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Abstract

Procedural Content Generation (PCG) is a powerful content generation technique
that can be used to automatically generate content (an example would be exercises for a
quiz or a game). As it stands, PCG is able to create content with zero human interaction
which makes it a technique worth exploring for educational purposes. In the context
of PCG, this research focuses on how PCG is used to orchestrate the simultaneous
generation of content of various types and identify what could be done more, possibly
towards educational use. The method chosen for this research is literature review. As
such, this paper provides a summary of "orchestrative" PCG approaches found in recent
literature and evaluates said approaches through the lens of "PCG for education".
Findings are presented in an exhaustive manner with each piece of literature occupying
a subsection. A discussion section that explores how these approaches could benefit
education and/or what could be done to facilitate that is also present.

1 Introduction
Procedural content generation (PCG) is an automated content generation technique in which
a "content" (a common example would be exercises for a math quiz/game [1]) is created
by a computer automatically, as opposed to the content coming together through manual
contributions. PCG is able to produce content with limited-to-none human interaction which
makes it an interesting and useful technique for educational use. However, the details of the
technique itself and how to actually use it to make education better is mostly unexplored
territory. This area of research shows great importance because if PCG is able to improve
the quality of educational content, that would positively impact millions of people around
the world. Considering "PCG for education" as an umbrella term, this research focuses on
how PCG is used to "orchestrate" the simultaneous generation of content of various types
and what has been achieved so far. Here, the word orchestrating refers to the process of
combining two or more procedural content generators in some way to generate content (up
to a complete game) [2].

The main method of this research is literature review and the paper aims to provide
a detailed summary answering (the research question) "What has been achieved so far
orchestrating the simultaneous generation of content of various types?" and the following
sub-questions:

• Which methods are used in the industry when implementing PCG that orchestrate
the simultaneous generation of content?

• How or why is PCG used to orchestrate the generation of multiple types of content?
Is it preferred over other alternatives?

• What are the similarities/differences between applications of PCG that orchestrate
the generation of a game? Based on these, are there implementations of PCG that are
better/worse?

The paper follows a conventional structure, starting with this introduction. The next
section elaborates on the methodology of the research as well as necessary background
information. Sections 3 to 6 each contain a different set of papers and they talk about
the relevant literature through the lens of education in an attempt to organize the papers
based on their similarities & differences. Section 7 provides a recap of the most important
literature included in the previous sections and talks about what has been done so far in
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terms of orchestrating the generation of educational content & what could be done more
(possibly with inspirations from other domains). Section 8 talks about the ethical aspects
of the research. The next section is the last one before the references and it summarizes the
conclusions of the research.

2 Background Information & Methodology
The usage of PCG for educational purposes has been mostly focused on automatically gen-
erating exercises or questions for educational games (such as games aimed at teaching math-
ematics [1], programming [3] and English [4] etc.). Note that the mentioned papers do not
apply PCG in a way to orchestrate multiple types of content. Most examples of orches-
tration using PCG is outside the educational domain (simultaneously generating levels and
their soundtracks based on a "tension progression" [5], automatically creating missions and
spaces for them [6]).

The aim of this research is to investigate the current state of PCG in educational ap-
plications through a comprehensive literature review. By reviewing existing literature and
examining industry practices/applications, this study also attempts to identify the methods
& processes used to orchestrate the simultaneous generation of content of various types and
how can those be used to improve education.

2.1 Literature Review Methodology
The literature review process of this research is outlined below:

• Identifying sources (databases): For searching existing literature and relevant papers,
databases such as Google Scholar, IEEE Xplore and ACM were used. These are some
examples (not an exhaustive list) of search keywords used on said databases: "PCG in
education", "Procedural content generation in education", "PCG AND orchestration",
"Procedural content generation AND full games".

• Inclusion/Exclusion criteria: Sources/papers which discussed PCG in the domain of
education and/or demonstrated an application of orchestration of content using PCG
were considered relevant. Papers which mention PCG but do not provide details on
how it was implemented or papers that were not peer-reviewed were excluded.

