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Adaptive synchronization of unknown heterogeneous agents:

an adaptive virtual model reference approach

Simone Baldia, Paolo Frascab

aDelft Center for Systems and Control, Delft University of Technology, Delft 2628CD, The Netherlands
bUniv. Grenoble Alpes, CNRS, Inria, Grenoble INP∗, GIPSA-Lab, F-38000 Grenoble, France

Abstract

This work deals with state synchronization of heterogeneous linear agents with unknown dynamics. The problem is

solved by formulating the synchronization problem as a special model reference adaptive control where each agent

tries to converge to the model defined by its neighbors. For those agents that do not know the reference signal that

drives the flock, a fictitious reference is estimated in place of the actual one: the estimation of such reference is

distributed and requires measurements from neighbors. By using a matching condition assumption, which is imposed

so that the agents can converge to the same behavior, the fictitious reference estimation leads to adaptive laws for the

feedback and coupling gains arising from distributed matching conditions. In addition, the coupling connection is

not scalar, but possibly vector-valued. The proposed approach is applicable to heterogeneous agents with arbitrarily

large matched uncertainties. A Lyapunov-based approach is derived to show analytically asymptotic convergence of

the synchronization error: robustification in the presence of bounded errors or unknown (constant) leader input is also

discussed. Finally, a motivational example is presented in the context of Cooperative Adaptive Cruise Control and

numerical examples are provided to demonstrate the effectiveness of the proposed method.

Keywords:

Adaptive synchronization, heterogeneous uncertain agents, adaptive control, virtual reference model.

1. Introduction

In recent years, the cooperative control of multiagent systems has received the attention of many scientific com-

munities, due to its impact in crucial areas such as formation flying, unmanned aerial vehicles, smart traffic, computer

networks and many more [1, 2, 3, 4, 5, 6]. An important problem in cooperative control is to achieve in a distributed

way (i.e. using local information) a common behavior for the entire network: this is the so-called synchronization

problem [7, 8]. A topic that is closely related to synchronization of multiagent systems is consensus [9, 10, 11, 12]:

the connections between consensus and synchronization has been recently highlighted in [13, 14]. In the following

we will discuss some literature from both synchronization and consensus areas.

Historically, one of the main drive for studying synchronization is flocking and swarming behaviors [15]. Flocking

and swarming are the behaviors exhibited when a group of living beings such as birds, fish, bacteria, and insects are

interacting with each other to accomplish a task (e.g. foraging, flying or shoaling) [16]: motivated by this interest,

research has focused on synchronization without a leader (also called leaderless consensus), and on synchronization

with an active leader having knowledge of a reference signal (also called leader-following consensus) [17, 18]. An

important achievement in these fields was achieving synchronization or consensus for multi-agent systems with gene-

ral linear dynamics without the knowledge of the eigenvalues of the Laplacian matrix, or of the smallest eigenvalue
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different than zero (the so-called algebraic connectivity). The knowledge of these eigenvalues is actually global infor-

mation, because it requires the knowledge of the network topology. To overcome this limitation, distributed adaptive

protocols have been developed, where, instead of having fixed coupling weights among agents, some scalar couplings

are updated online [19, 20]. Both consensus and synchronization are currently well-established research areas: howe-

ver, some major problems still need to be addressed, two of the biggest ones being how to guarantee synchronization

in the presence of (a) heterogeneous agents and (b) uncertain agents: note that these two instances may not coin-

cide, since agents can be uncertain but homogeneous, as considered in [21, 22], or heterogeneous with no uncertainty

[23, 24] or bounded/structural uncertainty [25, 26, 27]. In both instances one would like to delete the effect of hete-

rogeneity or uncertainty via feedback gains: up to now, non-adaptive feedback (i.e. with fixed feedback gains) with

possibly adaptive coupling weights is commonly employed. In other words, fixed feedback gains are designed based

on a nominal agent [28], while only the coupling weights are updated online.

For cooperative control strategies to be effective in unstructured environments, teams of agents must be able

to respond to unanticipated situations or changes in the environment that might occur while the cooperative task is

carried out. To this purpose, it is of fundamental importance to integrate adaptive control methodologies in cooperative

control and investigate whether it could be possible to update online in an adaptive way both the feedback gains and the

coupling weights. Currently, only in the restrictive class of second-order Euler-Lagrangian agents, researchers have

developed control architectures where both the feedback gains and the coupling weights are updated online [29, 30].

This work thus explores the direction of having fully adaptive synchronization approaches in both feedback and

coupling weights arising from distributed matching conditions for heterogeneous agents with large uncertainties. By

looking at the synchronization problem of uncertain heterogeneous agents as a particular model reference adaptive

control where each agent tries to converge to the model defined by its neighbors, we are able to derive a set of ‘feedback

matching conditions’ (that link the agent to the reference model) and a set of ‘coupling matching conditions’ (that link

the agent to its neighbors). These conditions give rise, for those agents that cannot access the reference signal, to

a fictitious reference in place of the actual one. Due to uncertainty, the fictitious reference has to be estimated and

requires the agent to observe the relative state but also the control input of its neighbors.

The main contributions of this work are: to propose adaptive synchronization laws accounting for online adaptation

of both feedback gains and coupling weights; and to consider heterogeneous agents with arbitrarily large matched

uncertainties. A Lyapunov-based approach is derived to show analytically that the synchronization error converges

asymptotically to zero in the ideal noiseless case, or is bounded in case the neighbors’ input is evaluated with some

misjudgement error. Finally, an estimation architecture is proposed in case the neighbors’ input cannot be evaluated.

Simulations demonstrate the effectiveness of the proposed approach.

At the end of this introductory section, we would like to open a parenthesis on the role of knowing the control

input to achieve synchronization tasks: while it is well accepted that relative measurements are used by flocks in

nature (e.g. relative position/velocity), it is not clear whether each component of the flock also uses the information

of the input of its neighbors (e.g. how neighbors flap their wings or fins) [15]. On the other hand, humans may indeed

use some input knowledge for better synchronization: cyclists riding in a peloton in races such as the Tour De France

and the Giro d’Italia make adjustments according to others in the group in order to keep the formation [31]: whether

such adjustments are facilitated by the observation of the input applied by neighboring cyclists (handlebar and body

movements) is debated, but the cycling etiquette suggests that such information is important [32]. Surely, in many

technological domains, the knowledge the inputs applied by neighbors is effectively used: e.g. the centre brake light

high-mounted in vehicles is requested by law in most countries with the aim to reduce rear-end crashes (i.e. to improve

synchronization). Going one step further, in Cooperative Adaptive Cruise Control (CACC) communication of the

(input) acceleration from the preceding to the following vehicles is used to maintain a safe inter-vehicle distance [33]:

a similar architecture is also currently studied for platoons that need to control not only the longitudinal, but also the

lateral dynamics by communicating steering commands [34]. With these examples in mind, we close the parenthesis

by noticing that CACC could be a direct engineering application of the proposed synchronization algorithm.

