0.851998 0.860486 0.134141 0.751121 0.733309 0.961184 56 0.961184
0.231541 0.923351 0.901662 0.913822 0.132899 0.709687 0.82853 0.961128 4 0.961128
0.195552 0.934501 0.91064 0.922891 0.147335 0.691211 0.835618 0.961017 9 0.961017
0.18008 0.941987 0.924558 0.933396 0.125613 0.737566 0.756831 0.960435 1 0.960435
0.198906 0.933346 0.914545 0.924523 0.142131 0.678198 0.877697 0.959866 3 0.959866
0.263022 0.902699 0.883383 0.892796 0.159212 0.686625 0.817761 0.959866 34 0.959866
0.173877 0.939356 0.922301 0.932374 0.128244 0.714674 0.789317 0.959866 57 0.959866
0.267368 0.907384 0.878167 0.892379 0.165396 0.654515 0.831775 0.959756 5 0.959756
0.260633 0.909098 0.890076 0.901419 0.1766 0.66635 0.809908 0.959134 6 0.959134
0.300738 0.897876 0.863184 0.881616 0.186043 0.657722 0.805029 0.959079 24 0.959079
0.256927 0.899326 0.870116 0.88461 0.156426 0.718924 0.732319 0.958744 39 0.958744
0.221079 0.920675 0.894435 0.909444 0.151241 0.736931 0.676301 0.958321 10 0.958321
0.195292 0.93456 0.91258 0.923106 0.184485 0.675114 0.768889 0.957815 7 0.957815
0.346262 0.876019 0.854426 0.865435 0.211005 0.61559 0.778038 0.957682 20 0.957682
0.240675 0.909413 0.890867 0.899412 0.179789 0.672164 0.724306 0.957293 21 0.957293
0.258199 0.906889 0.882056 0.894252 0.175832 0.661491 0.764618 0.957293 35 0.957293
0.345318 0.876024 0.850204 0.864242 0.222736 0.589628 0.815578 0.956986 38 0.956986
0.239486 0.915588 0.896179 0.905314 0.222764 0.605284 0.724664 0.956719 40 0.956719
0.251669 0.914382 0.884674 0.90075 0.203641 0.598104 0.719222 0.95652 43 0.95652
0.227187 0.917664 0.906703 0.912455 0.237379 0.560015 0.802497 0.956155 44 0.956155
0.275167 0.903916 0.879234 0.892641 0.225214 0.587654 0.715842 0.956066 47 0.956066