• Processing: For filtering, tagging and grouping the papers found, Zotero was utilized.
The relevancy of each source was re-evaluated.

• Analysis: The content of each paper that remained after the previous step was studied
closely and relevant information was extracted. The data was organized in order
to identify patterns, similarities and differences between different implementations of
PCG. A table was created which shows the occurrences of various PCG methods in
different sources.

3 Orchestration of educational content
This section and the following few sections (4, 5 and 6) present the literature that was
considered "relevant" as described in the previous chapter. This section contains the lit-
erature that applies PCG orchestration in an educational context. The next section talks
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about why examining PCG orchestration approaches for games could be useful and follows
a paper which provides key information regarding the orchestration process in games as well
as some case studies. The following 2 sections (5 and 6) each talk about a different set of
papers that are clustered together based on the method of PCG used to orchestrate the
generation of game facets. Note that each "orchestrative" implementation of PCG will be
analyzed through the lens of education. Finally, a table is provided at the end which shows
the similarities & differences between all of the literature presented throughout this chapter.

The PCG orchestration applications shown in this section orchestrate the generation of
content directly for educational purposes. For clarification, a research needs to satisfy 2
properties to be included here: It should orchestrate the generation of content (combining
multiple generators in some form) and the application should be within the educational
domain.

3.1 Procedural generation of problems for elementary math educa-
tion

Xu et al. (2021) presented an approach that is able to procedurally generate elementary
math problems. Their question generator takes a Knowledge Component (KC) as input
(example KCs and their respective abstract forms are shown in Figure 1) that is used to
generate an abstract math problem as the first step [7]. Then, the generated abstract
problem is processed by 3 other generators which are described below:

• Distractor Generation: This generator generates "distractors" (wrong answers) for the
generated question. To achieve this, Xu et al. (2021) analyzed the common mistakes
students would do on fill-in-blank arithmetic problems and used this information to
create distractor generation rules. As an example: If the common mistake is identified
as "correct operation but wrong calculation" the distractor generator rule would be
"generate distractors similar to the correct answer" [7].

• Textual Content Generation: The text generation process consists of 4 steps. The
first one is to create a "logic schema" using the abstract math problem which basically
defines the entities (like a person or X amount of apples etc.) that are going to appear
in the question text and the relationships between them. The next step is lexicalization
which is responsible for assigning actual words (choosing from the candidate words)
to the linguistic variables. The third step is to fully generate the sentence to be shown
as the question text and this is achieved by matching the logic schema with a pre-
determined syntactic sentence template based on the schema entities and relations.
Said syntactic template generates the sentence using a context-free grammar [7]. The
final step is post-processing which aims to improve the quality of the text and possibly
fix grammar mistakes. An example sentence generation is shown in Figure 2.

• Visual Content Generation: This generator is the simplest of the 3 modules, it just
retrieves images that are thematically-related to the generated question text from a
large database.

The PCG orchestration approach presented here is highly valuable from an educational
standpoint. It is able to generate a large number of math problems with a suitable text and
a visual as well as meaningful distractors while requiring close-to-none human interaction.
Moreover, this research is one of the few researches which aim to automate the generation
of exercises/questions similar to actual exercises prepared by humans. In that sense, it is
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Figure 1: Knowledge Component examples and their abstract forms [7]

Figure 2: Example sentence generation [7]

inspirational for the future researches given that it lays out a detailed approach on how to
actually orchestrate the generation of different facets of a question.

3.2 The Effects of Mathematics Game-based Learning with Ran-
dom Maze Generation

Lifindra et al. (2023) conducted an experiment to observe the effects of game-based math-
ematics learning using a game consisting of randomly generated mazes. The approach
involved procedurally generating mazes using a recursive backtracking algorithm and ran-
domly putting "locks" between the rooms of the maze [8] which would ask the player an
algebra question. The goal of the game was to find a ball which was randomly placed in the
maze. The questions were generated using simple algebraic question templates and substi-
tuting random numbers to the variables in the said templates. Figure 3 shows the questions
implemented within the game.