The rest of the paper is organized as follows: Section 2 introduces some preliminary concepts useful to under-

stand the novel adaptation idea. Section 3 extends these concepts to the leader-follower synchronization setting, and

develops appropriate adaptation mechanisms to have the synchronization error converging to zero. Section 4 includes

some robustness mechanisms to account for bounded errors and/or unknown input of the leader. Section 5 discusses

the CACC application in view of the proposed approach and Section 6 presents some simulations to demonstrate the

theoretical findings. Section 7 concludes the paper.
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Notation: The notation in this paper is standard. Matrices are denoted by capital letters, e.g. X , and vectors by

small letters, e.g. x. The transpose of a matrix or of a vector is indicated with X ′ and x′ respectively. The Euclidean

norm of a vector x = (x1,x2, ...,xn) is ‖x‖ =
√

∑n
i=1 |xi|

2
. The trace of a square matrix X is tr[X ]. A vector signal

x ∈ R
n is said to belong to L2 class (x ∈ L2), if

∫ t
0 ‖x(τ)‖2

dτ < ∞, ∀t ≥ 0. A vector signal x ∈ R
n is said to belong

to L∞ class (x ∈L∞), if max
t≥0

‖x(t)‖< ∞, ∀t ≥ 0. A directed graph (digraph) is indicated with the pair (N ,E ), where

N is a finite nonempty set of nodes, and E ∈ N ×N is a set of ordered pair of nodes, called edges. The adjacency

matrix A = [ai j] of an unweighted digraph is defined as aii = 0 and ai j = 1 if ( j, i) ∈ E , where i 6= j. The Laplacian

matrix of the unweighted digraph is defined as L = [li j], where lii = ∑ j ai j and li j =−ai j, where i 6= j.

2. Preliminary results

In order to facilitate the presentation of the main results, we first formulate the proposed synchronization problem

for two agents. Let us consider two agents, denoted with 1 and 2, with dynamics

ẋ1 = A1x1 +b1u1

ẋ2 = A2x2 +b2u2 (1)

where x1,x2 ∈ R
n is the state, u1,u2 ∈ R is the input, and A1, A2 and b1, b2 are unknown matrices of appropriate

dimensions, with possibly A1 6= A2 and b1 6= b2 (heterogeneous unknown agents). We assume a directed connection

from 1 to 2, i.e. the digraph is described by N = {1,2}, E = {(1,2)}. With this directed connection, agent 2 can

observe measurements from agent 1, but not viceversa. Assume that the purpose of agent 1 is to follow a reference

model

ẋm = Amxm +bmr (2)

where xm ∈ R
n is the state of the reference model, r ∈ R is the reference input of the reference model, and Am and

bm are known matrices of appropriate dimensions, with Am being Hurwitz so as to have a bounded state trajectory xm

for bounded r. The synchronization task is achieved when x1 → xm for t → ∞. The reference model (2) can also be

interpreted as agent 0, whose signals are known to agent 1 only: the purpose of agent 2 is to synchronize to agent 1,

i.e. x2 → x1 for t → ∞. It is clear that if both synchronization tasks are achieved, we have x2 → xm for t → ∞.

Being the system matrices in (1) unknown, the synchronization task has to be achieved in an adaptive fashion. In

order to have a well-posed adaptive control problem, the following assumptions should be verified.

Assumption 1. There exist constant vectors k∗1, k∗2 and scalars l∗1 , l∗2 such that

Am = A1 +b1k∗′1 , bm = b1l∗1

Am = A2 +b2k∗′2 , bm = b2l∗2 . (3)

Assumption 2. The signs of l∗1 , l∗2 are known.

Remark 1. Both Assumptions 1 and 2 are mutuated from model reference adaptive control (single-input single-

reference case): in particular, Assumption 1 is required for the existence of a closed-loop system, for both agents

1 and 2 that matches the reference model (2): for this reason, let us refer to (3) as ‘feedback matching conditions’.

Assumption 2 basically amounts to the condition, classical in adaptive control, of knowing the sign of the input vector

field.

Remark 2. Often synchronization is sought for classes of reference signals generated by an exogenous system [24]:

in this work we look at synchronization tasks for arbitrary reference signals, which requires the input dimension to

be greater or equal to the reference dimension: for simplicity, we look at the square case (same number of inputs and

references), and in particular at the single-input single-reference case. For the multiple-input multiple-reference case,

the interested reader is referred to the comprehensive survey [35], where it is explained how in place of Assumption 2

one needs to assume the existence of a known matrix S such that Γ = l∗1S (where l∗1 is now a matrix) is symmetric and
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positive definite. Since the extension to multiple inputs and multiple references introduces technicalities that might

hinder the core contribution of this work, in order to keep the presentation simple, let us carry out the design for the

single-input single-reference case.

The following result is a consequence of Assumption 1.

Proposition 1. There exist a constant vector k∗21 and a scalar l∗21 such that

A1 = A2 +b2k∗′21, b1 = b2l∗21. (4)

The condition (4), proven below, implies that agent 2 can match the model of agent 1 via appropriate gains: for this

reason, let us refer to (4) as ‘coupling matching conditions’.

PROOF. From (3) we find

b1 = b2
l∗2
l∗1

A1 −A2 = b2k∗′2 −b1k∗′1

A1 −A2 = b2

[

k∗′2 −
l∗2
l∗1

k∗′1

]

(5)

which is in the form of (4) with k∗′21 = k∗′2 −
l∗2
l∗1

k∗′1 and l∗21 =
l∗2
l∗1

.

