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Preface

The first time I encountered composite materials was at my rowing club D.S.R. Proteus-Eretes.
Their fleet of over 100 boats is almost entirely made of fibre reinforced polymers. I became a member
of Proteus in my freshman’s year at the Delft University of Technology (TU Delft) and was immediately
intrigued by the fact that a skiff of 8 [m] long had a weight of only 14 [kg]. In my third year I became
member of the MatCie, a group of students at Proteus who repair and maintain the boats. Every repair I
executed made me more fascinated by the material. Not only is it stiff and strong in use, but it also has
a large freedom in geometry for instance the ability to make 90 [°] corners. After obtaining two years
of experience in handling composite materials, I participated as the structural engineer in the TU Delft
Solar Boat Team of 2018 where I was put in charge of designing and producing the composite parts of
the solar boat which were mainly for use in the hull and the solar deck. That year every day felt like
a dream come true: designing, modelling and handling composites. After that year I knew I wanted to
continue my journey to understand the material better.

This thesis is written mainly for my research group, especially to my successor who has to
continue the work that I have started. Therefore the starting point of knowledge and skills of the reader
is that of a master Structural Engineering student at the TU Delft. It is expected to know how to perform
a static linear elastic analysis. Furthermore, the report contains a vast content of the knowledge currently
available on fatigue behaviour in composites and of the non-linear finite element modelling techniques.
More research groups are investigating the issue as we speak as is demonstrated by the fact that the
papers of Brod et al.[1] and Bartkowiak et al.[2] were published several months ago in March and April
of 2020. Their papers confirmed the idea which I had in mind in September 2019 about addressing the
fatigue behaviour in composites to the individual stages of stiffness degradation with for each stage its
respective dominating failure mechanism. This idea is the main argument for my model of the fatigue
behaviour in composites.

My sincere gratitude to Marko Pavlovic for being patient enough to let me deal with the hurdles
I had to take. I understand it is frustrating if people have a slow progress, because they want to tackle the
problem in their own way. Also we had sometimes different opinions about certain issues. Hopefully the
discussions about these issues were enlightening to both of us. Finally, perhaps the result of the project
is not yet at the point we wished for, but creating something useful out of nothing always takes a lot of
time. Let this be the first step to that something useful.

I would like to take this opportunity to thank Iris Verouden for helping me out to improve my
introduction and conclusion by posing critical questions. Also thank you to Esther Spruit and Kimberley
van Batenburg to read the report to see if there were any parts that needed further clarification and report
back the message that was conveyed in the report. And my specials thanks to Mieke Witjens and Bart
de Cleyn for proofreading this report not only to check if the overall structure conveys the message, but
also thoroughly to every little detail.
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with one cycle. Different notation for σult

σy,εpeq
Von Mises equivalent
plastic stress

The Von Mises equivalent yield stress for certain
plastic equivalent strain based on the hardening.

σy,0 Initial yield stress
The yield stress at the start of the analysis,
input yield stress.

σy,n Current yield stress The yield stress at cycle N = n in the analysis.

σy Yield stress
The stress at which the material no longer follows
the linear elastic response due to a stiffness reduction.

ε Strain
The amount of relative extension a material
has obtained to deform.

ε̇ Strain rate
The speed at which the yield contour hardens
if the material is strain dependent.

εpeq
Plastic equivalent
strain

The equivalent strain of the material according
to the Von Mises yield contour. It is the strain equivalent
of the equivalent Von Mises stress.

εf Fracture strain
The final strain at which the material is considered
to reach zero resistance.

εi,0
Initial crack initiation
strain

The strain at which cracking occurs for the first
time in the material.

εi,k
Crack initiation
strain

The strain level at which damage starts to
evolve further in cycle k.

εp,observed
Observed plastic
strain

The plastic strain observed from the nodal
output of the model (engineering strain).
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Symbol Name Definition

εp,true True plastic strain
The true plastic strain taking into account
the necking of the material.

εult,εultimate Ultimate strain The strain at which the ultimate stress occurs.
εpult, ε

p
ultimate Ultimate plastic strain The plastic strain observed at ultimate stress.

εy,input Input yield strain
The given strain at which the material starts
to yield.

A, a∗ Surface roughness
parameter

The parameter dependent on the ultimate stress
to provide a relative surface roughness.

a Crack length
The sum of the length of the crack created by
the fatigue load, premade cracks and cut-outs.

da
dN

Crack propagation
rate

The speed that a crack moves through a cross-section:
the change in crack length divided by the change
in number of cycles.

b
Material constant 2
of Paris law

The material constant that describes the power of
the Paris law.

b
Stress change
speed

Describes how fast the isotropic hardening takes place.

C
Material constant 1
of S,N-curve

The material constant that describes the multiplicative
of the Basquin relation.

C
Material constant 1
of Paris law

The material constant that describes the multiplicative
of the Paris law.

c Viscosity The numerical applied viscosity to stabilise the model.

c1
Paris law material
constant 3

The material constant that describes the multiplicative
of the critical energy release rate in the Paris law.
This notation is used in Abaqus[3]
to describe the Paris law for crack initiation in fatigue.

c2
Paris law material
constant 4

The material constant that describes the power of
the critical energy release rate in the Paris law.
This notation is used in Abaqus[3]
to describe the Paris law for crack initiation in fatigue.

c3
Paris law material
constant 3

The material constant that describes the multiplicative
of the critical energy release rate in the Paris law.
This notation is used in Abaqus[3]
to describe the Paris law for crack propagation in fatigue.

c4
Paris law material
constant 4

The material constant that describes the power of
the critical energy release rate in the Paris law.
This notation is used in Abaqus[3]
to describe the Paris law for crack propagation in fatigue.

Cn
First kinematic
hardening parameter

In combination with γn as denominator,
it describes how much additional in applied stress is
allowed above the yield stress for the kinematic
hardening of backstress n
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Symbol Name Definition

D Damage
The relative amount of material in an element that
is no longer able to resist loads.

dD
dN

Damage propagation
rate

The speed that a damage accumulates in a cross-section:
the change in damage accumulation divided by
the change in number of cycles.

Eii Young’s modulus

The initial material stiffness parameters describing
the elasticity of the material in normal direction on
surface with the normal i direction of the material and
the stress also in direction i.

f
Unity check crack
propagation

The (equivalent) crack driving force over the (equivalent)
crack resisting force.

f
Unity check crack
propagation

The (equivalent) crack driving force over the (equivalent)
crack resisting force.

f tol
Allowed tolerance
on the crack
propagation

The tolerance for stable crack growth to determine
a cut-back in the increment or not.

f(σ) Yield function
The formulation of the yield contour as a limit state for
the elastic response of the material at certain
hardening levels.

fU Load frequency How many times the load is applied per second.

fu Ultimate stress
The maximum stress applicable to a specimen loaded
with one cycle. Different notation for \sigma_{ult}

f tolu

Additional allowed
tolerance on the
crack propagation

The tolerance additional for unstable crack growth to
determine a cut-back in the increment or not.

fy,observed Observed yield stress
The current yield stress that is observed in the nodal
output of the model.

G Energy release rate
The amount of energy released as a result of breaking
of the material to allow crack propagation.

Geq,c
Equivalent critical
energy release rate

The equivalent energy release rate based on one of
the three mix laws determining when final failure during
fatigue occurs.

Geq
Equivalent energy
release rate

The sum of the energy release rates of the three modes.

Gf Fracture energy
The energy stored in the material that will be released
during non-linear deformation beyond the ultimate stress.

GI
Energy release
rate mode I

The amount of energy released in mode I as a result of
breaking of the material to allow crack propagation as
normal crack.

GI,c
Critical energy
release rate mode I

The amount of energy the material cross-section could
resist before final rupture due to lack of resistance in
mode I will occur.

GII
Energy release
rate mode II

The amount of energy released in mode II as a result of
breaking of the material to allow crack propagation as
in-plane shear crack.
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Symbol Name Definition

GII,c
Critical energy
release rate mode II

The amount of energy the material cross-section could
resist before final rupture due to lack of resistance in
mode II will occur.

GIII
Energy release
rate mode III

The amount of energy released in mode III as a result of
breaking of the material to allow crack propagation as
out-of-plane shear crack.

GIII,c
Critical energy
release rate mode III

The amount of energy the material cross-section could
resist before final rupture due to lack of resistance in
mode III will occur.

Gij Shear modulus
The initial material stiffness parameters describing the shear
elasticity of the material on the surface i in normal direction
of the plane and j the direction of the stress.

Gp
Plastic energy
release rate

The value of the energy release rate at which plasticity has
large influence on the material loaded with fatigue.
It indicates when stage III of the Paris law starts.

Gth
Threshold energy
release rate

The reduction of energy release rate due to the truncation
of accounted crack propagation in the material.

h Element size
The nominal size of the element, generally equal for the height
and width of the element.

k
Material constant 2
of S,N-curve

The material constant that describes the power of
the Basquin relation.

K Stress intensity factor

A description of how much higher the stress is compared to
the nominal stress of the cross-section due to the geometry
influence, load level and crack length during the crack
propagation phase.

k
Cycles of crack
development

The number of cyces since cracks initiated in an element.

Keff
Effective stress
intensity factor

The remainig ∆K after reduction of the opening
and threshold values.

Kf
Notch sensitivity
factor

A description of the influence of Kt on the material
due to notches.

Kmax
Maximum stress
intensity factor

The maximum stress intensity factor observed during
a load cycle.

Kmin
Minimum stress
intensity factor

The minimum stress intensity factor observed during
a load cycle.

Kopening
Opening stress
intensity factor

The reduction of stress intensity factor due to the delayed
opening of the crack as result of the load history.

Kt
Stress concentration
factor

A description of how much higher the stress is compared
to the nominal stress of the cross-section due to the geometry
influence, originally only in the crack initiation phase.

Kth
Threshold stress
intensity factor

The reduction of stress intensity factor due to the trunctation
of accounted crack propagation in the material.

M Schütz constant
Material value given to the tangens of R as a sensitivity
value for the different load ratios.

n
Arbitrary cycle
number

The number of cycles that have passed that equals to
an predefined number.

N Number of cycles The number of cycles that have passed.
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Symbol Name Definition

Nf Fatigue life
The total number of cycles required to let the structure fail
under a certain applied load spectrum.

Q∞ Stress change
The change in stress between the yield stress and the ultimate
stress of the material.

R Load ratio
The minimum load divided by the maximum load. Load could
either be stress, force, strain or displacement.

Rij
Anisotropic yield
stress ratios

The ratio between the yield (shear) stress in a certain direction
divided by the Von Mises yield stress.

Sa Amplitude stress
Half of the difference between the maximum and minimum
stress of the cycle. Different notation of σa.

t Time The perception of how long something will last.
T Temperature The applied temperature in the model in [°C]
tan(φ) Tangens of R The tangens of the angle that R makes in a σm,σa-plot.

U Displacement
Either the maximum displacement that is applied or the
observed displacement in the model.

u Displacement
The required displacement to obtain infinite life in a
pure plastic one element model.

Umax
Maximum
displacement

The maximum observed displacement in the model.

Umin
Minimum
displacement

The minimum observed displacement in the model.

v1,6,i
COD at points 1
and 6 at time i

The COD in the VCCT model for nodes 1 and 6 at cycle i

v1,6,i+1
COD at points 1
and 6 at time i+1

The COD in the VCCT model for nodes 1 and 6 at cycle i+ 1



Summary

Wrapped composite joints are being developed to replace the design with welded joints in off-
shore jacket structures. Many problems arise with welding mainly due to an uncontrolled environment
and the inevitable side effect of a heat affected zone (HAZ). Wrapped composite joints are created by
first wrapping glass fibre around the circular hollow sections (CHS) such that a bond is created between
the tube and the glass fibre. A joint will be created upon connecting the glass fibres of the multiple
laminated tubes with additional layers of glass fibre. The joints could be made with or without welding
the CHS prior to laminating the fibres in a thick package around the CHS. Laminating the fibres does not
require immense heat to cure, thus it avoids creating a HAZ. Additionally, larger geometries allow for
a smoother transition of stresses and less severe notches which reduce stress concentrations. However,
composites behave differently than metals, therefore extra considerations have to be taken into account.

Assessing the fatigue behaviour of composites based on the residual stiffness diagram allows
non-destructive testing to obtain the required information. Also less fatigue tests are required once
the relation is known between the residual stiffness and the residual strength. Therefore a model is
desired that predicts the residual strength based on the residual stiffness. In order to mimic the stiffness
degradation and predict the residual strength, simulations are required that use models that extent the
linear elastic computations. So the main questions are: which model is most suited to this approach of
fatigue assessment with the readily available tools in Abaqus[3]? And which parameters have the most
influence on the fatigue behaviour of that model?

The chosen model is a phenomenological model that generates simulations of the structure on a
meso-scale level with the focus on predicting the onset of strength degradation. Three mechanisms were
observed by Brod et al.[1] in out-of-plane bending fatigue tests: inter fibre failure (IFF), delamination
(DEL) and fibre failure (FF). Bartowiak et al.[2] observed the same three mechanisms, but had observed
only two stages upon testing an in-plane tension-tension fatigue loaded coupon. As such it is expected
that these mechanisms are also present in the compact tension specimen (CT specimen). A CT specimen
test is a standardised test that is described in ISO-norm 15850[4] in order to determine the crack growth
resistance parameters of a certain layup of composite material. A CT specimen is loaded with in-plane
bending. Therefore it is expected that the delamination mechanism will not occur separately during the
fatigue test of the CT specimen. One model for each mechanism is chosen, resulting in three models
included in the simulations. First the intraply mechanisms (IFF and FF) are simulated on a model with
one element for better understanding of these models. Later the one element model is upgraded on
its material properties and geometry before introducing the interply mechanism (DEL). The residual
stiffness diagram is used to display the effect of the significant mechanisms. The research focuses heavily
on the first stage of the residual stiffness diagram. This first stage is the most important part in predicting
the total stiffness degradation up to the point where the strength degradation effectively starts in the final
stage.

IFF is a micro-mechanism that generates cracks which are nearly invisible to the naked eye.
These cracks cause to degrade the stiffness rapidly but not significantly the strength. This effect stabilises
after a few cycles. In contrast to the readily available damage models, the plasticity model is capable
of defining the degradation of stiffness without creating visible separation or deletion of elements, nor
degradation in structural strength. Therefore the plasticity model is chosen to describe the IFF that dom-
inates stage I of the stiffness degradation. The effect of the plasticity model is first checked on a single
element since the direct cyclic analysis in combination with the plasticity model was an unconfirmed
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case. One major choice had to be made regarding the formulation of hardening to be used: isotropic or
kinematic hardening. Tests with a load ratio of R = −1 should point out which type of hardening is the
most suited to describe the IFF. The parametric formulation of the hardening is preferred over tabular
formulation for guaranteed compatibility with the ductile damage model. A remark has to be given to
the use of the plasticity model. The plasticity model has to be taken with caution as it will lead to the
crack overclosure effect which is present in metals, but not in composites.

The ductile damage model is used to describe the meso-scale cracks of the FF that dominates
stage III. In stage III both the stiffness and the strength deteriorate progressively. The plasticity model
is compatible with the ductile damage model since the ductile damage model is an augmentation of the
plasticity model. It implies that stage I and III will not occur together in a model with one element.
In all the models with a CT specimen geometry it is possible to have one element in stage I and the
adjacent element in stage III. For that reason on a structural level the transition from stage I to stage III
is defined as the moment that the residual stiffness degradation has stabilised itself for the first time and
now progresses slowly and linearly on a logarithmic scale. On that point stage III starts. This transition
point coincides with the first element in the model failing completely due to the ductile damage model.

The delamination is modelled using the Virtual Crack Closure Technique (VCCT). Since the
DEL is occurring on the interface between two layers during fatigue loading, the VCCT criterion is the
most suited model. During the delamination pairs of layers are pulled apart step-by-step as an interply
mechanism.

The model that includes all three mechanisms for the CT specimen geometry with a layup
of [0|-45|90|45|0] shows results that are consistent with the requirements as long as the quasi-isotropic
stiffness is used to describe each layer. The cracks are in the horizontal direction from the crack tip which
is the weakest direction bases on the quasi-isotropic stiffness and the isotropic strength. The shape of
the stiffness degradation curve shows stages I and III with delamination present in both stages. Also the
peak stress at the crack tip of 284 [MPa] matches closely with that of the defined maximum stress in
the plasticity model of 289.5 [MPa]. Together with the nominal stresses based on the applied forces and
the net cross-section, a stress intensity factor of about 6 is observed in the first cycle. Only the crack
propagation rate over the number of cycles da

dN of the intraply does not follows the Paris law and da
dN of

the interply follow a Paris law with different material constants c3 and c4.

The fatigue life of the CT specimen is influenced by many factors. Changing one of the influ-
encing parameters related to a certain mechanism will change the fatigue life of an element that endures
that mechanism. With this in mind the shape of the stiffness degradation curve of the one element model
and the CT specimen could be adjusted to match that of the future test results. The total fatigue life
depends on the speed of the slowest mechanism at any given moment. If the intraply cracking is lagging
behind, then the most influential parameters on the fatigue life are: fracture energy Gf , fracture strain
εf and stress change Q∞. Furthermore the fatigue life is increased during the ductile damage model by
increasingGf or εf . The fatigue life for a certain stage is increased by increasing one of these parameters
correlated to the mechanism of that stage. That will therefore influence when stage I has ended. If the
interply cracking is lagging behind, then the most influential parameters are the material constants c3 and
c4 of the Paris law. The fatigue life is increased by increasing c3. Increasing c4 will generally decrease
the fatigue life as the equivalent exerted effective energy release rate at the crack tip is generally lower
than 1.

The mesh refinement study revealed that for both the VCCT models and the tie models of the
CT specimen an element size of 1 [mm] is sufficiently small to obtain converged solutions. An element
size of 2 [mm] could be used for quick simulations, but is somewhat less accurate.
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However, the both type of models (VCCT and TIE) do not take into account certain mechan-
isms that have a lesser influence. It assumes these mechanisms do not occur. Also the phenomenological
model only mimics the mechanisms instead of describing the real mechanism. Additionally, the model
is only capable of handling quasi-isotropic composites since no strength differences in different material
orientations are defined. Furthermore, the hardening and fracture parameters are based on static tests
and estimated values, hence fatigue testing is desired to calibrate the model. Finally, the most important
limitation is the fact that the model is not capable of performing (controlled) cycle jumping.

All in all, the VCCT MS2 models describe the fatigue behaviour of composites based on the
different failure mechanisms within the given limitations. Therefore the most suited model with readily
available techniques in Abaqus [3] is to use the plasticity formulation for the IFF, the VCCT for delamin-
ation and the ductile damage formulation for FF. Currently the model is not ready to fully describe the
fatigue behaviour in composites. The improvements that have to be made are cycle jumping and in-
cluding the different strengths for each material orientation as is present in the Hashin model for static
analysis.



Chapter 1: Introduction

1.1. Background and motivation

In off-shore structures the type of foundation is based on the depth of the water underneath
the surface as summarised by Dvorak[5]. In medium shallow waters jacket structures are the most
economical solution. Jacket structures are made of hollow sections that create a three dimensional truss
system that is light, strong and rigid. Generally these are made of circular hollow sections (CHS) that
are connected by welding. In the past some major disasters happened with oil platforms such as the
Alexander Kielland in 1980 as is written in a report of the Officer of the Watch[6]. The cause of these
disasters were often related to a bad quality of welding. The welding has to be done on site, which means
that it is likely to obtain poor quality welds and misplaced beams. In case of the Alexander it was because
of an incomplete welding resulting in a cross-section reduction of the weld of more than 50%. Even if
the welding is performed with a high level of quality, there is still a heat affected zone (HAZ) present in
the parent material caused by rapid cool down resulting in residual stresses.

Creating a connection using composite materials would be a solution. Winding the fibres
around the steel hollow section and fixating these with resin does not require large amounts of heat.
On top of that, composite connections have a larger freedom in geometry, especially in the thickness
direction of the fillet. For that reason also lower stress concentrations could be achieved which is ad-
vantageous when designing against fatigue failure as stated by Alderliesten[7]. Additionally, the crack
propagation works as a warning on site for failure as the crack creates loud noises during growth.

1.2. Scope and problem statement

The fatigue behaviour in composites is a relatively new field of study. At first composite fa-
tigue behaviour was assessed as steel. However, when it became evident that composite have short crack
initiation phase, other methods were required. The crack propagation methods showed that composites
is a material that initially shows a quick degradation in stiffness of a couple of percent, but that stabilises
to a slow and steady degradation up to a certain point where the stiffness and strength deteriorates pro-
gressively as was observed by Brod et al.[1] and other research groups. This allows to monitor failure
more accurately once fully understood according to Van Paepegem and Degrieck[8]. However, the fa-
tigue behaviour in composites is not yet fully understood, therefore an accurate prediction method is not
yet obtained.

The goal is to create a finite element model that predicts the stiffness degradation and fatigue
life of a glass fibre reinforced compact tension specimen. The compact tension specimen is generally
investigated in a more pragmatic manner that considers the entire composite layup as one material. Then
Paris law[9] is often used to predict how many cycles are required to propagate a crack through the entire
cross-section. This thesis will apply the research of Brod et al.[1] of the out-of-plane bending fatigue test
and Bartowiak et al.[2] of the in-plane tension-tension fatigue test on the compact tension specimen for
fatigue load. That will provide a better insight on how the compact tension specimen fails. If that is well
understood, then these techniques could be applied on larger scale, for instance to investigate the fatigue
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failure of the wrapped composite joints.

In order to achieve that goal, a definition has to be set to the stiffness degradation and fatigue
life of composites. The stiffness degradation is defined as the reduction in stiffness between cycleN = n
and cycleN = 1. The stiffness of cycleN will be measured as an average stiffness of the structure during
that cycle: Fmax−Fmin

Umax−Umin . Often the residual stiffness will be normalised to the first cycle to compare
the results for different load levels. The fatigue life of composites is defined as the final cycle that
the structure is able to withstand the imposed load. This implies that the cycle after will let the crack
propagate through the specimen in one cycle for the remainder of the cross-section. This coincides with
no residual stiffness being present.

These definitions will be applied in a finite element model (FEM) to investigate the fatigue
performance of a glass fibre reinforced compact tension specimen. Although the applications for FEM
in structural engineering is very extensive, only a limited amount of possibilities will be investigated.
The research will limit itself to the readily available tools in Abaqus[3]. The readily available tools are
options in Abaqus[3] that do not require any user-defined subroutine or user-defined material.

1.3. Research questions and model requirements

This report will focus first on the fundamental understanding of how to address fatigue failure
in composites, then on the assessment using finite element models. From the master study Structural
Engineering a lot is emphasised on recognising failure mechanisms and that each change in response
indicates that a new failure is governing. In order to fully understand the composite reaction to fatigue
loading, every significant failure mechanism needs to be addressed. So first of all, what are the significant
failure mechanisms that need to be identified? Also how do they influence the fatigue behaviour? In
the next step the main question arises: which model is the most suited for simulating the fatigue
mechanisms in composites in a compact tension specimen with the readily available tools in Abaqus
[3]? How much potential does this model have in predicting fatigue failure in glass fibre composites?

In order to grade the potential of this model certain requirements have been set from most to
least important:

• The fatigue model has to generate a crack pattern for every layer in direction of the weakest dir-
ection for that layer of composite material. This weakest link is based on the stress field due to
the orthotropic stiffness and the orthotropic strength of the composite material of that layer, the
influence of the layup and the geometry of the specimen.

• The fatigue model has to perform (partial) cycle jumping in order to handle a million number of
cycles within a week for a compact tension specimen.

• The fatigue model should include the orthotropic stiffness formulation for the material properties
to predict the stress and the deformation field accurately for the different material orientations in a
similar manner as the orthotropic elastic stiffness formulation for static models.

• The fatigue model should include orthotropic strength formulation for the material properties to
predict the onset of cracking more accurately based on the stress field for the different material
orientations in a similar manner as the Hashin damage[10] model for the static models.

• The fatigue model has to include the brittle material properties (failure strain of less than 1%) in
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the damage model to mimic the brittle behaviour of the composite material in a similar manner as
a damage criteria in a static model.

• The crack propagation speed in the fatigue compact tension specimen model should correlate with
the critical energy release rate or the stress intensity factor to the Paris law[9] as is often observed
in compact tension fatigue tests.

• The fatigue model should visualise the effects of the three significant mechanisms identified in
chapter 2 in a different manner for each mechanism for easy identification in determining in which
stage the material is.

The last requirement listed above is a preference instead of a boundary condition. If some of these
requirements are not met now, then it is interesting to know: what are the possibilities in future research
to meet the lacking requirements? In the model certain parameters will be used that influence the crack
behaviour of the elements in the model, therefore they also influence the fatigue life prediction. In order
to reduce the work load during calibration of the model, which parameters have the most influence on
the expected fatigue life?

The research questions will be listen below, once more, in chronological order in which the
thesis is build up:

1. What are the significant failure mechanisms and how do they influence the fatigue behaviour of
composites?

2. Which model is the most suited for simulating the fatigue mechanisms in composites in a compact
tension specimen with the readily available tools in Abaqus [3]?

3. How much potential does this model have in predicting fatigue failure in glass fibre composites
based on these mechanisms based on the requirements set?

4. What are the possibilities in future research to meet the lacking requirements?

5. Which parameters have the most influence on the expected fatigue life and how do they influence
the fatigue life of the model?

The overall conclusion in chapter 7 will answer these questions in this order as well.

1.4. Thesis outline and guide

Each chapter will be readable as a stand-alone with its own introduction and conclusion that
poses and discusses the research questions related to that chapter. This allows to read only certain
chapters of the report. The overall introduction and conclusion mainly focus on the ideas that will span
multiple chapters and answer the main research questions discussed earlier. Chapters 3, 4 and 5 will
also have a set of hypotheses that will be investigated during that chapter. At the end of the chapter
these hypotheses will be answered concisely with a reference to the paragraphs in the chapter that will
discuss it in detail. After that, new hypotheses will be stated based upon the theory and hypotheses of
that chapter. These hypotheses will be accompanied with an explanation on how these hypotheses are
derived and in which section the answer will be given.
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The chapters are written in this order to capture first a general idea of fatigue assessment
that then will be narrowed down to the final application. This results in starting off with the theory
about fatigue and ending with the implementation of the model. Chapter 2 will be the starting point to
provide additional knowledge for students and engineers who have basic knowledge about finite element
methods, composites and fatigue. It will particularly be addressed to the research group of composites
on the faculty of Civil Engineering at the Delft University of Technology. This chapter provides the
most important characteristics of a fatigue assessment in composites. It will discuss the various failure
mechanisms that are present and how these mechanisms influence the fatigue behaviour of the composite.
Chapter 3 will show which model is suited to simulate each failure mechanism and why it is suitable.
This will be a guideline to numerically simulate fatigue failure in composites. Chapter 4 will continue
on this by focusing on how it is implemented in Abaqus [3] and what the influence of each parameter is
on a single element. This one element model needs to be upgraded to a full compact tension specimen
model. That is done in chapter 5. In that chapter the requirements are implemented step-by-step. The
final model will be judged on the earlier described requirements, therefore it answers the question if it
has the potential of simulating the fatigue failure after calibration or not. It will also provide possible
solutions to the requirements that are not met.



Chapter 2: Theory of fatigue in composites

2.1. Introduction

In order to let the simulations aid the fatigue assessment of composites, first the fatigue as-
sessment should be defined. What are the characteristics of a fatigue assessment in composites? Basic
knowledge if often lacking as most engineers only understand what an S,N-curve is and what stress con-
centration factors are. To start off, a generic material independent idea of the fatigue assessment will be
discussed, assuming the reader already knows the existence of an S,N-curve and the influence of stress
concentrations. Secondly the fatigue assessment of a metal will be presented as it is much easier with
only one fatigue failure mechanism.

Afterwards the transition to composites is made by answering the question: which fatigue
mechanisms are present in composites? These mechanisms will be elaborated further by observing the
literature about their influence on the fatigue failure of composites. Composites are often assessed on
a relative residual stiffness or strength curve where each stage is dominated by a different mechanism.
For out-of-plane bending this is already investigated, but how does it translate to in-plane bending?
Moreover, how is it related to the Paris law?

2.2. Generic concept of fatigue assessment

In a fatigue assessment a cyclic load is applied on a structure. The load could be from as simple
as a sinusoidal load with a constant amplitude to as complex as an applied spectrum with a variable
amplitude which only has unique load cycles. Although the latter is more realistic to structures loaded
by forces caused by nature, the former is often used in design and research. The constant amplitude load
is used so often, because fatigue assessment in general is already complex. Currently fatigue assessment
during the design phase of a new structure is usually done by carefully comparing the new structure
with a related existing structure of which the fatigue performances are known. There are a lot of factors
influencing the fatigue behaviour of a structure ranging from the quality of the material to the global load
bearing structure. Notice that the word structure is often used instead of material as fatigue failures are
80% caused by the performance of the structural design and 20% caused by the material that has been
used as stated by Alderliesten[7]. Therefore the fatigue assessment is often simplified to the applied stress
range that has the most impact on for the structure. The most impact on the structure is not necessarily
related to the highest applied stress range, but is related to the stress range that leads to the shortest
fatigue life. This is not only dependent on how large the difference in maximum and minimum stress
is, but is also dependent on how often each stress range occurs. The fatigue life Nf is defined as the
number of load cycles it endures until final failure occurs, which is the moment just before the structure
is fully cracked. Figure 2.1 visualises the general approach to a fatigue assessment. As more cycles of
the load are applied, the cracks in the structure will grow causing the residual strength to decrease. If the
residual strength remains larger than the applied stress, then no failure will occur. Failure only occurs at
the moment that the applied stress is equal to the residual strength of the structure.

5



6

Figure 2.1: The general representation of a fatigue assessment: the blue line is the applied load over time on the structure with
the value of the stress on the vertical axis, the red line represents the crack length over time in the structure with on the vertical
axis the length of the crack and the green line is the residual strength over time of the structure showing a reduction due to the
crack growth. Failure happens if the residual strength and the applied stress are equal as is represented by the black dot. This
figure is retrieved from the lectures by Alderliesten[7].

During any fatigue analysis there are a couple of definitions used that makes it easier to com-
municate. First of all a load cycle has a maximum stress σmax and minimum stress σmin. These are
corresponding to the extreme values of each cycle. In a load sequence with a constant amplitude these
are easy to spot since the cycles are easy to distinguish, for a load spectrum it is more difficult. There ex-
ist several methods to count cycles in a spectrum. The two most common counting methods are reservoir
counting as described in the BS 5400-10 norm[11] and rainflow counting as explained by Schijve[12].
The reservoir counting is easier to perform during hand calculations, but the rainflow counting is easier
to program. Both methods give the same answers. The stress range ∆σ is defined as the difference
between the maximum and minimum stress as is given in equation 2.1. Often the load ratio R is used
in fatigue assessments as many failure mechanisms and other fatigue life determining aspects are related
to the load ratio. The load ratio is defined as the minimum stress over the maximum stress as is shown
in equation 2.2. One could also define a certain mean stress σm which is not the average of stress over
time, but simply the mean of the maximum stress and minimum stress of a load cycle as is given in
equation 2.3. In fatigue assessment the load time is of limited influence compared to the stress range.
The stress amplitude σa could either be defined by the absolute of the difference between the mean stress
and maximum or minimum stress, or be defined as half of the stress range as both definitions are equal as
proven in equation 2.4. Although equations 2.1 and 2.2 are described for the stresses in a load controlled
test or analysis, these equations are analogous for strains in a displacement controlled test or analysis.
Figure 2.2 illustrates the different possible regimes of the load ratio related to the mean stress and the
stress amplitude. Some regularly used load ratios are: R = −1 for a fully reversed load cycle, R = 0 for
a pure tensile load cycle with σmin = 0 and R = +∞ for a pure compressive load cycle with σmax = 0.
In practice a slightly different ratio than R = 0 is used to prevent external compressive loading with
potentially different mechanisms activated due to an overshoot of the jacket. R = 0.1 is used instead
of R = 0 which results in a minimum stress at an amplitude of a tenth of the maximum stress. For
compressive cycles R = 10 is used as a substitute for R = ∞ for the same reasons as is mentioned
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by Alderliesten[7]. This is certainly of greater importance for composites than for metallic structures as
composites behave much worse under compressive load cycles than under tensile load cycles compared
to metals.

∆σ = σmax − σmin (2.1)

R =
σmin
σmax

(2.2)

σm =
σmax + σmin

2
(2.3)

σa = σmax − σm = σm − σmin = σmax −
σmax + σmin

2
=
σmax − σmin

2
=

∆σ

2
(2.4)

Figure 2.2: The different fatigue amplitude loading ratios R sketched for different mean stress and stress amplitudes. The
capital letter "T" is short for tensile and the capital letter "C" is short for compression. The diagonal lines are at an angle of π

4

which means that the amplitude equals the absolute value of the mean stress. The figure has been retrieved from Vassilpoulos
and Nijssen[13].

May it now be clear that fatigue is mainly a structural problem. However, the research per-
formed is focused on the fundamentals of a finite element model (FEM) that describes the fatigue failure
mechanisms of the material. In essence finite element models divide the structure into small pieces which
are direct transformations of isoparametric elements. The isoparametric elements are elements with ba-
sic shapes that have unit size dimensions on which the constitutive relations are defined. Thus little to
no numerical calibration is expected during up-scaling from a CT specimen model to the full size joint
model. Therefore the focus will be on the material behaviour with respect to fatigue loading which is
described in the constitutive relations.
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2.3. Common practise to address fatigue assessment

There is still much unknown about fatigue behaviour, let alone about fatigue behaviour in
composite structures as much repeated by Alderliesten[7]. Still one of the design requirements is that
the structure will not prematurely fail due to fatigue mechanisms. The fatigue mechanisms are material
depended and in theory for each mechanism a set of constitutive relations is required as is mentioned by
Shokrieh and Lessard[14]. Each set of constitutive relations will be implemented in the material model as
a module [7]. Especially in composites it will mean that multiple modules are needed to assess the fatigue
behaviour since many mechanisms are present in composites. For that reason simplifications are made
by grouping fatigue mechanisms that result into the same failure mode and neglecting the mechanisms
that have little influence on the fatigue life estimation. It are the load cycles which determine what
fatigue mechanism is governing and which failure mode will prevail. Important aspects of the load cycles
are: load range, load ratio, direction of loading, length of specimen, ageing, environment (lab, vacuum,
saltwater), frequency and opening time as stated by Alderliesten[7]. Since these mechanisms are assessed
pragmatically by comparing results from tests to verify if there is sufficient fatigue life or to estimate
the fatigue life from it, currently all the widely used existing models are phenomenological. Progress
is made in the fundamental models that describe the true behaviour of each occurring mechanism as
for instance Brod et al.[1] and Shorieh and Blessard[14] have focused their research on. Additionally
progress is made in statistical models that will aid to reduce the amount of tests needed as is investigated
by Kaminski[15], Naderi and Maligno[16] and Kassapoglou[17]. Both type of models are useful, but the
fundamental models that describe the mechanisms are more desired at the moment.