As illustrated, the orchestration approach presented here is simple and unsophisticated
(both in terms of the generated mazes and questions). Nevertheless, according to the results
of the experiment, using this maze game in teaching maths could provide a better learning
experience than relying solely on traditional teaching methods [8]. This research goes to
show that even highly straightforward and unsophisticated PCG approaches like this one
could prove to be useful for education.
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Figure 3: Question examples [8]

Figure 4: Creative facets of games [2]

4 Orchestration of game facets
Given that the applications of PCG orchestration in an educational context are limited, it
makes sense to examine the orchestration approaches outside the educational domain and
possibly determine if said approaches could be useful for education in some form. To that
end, it seems appropriate to look at PCG orchestration techniques developed for games for
the following reasons:

• a lot of research has been done about how PCG can be used for games

• same techniques could also be useful for educational games

As such, the literature presented in this section and the following 2 sections was picked
such that it has PCG implementations acting on multiple creative facets of games and
attempts to orchestrate the generation of content. Figure 4 shows the different facets of
games which are: Audio, Visuals, Levels, Rules, Gameplay and Narrative.

Figure 4 is taken from the paper Orchestrating Game Generation by Liapis et al. (2019)
[2] which talks about the orchestration process (for games) in-depth: the facets of games to
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be orchestrated, different approaches of how orchestration can be performed, the inputs &
outputs of the orchestration process as well as various case studies (games that have PCG
implementations acting on multiple facets). The approaches which could be considered
useful for education among those case studies are discussed below.

4.1 Game-O-Matic

Game-O-Matic is a game generator that takes a small-scale narrative as input and tries to
generate an arcade game based on it [9]. The narrative is used to generate rules and the
(single) level of the game. According to Liapis et al. (2019), Game-O-Matic is mainly
intended for journalists so that they can automatically and quickly create news-games [2]
which can provide more context to the public about some news in an entertaining way. This
PCG method could prove itself useful for education: Given that it is able to transform a
short narrative into a playable simulation, it could be used (for example) to turn elementary
mathematics or physics problems for children into simulations which would help teach simple
concepts in an entertaining manner.

4.2 Data Adventures

Data Adventures aims to create adventure games using open access data to generate the
game components. It utilizes Wikipedia articles to create a story (narrative) that’s based
on "real" people and searches for images on the internet based on the article titles. Levels
of the game are generated with the help of OpenStreetMap and they are real locations
all around the world [10]. In terms of education, Data Adventures could be useful for
teaching basic geography or history in a fun way. As an example, with small changes to the
implementation, every level could be an exercise that asks about a known figure in history
while automatically showing visuals of other people or pictures of places that’s related as
hints.

4.3 AudioInSpace

AudioInSpace is a unique space shooter which utilizes 2 compositional pattern producing
networks (CPPNs) to facilitate the bi-directional connection between the audio and the rules
of the game. The first CPPN takes the audio’s current pitch information and the position
of the bullets as input which allows the audio facet to indirectly control the trajectory &
color of the players’ bullets (rules facet). The other CPPN inputs are the position where
the bullet was fired, the time passed after firing, whether it hit an enemy and its color [11].
As such, the players are able to influence the audio with their firing behavior (gameplay),
forming a loop in which the player influences the audio and the audio affects the rules &
changes the visuals of the game. Admittedly, it is unclear how the method of PCG utilized
in AudioInSpace could be useful for education. Nevertheless, it is presented here because
of the unique pattern of orchestration (a loop where the player can influence the audio &
visuals via their gameplay and vice versa).

4.4 Mechanic Miner

Mechanic Miner makes small tweaks to an existing source code in order to change the rules
of the game and then procedurally generates new levels with the updated ruleset. The
playability of the generated levels are tested with the help of an agent performing random
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actions [12]. From an education perspective, this pattern of orchestration could be used
to tweak values in pre-written questions/exercises to automatically generate similar ones.
However, testing the validity (whether it is solvable or not) of the new exercises could prove
to be a challenge given that trying random actions won’t result in a valid solution.