Using classical model reference adaptive control tools [36, Chap. 4], it is well known that agent 1 can synchronize

to the reference model (2) via the controller

u1(t) = k′1(t)x1(t)+ l1(t)r(t) (6)

and the adaptive laws

k̇′1(t) = −sgn(l∗1)γb′mP(x1(t)− xm(t))x1(t)
′

l̇1(t) = −sgn(l∗1)γb′mP(x1(t)− xm(t))r(t) (7)

where the scalar γ > 0 is the adaptive gain, and P is a positive definite matrix satisfying

PAm +A′
mP =−Q, Q > 0 (8)

and k1, l1 are the estimates of k∗1, l∗1 respectively. For completeness, in the following we recall how the adaptation

laws in (7) can be derived via the dynamics of the error e1 = x1 − xm

ė1(t) = Ame1(t)+b1(k̃
′
1(t)x1(t)+ l̃1(t)r(t)) (9)

with k̃1 = k1 − k∗1, l̃1 = l1 − l∗1 . Using the Lyapunov function (time index t is omitted for compactness)

V1(e1, k̃1, l̃1) = e′1Pe1 + tr

(

k̃′ik̃i

γ
∣

∣l∗i

∣

∣

)

+
l̃2
i

γ
∣

∣l∗i

∣

∣

(10)

it is possible to verify

V̇1 = e′1(PAm +A′
mP)e1 +2e′1Pbi(k̃

′
1x1 + l̃1r)+2tr

(

k̃′1γ−1 ˙̃k1
∣

∣l∗1

∣

∣

)

+2
l̃1γ−1 ˙̃l1
∣

∣l∗1

∣

∣

= −e′1Qe1 +2(sgn(l∗1)b
′
mP(x1 − xm)x

′
1 + γ−1 ˙̃k′1)

k̃1
∣

∣l∗1

∣

∣

+2(sgn(l∗1)b
′
mP(x1 − xm)r+ γ−1 ˙̃li)

l̃1
∣

∣l∗1

∣

∣

= −e′1Qe1 (11)
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where we have used (7) and the property a′b = tr(b′a). Using standard Lyapunov arguments we can prove bounded-

ness of all closed-loop signals and convergence of e1 to 0. In fact, since V1 > 0 and V̇1 ≤ 0, it follows that V1(t) has a

limit, i.e.,

lim
t→∞

V1(e1(t), k̃1(t), l̃1(t)) =V∞ < ∞ (12)

and V1, e1, k̃1, l̃1 ∈ L∞. In addition, by integrating V̇1 it follows that
∫ ∞

0
e′1(τ)Qe1(τ) dτ ≤V (e1(0), k̃1(0), l̃1(0))−V∞ (13)

from which we establish that e1 ∈ L2. Finally, since V̇1 is uniformly continuous in time (this is satisfied because V̈1 is

finite), the Barbalat’s lemma implies V̇1 → 0 as t → ∞ and hence e1 → 0.

The purpose is now to find an adaptive law that can synchronize agent 2 to agent 1 without using the reference

input r. We observe that this is possible via the controller

u2(t) = k′21(t)x1(t)+ k′2(t)(x2(t)− x1(t))+ l21(t)u1(t) (14)

and the adaptive laws

k̇′21(t) = −sgn(l∗2)γb′mP(x2(t)− x1(t))x1(t)
′

k̇′2(t) = −sgn(l∗2)γb′mP(x2(t)− x1(t))(x2(t)− x1(t))
′

l̇21(t) = −sgn(l∗2)γb′mP(x2(t)− x1(t))u1(t) (15)

where k21, k2, l21 are the estimates of k∗21, k∗2, l∗21 respectively. It has to be noted that we do not need to estimate l∗2 ,

even though we need its sign to implement the adaptive law. Let us derive the adaptation law in (15) via the dynamics

of the error e21 = x2 − x1

ė21 = Ame21 +b2(k̃
′
21x1 + k̃′2e21 + l̃21u1) (16)

with k̃21 = k21 − k∗21, k̃2 = k2 − k∗2, l̃21 = l21 − l∗21. By taking the Lyapunov function

V21 = e′21Pe21 + tr

(

k̃′21k̃21

γ
∣

∣l∗2

∣

∣

)

+ tr

(

k̃′2k̃2

γ
∣

∣l∗2

∣

∣

)

+
l̃2
21

γ
∣

∣l∗2

∣

∣

(17)

we can calculate the time derivative of (17) along (16)

V̇21 = e′21(PAm +A′
mP)e21 +2e′21Pb2(k̃

′
21xi + k̃′2e21 + l̃21u1)

+2tr

(

k̃′21γ−1 ˙̃k21
∣

∣l∗2

∣

∣

)

+2tr

(

k̃′2γ−1 ˙̃k2
∣

∣l∗2

∣

∣

)

+2
l̃′21γ−1 ˙̃l21
∣

∣l∗2

∣

∣

= −e′21Qe21 +2(sgn(l∗2)b
′
mPe21x′1 + γ−1 ˙̃k′21)

k̃′21
∣

∣l∗2

∣

∣

+2(sgn(l∗2)b
′
mPe21e′21 + γ−1 ˙̃k′2)

k̃2
∣

∣l∗2

∣

∣

+2(sgn(l∗2)b
′
mPe21u1 + γ−1 ˙̃l21)

l̃′21
∣

∣l∗2

∣

∣

= −e′21Qe21 (18)

where we have used (15). Using standard Lyapunov arguments we can prove boundedness of all closed-loop signals

and convergence of e21 to 0. In fact, since V21 > 0 and V̇21 ≤ 0, it follows that V21(t) has a limit, i.e.,

lim
t→∞

V21(e21(t), k̃21(t), k̃2(t), l̃21(t)) =V∞ < ∞ (19)

and V21, e21, k̃21, k̃2, l̃21 ∈ L∞. In addition, by integrating V̇21 it follows that
∫ ∞

0
e′21(τ)Qe21(τ) dτ ≤V (e21(0), k̃21(0), k̃2(0), l̃21(0))−V∞ (20)

from which we establish that e21 ∈L2. Finally, since V̇21 is uniformly continuous in time (this is satisfied because V̈21

is finite), the Barbalat’s lemma implies V̇21 → 0 as t → ∞ and hence e21 → 0.

The following result, whose proof has been constructed in the previous steps, can be stated.

5



Proposition 2. Consider the unknown heterogeneous linear systems (1), with reference model (2), controllers (6) and

(14) and update laws (7) and (15). Then all closed-loop signals are bounded and e1 = x1 − xm, e21 = x2 − x1 converge

asymptotically to zero.

Some remarks follow:

Remark 3. The following structure can be recognized in controller (14): the adaptive laws try to match agent 2 to

the reference model (by estimating k∗2) and at the same time to match agent 2 to agent 1 (by estimating k∗21 and l∗21).