Table A.1: Performance Metrics for Trials

A.2. Excerpt of FCNN Hyperparameter tuning 52

A.2. Excerpt of FCNN Hyperparameter tuning
trial_id learning_rate optimizer activation filters_1 layers loss precision recall accuracy val_loss val_precision val_recall val_accuracy best_step
3 1.00E-05 sgd relu 224 4 0.1804 0.9466 0.9152 0.932 0.0848 0.8397 0.8453 0.9759 12
0 1.00E-05 rmsprop relu 224 4 0.2587 0.9096 0.9122 0.9116 0.1235 0.8832 0.8496 0.9749 11
9 7.00E-05 adam relu 224 4 0.1657 0.9501 0.9228 0.9375 0.0943 0.8068 0.8599 0.9737 10
11 1.00E-05 adam relu 224 4 0.271 0.9094 0.8685 0.8914 0.0859 0.8956 0.7328 0.9732 3
28 0.0001 adam relu 224 4 0.2066 0.9374 0.8991 0.918 0.1008 0.8273 0.8146 0.9729 5
14 0.0001 adam relu 224 4 0.1948 0.9382 0.9063 0.9237 0.1005 0.7891 0.8687 0.9723 6
8 0.001 adam relu 224 4 0.2059 0.9365 0.9031 0.9212 0.1068 0.7778 0.884 0.9719 3
2 0.001 adam relu 224 4 0.1672 0.9506 0.9221 0.9373 0.1081 0.7723 0.8861 0.9714 7
15 1.00E-05 adam relu 224 4 0.2762 0.9091 0.8644 0.8895 0.0926 0.8998 0.7016 0.9713 8
12 0.001 sgd relu 224 4 0.2845 0.9086 0.8525 0.8839 0.1204 0.8308 0.7701 0.9705 8
30 0.0001 rmsprop relu 224 4 0.1682 0.9465 0.9229 0.9357 0.1013 0.7709 0.8693 0.9704 7
26 0.001 rmsprop relu 224 4 0.1989 0.9372 0.8993 0.9167 0.1184 0.7951 0.8394 0.9703 5
32 0.001 rmsprop relu 224 4 0.2061 0.9371 0.8995 0.9182 0.1184 0.7952 0.8393 0.9702 6
27 0.001 sgd relu 224 4 0.2115 0.9357 0.8967 0.9177 0.1193 0.7962 0.8389 0.97 6
19 7.00E-05 adam relu 224 4 0.3088 0.8954 0.8483 0.8746 0.1128 0.7857 0.7839 0.9671 4
13 0.0001 adam relu 224 4 0.3589 0.8938 0.8821 0.8892 0.1364 0.7933 0.7307 0.965 9
6 0.0001 adam relu 224 4 0.2454 0.9204 0.8824 0.9035 0.1259 0.7259 0.8365 0.9635 11
18 0.0001 rmsprop relu 224 4 0.3217 0.8903 0.8405 0.8691 0.1362 0.7337 0.8044 0.9629 5
5 0.001 sgd relu 224 4 0.3827 0.8577 0.8037 0.8359 0.1448 0.7408 0.7839 0.9627 5
16 7.00E-05 adam relu 224 4 0.197 0.9382 0.9089 0.9249 0.1307 0.7257 0.8204 0.9627 2
17 0.0001 adam relu 224 4 0.2289 0.9242 0.8929 0.9102 0.1382 0.6992 0.8839 0.9622 3
7 0.001 adam relu 224 4 0.2837 0.9067 0.857 0.8849 0.1652 0.6764 0.8423 0.9573 6
1 0.0001 rmsprop relu 224 4 0.2636 0.9163 0.8705 0.896 0.1745 0.634 0.8825 0.9523 7
25 7.00E-05 rmsprop relu 224 4 0.2604 0.9238 0.8622 0.8926 0.1483 0.6321 0.883 0.9523 4
22 1.00E-05 rmsprop relu 224 4 0.2644 0.9235 0.8633 0.8931 0.1486 0.6323 0.8832 0.9521 4
24 0.001 sgd relu 224 4 0.2363 0.9289 0.8774 0.8991 0.1734 0.6421 0.882 0.9514 7
23 7.00E-05 adam relu 224 4 0.2687 0.9211 0.8612 0.8926 0.1747 0.6422 0.8811 0.9512 8
31 0.0001 adam relu 224 4 0.2652 0.9253 0.8678 0.8975 0.1485 0.6237 0.882 0.9508 4
20 1.00E-05 adam relu 224 4 0.2333 0.9301 0.8891 0.9059 0.1493 0.662 0.859 0.9473 6
21 0.0001 adam relu 224 4 0.2488 0.9289 0.8705 0.8971 0.1784 0.6215 0.8818 0.9458 7
29 7.00E-05 adam relu 224 4 0.2491 0.9294 0.8705 0.8969 0.1783 0.6217 0.8819 0.9456 8
10 1.00E-05 adam relu 224 4 0.3037 0.8961 0.8832 0.8909 0.2014 0.5531 0.8147 0.9358 7
4 0.0001 rmsprop relu 224 4 0.8037 0.5093 0.9229 0.5189 0.675 0.7309 0.0139 0.9245 20
38 0.001 sgd leaky_relu 168 6 0.1859 0.9437 0.9123 0.9293 0.1184 0.7519 0.8649 0.968 5
39 1.00E-05 adam leaky_relu 176 1 0.5541 0.8611 0.8559 0.8596 0.587 0.3161 0.8423 0.8492 11
40 0.001 adam relu 40 7 0.2006 0.9394 0.9054 0.9239 0.1185 0.7957 0.8328 0.971 5
41 0.0001 sgd tanh 96 2 0.3964 0.8589 0.7931 0.8322 0.3068 0.437 0.8387 0.9055 10
42 7.00E-05 rmsprop tanh 168 3 0.263 0.9137 0.8721 0.8954 0.1081 0.8149 0.8161 0.9719 3
43 7.00E-05 adam leaky_relu 240 9 0.2052 0.937 0.9028 0.9214 0.0903 0.8089 0.8869 0.9754 1
44 0.001 rmsprop leaky_relu 88 8 0.235 0.9239 0.8945 0.9108 0.1204 0.746 0.8102 0.9645 4
45 0.001 sgd leaky_relu 8 9 0.4247 0.842 0.7694 0.8134 0.2654 0.5249 0.8153 0.9298 4
46 7.00E-05 adam leaky_relu 248 1 0.1941 0.9345 0.9235 0.9297 0.2095 0.5518 0.8394 0.9359 8
47 0.001 sgd relu 184 8 0.2106 0.9347 0.8981 0.918 0.1008 0.8273 0.8146 0.9729 5
48 7.00E-05 sgd relu 184 3 0.2587 0.9096 0.8827 0.898 0.1398 0.6686 0.7759 0.9537 8
49 0.0001 rmsprop tanh 216 9 0.1682 0.9465 0.9229 0.9357 0.1013 0.7709 0.8693 0.9704 7
50 0.001 sgd leaky_relu 48 5 0.2471 0.9195 0.8804 0.9021 0.1374 0.7077 0.8555 0.9621 6