5 Orchestration using generative grammars
The PCG approaches presented in this section utilize one or more generative grammar(s) in
some form to orchestrate the generation of content. A generative grammar typically has a
set of rules and an alphabet (set of symbols like "a" or "B" which are used to create the rules
of the grammar). The rules dictate how words can be derived and in general they are shown
in the following form: S → ab which means the symbol "S" can be replaced with the string
"ab". Generative grammars could be used to describe games if symbols in the alphabet are
used to represent game-specific concepts (for example: obstacle, enemy, collectable) and the
rules of the grammar are used to define appropriate ways of combining said concepts [6].

5.1 Adventures in level design: generating missions and spaces for
action adventure games

One of the earlier examples of using generative grammars to orchestrate game facets was
demonstrated by Dormans (2010) [6]. This paper uses graph grammars as the basis of its
approach to PCG. A graph grammar is a special form of a generative grammar in which
the alphabet of the grammar consists of nodes and edges connecting the nodes (essentially,
graph components) instead of plain characters. Similarly, graph grammars produce graphs
(one or more nodes connected with zero or more edges) instead of words. Dormans (2010)
claims that graph grammars are well suited to generate missions ("the series of tasks the
player needs to complete in order to reach the end of the level" as defined in the same paper)
because of their non-linear nature [6].

This paper performs orchestration with the help of another type of generative grammar:
shape grammars. Shape grammars have shapes instead of characters or graph components
as their alphabet and define appropriate ways of replacing/combining said shapes with the
help of their rules. The unique part of this PCG approach is that Dormans (2010) uses
shape grammars to generate space (the geometrical lay-out of the level) that is suitable for
a given mission. In other words, this paper aims to automate the generation of levels by
generating random missions via graph grammars and then automatically generating level
lay-outs (spaces) that are suitable to the generated missions. It can be observed that in this
orchestration pipeline, the narrative facet of the game (missions) influence the level facet
(spaces).

Even though this approach to PCG orchestration is not relevant from an educational
standpoint, it was presented here because it is one of the first examples of using generative
grammars to orchestrate the generation of content. Moreover, it also demonstrates using a
graph grammar in combination with some other technique (in this case shape grammars) to
perform orchestration and that is a popular approach which shows itself in nearly all papers
included in this subsection.
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5.2 Mixed-Initiative Design of Game Levels: Integrating Mission
and Space into Level Generation

Karavolos, Bouwer and Bidarra (2015) present an approach utilizing the "Ludoscope"
tool, which is a mixed-initiative design tool that aims to help the generation by making a
model of the design process [13]. Ludoscope tries to break down the generation process into
smaller executable modules and each module either receives input from/gives output to one
another. The level generation process starts by the designer providing an initial graph as
input to Ludoscope. The tool provides an example graph and the designer has the ability
to add/remove nodes and make/break connections (edges) on this graph. This initial graph
is then processed through multiple modules (note that the order of the modules/operations
are also defined by the designer) to generate an action graph which can be fine-tuned. The
nodes in the resulting graph are all terminal nodes and loosely correspond to rooms in the
level [13]. Finally, the action graph is transformed into a level by a layout solver.

Similar to the one presented in the previous subsection, this approach also aims to use
the narrative facet in the level generation process. The difference between them is that for
this research, the missions (narrative) are generated based on both a generative grammar
(human input) and Ludoscope whereas the previous research generated random missions
just using graph grammars. In short, Ludoscope aims to grant more control to the designers
and makes it easier for them to guide the orchestration process since everything is separated
into executable modules. From an educational standpoint, Ludoscope could be useful if the
aim of the orchestration approach is education. As an example, assume that the initial input
to the tool was a generative grammar that generates some sort of puzzle/exercise/question.
The designer would be able to easily look at different variations of the exercise (between/after
operations) and compare them with the help of Ludoscope’s modular nature.