Then, it is reasonable to refer to k1, l1, k2 and l2 as to the feedback gains of agents 1 and 2, and to k21 and l21 as to

the coupling gains of agent 2 with respect to agent 1. Also note that agent 2 synchronizes to agent 1 without using the

knowledge of the reference signal r (which is known to agent 1 only): however, u1 must be accessible to agent 2. In

order to understand how the knowledge of the reference can be avoided, let us define from (6) and (14) the following

ideal controls

u∗1(t) = k∗′1 x1(t)+ l∗1r(t)

u∗2(t) = k∗′21x1(t)+ k∗′2 (x2(t)− x1(t))+ l∗21u1(t)

= k∗′2 x2(t)+ l∗2

[

k∗′21

l∗2
x1(t)−

k∗′2

l∗2
x1(t)+

l∗21

l∗2
u1(t)

]

= k∗′2 x2(t)+ l∗2

[

−
k∗′1

l∗1
x1(t)+

1

l∗1
u1(t)

]

(21)

from which we notice that the term inside the square parenthesis in (21) plays the role of a virtual reference for agent

2. We also note that if the agents where homogeneous, one would have k∗21 = 0 and l∗21 = 1, and the ideal input would

simplify to

u∗2(t) = k∗′2 (x2(t)− x1(t))+u1(t). (22)

Remark 4. The proposed approach does not require the unknown agents to be homogeneous: the agents (1) can be

heterogeneous, but they have to be able to match a certain reference model (Am,bm) via appropriate control gains.

Note that, as common in adaptive control results, convergence of k1, k2, k21, l1, l21 to k∗1, k∗2, k∗21, l∗1 , l∗21 is neither

guaranteed, nor necessary for the synchronization error to converge to zero [37, Chap. 6]. Convergence to the true

parameters will occur if the reference signal r is persistently exciting.

We close this section by noticing that it is not difficult to verify that the synchronization result can be achieved also

in case agent 1 has multiple followers, each one trying to synchronize to its behavior. Similarly, the same reasoning

of Proposition 2 can be applied to any network with a directed tree topology in which each leaf has one parent and the

root node has access to the reference signal r.

3. Adaptive leader-follower synchronization

Before giving the main result, it is functional to deal with the case in which a follower (called agent 3) tries to

synchronize to two parent neighbors (called agents 1 and 2). We assume a directed connection from 1 to 3 and from 2

to 3, i.e. the digraph is described by N = {1,2,3}, E = {(1,3),(2,3)}. In addition, let us consider for simplicity an

unweighted digraph, i.e. a13 = a23 = 1.

In order to synchronize agent 3 to agents 1 and 2, let us define the dynamics of the error e31 = x3 − x1 and

e32 = x3 − x2

ė31 = Ame31 +b3(u3 − k∗′31x1 − k∗′3 e31 − l∗31u1)

ė32 = Ame32 +b3(u3 − k∗′32x2 − k∗′3 e32 − l∗32u2) (23)

which, by considering the sum of the aforementioned dynamics (e31 + e32), leads us to the controller

u3(t) = k′31(t)
x1(t)

2
+ k′32(t)

x2(t)

2
+ k′3(t)

e31(t)+ e32(t)

2
+ l31(t)

u1(t)

2
+ l32(t)

u2(t)

2
(24)

6



and the adaptive laws

k̇′31(t) = −sgn(l∗3)γb′mP(e31(t)+ e32(t))x
′
1(t)

k̇′32(t) = −sgn(l∗3)γb′mP(e31(t)+ e32(t))x
′
2(t)

k̇′3(t) = −sgn(l∗3)γb′mP(e31(t)+ e32(t))(e31(t)+ e32(t))
′

l̇31(t) = −sgn(l∗3)γb′mP(e31(t)+ e32(t))u1(t)

l̇32(t) = −sgn(l∗3)γb′mP(e31(t)+ e32(t))u2(t) (25)

where k31, k32, k3, l31, l32 are the estimates of k∗31, k∗32, k∗3, l∗31, l∗32 respectively. Let us derive the adaptation law in (25)

via the dynamics of the error e321 = e31 + e32

ė321 = Ame321 +2b3

(

k̃′31

x1

2
+ k̃′32

x2

2
+ k̃′3

e321

2
+ l̃31

u1(t)

2
+ l̃32

u2(t)

2

)

(26)

By taking the Lyapunov function

V321 = e′321Pe321 + tr

(

k̃′31k̃31

γ
∣

∣l∗3

∣

∣

)

+ tr

(

k̃′32k̃32

γ
∣

∣l∗3

∣

∣

)

+ tr

(

k̃′3k̃3

γ
∣

∣l∗3

∣

∣

)

+
l̃2
31

γ
∣

∣l∗3

∣

∣

+
l̃2
32

γ
∣

∣l∗3

∣

∣

(27)

it is possible to verify

V̇321 = e′321(PAm +A′
mP)e321 +2e′321Pb3(k̃

′
31x1 + k̃′32x2 + k̃′3e321 + l̃31u1(t)+ l̃32u2(t))

+2tr

(

k̃′31γ−1 ˙̃k31
∣

∣l∗3

∣

∣

)

+2tr

(

k̃′32γ−1 ˙̃k32
∣

∣l∗3

∣

∣

)

+2tr

(

k̃′3γ−1 ˙̃k3
∣

∣l∗3

∣

∣

)

+2
l̃31γ−1 ˙̃l31
∣

∣l∗3

∣

∣

+2
l̃32γ−1 ˙̃l32
∣

∣l∗3

∣

∣

= −e′321Qe321 +2(sgn(l∗k )b
′
mPe321x′1 + γ−1 ˙̃k′31)

k̃′31
∣

∣l∗3

∣

∣

+2(sgn(l∗3)b
′
mPe321x′2 + γ−1 ˙̃k′32)

k̃′32
∣

∣l∗3

∣

∣

+2(sgn(l∗3)b
′
mPe321e′321 + γ−1 ˙̃k′3)

k̃3
∣

∣l∗3

∣

∣

+2(sgn(l∗3)b
′
mPe321u1(t)+ γ−1 ˙̃l31)

l̃′31
∣

∣l∗3

∣

∣

+2(sgn(l∗3)b
′
mPe321u2(t)+ γ−1 ˙̃l32)

l̃′32
∣

∣l∗3

∣

∣

= −e′321Qe321 (28)

where we have used (25). Using similar Lyapunov arguments as before one can prove e321 → 0. This shows that the

state of agent 3 converges to the average of the states of agents 1 and 2. If the states of agents 1 and 2 converge to the

state xm of a reference model (e.g. because they are connected via a directed tree to a root node that has access to the

reference signal r), then the state of agent 3 will converge to the same reference state xm.