2.3.1. Fatigue life of a structure

Often the fatigue life is split in a crack initiation phase and a crack propagation phase. Accord-
ing to the definition of fatigue life all the cycles from t = 0 in the crack initiation stage till t = tfailure in
the crack propagation stage must be included. The crack initiation stage is the period of fatigue loading
where no visible crack is observable. Only after failure striation marks will be visible with an electron
microscope. Each striation mark indicates a cycle and the size of the striation mark is proportional to the
size of the load as is shown in figure 2.3. The crack nuclei start to form at local imperfections as these
imperfections cause stress concentrations. The imperfection starts the crack as a local slip band creating
alternating intrusions and extrusions due to the cyclic loading as is drawn in figure 2.4. Generally cracks
start at the surface as these imperfections are generally larger. Hence the crack initiation period could be
extended not only by which material is used, but also by how well the surface is polished as is illustrated
in figure 2.5.
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Figure 2.3: An electron microscope revealing the striation marks on the fracture surface of a fatigue failed specimen of
metallic material. The figure has been retrieved form the book of Schijve[12].

Figure 2.4: One or more of the local slip bands are excited by the cyclic loading. During the first half cycle the internal slip
creates a new surface until the grains on microscopic level are arranged in such a way that the imperfection is moved out.
Hence the material becomes stronger locally. This creates an intrusion. Now the parallel grains are excited as the next weak
spot and upon by completing the next cycle a slip band forms which results in an extrusion. The figure has been retrieved form
the book of Schijve[12].
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Figure 2.5: Different sizes of initial flaw lead to different numbers of cycles till failure. The smaller the initial flaw, the more
cycles in the crack nucleation stage is needed until the crack propagation phase starts, thus the longer the fatigue life. The
figure has been retrieved form the book of Schijve[12].

2.3.2. Crack initiation phase of a structure

The numerical assessment for the crack initiation phase is often performed with an S,N-curve.
The S,N-curve was first formulated by August Wöhler in 1867 [12]. The basic idea is to use a material
constant that relates the stresses in logarithmic order with the number of cycles till failure. This is also
know as the Basquin relation. The Basquin relation is given in equation 2.5.

(Sa)
kN = C (2.5)

Upon plotting the relation on a double logarithmic scale, a straight line is observed. The S,N-
curve describes the number of cycles till failure on the x-axis for a certain constant maximum stress on
the y-axis as is represented in figure 2.6. The Basquin relation is said to be true between 100 cycles and
one million cycles for metals. Below 100 cycles an upper limit is reached which is the ultimate strength
of the metal itself. This upper limit is caused by the plastic shakedown effect that allows the plastic
response of the material to redistribute stresses accordingly such that a negligible amount of fracture
happens. At about 100 cycles on maximum load the metal will still fail due to the amount of plastic
strain. If the analysis is below 104 cycles, then it is called a low-cycle fatigue analysis and if it is above
104 cycles, then it is high cycle fatigue. Above 106 cycles the constant amplitude fatigue limit (CAFL)
is reached which means that the internal stresses are so low that they will never lead to fatigue failure.

Although in theory the S,N-curve may only be used for the crack initiation stage, in practise
it is often used for the total fatigue assessment that includes the crack initiation phase and the crack
propagation phase. Depending on the material that is used this practice is good enough or bad. Here it
will only be used to describe the crack initiation stage. If no load ratio is given for an S,N-curve, then
the S,N-curve is given for a fully reversed load (R = −1) of an unnotched specimen. This is the basic
load ratio to determine a S,N-curve as the S,N-curves for many other load ratio’s could be extracted from
R = −1 based on the Goodman, Gerber or Schütz equation provided by Schijve[12]. These equations
are represented respectively in equations 2.6, 2.7 and 2.8.
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Figure 2.6: S,N-curve for an unnotched specimen with σm = 0 for a low-alloy steel (SAE41300). The figure has been
retrieved form the book of Schijve[12].

σN
σN,σm=0

= 1− σm
σU

(2.6)

σN
σN,σm=0

= 1−
(
σm
σU

)2

(2.7)

M = tan (φ) =
σN,σm=0 − σN,R

σN,R
(2.8)

In these equations σU describes the ultimate stress of the specimen during one cycle, hence
during a static test. M describes the sensitivity factor for the material to different load ratios. σN,σm=0

equals the stress level for a certain number of cycles N till failure under standard circumstances. σN
equals the stress level for a certain number of cycles N till failure at a certain mean stress which is
usually considered as the output of these equations. For the Schütz equation σN,R is considered often as
output for the stress level for a certain number of cyclesN at a specific load range. Many tests concluded
that the material response is between the Goodman relation and the Gerber relation. What is often done
is using the Schütz equation to determine if the Goodman equation or the Gerber equation resembles the
material better Alderliesten[7] stated. Transforming the original S,N-curve to the S,N-curve adjusted for
the load ratio has influence on both the upper and lower limit as the entire stress range is shifted. For
stress concentrations the effect of changing the S,N-curve is only on the lower as plastic shake down
prevents the effect on the upper limit.
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2.3.3. Crack propagation propagation phase of a structure

After assessing the crack initiation phase, it is time to assess the crack propagation phase. It
is enough for one crack to pass through the cross-section to result in failure. Therefore only the fastest
crack has to be investigated. During the assessment of the crack propagation phase, one will encounter
three distinct stages of crack propagation rate as is shown in figure 2.7. First of all a slow crack growth
occurs which increases in speed until the acceleration levels off and enters the second stage. During the
second stage there is a constant increase in crack growth speed until the third stage has entered. In the
third and final stage the crack growth accelerates exponentially till failure makes it quite sudden. The
second stage is described by the Paris law[9]. The Paris law is given in equation 2.9.

da

dN
= CSb (2.9)

Here the crack propagation speed da
dN equals a logarithmic function with a the crack length

and N the number of cycles. C and b are material constants with units related to the observations made.
S is a factor that describes the load severity at the crack tip. More on this will be discussed during the
material specific assessment as crack propagation is also material and thickness dependent while crack
initiation is geometry and load dominated.

Figure 2.7: The general concept op the Paris law describing the crack propagation speed based on the stress intensity at the
crack tip. The figure has been retrieved form the book of Schijve[12].
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2.4. Fatigue assessment for steel

2.4.1. Fatigue mechanisms present in steel

As the fatigue assessment is mechanism dependent, the mechanisms related to steel will be
discussed. There is actually one main mechanism identified during fatigue assessment with three modes:
in-plane tension (mode I), in-plane shear (mode II) and out-of-plane/transverse shear (mode III). A visu-
alisation of each mechanism is provided in figure 2.8. Keep in mind that cracks are always a surface
despite drawing them as a line in a two dimensional drawing. In figure 2.9 the three different types of
cracks are illustrated that could be encountered. Based on the length and location it is called either a
corner crack, surface crack or through crack.

Figure 2.8: The three fundamental failure modes in steel caused by fatigue loading. The figures are drawn in top view, thus
modes I and II are in-plane and mode III is out-of-plane. The figure has been retrieved form the book of Schijve[12].

Figure 2.9: An illustration of the three types of cracks that could occur. If the crack is entirely through the cross-section of the
specimen, than it is called a through crack. If the crack is on the outer surface and only partially through, then it is called a
corner crack. If the crack is embedded or at the internal cut-out, then it is called a surface crack. The figure has been retrieved
form the book of Schijve[12].

Fatigue cracks in steel start as surface cracks that are governed by shear slip during the crack
nucleation stage. As soon as the crack is large enough to propagate perpendicular to the applied local
stress, then it is no longer in the initiation stage, but in the propagation stage as is visualised in figure
2.10. Each time a crack makes a change in course, it means a different failure mode is governing. So in
an experiment it is possible to first observe mode II as governing failure mode during the crack initiation
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phase, then observe mode I as governing failure mode for the main part of the propagation phase and
finish with mode III due to instabilities of the system. Do note that the grain boundaries of the steel have
influence on the crack growth rate. Especially during the crack initiation phase the grain boundary could
temporary slow down the crack growth by a factor 100. Although the grain boundaries at the surface
cause faster crack initiation due to being an imperfection, it does help in the long run to slow down the
microcrack growth as is shown in figure 2.11.

Figure 2.10: An illustration of the crack initiation in steel with a surface micro-crack growing in mode II starting from the
edge diagonally. The crack continues after the corner in the crack propagation phase as a macro-crack growing in mode I. The
figure has been retrieved form the book of Schijve[12].

Figure 2.11: A crack growth curve on micro-scale for the crack initiation phase visualising the effect of grain boundaries on
the crack growth of figure 2.10. The figure has been retrieved form the book of Schijve[12].

2.4.2. Crack initiation in steel

Whether the material will have its main life in the crack initiation phase or in the crack propaga-
tion phase depends on how easy cracks are formed and how thick the material is. As steel is a metal that
is cast or rolled into its final shape, there are not so many imperfections. On the other hand, steel profiles
are thin as steel is heavy and rigid compared to its weight and strength. Thus steel profiles have the ma-
jority of their fatigue life in the crack initiation phase. This is the reason why the crack propagation phase
is often neglected and considered as an extra safety feature during the design process. Only if cracks are
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observed in existing structures and the engineers want to know how much fatigue life is remaining in the
steel cross-section, then they turn to the fatigue propagation calculations. The fatigue initiation phase
could be thoroughly assessed by adding multiple parameters to reduce the fatigue strength next to the
Goodman or Gerber equations described in section 2.3.2 of chapter 2. The four main parameters that are
used are: the stress concentration factorKt, the notch sensitivity factorKf , the fatigue limit ratio αf and
the surface smoothness factor γ.

The first and foremost important parameter is the stress concentration factor. The stress con-
centration factor is a stress multiplier that takes into account the local geometry to obtain the peak stress.
The definition of Kt is defined in equation 2.10.

Kt =
σpeak
σnom

(2.10)

Kt is influenced purely by the geometry and the direction of loading. It has no unit. The stress
concentration factors could be any value ranging from about a negative two up to about a positive twenty.
For that reason it is very important to design the structure in such a way that the stress concentration
factor is as close as possible to zero. A small example would be that of the stress concentration around
a circular hole as is given in figure 2.12. For an ellipse with the semi-major axis a and semi-minor axis
b it is known that the stress concentration at point A in an infinite plate is equal to what is provided in
equation 2.11. For a circle in an infinite plate Kt as a function of the angle of the polar coordinate φ is
known along its entire periphery. This function is defined in equation 2.12.

Kt = 1 +
2a

b
(2.11)

Kt = 1 + 2cos(φ) (2.12)

In that case the stress concentration factor for a circle would be +3 at the point where the
diagonal would be perpendicular to the load (point A). A stress concentration factor of −1 is found
at the points where the diagonal is parallel to the load (point B). It is allowed to use superposition of
stress concentration factors. So for a plate with a circular hole loaded in in-plane vertical and in-plane
horizontal direction, the stress concentration factor will be +2 for all of these four positions. Thus the
plate is better in resisting bi-axial loading than uni-axial loading despite applying more total force. Hence
for multiple loading the superposition is taken by addition of the stress concentration factors. However, if
the circle would have a notch, then that notch would also have an additional stress concentration factor.
In that case the superposition will be performed by multiplication of the stress concentration factors
as the stress concentration factor for the larger geometric imperfection results already in higher local
stresses in the area. This is now further amplified locally by the smaller geometric imperfection of the
notch. Whether this last approach is conservative or not depends on making an over- or underestimation
of the material presence of the notch as is shown in figure 2.13. An underestimation of the notch size
results in conservative results as an underestimation of the notch size leads to overestimation of the
present material. While the absence of more material in reality forces the stress to divert earlier. Thus
a smoother stress path is created, therefore a lower stress concentration is observed. An overestimation
would invert the reasoning, therefore result in observing a higher stress concentration than is predicted.
There is always some over estimation made as the stress concentrations follow a gradient based on the
distance to the crack tip. In other words, the value ofKt decreases gradually when further from the notch
or cut-out. There are many formulae available to estimate the concentration factors of the basic cases.



16

This is where FEM comes into play as a finite element analysis already calculates the peak stresses due
to geometry. Therefore the obtained peak stress in such an analysis no longer needs to be multiplied with
a stress concentration factor. Do note that many of these results are mesh dependent, hence a proper way
of extraction of data is required to have consistent results. When applying the stress concentration factor
to the S,N-curve, then it should only be applied to the lower limit as only the CAFL is affected by it.
During the first 100 cycles the plastic shake down effect causes to have a much larger area to be loaded
in plastic response of stress level rather than a smaller area with a steeper gradient.

Figure 2.12: A visualisation of an example of a plate with a circular cut-out loaded with a stress S in one direction and a
stress S multiplied with a factor γ in perpendicular direction. Figure is retrieved from the lectures of Alderliesten[7].

Figure 2.13: A representation of the premature or delayed diversion of the stresses surrounding the notch in the cut-out. The
left figure shows an underestimation of the material and results in higher calculated Kt than in reality. The right figure
illustrates an overestimation of the material resulting in a lower calculated Kt than will be present in reality. The figure is
retrieved from the lectures of Alderliesten[7].

The second parameter is the notch sensitivity factor. Kf is related to a material constant A
and a notch radius ρ. A deterministic equation is given in equation 2.13 which is also a function of the
stress concentration factor. If Kf is close to the value 1, then this correction factor may be omitted.
The value of

√
A is given in figure 2.14 and must be applied without any conversion in equation 2.13.
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Hence it is easier to write
√
A outside of the fraction. As this parameter has the same effect as the stress

concentration factor, it is only applied to the lower limit of the S,N-curve.

Kf =
Kt

(
1 + 1

Kt

√
A
ρ

)
1 +

√
A
ρ

(2.13)

Figure 2.14: Graph showing the material constants A and a∗ dependent on the ultimate stress of the material. These two
parameters are equivalent. The figure is retrieved from the lectures of Alderliesten[7].

The third parameter is the ratio that describes the value of the fatigue limit according to the
ultimate stress of the steel alloy. Apparently there is a material type dependent relation between the
CAFL and the ultimate stress of metals. In general it could be said that the ratio αf between CAFL and
ultimate stress is 1

2 for steel with an ultimate stress below 1200 [MPa]. For steel with an ultimate stress
above 1200 [MPa] it is more suited to have a ratio of αf = 0.4 as is shown in figure 2.15. Each material
has its own ratio, for aluminium this value is at about αf = 0.3 and for cast iron it is αf = 0.4 while
tin alloys tend to have αf = 0.5 no matter the ultimate strength according to Schijve[12]. Also this
parameter only has influence on the lower limit of the S,N-curve as the definition already provides, it is
the ratio between CAFL and ultimate stress.

Also the last parameter only has influence on the CAFL as the plastic shake down would help to
overcome the imperfections due to the surface roughness. The surface finish factor γ is the ratio between
the resultant stress caused by the applied surface quality over the resultant stress in case of a high surface
quality as is shown in equation 2.14. In that case a worse surface quality would result in a higher stress
which increases γ, hence the CAFL needs to be divided by γ.

γ =
σ1,f,appliedsurfacequality
σ1,f,referencesurfacequality

(2.14)

2.4.3. Crack propagation in steel

The steel crack propagation phase is assessed according to the Paris law[9] as given in equation
2.9 in combination with the three failure modes described in paragraph 2.4.1 of chapter 2. In the Paris
law[9] one could argue that da

dN is the crack resistance. In that case S would be called the crack driving
force or solicitation. For steel the assessment is based on the plasticity around the crack tip. If someone
wants to calculate the stress concentration factor Kt, then that person will encounter that the stress
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Figure 2.15: A graph showing the relation between the constant amplitude fatigue limit of an unnotched specimen (vertical
axis) and the ultimate stress (horizontal axis). The figure is retrieved from the lectures of Alderliesten[7].

concentration in the crack tip will be infinite. As it is obvious that in reality a notch does not necessarily
lead to failure upon loading for one cycle, there must be more to this. For this there is a stress intensity
factor K to calculate that replaces Kt. The stress intensity factor describes the stress field around the
crack tip, generally there is an increase of stress. Do note that although Kt and K have aspects in
common, they are definitely not the same. First of all, K has a unit for example [MPa m

1
2 ] which

is dependent on the stress level. Also K is dependent on the meso-scale geometry only, while Kt is
dependent on the micro-, meso- and macroscale geometry. On top of that K is dependent on the crack
length. Equation 2.15 defines the mathematical formulation of K according to the book of Schijve[12].

K = βKtσ
√
πa (2.15)

Kt is optional to take into the formulation of K, many handbooks will separate Kt as a factor
to multiply the stress intensity of the macroscale geometry afterwards. Kt has the same function as in
the crack initiation phase and describes the influence of cut-outs on the increase of the local stress field
and still has no unit. β is a geometry factor without unit to describe the mesoscale geometry such as
whether the notch is internal or on an edge and considers the crack length in relation to the total width.
σ is the applied load, if K is addressed in [MPa m

1
2 ] then σ must be addressed in [MPa]. Depending

whether someone is interested in failure, the crack propagation rate or the crack opening threshold, σ
becomes respectively σmax or σopening for which the definitions of figure 2.19 are applied. π is the well
known constant without a unit. a describes the crack length in [m] for K in [MPa m

1
2 ]. Is a crack in the

centre of the material, then it has a length of 2a and if the crack starts at the edge of the material, then
it has a length of a. If there are any cut-outs from which the crack grows, than these cut-outs have to be
taken into account in the length of the crack as the material "feels" this absence of material through the
reduced stiffness as is explained by Alderliesten[7].
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Notice that K increases with crack length under a constant amplitude force load. At a certain
crack length the cross-section fails. Failure during the final cycle either happens due to the direct ultimate
limit of the cross-section or due to fatigue cycle having such a great propagation rate that it is able
to rupture the remaining cross-section in one cycle. It is assumed the reader knows how to perform
the final failure due to static rupture of the gross cross-section. The final failure due to an immense
crack propagation rate will be explained. As figure 2.7 already shows, there are three stages in crack
propagation rate. The last stage is unstable as the crack growth rate now increases exponentially as the
crack becomes larger and the cross-section becomes smaller, which increases σ as well. At a certain point
the stress intensity factor during maximum loading Kmax reaches the critical value KC . Depending on
which mode the specimen is loaded, this is KI,C , KII,C or KIII,C . For metals KI,C is often governing
due to larger thickness of the cross-section. It is possible to calculate a KC that allows to perform a
combined unity check by using weight factors in the addition of each individual unity check. Upon
calculating the number of cycles till KC is reached one would notice that the cross-sections with smaller
thickness generally fail earlier than thicker because there is less length to cover. However, it is not
proportionally to the thickness. This effect is described in the increase of KC for the thinner cross-
sections as is illustrated in figure 2.16. The thinner cross-sections are dominated by modes II and III
instead of mode I. Mode I has generally a lower value for the critical energy release rate than modes II
and III. The best designs tend to have multiple thinner layers of material since the thinner layers have a
higher critical stress intensity factor before failure. Also the crack arrest phenomenon occurs between
each layer which slows down the crack growth rate a lot, because it has to initiate a new crack in the next
layer.

Figure 2.16: The critical stress intensity factor KC for different thicknesses as a result of different governing failure modes
between thick and thin cross-sections. This figure is retreived from the lecture of Alderliesten[7].

Upon assessing the fatigue life of a structure, one would notice that the order of cycle amp-
litudes is important during the assessment of variable amplitude spectra, especially during the second
stage of crack propagation where the Paris law[9] is applicable. During the crack initiation phase it is
already noticeable that a specimen that is first loaded with a set of cycles with an amplitude that is below
the CAFL followed by a set of cycles with an amplitude cycles above the CAFL will allow more cycles
till failure than first having the larger amplitude cycles succeeded by cycles with a smaller amplitude.
This is caused by the damage generated by the larger cycles such that the lower cycles, which initially
would not result in damage if applied to an undamaged specimen, will now propagate the damage as
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the material is now weak enough. Numerically this is explained by the fact that now for the low cycles
K has to be used instead of Kt, because the cycles with a larger amplitude caused a crack initiation.
Therefore the cycles with a smaller amplitude only need to propagate the crack. Using the theory of
crack propagation with the Paris law[9] equation explains it further.

Figure 2.17: A visualisation of ending the previous set of cycles with a peak on the left and ending the previous set of cycles
with valley on the right. The second set is the remaining amount of cycles with a smaller amplitude till failure. For the right
figure this results in a smaller amount of cycles. The difference in results also shows how much total equivalent damage there
is at failure using the cumulative Miner’s rule. Values above one indicate it could take more cycles than anticipated by the
Miner’s rule and values below one indicate it could take less cycles than anticipated by the Miner’s rule. The figure is retrieved
from Schijve[12].

The second reason which is also related to the second stage of the crack propagation: there
are two important phenomena related that create this difference. Upon having the set of cycles with
larger amplitude first, it makes a difference whether the set ends with the peak or the valley of the cycle.
Ending upon the peak as shown on the left in figure 2.17 will result in crack retardation while ending in
a valley as is shown on the right in figure 2.17 will result in crack acceleration. The crack retardation
effect is caused by the plastic zone in front of the crack tip. During crack opening of the cycle, a part
of that plastic zone will reach ultimate stress and break resulting in the propagation of the crack. Also
a new part of the previously elastic loaded material will reach yielding stress and will deform plasticly.
Hence a crack closure effect is observed as the plastic deformation during tension deforms the crack
tip in such a way that the material will be prematurely closed before the material is fully unloaded. It
is this deformation that will result in local compressive forces during unloading. If the unloading is
unfinished or compressive forces are applied, then these local compressive forces will result in a plastic
deformation in the other direction creating a reverse plastic zone. Despite the reverse plastic zone will
have plastic compressive stresses instead of tensile stresses as during the creation of the plastic zone,
the reverse plastic zone does not undo the plastic deformation of the tensile half cycle. Moreover it
creates additional plastic deformation in order to achieve it. This phenomena of the crack closure effect
is visualised in figure 2.18.
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Figure 2.18: A visualisation of plastic zone due to tensile loading in metal and the reverse plastic zone due to the deformation
causing compressive stresses during unloading. The figure is retrieved from Schijve[12].

If the amplitude of K remains constant, then the size of plastic zone and reverse plastic zone
remain constant. Upon "over-closure" of the crack tip during Kmin, the compressive forces become
more negative which increases the opening stress intensity factor Kopening. Upon increasing Kopening

the crack tip opens again in the next cycle as is drawn in figure 2.19. Kopening therefore determines how
much effective stress intensity remains as Keff is defined in equation 2.16.

Keff = ∆K −Kopening = Kmax −Kmin −Kopening (2.16)

Figure 2.19: A visualisation of changing opening stress as a result of a change in opening stress intensity factor Kopening .
The change in Kopening depends on the amount of "over-closure" from the previous cycle, The figure is retrieved from
Schijve[12].
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If more compressive stresses are present around the crack tip due to a change in amplitude
and the maximum stress is reduced for the next set of cycles e.g.: an overload cycle or a sequential
set of cycles with smaller amplitude after the peak, then the phenomenon of crack retardation occurs.
Having one cycle with higher compressive amplitude stress will not help as it will only increase the
reverse plastic zone instead of the plastic zone. It is the plastic zone itself that causes the crack growth
rate to decrease. It is more difficult to let the crack pass through the plastic deformed material than
through virgin material. As the overload cycle caused more plasticity ahead of the crack tip than there
would normally be for that lower amplitude, it will take more cycles to propagate the crack for a short
period. This increased number of cycles could be so many that it causes the crack growth acceleration
due to the overload cycle to have less effect than the crack retardation during the sequential cycles as is
illustrated on the left of figure 2.20. The crack retardation effect is described in the crack growth rate,
thus the first part of the retardation is the delayed retardation where the crack growth slows down up to
the maximum retardation. The maximum retardation is when the lowest crack growth rate is observed
during the retardation. When the expected original crack rate is obtained again, which happens at the
end of the additional plastic deformation zone, then it is also the end of the retardation. Placing positive
overload cycles strategically increases the fatigue life as is illustrated on the right of figure 2.20.

Figure 2.20: An illustration of the effect of an overload cycle on the crack propagation rate. On the left the overload initially
accelerates the crack growth rate, but due to the extra plasticity created by the overload cycle the crack growth rate decreases
till under the normal expected rate causing the retardation effect. This improves fatigue life as is illustrated on the right that
the crack length only increase limited during the succeeding set of cycles. Normal crack growth rates resume after the
retardation effect is over which is at the end of the extra plastic zone. The figure is retrieved from Schijve[12].

As is already shown in figure 2.7, the first stage is limited by a certain threshold stress intensity
valueKth which is related to the effective CAFL as is explained by Alderliesten[7]. This threshold value
Kth needs to be determined empirically and is material dependent. It describes the truncation of crack
growth rates to be taken into account since no crack propagation is present below the effective CAFL.
Values of Keff below the threshold value Kth are below the effective CAFL, therefore they will not be
taken into the summation of total crack length as they do not cause any crack propagation. For steel this
limit is present as it is for many metals, only the value differs from other metals. If Keff > Kth is taken
into account, then Kth must also be subtracted from ∆K to obtain Keff which results in equation 2.17
which is reformulated by Alderliesten[7].

Keff = ∆K −Kopening = Kmax −Kmin −Kopening −Kth (2.17)
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2.5. Fatigue assessment for composites

2.5.1. Fatigue mechanisms present in composites

There are parallels between the principles of fatigue assessment in steel and composites such
as monitoring the strength degradation of the material for different load levels. However, there are also
differences present. Some differences are subtle such as using the energy release rate instead of stress
intensity factor. Other differences are more severe such as the (number of) mechanisms that are involved
and the number of cycles of the fatigue life spent in the crack initiation or propagation phase. The reader
is suggested to read paragraph 2.4 of chapter 2 as a prerequisite as the focus will be on the differences in
assessment compared to steel.

For composites there are advantages of using the residual strength and the residual stiffness
curves compared to the S,N-curves and constant life diagrams (CLD). Especially once the relation
between the residual strength and the residual stiffness is known and defined on the basis of a dam-
age parameter. This idea is confirmed by the earlier findings of Van Paepegem and De Grieck[8]. In
theory the S,N-curves and CLDs are only allowed for crack initiation, but are often used for crack ini-
tiation as well as the crack propagation phase. For the crack propagation phase the residual strength
and residual stiffness curves are developed. As composites have a limited crack initiation phase, but a
long crack propagation phase, those curves are more applicable to the composite fatigue assessment. For
metals the relative strength could be easily monitored as it decreases more gradually, but for composites
the stiffness could be more easily monitored as the stiffness decreased more gradually. Therefore if the
relation between residual stiffness and residual strength is known, then only a limited amount of testing
is required. A limited amount of tests are required because stiffness tests are non-destructive. Therefore
the same specimen could be measured at multiple occasions during the fatigue tests. This will not only
provide less scatter, but also provides more insight about the development of the stiffness degradation of
an individual specimen as is mentioned by De Grieck and Van Paepegem[18].

The biggest difference between the steel and composite material are the mechanisms. Whereas
steel has one mechanism with three different failure modes, one for each direction of loading, while
composites have at least three mechanisms with each its respective coice from the same failure modes
as available for steel: inter fibre failure (IFF), delamination (DEL) and fibre fracture (FF). These were
the significant mechanisms observed by Brod et al.[1] as is illustrated in figure 2.21. Each of these three
mechanisms will be explained in the paragraphs 2.5.2 and 2.5.3 of chapter 2 as these are related to the
crack initiation phase and the stages during the crack propagation phase. Some more variants of each of
these mechanisms could be distinguished based on the length of the fibre and the direction of the fibre.
Within a layer of fibres the different mechanisms that are possible at the crack tip, depending on the fibre
direction, are illustrated in figure 2.22. If cracking occurs in the matrix of a layer, then two variants are
possible: the fibres tend to pull out or break. If the fibres are short, then it is more likely that fibres will
be pulled out during cracking as the amount of shear resistance with the matrix is low. If the fibres are
long, than this shear resistance may become larger than the tensile strength of the individual fibre. In that
case the fibre breaks. Delamination is always between two fibre layers resulting in a clean(er) cut.
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Figure 2.21: The damage accumulation by the different mechanisms is illustrated on the left. IFF is the inter fibre failure,
DEL is the delamination and FF is the fibre failure. The result in residual stiffness is illustrated on the right. The amount of
damage accumulated is related with the reduction in relative stiffness. The illustration was retrieved from Brod et al.[1].

Figure 2.22: At the crack tip there is no single possible crack mechanisms within a certain range of angles to the already
existing crack as is present in steel. In composites there are several crack mechanisms possible at any given moment. The
figure is retrieved from the lectures of Alderliesten[7].

Whether or not all three mechanisms come to expression as an individual stage upon testing,
depends on the type of loading that is applied. Since the compact tension specimen (CT specimen) is
a sort of in-plane bending test, it is expected to observe only two stages with the three mechanisms.
Brod et al.[1] observed these three mechanisms sequentially for an out-of-plane bending fatigue test
resulting in three stages. The three mechanisms are sequential as the out-of-plane bending causes a
linear stress distribution over the thickness of the specimen. Therefore the outer layer is activated the
most. How exactly one mechanisms leads to another mechanism will be explained in section 2.5.3 of
chapter 2. These fatigue mechanisms are also observed for in-plane loading by Bartowiak et al. [2].
Despite observing the same three mechanisms, Bartowiak et al.[2] observed that only two stages came
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to expression in the in-plane tension-tension loaded fatigue test. If a specimen is loaded in-plane, then
all fibre layers are loaded equally with the applied stress, thus an uniform stress distribution is present
over the thickness of the specimen. This uniform stress distribution allows each fibre layer to develop
a crack due to IFF and FF, instead of one crack for the entire layup. These cracks are then be merged
into one larger crack through the delamination mechanism, if the delamination results in less fatigue
life than solely on the intraply mechanisms. While out-of-plane bending test has it similarities with the
CT specimen with tension stresses on one side and compression stresses on the other side, the in-plane
tension-tension loaded fatigue test has similarities with the CT specimen as both are loaded in-plane.
Therefore the expected response for the CT specimen will be in-between those two scenarios. As the
three failure mechanisms are observed in both the out-of-plane bending fatigue test as well as the in-
plane tension-tension fatigue test, it is expected that these three are present in compact tension specimen
as well. However, as upon the in-plane tension-tension fatigue test only has two stages that come to
expression, it is expected that the in-plane bending of the compact tension specimen will also show two
stages. This happens when one of the mechanisms overlaps with (one of) the other two mechanisms. That
is what is observed by Bartowiak et al.[2]. The most probable situation would be that the delamination
will overlap with the FF in the material (stage III). It does not exclude it might also happen during stage
I, however, it is unlikely to initiate delamination if the IFF cracking is not fully through the material
layer. The delamination is seen as an auxiliary mechanism that aids to obtain more critical crack patterns
during multiple simultaneously initiated in-plane cracks.

Despite that both figures 2.7 and 2.21 have three stages present and both describe a crack
propagation behaviour, they are not directly related to each other. Physically the difference is that the
Paris law is used to describe the crack propagation rate based on the different critical energy release
rates. This is merely based on one mechanism that shows different modes in the Paris law curve: stage
I is mode II, stage II is mode I and stage III is mode II. The crack propagation rate in composites is
often replaced by the damage propagation rate which is proportional to the crack propagation rate. The
damage propagation rate is related to the residual stiffness curve since the residual stiffness is based on
a damage parameter as is shown in figure 2.21 where the derivative of E

E0
is proportional to dD

dN . Despite
that the residual stiffness is based on a damage parameter, the damage propagation rate is not necessarily
proportionally related to the stiffness degradation rate. The damage propagation rate is related to the
energy release rate which is not necessarily proportional to the fatigue life. This is also observed as the
damage propagation rate is decreasing first as is shown in the convex curve of stage I in figure 2.21.
The Paris law[9] curve in figure 2.7 on the other hand shows an increasing damage propagation rate for
increasing energy release rate. In other words, the fatigue life and the energy release rate are not linearly
related.

Also the layup of the composite ply has influence on the type and location of cracking as
described by Pakdel and Mohammadi[19]. Figure 2.23 shows their findings for a symmetric ply. In
symmetric layup with fibres either close to parallel or perpendicular to the loading, the outer plies are
damaged first. If the fibres of the ply are close to 45 °to loading, then both outer plies are simultaneously
damaged first. Only for angles in-between the mid-plies are damaged first.

The second major difference is the response to the different loading regimes. Composites have
an excellent resistance against tensile fatigue loading, but are much worse than metals in compressive
fatigue loading as is illustrated in figure 2.24. This is caused by the compressive strength being less than
the tensile strength and the occurrence of different mechanisms. Therefore it is important to state during
a fatigue assessment in which loading regime the material is loaded.
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Figure 2.23: A diagram showing the influence of the angle of the composite layup on which layer will fail as first during
fatigue loading investigated by Pakdel and Mohammadi[19]. The angle Θ describes the angle between the fibres in the ply and
the direction of the applied load. The layup is symmetric with the outer plies having an angle of +Θ and the inner plies having
an angle of −Θ.

Figure 2.24: A diagram with the blue line representing the composite constant life diagram for different combinations of
mean stress (horizontal) and amplitude stress (vertical). The red line represents the aluminium. It shows that the composite is
much worse in negative loading than metals. The figure is retrieved from the lectures of Alderliesten[7].

2.5.2. Crack initiation in composites

The crack initiation is considered to be a damage accumulation on structural level due to having
many possible damage mechanisms at different locations that depend on the fibre orientation, the load
ratio, the crack length, the number of cycles, the fibre properties and the matrix properties. Hence the
crack initiation stage is often not considered in composite structures. Ovalisation of the fibre voids in the
matrix could be considered as crack initiation as no distinctive crack surface is present at first. However,
it is more suited to address it during crack propagation as the matrix needs to become damaged to link
the ovalisation of different voids.
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2.5.3. Crack propagation in composites

Although the stages of figure 2.7 are present during a long duration of cycles for example
during delamination, they are not that clear for composites as for steel. The first subtle difference is the
fact that composites do not have a well-defined threshold value Kth or for composites rather a threshold
energy release rate Gth. As already discussed, composites have a limited crack initiation phase and
directly continue to the crack propagation phase due to the brittleness of the material. There is actually
no CAFL present in composites. Therefore no truncation is allowed, thus all the crack growths have to be
taken into account. Therefore it is more useful to look at the propagation stage in terms of mechanisms
instead of modes. Each time a new mechanism became governing, a new stage in stiffness degradation
in the out-of-plane bending was observed by Brod et al.[1]. This was illustrated in figure 2.21.