5.3 Graph grammar-based controllable generation of puzzles for a
learning game about parallel programming

This paper is slightly different than the rest of the literature presented in this section since
it applies orchestration of content directly for an educational purpose. I just chose to
present it here instead of Section 3 because of clarity seasons, given that it uses graph
grammars to generate content. The aim of this approach is designing a PCG system that is
capable of generating a variety of solvable programming puzzles that satisfy given set of input
parameters [14]. The implementation utilizes 4 different graph grammars consecutively,
which are outlined below:

• Puzzle Outline: Generates the overall structure of the puzzle.

• Challenges: Converts the "challenge" nodes in the graph to actual challenges. It also
dictates which programming concepts are going to be featured in the puzzle.

• Refinements: Refines the structure of the graph & ensures that the tracks (lines of
execution) are properly connected.

• Solution Removal: Removes a set of nodes from the graph to create a puzzle (otherwise
it’s a solved puzzle). This grammar also sets the difficulty of the puzzle.

The resulting graph is embedded into a 2D grid that will be used to display the puzzle
in-game.
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As illustrated, this approach performs the orchestration of programming puzzles for an
educational game using 4 different generative graph grammars. Each graph grammar is
responsible for a different set of operations (like which programming concepts are going to
show up in the puzzle or the overall difficulty & complexity) which makes it easier to control
the desired aspects of the puzzle. In terms of education, the research is a highly valuable
contribution to literature: It shows that it is possible to generate a variety of solvable
exercises using generative graph grammars.

5.4 Graph-based generation of action-adventure dungeon levels us-
ing answer set programming

Smith, Padget and Vidler (2018) used Answer Set Programming (ASP) with a graph
grammar to generate graph models for action-adventure dungeon levels (similar to Zelda
[15]). ASP is a declarative logic programming approach that aims to help at modelling
constrained combinatorial search problems, as defined in the same paper. Smith, Padget
and Vidler (2018) also mention that they used the approach laid out by Smith and
Mateas (2011) [16] to model the design space. Said approach is able to model content
generation problems as ASP logic programs which result in answer sets that each represent
a single instance of valid content [15]. In short, there are 3 types of rules that guide the
generation of nodes and the overall graph structure:

• choice rules that generate a selection of available nodes which form the design space

• deduction rules that deduce additional necessary nodes/edges

• integrity constraints that forbid undesirable outcomes to constrain the design space

Similarly to the literature explored before, the graphs generated by ASP are transformed
into playable levels by a layout solver.

From an orchestration perspective, this approach is not that interesting given that it
still (similar to most approaches seen before in this section) aims to generate levels using a
narrative generated by a graph grammar. From an educational perspective, it might prove
to be useful in the future since Smith, Padget and Vidler claim that using ASP enabled
them to easily target the desired areas of the design space while being able to satisfy hard
gameplay/level-design constraints [15]. For example, if the underlying graph grammar was
designed to produce exercises then with the help of ASP it would be easier to adapt the
difficulty (targeting desired areas of the design space) and generate exercises that are both
similar to each other & valid (satisfying hard constraints).

6 Orchestration using machine learning
The PCG approaches presented in this section utilize some kind of machine learning/deep
learning technique to help orchestrate the generation of game facets. Naturally, machine
learning techniques often require large amounts of data for training. For the first piece
of literature that’s included in this section, said training data is gathered through manual
testing in combination with a questionnaire. The remaining 2 papers generated their datasets
randomly with the help of artificial agents.