3.1. General case

In the general case, we consider a set of N agents

ẋi = Aixi +biui, i ∈ {1, . . . ,N} (29)

where agent 1 is the one that can access the reference r in (2). Assumptions 1 and 2 should be revised as follows.

Assumption (rev.) 1. For every agent i, there exist a constant vector k∗i and scalar l∗i such that

Am = Ai +bik
∗′
i , bm = bil

∗
i (30)

Assumption (rev.) 2. For every agent i, the signs of l∗i is known. The sign can eventually be different for different

agents.

7



Remark 5. Assumptions rev. 1 and rev. 2 generalize Assumptions 1 and 2 to the multiagent setting. Since the agents

are unknown and heterogeneous, Assumption rev. 1 is required to make the behavior of the agents homogeneous

via appropriate gains. Therefore, (30) contains the ‘feedback matching conditions’ for all agents. With respect to

Assumption rev. 2, it is worth mentioning that often, despite uncertainty, the sign of the input vector field is the same

for all agents (e.g. in nature the sign of the input vector field defined by wings or fins is the same for the entire flock,

or in technological flocks of robots/vehicles the input vector field defined by gas and braking inputs is the same for the

entire flock). As a result, the sign of l∗i is often the same for all i. Finally, similarly to Proposition 1, one can verify

that Assumptions rev. 1 implies the existence, for every pair of agents (i, j), of a constant vector k∗ji and a scalar l∗ji
such that

Ai = A j +b jk
∗′
ji , b j = b2l∗ji. (31)

which implies that every agent can be matched to its neighbor via appropriate gains. Therefore, (31) contains the

‘coupling matching conditions’ for all agents. In fact, we have shown in the previous examples that in order to

achieve synchronization, heterogeneity has to be ‘canceled’ via feedback and coupling gains. We refer to k∗i , l∗i as

feedback gains, and to k∗ji, l∗ji as coupling gains.

Together with Assumptions rev. 1 and rev. 2, we make the following assumption of the communication topology.

Assumption 3. The directed communication graph is acyclic. In addition, the graph contains a directed spanning tree

with the leader as the root node.

Remark 6. The first part of Assumption 3 is equivalent to saying that the vertices of the graph can be sorted in such

a way that the adjacency matrix has upper triangular form with only zeros in the diagonal.

Except for agent 1, which uses controller (6) and adaptive laws (7), the following controller is proposed for the

other agents

u j(t) =
∑N

i=1 ai jk
′
ji(t)xi(t)

∑N
i=1 ai j

+ k′j(t)
∑N

i=1 ai j(x j(t)− xi(t))

∑N
i=1 ai j

+
∑N

i=1 ai jl ji(t)ui(t)

∑N
i=1 ai j

(32)

with the adaptive laws

k̇′ji(t) = −sgn(l∗j )γb′mP

[

N

∑
i=1

ai j(x j(t)− xi(t))

]

x′i(t)

k̇′j(t) = −sgn(l∗j )γb′mP

[

N

∑
i=1

ai j(x j(t)− xi(t))

][

N

∑
i=1

ai j(x j(t)− xi(t))

]′

l̇ ji(t) = −sgn(l∗j )γb′mP

[

N

∑
i=1

ai j(x j(t)− xi(t))

]

ui(t) (33)

where k ji, ki, l ji are the estimates of k∗ji, k∗i , l∗ji respectively.

One can verify that, with the appropriate adjacency matrices, the adaptive controller (32)-(33) reduces to the spe-

cial cases (14)-(15) or (24)-(25). Like in the two-agent and three-agent cases, the resulting adaptive law (32)-(33)

does not exploit any measurements of r, but it is based on measurements of u j to be used as a feedforward term.

The following result can be stated:

Theorem 1. Consider the unknown linear systems (29), with reference model (2), controllers (6), (32), and update

laws (7), (33). Then, all closed-loop signals are bounded and ei = xi − xm, e ji = x j − xi, with i, j such that ai j 6= 0,

converge asymptotically to zero.

PROOF. The proof uses similar tools as before with the Lyapunov function

V =
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

P

[

N

∑
i=0

ai je ji

]

+
N

∑
j=1

tr





k̃′j k̃ j

γ
∣

∣

∣l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai jtr





k̃′jik̃ ji

γ
∣

∣

∣l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai j

l̃2
ji

γ
∣

∣

∣l∗j

∣

∣

∣

(34)
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where the index i = 0 has been used as a short notation for the reference model, i.e. e j0 = e j = x j − xm and a j0 6= 0

only for the root node. Furthermore, from (29) and (2), we can obtain the following dynamics of the error

ė ji = Am(x j − xi)+b j

[

u j − k∗′jixi − k∗′j e ji − l∗jiui

]

= Ame ji +b j

[

k̃′jixi + k̃′je ji + l̃ jiui

]

. (35)

The attentive reader will have recognized a similar structure as in the previously developed two-agent and three-agent

cases. The time derivative of (34) along (35) can be worked out accordingly

V̇ =
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

(PAm +A′
mP)

[

N

∑
i=0

ai je ji

]

+2

[

N

∑
i=0

ai je ji

]′

Pb j

[

N

∑
j=1

ai j k̃
′
jixi + k̃′j

N

∑
j=1

ai je ji +
N

∑
j=1

ai j l̃ jiui

]

+
N

∑
j=1

tr





k̃′jγ−1 ˙̃k j
∣

∣

∣
l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai jtr





k̃′jiγ−1 ˙̃k ji
∣

∣

∣
l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai j

l̃ jiγ−1 ˙̃l ji
∣

∣

∣
l∗j

∣

∣

∣

= −
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

Q

[

N

∑
i=0

ai je ji

]

(36)

where we have used (33). Convergence of the errors e ji to zero can be proved using Barbalat’s Lemma, while conver-

gence of xi − xm to zero follows accordingly using Assumption 3.