Initially composites will have inter fibre failure (IFF) straight from the start. During IFF the
crack formation starts with ovalisation of the holes in the matrix material created by the fibres during
lamination as is shown in the left drawing of figure 2.25. This is similar to a bolt in a lug with not enough
embedment resistance. Once a couple of ovalised holes link up, a micro-crack is created as is shown in
the centre left drawing of figure 2.25. Within a couple of cycles the micro cracks link up to macro cracks
as shown in the centre right drawing and the right picture of figure 2.25. This means that composites have
a negligible crack initiation stage and the fatigue life has to come from the crack propagation phase. This
is the third major difference with steel where the crack initiation stage is the most important. It degrades
the stiffness quickly, but without a significant decrease in strength. The mechanism is stabilised quickly
as the crack is arrested at the interface between two layers of fibres. The second ply with the fibres in the
other direction causing the crack growth rate to slow down and start to move sideways between the plies
as is shown in figure 2.26. Locally there is a stress drop in the ply since the forces cannot be transferred
through the crack similar to what is observed in the cracking of a reinforced concrete beam loaded in
tension. The stresses that were supposed to go through the crack are now deviated to the adjacent plies.

Figure 2.25: A visualisation of the ovalisation of the matrix around the fibres of the composite on the left. Linking the
ovalised holes to create micro-cracks is shown on the centre left. Linking all the micro-cracks to create a macro-crack through
the layer is shown on the centre right. An electron microscope photo of a composite ply with a crack through the layer is
shown on the right. The illustrations on the left are retrieved from the lectures by Alderliesten[7] and the picture on the right is
from Gamstedt and Andersen[20].
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Figure 2.26: After linking up the ovalisation to create a macro crack through the ply, the stresses in the ply need to be diverted
around the crack to the adjacent plies. Hence locally there are no stresses in the ply. The figure is retrieved from the lectures of
Alderliesten[7].

During the second stage of figure 2.21 delamination is the main mechanism. It is also a relat-
ively stable mechanism that could be described by the Paris law. Instead of calculating the stress intensity
factors around the crack tip, it is more common to define the energy release rate in composites since the
composite failure mechanisms are often described in energy values. Although preferably using energy
values for composites, the energies could be translated into stress intensity factors using equation 2.18
provided by Alderliesten[7].

G =
K2

E
(2.18)

With G the energy release rate which has in general the units [MPA m], K the stress intensity
factor in [MPa m

1
2 ] and E the Young’s modulus of the material in [MPa]. The energy release rates

GI , GII and GIII are respectively related to KI , KII and KIII . Hence GI,C is used to describe the
amount of energy required to break a piece of (composite) material in plane using the in-plane normal
stress (mode I). GII,C is used to describe the amount of energy required to break a piece of (composite)
material in plane using the in-plane shear stress (mode II). Finally GIII,C does this for the amount of
energy required using the out-of-plane shear stress (mode III). Again it is possible to formulate aGC that
takes into account the combined unity check with a certain weight ratio. The Paris law[9] for composites
is changed with the effective energy release rate replacing the effective stress intensity as provided in
equation 2.19. ∆Geff has to be calculated identically as ∆Keff in equation 2.17.

da

dN
= C

(
∆Geff

∆GC −Gmax

)m
(2.19)
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da
dN is the crack growth rate in [m/cycle], C and m are material constants, Geff is the effective

energy release rate in [MPa m], ∆Gc is the equivalent critical energy release rate in [MPa m] and Gmax
the maximum energy release rate during a cycle in [MPa m]. The delamination occurs when the micro-
cracks due to the IFF reach the edge of the thickness of the ply. As the stress is transferred through the
matrix between the plies to bypass the crack, the bonding between the plies could delaminate due to an
increase in transfer stress as is illustrated in figure 2.27. This delamination is in shear for the plies despite
being in the same direction as the loading, hence it is mode II failure of the matrix.

Figure 2.27: An illustration of the delamination between the plies caused by shear failure after the initial crack is through the
ply. The figure is retrieved from the lectures by Alderliesten[7].

At a certain point the matrix is damaged in such a way that the fibres have to take all the load.
When that is locally possible, stage III of figure 2.21 takes place. Now fibre failure (FF) will occur. In
the fibre it is possible to observe single cycles in the form of rivermarkings as shown in figure 2.28. One
could define this as a crack initiation phase on a structural level if the crack propagation phase is defined
to start as soon as the first fibre has fully failed. This will in its turn cause the adjacent fibres to fail. This
mechanism is unstable and has exponential growth. It is also the last mechanism before final failure.

As mentioned earlier, the composite material is rather assessed by tracking the damage accu-
mulation than the stress intensity. Many of the failure mechanisms will have a specific damage parameter
which will count the amount of damage in the material for a certain failure mode over the different cycles.
This is due to the final large difference between the steel and the composite material. In steel the resid-
ual strength tends to decrease quickly during testing, but maintains its stiffness for a long time. On the
other hand composite tends to reduce in stiffness from the start, but keeps its residual strength for a long
time as is illustrated in figure 2.21. In figure 2.21 three stages are identified: stage I with a small rapid
decrease in stiffness, stage II with long gradual decrease and stage III with a sudden extreme decrease in
stiffness as has been reported by Brod et al.[1].

These regions are better related to the different failure mechanisms IFF, delamination and FF
for the stages I, II and III respectively. It is better in representing the fatigue life using residual stiffness
in composites than the crack length using figure 2.7. For that reason in composites often the damage
parameter is related to the residual stiffness of the component. The residual stiffness could be related
to the residual strength if an appropriate damage model is used. The residual strength model in its turn
could be used to create S,N-curves as is shown in figure 2.29 by Hashin[22].
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Figure 2.28: A picture from an electron microscope showing the fibre failing due to fatigue loading. It shows the river
markings of mode I failure for the in-plane normal stress and the cusps for the mode II failure for the in-plane stress. Every
cycle produces either a cusp or a river marking in a fibre that is tearing apart. Source of the figure is from the research
performed by Argüelles et al. [21].

Figure 2.29: A graph showing the decrease in the residual strength until failure occurs due to the damage accumulation.
Whereas the S,N-curve describes final failure for many stress levels, the residual strength curves Sr,i describe the remaining
strength in the material after loading it for a certain amount of cycles at a certain amount of stress. Only at failure the
S,N-curve and the residual strength model describe the same observation. Hence an S,N-curve could be obtained by running
residual strength models at multiple stress levels till final failure. The figure has been retrieved from the research performed by
Hashin[22].
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However there is one major drawback to this method. In order to succeed, the crack has to
occur within the points of measurement. Otherwise the stiffness degradation will not be observed as
is illustrated in line 4 of figure 2.30. As the observer wants to be sure to capture the cracks and not
have to guess upon the future crack, line 5 would not be suited as well. Even if the crack is observed,
the measurement of the residual stiffness is still biased based on the location of measuring as shown
in lines 1, 2 and 3 of figure 2.30. Since especially in composites there is little plastic zone around the
crack tip, the stiffness reduction mainly has to come from the crack opening displacement as the crack
propagates through the two measurement points. As the fatigue damage assessment is for the entire
cross-section, the strain must be measured over the entire height of the cross-section. This gives the best
representation of the total amount of damage that is accumulated during a cycle as is shown in figure
2.21. The configuration of line 1 allows to have accurate measurement of the initial stiffness degradation
in stage I due to IFF as it is able to measure it. Lines 2 and 3 do even a slightly better job at capturing
the stiffness degradation due to a crack running through their measurement points, but these methods
are so sensitive that those configurations will miss out when stage II starts. Stiffness degradation due
to delamination in stage II is also captured in configuration line 1 and final stage III due to FF as well.
For the final stage it is important not to have too sensitive measurements as it is unpredictable and large
sudden movements are present. This makes it difficult to create a regression of the overall movement
when measuring only locally such as configurations lines 3 and 5.

Figure 2.30: An illustration of the different possible locations to measure the stiffness degradation in a specimen with an edge
crack loaded vertically with a stress range ∆σ. Each configuration is labeled from 1 to 5 on the left. Each different location of
measurement has a different regression of the residual relative stiffness drawn on the right, thus making a different prediction
about the future crack propagation. The existing crack is drawn with a solid line and the future crack with a dashed line.
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2.6. Hypotheses review chapter 2

2.6.1. Three newly posed hypotheses as result of chapter 2

There are three hypotheses based on the theory of composites. The second hypothesis is related
to the first hypothesis. If the first hypothesis is false, then the second one is probably false as well and
vice versa. If the third hypothesis is false, then hypothesis 1 and 2 could still be true.

Hypothesis 1: A compact tension specimen loaded with a fatigue load in the pins will have
two stiffness degradation stages. It is posed based on the theory given in section 2.5.1 of chapter 2.
Since for both the out-of-plane bending fatigue and in-plane tension-tension fatigue similar mechanisms
are observed, it is expected that the compact tension specimen will also have those three mechanisms
(IFF, DEL and FF). Future test results should point out if that is true, for now this is an assumption that
has been made. It cannot be investigated with modelling as the user defines how many mechanisms will
be included. However, what could be investigated is the number of stages observed due to those three
mechanisms. Since the in-plane tension-tension fatigue loaded tests has two stages, it is expected that
the compact tension specimen will have two stages as well due to the in-plane loading. This hypothesis
can not be proven yet as it requires tests results in order to do that. For now it is assumed the only three
significant failure mechanisms are IFF, DEL and FF.

Hypothesis 2: In a compact tension specimen loaded with a fatigue load in the pins the
delamination will overlap with the inter fibre failure or the fibre failure. From hypothesis 1 it will
be known if the compact tension specimen will only have two stages or more. In the case that it has only
two stages, one of the mechanisms will have to overlap with at least one of the other mechanisms. Since
the two in-plane mechanism are unlikely to occur together, the delamination has to overlap with at least
one of the two mechanisms as is pointed out in section 2.5.1 of chapter 2. This hypothesis can not be
proven yet as it requires tests results in order to do that. For now the delamination will be assumed to
overlap with the IFF and FF.

Hypothesis 3: The three significant fatigue failure mechanisms present in a compact ten-
sion specimen are best simulated by a combination of three individual models. From the master
Structural Engineering the philosophy is to first recognise all possible (significant) failure mechanisms.
If all mechanisms are taken into account and taken into account correctly, then generally the structure is
designed safely. One of the safe manners to implement all failure mechanisms correctly is to assign a
failure criterion to each of those. Each criterion could be described by a certain modelling technique, for
instance a damage model. Lumping mechanisms into one criterion may lead to a loss of overview and
mixing up the underlying assumptions. Therefore it is stated that modelling the three mechanisms with
three individual models will lead to the most accurate result. Section 3.9.1 of chapter 3 will provide a
proof.

2.7. Conclusion chapter 2

In composites the crack initiation phase is negligible, only a hand full of cycles of high-cycle
fatigue are part of the crack initiation phase. Thus at most 1% of the fatigue life of composites is
considered the crack initiation phase as cracks in composites emerge very quickly due to the brittleness
of the material. On the other hand, the crack propagation phase is relatively long which is the remaining
part of the fatigue life, generally over 99% of fatigue life. During the crack propagation phase the
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stiffness of the material could be observed on multiple occasions during a fatigue test. The strength
could be observed as well, but that requires multiple specimen as it will need destructive testing.

The relative residual stiffness shows three distinct phases for out-of-plane bending: a small but
rapid decreasing stiffness at the start due to inter fibre failure cracking, followed by a steady decreasing
stiffness caused by delamination and a progressively decreasing stiffness at the end due to fibre failure.
During the first two stages the strength decreases only slightly which is barely noticeable, but during
the last stage it degrades progressively just as the stiffness. This behaviour is related to the damage
done to the fibres and is similar to the Paris law curve using the damage propagation rate to replace the
crack propagation rate. Only the general failure mechanisms of composites are assessed whereas the
mechanisms related to unidirectional, woven fabric or chopped strand mat layers are of lesser influence
in terms of fatigue life mechanisms. Hence only the inter fibre failure, the delamination and the fibre
failure mechanisms will be considered in the models.

During the out-of-plane bending these three mechanisms occur sequentially, but during in-
plane bending the delamination overlaps with stages I and III. Therefore only two distinct phases will be
observed: stage I and stage III. The delamination only provides extra possibilities to find more critical
crack patterns by interlinking multiple separate cracks starting at different positions. Only then a more
critical crack pattern is obtained that results in a structural mechanism that has less fatigue life than each
individual ply separately. Notice that this will only happen if the interply interaction is relatively weak
to the intraply properties, otherwise it will slow down the cracking behaviour. The delamination could
be metaphorically seen as a spring support. A spring support has an effect that is between a hinged
and a clamped support. The hinged support is obtained by simulating layers separately and the clamped
support is obtained if the layers are glued with infinitely strong glue. As this interaction becomes too
complicated to be calculated by hand accurately, it is required to simulate it using computer software.
One of the options is to use a finite element model (FEM) in Abaqus[3]. Using a FEM also has the
advantage of predicting residual strength at any given point by adding an additional static load step after
the cyclic analysis.



Chapter 3: The ideal model

3.1. Introduction

As stated in the theory, three failure mechanisms (inter fibre failure, delamination and fibre
failure) are expected during the fatigue failure of composites. As the delamination (DEL) mechanism
overlaps with the inter fibre failure (IFF) and the fibre failure (FF), it is complicated to predict the fatigue
life by hand. From the master structural engineering the standard procedure is to model each mechanism
with a separate formulation, but do the three mechanisms necessarily require three formulations for the
model of a wrapped joint? If so, how does the model take care of these failure mechanisms? The main
goal is that the ideal model should be able to predict the residual fatigue life accurately with the correct
cracking pattern. So what are the advantages of modelling the composite fatigue failure with failure
mechanisms in the first place? All the questions will be answered in section 3.3.

In the section 3.4 candidate models will be selected based on how well they represent the failure
mechanism on a meso-scale level. Thus for each mechanism there will be a formulation discussed that
fits the mechanism with its initiation and propagation criteria.

After the trade-off of the model, it will be continued with some side notes to be considered
when using the direct cyclic analysis in Abaqus[3]. Abaqus allows to take measures to reduce computa-
tional effort in the fatigue analysis. Let it be trivial that an elastic model on its own will not do the job
as in that case the material would have infinite strength since it does not take into account failure mech-
anisms. The linear elastic analysis is only good in determining stress distributions in the elastic regime
of the material. Therefore it is good in determining the stress distribution till the onset of non-elastic
response.

Each mechanism has a certain initiation requirement and a propagation definition to determine
when the damage, the crack or the plastic strain increases and by how much. What are these initiation
requirements and propagation definitions for the used models? What underlying assumptions are made
to comply with these requirements? All of these questions will be answered in sections 3.6, 3.7 and 3.8
for the plasticity model, ductile damage model and VCCT model respectively. The focus of the report
will be on how the models implement the numerical mechanism with regard to the physical mechanism
and why they are suitable for the analysis. Only the general theory of each model and every possible
suboption will be discussed in this chapter. The precise input will be discussed in chapter 4.

3.2. One hypothesis that will be proven in chapter 3

Chapter 3 will give answer to one hypothesis. The answer will be formulated in section 3.9.1
of chapter 3.

Hypothesis 3: The three significant fatigue failure mechanisms present in a compact ten-
sion specimen are best simulated by a combination of three individual models.

34
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3.3. Advantages of using multiple mechanisms on mesoscale to model fa-
tigue behaviour

In order to predict the residual strength and to obtain the S,N-curves accurately, the model
will be calibrated on the residual stiffness test results. In the end, the S,N-curve is nothing more than
showing the residual strength of the final cycle after a certain amount of cycles with a constant amplitude
as is illustrated in figure 2.29 by Hashin[22]. The advantage of the residual stiffness is that the relative
residual stiffness is decreasing more gradually than the relative residual strength as is shown in figure
3.1. Therefore it is more accurate and reliable to calibrate a model on the relative residual stiffness.

Figure 3.1: A qualitative illustration of the residual stiffness (full line) and residual strength (dotted line). Both parameters are
normalised by their respective initial stiffness or strength to obtain the relative residual values. The residual stiffness has an
initial decrease due to the inter fibre failure (stage I), then it settles to a gradual constant decrease due to the delamination
(stage II) and exponentially decays to 0 at final cycle Nf due to the fibre failure (stage III). The residual strength decreases
very slightly during due to the IFF (stage I), but start to degrade more due to the delamination (stage II) until it reaches a
critical damage point on which the fibres start to fail due to the FF (stage III) that creates a rapid decrease to 0 at final cycleNf .

The model needs to include the mechanisms occurring during the fatigue degradation correctly
to be able to predict the relation between the residual stiffness and the residual strength, preferable a
model is used that is not limited by a specific material or with that specific geometry. If the physical
mechanisms are modelled with an accurate numerical mechanism, then calibrating once is sufficient. If a
single mechanism in the model is mimicking multiple real mechanisms, then a calibration is needed every
time the material or the geometry changes. If each real mechanism is modelled with separate numerical
formulations, then the model has to be calibrated only once per material. So little to no calibration should
be required in modelling different geometries. This is why the model that will be proposed is desirable.

As there are three stages observed in the stiffness degradation diagram of Brod et al.[1], at least
three sets of constitutive relations are needed. It is assumed that these three major failure mechanisms
are currently the only three mechanisms that have influence on the fatigue behaviour of the composites.
After calibration on the residual stiffness, some destructive strength test are still required in order to check
the model on the relation between residual strength and residual stiffness. This is especially required if
different failure mechanisms are expected upon modelling different materials.
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A micro-scale model, despite simulating the fibre-matrix interaction more accurately and for
that reason probably the structural behaviour as well, will be excluded in order to prevent extreme com-
putational time. The meso-scale level model will be looking at the layer as if it is one piece, therefore
limited calibration from tests and limited computational time is needed. This is desired since the fatigue
simulations already take a lot of time to simulate all the cycles.

3.4. Selecting models to describe the fatigue behaviour in composites

3.4.1. Limitations on the considered models in the trade-offs

The investigation limits itself to the models that are readily available in Abaqus[3]. Readily
available models are models that are accessible in Abaqus[3] by dialog boxes. In a general sense there are
three types of readily available mechanical models present in Abaqus[3] Standard/Explicit that define the
material beyond its elastic regime: the plasticity models, the dynamic models and the smeared/discrete
crack damage models. The dynamic models are excluded from further considerations; it is assumed
that the dynamic influences are negligible. This will limit the frequency of testing to a maximum of
about 4 [Hz] according to the ISO-norm 15850[4]. There is an option to do fast testing that includes the
dynamic effects, but it will require that the temperature changes have to be considered. The dynamics
models are the plasticity-viscous model, the damping model, the eos model and the viscosity model.
Furthermore, after some eliminations of certain models in certain group of models, only the advantages
and disadvantages of each group are discussed. Detailed trade-off is provided in sections 3.6, 3.7 and 3.8
of chapter 3.

3.4.2. Readily available elasticity models

As a basic first step, the elasticity regime of the material is simulated using the (linear) elastic
model. The other elastic formulations are more suited for other materials such as foam (the hyperfoam
model, the low density foam model), rubber (the hyperelastic model and the hypoelastic model) or other
materials (the porous elastic model and the viscoelastic model). It is not required to make the elastic
model more difficult than the standard elastic model, because the elastic model allows to describe the
orthotropic stiffness of the composite already. Within the elastic model it is possible to define the stiffness
of the composite either as an equivalent isotropic stress, as a lamina, with engineering constants, with an
orthotropic formulation or with an anisotropic formulation. All of these options are valid for composites
keeping in mind that the isotropic model has its limitation. Further down the list it allows to enter more
values, therefore create more complex stiffness matrices (less symmetry assumptions or other material
assumptions). First investigations will be performed using the isotropic model due to its simplicity, later
the orthotropic stiffness properties of the laminate will be given using engineering constants although
it will be mentioned as orthotropic. The suboption fail stress or fail strain allows to set a limit on the
elastic regime which is useful if only a linear elastic model is run. This is not applicable to the case of
fatigue. The traction and coupled traction options are discarded since those describe cohesive elements.
The shear model is discarded since the composite material will have mainly longitudinal stiffness.
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As long as the physical structure does no exceed the yield stress, neither damage initiation,
then an elasticity model is sufficient. For static analysis this is sufficient. For fatigue analysis in steel
with the applied stress below the level of the CAFL as well. However, for fatigue in composites this is
not sufficient as composites do not have a CAFL. Hence damage is initiated. Thus the elasticity model
is only a partial solution and cannot model the entire observed fatigue behaviour that includes damage.

3.4.3. Readily available smeared crack models

The smeared crack damage models for ductile metals are: the ductile damage model, the
Johnson-Cook damage model, the shear damage model, the FLD, the FLSD, the MK model and the
MSFLD. Only the ductile damage, the Johnson-Cook damage models and the shear damage model are
interesting since the others are forming models. The Johnson-Cook damage model is a special version of
the ductile damage model, but is only available to Abaqus/Explicit according to the MIT manual[23]. The
direct cyclic analysis is used in fatigue loaded models for analysing the fatigue behaviour which implies
the models that will be create are implicit models. Thus the Johnson-Cook damage model is unavailable.
The shear damage model is for shear band localisation as explained by the MIT manual[23]. Since this
effect is not observed either by Brod et al.[1] or Bartowiak et al.[2], it will be excluded. There are other
possibilities for damage models, one is a general traction-separation law which has a list of possibilities
of taking into account the damage: the quadratic strain, the quadratic stress, the maximum strain, the
maximum stress, the maximum principal strain and the maximum principal stress. These six options
are similar in behaviour, only a slight difference is present in the definition of when damage starts and
when final failure happens. These will be considered as one group of traction-separation laws during the
trade-off. Then there are three more damage models for specific applications: the Hashin damage model
for composites, the Mullins effect for elastomers and the brittle cracking model for concrete. Elastomers
are rubberlike materials that have large ductility. This option is discarded since composites are brittle.
Brittle cracking is a valid option during crushing of the material. In the end a compact tension specimen
(CT specimen) is modelled that is not pressure dependent, thus a brittle cracking model would make it
unnecessarily difficult. The Hashin damage model should be a valid option, however it is not yet avail-
able in combination with the direct cyclic analysis1. Thus the Hashin damage model can not be used.
In short the damage models that could be used are the ductile damage model and the traction-separation
laws.

3.4.4. Readily available discrete crack models

There are also damage models available that describe discrete crack damages along interfaces,
these are: the cohesive zone model (CZM), the extended finite element method (XFEM) and the virtual
crack closure technique (VCCT). The VCCT and the XFEM models require an extra step by defining
the crack medium. This tells Abaqus[3] where a crack propagation is allowed for that model2. The
XFEM also requires a damage model to define when failure has to occur as the XFEM only enriches an
element. If a fatigue analysis has to be performed, then the discrete damage models require an extra step
that involves implementing keywords3. Therefore these models are actually exceptions to the criterion of
being a readily available tool. The required keywords templates are described in table 3.1 for the fatigue

1This needs to be double checked
2This step is either performed by copying keywords templates from lines 1 and 5 of table 3.1 or by finding a dialog box

in the interaction module of Abaqus[3]. The dialog box is found by going through "Special" → "Crack" → "Manager" →
"Create". The rest of the dialog box is self-explanatory.

3The keywords-file is accessed by a right-click on the model followed by selecting the option "edit keywords".
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VCCT, the fatigue XFEM and fatigue CZM. For the fatigue VCCT criterion it is required to define the
interaction properties in the interaction properties section of the keywords. These have to be assigned
to each interface according to lines 3 and 4 of table 3.1. Line 3 is required once per property and line 4
once per interaction. Similarly, for each interface a contact pair needs to be assigned in the interaction
section according to line 5 of table 3.1 as is stated by the tutorial of Ramsaier[24]. For the XFEM it
is only required to implement one of the options of the Line 2 templates since the rest is defined in a
dialog box. These keywords are entered for the surface properties in the interaction properties according
to Simutech[25]. For the CZM model it is again only required to implement one of the Line 2 templates
since the rest is defined in the interaction as mentioned in the MIT manual[26][27]. Anyway, all of these
models have the opportunity to be compatible with the direct cyclic analysis as long as they describe the
interface between two layers.

Table 3.1: Template for the input data line to complete a VCCT interface for the fatigue analysis. The XFEM method has all
of its medium defined in a dialog box and the CZM does not require additional information. However, both still lack of a
fracture criterion definition for the fatigue that uses one of the "Line 2" methods (BK law[28], power law[29] or Reeder
law[30]). It is required to change the values between "<" and ">" with the intended value for the analysis or make it blank if
not taken into account.

Line 1 *Debond, slave="<name of slave surface>", master="<name of master surface>", debonding force=STEP, frequency=1

Line 2 BK
*FRACTURE CRITERION, TYPE=fatigue, MIXED MODE=BK, TOLERANCE=<tolerance>
<c1>,<c2>,<c3>,<c4>,<Gth

Gc
>,<Gp

Gc
>,<GI,c>,<GII,c>

<GIII,c>,<η>,<T>

Line 2 Power
*FRACTURE CRITERION, TYPE=fatigue, MIXED MODE=POWER, TOLERANCE=<tolerance>
<c1>,<c2>,<c3>,<c4>,<Gth

Gc
>,<Gp

Gc
>,<GI,c>,<GII,c>

<GIII,c>,<T>,<am>,<an>,<ao>,<T>

Line 2 Reeder
*FRACTURE CRITERION, TYPE=fatigue, MIXED MODE=REEDER, TOLERANCE=<tolerance>
<c1>,<c2>,<c3>,<c4>,<Gth

Gc
>,<Gp

Gc
>,<GI,c>,<GII,c>

<GIII,c>,<η>,<T>
Line 3 Interaction
property

*Surface Interaction, name=<name of interaction>
1.,

Line 4 Property
assignment *Clearance, master="<name of master surface>", slave="<name of slave surface>", value=<value of the clearance>

Line 5 Interactions
**Interaction: <name of interaction>
*Contact pair, interaction=<name of interaction>, small sliding
<name of slave surface>,<name of master surface>,<name of bonded nodes set>

3.4.5. Readily available plasticity crack models

The plasticity models are available in many different variants to describe the stress-strain rela-
tion beyond the yield stress. The strength of composites is not significantly influenced by pressure, hence
the Mohr-Coulomb and Drucker-Prager models are discarded since they are more complex than required
without any additional advantage. Since the composites are not dominated by an internal friction angle,
neither a dilation angle, it is assumed that composites have an associated flow. Hence the following list
of plasticity models are excluded: the cap plasticity model, the concrete damage plasticity model and the
soft rock plasticity model. The cast iron plasticity model only allows to change the Poisson’s ratio, hence
no degradation in stiffness is possible which is required. Since the composite material behaves vastly
different than clay and foam; the clay plasticity model and the crushable foam model are excluded. The
concrete smeared cracking model focuses on compressive loading instead of tensile, thus will be ex-
cluded for the same reasons as the brittle cracking damage model. Although the fatigue analysis will
describe a process that takes a long time, it will not be the application of one constant load since it is a
cyclic load. Thus the creep model will not help to describe the problem. Since the combined material
is modelled and not only the matrix or the fibres, the porous metal plasticity model will not be suited.
Finally, there is also not much swelling present thus the swelling model is discarded. That leaves the
standard plasticity model being the only model available for this application.
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The (standard) plasticity model has many variants to choose from. First of all a choice is
made between the isotropic hardening, the kinematic hardening, the multilinear-kinematic hardening or
the Johnson-Cook hardening. The Johnson-Cook hardening is a special isotropic hardening for high
strain rate dependent problems as is written in the MIT manual[31]. This thesis excludes rate dependent
behaviour since the dynamic effects are neglected, thus it is a quasi-static problem. Also with compos-
ites there are relatively small strains till failure, thus it will not be strain rate dependent according to
Zmudzski[32]. The multilinear kinematic hardening is similar to the standard kinematic hardening such
as the Johnson-Cook hardening is similar for isotropic hardening. Therefore is will not be considered.
There is also an option to combine the isotropic hardening with the kinematic hardening (combined
hardening). Although it is expected that the combination of isotropic and kinematic hardening will be
required, it is best to limit the hardening first to a single hardening rule that describes the test results best.
For the same reason it is also momentarily best to keep the number of backstresses for the kinematic
hardening to one and extend it only if it is required to obtain higher accuracy.

The (standard) plasticity model also has several suboptions: rate dependent, potential, cyclic
hardening, ORNL, cycled plastic and anneal temperature. As mentioned earlier the CT specimen is not
strain rate dependent due to the low stains, thus the rate dependent hardening is excluded. ORNL is
the Oak Ridge National Laboratory constitutive model for components in nuclear systems at elevated
temperatures as explained by the MIT manual[33]. This is not close to the application on which the
wrapped joint is focused. The cycled plastic suboption is required to complete the ORNL suboption. The
anneal temperature suboption is to tell Abaqus[3] at which temperature the material loses its memory
about the hardening it has experienced, the MIT manual stated[34]. That means it no longer makes a
difference between deformation caused by loading or by creating the geometry straight away. Since
the temperature elevations are not considered, this option is discarded. That leaves only the suboptions
potential and cyclic hardening. The potential suboption is to describe anisotropic hardening or creep
according to the Hill criterion[35] and the cyclic hardening is to describe an isotropic hardening for
cyclic loading provided in the MIT manual[36]. Both of these options could be used (simultaneously) in
addition to the already described kinematic or isotropic hardening in the plasticity model.

Since there are a couple of combinations of suboptions with options possible, each combination
will be briefly explained. If both suboptions (potential en cyclic) are used, then the potential suboption
describes (mainly) the change in shape of the yield contour, the cyclic hardening suboption (actually an
isotropic hardening) defines the size of the yield contour and the kinematic hardening defines the loca-
tion of the yield contour. If only the suboption potential hardening is used, then the potential hardening
describes the change in shape and size of the yield contour and the kinematic hardening the location. Un-
less the potential hardening is used in combination with isotropic hardening, then the potential hardening
describes mainly the shape and the isotropic hardening the size. If only the suboption cyclic hardening
(an isotropic hardening) is used, then the cyclic hardening describes the size of the yield contour and
the kinematic hardening the location of that yield contour. The combination of the suboption cyclic
hardening with the option isotropic hardening has not been tried, but it would be expected to result in an
error or one of the hardening formulations is redundant. Without any suboptions the kinematic harden-
ing will describe a change in location of the yield contour and in case of isotropic hardening the plastic
model will describe a change in size. A more detailed explanation of kinematic and isotropic hardening
is illustrated in section 3.6.4 of chapter 3. For the trade-off, each of these models will be compared for
their specialised description since every combination is possible as long as not twice the same option is
chosen. It compares the change in shape of the yield contour for the anisotropic hardening described
by the Hill criterion in the potential suboption, the change in size of the yield contour by the isotropic
hardening and the change in location of the yield contour by the kinematic hardening.
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3.4.6. Trade-off of non-linear model types

The elasticity model is not considered in the trade-off as it definitely included in the model
to describe the non-damaged state of the material. Therefore only the non-elastic model groups are
considered: plasticity models, smeared crack damage models and discrete crack damage models.

All of these groups of non-elastic models have certain advantages and disadvantages. The
groups are compared in table 3.2 for certain criteria related to modelling fatigue in composites. First of
all the models have to be compatible with the direct cyclic analysis in order to simulate long sequences
of cycles easily. If it is able to do so, then it deserves a ’-’. If it also allows cycle jumping then, it will be
awarded ’+’. If it also includes a Paris law[9] as input, then it will be awarded with an ’++’. The second
criterion is whether it shows a crack or not. The cracking type will be mentioned and a grade will be
given based on it. The freedom of the crack type will be graded on if it requires a precrack, if it requires a
predefined crack interface and if it is element size dependent. Based on this information it is determined
how well these models will simulate one of the failure mechanisms. Also a range on the number of input
parameters will be given. The more parameters that are needed, the more tests that are required. This is
a disadvantage as a fatigue test takes a long time to perform

(
1000000[cycles]

4[Hz] = 250000[s] = 70[hours]
)

.
The Paris law[9] is currently considered to be the most accurate representation of a fatigue crack growth.
The higher the guarantee on a Paris law[9] relation, the more positive the model is graded. Finally a
note is given whether the crack is completely described on empirical fatigue formulations or whether the
model is based on static understanding of the material.

Table 3.2: Trade-off table of the three different types models on describing the cracks in a fatigue analysis. The comparison is
done qualitatively unless an indisputable value is present. The range is defined as "–" for impossible, "-" for impractical, "0"
for not preferred, "+" for good alternative and "++" for preferred option. The assessment has been performed for the different
category of mechanisms first. After that it has been further defined per individual mechanism. The delamination is the only
interply mechanisms and the inter fibre failure and fibre failure together are the intraply mechanisms. For the intraply the
maximum of the individual mechanisms is chosen.