9



6.1 An experiment on game facet combination

Prager et al. (2019) experimented with a maze runner game on 4 different audiovisual
setting combinations to observe their perceived effects on players. The settings consist of
2 homogeneous and 2 heterogeneous audiovisual combinations: (happy, happy), (horror,
horror) and (happy, horror), (horror, happy). Prager et al. (2019) experimented with 20
people for this research and asked them to compare different setting combinations as more,
less or same based on 2 metrics: fun and difficulty [17]. According to the results of the
questionnaire, the players perceived homogeneous audiovisual settings as more fun and less
difficult to complete compared to heterogeneous combinations. The authors also observed
that the players self-reported having higher arousal (strong emotions like joy, laughter or
stress, fear [17]) when playing with homogeneous audiovisual settings.

Prager et al. (2019) also applied pairwise preference learning using Support Vector
Machines (SVM) to see if the arousal effect of different facet combinations on a player can
be modeled. They found out that the homogeneous audiovisual settings can be modeled
with a higher accuracy compared to heterogeneous combinations. Another observation they
made was that the audio facet seemed to be more powerful in terms of predictive modeling
than the visual facet[17].

This research explores the effects of game facet orchestration (specifically audio and
visual) on players, assuming a machine learning approach. The insights gathered by Prager
et al. (2019) are highly valuable for the improvement of PCG because said insights are
needed in order to orchestrate the generation of game facets in a way that is perceived as
"fun" by the players. Same insights could also be used to compare different orchestration
approaches for an educational game to observe which approach is more enjoyable for the
players.

6.2 A multi-faceted surrogate model for search-based procedural con-
tent generation

Karavolos, Liapis and Yannakakis (2019) developed an approach that uses deep learning
to create a surrogate model which is able to assess the fitness of a level and 2 characters for
a one-versus-one First Person Shooter (FPS) game. The dataset used to train the model
consists of randomly generated levels and 2 character classes (one for each player). The
class-level-class pairings were simulated with the help of artificial agents [18] and 2 types of
gameplay outcomes were recorded: kill ratio (the ratio of the first player’s kills to total kills)
and the duration of the match. They then trained a Convolutional Neural Network (CNN)
that takes the level and 2 character classes as its input and tries to predict the mentioned
gameplay outcomes. Note that the purpose of this surrogate model is to solely evaluate
possible class-level-class combinations. For actually generating the facets of the game (the
level and 2 character classes) an evolutionary algorithm is used. The initial population of
the evolutionary algorithm is based on human designs [18].

As a recap, this research proposes a surrogate model that is able to map a certain
level (level facet) and 2 character class (rules facet) combination to its gameplay outcome
(gameplay facet). The model is used to evaluate candidate combinations generated by
an evolutionary algorithm. Karavolos, Liapis and Yannakakis (2019) claim that their
model could be used to adjust human designs towards desired gameplay outcomes.

Even though this research does not have direct educational applications, it was included
here thanks to its uniqueness. The research shows that it is possible to "model" a certain
game facet orchestration approach and evaluate the fitness of said approach. Moreover, the
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orchestration pipeline presented in this paper (random generation of facets → simulation →
training the CNN to predict gameplay outcome) is inspiring for education because it can be
translated to generate educational content apart from the simulation step. Using artificial
agents which perform random actions to simulate an FPS game is perfectly fine, however,
it would not be ideal (nor sufficient) for simulating most educational material like exercises,
questions or visuals. From an education perspective, it makes the most sense to use human
input for simulating (evaluating) randomly generated educational material but doing that
would defeat the purpose of using PCG in the first place.

6.3 SuSketch: Surrogate Models of Gameplay as a Design Assis-
tant

Migkotzidis and Liapis (2021) applied the framework presented in the previous section
to SuSketch which is a mixed-initiative design tool. The bulk of the surrogate model imple-
mentation is the same:

• the model is trained using a randomly generated class-level-class combination dataset
for the same FPS game

• levels are simulated with the help of artificial agents

• a CNN is trained to predict the gameplay outcomes using the level and character
classes as its input

The part that is unique to this approach is the gameplay outcomes. Instead of using the kill
ratio and the match duration to express the gameplay outcomes, Migkotzidis and Liapis
(2021) introduced 3 new metrics: Death Heatmap (DH), Dramatic Arc (DA) and Combat
Pacing (CP) [19]. DH (as its name would suggest) shows a heat map of player deaths by
dividing the level into 4x4 cells. DA is similar to kill ratio, however, it’s computed more
than once for specific points in time rather than calculating it once in the end. Finally, CP
counts the number of kills scored in a specific time interval to capture high-action moments.