Remark 7. In literature with adaptive couplings (see e.g. [8, 23]), the scalar coupling weight is updated via the

scalar quantity e′jie ji. On the other hand, the controller (32) reveals the structure of the synchronization task: each

agent needs vector-valued update laws (e.g. note the presence of e jie
′
ji in the update of ki in (33) to estimate the

feedback gains ki to match agent i to the reference model, and the coupling weights k ji, l ji to match agent j the

neighbors i: thus the synchronization law (32)-(33) implicitly includes the update of both feedback and the coupling

gains arising from distributed matching conditions, while most synchronization laws in literature consider a fixed

feedback gain based on some nominal model of the agent and updates the coupling weight only (e.g. [25, 29]).

4. Robust adaptive leader-follower synchronization

In the previous section we have assumed that each agent is able to evaluate exactly the input of each one of its

neighbors. In practice, it is reasonable to assume that some bounded error will occur in the evaluation of such input.

This error will be referred to as misjudgment error, which leads to the agent model

ẋ j = A jxi +b j

[

∑N
i=1 ai jk

′
ji(t)xi(t)

∑N
i=1 ai j

+ k′j(t)
∑N

i=1 ai j(x j(t)− xi(t))

∑N
i=1 ai j

+
∑N

i=1 ai jl ji(t)ui(t)

∑N
i=1 ai j

+
∑N

i=1 ai jd ji

∑N
i=1 ai j

]

(37)

where d ji is the misjudgment error which is assumed to be bounded, i.e.
∣

∣d ji

∣

∣ ≤ d, for some unknown d. In order to

handle the disturbance term, the following leakage-based adaptation law is proposed

k̇′ji(t) = −sgn(l∗j )γb′mP

[

N

∑
i=1

ai j(x j(t)− xi(t))

]

x′i(t)− sgn(l∗j )σγk′ji

k̇′j(t) = −sgn(l∗j )γb′mP

[

N

∑
i=1

ai j(x j(t)− xi(t))

][

N

∑
i=1

ai j(x j(t)− xi(t))

]′

− sgn(l∗j )σγk′i

l̇ ji(t) = −sgn(l∗j )γb′mP

[

N

∑
i=1

ai j(x j(t)− xi(t))

]

ui(t)− sgn(l∗j )σγl ji (38)

where σ > 0 is a scalar that allows robustness with respect to disturbances. In fact, the following result can be stated
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Theorem 2. Consider a flock composed of unknown heterogeneous linear agents (37), with reference model (2),

controller (32), and adaptive laws (38). Then all closed-loop signals are bounded and all e ji are of the order of d.

PROOF. Consider the same candidate Lyapunov function (34). From (37) and (2), we obtain the following dynamics

of the error

ė ji = Ame ji +b j

[

k̃′jixi + k̃′je ji + l̃ jiui +d ji

]

(39)

where we have used the matching condition (30). The time derivative of the Lyapunov function (34) along the

trajectory of the error (39) turns out to be

V̇ =
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

(PAm +A′
mP)

[

N

∑
i=0

ai je ji

]

+2

[

N

∑
i=0

ai je ji

]′

Pb j

[

N

∑
j=1

ai j k̃
′
jixi + k̃′j

N

∑
j=1

ai je ji +
N

∑
j=1

ai j l̃ jiui

]

+
N

∑
j=1

tr





k̃′jγ−1 ˙̃k j
∣

∣

∣l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai jtr





k̃′jiγ−1 ˙̃k ji
∣

∣

∣l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai j

l̃ jiγ−1 ˙̃l ji
∣

∣

∣l∗j

∣

∣

∣

= −
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

Q

[

N

∑
i=0

ai je ji

]

+
N

∑
j=1



−2
σ
∣

∣

∣
l∗j

∣

∣

∣

k̃ jk
′
j +

N

∑
i=0

ai j



−2
σ
∣

∣

∣
l∗j

∣

∣

∣

l̃ jil
′
ji −2

σ
∣

∣

∣
l∗j

∣

∣

∣

k̃ jik
′
ji +2

σ
∣

∣

∣
l∗j

∣

∣

∣

b′mPe jid ji







 (40)

where we have used (38). Using the inequality −a′a+a′b ≤−a′a/2+b′b/2 for any a, b, we write

V̇ ≤ −
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

Q

[

N

∑
i=0

ai je ji

]

+
N

∑
j=1

−
σ
∣

∣

∣
l∗j

∣

∣

∣

k jk
′
j +

σ
∣

∣

∣
l∗j

∣

∣

∣

k∗j k
∗′
j

+





N

∑
i=0

ai j



−
σ
∣

∣

∣l∗j

∣

∣

∣

k jik
′
ji +

σ
∣

∣

∣l∗j

∣

∣

∣

k∗jik
∗′
ji −

σ
∣

∣

∣l∗j

∣

∣

∣

l jil
′
ji +

σ
∣

∣

∣l∗j

∣

∣

∣

l∗jil
∗′
ji +2

σ
∣

∣

∣l∗j

∣

∣

∣

b′mPe jid ji







 (41)

Using standard Lyapunov reasoning [38, Chap. 4], we observe that, if k jik
′
ji + k jk

′
j + l2

ji ≥ k∗jik
∗′
ji + k∗j k

∗′
j + l∗2

ji +

2b′mPe jid, V̇ will be negative definite (and decreasing exponentially), from which we conclude that e ji will converge

inside a ball with radius proportional to d.

4.1. Leader-follower synchronization with input estimation

Finally, an interesting situation to be studied is what would happen if no input ui would be available to agent j.

We will discuss the simplest case of constant but unknown leader input (this implies a constant reference r). In this

case we propose to estimate the input u j from each agent, which leads to the control

u j(t) =
∑N

i=1 ai jk
′
ji(t)xi(t)

∑N
i=1 ai j

+ k′j(t)
∑N

i=1 ai j(x j(t)− xi(t))

∑N
i=1 ai j

+
∑N

i=1 ai jûi j
(t)

∑N
i=1 ai j

(42)

and to the agent model

ẋ j = A jxi +b j

[

∑N
i=1 ai jk

′
jixi

∑N
i=1 ai j

+ k′j
∑N

i=1 ai j(x j − xi)

∑N
i=1 ai j

+
∑N

i=1 ai jûi j

∑N
i=1 ai j

]

(43)

where ûi j
represents the estimate of ui calculated by agent j, and the term l ji has been removed since its estimate is

included in the estimate ûi j
. While k ji and k j are updated as in (32), we propose an extra estimator for ûi j

˙̂ui j
=−sgn(l∗j )γb′mP

[

N

∑
i=1

ai j(x j(t)− xi(t))

]

(44)
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It has to be underlined that each agent j will have its own estimate ûi j
for the estimate of its neighbor, so the estimation

is completely distributed and does not need extra communication.