Criterion Smeared crack damage Plasticity Discrete crack damage
Compatibility with
direct cyclic analysis

+ - ++

Cracking Smeared No cracking Discrete
Precrack required No Not applicable Yes
Predefined crack path No Not applicable Yes, except XFEM
Mesh dependency Limited for convergence Not applicable No
Inter fibre failure 0 + -, XFEM 0
Delamination - – ++, XFEM -
Fibre failure ++ 0 –, XFEM ++

Number of input parameters 4
3 to 12
parameters

Static 4 to 7,
fatigue 9 to 13

Accuracy 0 0 ++
Underlying mechanism
related to fatigue

Static Static Fatigue empirical

Three of the possible constitutive models groups are compared in table 3.2 as an overview of
their advantages and disadvantages that will be elaborated here. The VCCT model and XFEM were
developed to be compatible with the direct cyclic analysis as the fatigue formulation has additional
parameters to define a Paris law[9] and it allows cycle jumping, so it is graded with a "++". The CZM is
not tested, but in theory it should work as well. The smeared crack damage models and plasticity models
on the other hand are still possible in combination with direct cyclic analysis, but no Paris law[9] could
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be defined. Thus the smeared crack models are graded with a "+". The plasticity models are currently
not compatible with the cycle jumping algorithm, thus they are graded with a "-". Let it be clear that
the plasticity models do not provide any crack visualisation, while the smeared crack damage models
show a crack by deleting the elements of which an integration point has reached full degradation. This
is a smeared crack visualisation. The smeared crack models have the major advantage of not requiring a
predefined crack path nor a precrack. That provides a lot of freedom which omits the need of modelling
every possible crack initiation position. The discrete crack models have a discrete crack visualisation
by defining the interfaces as possible crack paths. Those interfaces have no geometrical thickness, thus
provide a clear cut at the cost of explicitly modelling the propagation of every possible precrack in
different analyses. The smeared crack damage model and the plasticity model are both able to model
the effects of crack formation within a layer. The smeared crack damage model is better at it as it also
visualises the crack, therefore it is graded with a "++" for fibre failure, but with a "0" for inter fibre
failure. The plasticity model graded with a "0" for fibre failure as no crack visualisation is present since
it only shows the effect of stiffness degradation. For the inter fibre failure it is graded slightly higher
with a "+", because it has the advantage of being first after the elastic model. Therefore if a damage
and a plasticity model are implemented, it always occurs between the elasticity model and the damage
model. The discrete crack damage models are impractical in modelling and computing in-plane failure
as is shown with the VCCT slicing model in appendix B, thus graded as "-" for both the inter fibre failure
and the fibre failure. For the interply failure it is the other way around, here the discrete crack damage
models are the preferred option as the delamination is an interaction failure, therefore it is graded with
a "++". If someone is creative with the smeared crack damage model or the plasticity model, then that
person will probably find a manner to mimic the interply failure by modelling the adhesive with solid
elements. However, this is highly unlikely, therefore it is graded with a "-". With relation to the intraply
and interply failure, a more precise distinction is provided per failure mechanism. For inter fibre failure
on meso-scale the plasticity model is the preferred option as it does not a crack in the elements, therefore
graded with a "+". The ductile damage model is possible, but not is not the preferred option thus is graded
with a "0". This will be explained in more detail in section 3.6.2 of chapter 3. The discrete crack damage
models are not suited for the inter fibre failure. Probably there is a possibility somehow for a VCCT
slicing model with many elements over the thickness of the ply. Thus it is graded with a "-". The XFEM
is an exception as the free crack path allows easier modelling of any intraply failure, therefore XFEM is
rated as "+" for IFF and FF. For the delamination the discrete crack damage models, with exception to
the XFEM, are clearly the most suitable model developed to date for fatigue, therefore it is graded with
a "++". The XFEM is better at modelling intraply mechanisms as it splits elements. Generally interfaces
are not modelled with regular elements in Abaqus[3], but with interface elements. These interfaces
could be modelled explicitly using elements (not interface elements), it that case cohesive elements have
to be used. Therefore the XFEM is rated as "-". The smeared crack damage models do work to model
delamination if the interaction is modelled with elements just as for the XFEM, but it is impractical
thus it is graded with a "-". Similar reasoning is applied for the plasticity models, but as the plasticity
model on its own would not crack it is graded with a "–". The number of input parameters for the ductile
damage model is always 4, while for the plasticity models it depends on the number of backstresses that
are included and if anisotropic hardening is included. The discrete damage models take 4 to 7 parameters
for the static formulation and 9 up to 13 parameters for fatigue formulation depending on which mixed
mode behaviour is chosen and whether to include an additional crack initiation criterion. The discrete
crack damage models are completely empirical based on the Paris law[9] that has to be calibrated for
each material on fatigue tests. The plasticity model and ductile damage model would in theory link the
static coupon test to the fatigue behaviour of any geometry. Therefore it is graded to be static in theory
although additional fatigue tests are advised.
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In short, use a discrete crack model such as VCCT or CZM if the crack surface is already known
in advance. This is the case for interply failure as the interface between the plies acts as a predefined
crack surface for the delamination. Use the smeared crack model or XFEM if the crack surface is not
known in advance. This would be in the case of intraply failure. However, if the crack formation and
damage accumulation are not that important, but is important to simulate a stiffness degradation while
allowing a strength increase, then consider to use an (anisotropic) plasticity model instead.

3.5. Direct cyclic analysis as speed up of fatigue simulations

If no computational accelerations are applied, then a fatigue analysis needs to calculate for
every increment of every cycle the displacement field with the according stresses. For the high-cycle
fatigue analysis with a million cycles this will take years. The direct cyclic analysis is an analysis
method that is able to reduce the large required computational effort for a fatigue analysis. It stores only
the final iteration of the calculated cycle. The major reduction in computational time is thanks to forward
damage extrapolation that enables this so-called "cycle jumping".

The direct cyclic analysis iteratively calculates the next state of the material in the fatigue
analysis at N = n by extrapolating the damage at N = n − x over the cycles that are not simulated.
As such it is required to have an accurate prediction of the damage in the cycle that is simulated. For
this Abaqus[3] implicitly calculates the state of deformation based on the material model and boundary
conditions. Therefore iterations are required to obtain results with an equilibrium between the internal
forces and the external forces. Abaqus[3] uses the Fourier series as an estimate of the real displacement
field to find a stable solution according to the MIT manual[37]. This also speeds up the analysis as
the displacement field will always be continuous, hence managing the number of Fourier terms helps to
improve the accuracy of the results or the speed of the calculations. The direct cyclic analysis will be
further discussed in section 4.4 of chapter 4.

3.6. Applying the plasticity model for inter fibre failure

3.6.1. General concept of the plasticity model

If the elastic formulation of the material is no longer sufficient, one of the first solutions to
consider is to include the plastic property of the material. Originally the plasticity model is designed
for ductile materials such as steel during a static analysis. It defines the stress-strain relation beyond the
yield stress until the ultimate stress has been reached. In the theory of plasticity the cross-section would
fail if a plastic hinge would occur in the structure that leads to a mechanism. In order for a plastic hinge
to occur, it requires that the entire cross-section needs to have plastic (ultimate) stress as is illustrated
in figure 3.2 according to the lectures of Hoogenboom[38] . On the contrary the elastic failure happens
when the first part in one cross-section reaches yield stress.

Note that finite element models (FEM) generally do not consider reaching the elastic limit as
failure during the static linear elastic analysis unless the user defines it by means of plasticity or damage.
Another option would be to manually check during the elastic analysis if the elastic limit is reached. The
yielding and the hardening or the softening of the material is physically rearranging the dislocations of
the crystalline structure of the material. For a metal it results in hardening as the dislocations are moved
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Figure 3.2: Cross-sectional stress distribution on a simple supported beam that is first loaded until yield stress in the centre
cross-section (black) and then loaded plasticly until ultimate stress of the cross-section (red).

to the grain boundaries, therefore the dislocations are removed from within the grain. This improves
the number of bonds between the atoms in the grain as is shown in figure 3.3. Thus the strength of
the material increases. Upon elongating in the plastic regime, it becomes visible that the material also
starts to contract sideways in a phenomenon called necking as is shown in figure 3.4. Be aware of the
fact that the true stress-strain diagram always has a positive rate of hardening as less faults are present
in the remaining cross-section, even if the ultimate stress in the engineering stress-strain diagram has
been surpassed as is illustrated in figure 3.5 for steel. This is because the engineering stress and strain
still assumes that the original cross-section size is still in place during the necking. Of course there is a
limit to it as at a certain point the atomic bonding strength is reached due to having a cross-section with
almost no size and little dislocations as stated by Copuruglo and Jonkers[39]. For the true stress-strain
relation it still results in a positive rate as the reduction in the cross-section overcomes the reduction in the
applied force. However, for the engineering stress-strain relation there is no reduction in the cross-section
assumed, thus a negative rate at the last part to failure is obtained.
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Figure 3.3: A visualisation of the three atomic mechanisms in metallic crystalline structures that remove dislocations upon
yielding the metal. If the dislocations are removed, then more bonds are present that cause to increase the strength of the
material. The figure is retrieved from the book written by Mourik et al.[40].

Figure 3.4: A picture of a tensile tested steel coupon showing the fracture surface annotated in green, the yielded material
annotated within yellow boundary and the necking annotated in pink where cross-section starts to deviate from the original
cross-section which is annotated in red.
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Figure 3.5: A diagram showing the true stress-strain curve in blue and the engineering stress-strain curve in red. As soon as
yielding starts, the engineering stress-strain relation and the true stress-strain relation deviate as the side ways contraction due
to tensile pulling of the coupon result in a cross-section reduction. This difference is even more pronounced at the point of
reaching the ultimate stress in the engineering curve at which necking starts. This figure is from Tu et al.[41].

3.6.2. Applicability of the plasticity model for inter fibre failure

In composites the inter fibre fatigue failure (IFF) may have a different origin than plasticity as
IFF is caused by damage, but it has a similar effect on the layer at meso-scale as the plastic response
of metals. In composites the failure mechanism is an embedment failure around the fibre that causes
this effect on meso-scale. Upon pulling and unloading the layer, the matrix around the fibre deforms
differently due to the different stiffness of the matrix and fibre. This causes embedment failure which
looks like a bolt ovalising a hole in a metal lug. By moving back and forth under the cyclic loading the
ovalisation increases until the holes link up forming a micro crack, as is described already in figure 2.25.
As this cracking is within the ply it will be "invisible" at meso-scale. The effect is that the material is able
to reach higher stress levels, but at a different stiffness than the initial stiffness. In spite of the increase
of the strength, the stiffness decreases. That effect is visible in the static coupon test results in figure 3.6.
So a model, such as the plasticity model, that allows stiffness degradation without having cracks is suited
for this failure mechanism. The underlying assumption is that the static coupon test initially loses its
stiffness due to static IFF that would be the cause of embedment failure. At least what could be observed
is that during the fatigue tests the IFF does not lead to a reduction in strength. The choice whether the
isotropic or the kinematic hardening mimics the mechanisms better has to be determined from the fatigue
tests with fully reversed load cycles R = −1. During the static tests both hardening formulations allow
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to mimic the mechanism identically. All in all, although the plasticity model is developed for the static
analysis, it is allowed to be applied in direct cyclic analysis as a combined cyclic hardening without any
adaptations to the formulation as is stated in the MIT manual[42].

Figure 3.6: The output stress-strain diagram of the static loading test results of material testing performed by the composite
research group of civil engineering at the TU Delft[43]. Further material details are classified . The solid black line is the
initial tangent line representing the Young’s modulus of the material at E = 12285 [MPa]. The material model will take the
average stress-strain relation of the three test specimen CDS-6, CDS-7 and CDS-9. The coordinates for this average curve are
given in the graph as a coordinate for the strain and a coordinate for the according stress.

The plasticity model is chosen over the option of a damage model. Compared to the VCCT
and the CZM it might be obvious that the plasticity model is preferred due to its freedom to initiate the
non-linear behaviour everywhere, but compared to the XFEM and the smeared crack models it is not that
clear. As already mentioned earlier, the IFF does not degrade the strength while the stiffness is degraded.
In literature only one damage model was formulated by Lemaitre[44] that increases the stresses in the
element as the damage parameterD increases. This is defined as a damage hardening model. D is defined
on the range [0, 1) with 0 meaning no damage and 1 meaning completely damaged. This formulation
is described in equation 3.1. Ultimately an infinite stress would be obtained if D increases toward 1.
Therefore in practice D often has an upper bound value of 0.2 to 0.5 as provided by Lemaitre[44].
However, this formulation or other possibly existing damage hardening models are not available in one
of the smeared or discrete damage models readily available in Abaqus[3]. Another option would be to
define an evolution stage as is described in figure 3.7 that includes the IFF and FF in one damage model.
This would still separate the IFF and the FF stage in one element. It is required that the stress resistance
initially increases after crack initiation. Unfortunately all damage models only allow a monotonically
decreasing evolution stage since the tabular form is not an option for a definition based on the fracture
energy. That means this initial increasing stress resistance is not possible, even not a constant stress as is
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illustrated in figure 3.7. For that reason, the only option left would be a damage mechanism separately
for the IFF. That damage mechanism needs to have a shallow degradation in order to best preserve the
strength. This would make IFF a competing mechanism with the FF. This is because after degradation
due to IFF the strength still decreases. That requires either the FF to be defined on a certain strain instead
of stress. This is not possible as well within the readily available models in Abaqus[3], thus it is more
convenient to model the IFF based on a plasticity model.

σeff =
σnom
1−D

(3.1)

Figure 3.7: An illustration of modelling the intraply mechanisms using a bi-linear degradation of a damage model. Stage 0
represents the undamaged stage. On element level the ultimate stress is not surpassed until εini is reached that describes the
onset of matrix cracking with the corresponding stress for damage initiation σini. Stage I describes the inter fibre failure with
the strain εult describing when stage I ends and stage III starts with the fibre failure. At that strain the maximum stress σult is
reached.

One might argue that modelling IFF is unnecessary and for that reason bypass the problem of
requiring a damage hardening model. From a design standpoint of view it is interesting to know when the
strength starts to degrade. In that perspective the stiffness degradation due to the IFF plays a major role.
If the IFF is not modelled, then it would lead to discrepancies in predicting the stiffness degradation.
Moreover, it would make the stiffness degradation just as sudden as the strength degradation. Thus less
accuracy is present in the predictions. This nullifies the advantages of having a much simpler model with
only damage models included.

In short, the plasticity model is the only way with the readily available models in Abaqus[3]
to reduce the stiffness of an element without initiating the (progressive) degradation of the strength.
One major drawback has to be kept in mind. The deformation caused by the plastic tensile response of
plasticity model will result in an overclosure of the crack that will lead to additional compressive forces
as is described in section 2.4.3 of chapter 2. In metals it makes it more accurate as there is a plastic wake
present in front of the crack tip. In composites this plastic wake is not present as the composites in the
first place do not have significant plastic deformation, but rather a crack due to a tensile load. Secondly,
composites are more likely to crush in compression instead of deforming plasticly.
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3.6.3. Initiation of plasticity by yield stress

Plasticity starts where the elasticity ends. This is on the moment that the yield stress is reached.
Initially this will be at the initial yield stress provided as input for modelling. In reality the yielding in
metals is defined as the stress level at which the material starts to gain more elongation for a moment
while the stresses do not increase in an engineering stress-strain diagram. In composites the yield stress
will not be so clear as is shown in figure 3.6. One could argue that the composite material starts its plastic
regime immediately at the start of loading as from thereon the stiffness degrades. Someone else could
state the elastic regime of a composite is large as with a bi-linear model it is still a good representation of
the reality with one part of the line representing the elastic part and the other part of the line the plastic
part. Fortunately an ISO-norm 527[45] has been set up to counter this dispute. The yield stress is defined
at the stress level for which the tangent of the stress-strain relation deviates too much from the stiffness
between ε = 0.05% and ε = 0.25%.

If the material has been unloaded, then the plasticity will be initiated again only on the updated
value of the yield stress. This will be above the initial plasticity if hardening occurs and below the initial
plasticity if softening occurs. Abaqus[3] does the assessment in this way as during the unloading the
material deforms elastically first until the yield stress has been reached again. In chapter 4 section 4.5
this will be explained more thoroughly. This manner is in line with the hypothesis of the course on
plasticity as explained in the lectures of Hoogenboom[38] and later it will be proven that Abaqus[3]
assesses the plasticity in this manner for cyclic loading.

3.6.4. Evolution of plasticity by hardening

After initiating the plasticity, the plasticity evolves causing numerical hardening or softening
to mimic the physical hardening or softening. Numerically this evolution changes the yield stress of the
material. During the hardening the yield stress will increase and during softening it will decrease [42].
There are two manners of hardening (isotropic and kinematic) and there is one option for softening (iso-
tropic). The isotropic hardening or softening will reshape or resize the yield contour of the material as
stated by Borst and Sluys[46] such that the yield stress increases or decreases in that direction of loading
respectively for hardening or softening. The yield contour is a line in a two dimensional representation
or a surface in a three dimensional representation that indicates the combinations of local normal and
local shear stresses in the material that lead to yielding. The yield contours are also drawn for structures
based on the displacements and forces. These are generally called failure criteria, but in principle they
are the same according to Hoogenboom [38]. Upon yielding it is almost inevitable to move along the
yield contour as well, because the material hardens according to the plastic potential function and not the
hardening function to find equilibrium. The associated flow rule states that a material is ideally plastic
only if the vector m of the plastic flow is a multiplication of the gradient vector n for the yield contour
as is explained by Borst and Sluys[46]. So only the ideal plastic materials that follow the associated flow
rule will have equilibrium along the same vector as the hardening. In case a material does not follow the
associated flow rule, than the yielding moves relatively along the yield contour as is illustrated in figure
3.8a for isotropic hardening. Kinematic hardening also works with plastic flow and gradient vectors.
Despite it is theoretically possible to have kinematic softening, in practice only kinematic hardening
is applied as kinematic hardening translates the yield contour without reshaping or resizing as is illus-
trated in figure 3.8b. Kinematic softening will therefore be applied by applying the hardening vectors in
opposite direction. Abaqus[3] only accepts hardening vectors for kinematic hardening.
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(a) An visualisation of the change in yield contour due to isotropic hardening.

(b) An visualisation of the change in yield contour due to kinematic hardening.

Figure 3.8: An visualisation of a material with isotropic hardening fatigue loaded only in principal stress σ2 direction without
lateral constraints, therefore only moving vertically. Initially the red arrow shows this along the y-axis for the elastic regime.
When it reaches the yield contour (black ellipse), the yielding starts according to the plastic flow vector m (smaller red
arrows) which are perpendicular to the lines of equal plastic potential of the plastic potential function g (small thin red lines).
Upon yielding the yield contour increases in size due to its isotropic hardening definition where it is to keep position and shape
and only enlarges in all directions with the gradient n of the yield function f as shown on the left in figure 3.8a. For the
kinematic hardening the yield contour moves while keeping the size and shape. It will move with the gradient n of the yield
function f as is shown on the right in figure 3.8b. As m and n are different, the yield point no longer is on the y-axis, but it
moves along the yield contour. During unloading the material first deforms elastically first.
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Depending on the mechanism that has to be described either kinematic or isotropic plasticity is
more suited based on observations in test results. Inter fibre failure is due to enlarging of the holes around
the fibres. Therefore the underlying mechanism is an embedment failure of the matrix material that leads
to more easy deformations and slight strength decrease. For now it will be modelled as an isotropic
hardening as is assumed that the increased movement also affects the yield contour on the opposite side
in the same manner. In other words the hardening on the tension side also creates hardening on the
compression side and vice versa. Also the stresses in perpendicular direction of the main loading will
be somewhat affected by the increased movement. It will be shown this will allow to obtain accurate
results with a model that is simple to understand. At this moment realise that isotropic hardening will
result in the relaxation of the mean stress for displacement controlled analysis as is shown in figure 3.9.
For unidirectional plies this will be the only mechanism. The additional mechanisms present in woven
fabrics are best described using kinematic hardening. The first mechanism is a matrix crack parallel to
the fibre [47] and the second mechanism is a crack propagating along the yarn periphery as was observed
by Montesano et al.[48]. The yarn is the bundle of individual fibres that form a strand of fibre. It are
these strands that are woven into a woven fabric by alternating above or below the crossing yarns. The
yarn mechanism occurs around the outer fibres of the yarn. Both mechanisms are drawn in figure 3.10.
These two mechanisms are modelled best as kinematic hardening as no stiffness or strength degradation
is observed. Only a mere shift in strains is observed. Notice that the idea is to replicate a stiffness
degradation model where the stiffness is defined as the stress difference over the applied displacement
for the fatigue cycle. Therefore if the ratchet strain (the difference between the final strain of cycle n and
cycle n + 1) is constant than it will not show degradation in stiffness. In other words the ratcheting is
desired for these mechanisms as is shown figure 3.11. Due to complexity the focus will be on the inter
fibre failure mechanism, hence these latter two mechanisms will not be addressed now, but might have
to be included in future analysis to improve accuracy.

Figure 3.9: An illustration of a displacement controlled fatigue analysis with isotropic softening material parameters showing
a decrease of stresses over each cycle. As the elongations are kept the same due to the displacement controlled analysis, the
stiffness decreases due to a decreasing stress as response. Source of figure: MIT Abaqus manual[36]
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Figure 3.10: A drawing of multiple microscopic failure mechanisms specific for woven fabrics. In top view on the left the
(braider) yarn crack, interface crack (between two yarns) and matrix crack (in the empty space of the yarns) are drawn. A
cross-sectional view is given on the right. Source of figure: Montesano et al.[48].

Figure 3.11: An illustration of a force controlled fatigue analysis with kinematic hardening material parameters showing a
constant ratchet strain over each cycle. As the elongations are kept the same due to the displacement controlled analysis, the
stiffness will not decrease due to ratcheting as the stresses do not change. Source of figure: MIT Abaqus manual[36]

Although the damage mechanisms could not be implemented in the desired manner, an option
that would at least improve the accuracy of the plasticity model is to include the Hill criterion for an-
isotropic hardening by adding a potential function. It does so by providing different hardening rates in
different material directions. It therefore is the strength equivalent of the orthotropic stiffness defined in
the elasticity model. That would mean there is an opportunity to model different strengths in different
directions similar to the Hashin damage model[10]. The Hill criterion[49] achieves this by having six
weight functions that relate the yield stress in each direction to the equivalent initial yield stress σy,0.
The higher the weight function, the lower the allowed stress is in that direction since the higher weight
function lets the applied stresses in that direction reach the equivalent yield stress faster. The weight
functions are provided in equation 3.3 and the relative parametric ratios Rij that describe the ratio of the
allowable stress if only loaded in that direction over σy,0 in equation 3.2. The Hill criterion[49] itself is
provided in equation 3.4[35]. Do notice that the Hill criterion[49] does not make a difference between
the tensile and compressive strength. For that the Hashin damage model[10] would be superior (in a
static analysis). One might come up with the idea to use the kinematic hardening to shift the yield con-
tour and make a difference between the tensile and compressive strength in that manner. However, there
is a problem to be identified that discourages this idea. Despite the kinematic hardening only allowing
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hardening (no softening) and being defined in a tensile direction, it does act in the compressive direc-
tion as well as is reported by Mavrodontis[50]. In other words, a lower compressive stress will not be
achieved. For a compact tension specimen that should not be dramatic. This boils down to the decision
whether it is worth it to investigate the six parameters in tests to describe the increase in accuracy due to
the anisotropic hardening. It would also complicate the models, which is not desired in order to relate
the effect in each outcome to the modelling technique that has been used. For that reason the anisotropic
hardening is for now set aside as it could always be implemented as an extension of the kinematic and/or
isotropic hardening.
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Let it be clear that composite material will be formulated much more brittle than mild steel.
Since the plasticity model is initially developed to handle ductile materials, therefore on the bottom line
the question is: is it possible to model the composite material as a brittle steel? At least the stress-strain
curve will need to have smaller intervals than steel to maintain accuracy for the definition of stress-strain.

3.7. Applying the ductile damage model for fibre failure

3.7.1. General concept of the ductile damage model

The ductile damage model describes the mesoscopic cracks in the material. These cracks are
visible on ply level, hence the reason to use the term mesoscopic. The ductile damage model is originally
developed for ductile materials such as steel in a static analysis as a smeared crack model. Although it
is developed for the static analysis, it has proven itself also to be applicable in the direct cyclic analysis.
It accounts for the crack within an element by keeping track by a so called stiffness penalty parameter
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K or damage parameter D. The definition of both is similar to another and is even identical if there
is a proportional relation between the damage and the stiffness degradation. To avoid confusion with
K as stress intensity factor, the damage parameter D will be used from now on for the damage. If
the damage parameter reaches 1, then the element is considered to have no more stiffness or strength,
hence it is broken. The broken elements could be deleted by Abaqus[3] if element deletion is enabled.
For numerical reasons the element will be deleted by default if the damage parameter exceeds a damage
value of 0.99, but that value could be changed to the user’s preference. Only a value of exactly 1 or higher
will not be tolerated as 1 would lead to numerical difficulties and above 1 is physically not possible.

3.7.2. Applicability of the ductile damage model for fibre failure

It is applicable to composites as composites do not have infinite strength, not even a constant
strength over time. In other words, if enough cycles are applied, then it will always be torn apart.
Therefore some sort of degradation criterion is needed that also allows the visualisation of cracking. A
layer has many yarns, as such each an element with a size of about 2 [mm] represents many yarns in
a meso-scale model. Every time a load leads to damage in the sense it breaks a fibre in a yarn, both
the strength and the stiffness reduces. This failure is progressive for fatigue loading meaning that it
will damage more fibres each cycle until final failure is reached where the last fibres break at once as is
illustrated in figure 3.12.

Figure 3.12: An illustration of the progressive fibre failure mechanism in the material. The drawn area could be seen as an
element of a finite element model. The fibre fracture happens after the matrix has cracked already. Upon failure of the fibres
the crack propagates and gets wider till the critical stage before the final cycle. During the final cycle the last fibre(s) crack
causing the material to fail and no longer be able to endure the fatigue loading.

This progressive failure happens only at last stage (stage III) of the fatigue. The failure happens
in final stage not only because it is purposefully initiated there, but also the matrix is much weaker than
the fibre. After the matrix has cracked first, a chord action will occur where the fibre is not broken
yet and the matrix around has been chipped of the fibre, since the matrix mainly provided compressive
strength, shear strength and stiffness and the fibres tensile strength. In that case it has lost much of its
stiffness but not much of its strength during tension as the fibres are much stronger. During compression
the structure is mainly dependent on the matrix for strength, therefore composite structures are much
worse in resisting fatigue loading with σmin < 0 than with σmin ≥ 0 as is shown in figure 2.24. In order
to let the fibre fail, the fatigue loading will cause striations in the fibre during stages I and II. The fibres
will be showing cusps and river markings as illustrated in figure 2.28. This takes a long time, which is
the second reason why strength degradation happens in the last stage. When the one fibre completely
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fails, then the force has to be transferred to the surrounding fibres, therefore increasing the stresses on
the remaining fibres. This will result in more fibres breaking each cycle like an expanding domino effect.

Again the VCCT and the CZM are inferior solutions to the ductile damage model to simulate
FF for the reasons given in section 3.4 of chapter 3. In short, the limitation of requiring to predefine
crack paths makes the VCCT and CZM unattractive for FF as is illustrated in the VCCT slicing model
of appendix B.

It is possible to use a plasticity model to describe the effect, just as the IFF will be described
by the plasticity model. It could be achieved by decreasing the equivalent stress (σeq) after exceeding
a certain equivalent plastic strain (εpeq). Final failure would in that case be described by a close to zero
stress state after exceeding the ultimate stress. However, since the ductile damage model is capable of
reducing the stress and the stiffness just as it is caused in reality by FF. There is no need any more to
model a damage mechanism with a plasticity model. In this case the damage model will be a more
accurate representation of degradation due to the mechanism. Additionally, the ductile damage model
will always be an augmentation to the plasticity model.

It could be useful in this case to use the XFEM instead of the ductile damage model. The
XFEM is even compatible with the VCCT if the VCCT is used for the interply behaviour according to
the MIT manual[51]. Also the XFEM is based on the Paris law[9] for fatigue. Additionally, it requires
a traction separation law to complete the definition which implies that the XFEM is able to take into
account the different strengths for different modes. However, there is one major drawback, it requires a
precrack. This makes the entire the XFEM approach unattractive for the wrapped composite joint since
simulating many different variations of initial cracking is undesired. The smeared crack models do not
suffer from this.

Then there is only one more option to discuss: a traction-separation law or a ductile damage
model. There is no fundamental argument to choose one or the other. For convenience the ductile damage
model has been chosen since He[52] already used it in his models. Thus for the ductile damage model
the parametric input was already known for the wrapped composite joint.

3.7.3. Damage initiation criterion

Damage initiates once a certain stress level σi has been reached in the material. Depending
on the direction of the applied stress and the formulation of the material it is determined which (com-
binations of) traction-separation law(s) will be used (mode I, II or III). As it is not on an interface such
as VCCT, but in the material to describe a smeared crack, it will be a stress-strain relation. A smeared
crack model will not provide an exact representation of the crack in terms a clear cut. The crack could
be anywhere in the broken elements. This fracture of fibres is well modelled using the ductile damage
model where the failure of a fibre would result in a slight increase of the damage parameter. Hence the
ultimate strength of the damage model has to be related to that of the single fibre in the material.

The damage initiation criterion describes the moment when the ultimate material strength is
reached and starts to tear apart in order to allow more deformation. In the new deformed state equilibrium
will be reached if the structure is able to redistribute the stresses in a better way such that is capable of
handling the forces and stresses in the new configuration as a result of the tearing apart.

What if the FF was not taken into account? It would certainly make the model simpler with less
parameters to calibrate with test results. However, excluding the FF will also eliminate the opportunity
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to determine when strength degradation starts in stage III. Since it is important to simulate that, the FF
must be taken into account.

3.7.4. Damage evolution criterion

The damage evolution describes how fast the strength decays over the elongation imposed by
the prescribed displacement. Once the damage is initiated the damage parameter D increases slightly.
This should be accordingly to the amount of damage that is observed during tests caused by the mech-
anism. Abaqus[3] uses this damage parameter to degrade the initial stiffness to the supposed stiffness
related to the amount of damage. Although this is often a linear relation between the residual stiffness
and the damage parameter, it does not necessarily have to be so. For example if an entire I-profile cross-
section is modelled with one beam element, then it is better to adjust the relation. Abaqus[3] uses a linear
relation by default in the ductile damage model and that is sufficient for the application on composites
modelled with a mesh of elements assigned to each layer. The composite will be modelled per layer,
therefore having rectangular cross-sections. In that case the stiffness cross-section will not be that much
more affected than by having only a linear relation between the damage parameter and the residual stiff-
ness between the elements. The damage that is done to the element can not be restored, just as it would
be in the physical world for the fibre failure. The stiffness and the strength are kept with their original
values unless damage has been done to the fibres which is also expected from the physical behaviour
of the mechanism. Since with the ductile damage model it is possible to create a brittle material that
could still be run using the direct cyclic analysis, it has a large potential in predicting the fibre failure in
composites during fatigue loading. All these arguments favour the choice of using the ductile damage
model for the fibre failure mechanism.

Figure 3.13: The stress-strain relation of the material properties describing the smeared crack model. The black contour is the
input given for the smeared crack model where E is the Young’s modulus of the material and the initial stiffness of the model,
σi,0 is the first initial stress for crack/damage initiation. The degradation is given for each fatigue cycle, in this case four
cycles lead to failure of the element. Notice that the once over the top, the stiffness degrades according to the increased
damage. In this case it is a linear relation between damage and stiffness degradation. Unloading and reloading is along this
adjusted stiffness. The succeeding σi,k indicate the stress levels when the damage propagates further for the cycles k = 1
through k = 4. For each initial stress a corresponding initial strain is given on the horizontal axis. The failure strain εf is the
given input dictating when the element is considered to be failed. Here is a linear strength degradation shown, an exponential
or a multi-linear could be opted as well. The energy dissipated in a cycle is the area enclosed by the arrows, the sum of the
dissipated energy is equal to the fracture energy Gf .
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The damage evolution addresses the damage indeed by increasing a damage parameter that
reduces the stiffness. However, this alone is not sufficient to let a specimen fail. First to notice is that
the stress-strain curve shows a decrease in stress after the damage initiation strain εi,0 has been reached
and passed. Note that the stress-strain curve has the same features as the traction-separation law with the
largest difference in formulation using strains and stresses as input instead of stresses and displacements,
as the ductile damage model is a smeared crack model to describe a crack in an element (not between
elements using interaction elements). See the stress-strain relation as an amount of resistance the element
will provide for a specific amount of elongation. σi,0 could be seen as the maximum strength resistance
the element will provide. In contrast to the plasticity model where the initial yield stress could be passed
multiple times based on the type of hardening, in the damage model σi,0 could only be reached once. So
when the damage starts, it has an immediate effect on the strength. The new stress limit for a continuation
of the damage evolution in the next cycle is set at the intersection of the degraded stiffness line with
the decreasing branch of the stress-strain curve. If the resistance stress εi,k is not enough then the
new εi,k will be exceeded and damage will be added to obtain a new equilibrium with a new damage
stage. Abaqus[3] sees no difference in stiffness between an element with an initial stiffness that is
reduced by a damage parameter or an undamaged element that has the reduced stiffness from the start.
The element has failed when the damage reaches the value of 1 as that results in the element to have
no more stiffness. For the (multi-)linear degradation the final strength is theoretically 0 while on the
other hand for the exponential degradation it would in theory never reach exactly 0. For both cases the
element is numerically still present with a very small resistance, but is visually deleted in the results as a
visualisation of the crack. This small resistance has no significant effect on the analysis. When it reaches
its no-resistance state, it is said it has reached its failure strain εf . This stress-strain relation encloses
a triangular shape for a linear degradation. Upon integrating the triangle the failure energy or energy
release rateGf is obtained. Abaqus[3] integrates it numerically. All these features are visualised in figure
3.13. As the ductile damage model is complementary to the plasticity model, the ductile damage model
is the continuation of the plasticity model if correctly defined as is illustrated in figure 3.14. Despite
the change from the traction-separation law to an augmentation of the plasticity model, the principles of
figure 3.13 do still apply.

Figure 3.14: An illustration of the effect of the ductile damage model in combination with the plasticity model on the true
stress-strain relation of the material. Source of figure: Jia et al. [53].
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3.8. Applying the virtual crack closure technique for delamination

3.8.1. General concept of the virtual crack closure technique

The Virtual Crack Closure Technique (VCCT) is able to determine which part of the interface is
still bonded, therefore it is also able to determine which part has been debonded. The VCCT is a discrete
crack model. It models the crack by predicting the crack length based on a force required to close the
crack opening displacement (COD) along a predefined interface. It has a crack initiation criterion and a
crack propagation criterion that is slightly different for static loading versus fatigue loading. The crack
initiation criterion defines if nodes have to be released from another to achieve energy equilibrium or not.
The propagation criterion determines how many nodes have to be released at once.

3.8.2. Applicability of the virtual crack closure technique

The small resin layer between the fibres are the interfaces that could delaminate. Delamination
is the failure mechanism where the adhesion failed due to local splitting of the layers as is shown in figure
3.15. It is a progressive failure mechanism that is relatively stable. The term progressive is used here as:
once the delamination starts, it is unlikely to stop by itself if there is no change in loading or geometry.
The VCCT model is developed to handle cracks at interfaces as it uses the principles of the linear elastic
fracture mechanics (LEFM). Also the VCCT model is compliant with the direct cyclic analysis. It is
actually a regularly used technique to describe fatigue failure, not only in Abaqus[3] but also in other
finite element software.

Figure 3.15: A microscopic picture of delamination in a composite laminated material. Initially there is a transverse crack in
the outer edge that changes direction from moving inwards through the outer layer to along the fibre causing the outer fibres to
delaminate from the rest. The second enlarged figure shows the difference between the zone that is fully delaminated (e) and a
zone that still formed by micro-defects (the damage process zone) according to Zou et al.[54]. Figure is retreived from Reiner
et al.[55].