In terms of educational applicability, this research is slightly better compared to the
previous one. The main difference between the two implementations is that the previous
research used the surrogate model to evaluate the combinations generated by the evolution-
ary algorithm. Here, it is used to help SuSketch generate suggestions for the designer in
the form of alternative class pairings and power-up placements [19]. From an educational
standpoint, this approach is more suitable since it aims to use the model to help the human
designer whereas the previous approach used the model to (essentially) improve the evolu-
tionary algorithm.

Table 1 summarizes all of the PCG orchestration approaches explored in this section as
well as their educational applicability (which is the last column denoted with "E"). The
rest of the columns represent the type of content generated by the approach which are the
same as the game facets discussed in Section 4 (Visuals, Audio, Narrative, Gameplay, Rules,
Levels). A "P" pertains to partial generation of that type or that the approach is partially
useful for/applicable to education.

11



Author V A N G R L E
Xu et al. X - X - - - X

Lifindra et al. - - - - P X X
Game-O-Matic, Treanor et al. (2012) X - P - X P P
Data Adventures, Green et al. (2018) X - X - - P P
AudioInSpace, Hoover et al. (2015) X X - - P - -
Mechanic Miner, Cook et al. (2013) - - - P X X P

Dormans (2010) - - X - - X -
Karavolos, Bouwer and Bidarra (2015) - - X - - X P

Valls-Vargas et al. (2017) P - - - - X X
Smith, Padget and Vidler (2018) - - X - - X P

Prager et al. (2019) X X - - - - P
Karavolos, Liapis and Yannakakis (2019) - - - X X X -

Migkotzidis and Liapis (2021) - - - X X X -

Table 1: Orchestration approaches

7 Discussion
The previous sections presented various PCG orchestration approaches with differing levels
of educational applicability. Based on the approaches reviewed, this section discusses the
types of educational content which can be generated together and determine if doing so
would be advantageous from an educational perspective.

As illustrated in Section 3, Xu et al. (2021) developed an approach that is able to
generate a large number of elementary math problems with essentially no human input.
The approach consisted of generating abstract math questions using templates and then
utilizing 3 different generators (which take the generated abstract question as input) to
generate distractors for the question, a suitable question text and a related visual. This
approach shows that it is possible to orchestrate the generation of both textual and visual
content together with an educational exercise/question.

Lifindra et al. (2023) proposed a very simple PCG orchestration approach in the form
of an educational game which has randomly generated mazes as levels and asks the player
template-based algebra questions between the rooms of the maze. According to the results
of the research, using this game as a teaching tool could slightly improve the educational
experience compared to relying only on traditional methods [8]. In terms of orchestrating
the generation of educational content, this research shows that generating a simple maze-
based or puzzle-based game and embedding template-based algebra questions within the
levels could be useful for education.

Section 4 followed a research which talked about orchestration of game facets as well
as some case studies. One of the case studies were Game-O-Matic, which is capable of
generating short arcade games based on a small-scale narrative it takes as input. Taking
inspiration from the work of Xu et al. (2021), this approach shows potential in terms of
generating educational content: For example it could be used to orchestrate the generation
of playable simulations of elementary math or science problems (similar to the visual content
generator in Xu et al. (2021)’s work).