Theorem 3. Consider a flock composed of unknown heterogeneous linear agents (43), with reference model (2) with

constant reference signal, controller (42) and update laws (32) and (44). Then all closed-loop signals are bounded

and ei = xi − xm, e ji = x j − xi, with i, j such that ai j 6= 0, converge asymptotically to zero.

PROOF. Consider the candidate Lyapunov function

V =
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

P

[

N

∑
i=0

ai je ji

]

+
N

∑
j=1

tr





k̃′j k̃ j

γ
∣

∣

∣
l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai jtr





k̃′jik̃ ji

γ
∣

∣

∣
l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai j

ũ2
i j

γ
∣

∣

∣
l∗j

∣

∣

∣

(45)

where ũi j = ûi j
−ui. For the sake of clarification, it is important to mention that ui represents the actual input of agent

i and ûi j
represents its estimate calculated by agent j. Furthermore, from (30), we can obtain the following dynamics

of the error

ė ji = Ame ji +b j

[

k̃′jixi + k̃′je ji + ũi j

]

(46)

The time derivative of the Lyapunov function (45) along the trajectories (46) turns out to be

V̇ =
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

(PAm +A′
mP)

[

N

∑
i=0

ai je ji

]

+2

[

N

∑
i=0

ai je ji

]′

Pb j

[

N

∑
j=1

ai j k̃
′
jixi + k̃′j

N

∑
j=1

ai je ji +
N

∑
j=1

ai jũi j

]

+
N

∑
j=1

tr





k̃′jγ−1 ˙̃k j
∣

∣

∣l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai jtr





k̃′jiγ−1 ˙̃k ji
∣

∣

∣l∗j

∣

∣

∣



+
N

∑
j=1

N

∑
i=1

ai j

[

ũi jγ−1 ˙̃ui j
∣

∣l∗i

∣

∣

]

= −
N

∑
j=1

[

N

∑
i=0

ai je ji

]′

Q

[

N

∑
i=0

ai je ji

]

(47)

where we have used (32) and (44). We conclude convergence of the synchronization error to zero using Barbalat’s

Lemma (to prove converge of e ji) and Assumption 3 (to prove convergence of xi − xm).

5. Motivational example: cooperative adaptive cruise control

Let us introduce platooning as a possible application field of the proposed algorithms. Platooning is an automated

driving method in which vehicles are grouped into platoons, where the speed of each vehicle (except eventually the

speed of the leading vehicle) is automatically adjusted so as to maintain a safe inter-vehicle distance. The most

celebrated platooning technology is Cooperative Adaptive Cruise Control (CACC), an extension of Adaptive Cruise

Control (ACC) where platooning is enabled by inter-vehicle communication in addition to on-board sensors [33]. A

simple description of the CACC setting (for longitudinal dynamics only) is given as follows: by taking as a state the

vehicle velocity and its position minus the desired spacing, vehicle i can be modelled by the following linear system

ẋi =

[

0 1

a1i
a2i

]

xi +

[

0

b1i

]

ui (48)

where a1i
and a2i

contain some driveline parameters, and b1i
contains the efficiency of the engine. All parameters are

often uncertain and influenced by road conditions (e.g. weather, contact road-wheel, road slope). The input ui has

the dimension of an acceleration (or of a force, when multiplied by the vehicle mass ). As the driveline and engine

parameters are different for every vehicle, we have to deal with heterogeneous agents. The leading vehicle (indexed

with 1) is in charge of following a certain acceleration profile (which can be the result of a reference model indexed

with 0), while the other vehicles (indexed with 2, . . . ,N) should keep a desired spacing and reduce the relative velocity

to zero, a task which can be described in terms of synchronization as x j −xi → 0. If vehicles were equipped with only

on-board sensors, we would have the so-called ACC setting in which the relative position and relative velocity (i.e.
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x j − xi) can be measured (via laser sensor), and consequently, by knowing its own position and velocity, vehicle i can

derive the state of a preceding j. Note that in this case one would have a one-step look-ahead topology in which a

vehicle can interact only with the preceding vehicle.

In CACC one adds inter-vehicle communication to the ACC: in other words, a vehicle can communicate via

wireless sensors its own acceleration to the following vehicle (or vehicles), so that this information can be used to

improve platooning performance. In fact, while string stability2 in ACC strategies cannot be guaranteed for inter-

vehicle time gaps smaller than 1 second, CACC was shown to guarantee string stability for time gaps significantly

smaller than 1 second [39, 40]. In CACC settings it might make sense to overcome the one-step look-ahead topology

with multi-step look-ahead topology, in which a following vehicle can receive information from two or more preceding

vehicles. In practice, however, the one-step look-ahead topology is the most popular topology even in CACC, because

looking too many vehicles ahead increases communication delays and decreases communication reliability [41].

It is now straightforward to realize that the proposed adaptive synchronization setting has a direct technological

application in CACC. Let us focus on the one-step look-ahead topology: in CACC the control law of vehicle i takes

usually the form

ui(t) = k′i,i−1(t)xi−1(t)+ k′i(t)(xi(t)− xi−1(t))+ li,i−1(t)ui−1(t) (49)

which, similarly to (32), involves measurements of relative position and relative velocity xi(t)− xi−1(t), position

and velocity of the preceding vehicle xi−1 and acceleration of the preceding vehicle ui−1. Therefore, the proposed

adaptive laws have a relevant motivation: only recently research has been addressing the problem of platooning with

heterogeneous vehicles [42, 43], while previously the homogeneous case (identical vehicle dynamics) was the main

focus: intuitively, the heterogeneity of the driveline dynamics, combined with the fact that vehicle parameters might

be unknown or even change with time motivates an adaptive control approach. The following section will illustrate

some experiments involving second-order agents as the ones in (48): we will adopt an acyclic topology more complex

then the one-step look ahead topology, in order to show more generality than the platooning case.