Table A.2: FCNN architectures hyperparameter tuning

A.3. Excerpt of LSTM hyperparameter tuning
val_loss val_precision val_recall val_accuracy trial_id score best_step learning_rate optimizer lstm_units
0.051 0.905 0.906 0.986 00013 0.962 9 0.0001 rmsprop 120, 120
0.057 0.914 0.870 0.984 00333 0.914 8 0.0001 rmsprop 120, 64
0.058 0.903 0.879 0.984 00431 0.903 10 0.0001 rmsprop 112, 40
0.059 0.925 0.830 0.982 00100 0.925 6 0.001 rmsprop 64, 44
0.062 0.894 0.882 0.983 00091 0.894 8 0.0001 rmsprop 128, 48
0.063 0.911 0.867 0.983 00424 0.911 4 0.0001 rmsprop 88, 88
0.063 0.915 0.868 0.984 00280 0.915 3 0.001 rmsprop 120, 72
0.064 0.956 0.815 0.983 00112 0.956 7 0.0001 rmsprop 112, 80
0.064 0.892 0.878 0.983 00208 0.892 7 0.00007 rmsprop 72, 120
0.064 0.916 0.845 0.982 00332 0.916 7 0.00007 rmsprop 88, 76
0.064 0.923 0.843 0.983 00432 0.923 3 0.00007 rmsprop 104, 120
0.064 0.935 0.816 0.982 00413 0.935 5 0.0001 rmsprop 88, 124
0.064 0.904 0.858 0.982 00278 0.904 3 0.001 rmsprop 88, 52
0.064 0.876 0.911 0.983 00312 0.876 9 0.0001 adam 80, 80
0.065 0.887 0.885 0.983 00209 0.887 10 0.00007 rmsprop 88, 60
0.065 0.909 0.871 0.984 00289 0.909 6 0.00007 rmsprop 96, 104
0.065 0.869 0.899 0.982 00394 0.869 7 0.0001 adam 128, 80
0.065 0.846 0.907 0.980 00027 0.846 11 0.0001 rmsprop 40, 116
0.066 0.899 0.887 0.984 00068 0.899 6 0.0001 rmsprop 120, 88
0.066 0.884 0.871 0.981 00002 0.884 5 0.001 adam 80, 88
0.066 0.893 0.874 0.982 00484 0.893 9 0.001 rmsprop 88, 36
0.066 0.876 0.900 0.983 00472 0.876 7 0.001 rmsprop 80, 32
0.067 0.893 0.873 0.982 00343 0.893 4 0.0001 rmsprop 96, 96
0.067 0.876 0.875 0.981 00235 0.876 7 0.00007 rmsprop 104, 128
0.067 0.865 0.887 0.981 00030 0.865 6 0.001 adam 64, 128
0.067 0.868 0.894 0.981 00166 0.868 5 0.0001 rmsprop 72, 108
0.069 0.874 0.883 0.981 00342 0.874 11 0.0001 rmsprop 48, 36
0.069 0.874 0.894 0.982 00102 0.874 4 0.0001 adam 96, 80
0.069 0.881 0.872 0.981 00340 0.881 3 0.001 rmsprop 120, 64
0.069 0.834 0.933 0.981 00109 0.834 14 0.001 adam 40, 116

Table A.3: Excerpt of best 75, for LSTM table

A.4. Architectures of the final models compared in Chapter 5 Section 3 53

A.4. Architectures of the final models compared in Chapter 5 Sec-
tion 3

Layer (type) Output Shape Param #
reshape (Reshape) (None, 99, 80, 1) 0
depthwise_conv2d (DepthwiseConv2D) (None, 99, 80, 224) 2240
max_pooling2d (MaxPooling2D) (None, 49, 40, 224) 0
dropout (Dropout) (None, 49, 40, 224) 0
flatten (Flatten) (None, 439040) 0
dense (Dense) (None, 1) 439041
Total params: 441281 (1.68 MB)
Trainable params: 441281 (1.68 MB)
Non-trainable params: 0 (0.00 Byte)

Table A.4: Model Summary of 1 layer CNN

Layer (type) Output Shape Param #
reshape (Reshape) (None, 99, 80, 1) 0
conv2d (Conv2D) (None, 97, 78, 224) 2240
max_pooling2d (MaxPooling2D) (None, 48, 39, 224) 0
conv2d_1 (Conv2D) (None, 46, 37, 224) 451808
max_pooling2d_1 (MaxPooling2D) (None, 23, 18, 224) 0
conv2d_2 (Conv2D) (None, 21, 16, 224) 451808
max_pooling2d_2 (MaxPooling2D) (None, 10, 8, 224) 0
flatten (Flatten) (None, 17920) 0
dense (Dense) (None, 128) 2293888
dropout (Dropout) (None, 128) 0
dense_1 (Dense) (None, 1) 129
Total params: 3199873 (12.21 MB)
Trainable params: 3199873 (12.21 MB)
Non-trainable params: 0 (0.00 Byte)