The delamination could be excluded from the analysis by modelling all the plies together in
one continuum shell element with composite layup or by connecting all the layers with tie constraints.
The latter has been performed as an intermediate step before introducing the VCCT interactions. The
influences of the tie constraints and the VCCT interactions on the final model will be discussed in section
5.5.1 chapter 5. For a CT specimen it is sufficient not to include the delamination since it is assumed
that there is no separate second stage for the in-plane loading. Hence if there is any delamination effect
present, it could be included in the IFF model or the FF model.
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A discrete crack model has been chosen over the smeared crack models and plasticity models
for the reasons provided in section 3.4 of chapter 3. The choice of the XFEM is inferior to the VCCT
since the VCCT could be given a small precrack at multiple possible crack initiation locations at once.
In this case it is advised to use a small local mesh in order to have the precracks as small as possible. The
advantage remains in allowing to simulate multiple crack initiation points simultaneously.

Despite a CZM would not need any precrack at all, the VCCT model was preferred. The
VCCT model was preferred since there was much more information available about the VCCT model in
combination with the direct cyclic analysis as there was a complete tutorial available by Ramsaier[24].
It has not been tested yet if CZM would be able to fulfil the same job. Theoretically it is expected it
would since the required input would be similar to the VCCT. It might be interesting to do so for future
investigation.

3.8.3. Crack initiation criterion for equivalent energy release rates

The crack initiation criterion in the static analysis determines whether a node should be released
or not by calculating the force required to close the crack for that element of the interface as is shown in
the left drawing of figure 3.16. Let it be clear that at least two elements are required to have an interface
between them. If the required force is large enough such that the work performed by the required closing
force is larger than the energy stored between the elements for that direction, then the interaction is
considered to be failed according to the MIT manual[56]. The right drawing of figure 3.16 shows the
correlation between the critical energy release rate for a certain mode and the work performed by the
closing force. This is visualised by the release/separation of the two nodes that were initially bonded.

Figure 3.16: The left drawing shows the derivation of the principle of VCCT for static loading. Consider the interface of two
geometries where node 2 of the bottom surface is about to be separated from node 5 of the top surface by the propagating
crack already present between nodes 1 and 6. The force Fv,2,5 represents the local force required to keep the crack closed.
The right shows the relation between the local external work performed by the required closing force and the critical energy
release rate (illustrated for mode I). The displacement V2,5,crit is the crack opening displacement that will be present if no
closure force would be present. This displacement is based on the stiffness of the parent material, as such the required force
will also be determined on the stiffness of the parent material. d and b are the dimensions of the surface of the element that is
about to get released. d is in length direction of the crack and b in depth direction of the crack. The critical energy release rate
has therefore to be given in [Nmm/mm2] so is independent of the mesh size. Source of figure: MIT Abaqus manual[56].
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For the static analysis the VCCT criteria are useful as only the energy is needed as extra input;
the crack growth resistance of the interface is based on: the critical energy release rate, the element size
and the stiffness of the parent material. The stiffness properties of the parent material are involved in
determining how much local force is required to close the crack since there is a difference in displacement
field before and after releasing a node. Therefore a different energy equilibrium with the external applied
global forces is obtained as provided in equation 3.5. For this energy balance it is assumed the material
only deforms in shear and the displacement of v1,6,i+1 = 2v1,6,i as is illustrated in figure 3.17. In this
case the dependency on G, which is a material stiffness parameter for shear, is eliminated as much as
possible. Equation 3.5 shows that the stiffness of the parent material does not cancel out. Hence the
solution is dependent on the material stiffness of the element. Therefore a different displacement field
between released and unreleased will thus result in different stress fields. This will be analogous for
bending and axial deformation.
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Figure 3.17: An illustration of the difference between the deformed state before releasing node 2 from 5 on the left versus
after releasing node 2 from 5 on the right. The certain displacement needed is based on the element stiffness (E [MPa] and G
[MPa]), its geometry (h [mm] and thickness t [mm]) and the applied force. It is assumed there is a pure shear deformation
active and a critical energy release rate of GI,c [J/mm2].

The direct cyclic analysis will have a crack initiation criterion based on the Paris law. For this
criterion different material parameters are used than for the propagation. The crack initiation criterion
determines how many cycles are needed to have critical energy release rate at crack tip high enough such
that the interface at the crack tip fails according to the MIT manual[56]. Failure at the crack tip leads to
propagation of the crack tip. An exact formulation will be provided in chapter 4 section 4.7.2.
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3.8.4. Crack propagation criterion for equivalent energy release rates

The crack evolution determines how fast the crack propagates through the enriched interface.
For the static analysis it determines the local stress state for the prescribed displacement. If the crack
initiation criterion determines that propagation has to occur, then by iterations it is determined how many
nodes should be released per increment to allow the necessary deformation. In other words, another
node is released in an increment if an equilibrium solution was not obtained by releasing the previous
node. This will be done node by node and checking the initiation criterion after each node that has been
released. As the interface is relatively thin compared to the global structure and only the most critical
interface determines the final failure, the properties of the parent material are a good approximation of
the stiffness of that interface. The advantage of using the VCCT is the fact that only the critical energy
release rates are needed as additional properties which makes it elegant. These energy release rates could
be experimentally determined and are even standardised in the ISO-norm 15850[4] for the tests of the
different modes.

For the direct cyclic analysis the Paris law is used to determine how far the crack propagates.
The simple version of the Paris law that was given in equation 2.9 is used with the critical energy release
rate as the load severity S. Actually the range of the critical energy release rate ∆G = Gmax − Gmin
is used based on the mixed mode formulation for Gmax and Gmin. The two material constants c3 and
c4 will remain constant, but ∆G will progressively increase with the increase in crack length. Hence the
crack will exponentially grow as the rate of crack growth is dependent on ∆G, which makes it a vicious
circle with a positive feedback loop as is shown in equation 3.6.
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Here b and C are the material constants according to equation 2.9 and G is the critical energy
release rate in [J/mm2]. a is the crack length in [mm] and N the number of cycles. The subscripts i and
f indicate initial and final cycle respectively. As i and f are true for any interval, the crack length per
number of cycles could be calculated. Figure 3.18 is obtained by keeping the initial length constant at
ai = 10 [mm] and increasing af with a logarithmic progression. The material constants are set to b = 2
and C = 10−9 for this example. These are arbitrary values to show the progressive behaviour of the
Paris law. Additionally the simplification of using an arbitrary ζ with ζ = 100 which includes all types
of stress concentrations and stresses ranges.

The Paris law[9] curve is observed numerous times in experiments, not only in metals, but
also in composites. It might not be a law that gives a casual relation, but it is a good method for an
empirical approximation. At least two tests are required in order to determine material factors C and b.
The threshold and the critical values could be extracted by these two experiments as well if carried out
carefully.
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Figure 3.18: The left plot shows the crack length through an arbitrary specimen for certain applied amount of cycles with
material constants C = 10−9 and b = 2. There is an initial crack present of 10 [mm] and a combined factor ζ = 100 [N/mm3]
that includes the stress concentrations and the load itself. The right figure shows the crack propagation rate of the crack
propagation in the left figure. Here the decreasing amount of cycles needed to propagate the crack 1 [mm] further is clearly
visible.

3.9. Hypotheses review chapter 3

3.9.1. Proof to one hypothesis listed in section 3.2 of chapter 3

Proof of hypothesis 3: The three significant fatigue failure mechanisms present in a com-
pact tension specimen are best simulated by a combination of three individual models. In section
3.3 of chapter 3 it was stated that fatigue in composites is best assessed based on their failure mech-
anisms which are traceable in a residual stiffness degradation curve. The residual stiffness degradation
has three different stages for an out-of-plane loading implying that each mechanism leads to a vastly
different response. To mimic this degradation accurately it is best to use one model for each mechanism
as is explained in section 3.3 of chapter 3. That allows to isolate the behaviour per mechanism which in
the end results in more accurate models.

3.9.2. Seventeen newly posed hypotheses as result of chapter 3

Based on the options available in the different modules, a list of new hypotheses are set up.

Hypothesis 4: If 10 iterations are used per load cycle for a force controlled analysis on
a one element model, then equilibrium is reached for each load cycle. The number of iterations
is important in an analysis. The direct cyclic analysis is an implicit solver for non-linear problems.
Therefore there are some discrepancies in estimating the results. Especially if it is not a bi-linear relation.
For the force controlled analysis more iterations help to obtain force equilibrium. The number 10 is
expected to be sufficient for a one element model. This value will be discussed in section 4.8.1 of
chapter 4.

Hypothesis 5: Using 2 iterations per load cycle for a displacement controlled analysis on a
one element model will result in an element response that is closest related to the input parameters
of the plasticity model. For the same reason as the force controlled analysis, running more iterations
helps to make corrections on the control sequence. The displacement analysis needs less iterations to
obtain an accurate solution since Abaqus[3] tries to find a solution based on an imposed displacement
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field that is compliant with the boundary conditions and the stiffness of the material. Therefore a dis-
placement controlled analysis is inherently more accurate than a force controlled analysis with the same
amount of iterations. The value of 2 will be discussed further in section 4.8.1 of chapter 4.

Hypothesis 6: The direct cyclic analysis without cycle jumping with a displacement con-
trolled fatigue loading will result in a sequence of half cycles with static loading for each half cycle.
Without cycle jumping every load cycle will be calculated. Since the load is a prescribed displacement
it will explicitly impose that displacement on certain intervals and observe the required force due to the
displacement field. Since Abaqus[3] does not make a difference between a material that has reached a
certain yield stress due to hardening or as initial input, it does not matter if a cycle has already been
passed. Therefore each cycle could be seen individually. Moreover, Abaqus[3] does not make a differ-
ence between a user-defined a deformation field from the start or a deformation field caused by plastic
deformation to reach equilibrium. Hence each load cycle could be seen as two individual half cycles
with a displacement controlled analysis. This will be checked in chapter 4.

Hypothesis 7: If the direct cyclic analysis is applied on a one element model with isotropic
hardening for plasticity, which has a displacement controlled load with R = 0, 2 iterations per
load cycle and no cycle jumping (dN = 1), then the stress-strain response will follow the loading-
unloading-reloading principles of the plasticity theorem. From hypothesis 6 it is known that the direct
cyclic analysis is a series of static half cycles under certain conditions. The one element model will have
its loading mainly in the plastic response. Therefore it should also follow those principles. This will be
investigated in chapter 4.

Hypothesis 8: If the direct cyclic analysis is applied on a one element model with the
ductile damage included, which is loaded with a force causing a stress larger than the ultimate
stress, then no equilibrium will be found in the degraded state leading immediately to full failure.
If the direct cyclic analysis is merely a sequence of static loading (hypothesis 6), then the effects on the
material could be superpositioned. Once the ultimate stress is reached, a force controlled analysis will
no longer find equilibrium, thus will result in complete failure. This will be investigated in chapter 4.

Hypothesis 9: If the direct cyclic analysis is applied on a one element model with the
ductile damage included, which loaded with a displacement causing a strain larger than the crack
initiation strain εini but smaller than the fracture strain εf , then a single equilibrium point will
be found with a degraded stiffness. If the direct cyclic analysis is merely a sequence of static loading
(hypothesis 6), then the effects on the material could be superpositioned. A displacement controlled
analysis is able to continue beyond the ultimate stress and to find an equilibrium solution in the branch
of the decreasing stress-strain relation as long as the fracture strain is not surpassed. If multiple cycles
are imposed, it is expected that it will repeat itself to that point of damaged deformation. This will be
investigated in section 4.8.1 of chapter 4.

Hypothesis 10: If the direct cyclic analysis is applied on a one element model with the
plasticity model, then no plasticity will be extrapolated during the cycle jumping. The direct cyclic
analysis is able to extrapolate damage. It is explicitly stated "forward damage extrapolation", but no
additional information was found in manuals if it could also extrapolate plastic deformation. For that
reason it is checked if the damage extrapolation also extrapolates the plasticity. This hypothesis will
have a circumstantial proof in section 5.8.1 of chapter 5.

Hypothesis 11: If the direct cyclic analysis is applied on a compact tension specimen with
the ductile damage included, which is loaded with a displacement or force causing the stress in an
element to be larger than the ultimate stress, then it transfers its burden of load to its surrounding
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elements in order to find equilibrium. This will be proven with a proof by contradiction. If an element
would not be able to transfer the burden of load to its neighbouring elements, then the entire structure
would fail at once when the ultimate stress in one of the elements has been reached. For a model where
all the elements are placed in sequence (obtainable by dividing the one element model into multiple
elements only along the vertical axis), this will be true. If this is true, then the compact tension specimen
will fail once the first element has reached its ultimate stress. However, the compact tension specimen
has multiple elements in parallel. Each element along the critical path could be seen as a spring. Even
with a certain imposed force, the springs will react as if it is an imposed displacement, which will be a
combination of a translation and rotation. This is caused by the compact tension specimen being loaded
in the pins instead of directly on the nodes of the elements along the critical path. Seeing the critical path
as a set of springs also provides the insight that the ultimate force of the structure will be reached only
if the first element has reached the fracture strain εf instead of εini at the ultimate stress. This will be
shown in chapter 5.

Hypothesis 12: If only the VCCT model in Abaqus[3] is used to describe both the inter-
ply and intraply interactions with a delamination mechanism, then the compact tension specimen
model with fatigue loading will become computational too heavy to execute. This was the initial
model made to investigate the compact tension specimen. The model is found in appendix B. For the
static loading the VCCT slicing model was successful despite being computationally heavy. A proof for
VCCT slicing model with the fatigue loading is provided in appendix B.

Hypothesis 13: Using the plasticity model for the inter fibre fracture will result in an
overclosure of the crack due to the plastic deformation which is not present in reality. In steel it is
known that the plastic deformation results in overclosure of the crack. This is illustrated in section 2.4.3
of chapter 2. The plastic model is able to recreate that overclosure effect due to the plastic deformation.
In reality composites will fracture instead of plasticly deform due to their brittleness. However, the
plasticity model is used for the inter fibre failure to describe the material response from its yield stress
to its ultimate stress. With it, the plasticity model still creates an overclosure due to plastic deformation,
because the plasticity model will not make a distinction between modelling steel or composites. This
effect will be investigated in chapter 5 where the compact tension specimen is able to show a crack.

Hypothesis 14: If Cn

γn
= Q∞ and γn = b, then isotropic hardening and kinematic

hardening will result in the same response for the static loading on a one element model. Moving
only in a single direction of the yield contour will not indicate a difference whether the yield contour
is moving or increasing in size. In other words, if only one load direction is investigated, it is always
possible to describe the hardening with kinematic or isotropic hardening. Even anisotropic hardening will
not be observed if the ultimate stress and ultimate strain are not known. It is impossible to distinguish if
the material fails due to reaching the ultimate stress or the reduced value of the ultimate stress based on
the hardening functions. Section 4.8.1 of chapter 4 will provide a proof to this hypothesis.

Hypothesis 15: Increasing σy,0 will result in a longer fatigue life in a one element model
with force and displacement controlled fatigue with R = 0. If the plasticity model follows the
plasticity theorem during the direct cyclic analysis (hypothesis 7), then increasing σy,0 will make the
elastic stage persist longer. More elasticity means less accumulation of plastic deformation, thus it will
take longer to reach the ultimate stress. A proof will be provided in section 4.8.1 of chapter 4.

Hypothesis 16: IncreasingE will result in shorter fatigue life in a one element model with
displacement controlled fatigue with R = 0. If the plasticity model follows the plasticity theorem
during the direct cyclic analysis (hypothesis 7), then increasing E will make the elastic stage shorter
since the yield strain is reached earlier. Less elasticity means more accumulation of plastic deformation,
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thus it will take less cycles to reach the ultimate stress. A proof will be provided in section 4.8.1 of
chapter 4.

Hypothesis 17: Increasing ν will result in an equally long fatigue life in the one element
model, with displacement controlled fatigue and R = 0, that has no redundant boundary condi-
tions . If the plasticity model follows the plasticity theorem during the direct cyclic analysis (hypothesis
7), then increasing ν will not change the analysis due to the boundary conditions allowing free contrac-
tion. A circumstantial proof will be provided in section 4.8.1 of chapter 4.

Hypothesis 18: Increasing Q∞ will result in longer fatigue life in a one element model
with a force or displacement controlled fatigue with R = 0. If the plasticity model follows the
plasticity theorem during the direct cyclic analysis (hypothesis 7), then increasing Q∞ will increase the
ultimate stress. If more stress is allowed before failure, then it will have a longer fatigue life. A proof
will be provided in section 4.8.1 of chapter 4.

Hypothesis 19: Increasing b will result in shorter fatigue life in a one element model with
displacement controlled fatigue with R = 0. If the plasticity model follows the plasticity theorem
during the direct cyclic analysis (hypothesis 7), then increasing b will make the plastic stage shorter
since the ultimate stress will be reached with less plastic deformation. Reaching ultimate stress faster
means a shorter fatigue life. A proof will be provided in section 4.8.1 of chapter 4.

Hypothesis 20: Increasing η or ε̇ will not alter the results in the one element model or
the compact tension specimen model with a force or displacement controlled fatigue analysis. The
model is strain independent due to the small strains applied and low frequency of loading. Also is
the model pressure independent since no Mohr-Coulomb, Drucker-Prager or similar criteria is used. A
circumstantial proof will be provided in section 4.8.1 of chapter 4 for the one element model. If it does
not have influence on one element, then it will not have influence on a model with multiple elements as
well. Therefore it will not have influence on the compact tension specimen model.

3.10. Conclusion chapter 3

None of the individual models that are proposed would individually be able to fully mimic
the fatigue behaviour of the composite that has multiple mechanisms. Each model has it strengths and
weaknesses. The best proposal is by combining the models such that each model simulates the mech-
anism that the model is best suited for. For the inter fibre failure that will be the plasticity model, for
the delamination the best model is the VCCT model and for the fibre fracture that will be the ductile
damage model. The plasticity model and ductile damage model have the advantage of being compatible
and sequential, therefore within an element, stages I and III will always be separated. How the residual
relative stiffness is controlled will be shown in the chapter 4. Also the smeared crack model requires to
simulate one initial crack pattern instead of every possible initial crack position as the smeared model
does not need initial cracks. Additionally, modelling the meso-scale effects instead of the micro-scale
mechanisms speeds up the analysis. Furthermore, if the VCCT was used for in-plane cracking then it
would be computationally heavy due to the large number of interfaces that are defined. On top op that,
the direct cyclic analysis provides a usefull tool to speed up the calculations while maintaining the accur-
acy. With the choice of models presented in this paragraph the visualisation of cracking of the elements
with composite properties is reserved for the ductile damage model and the crack as result of separation
of the plies for the VCCT. Two major assumptions were made to propose this model: only the three
mentioned mechanisms are important and the inter fibre failure does not lead to large cracking.
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The development of the fatigue life of composites starts with the plasticity model. The plasti-
city model initiates the plastic strain when the yield stress is reached and evolves the yield stress accord-
ing to the hardening of the yield contour.

The ductile damage model has its initiation when the ultimate stress of the plasticity model is
reached. Sometimes that value is dependent on the fracture energy and fracture strain. The propaga-
tion is dependent on the amount of energy released to allow larger deformations. Only if the analysis
is displacement controlled, then it is possible to show a degradation instead of sudden collapse of an
element.

The cracks in the VCCT model are initiated by the bonded node set and the propagation is
initiated once the threshold energy release rate is exceeded. For static loading the initiation is based
on the local work required to close the crack. If the energy to do the work is higher than the energy
stored between the two elements, then the crack propagates by releasing a pair of nodes. The cracks in
the VCCT propagate during static loading until the initiation criterion is no longer satisfied. For fatigue
loading the crack initiation is based on the energy threshold value Gth. The crack propagation in the
VCCT model for fatigue loading is given by a Paris law[9] curve that defines the crack propagation rate.



Chapter 4: The model implementation

4.1. Introduction

During the model implementation it will be shown how the ideal model that is proposed in
chapter 3 is put into practice for the simulating the mechanisms. First the ideal model is implemented in
a one element model. A one element model has a mesh with a single element to show how the residual
relative stiffness is controlled. The one element model is the simplest form of modelling a compact
tension specimen for fatigue. The software program Abaqus[3] is used to model the fatigue behaviour
of the element. This chapter could be read as a concise tutorial as the input and output of the one
element model will be explained step-by-step. Some basic understanding of Abaqus[3] is required; it
is expected that the reader knows how to create a model that performs a linear elastic analysis for an
isotropic homogeneous material.

The chapter is based on four modules included in the model as addition to the static linear
elastic model. Three of these modules are included as material property and one of them as step. A
module is here considered as an extra part compared to the ordinary linear elastic analysis. In the earlier
chapters these were referred to as models, but to avoid confusion for example between the one element
model and the plasticity model, the plasticity model is named as the plasticity module. As such it will
also be called the VCCT module and the ductile damage module from now on. The fatigue analysis
is included as a step module and is considered to be non-default compared to static analysis. Also
there are some considerations to be taken into account using the direct cyclic analysis of Abaqus[3].
Since the direct cyclic analysis is an augmentation of the static analysis, it will be used in all possible
combinations of property modules that are included in the model. Here a property module is considered
to be a constitutive relation that describes a failure mechanism. That could either be defined in the
material properties or in the interaction properties. It will be stated in the corresponding section in which
of the two it is applied.

For each of the modules three steps will be discussed: the implementation from theory to
modelling, the required input into Abaqus[3] and the obtained output from Abaqus[3]. For the input of
the one element model a critical look is given at the values of the parameters that are used for a test
material and at the values of the parameters that are suggested for the compact tension specimen with
glass fibre material. On the output some critical questions are directed e.g.: when is the model considered
to have entered a new stage? Also how do the parameters relate to the fatigue life of the model. Since
the model is related to the fatigue cracking, it is expected to follow some sort of Paris law. So how does
this model relate to the Paris law?

First the build-up of the one element model will be explained. It will show the geometry and
the boundary conditions that are used in the model. It is followed by the implementation of the direct
cyclic analysis including the number of iterations that are required and the number of cycles that could
be jumped. After that for each mechanism the input values will be given with reasons and the output will
be discussed.
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4.2. Thirteen hypotheses that will be answered in chapter 4

Chapter 4 will give answer to thirteen hypotheses originating from chapter 3. These hypotheses
will be answered in section 4.8.1 of chapter 4.

Hypothesis 4: If 10 iterations are used per load cycle for a force controlled analysis on a
one element model, then equilibrium is reached for each load cycle.

Hypothesis 5: Using 2 iterations per load cycle for a displacement controlled analysis on a
one element model will result in an element response that is closest related to the input parameters
of the plasticity model.

Hypothesis 6: The direct cyclic analysis without cycle jumping with a displacement con-
trolled fatigue loading will result in a sequence of half cycles with static loading for each half cycle.

Hypothesis 7: If the direct cyclic analysis is applied on a one element model with isotropic
hardening for plasticity, which has a displacement controlled load with R = 0, 2 iterations per
load cycle and no cycle jumping (dN = 1), then the stress-strain response will follow the loading-
unloading-reloading principles of the plasticity theorem.

Hypothesis 8: If the direct cyclic analysis is applied on a one element model with the
ductile damage included, which is loaded with a force causing a stress larger than the ultimate
stress, then no equilibrium will be found in the degraded state leading immediately to full failure.

Hypothesis 9: If the direct cyclic analysis is applied on a one element model with the
ductile damage included, which is loaded with a displacement causing a strain larger than the
crack initiation strain εini but smaller than the fracture strain εf , then a single equilibrium point
will be found with a degraded stiffness.

Hypothesis 14: If Cn

γn
= Q∞ and γn = b, then isotropic hardening and kinematic

hardening will results in the same response for the static loading on a one element model.

Hypothesis 15: Increasing σy,0 will result in a longer fatigue life in a one element model
with force and displacement controlled fatigue withR = 0.

Hypothesis 16: IncreasingE will result in shorter fatigue life in a one element model with
displacement controlled fatigue with R = 0. Hypothesis 17: Increasing ν will result in an equal
long fatigue life in the one element model, with displacement controlled fatigue and R = 0, that
has no redundant boundary conditions .

Hypothesis 18: Increasing Q∞ will result in longer fatigue life in a one element model
with a force or displacement controlled fatigue withR = 0.

Hypothesis 19: Increasing b will result in shorter fatigue life in a one element model with
displacement controlled fatigue withR = 0.

Hypothesis 20: Increasing η or ε̇ will not alter the results in the one element model or the
compact tension specimen model with a force or displacement controlled fatigue analysis.
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4.3. One element model as preliminary model

The one element model that consists of one cubic solid element with unit size (1 [mm] in all
three directions) is used with the plasticity model and ductile damage model included. As Abaqus[3] is
independent of units, all units may be applied as long as there is consistency. In order to provide a better
sense of the effect of a value, the unit will be included according to the scheme that describes forces
in Newtons [N], sizes in millimetres [mm] and time in [s]. One unit time equals one cycle creating a
frequency of 1 [Hz]. A unit sized cube is chosen as the forces and stresses have equal magnitude except
for the difference caused by the difference between the engineering stresses and strains and the true
stresses and strains. The resultant forces from the output will act as engineering stresses and the stresses
from the output are the true stresses. This makes matters easier to explain as the force-displacement
diagram is directly related to the engineering stress-strain diagram.

The boundary conditions of the one element model are chosen to keep the model simple to
understand. Therefore the bottom surface is fixed in vertical direction as the main motion will be vertic-
ally. The forces or prescribed displacements are applied in the four top corners of the element simulating
a tensile coupon test with cyclic loading. These forces are explicitly modelled as a group consisting of
individual forces instead of a coupled constrained to avoid shear stresses along the top surface due to con-
straints. The exact input of the applied forces will be discussed later in this section. In order to avoid the
element becoming an unguided projectile, it has to be pinned down in the horizontal direction as well.
This is done in the most minimalistic way possible to avoid over-constraining since over-constraining
could lead to stresses that obscure the relation between the input and the output. Therefore the element
is constrained in z-direction (translation degree of freedom 1 equals 0) along the x-axis and constrained
in x-direction (translation degree of freedom 3 equals 0) along the z-axis. On the one hand the element
is still able to contract and dilate freely during a non-zero Poisson’s ratio. On the other hand it has been
constrained to avoid wiggling back an forth as a rotation around the z-axis. This prevents unnecessary
noise in the output. All this information is condensed into figure 4.1.

The single element will be a 3Dstress element with reduced integration. The solid elements are
capable of including the three dimensional effects without bending in the nodes. This is sufficient as the
focus is on understanding the properties to be included for the failure mechanisms. That means it only
has translational degrees of freedom in the first, second and third dimension in each node. Hence there
are no rotational degrees of freedom. This is the simplest formulation of a three dimensional element.
This element type is chosen as these types of elements allow the extended finite element method (XFEM)
to enrich them and split them if necessary. Do keep in mind that the lack of rotational degrees of freedom
require the CT specimen to have multiple elements in thickness directions to take into account the out-
of-plane (second order) bending. In case multiple layers are modelled and each layer has one element
in thickness direction, then this problem is already solved. If the XFEM is not used, then it is advised
to check the solution with continuum shell elements. These take into account out-of-plane bending due
to their bending degrees of freedom present in each node. Shell elements could and probably should
be introduced once the model is up-scaled to a full compact tension specimen to obtain more accurate
results.

The applied load is a cyclic load with a frequency of 1 [Hz], hence it has a cycle time of 1 [s].
This means that the number of cycles equals the amount of time that has passed. The cyclic load starts at
0 load and will be the minimum load in the sequential cycles. The maximum load will be reached every
time half-way the cycle. The value of the maximum load will be equal to the value given to the load as the
load cycle will be a jigsaw function with an amplitude of 1. In Abaqus[3] the applied load will be either
equal to the total amount of force or the average displacement applied in the top corners of the element.
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Figure 4.1: A visualisation of the one element model. The size of the element is 1 [mm] in all directions. The boundary
conditions are given with three dimensional roll supports with hinge. This hinge support will roll in two directions even if only
one direction is drawn in the two dimensional drawing. The second direction is in z-direction except for the roll hinges on the
x-axis, there the second direction in y-direction. The translation forces or prescribed displacements are applied in y-direction
on the top four corners of element.

It will be a linear interpolation of the load in between the minimum and maximum value of the load in
the cycle, hence the name jigsaw function. This jigsaw function will be called the amplitude function
in Abaqus[3]. The unit function is plotted in figure 4.2. The exact amount of maximum applied load
will only be given at specific examples as the type of load changes from force controlled to displacement
controlled and from one element to the up-scaled CT geometry. This jigsaw function is chosen for
its simplicity. A sinusoidal function would be preferred in the up-scaled model as during the testing the
applied load will not have a jigsaw function. The sinusoidal load also gives larger models the opportunity
to obtain a more accurate prediction of the behaviour around the extreme values of the function due to
the smoothness. In the jigsaw function there is no derivative available in the extreme values, hence some
inaccuracies are expected when using automatic incrementation. However, in the one element model a
fixed incrementation is used that captures precisely the extreme values. In section 4.5 of chapter 4 it will
be shown that predicting the response to plastic behaviour is easier done with jigsaw amplitude function
than the sinusoidal function.
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Figure 4.2: A plot of the amplitude function defined by using the periodic formulation. The periodic formulation of the
amplitude function repeats indefinitely the amplitude function that is defined in the first cycle until the maximum number of
applied load cycles or failure has been reached. This first cycle was defined in a tabular form with 0 at initial time 0, 1 at time
equals 1

2
and again 0 at time equals 1. From here linear interpolation is used to obtain the amplitude for each increment. The

applied amplitude to the element will be this function times the magnitude of the applied load.

4.4. Application of the direct cyclic analysis

4.4.1. Implementation direct cyclic step

The direct cyclic analysis is a type of analysis that allows to simulate fatigue loading in a
more efficient manner than with a static analysis. The static analysis is not made for repetitive loading.
Generally the static analysis results in longer computational effort, but sometimes it results in numerical
instabilities due to a lack of convergence. The latter was found in the earlier attempts to create a simple
model with 20 elements that included the plasticity and the ductile damage modules. The result was that
Abaqus[3] was not able to find a converged solution after the maximum load had been applied. In other
words, no equilibrium solution was found. This is the main reason why direct cyclic analysis has to be
applied at least as a continuation of the static loading after the maximum load level has been reached.
Moreover, if the analysis is force controlled, then the output of the one element model showed during
development that it was required to use the static analysis up to maximum load level before starting the
direct cyclic analysis. The underlying reason for it being that Abaqus only shows the results of the final
iteration while multiple iterations were required to obtain an equilibrium solution for the force controlled
analysis. Therefore it meant that the approach up to the unloading will not be displayed.

In order to include the direct cyclic analysis into Abaqus[3], the direct cyclic analysis must be
augmented to the static analysis. To augment the static analysis with a direct cyclic analysis, the user
has to create a new step and chose to continue from the previous static analysis. The second reason why
the direct cyclic analysis is chosen, is for its efficiency in calculating repetitive cycles. As it only stores
the final equilibrium state of that load cycle, it is able to calculate a cycle quicker than using the static
analysis. In order to obtain sufficient level of accuracy, a correct number of iterations has to be chosen
will be discussed in section 4.4.2 of chapter 4. If that is the case, then the direct cyclic analysis is also



71

able to skip the calculation for a certain number of cycles by extrapolating the damage from the previous
step. These measures make the direct cyclic analysis more efficient for fatigue analysis, especially for
the composite fatigue analysis where a long stable crack growth period is observed.

4.4.2. Input for the direct cyclic analysis

In the end it boils down to taking enough measures to speed up calculations while maintaining
sufficient accuracy. The direct cyclic analysis has a lot of input parameters to play with to increase
accuracy of the simulation. However, as accuracy increases genuinely the computational time increases
as well.

The first and foremost technique to speed up the calculations is the damage extrapolation for
(low-cycle) fatigue. This damage extrapolation allows to calculate the damage state at N = n based on
the damage state atN = n−x and the damage increment betweenN = n−x−1 andN = n−x. It makes
a linear extrapolation of the damage increment over the forwarded load time x. It gives an estimation
of the damage state at N = n according to equation 4.1. Discrepancies between the model and reality
may occur as the damage in the model will be piece-wise linear due to the damage extrapolation while
in reality it will be exponential. Also the second trouble with the damage extrapolation algorithm is that
plasticity is not counted as damage. Hence the damage extrapolation could only be accounted correctly
for the ductile damage module and the VCCT module. Therefore during the one element model that
includes both the plasticity module and the ductile damage module the cycle jumping can not be used,
because as soon as plasticity is extrapolated the models are cycle jumping dependent. Additionally, since
it is only one element the stress can not be passed on to the surrounding elements, thus must ∆N = 1.
For the full scale model of the compact tension specimen cycle jumping could be applied for the VCCT
module if the interface lags behind during stage I as then there will be a stable tearing apart governed
by delamination. Stage III during the fibre failure could also be sped up using damage extrapolation
when there is little inter fibre failure present in the neighbouring elements. Damage extrapolation will
be applied to the ductile damage module if the ply itself lags behind. This will be performed in much
smaller steps as there is no linear scaling algorithm activated as for the VCCT.

DN=n = DN=n−x + x∆DN=n−x (4.1)

Cycle jumping also has an effect on how the output will be displayed. Instead of a continuous
line, along the different cycles in time, now the line is discontinuous after each cycle that has been
calculated. It will resume in the next calculated cycle at the value that would be expected if damage of
cycle N − x is extrapolated forward. That means that the intermediate values are kept 0 or better to say
non-existing in the output. Thus the difference is that the response becomes more spiky for ∆N > 1 as
is illustrated in figure 4.3.

The second most time influencing method is to play with the amount of iterations performed.
Already some notes were made on the amount of iterations. If the fatigue analysis is force controlled,
then applying more iterations improves accuracy at the cost of computational time. For the one element
model it is clear that 10 iterations are sufficient to have a converged solution as is shown in figure 4.4.
However, what does Abaqus[3] do to obtain a converged solution? That becomes more clear during the
displacement controlled analysis. If too many iterations are applied during a displacement controlled
analysis, then the output results in a zero-response. That is not what is desired. This is explained by
the fact that Abaqus [3] predicts the outcome of the next iteration based on the outcome of the previous
iteration instead of the outcome of the first iteration with an improved prediction. For inherent stable
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Figure 4.3: A time line showing the difference in effective loading applied on the structure due to cycle jumping. Without
cycle jumping (dN = 1) results in all the load cycles being applied and with cycle jumping (dN = 2) only half of the load
cycles are applied and the other half are obtained by copying the difference in response of the previous cycle the cycle before
that. This results in approximately the same response, but could only be seen at the calculated cycle, therefore it looks less
regular with the straight lines going through the even cycles.

converging solutions as a force controlled analysis this works fine with a force equilibrium and a harden-
ing parameter. On the contrary, changing to a softening parameter would result in never reaching force
equilibrium once the maximum force resistance at the yield stress is reached. It will also result in a zero-
response. When changing to a displacement controlled analysis the force equilibrium requirement is still
there. Despite that the requirement is still in place, the displacement controlled analysis will continue
beyond the yield stress. In a hardening model the stresses will be increased with increasing strains to
obtain a converged solution. As stresses will increase and the iteration is based on the previous outcome
where plasticity has already occurred, the next iteration will add on more plasticity. If there is hardening,
there will be a converging stability point (unless the ductile damage parameter kicks in as is illustrated in
figure 4.4), but during softening a stability point will not be reached until it has decayed to its final stress
state. If that final defined stress is (close to) zero, then a zero-response will be observed.
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Figure 4.4: On the left plot the applied force controlled load cycle is given as a sum of the four top corners of the element. On
the right plot the response of the element after ten iterations given in black. The red dotted line shows the material input given.
This proves that the model output follows the model input, but with elastic unloading and reloading once equilibrium is
reached.