6. Simulations

Figure 1: The leader-follower directed communication graph

The simulations are carried out on the directed graph shown in Fig. 1, where node 1 acts as the leader node. The

reference model is indicated as a fictitious agent 0 which can communicate the reference signal to agent 1. The agents

are taken as second-order linear agent in the canonical form, where the leader dynamics and the dynamics of other

agents take the form (48), where the exact coefficients and initial conditions are reported in Table 1. Note that the

matrices are given in terms of ẋ0 = Amx0+bmr for the reference model and ẋi = Aixi+biui, i ∈ {1, . . . ,N} for the other

agents. Except for the reference model, which is asymptotically stable, all agents are open-loop unstable, so that the

couplings must also take care of stabilizing the agents. In addition, all agents are heterogeneous, and the numerical

2String stability is a desired behavior of the platoon, fulfilled when the effect of disturbances (e.g. emergency braking) introduced along the

platoon is attenuated as it propagates in the upstream direction.
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values in Table 1 are used only to simulate the agents, but the synchronization protocol uses only the knowledge of

Am and bm, and not of the other matrices. The other design parameters are taken as: γ = 10, Q = diag(100,1), and all

coupling vector gains are initialized to be 0. Also note that sgn(l∗i ) = 1, ∀i.

a1 a2 b1 x0

agent #0 -0.5 -1 1 [1 −1]′

agent #1 -1 2 1 [1 1]′

agent #2 -0.75 2.5 0.5 [−1 −1]′

agent #3 -1.25 2 1.25 [−1 0]′

agent #4 -0.5 1 0.75 [0 1]′

agent #5 -0.75 1 1.5 [1 0]′

agent #6 -1.5 2.5 1 [−1 1]′

Table 1: Coefficients and initial conditions of the agents

(a) Synchronization in noiseless case. In these simulations we assume that each agent can observe perfectly the

input of its neighbor. The resulting synchronization is shown in Fig. 2a and Fig. 2b for a sinusoidal and a constant

leader input respectively. It is observed that all states converge asymptotically to the state of the leader.

0 5 10 15

x
1

-2

-1

0

1

2

time [s]

0 5 10 15

x
2

-2

0

2

4

(a) sinusoidal input

0 5 10 15

x
1

-2

-1

0

1

2

3

time [s]

0 5 10 15

x
2

-2

0

2

4

(b) constant input

Figure 2: Synchronization in noiseless case

(b) Fixed-gain feedback. In these simulations we use the following nominal agent a1 =−0.95, a2 = 1.83, b1 = 1

(calculated from the average of all agents) in order to design a fixed-gain feedback. The resulting state is shown in Fig.

3a and Fig. 3b for a sinusoidal and a constant leader input respectively. It is observed that, in the absence of vector-

valued adaptation, the fixed gain does not cancel the heterogeneities perfectly: this means that not all agents cannot

match the reference model, and asymptotic convergence is in general not achieved. These simulations underline the

need for adaptive feedback gains.

(c) Synchronization with bounded misjudgment error. In these simulations we assume that each agent can observe

the input of its neighbor, but with a certain bounded misjudgment error. The misjudgment error is taken to be a

random value with uniform distribution in [−1,1]. For these simulations the leakage parameter is taken as σ = 0.1.

The resulting synchronization is shown in Fig. 4a and Fig. 4b for a sinusoidal and a constant leader input respectively.

It is observed that all states converge to the state of the leader with a certain bounded error.

(d) Synchronization with unknown constant input. In this final simulation we assume that the input of the leader

is constant, and each agent cannot observe the input of its neighbor (which also converges to a constant), but it must

estimate it. So, for this simulation extra estimators for each agent must be implemented. The resulting synchronization

is shown in Fig. 5a. It is observed that, despite the extra uncertainty, all states converge asymptotically to the state
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Figure 3: Synchronization with fixed feedback gain
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Figure 4: Synchronization in noisy case

of the leader: this is achieved thanks to the extra estimators, whose state is shown in Fig. 5b. The estimation of u1 is

carried out from agent 2 and 5 (which are both connected to this agent): as typical in adaptive control, the estimate

needs not to converge to the actual input (shown with a dashed line) for the synchronization error to go to zero.

7. Conclusions

This work presented an adaptive algorithm for leader-follower synchronization of heterogeneous and uncertain

linear agents. The problem was solved by formulating the synchronization problem as a special model reference

adaptive control where each agent tries to converge to the model defined by its neighbors. It has been shown that in

this setting the ‘feedback matching conditions’, classical in adaptive control and defining a set of feedback gains for

the agents, leads to ‘coupling matching conditions’ that define a set of coupling gains for the each agent to follow

its neighbors. In the presence of uncertainty, both the feedback and the coupling gains have to be estimated. To this

purpose, the useful concept of virtual reference has been introduced, which represents the fictitious reference signal

that is followed by a neighboring agent. The implementation of a model reference adaptive control in this setting

has lead to a set of adaptive laws for all gains: in contrast with most synchronization (or consensus) literature, where
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Figure 5: Synchronization with unknown constant input

the adaptive laws are scalar-valued, in the proposed approach the adaptive laws are vector-valued. Therefore, in the

presence of uncertainty, it was possible to overcome the fixed-gain control based on a nominal model of the agents. A

Lyapunov-based approach was derived to show analytically that the synchronization error converges asymptotically

to zero in the ideal noiseless case. A key feature of the algorithm was the knowledge of the input of the neighbors:

this is assumed in many technological applications, most notably, in platooning via Cooperative Adaptive Cruise

Control (CACC), which has been discussed as an engineering application of this work. If the input of the neighbors is

measured with some (misjudgment) error or the input of the leader is unknown but constant, robust extensions of the

approach have been provided, which rely on an adaptive law with leakage. The Lyapunov-based analysis reveals that

the synchronization error will be bounded in the noisy case. Simulations have shown that the matching conditions

allow all agents to converge to the same behavior: in the absence of adaptation, not all agents synchronize to the

leader.

Future work will include extension to output-based synchronization and possibly consideration of unmatched un-

certainties: in the presence of unmatched uncertainties we expect some bound on the synchronization error depending

on the size of the unmatched uncertainty, in the spirit of [44]. Another promising research direction would be the

possibility to handle switching topologies by using adaptive switching strategies similarly to [45, 46]. This research

leaves also some open questions, the two most relevant being in our opinion the following. First, there might be a con-

nection between communicating the input to neighbors (to construct the virtual reference as in the proposed approach)

and communicating an auxiliary variable to neighbors (to observe the reference as in cooperative regulation schemes

[24]): in both cases one has to communicate extra information in order to reconstruct the reference. Second, and

related one, while communicating the input to neighbors seems to be sensitive to redundant information (cycles have

to be carefully addressed [47]), the distributed observer scheme can handle cyclic information: it would be interesting

to study new algorithms for communicating the input to neighbors, while being able to handle cycles.
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