Table A.5: Model Summary of 3 layer CNN

A.4. Architectures of the final models compared in Chapter 5 Section 3 54

Layer (type) Output Shape Param #
dense (Dense) (None, 99, 224) 18144
dense_1 (Dense) (None, 99, 224) 50400
dense_2 (Dense) (None, 99, 224) 50400
dense_3 (Dense) (None, 99, 224) 50400
flatten (Flatten) (None, 22176) 0
dense_4 (Dense) (None, 1) 22177
Total params: 191521 (748.13 KB)
Trainable params: 191521 (748.13 KB)
Non-trainable params: 0 (0.00 Byte)

Table A.6: Model Summary of 4 layer FCNN

Layer (type) Output Shape Param #
dense (Dense) (None, 99, 224) 18144
dense_1 (Dense) (None, 99, 224) 50400
dense_2 (Dense) (None, 99, 224) 50400
dense_3 (Dense) (None, 99, 224) 50400
dense_4 (Dense) (None, 99, 224) 50400
dense_5 (Dense) (None, 99, 224) 50400
dense_6 (Dense) (None, 99, 224) 50400
dense_7 (Dense) (None, 99, 224) 50400
dense_8 (Dense) (None, 99, 224) 50400
dense_9 (Dense) (None, 99, 224) 50400
flatten (Flatten) (None, 22176) 0
dense_10 (Dense) (None, 1) 22177
Total params: 493921 (1.88 MB)
Trainable params: 493921 (1.88 MB)
Non-trainable params: 0 (0.00 Byte)

Table A.7: Model Summary of 9 layer FCNN

A.4. Architectures of the final models compared in Chapter 5 Section 3 55

Layer (type) Output Shape Param #
input_1 (InputLayer) [(None, None, 80)] 0
lstm (LSTM) (None, None, 120) 96480
dropout (Dropout) (None, None, 120) 0
lstm_1 (LSTM) (None, None, 120) 115680
lstm_2 (LSTM) (None, 32) 19584
output (Dense) (None, 1) 33
Total params: 231777 (905.38 KB)
Trainable params: 231777 (905.38 KB)
Non-trainable params: 0 (0.00 Byte)

Table A.8: Model Summary of Finalised LSTM architecture

	Preface
	Summary
	Nomenclature
	Introduction
	Requirements
	Functional Requirements
	Non-Functional

	Background and Related Work
	Audio Event Detection
	Spectrogram
	Mel-Spectrogram
	 Mel Frequency Cepstral Coefficients (MFCC)
	Gamma tone frequency cepstral coefficients (GFCC or GTCC)
	Linear Predictive Coding (LPC)
	Wavelet Transform
	Deep Learning-based audio feature extraction

	Deep Learning models considered in Acoustic Event Detection (AED)
	Convolutional Neural Networks (CNN)
	Fully Connected Networks (FCN)
	Recurrent Neural Networks (RNN)
	Convolutional Recurrent Neural Networks (CRNNs)

	Audio-based embedded AI solutions
	Challenges and Gaps

	Design Methodology
	Data Gathering
	Feature Extraction
	Model Deployment
	Post Processing

	Design and Implementation
	Step 1 - Data Overview
	Siren Datasets
	Urban Noise Datasets
	 Data Augmentation

	Step 2 - Detailed Feature Extraction Process
	 Step 3 - Identification of optimal architecture
	 FCNN
	 CNN
	LSTM

	Step 4 - Post-processing strategies
	Simple Thresholding
	Energy-Based Detection
	Window-Based Detection
	Savitzky-Golay Filter
	Adaptive Thresholding
	Majority Voting
	Median Filter

	Evaluation
	Training procedure
	Impact of Hyper-parameter tuning
	Impact of Quantization
	Impact of Window size
	Impact of Frequency bins
	Evaluation of Existing Neural Architecture Search (NAS)
	 Final System Evaluation: Satisfying Requirements
	Evaluation of different post-processing strategies
	Tolerance to SNRS, latency tests
	False positives test
	Overall Evaluation of Postprocessing Strategies
	SNR breaking point stress test

	Conclusion and Future Work
	Evaluation of Satisfying NXP requirements
	Future Work
	Deployment and Field Testing
	Integration of Transformers
	Multi-Modal Detection Systems
	Improvements in TFLite Micro
	Enhanced Quantization Techniques
	Calibration

	References
	Source Code
	Excerpt of CNN Hyperparameters
	Excerpt of FCNN Hyperparameter tuning
	Excerpt of LSTM hyperparameter tuning
	Architectures of the final models compared in Chapter 5 Section 3