Figure 4.5: On the left plot the longitudinal normal stresses are retrieved from the element as response to the prescribed
amplitude displacement of 0.01 [mm]. Clearly the response of the element gets less every cycle or iteration. This degradation
of the stresses (black) is more clear in the right plot where the degradation clearly starts together with the rise in stiffness
degradation (green) due to the ductile damage module. Thus no longer follows the input (red).
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One might argue: is material softening really required? For now this question will be answered
simply with a "yes". The short explanation is: this is what is required to let a single element mimic the
behaviour of the entire CT specimen. The full explanation for the plasticity module will be given in
section 4.5 of chapter 4 and for the CT specimen in chapter 5. For the softening material model the most
optimal amount of iterations is found to be two as one iteration still leads to jumps in the solution and
more iterations leads to zero-response. For hardening with a displacement controlled analysis, again,
at most ten iterations are enough as more is not needed for a displacement controlled analysis. This
predicament would be obsolete if the iterations would not only be dependent on the previous iteration,
but are rather based on the first iteration with improved predictions for each sequential iteration. Iterating
based on the first iteration is straight forward, but what would the improved prediction be? The improved
prediction would have to look at the equilibrium between the internal and external forces. If the internal
forces are higher, then either a lower yield stress and/or lower stiffness in the plastic branch must be used
during the next iteration. If the internal forces are lower than the external forces, then the prediction
needs higher yield stress and/or stiffness in the plastic branch. This decision diagram is illustrated in
figure 4.6.

Figure 4.6: The qualitative assessment of the proposed iteration scheme. It improves the iteration scheme by starting each
iteration from the initial state at that increment instead of the final state after the previous iteration. This scheme could also be
applied for displacement controlled analysis while the default scheme only works for force controlled analysis. Start at the top
and keep cycling through until equilibrium is reached which allows to start the next increment.

The last decision that has large effect on the calculation speed is the number of increments
per cycle, hence the total number of calculations that are performed. This is the baseline of how much
calculation effort needs to be fulfilled as the iterations and cycle jumps also directly influence the number
of increments that have to be calculated. Therefore it is trivial that more increments may lead to higher
accuracy but definitely leads to more calculation time. Hence the most optimal solution would be to
decrease the size of the increments around the changes in load direction and abrupt different structural
response. With fixed increments not much could be done. To make sure that the most extreme values
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of the load are captured as those are the most important points during the fatigue analysis, somewhere
around 100 increments for a jigsaw amplitude function is advised and 20 increments for the cosine amp-
litude function. However, if the automatic incrementation of Abaqus[3] is used, then the program will
sort itself out if an appropriate initial increment is given. The automatic incrementation is especially
valuable in models containing stress concentrations such as the compact tension specimen (CT speci-
men). The maximum number of increments could be set at the same value as the fixed incrementation
or the tenfold of it could be used. The maximum number of increments acts as an upper limit of the
number of increments that could be used during a cycle. If more than tenfold is needed, then a different
approach would be more useful than wasting time on smaller increments. The initial size of the incre-
ment is best set at the same increment size as is advised for the fixed incrementation since it is better to
start rather slow and not to leap over certain important changes of the structural response. The minimum
size of increments could theoretically be set at 10−39, but that is useless. It is better to set it ten or hun-
dred times smaller than the maximum number of increments allowed. If a certain part of the load needs
more increments, then it is likely that Abaqus needs to make a decision between two possible solutions
(bifurcation). It is best to push through this point in a different manner rather than calculating small in-
crements. It is more useful to model the other possible failure mechanisms later in a separate simulation
by modifying the model a little to push it into the other direction. The maximum size of increment could
be set at 1, but better to set it at a value smaller or equal to 0.1 to avoid too large steps being taken. Con-
sider what effect it would have if the maximum load would be exactly in the middle of two increments.
How Abaqus[3] decides the size of the next increment during automatic incrementation depends on the
amount of iterations that were needed in the previous increment. If only one iteration was sufficient, then
the increment size doubles until it reaches the maximum allowed. If all iterations were needed, than it
will decrease the increment size with a factor two from its most recent iteration until the lower bound
value is reached. If an increment leads to a number of iterations in-between those limits, then the size of
the next increment is determined by the amount of iterations that was needed in the previous increment.

A medium time influencing method is the number of elements. The number of elements used
does influence the calculation effort, however it is not proportionally to the number of elements. It
is less than proportionally, therefore less effective than changing the cycle jump size, the number of
iterations or the number of increments. Hence for maintaining an accurate result, it is better to keep the
number of elements high enough to have a high level of quality mesh. Do note that more elements not
necessarily result in a higher quality mesh as the shape of a single element might be more important.
Still the element size is often related to accuracy. Also a smaller element size lead to higher stresses
in singularities, therefore faulty stresses may occur. These are called singularities. Singularities might
occur at the crack tip even with the plasticity and the ductile damage module engaged to counter this.
Therefore take an appropriate amount of elements such that quality is not jeopardised.

It is also possible to change the number of Fourier terms that are used. Although some change
is expected, none or too little change in computational time was observed. In theory more Fourier terms
should generally make the output field more accurate, but would take more time. However, using more
Fourier terms in amplitude functions that are not smooth, may result in large local inaccuracies. In figure
4.7 this effect is shown for a block function. Recommended values for Fourier terms vary between 10
and 50 for the minimum and 20 and 100 for maximum. The increment of increasing the number of
Fourier terms is often set at 5.
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Figure 4.7: An illustration showing that increasing the number of Fourier terms (blue) may improve the global approximation
of a block function (black). However, at certain amount of terms the Fourrier approximation may lead to large deviations
locally as shown at the bottom. The figure is taken from Stackexchange[57].

4.5. Application of plasticity model

4.5.1. Implementation of plastic material parameters

The plasticity module allows to proceed calculations beyond the yield stress by providing a
continued stress-strain relation instead of merely a constant initial stiffness. The plasticity could be seen
as a degradation of stiffness after yielding up to where the damage starts (red striped area) as is shown in
figure 3.14. For the most materials such as metals this is true, only a select group of special materials will
show an increased stiffness. For composites the hardening is included to prescribe the inter fibre failure.
Actually the inter fibre failure is a damage mechanism and should be considered as such for micro-scale
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models. However, as a meso-scale model is developed for computational speed, the micro-mechanics
may be described in a phenomenological model. The result of the inter fibre failure is a reduction of the
overall stiffness of the element, not necessarily the strength during tension. This stiffness reduction is
shown in the test results of the coupon test illustrated in figure 3.6. Hence the plasticity model is capable
of describing the effects of the inter fibre failure.

The stiffness degradation could be modelled with different hardening formulations. First of
all, a decision has to be made whether to include the isotropic, the kinematic hardening or a combination
of both. There are other hardening options available in Abaqus[3], but these could be boiled down to
(different variants of) isotropic or kinematic hardening. To be more precise, the isotropic hardening
will be added as a suboption of the combined hardening called cyclic hardening. It is done in this
manner as the suboption cyclic hardening is specifically designed to be used in the direct cyclic analysis
according to the MIT manual[36]. The kinematic hardening is added due to its nature to recreate the
well known ratcheting behaviour during the fatigue loading where stresses remain equal and the strains
increase, thus a stiffness decrease occurs. Both the isotropic and the kinematic hardening would be able
to reproduce the same outcome during a static (tensile) test, but will lead to different outcome during
fatigue loading. This difference is related to the discussion in section 3.6 of chapter 3. In short, the
isotropic hardening changes the size of the yield contour and the kinematic hardening the location of
the yield contour. Therefore it is required to look at the compressive limit of the material during tensile
loading to distinguish a difference between the isotropic and the kinematic hardening to decide which
(combination of) hardening is suited. It has to be determined by experiments with fully reversed loading
R = −1. To obtain a reasonable accurate solution five tests are required. These are first loaded in tension
to a certain force and then compressed. The number of five is determined by the fact that three tests are
required to estimate the tensile hardening parameters of the first hardening formulation if the parametric
formulation is used. At least an equal number of test is required for the other formulations. In order to
obtain and check the evolution on the compression side at least two more tests are required to determine
the evolution. In other words, one test was already required to obtain the initial yield stress. Additionally,
for every hardening formulation two extra tests are required, hence for a model containing one isotropic
and one kinematic hardening formulation requires a minimum of five tests to calibrate.

4.5.2. Input for plasticity model

Notice that the number of required parameters equals the number of minimum tests required.
Both the kinematic hardening and the isotropic hardening could be defined using parameters or tabular
input. For each parametric input it is required to give three parameters. The first parameter is the initial
yield stress σy,0 in [MPa] describing the stress level at which the yield contour is reached for the first
time and must be equal among all other hardening formulations. The second parameter describes the
amount of stress change between yielding and ultimate stress. The third parameter describes the speed
of this stress change. For the isotropic hardening these last two parameters are respectively Q∞ and b
and for the kinematic hardening these parameters are respectively Cn

γn
and γn with index n indicating

the number of the kinematic hardening formulations that are used. Note that the first parameter for the
kinematic hardening is dependent on the speed γ. There is no physical purpose of this normalisation, it
is merely a numerical trick as is shown by equation 4.2. The stress in the plastic regime of the material is
described by an inverted power law equation starting from the onset of yielding. Hence the initial yield
stress is the yield stress at zero plastic equivalent strain (εpeq). Since the initial yield stress is equal for all
hardening formulations, this means that once the yield stress is reached, all the hardening formulations
will act. Only the speed in the formulations will decide how the structure will respond under increased
loading, thus which hardening formulations will have the most effect at a specific point in time. From
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the yield point on, equation 4.2 will hold as relation between stress and the plastic equivalent strain for
the parametric input.

σy,εpeq = σy,0 +Q∞(1− e−bε
p
eq) +

k∑
n=1

Cn
γn

(1− e−γnε
p
eq) (4.2)

The kinematic hardening formulations are also known as backstresses. As the second and
third term of equation 4.2 are similar, it is possible to create equivalent hardening. This is true for the
tensile static loading as is illustrated in figure 4.8, but it is not true for cyclic loading as the compression
resistance will change differently between the two types of hardening.

Figure 4.8: The top two lines are the input given for the plasticity model for the two equivalent hardening for the static tensile
loading. These two lines also represent the desired theoretic output with the red line for the kinematic hardening and the
striped black line for the isotropic hardening. As is expected from equation 4.2, these result in the same response. The bottom
two lines are the static output for tensile loading with the same hardening parameters as their theoretic output. The orange line
is for the static output of the kinematic hardening and the black stripe-dot line for the isotropic hardening. Again an identical
output is observed for the static tensile loading. The difference in the output is generated by the definition of plastic strain in
Abaqus[3].

Observe there is a small discrepancy between the theoretical output (the input of the static
analysis) and the static output. This difference is caused by the formulation of plastic equivalent stresses
versus the stresses. The conversion will be explained for a bi-linear plasticity model with kinematic
hardening. This bi-linear model is used in the one element model as it is much simpler to check the
difference caused by the conversion. According to the MIT manual of Abaqus[42] it calculates the true
plastic strain in a slightly different manner than based on intuition. Intuition will define the true plastic
strain as the elastic strain subtracted from the true total strain with the elastic strain as the strain at the
initial yield stress. That will keep the elastic strain subtracted from the total strain as a constant as is
shown in equation 4.3.

εp,true = εtotal,observed − εy,input = εtotal,observed −
fy,0
E

(4.3)



79

Here εtotal,observed is the total observed strain from the output, εp,observed is the plastic strain
observed from the output and εy,0 is the elastic strain provided as input. The elastic input strain is here
related to the initial yield stress fy,input and the initial Young’s modulus E. On the contrary, the yield
strain in Abaqus[3] is not kept constant, but is a function of the stress at that point. It observes the new
stress as the yield stress from hardening at a certain plastic strain until hardening occurs again. This idea
is formulated in equation 4.4

εp,true = εtotal,observed − εy,fy = εtotal −
fy,observed

E
(4.4)

Here εtotal,observed is the total strain observed in the output, εp,observed is the plastic strain
observed in the output and εy,observed is the elastic strain observed in the output. The elastic strain is
related to the yield stress fy,observed at an applied plastic strain and the initial Young’s modulus E. This
is coherent with the dotted line just before the red marked area in figure 3.14. Genuinely FEM tends
to estimate the observed yield stress from the applied plastic strain subtracted from the total strain by
flipping around equation 4.4 since FEM is a displacement field driven analysis. Force equilibrium check
will point out if enough, too little or too much strain has been applied during such an analysis. In other
words, as this conversion leads to higher elastic strains during hardening due to the higher yield stresses,
the plastic strains will be lower for the same amount of total strain. Vice versa, if the plastic strains are
lower, then the stresses will be lower for the same total strain applied. This is what is observed in figure
4.8. During the investigation of the one element model a simple bi-linear relation will be used on which
the effect of this behaviour will be visualised. The bi-linear model consists of an initial yield stress of
50 [MPa] and an ultimate stress of 100 [MPa] at an intended ultimate strain of 0.1 [-] with a Young’s
modulus ofE = 5000 [MPa]. This line is shown in the figure 4.9 as the blue line. If this would be directly
used as input, then Abaqus[3] gives a static response of the orange line in figure 4.9 as 100[MPa]

5000[MPa = 0.02
[-]. This will give an ultimate strain of 0.1 + 0.02 = 0.12. If a correction was taken already according
to the intuitive method in equation 4.3, one would enter an input value of 0.09 as the ultimate strain as
illustrated with the purple line of figure 4.9. This would result in a ultimate strain of 0.09 + 0.02 = 0.11
as is illustrated by the green line in figure 4.9. In order to correctly apply the definition in equation 4.4,
then it is needed to put in 0.08 as the ultimate strain since 0.10− 100[MPa]

5000[MPa] = 0.08. This input is plotted
as the red line in figure 4.9 but will obtain the blue line as output.

Figure 4.9: An visualisation of the effect of different input on the ultimate strain for the plasticity model and the effect of the
conversion on the input for an ultimate stress of 100 [MPa], a Young’s modulus of 5000 [MPa] and a yield strength of 50
[MPa]. The difference caused by the conversion is 0.02 strain.
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Later the plastic input parameters will be changed to resemble the composite material response
according to the static test result. Figure 4.10 shows the calibration of such model. This will be done
using the parametric values for four reasons:

1. If there is no proper continuation of the plasticity module with the ductile damage module pre-
scribed, then Abaqus will result it in fatal error that will stop the analysis. This may occur if the
fracture energy is not in correspondence with the fracture strain such that the shape of the ductile
failure regime of the stress-strain relation of figure 3.14 causes numerical instabilities due to large
changes in the material/element response. The second problem might be that the fracture strain of
the ductility damage module is set at a value lower than the ultimate strain of the plasticity module.
This will cause a cut-back behaviour leading to numerical instability.

2. The results of the tensile coupon test shown in figure 3.6 could be well estimated using parametric
isotropic hardening as is illustrated in figure 4.10. The obtained values to put into the analysis on
CT specimen level will be σy,0 = 39.53 [MPa], Q∞ = 250 [MPa] and b = 300.

3. The tensile coupon test was performed, but figure 3.6 reveals that the specimens were not loaded
until failure. The parametric values allow easy extrapolation of the values until the ductile damage
model defines failure.

4. Using a parametric approximation allows smoother interpolation of the input parameters as is
shown in figure 4.10. If tabular values are used, leap backs in the plastic strain lead to numerical
instability.

Figure 4.10: In the left plot is the observed stress-strain relation shown as is directly obtained from the tensile coupon test of
figure 3.6. In black discrete values of the average curve are entered in a tabular form. The red dotted line gives a parametric
approximation as an alternative with σy,0 = 39.53 [MPa] Q∞ = 550 [MPa] and b = 20. This should not be used as input due
to the conversion from input to output, but proves it is possible to approximate the same behaviour. To obtain the input the
conversion of the tabular values have to be done according to equation 4.4. The results of this conversion is shown in the right
plot in black. Now an approximation of the tabular input is obtained with σy,0 = 39.53 [MPa], Q∞ = 250 [MPa] and
b = 300 as is shown in red.
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Table 4.1: Input table containing the parametric values for the bi-linear stress-strain relation used in the plasticity module for
the one element model.

One element stable One element unstable
E [MPa] 5000 5000
ν [-] 0 0
σy,0 [MPa] 50 50
εult [-] 0.08 0.08
σult[MPa] 100 100
fU [Hz] 1 1
Umax [mm] 0.04 0.041
Umin [mm] 0 0

Table 4.2: Input table containing the temporary parametric values used in the ductile damage module used for the one element
model.

One element stable One element unstable
εf [-] 0.2 0.2
η [MPa] 0.33333 0.33333
ε̇ [-] 1 1
Gf [N/mm] 6 6

4.5.3. Effects of plasticity model

The output of the one element model will be provided in a so called hysteresis plot. A hysteresis
plot shows the stress-strain output for an element or force-displacement for a structure that is fatigue
loaded. Due to the nature of fatigue loading the curve will move back and forth for each cycle. Whether
there will be a difference in response between loading, unloading and reloading depends on the material
model. The plasticity model has an influence on the hysteresis plot as the plastic response leads to a
different unloading response resulting in energy dissipating. The energy dissipated in a cycle is the area
that is enclosed during that cycle until the stress-strain curve intersects the stress-strain curve of the
previous cycle. Adding up the enclosed areas should lead to the same value as was entered as a total
of the fracture energy of the material or structure for the ductile damage and the enclosed area by the
plasticity curve. In short it will be the area between the material curve and the horizontal axis of figure
3.14. The hysteresis plot also allows to deduct if hardening or softening occurs as during hardening
either the stresses will increase or the strains decrease over the sequential cycles for a displacement
controlled analysis and a force controlled analysis respectively. Analogously, it will be a decrease in
stresses or an increase in strains over the sequential cycles for a displacement controlled analysis and a
force controlled analysis respectively. As composites show a degradation of residual stiffness, isotropic
softening has to be investigated if one element should represent the entire CT specimen. For that to
happen, one major assumption is made: the isotropic softening must describe the effects of inter fibre
failure and delamination. This is certainly a mere rough approximation of the reality. However, it is a
good exercise to understand what happens during softening of the material. First the output for material
hardening will be explained with the input given for figure 4.9. The second column of table 4.1 provides
an overview of these input parameters for an element that remains stable for at least ten [cycles]. The
third column of table 4.1 provides these for an element that fails within ten [cycles]. The used temporary
values for the ductile damage models are provided in table 4.2 for an overview. Notice that for both
models these values were kept equal. Figure 4.11 shows the output given for the one element model with
the discussed parameters.
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At first sight the output does not resemble the input, but there is a pattern in it that is correct.
For verification the hypothesis based on the lectures of plasticity by Hoogenboom[38] is calculated using
a code written in Python[58]. This code will act as a prediction of the fatigue analysis on one element
under the given boundary conditions of figure 4.1. It is able to predict the longitudinal normal stress in
the element and the applied forces due to the prescribed displacement on the top four nodes of the cubic
element. It has proven not only to be useful to check the analysis, but also to predict the number of
cycles that have to be analysed by Abaqus[3] to reach the end point. This Python[58] script is provided
in appendix A. The hypothesis is not able to predict the entire analysis with accuracy as there were
assumptions made, these assumptions lead to the limitations of the Python[58] script. These assumptions
are:

1. No ductile damage is included, therefore no stiffness degradation parameter is taken into account.
There will be only effect of the plasticity model present. Thus an over-prediction on the fatigue life
is made. Moreover, if in Abaqus[3] the element does not have a ductile damage model included,
then it will never fail even if a small residual strength is used to compensate the effects of the
absence of a the ductile damage model.

2. The Poisson’s ratio is either 0 or the lateral contraction shall not be hindered by the boundary
conditions. Only a longitudinal normal stress is taken into account by the hypothesis, thus the
longitudinal normal stress must equal the Von Mises stress as the material is defined on the Von
Mises stress. The proposed boundary conditions in figure 4.1 satisfy this restriction. This is
required to avoid the effect of moving (relatively) along the yield contour.

3. The Python[58] script is currently written for a displacement controlled analysis in the variants of
isotropic hardening and isotropic softening with a linear plastic response. More options could be
modelled but are considered as unnecessary to prove the hypothesis for the one element model.

The hypothesis is based on the definition of isotropic hardening where yielding leads to an
increase of the yield contour as is explained in figure 3.8a. Although the numerical prove is done for a
load with Umax = 0.04 [mm], the hypothesis will be explained for Umax = 0.05 [mm] which will be
5% strain for the element. The visualisation of the hypothesis is provided in figure 4.12. Upon loading
the element for the first time it will start-off just as a static linear elastic analysis until the yield stress is
reached at 50 [MPa]. The second part of the analysis does no longer follow the elastic response of the
material, but will follow the plastic response just as the plastic static analysis will do and increase the
size of the yield contour continuously according to the isotropic hardening formulation. However, it will
no longer be called a linear elastic analysis. Upon reaching the maximum displacement, the increase in
stress stops at 71 [MPa] as it is no longer needed. This stress of 71 [MPa] is the new yield stress for both
tension and compression. In the third part the stress will reduce in a linear elastic fashion as reducing
the applied displacement means moving away from the contour. Since every displacement within the
(new) boundaries of the yield contour corresponds with elastic response, the element will respond elastic
passing the zero stress point (as the displacement will still be larger than zero). It continues elastically
passing the original yield stress for compression until it reaches the new yield stress of 71 [MPa] in
compression. Now it will continue in the plastic response mirrored from the tensile plastic response. In
other words the plastic stiffness of the tensile input will be used during compression to reach 0 [mm] of
longitudinal displacement. Note that this fourth part results in additional compressive stresses that pushes
the yield contour even further instead of reducing it. The proportion in which it occurs depends on the
hardening formulation, here it is proportional to the tensile hardening as a perfect isotropic hardening
is formulated. Upon finally reaching the 0 [mm] displacement the new cycle starts, but with a residual
stress of −84 [MPa] which means the new yield stress will be 84 [MPa]. In the new cycle the response
will be first elastic as the fifth part moves away again from the yield contour on the compression side. It
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passes again the horizontal axis at about 0.16 [mm] until the new yield stress of 84 [MPa] of tensile stress
is reached. In the sixth part it will continue with a plastic response to 96 [MPa]. Parts 3 to 6 will repeat
itself in a longer fatigue analysis and part 7 is nothing more than part 3 of cycle 1 applied on cycle 2.
However, if the yield stress reaches the final stress that has been entered in the input, then it is considered
to be failed. Failure due to plasticity is best modelled by applying a small residual strength afterwards
until the ductile damage module completely degrades it. This is the last part (part 8) drawn in figure 4.12
where the stress reaches −100 [MPa] which is the ultimate compressive/tensile yield limit.

Sometimes a little change in the applied load may lead to a large change in the number of
cycles it could handle before failure due to plasticity occurs, even on a logarithmic scale. This could be
seen as the difference between figure 4.11 and figure 4.13 where the former is considered to be stable for
at least ten cycles and the latter fails at the fourth cycle. In this case the difference is accelerated by the
ductile damage model kicking in or not, but the main cause is reaching the ultimate limit of the plasticity
module. The Python[58] code is not so good in predicting this as some of it is caused by numerical side
effects leading to slight inaccuracies in stresses in the Abaqus[3] model while for the Python [58] code
the boundary conditions and zero Poisson’s ratio are assured perfectly. Nevertheless, a small change in
load may lead to a large change in fatigue life. The critical load level that would induce infinite fatigue
life is to be calculated. For these bi-linear material parameters it could be done by hand as is done in
equation 4.5. The thought behind the critical load level is that the stress obtained as maximum stress
in cycle N must equal the maximum stress in cycle N − 1. This constrained is formulated by setting
the maximum stress and minimum stress to be equal, therefore it must be reached by linear elasticity.
Only in that case no energy dissipation happens as there is no enclosed area, thus no degradation of the
material is observed. The maximum stress formulated in equation 4.5 refers to the bi-linear plasticity
module.


σmax = fy +

(fu−fy)
(
u− fy

E

)
εu,desired−

fy
E

σmin = σmax − Eu
σmin = −σmax

=⇒ u =
fy

(
1− fu−fy

Eεu,desired

)
E
2 −

fu−fy
εu,desired−

fy
E

(4.5)



84

Figure 4.11: In the six plots the entire (relevant) output of the fatigue analysis for the one element model with an applied
displacement of 0.040 [mm] failing after more than ten cycles is represented. The input of the model is given in the second
columns of tables 4.1 and 4.2. The black lines are the results of the analysis and the green line is the predictions based on the
Python[58] script. Counting from left to right and from top to bottom the load history plot is given first. This plot shows the
applied force as resultant of a constant applied displacement amplitude function. The second plot is the force-displacement
diagram which acts as the hysteresis plot of the element as structural response. The third plot shows that hysteresis plot in
terms of stresses and strains of the element’s internal response which is equal to figure 2 due to the unit size of the element.
The fourth plot shows the plastic equivalent strain versus the Von Mises stress to see if it relates to the input parameters which
are given in a red dotted line. The fifth plot shows the stiffness of the structure relative to the response of the first cycle and the
sixth plot shows the value of the damage parameter that leads to stiffness degradation (0 equals no damage and 1 equals fully
damaged).
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Figure 4.12: The visualisation of the explanation of the hypothesis showing the hysteresis loops for the material of tables 4.1
and 4.2, but with an imposed displacement of U = 0.05 [mm]. This leads to failure in the second cycle. The red line is the
output for the model loaded with a static loading and the black line the output of the fatigue analysis.
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Figure 4.13: In the six plots the entire (relevant) output of the fatigue analysis for the one element model an applied
displacement of 0.041 [mm] failing after four cycles is represented. The input of the model is given in the third columns of
tables 4.1 and 4.2. The black lines are the results of the analysis and the green line is the prediction based on the Python[58]
script. Counting from left to right and from top to bottom the load history plot is given first. This plot shows the applied force
as resultant of a constant applied displacement amplitude function. The second plot is the force-displacement diagram which
acts as a hysteresis plot of the element as structural response. The third plot shows that in terms of stresses and strains of the
element’s internal response which is equal to figure 2 due to the unit size of the element. The fourth plot shows the plastic
equivalent strain versus the Von Mises stress to see if it relates to the input parameters given in a red dotted line. The fifth plot
shows the stiffness of the structure relative to the response of the first cycle and the sixth plot shows the value of the damage
parameter that leads to stiffness degradation (0 equals no damage and 1 equals fully damaged).
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4.6. Application of ductile damage model

4.6.1. Implementation of material parameters for ductile damage model

The ductile damage module is implemented in the analysis as a damage model to represent the
fibre fracture in the material. This is a meso-scale mechanism as its effect is too large to be considered
on the individual fibre level. These fibres break at individual stress levels as there is a slight deviation in
strength of each fibre. Hence the maximum allowable stress will be at the stress level of the first fibre
breaking. Upon breaking the fibre, the stresses have to be redistributed over the nearby fibres causing a
stress increase on the neighbouring fibres until the next one fails and the process is repeated. The absence
of a fibre reduces the overall strength of a control volume, despite the nearby fibres might be slightly
stronger. The ductile damage model will be used as a material module in the elements that represent the
composite material under fatigue loading. The damage module introduces a damage parameter called the
stiffness degradation (SDEG) that describes the amount of damage that is done to the element on a meso-
scale level. This is not the amount of relative reduced stiffness. Since it is applied in combination with the
elastic and plastic module, there is no longer a direct relation. The stiffness degradation parameter will
describe a percentage of the broken fibres in the element. The ductile damage module is an augmentation
of the plasticity module, therefore it kicks in when all or a large part of the plasticity module has taken
effect. Some limitations of the ductile damage module are challenged as the composite material behaves
in a brittle manner. Therefore one of the questions is: how good is the ductile damage module in handling
brittle material parameters?

4.6.2. Input for ductile damage model

The ductile damage parameters are introducing a traction-separation law for the smeared crack-
ing model. The easiest manner to visualise the traction-separation law and its effect on the fatigue ana-
lysis is to (re)view figure 3.13. Despite the simplicity of the description in figure 3.13, the real response
is described in figure 3.14. There are four parameters that have to be described which together determine
the maximum stress allowed in the element before failure. Therefore if a tabular input is used, then it is
required to have the input parameters in such a way that the maximum stress matches the maximum stress
in the plasticity module. Otherwise there is an over-constraining that leads to discontinuous formulation
of the material model. For that reason the parametric approximation of the plasticity of the material is
preferred as it will always be continuous. The damage parameters are irreversible and determine the
newly (reduced) maximum stress allowed.

The first to discuss parameter is the fracture strain εf . This parameter determines at how much
input of plastic strain the material has completely failed. If this value is too low, it provides a cut-back in
the material response that results in numerical instability. Currently the value is set at 0.2 [-] for the one
element model which is higher than the ultimate strain put into the plasticity model. Hence continuity is
preserved. Later this value will be set at 0.0062 [-] for composites as a calibration of the earlier models
from joint tests performed by He[52]. The model of He[52] also provided values for the stress triaxiality
and strain rate. These are set at η = 0.33333 and ε̇ = 1. These parameters are used to define the onset
of damage as described in the MIT manual[59]. However a parametric investigation already concluded
that the influence of these parameters is negligible for all the models discussed in this report. Therefore
standard values for the stress triaxiality and strain rate are chosen.
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The last value is a fracture energy Gf in the damage evolution suboption. On the contrary to
the stress triaxiality and the strain rate, the fracture energy has a lot of influence on the fatigue life of
an element. During the one element model this value is set at 6 [N/mm2] with a linear degradation as
this value is compatible with the plasticity model. In order to obtain energy values that are compatible
with the bi-linear plasticity module, the energy value must fulfil equation 4.6. This equation is set on
the principle that the fracture energy is the surface area underneath the stress-strain relation as is shown
in figure 3.14. For a linear degradation this is relatively simple. Calibration is required based on tests
specialised in determining the value for the in-plane tensile fracture energy (GIc). Do keep in mind the
difference in unit which has to be converted with the height of the element.

Gf =
(εf − εultimate,input)σultimate

2
=

(0.2− 0.08)100

2
= 6[N/mm2] (4.6)

4.6.3. Effects of ductile damage model

The output will show an exponential increase of the stiffness degradation factor. This will lead
to a progressive decrease of residual strength. The start of the increase is shown in figure 4.13 where it is
still rather slow. Therefore most of the failure is by the plasticity definition with a sudden drop in stress.
In the upgraded models of chapter 5 it is more clear what the effect of the ductile damage model will be.

Once the damage parameter of an element has reached the value 1, then the element has no
more residual strength and is considered to be failed. It is possible for Abaqus[3] to remove such elements
from the visualisation if element deletion is turned on in the element mesh properties and the visualisation
effect is enabled in the results section of the visualisation. By default the element will become invisible
with a damage of 0.99 in one of its integration points, but this value could be changed in the visualisation
as long as this value is between 0 and 1 for numerical and physical reasons. If the broken elements are
deleted, then the empty space left behind could be interpreted as a crack somewhere in that element. No
exact location of the crack is obtainable as it is a smeared crack model.

4.7. Application of the Virtual Crack Closure Technique

4.7.1. Implementation of VCCT interfaces

The Virtual Crack Closure Technique (VCCT) introduces a failure criterion that is capable of
predicting the interply failure mechanisms such as delamination. It uses a phenomenological description
to make its prediction. The fatigue and the static analysis have therefore different input templates. The
VCCT is applied on two adjacent surfaces of different parts in a so called master-slave relation. The
nodes of the master surface determine which nodes of the slave surface are related to it. One master
node can have multiple slave nodes, but a slave node can not have multiple master nodes. This leads
to problems when applying VCCT in multiple direction as is the case for the slicing model which is
explained in appendix B. One of the methods to circumvent this problem is by creating narrow partitions
around all edges. By doing so, not all of the contacting surface area will be in the VCCT contact bond.
However, the partitioning is done in such a way that only one node at the edge will not be bonded in
a particular contact slicing. This edge is made at most with a tenth of the thickness, as only then the
influence will be negligible. This contact bond is a discrete manner of describing a crack. The main
advantage of using the VCCT is that the crack will be very precisely displayed in terms of debonded
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nodes. The second advantage is that this model obtains precise results for the crack along that interface.
However, the location of the crack must be known in advance, otherwise it will have a different crack
pattern since the VCCT module could only crack through a predefined enriched interface. If a different
crack pattern is observed in reality, then it is unlikely that the model makes a good prediction of the
reality.

4.7.2. Input for VCCT

For a static analysis the VCCT bond is introduced in the interaction module of Abaqus. First
the contact property has to be defined. Upon creating a new property as a fracture criterion several
choices have to be made. First of all the direction of the crack growth has to be defined. By default this
will be the maximum tangential stress which is also correct for the CT specimen, otherwise crack growth
should be in perpendicular direction to the stresses. That option would be useful to model intraply failure
modelled as local delamination as is done in the VCCT slicing model of appendix B. The tolerance and
viscosity are by default ftol = 0.2 and ζ = 0 respectively. The tolerance defines how much extra margin
is taken on the crack initiation criterion before a crack has to propagate. In theory the crack initiation
criterion is set as defined in equation 4.7 for mode I, but a tolerance increases the limit of 1. Thus the
VCCT module will look at an equivalent/combined energy release rate to determine crack initiation as is
given in equation 4.8. That will eliminate the dependency on the crack direction. For the static VCCT
criterion a tolerance ftol is defined to determine if a crack propagation has to be initiated or a cutback in
the increment size has to be performed. The advised value is ζ = 0.1. If a crack propagation is supposed
to release multiple nodes in one increment, then the crack is considered not to be stable anymore. In
that case it is advised to allow a tolerance futol for unstable crack propagation. The default value is
fine, but a specific value could be defined for it. Now the cut back in increment size only happens if
f > 1 + ftol + futol with f defined in equation 4.8. The larger the tolerance, the larger the increments
will be if automatic incrementation is chosen according to the MIT manual[56] until Abaqus[3] finds out
more than one node has to be released. The viscosity also helps to improve the stability of the system. It
is advised by Dassault système[60] to have a small viscosity when using composite materials.

f =
GI
GI,c

=
v1,6Fv,2,5
2bdGIc

> 1 (4.7)

f =
Geq
Geq,c

=
v1,6Fv,2,5
2bdGeq,c

> 1 (4.8)

Here the energy releases values GI and Geq are the values for mode I and the equivalent
respectively. The augmented subscript c indicates the critical value of these which are provided as input
of the interaction property. v1,6 is the crack opening displacement between nodes 1 and 6 caused by the
release of nodes 2 and 5. Fv,2,5 is the force on the nodes 2 and 5 that is required to close the crack again
at nodes 2 and 5 to its original state as described in figure 3.16. The area of the surface that will be
debonded is described by the (sub)elemental thickness d and length b. Basically this criterion determines
if the surface of the enclosed triangle on the right of figure 3.16 as result of the energy required to break
the bond between these elements is larger than the performed work. If not, then the unity check is larger
than one and the nodes 2 and 5 will get released.