Section 5 presented the literature that utilized generative grammars to orchestrate the
generation of game facets. Starting with the only paper in that section which directly tries
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to create educational content: Valls-Vargas et al. (2017) developed a modular PCG
orchestration approach which uses 4 generative graph grammars to automate the generation
of puzzles for an educational programming game. This approach is highly valuable from an
educational perspective because it shows that other orchestration techniques that use graph
grammars could be useful for education as well. As an example, Karavolos, Bouwer
and Bidarra (2015) combined graph grammars with a mixed-initiative design tool called
"Ludoscope" to orchestrate the generation of levels. Another approach (by Smith, Padget
and Vidler (2018)) used graph grammars in combination with ASP to generate action-
adventure dungeon levels. Both of these techniques were concerned with orchestrating the
generation of the narrative and level facets of games. However, taking inspiration from
the approach by Valls-Vargas et al. (2017), these techniques (using graph grammars
together with a mixed-initiative tool or ASP) could be useful & should be explored from an
educational perspective.

8 Responsible Research
While conducting the literature review as part of this research, several responsible research
principles were adhered to such as avoiding plagiarism, credibility of sources, respecting
authorship and reproducibility of the overall research. All sources of inspiration and/or
information are properly cited and referenced according to the BibTex scheme which can be
found at the end. The literature included in this review was selected from credible sources
such as peer-reviewed journals or conference proceedings. To respect authorship, it was
ensured that appropriate credit has been given to authors of the said literature. Finally, to
ensure reproducibility, the literature review process has been conducted in a systematic and
transparent manner. The details of the methodology such as the databases used to search
the literature or the inclusion/exclusion criteria can be found in Section 2.1.

9 Conclusion
Procedural Content Generation is a content generation technique that is capable of gener-
ating content with close to none human input. That makes PCG an interesting technique
from an educational standpoint. However, most of the educational applications of PCG are
one dimensional and generate only one type of content (so no orchestration of content). This
research focuses on this knowledge gap and conducts an extensive review on recent literature
related to PCG in an attempt to answer the question "What has been achieved so far (from
an educational standpoint) orchestrating the simultaneous generation of content of various
types?". To that end, a variety of PCG orchestration approaches both within and outside
the educational domain have been analyzed.

The literature reviewed have been divided into 4 categories: Orchestration of educa-
tional content, Orchestration of game facets, Orchestration using generative grammars and
Orchestration using machine learning. Starting with orchestration of educational content,
Xu et al. (2021) showed that it was possible to orchestrate the generation of a large number
of elementary math problems together with suitable question texts and thematically-related
images. Similarly, Lifindra et al. (2023) also developed an approach which aims to use
PCG orchestration for teaching maths in the form of a simple maze game that asks the
player template-based algebra questions between the rooms of the maze. Another approach
that was inspiring for elementary mathematics or science education was Game-O-Matic
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from the domain of games. Game-O-Matic is able to generate a short arcade game based
on a small-scale narrative [9], which could be used to orchestrate the generation of playable
simulations/visuals for basic math or physics problems. From an educational standpoint,
these approaches show that PCG is capable of generating a variety of exercises/questions
together with textual and/or visual content supporting the generated question. The rea-
son why maths are explored (for PCG orchestration) before other subjects under education
could be the fact that it is relatively easy to generate math exercises (using templates).

9.1 Future Work
In terms of orchestrating the generation of educational content, it can be seen that the
number of approaches developed for this purpose are limited. On the contrary, a lot of
research has been done about how PCG could be used to orchestrate the generation of
game facets. Some of the techniques used in that area of research could be inspiring or
useful from an educational perspective as well. For example, generative graph grammars are
widely used for orchestrating game facets, mainly for generating better (more suitable) levels
[6] [13] [15]. However, as demonstrated by Valls-Vargas et al. (2017), graph grammars
are also capable of generating puzzles for an educational programming game. This shows
that generative grammars (especially graph grammars) are powerful tools and makes it a
technique worth exploring for orchestrating the generation of educational content. Another
PCG method used for orchestrating game facets is machine learning (as described in Section
6) which mainly focuses on "modeling" the facet generation process as a form of evaluating
different orchestration options. Directly using ML techniques for generating educational
content without human input could be dangerous, however, a mixed-initative approach like
SuSketch by Migkotzidis and Liapis (2021) could be promising for education.
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