The last choice to make is choosing a mixed mode behaviour to determine the critical equi-
valent energy release rate. Do not mix the critical equivalent energy release rate with the equivalent
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energy release rate. The equivalent energy release rate is defined in equation 4.9. The first option is the
Benzeggagh-Kenane law (BK-law)[28] which has equation 4.9 to define the equivalent energy release
rate and equation 4.10 for critical equivalent energy release rate. What has to be noticed is that the crit-
ical equivalent energy release rate is dependent on the equivalent energy release rate. In other words, the
limit point of crack initiation has to be found iteratively. Fortunately, it is not required to find this limit.
It is only required to calculate the fraction f as defined in equation 4.8.

Geq = GI +GII +GIII (4.9)

Geq,c = GI,c+(GII,c−GI,c)
(

GII +GIII
GI +GII +GIII

)η
= GI,c+(GII,c−GI,c)

(
GII +GIII

Geq

)η
(4.10)

The second formulation to choose from is the power law[29]. The formulation is rather intuitive
compared to the other two laws as it is merely a weighted summation of the individual unity checks for
each failure mode. The weights of the individual unity checks are given by the powers am, an and ao
which have to be provided by the user as input. The formulation directly gives the final formulation of f
instead of its counter and denominator. The formulation is provided in equation 4.11.

f =
Geq
Geq,c

=

(
GI
GI,c

)am
+

(
GII
GII,c

)an
+

(
GIII
GIII,c

)ao
(4.11)

The third formulation to choose from is the Reeder law[30]. The Reeder law looks very similar
to the BK-law[28] as it only has an extra extension. Its extension contains the critical energy release rate
for the shear energies with a similar formulation as the difference between shear and normal energies.
This formulation is provided in equation 4.12. The equivalent energy release rate is still according to
equation 4.9.

Which three of the equivalent energy laws is most suited has to be determined by experiments.
From literature values for the energy release rates are advised asGI,c = 0.6 [J/mm2],GII,c = GIII,c = 7
[J/mm2] in combination with an exponent of the BK-law[28] ζ = 1 as provided by Ramsaier[24].These
values will be used until test results have shown differently. The crack will continue to propagate until
the initiation criterion in equation 4.8 is no longer met, which means a new equilibrium is obtained.
Hence the initiation criterion also acts as the evolution criterion.

Geq,c = GI,c + (GII,c −GI,c)
(

GII +GIII
GI +GII +GIII

)η
+ (GIII,c −GII,c)

GIII
GII +GIII

(
GII +GIII

GI +GII +GIII

)η
= GI,c + (GII,c −GI,c)

(
GII +GIII

Geq,c

)η
+ (GIII,c −GII,c)

GIII
GII +GIII

(
GII +GIII

Geq

)η
(4.12)

Furthermore, advise is given on the using surface to node discretisation, which allows more
deviation between the master and slave nodes. The small sliding option in the interface allocation allows
to speed up analysis because more assumptions could be made and the initial uniform clearance of 10−8

[mm] between the two surfaces could be defined. What is clear is that the VCCT slicing model to
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predict crack behaviour with the VCCT requires a certain ratio between the GI,c from the intraply and
the GII,c and the GIII,c from the interply to allow numerical stability. This relation is dependent on
the surface area of the neighbour elements. The relevant areas to be taken into account are illustrated in
figure B.4. This hypothesis states that the total amount of energy through external work to release the
next node in interply direction must be roughly equal to the required energy to release the next node in
intraply behaviour. For the CT specimen provided in appendix B this was required as the most critical
failure mechanisms needed to release nodes of the interply and intraply interfaces simultaneously. Some
deviations from this ratio are allowed and those differences determine which failure happens slightly
earlier, hence is the leading failure mode. Equation 4.13 describes the relation between the critical
energy release rates that is dependent on the proportion between the contact areas.

GI,c,intraply,nbintraply,ndintraply,n

= GII,c,interply,mbinterply,mdinterply,m

= GIII,c,interply,mbinterply,mdinterply,m

(4.13)

Here the subscripts intraply and interply specify along which element surface it is defined. The
roman numerals define which failure mode it is on an element level and the subscripts n and m define
the order number of the node to be released along that interface surface.

For the fatigue analysis the same (critical) equivalent energy release rate could be used. These
definitions are used to define the final failure point of the Paris law[9] in figure 2.7. The initiation is
not defined by a ratio of equivalent energy release rates, but rather by a criterion that is an inverse Paris
law equation[9] with different material parameters as is shown in equation 4.14 documented in the MIT
manual[56].

f =
N

c1∆Gc2
> 1 (4.14)

f is still the parameter that defines if the crack propagates, however neither the tolerance of
the static analysis is applicable, nor that of the unstable crack growth. c1 and c2 are material constants
that have to be defined empirically and have different values than c3 and c4 respectively. ∆G in [N/mm]
is the effective energy release rate as the difference between the maximum and minimum energy release
rates observed in the cycle caused by the loading. As N is the number of cycles, the initiation criterion
actually defines how many cycles are needed to reach initiation of the crack propagation. It is possible
to omit the initiation criterion by leaving the parameters c1 and c2 blank. The crack propagation itself
is defined according to a derivative of the Paris Law[9]. The version used is given in equation 4.17[56].
Although the initiation and the propagation criterion have a lot of resemblance, their purpose and values
are different. The c3 and c4 values of equation 4.17 are the same as respectively C and b of equation 2.9.
Advised values for c3 and c4 for the CT specimen are based on the findings of Liu et al.[61]. The values
of their mode II failure are the most representative for the delamination of the CT specimen, because the
delamination in the CT specimen is a shear failure. A conversion of units has to be made as Liu et al.[61]
uses [J/m2]. Since 1000[J/m2] = 1[N/mm], directly using Liu’s parameters will result in a factor of 1000
too low for the energy release rate if no conversion is performed. For that reason either the energy release
rates have to be multiplied by 1000 or the Paris law[9] has to be converted. For the latter the steps of
equation 4.15 are performed. This leads to the expression in equation 4.16 for c3 with ∆G in [N/mm]. c4
is unaffected by the unit conversion, thus merely due to the change in definition c4 = m = 5.98. Those
result in c3 = 3.545 ∗ 10−4 and c4 = 5.98 with ∆G in [N/mm] and da

dN in [mm/cycle].
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da

dN
= C(∆GJ/m2)m = C(1000∆G)m = C1000m(∆G)m (4.15)

c3 = 1000mC = 10005.98 ∗ 4.07 ∗ 10−22 = 3.545 ∗ 10−4 (4.16)

Also the boundaries between the first and the second stage could be changed by entering a
different value for the ratio of the threshold energy release rate Gth and the critical equivalent energy
release rate Geq,c. By default this values is Gth

Geq,c
= 0.01. The threshold value is defines a truncation

value which determines if a cycle has significant influence on the propagation of the crack. Energy release
rates below the threshold value are therefore omitted. An analogous definition is for the limit between the
second stage and the third stage. This limit is given by the ratio of the plastic energy release rate Gp and
the critical equivalent energy release rate Geq,c. The default value is Gp

Geq,c
= 0.85. The plasticity energy

release rate indicates when stage III starts, hence defines when the Paris law[9] experiences progressive
exponential growth till failure. The final (non-field) parameter that could be given is the temperature in
which the specimen operates. It is not required to give a temperature as the analysis is not temperature
dependent. A value of 20 [°C] is chosen as input to resemble room temperature.

da

dN
= c3∆G

c4 (4.17)

There is one major difference between providing input for the VCCT of the static and for the
fatigue analysis. For the static analysis the interaction module of Abaqus[3] provides an input template
provided by an interaction dialog box. For the fatigue analysis the input parameters have to be given
directly in the keywords of the input file. The keywords have to be entered completely at the end of the
fatigue step. For each interface the user has to add two lines of code. The first line is independent from
the choice of mixed law, the second line is dependent on the choice of the mixed law. The template for
the input lines is given in table 3.1. It is required to change the values between "<" and ">" with the
intended value for the analysis or make it blank if it should not be taken into account. If not performed
already, then additional lines have to be written in the keywords file. In the interaction properties section
of the keywords the interaction properties have to be assigned to each interface according to lines 3 and
4 of table 3.1. Line 3 is required once per property and line 4 once per interaction. Similarly, for each
interface a contact pair needs to be assigned in the interaction section according to line 5 of table 3.1.

Upon introducing the VCCT module in the next chapter to include the delamination, it is
advised to keep the values for the static and the fatigue analysis equal for as many parameters as possible.
In other words, the BK-law[28] will be chosen with critical energy release rates GI,c = 0.6 [J/mm2] and
GII,c = GIII,c = 7 [J/mm2] and as exponent η = 1 for both the static and fatigue analysis. All other
parameters have already been advised. An overview is given in table 4.3

There is still one step missing to let the VCCT criteria work correctly. Upon creating the
interaction, it is highly recommended to define an initial bond set that has at least one node on each
surface that is not bonded/selected. It is important that the nodes on which a boundary condition is
applied do not take part in the bonded node set as an advise of Ramsaier[24]. Theoretically it is possible
for Abaqus[3] to handle cases without a bonded node set defined and determine on its own where the
crack starts accoridng to the MIT manual[56]. However, without such a set or a set with all the nodes
of the interface included in the set, it will result in a overly strong response as it represents a perfect
material with no existing crack tip. The set is defined as an ordinary set of nodes and in the creation of
the VCCT for static hardening a separate tab allows the user to select the set. As a static analysis has to
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be prior to the fatigue analysis to obtain the best results, the bonded node set will then also be applied in
the fatigue analysis.

Table 4.3: Input table containing the suggested parametric values to be used for the static and fatigue simulations of the CT
specimen model for the VCCT module.

VCCT static CT model VCCT fatigue CT model
f tol [-] 0.2
c [-] (viscosity) 0.1
f tolu [-] Default
Mixed mode BK BK
GI,c [J/mm2] 0.6 0.6
GII,c [J/mm2] 7 7
GIII,c [J/mm2] 7 7
η 1 1
c1 [-] Blank
c2 [-] Blank
c3 [-] 0.005
c4 [-] 3
Gth
Geq,c

[-] 0.001
Gp
Geq,c

[-] 0.9
T [° C] 20

4.7.3. Effects of VCCT

The output will be the visualisation of the deformation and the bond status (BDSTAT). The
deformation will show which nodes along the interaction surface will be separated allowing the crack to
propagate. The bond status shows the similar result, but then in a colour plot. The blue colour indicates
that the nodes are released and the red colour indicates which nodes are still connected. The colour green
and yellow indicate the crack tip. In other words the release of nodes is the main output of the VCCT
module. Other parametric output could be useful to better understand what is going on at the crack tip.
Interesting parameters of the field output are first of all the energy release rate (ENNRRT) and effective
energy release rate (EFENRRTR) that provides the value of the energy release rate at the crack tip. These
values remain relatively constant once the crack starts to propagate. The bond time (DBT) and opening
behind crack (OPENBC) are secondary parameters for some additional information.

The propagation rate of the VCCT could be anything according the user’s definition of the
Paris law[9] as there is no physical basis. Only the energy release rates are parameters that have physical
meaning and origin. All other parameters are just to describe the phenomenological model. Hence the
VCCT module must be based on experiments with input parameters isolated in the test. Then the VCCT
could be used as an extensive calculator to inter- or extrapolate the test data.

Since the VCCT cannot be implemented in a model with only a single element, a elaborated
investigation about the effects of the VCCT model will be performed in section 5.5.3 of chapter 5 on the
CT specimen.
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4.8. Hypotheses review chapter 4

4.8.1. Proofs to thirteen hypotheses listed section 4.2 of chapter 4

Proof of hypothesis 4: If 10 iterations are used per load cycle for a force controlled ana-
lysis on a one element model, then equilibrium is reached for each load cycle. Section 4.4.2 of
chapter 4 showed that a forced controlled analysis on a one element has a converged solution at 10 iter-
ations. This was confirmed by performing a force controlled analysis on a one element model that has
1 [mm] in all directions with a total force of 75 [N] on the element with a yield stress of 50 [MPa] and
ultimate stress of 100 [MPa]. After ten iterations no more distinction could be plotted between the first
and the last cycle which was expected to happen according to the plasticity theory of loading-unloading-
reloading. After the loading in the first cycle all the unloading and reloading was performed elastically as
is shown in figure 4.4. Since the shape of the yield contour is monotonically increasing for all the plasti-
city modules in all models, it will mean that 10 iterations are also enough for the other force controlled
analyses of the one element model.

Circumstantial proof of hypothesis 5: Using 2 iterations per load cycle for a displacement
controlled analysis on a one element model that includes the plasticity and ductile damage model
will result in an element response that is closest related to the input parameters of the plasticity
model. The displacement controlled analysis with an imposed displacement larger than 0.01 [mm] on a
one element model with 1 [mm] in all directions that has a yield strain εy,0 of 0.01 [-] and an ultimate
strain of 0.20 [-] will show repetitive degradation over the iterations if ductile damage is included as well
as plasticity is shown in figure 4.5. As is described in section 4.4.2 of chapter 4 it is likely that Abaqus[3]
makes its predictions based on the outcome of the previous iteration. That will cause an accumulate the
plastic strain of each iteration since the displacement controlled analysis with Umax > εy,0 and R = 0
will result in having elastic and plastic response. For the force controlled analysis with F > σy,0 and
R = 0 this is not a problem because the response will be only elastic after the first cycle.

Proof of hypothesis 6: The direct cyclic analysis without cycle jumping with a displace-
ment controlled fatigue loading will result in a sequence of half cycles with static loading for each
half cycle. If no cycle jump is present, then each cycle will be simulated explicitly as is shown in figure
4.3. The black line is a continuous line, therefore also defined for every time step. Since Abaqus[3]
does not take into account the load history during the direct cyclic analysis, it will determine the new
displacement field based on the previous displacement field and the changes on that displacement field
as is explained in section 4.4.2 of chapter 4 . For that reason there is no difference in using the direct
cyclic analysis without cycle jumping and modelling the fatigue with a series of half cycles.

Proof of hypothesis 7: If the direct cyclic analysis is applied on a one element model
with isotropic hardening for plasticity, which has a displacement controlled load with R = 0, 2
iterations per load cycle and no cycle jumping (dN = 1), then the stress-strain response will follow
the loading-unloading-reloading principles of the plasticity theorem. This has been illustrated in
figure 4.11 with only minor discrepancies between the black line for the simulated model and the green
dots for the hypothetical model. In section 4.5.3 of chapter 4 the hypothesis is explained for a similar
problem as the one element model with only a difference in the maximum displacement. This situation
is visualised in figure 4.12.

Proof of hypothesis 8: If the direct cyclic analysis is applied on a one element model with
the ductile damage included, which is loaded with a force causing a stress larger than the ultimate
stress, then no equilibrium will be found in the degraded state leading immediately to full failure.
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This hypothesis could be reasoned as followed: the ductile damage model only allows the stress to
decrease after ultimate stress, it can not find a resistance stress in any deformed state that is large enough
to counter the applied stress. This is not shown on a single element model, but it could be proven by
contradiction. If there was a stress large enough after the ultimate stress that could resist the force, then
the new stress must be higher than every other stress before. In that case the ductile damage model must
allow to describe a stress increase, but it is not able to that. Thus it is not possible.

Proof of hypothesis 9: If the direct cyclic analysis is applied on a one element model with
the ductile damage included, which is loaded with a displacement causing a strain larger than the
crack initiation strain εini but smaller than the fracture strain εf , then a single equilibrium point
will be found with a degraded stiffness. By the definition of the ductile damage model this is clear. The
ductile damage model has a decreasing strength branch after reaching ultimate stress. Ultimate stress is
reached at the corresponding εini and zero stress will be reached at εf which inquires full separation.

Proof of hypothesis 14: If Cn

γn
= Q∞ and γn = b, then isotropic hardening and kin-

ematic hardening will results in the same response for the static loading on a one element model.
Since the one sided hardening is defined by equation 4.2 in section 4.5.2 of chapter 4, it is observable
that the second and third term could be made equal for n = 1 by having C1

γ1
= Q∞ and b = γ1. This is

also illustrated in figure 4.8. Hence it is possible to create equivalent kinematic and isotropic hardening
for static loading.

Proof of hypothesis 15: Increasing σy,0 will result in a longer fatigue life in a one element
model with force or displacement controlled fatigue with R = 0. It has not been investigated with
Abaqus[3], but the plasticity theorem provides a quick answer. Based on hypothesis 7 it will also be
true for the simulation of Abaqus[3] as well. For the displacement controlled analysis it is trivial as
higher yield stress means longer elastic response, therefore less force is applied in the plastic zone, thus
less plastic strain. The less plastic strain is accumulated each cycle, the longer it takes to reach ultimate
stress. In a force controlled analysis it is not that much the amount of plastic stress, but rather the
probability that plasticity is initiated. A higher σy,0 reduces the probability, which generally means a
longer fatigue life as the material is able to take higher stress in structures with multiple elements.

Proof of hypothesis 16: Increasing E will result in shorter fatigue life in a one element
model with displacement controlled fatigue withR = 0. If onlyE changes and εult is kept equal, then
the amount of elastic strain reduces. That leads to more plastic strain for each cycle, thus faster plasticity
accumulation. An analogous explanation is by stating that the branch of elastic response becomes steeper,
thus a larger stress range is required to obtain the same strain.

Circumstantial proof of hypothesis 17: Increasing ν will result in an equal long fatigue life
in the one element model, with displacement controlled fatigue andR = 0, that has no redundant
boundary conditions. The boundary conditions of the one element model allow free movement in
transverse direction as is shown in figure 4.1. That implies that no forces will be caused by the boundary
conditions. If the one element model with no redundant boundary conditions is compared to a one
element model that has redundant boundary conditions transverse to the load, then transverse forces will
be present. The lack of these transverse reaction forces mean less stress. Therefore a slower plastic strain
accumulation is present, thus higher fatigue life is achieved.

Proof of hypothesis 18: Increasing Q∞ will result in longer fatigue life in a one element
model with a force or displacement controlled fatigue with R = 0. Analogously as for hypothesis
15. For the force controlled analysis there is a higher probability to have a force lower than the ultimate
stress. A higher probability means generally a longer fatigue life as it is able to take more stress in
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structures with multiple elements. This is especially true upon noticing that the unloading and reloading
happens elasticly as is shown in figure 4.4. This has been investigated in early models where a range of
different values for Q∞ in the range [−50, 50] were investigated with different b in the range [0, 100].
The applied yield stress was σy,0 = 50 [MPa] and the load was in the range from 0 [MPa] to 75 [MPa].
The number of iterations was still kept on 1 even when it was a force controlled analysis. It showed
that increasing Q∞ increased the fatigue life. There were no strange domain restrictions found. Failure
is defined when Abaqus[3] was no longer able to find a converged answer which is in the case that
σy,0 + Q∞(1 − e−bε

p
eq) ≈ 0, which happens faster if Q∞ decreases under a threshold value of Q∞ <

−σy,0. Negative values would not be obtainable. Do keep in mind that due to the number of iterations
being equal to 1, the implicit solver has partly become an explicit solver. The results had to be taken with
caution as the negative loads in the model indicated that equilibrium had not been achieved.

Proof of hypothesis 19: Increasing b will result in shorter fatigue life in a one element
model with displacement controlled fatigue with R = 0. Higher values for b would mean that less
plastic strain is required to reach the ultimate stress. Thus even with a constant strain accumulation rate,
the number of cycles would decrease as the total strain required to reach ultimate stress decreases. In
early models it has been investigated what would happen if the value b was changed in a range [0, 100]
for different Q∞ in the range [−50, 50]. The applied yield stress was σy,0 = 50 [MPa] and the load was
in a range from 0 [MPa] to 75 [MPa]. The number of iterations was still kept on 1 even when it was a
force controlled analysis. It confirmed that increasing b decreased the fatigue life. There were no strange
domain restrictions found. Failure is defined when Abaqus[3] was no longer able to find a converged
answer which is in the case that σy,0 + Q∞(1 − e−bε

p
eq) ≈ 0 and which happens faster if b increases.

Negative values would not be obtainable. Do keep in mind that due to the number of iterations being
equal to 1, the implicit solver has partly become an explicit solver. The results had to be taken with
caution as the negative loads in the model indicated that equilibrium had not been achieved.

Circumstantial proof of hypothesis 20: Increasing η or ε̇ will not alter the results in the
one element model or the compact tension specimen model with a force or displacement controlled
fatigue analysis. In early models it has been investigated what would happen if the value η or ε̇ was
changed in the range [−1, 1] and the range [−5, 5] respectively. The applied yield stress was σy,0 = 50
[MPa], the stress increase Q∞ = 50 [MPa], the stress convergence speed b = 100 and the load was in
a range from 0 [MPa] to 75 [MPa]. The number of iterations was still kept on 1 even if it was a force
controlled analysis. No change was observed which proves the idea that the analysis is pressure and rate
independent as it should be for composite fatigue.

4.8.2. Eight newly posed hypotheses as a result of chapter 4

Based on the hypotheses of the one element model a lot of new hypotheses are formulated for
the compact tension specimen.

Hypothesis 21: If cycle jumping is enabled for the compact tension specimen with a
ductile damage model and VCCT model included and the load leads to a local stress higher than
the ultimate stress, then the damage obtained during cycle n− x will be extrapolated x times to
obtain cycle n. It is expected that Abaqus[3] is able to extrapolate damage as it states "forward damage
extrapolation". It will be investigated in chapter 5 if that is the case.

Hypothesis 22: If the element size is refined from 2 [mm] to 1 [mm] in a composite
compact tension specimen model that has either VCCT or tie interactions, the fatigue life will not
change more than a few percent due to the mesh refinement. A nominal element size of 2 [mm]
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evenly spread already creates two elements along the height of the crack, five in the width of the crack
and fifteen elements along the length of the crack. This is already a lot of elements. Also the input
parameters are not element size dependent as these are normalised to the element size. However, there is
no definitive answer to this question until the simulation has been performed. There is a mesh refinement
study performed in chapter 5.

Hypothesis 23: If the element size is refined from 2 [mm] to 1 [mm] in a composite
compact tension specimen model that has either VCCT or tie interactions, the transition from
stage I to stage III will not change more than a few cycles due to the mesh refinement. A nominal
element size of 2 [mm] evenly spread already creates two elements along the height of the crack, five
in the width of the crack and fifteen elements along the length of the crack, which is already a lot of
elements. The question now is, will the first element break faster if the size is smaller. On the one hand
yes, because smaller elements will also have smaller fracture energy. On the other hand, the plastic
response will not be changed that much. The plasticity would allow to spread the forces already to the
other neighbouring elements as it would already do with 2 [mm] elements. Since the plasticity model
is dominating in the first stage of the compact tension specimen, this would result in little change in the
number of cycles till failure. Only a slight increase in the fatigue life is observed, since the element is
less able to release energy during the ductile damage model after reaching the ultimate stress. However,
there is no definitive answer to this question until the simulation has been performed. An circumstantial
proof will be provided in chapter 5.

Hypothesis 24: Loading the compact tension specimen with a fatigue load in the direct
cyclic analysis will result in a crack propagating in the weakest direction of the ply. The VCCT
module will not make a distinction in direction whether the in-plane shear is left-right or up-down. On
the contrary, the plies will do as these have orthotropic stiffness. As the strength is still isotropic, it will
be in the stiffest direction of the ply as a higher stiffness attracts more stress, thus the ultimate stress is
reached sooner. This hypothesis will be investigated in chapter 5.

Hypothesis 25: Changing the material properties has the same effect on the fatigue life of
a compact tension specimen as on the one element model with a displacement controlled analysis.
Increasing the fatigue life for each element will also increase the fatigue life of the total structure. This
hypothesis will be tested in chapter 5.

Hypothesis 26: Increasing a critical energy release rate (GI,c, GII,c or GIII,c) will in-
crease the fatigue life. If the critical energy release rate is increased, then the interface is able to dissipate
more energy. That will result in less energy required to be dissipated by the elements, thus a slower crack
propagation. A slower crack propagation means a longer fatigue life. Also increasing the critical energy
release rate means that the crack through the interface will be longer in the second stage of the Paris law.
The longer it is in the second stage, the longer it will be stable which in its turn results in longer fatigue
life.

Hypothesis 27: Increasing c3 will decrease the fatigue life. Increasing c3 of the Paris law
curve will increase the propagation speed, thus it takes less time for the crack to run through the compact
tension specimen. Therefore it will result in less fatigue life.

Hypothesis 28: Increasing c4 will increase the fatigue life ifGeq < 1 for each node. If the
effective energy release rates are lower than 1, then a larger c4 will result in a slower crack propagation,
thus longer fatigue life. If the effective energy release rates are larger than 1, then a larger c4 will result
in a larger crack propagation rate, thus a shorter fatigue life.
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4.9. Conclusion chapter 4

The values of the parameters used in the one element model are found in table 4.1 for the
plasticity module and in table 4.2 for the ductile damage module. The VCCT is not implemented in the
one element model as the one element model only contains one element. For the CT specimen models
that will be discussed in chapter 5, table 4.3 provides literature values of the VCCT module with the
second column for the static load step and the third column for the direct cyclic load step.

For the one element model with load amplitudes leading to plastic response it is possible to
adjust the fatigue life. When in need of improving the fatigue life of the one element model, it could be
increased by increasing one of the following parameters ordered in decreasing influence: Gf , εf , εult,
σult. Changing σy,0 and E2 only has influence on small prescribed displacements that are around the
yield strain, for those it could mean the difference between a fully elastic response and a little plastic
response that will accumulate each cycle. Another option to increase the fatigue life, if allowed, is by
decreasing the applied load.

As the one element model is only capable of taking into account the plasticity model and the
ductile damage model, the delamination can not be included. With only one element present, there is
only one clear distinction between stage I and III. As soon as damage starts, it has entered stage III and
its residual strength starts to reduce as is clear in figure 3.14. Thus the first stage finishes and the third
stage starts as soon as the SDEG parameter becomes larger than zero. The output of the plasticity model
has been verified by the prediction made with the hypothesis of plasticity, which was calculating with a
Python[58] script added in appendix A. This indicates that the fatigue analysis is merely a sequence of
static cycles.

Since the residual stiffness is related to the stiffness degradation parameter, which is a damage
parameter, this is inherently related to the residual strength. The derivative of this damage parameter
is relatable to a Paris law that describes the entire model with all its fatigue failure mechanisms as one
formulation. The damage parameter will keep increasing exponentially till it reaches the value one.

For the one element model it is assumed that a single element represents the entire compact
tension specimen. Also it is assumed that the fatigue load is applicable on every node at the top with
only the vertical forces and stresses present as the horizontal movements are free to allow contraction.
This is an oversimplification of the reality.



Chapter 5: Upgrading the one element model

5.1. Introduction

In chapter 4 a model for a single element was developed with a plasticity module and a ductile
damage module to mimic the fatigue behaviour in composites. Now it is time to upgrade the model
step-by-step in order to fulfil the requirements that were set in chapter 1. It is easier to explain what
the influence of the upgrade is when it is comparable to another directly related output. The order of
improvements is defined to keep it as simple as possible to understand the effects of each individual
upgrade. The step-by-step approach has also been taken to identify which upgrade causes problems. The
steps taken for upgrading the model are:

1. Changing to the orthotropic material properties: composite laminates are distinctive for their ortho-
tropic material properties. As it is also possible to test the applicability of the orthotropic stiffness
in a one element model, it is investigated first.

2. Changing to the brittle material properties: in contrast to metals, composites behave in a brittle
manner. As the ductile damage module is developed for ductile materials, some problems may
arise upon changing the parameters to represent the brittle material. However, as it is still possible
to test it on a one element model, it is checked as second.

3. Changing to the compact tension specimen (CT specimen) geometry: as the upcoming investiga-
tions require multiple elements, it is time to investigate what happens if the one element model is
changed to a single layer compact tension specimen with multiple elements.

4. Including the cycle jumping: since more elements slows down the calculations, the cycle jumping
helps to speed up the analysis. What would happen if cycle jumping was enabled? As cycle
jumping is dictated by the user, that would definitely accelerate the analysis. Therefore cycle
jumping is performed first.

5. Change to automatic incrementation: in order to speed up the analysis even further, would
Abaqus[3] assign itself larger increments on less critical moments and smaller increments on more
critical moments?

6. Change to multiple plies with tie constraints: as the analysis has now been sped up, it is possible to
introduce more plies without waiting endlessly on the result. Tie constraints were chosen initially
as these are simple to introduce and require less computational effort as there are less possibilities
to crack.

7. Multiple plies with VCCT constraints: now it is time to investigate whether the full intended
model is able to perform a fatigue analysis in a composite compact tension specimen that includes
all three main mechanisms that were observed in tests.

During the upgrades only the upgrade changes the model. All other input is kept equal to the previous
discussed model unless explicitly told differently.
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Despite that no calibration of the model is performed on experimental results, some valida-
tion is still done by performing sanity checks to see if the model has the potential of modelling fatigue
behaviour in composites. These checks question the plausibility of the crack pattern, the level of max-
imum stresses, the stress intensity factor and the fatigue life compared to other simulations done before.
After the checks are completed other similar questions as for the one element model could be asked. For
example, since the model has multiple elements it is interesting to know how entering a new stage is
defined. Also how does the model relate to the Paris law? These two questions in itself are a part of the
sanity check to see if the model still performs as it is supposed to do. Finally, which parameters have the
most influence on the behaviour of the fatigue life?

5.2. Eleven hypotheses that will be answered in chapter 5

Chapter 5 will give answer to eleven hypotheses. These hypotheses will be answered in section
5.8.1 of chapter 5.

Hypothesis 10: If the direct cyclic analysis is applied on a one element model with the
plasticity model, then no plasticity will be extrapolated during the cycle jumping.

Hypothesis 11: If the direct cyclic analysis is applied on a compact tension specimen with
the ductile damage included, which is loaded with a displacement or force causing the stress in an
element to be larger than the ultimate stress, then it transfers its burden of load to its surrounding
elements in order to find equilibrium.

Hypothesis 13: Using the plasticity model for the inter fibre fracture will result in an
overclosure of the crack due to the plastic deformation which is not present in reality.

Hypothesis 21: If cycle jumping is enabled for the compact tension specimen with a
ductile damage model and VCCT model included and the load leads to a local stress higher than
the ultimate stress, then the damage obtained during cycle n− x will be extrapolated x times to
obtain cycle n.

Hypothesis 22: If the element size is refined from 2 [mm] to 1 [mm] in a composite
compact tension specimen model that has either VCCT or tie interactions, the fatigue life will not
change more than a few percent due to the mesh refinement.

Hypothesis 23: If the element size is refined from 2 [mm] to 1 [mm] in a composite
compact tension specimen model that has either VCCT or tie interactions, the transition from
stage I to stage III will not change more than a few cycles due to the mesh refinement.

Hypothesis 24: Loading the compact tension specimen with a fatigue load in the direct
cyclic analysis will result in a crack propagating in the weakest direction of the ply.

Hypothesis 25: Changing the material properties has the same effect on the fatigue life of
a compact tension specimen as on the one element model with a displacement controlled analysis.

Hypothesis 26: Increasing a critical energy release rate (GI,c, GII,c or GIII,c) will in-
crease the fatigue life.

Hypothesis 27: Increasing c3 will decrease the fatigue life.
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Hypothesis 28: Increasing c4 will increase the fatigue life ifGeq < 1 for each node.

5.3. Improvements in material properties

5.3.1. Orthotropic material stiffness properties

The composite material is laid in different layers of fibre direction. Fibres cause the material to
be stronger and stiffer in one direction. In order to model the composite material correctly, it is required
to introduce the difference in material direction. As such the isotropic properties that are defined in the
elastic module of the material properties have to be altered. Although there is an option lamina present
for laminates, the orthotropic property formulation is chosen for its freedom to model a quasi-isotropic
layer.

The values for the first direction are evident as tests have already been performed for the tensile
coupon testing. These test results were already shown in figure 3.6. From these test results a stiffness
of E1 = 12285 [MPa] is obtained in accordance with ISO-norm 527[45]. The corresponding Poisson’s
ratio is found to be at ν12 = 0.35. For now it is assumed that the material could be modelled as an
unidirectional layer. All other material properties are at a reduced value of these two properties for
unidirectional layers. The longitudinal stiffness in second and third direction are matrix dominated as
it is loaded perpendicular to the fibres. Therefore a value of E2 = E3 = 3000 [MPa] is estimated as
being roughly a quarter of E1. E2 and E3 will approximately be equal as long a fibres are laid in one
direction (unidirectional) for the fibre layer. If woven fabrics are used, then the value of E2 ought to be
approximately the value of E1 as the fibres perpendicularly will have the same effect one ply-level as the
longitudinal fibres. The direction difference in the properties makes that the analysis will be direction
dependent. Therefore it is also required to assign a material orientation to define the first direction of the
fibres.

The Poisson’s ratio’s in the other directions will roughly be the same, only in-plane transverse
loading will have a slightly higher ratio as the longitudinal fibres pulled in transverse direction will cause
the matrix to deform larger in longitudinal direction of the fibres. As the latter is known from testing to
be ν12 = 0.35, the other two Poisson’s ratios are estimated at ν13 = ν23 = 0.3. The Poisson’s ratios also
have an effect on the shear stiffness just as in isotropic materials. Whereas the Young’s modulus is fibre
dominated, the shear is matrix dominated. Hence the values are considered to be low and even lower in
the shear stiffness out of plane for transverse in-plane loading as the fibres have least influence in that
direction. Therefore the values are set at G12 = G13 = 2000 [MPa] and G13 = 1000 [MPa] for the CT
modelling. The overview for all these parameters is given in table 5.1.

A displacement controlled fatigue analysis has been performed on the one element with the
boundary conditions provided in figure 4.1. The range of the displacement was set at 0.0065 [mm] as
maximum and 0 [mm] as minimum. The results of including the orthotropic material properties in the
one element model are provided in figure 5.1.

Some change was expected, but not exactly all of these changes. The prediction model did
good in describing the first 25 cycles. Upon the 25th cycle in theory the ultimate stress of 24.57 [MPa]
is surpassed or better stated: its corresponding ultimate plastic strain of 0.21 [-]. In the plasticity module
prediction this concludes in failure, thus it responds with a zero response after the 25th cycle. For the
FEM analysis it is the moment that the fibre failure starts with the ductile damage module. This is already
observed in the last graph in which the stiffness degradation parameter starts to rise after eighteen cycles.
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Figure 5.1: In six plots the output is represented of the one element model for a fatigue analysis with an applied displacement
of 0.0065 [mm] failing after 42 cycles. The input of the model is given in table 5.1. The black lines is the result of the analysis
and the green line is the prediction of that result using a Python[58] script for isotropic softening. Counting from left to right
and from top to bottom, the load history plot is given first. This plot shows the applied force as resultant of a constant applied
displacement amplitude function. The second plot is the force-displacement diagram which acts as hysteresis plot of the
element as structural response. The third shows that in terms of stresses and strains showing the element’s internal response
which is equal to plot 2 due to the unit size of the element. The fourth plot shows the plastic equivalent strain versus the Von
Mises stress to see if it relates to the input parameters given in a red dotted line. The fifth plot shows the stiffness of the
structure relative to the response of the first cycle and the sixth figure shows the value of the damage parameter that leads to
stiffness degradation (0 equals no damage and 1 equals fully damaged).
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Table 5.1: The input table containing the parametric values used in the elasticity module to include the orthotropic behaviour
of composite for the one element model and for the CT model. Also some changes were made in the ductility of the model
such that more stability is present.

E1 [MPa] 12285
E2 [MPa] 3000
E3 [MPa] 3000
ν12 [-] 0.35
ν13 [-] 0.30
ν23 [-] 0.30
G12 [MPa] 2000
G13 [MPa] 2000
G23 [MPa] 1000
σy,0[MPa] 39.53
σy,1[MPa] 30.7125
εpy,1[-] 0.05
σult[MPa] 24.57
εpult [-] 0.21

What is positive to observe is that the stiffness degradation starts gradually at the beginning, but at the
point the ductile damage model kicks in, it reduces drastically just as is observed in preliminary fatigue
tests of the joint. All in all, these results look very promising to model the inter fibre failure with a
plasticity module and the fibre failure with a ductile damage module.

5.3.2. Brittle material properties

The brittle material property parameters of the plasticity module and ductile damage module
were in the end directly implemented into the compact tension model with one ply. The material proper-
ties for the ductile damage module made by He[52] were already discussed in section 4.6 of chapter 4. In
short, these parameters are based on the calibration of the static model for preliminary static tests of the
joint. These are currently the most representative values available for the parameters and are certainly
brittle material properties. The plasticity material properties were derived from the static coupon test
shown in figure 3.6 that were investigated by He[43]. However, entering the values from figure 3.6 with
converted values for the strains according to equation 4.4 in a tabular form, resulted in compatibility
problems with the ductile damage model. This happened because the tabular form was too limited and
could not handle the cutbacks present in the plastic strain. Therefore an extrapolation of the results was
needed. For that reason and other reasons given in section 4.5 of chapter 4 the parametric formulation of
hardening is used. The plasticity parameters are calibrated to represent the tabular form as accurate as
possible as shown in figure 4.10. Table 5.2 provides a copy of the used parameters for the ductile damage
module and the plasticity module.
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Table 5.2: The input table containing the parametric values used in the CT model for the brittle material properties of the
ductile damage module and the plasticity module.

Q∞[MPa] 250
b[-] 300
εf [-] 0.0052
η [-] 0.33333
ε̇ [-] 1
Gf [N/mm] 25

5.4. Upgrading the one element model to compact tension specimen

5.4.1. Compact tension geometry with one ply

As the material properties are set, it is time to increase the size of the model from one element
to the full compact tension specimen geometry with multiple elements. The geometry is illustrated in
figure 5.2. The CT specimen is 70 [mm] in height, 90 [mm] in length and 1.125 [mm] in thickness for
a single ply. The four corners are cut off with 15 [mm] in vertical direction and 20 [mm] in horizontal
direction. A cut-out with a round tip in the centre of the left edge has a height of 4 [mm] and a length of
27 [mm]. Including the radius of 2 [mm] of the round tip at the end of the crack creates a precrack of 29
[mm] in total. The CT specimen is loaded by two pins for which the holes are symmetrically placed along
the horizontal symmetry line. The offset from the centre of the hole is 14 [mm] to the left edge from the
centre and 13 [mm] from the centre of the hole to the horizontal symmetry axis. The holes themselves
have a radius of 4 [mm]. The meshing is done in Abaqus[3] using the standard mesh algorithm. No
partitions were made to ensure a symmetric meshing. A mesh with the medial axis option and hexagonal
elements only provided a more or less symmetric mesh with smooth transitions. The intended mesh
size was 2 [mm], which aided the possibilities of smooth transition of the contours of the specimen. In
total there are 1206 [elements] 3D stress elements used. The default choices are taken with exception
of the element deletion. The element deletion is explicitly turned on, so not left as default. In a later
performance these elements could be enhanced by using continuum shell elements for a better modelling
of the out-of-plane behaviour (buckling). The mesh is illustrated in figure 5.3 with the applied boundary
condition. The material orientation will have its local first axis parallel to the horizontal symmetry axis
and its second axis in vertical direction in parallel to the height of the CT specimen.

The boundary conditions are applied in the pins. Luckily the areas around the pins are not the
most critical, hence the modelling of the embedment strength is not necessary. Thus it is allowed that the
forces applied in the pins are transferred to the CT specimen by coupling the pin to the surfaces in the
radial direction to the surrounding elements. This is done by setting up a reference point in the centre
of the pin and use that as master node for the coupling. The slave surface is set to be the surrounding
surface of every ply which makes the nodes on that surface to move in the same direction as the reference
point. Thus the nodes move with the pin. Only the translations need to be transmitted as the rotations
must be allowed if continuum shell elements are used. For the 3D stress elements is does not matter if the
rotations are transferred since there are no bending degrees of freedoms in the 3D stress element. In the
reference points there are three sets of boundary conditions applied. One set is put in place as the initial
conditions and will continue throughout the entire analysis. The additional boundary conditions are step
specific. The overview of the boundary conditions that is required are given in table 5.3. The lower pin
will be restricted in all degrees of freedom except for the rotation in the third axis (out-of-plane). Since
the pin will be clamped in the testing machine, it will eliminate the possibility for the pin to move in any
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Figure 5.2: The geometry of the CT specimen with tapered corners. Scale is 1:1 on A4 with measurements in [mm]. The
design is from the wFRP group to be used as the test specimen for fatigue. The thickness of a single ply in the model is 1.125
[mm], the test would then have five layers to make a total thickness of 5.625 [mm].
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Figure 5.3: The mesh of a single layer of the CT specimen obtained by a global mesh size of 2 [mm], medial axis and
hexagonal elements only. If multiple layers are used in further upgrades, then in the other layers have the same mesh. The
boundary conditions from table 5.3 are applied in the holes showing the constrained degrees of freedom in both of the holes
and the applied prescribed displacement in the top hole. The boundary condition in the centre of the hole are coupled with the
degrees of freedom of the nodes of the surrounding elements. The coordinate axis indicates the material orientation with
x-axis for the first direction of the material and the y-axis the second direction of the material. The third direction is
perpendicular, therefore it is out of plane.

direction. However, the CT specimen could rotate around the pin, therefore R3 6= 0 [mm]. A similar
situation is existing in the top, however this pin will be moved in vertical direction by the machine during
the fatigue analysis. Hence in the initial conditions also the vertical translation must not be hindered as
boundary conditions are passed on to the next step unless explicitly programmed otherwise. Therefore
U2 6= 0 [mm] and all remaining boundary conditions are: U1 = U3 = R1 = R2 = 0 [mm]. In the static
step (second step) only an additional boundary condition is applied on the top pin. The displacement is
described for the first half cycle by defining the displacement of the top pin at U2 = 5. However this is
not done instantaneously as it is still part of the fatigue analysis in general, hence intermediate results
have to be produced. This is done by providing the amplitude definition according to figure 4.2. The
required step time is 0.5 [s] which is exactly enough to complete the first half cycle. The amplitude that
corresponds to it is provided in a tabular form. This tabular form is given in the second column of table
5.4. For the intermediate increments a linear interpolated value of the nearby values is used. This is
required because Abaqus[3] is likely to cut the corner if not enough intermediate values are defined in
the tabular form. This reduces the amplitude range up to 15% as is shown in figure 5.4. For linear tabular
form the default option of ramp could also have been chosen, but if a fatigue analysis with a dependency
on time is modelled, it has to be defined in this manner. The succeeding direct cyclic analysis will
have the prescribed displacement of the first half cycle disabled and a new prescribed displacement with
an amplitude function enabled. Although U2 = 5 [mm] still holds, the amplitude definition has to be
inverted as the start time will be at 0.5 [s] due to the static step. This inverted amplitude definition is given
in the third column of table 5.4. The total amount of displacement that is applied will be the prescribed
displacement times the given amplitude from the increment according to the amplitude definition. This
definition is summarised in equation 5.1 for cycle k.
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Table 5.3: The boundary conditions applied on the compact tension specimen for the fatigue analysis containing a static step
for the first half cycle and a direct cyclic analysis to carry out the rest. Empty cells indicate the degree of freedom is free to
move (unrestrained). All boundary conditions are propagated from the previous step, except for the applied displacement of 5
[mm], that one is imposed twice in total.

Initial boundary conditions Static boundary conditions Fatigue boundary conditions
Upper pin Lower pin Upper pin Lower pin Upper pin Lower pin

U1 [mm] 0 0 0 0 0 0
U2 [mm] 0 5 0 5 0
U3 [mm] 0 0 0 0 0 0
R1 [rad] 0 0 0 0 0 0
R2 [rad] 0 0 0 0 0 0
R3 [rad]

Figure 5.4: The applied amplitude definition according to the amplitude plotter in Abaqus[3]. The green line is the intended
amplitude and is accurately obtainable by defining the amplitude every 0.1 [s] in the tabular form. If only the extreme values
are defined in the tabular form (every 0.5 [s]), then the blue line is obtained as applied amplitude. Note there is a discrepancy
of about 15% at 0.5 [s] which will have a large influence as the maximum tensile load is the most detrimental for the fatigue
analysis.

Uapplied = U2A(t) = 5

{
2(t− k), if (t− k) < 0.5

1− 2(t− k), otherwise
(5.1)

The output of the model is best described by its crack pattern shown in figure C.1 and the
four graphs shown in figure C.2 of appendix C. Figure C.1 shows that the crack pattern starts under
an angle of 45 [°] in both directions, but very soon becomes 90 [°] vertical. This is perpendicular to
the fibre orientation. As the stiffness in first direction of the material is much higher than the other two
material directions, it will also attract more stresses in that direction. As the ductile damage module
neither makes a distinction between the different failure modes (I, II or III), nor between the differences
in strengths of the material for the different directions, it will treat it as if the longitudinal strength equals
the lateral strength. The element in the crack tip fails due to the vertical orientation of the main principal
stress. However, after the first element has failed, the other elements fail due to their higher stiffness
in the first direction. Now the stress has to go around the element. This increases the stress in the
surrounding elements. The element above it is effected the most, because it is at the crack tip now and
its first direction spans the crack opening. In other words, its first direction is perpendicular to the crack
formation, which increases the stresses in the element even further. This process repeats itself until the
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Table 5.4: Input values for the tabular form of the amplitude definition function. The first column is to define the time t on the
x-axis of the plot in seconds. The second column is the base amplitude function definition used in the static analysis for the
first half cycle (FHC). The third column is the inverted amplitude definition of the amplitude function for the FHC as do to the
step time the amplitude has shifted with 0.5 [s].

t [s] AFHC(t) AFAT (t)
0 0 1
0.1 0.2 0.8
0.2 0.4 0.6
0.3 0.6 0.4
0.4 0.8 0.2
0.5 1 0
0.6 0.8 0.2
0.7 0.6 0.4
0.8 0.4 0.6
0.9 0.2 0.8
1 0 1

last elements breaks. The top element breaks with the last element in the crack since the bending moment
causes large compression stresses in the top element. Since the model is not able to distinguish between
the compressive and the tensile strength, both elements will fail simultaneously. This is not true in reality
where the strength in fibre direction is the stronger direction and tensile strengths in composites being
much higher than the compressive strengths. This directional strength difference between the first and
second direction is much higher than the relative stiffness difference. In other words, the ratio of the
strength in first direction over the second direction f1

f2
is larger than the ratio of the stiffness of the first

direction over the second direction E1
E2

. Since f1
f2
> E1

E2
, in reality the element will not fail perpendicular

to the fibre orientation. The force-time diagram shows that the material resists less force under equal
displacement, hence degradation in stiffness is observed. Some of the applied force is negative which
means that the structure requires compression forces to return to zero-displacement state. This is caused
by a phenomenon called the crack closure effect. The hysteresis plot has to be interpreted by reading the
cycles from the top to the bottom at 5 [mm] displacement.

At certain moments more cycles are closer packed meaning that the CT specimen needs a mesh
refinement as the final failure of each element is clearly visible. The residual stiffness diagram unfortu-
nately does not show a clear stage I that stabilises itself, but stage III has a constant large degradation.
The cumulative stiffness degradation parameter plot clearly dictates the pattern of the structural relative
stiffness degradation. As the cumulative stiffness degradation parameter increases, the residual relative
structural stiffness decreases.
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5.4.2. Cycle jumping

Cycle jumping is one of the two methods that will be discussed to decrease computational
time. It does so by extrapolating the damage that has been acquired during a cycle for a certain set of
consecutive cycles instead of calculating the acquired damage in those consecutive cycles. Thus if cycle
jumping is applicable, then it is a powerful tool. The same model as in section 5.4.1 of chapter 5 will be
investigated, but instead of explicitly computing a 100 cycles, only every tenth cycle will be computed.
Hence a cycle jump of dN = 10 is created. Abaqus[3] allows to include the cycle jumping in the low-
cycle fatigue tab of the direct cyclic step definition. The user could give an upper and a lower boundary
of the cycle jump size. However, Abaqus[3] automatically will take half of the upper boundary as the size
of all the cycle jumping. Hence the input values provided to obtain dN = 10 is 1 for minimum and 20 for
the maximum number of cycles to be jumped. The allowed damage extrapolation is kept at the default
value of 1 and the maximum number of cycles to be investigated is kept at a 100 cycles. Abaqus[3]
automatically makes sure that the 100 is the total number of cycles applied including the cycles through
damage extrapolation. So it is not that a thousand cycles are simulated with dN = 10, neither cycle 101
is simulated because it would not fit otherwise. In the latter case it makes a cycle jump of 9 instead.

The cycle jumping results are provided in figures C.3 and C.4. Figure C.3 provides a visualisa-
tion of the damage done to the specimen and indicates the Von Mises stresses in the specimen. Clearly
the cycle jumping results in less elements reaching the critical damage such that element deletion is ap-
plied to them. Hence the crack is less long, about a tenth of without cycle jumping. This is worrying for
the fact that the fatigue life of the prediction made is therefore dependent on the cycle jumping. Figure
C.4 gives more insight in what is happening. As only every tenth cycle is simulated as shown by the
spikes in the top left figure of figure C.4, it still represents the 100 cycles. Strangely enough, the hyster-
esis plot on the top right shows that the analysis with cycle jumping follows exactly the same pattern of
the first ten cycles of the analysis without cycle jumping. This factor of 10 is also shown in the residual
stiffness of the structure. There the formatted output of the analysis with cycle jumping exactly follows
the first ten cycles of the analysis without cycle jumping. Based on this outcome it would be stated that
cycle jumping is not implemented in a correct manner in at least the plasticity module and perhaps the
ductile damage module as well. It only stretches the time span according to the users liking. In contrast
to the first three graphs, the bottom right graph of figure C.4 shows that the cycle jumping does lead to
an extrapolation of damage. It is roughly in the order of ten as would be expected. Roughly a factor ten
seems evident as the jumping in the graph is every ten cycles. A slight underestimation was made which
is visible as the damage jumps every ten cycles. The scaled down results with factor ten is shown by the
red stripped line. This is the scaled down result of the original results represented by the red continuous
line. In other words, that would be calculated by simulating ten cycles without extrapolation of damage.
So Abaqus[3] does take into account cycle jumping in terms of damage extrapolation, thus the most
likely is that the cycle jumping is applied to the ductile damage model correctly. However, it is not seen
correctly in the response of the hysteresis loops. In other words, till now the only correct cycle jump size
would be no cycle jumping for this model.
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5.4.3. Automatic incrementation

An increment is the relative amount of force increase in the analysis to obtain intermediate
results that take into account the non-linear effects. Automatic incrementation helps to speed up the
analysis without jeopardising the accuracy of the output significantly. Abaqus[3] determines by itself
how large the next increment should be to avoid cutting the corners on the most critical moments. These
critical moments are where large deviations per increment happen. In order to set the automatic in-
crementation, Abaqus[3] allows users to define a maximum amount of increments allowed per cycle, a
minimum increment size, an initial increment size and a maximum increment size. These are provided
in the incrementation tab of the direct cyclic step definition. It is advised to have a small enough initial
increment size of 0.001 such that Abaqus[3] does not directly overshoots the important steps. The max-
imum incrementation is best set at 0.1 as larger would likely miss the peak in the applied force, similar to
the difference in tabular input as is shown in figure 5.4. The minimum incrementation needs to be set at
such a point that it is small enough to allow Abaqus[3] to decrease increment size to maintain accuracy,
but not too small such that analysis takes forever. If the incrementation desired is below the allowed
incrementation, then Abaqus[3] will report back an error message and stop the analysis. Currently the
minimum incrementation is set at 0.0001. The total number of increments allowed may be any num-
ber ranging between 1

maximumincrementsize to 1
minimumincrementsize . Values smaller than this range will

lead to an incomplete analysis and Abaqus[3] will report this back with an error message. Values larger
than this range will make no difference, but it will allow Abaqus [3] to use continuously the smallest
size of increments during the entire analysis. For this analysis the maximum allowed increments is set
at 10000, thus giving Abaqus[3] the opportunity to use the smallest increment size allowed during the
entire analysis. The rest of the model is kept the same as in section 5.4.2 of chapter 5.

The automatic incrementation does have influence on the speed as the analysis was 10% faster
to finish. This manner of incrementation obtains the result provided in figures C.5 and C.6. In figure
C.5 it is clear that the incrementation has no effect on the visualisation of the model. In other words, it
had no influence on the crack propagation. In figure C.6 it is clear that automatic incrementation also
has no influence on the load history cycles, the hysteresis curve and the structural stiffness degradation.
However, the cumulative stiffness degradation parameter of all the elements does tell that the automatic
incrementation leads to different results. Whether the automatic incrementation is better than a fixed
incrementation, is not yet clear.
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5.4.4. Multiple plies with tie constraint

As the automatic incrementation and the cycle jumping proved not to be successful, these tech-
niques are left aside until further investigation is done. The next step forward is to implement multiple
plies. At first these plies are connected to the adjacent plies using tie constraints, later these plies will be
connected using VCCT interaction. The tie constraints are much easier to implement, thus less errors.
Additionally there will be less degrees of freedom which makes computations somewhat faster. To aid
computational speed, the incrementation is set to a 100 fixed increments with each 0.01 of the load.

Instead of one ply with thickness 1.125 [mm], five layers of 1.125 [mm] each are introduced
creating a total thickness of the ply at 5.625 [mm]. The layup is made from unidirectional plies which
have the order from back to front as follows: [0| − 45|90|45|0]. This layup is almost a quasi-isotropic
layup. Each ply of the layup has the same geometry as in figure 5.2, the same boundary conditions as in
figure 5.3 and the same mesh as in figure 5.3. In order to fulfil the new load introduction to make sure
that every ply has the same imposed displacement, the coupling will now be from one reference point to
the surrounding surfaces of the five plies instead of a reference point for each ply. This leads to small
out-of-plane bending for the layers that are off-centre.

The major difference is that each ply will now be tied to at least one other ply. There will
be four tie constraints in total: one between the first 0[°] layer and the −45[°] layer, the second one
between the −45 [°] and the 90 [°] layer, the third one between the 90 and the 45 [°] layer and the final
one between the 45 and the second 0 [°] layer. A tie constraint is imposed in the interaction section of
Abaqus[3]. All the degrees of freedom between two layers will be permanently fully coupled. It will act
thus as a superglue. This contact definition between the two surfaces of each layer needs to have a slave
and a master surface. Since all the ties are parallel, it makes is no difference whether the one or the other
layer is set a master or slave when using 3D elements. For convenience, the layer with the back surface
taking part in the tie constraint will be the master surface and the layer with the front surface taking part
will be the slave surface. Node to surface discretisation will be used to allow some deviation in the mesh
discrepancies.

The results of the maximum load in the final cycle that is investigated (cycle 100) are given
in figure C.7 per ply. Clearly at first sight all five plies are less damaged than an individual ply under
the same displacement. In a moment the reason will be given why this smaller crack pattern per ply has
been developed. Also both plies (1 and 5) with the same material orientation show the similar response
in stress and crack pattern, slight differences are caused by the material orientation of the adjacent ply.
Figure C.8 shows the results of the five plies as one structure working together in four plots. The five
plies together are stronger than five individual plies, because not all plies take the same load. So the load
is less at certain points in one ply, but also the loads redistribute the neighbouring plies once the element
fails. The weakness for one ply is the strength of the other. As the plies are now mainly loaded in the
direction they act best, the resultant strength is larger than the summation of the individual plies as is
shown in the top right plot of figure C.8. This effect is what would be expected of composites and what
makes composites more advantageous than other materials.

What needs to be noted is that the crack formation is perpendicular to the material orientation.
That means the crack rather propagates through the fibres instead of through the weaker matrix material.
It is also observable in the single ply simulations shown in figure C.1. This is based on how the material
model is defined. The stiffness of the material has been defined using orthotropic behaviour with higher
E1, which means that the stiffness is higher parallel to the material orientation. As the material has a
higher stiffness in the longitudinal direction, the stresses will be higher in that direction as well. This
results in reaching the ultimate Von Mises stress mainly by the longitudinal normal stress. Since the
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Table 5.5: Input table containing the parametric values used in the compact tension model for unidirectional and
quasi-isotropic material parameters.

Unidirectional Quasi-isotropic
E1 [MPa] 12285 12285
E2 [MPa] 3000 12285
E3 [MPa] 3000 3071
ν12 [-] 0.35 0.35
ν13 [-] 0.30 0.30
ν23 [-] 0.30 0.30
G12 [MPa] 2000 4550
G13 [MPa] 2000 4725
G23 [MPa] 1000 4725

material model does not make a distinction again between the different strengths in different directions,
it will be the longitudinal normal direction that will fail first, despite being the strongest direction. This
is a similar explanation to what happens in a single ply. At first this effect is not so clear as the first
two elements just around the crack tip have to fail independently from the material orientation before a
crack pattern occurs. This is due to the induced stress concentration by the cut-out in the CT specimen
forcing the main principal stress to be vertical. As soon as the first element has failed, the next elements
around the failed element have increased stresses as the crack tip is now closer to these elements. Now
these multiple elements are present at the crack tip, thus the crack is free to move in any direction. As
the elements located at the crack tip in the direction perpendicular to the material orientation attract the
highest stresses due to the orientation of highest stiffness crossing the crack tip perpendicular, those
elements will fail next. In other words the crack tip is diverted to those elements as they are supporting
the crack tip most and remember there is no distinction yet in the orientation of the strengths. Thus the
crack propagates in that direction.

Although the unidirectional material shows an incorrect crack path, the final material uses
quasi-isotropic material. In other words, the first and second normal direction share the same stiffness
and strength. As there is no more distinction between strength and stiffness in-plane, this problem is no
longer a problem in predicting the crack path and fatigue life. The same analysis has been repeated as
for the earlier described multiple ply with its results in figures C.7 and C.8, but with new elastic stiffness
properties that are described in table 5.5. All other parameters are kept equal. For the quasi-isotropic
parameters E1 and ν12 are kept equal to that of the material testing. Since it is quasi-isotropic E2 = E1

and ν13 = ν23. ν12 is set to a value of 0.3 just as before. This means that for laminates the other material
properties are defined using equations 5.2 up to and including 5.4. The output of this analysis is given in
figures C.9 and C.10. The observant reader will notice that the mesh has been updated to be completely
symmetrical now. Mesh size is still kept to 2 [mm] in each direction.

G23 =
E2

2(1 + ν23)
=

12285

2(1 + 0.3)
= 4725[MPa] (5.2)

G13 =
E1

2(1 + ν13)
=

12285

2(1 + 0.3)
= 4725[MPa] (5.3)

G12 =
E1

2(1 + ν12)
=

12285

2(1 + 0.35)
= 4550[MPa] (5.4)
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The first and most obvious result to see was that all the plies show the same stress and cracking
now they are quasi-isotropic. For that reason only one ply is shown for multiple cycles instead of multiple
plies of the last cycle. This is to obtain an insight in the crack propagation speed. The crack pattern looks
similar to what is expected in reality and from the input in the model. In other words, with quasi-isotropic
stiffness the problem of different strengths in different material orientations is insignificant. For proper
modelling, it is still better to implement it when out-of-plane effects come to play. The crack propagation
speed slows down as the amount of cycles progress, this is because the structure becomes more flexible
due to less material present. Therefore under displacement controlled analysis the crack slows down
instead of speeding up. This is also observed in the stiffness degradation parameter reaching an upper
limit. This limit is much higher for quasi-isotropic plies as more elements are involved in the damage as
at the start there is no clear crack path, but rather a hole.

The hole is partly caused by the quasi-isotropic stiffness resulting in no precise weakest dir-
ection immediately. That would be improved by implementing different strengths in different material
directions. The quasi-isotropic material is also much more flexible after the first 20 cycles than five uni-
directional plies as is observed in the first three plots of figure C.10, despite the higher overall stiffness
input. This is because much more damage happens faster at the start due that in-distinctive crack pattern.
The initial stiffness during the first load cycle is much higher than that of the unidirectional model as
is shown in the top right plot of figure C.10. This is expected, but the rapid decrease leading to more
flexible response than unidirectional plies is not, especially considering the fact that the layup of the
unidirectional plies is almost quasi-isotropic itself.

The second reason why the hole is present becomes clear when the analysis for figures C.9
and C.10 are compared with that of figures C.11 and C.12. These last two figures will be discussed in
depth during the mesh refinement study. In the analysis for figure C.9 the first half cycle has not been
simulated separately by a static step. In the analysis for figures C.11 and C.12 this has been performed.
There are no more differences between these analyses. Hence the inclusion of the static analysis must
be causing this. A possible explanation for this is that the fatigue analysis performs two iterations per
increment while the static analysis performs at least three equilibrium iterations per increment according
to both status files. The number of iterations during the fatigue analysis was limited to two. Therefore
Abaqus[3] has been forced to take larger steps to obtain enough equilibrium. These larger steps result in
a stiffer response. Therefore a larger area has been activated which in its turn results in the hole as more
elements were already close to their limit. This indicates that the solution of C.9 is not yet converged
enough during the first half cycle.
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5.5. Improvements for the interply modelling

5.5.1. Replacing tie constraints with VCCT interactions

The final step would be to upgrade the model with the VCCT interactions instead of tie con-
straints. The geometry, layup, boundary conditions and mesh of the second model in section 5.4.4 of
chapter 5 are used. The tie constraints from the TIE MS2 model are deleted and the VCCT interactions
replace them to create the VCCT MS2 0053 model. The properties of the VCCT interaction are defined
according to the values advised in table 4.3. That implements that a slightly different formulation is re-
quired for the VCCT interactions for the static load step for the first half cycle and the VCCT interactions
for the direct cyclic load step as continuation of the fatigue analysis. For the static load step the inter-
action module of Abaqus[3] will help to correctly define the interactions. For the direct cyclic step the
input is given in terms of data lines. For each interaction line 1 and line 2 BK of table 3.1 must be used in
an added block as last part of the direct cyclic step definition in the keywords input. With the parameters
defined in table 4.3 these will become the lines given in table 5.6. The VCCT interaction also requires
a set of bonded nodes to be defined which act as an initial boundary condition. The unbonded nodes act
as a precrack, the bonded nodes are showing virgin connection. These bonded nodes are highlighted in
figure 5.5. Each VCCT interaction will have the same bonded node set. The output of the analysis is
given in figures C.14 and C.15.

Table 5.6: Template for the input data line to provide a VCCT interface for the fatigue analysis of the five ply CT.

Line 1 *Debond, slave="Front_ply_< n >", master="Back_ply_< n− 1 >", debonding force=STEP, frequency=1

Line 2 BK
*FRACTURE CRITERION, TYPE=fatigue, MIXED MODE=BK, TOLERANCE=<tolerance>
„0.005,3.0,0.001,0.9,7,
7,1,20

Again all the plies show equal cracking behaviour, but the crack is different compared to using
tie constraints for interaction as is shown in figure C.14. With tie interaction the stress severity around the
crack tip is slightly lower (280 [MPa]) than with VCCT interaction (290 [MPa]), but the area of increased
stress levels continues more to the supports as visualised in figure C.9. Hence the VCCT interaction
works more as a concentration of stress. This is caused by the fact that tie constraints do not have a
bonded node set with a precrack defined. Hence the interaction always has perfect bonding. The VCCT
interaction has initial cracking defined by a bonded node set. This defines already a precrack with the
crack tip between the layers. The crack is for the same reason much more directed in one direction from
the start as the precrack already defines the weaker direction in the quasi-isotropic material. Recognise
that the crack is wider with the VCCT interaction, therefore more symmetrical than with tie constraints
which will be improved upon mesh refinement. It does result in a larger and intenser stress intensity
front, which is counter intuitive as larger peak stresses are expected for cracks with smaller radii as is
described for the ellipse in equation 2.11. Another point of difference is the increased number of cycles
needed to propagate the crack. This is partially caused by the VCCT interaction defined with the Paris
law[9] which is apparently defined so optimistic that it slows down crack growth. In other words, where
the crack propagation speed was limited by the breaking of the elements, it is now limited by the breaking
of the interface.

Figure C.15 shows that the VCCT and tie interaction models give similar response, but after
a couple of cycles the VCCT MS2 0053 model outperforms the TIE MS2 model in terms of number
of cycles for a certain amount of damage and residual stiffness. The top left plot of figure C.15 shows
that the VCCT MS2 0053 model degrades its force response much slower. That results in a much more
elastic response in the hysteresis plot on the top right of figure C.15, thus less energy has been required
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Figure 5.5: The bonded nodes between two plies as a definition of precracking of the VCCT interaction. The red highlighted
nodes are bonded meaning that the other nodes are not bonded. These not bonded nodes are located around each hole where
the boundary conditions are applied and at the centre of the round crack tip to create a micro crack present at the crack tip.



116

Table 5.7: An overview table with the differences in input for each simulation to investigate the relation with the Paris law[9].
In the last column the figure that correspond to the output of the simulation is given.

Simulation c3 c4 Mesh size [mm] Figures corresponding to output
VCCT MS2 11 (benchmark) 1 1 2 C.17, C.18 and C.19
VCCT MS2 101 10 1 2 C.20, C.21 and C.22
VCCT MS2 011 0.1 1 2 C.23, C.24 and C.25
VCCT MS2 103 10 3 2 C.26, C.27 and C.28

to be dissipated in the elements. The lower energy dissipation results in less stiffness degradation, thus
much more cycles till failure. That is also observed in the bottom right plot of figure C.15 where it takes
many more cycles to increase the relative stiffness degradation parameter while the mesh remains the
same. This is the result of two reasons: the reason described above where a crack propagation is slowed
down by the interaction failure and the second reason being that the interaction also dissipates energy,
degrades in stiffness and takes damage which is not taken into account in these plots.

5.5.2. VCCT parameteric influence

For further investigation of the VCCT with respect to the relation with the Paris law[9], some
additional simulations have been performed. These additional simulations use the geometry, the bound-
ary conditions, the mesh, the bonded nodes sets and the material properties that are used to generate the
results of the VCCT MS2 0053 model. The results of these simulations are provided in figures C.17 up
to and including C.28. Table 5.7 provides an overview of the simulations that are performed with their
input and corresponding figures for the output.

The benchmark simulation VCCT MS2 11 has a slightly larger and a slightly more stubby
stress concentration area in front of the crack tip shown in figure C.17 compared to the simulation of the
tie constraint in figures C.11 and C.12. That results in more material being activated. This is caused by
the VCCT interaction being less rigid than a tie constraint. A tie constraint is nothing more than defining
two nodes on different parts acting as one. No energy could be dissipated if that is case. The VCCT
interaction is able to release the nodes if enough energy is absorbed. If more energy is dissipated by the
interface, then less energy needs to be dissipated by the material. Therefore a slightly lower maximum
peak stress is observed. Thus it takes longer for the crack to propagate through the material. Hence it
increases the fatigue life.

The maximum stress observed in figure C.17 is almost 290 [MPa]. This level is in coherence
with the desired stress level of the static coupon testing. Since the use of a parametric formulation of
the plasticity model implies that the ultimate stress is determined by the fracture energy of the ductile
damage model, it shows that the used fracture energy of 25 [N/mm] is a realistic value in terms of order
of magnitude. A peak stress of 290 [MPa] implies that there is a stress concentration factor of about six
during the first cycle according to the definitionKt provided in equation 5.5. This is an average value for
compact tension specimen. In other words, the values for the stress intensity factor that are obtained from
the ISO-norm 15850[4] could be used to make an initial estimation of σy,0 + Q∞. σy,0 is determined
with ISO-norm 527[45], thus that also estimates Q∞.

Kt =
σpeak
σnom

=
σpeak
Fmax
A0

=
290
17000

5.625∗(90−29)
= 5.9 (5.5)
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The stress level of the maximum stress is not directly at the crack tip in the a layer, but rather
an element in front of it. The element in-between is being degraded due to the ductile damage model.
Therefore it is less able to resist stresses and will eventually break down which propagates the crack.
Even more interesting to note is that the bondline has been observed at the border with the highest
stresses. That means that the maximum stress and the VCCT failure happens at roughly the same time.

The crack propagation rate in figure C.17 looks as if it is logarithmically decreasing as the
number of elements broken per frame is relatively constant while the frames are with a log base of 2.
This is what would be expected for a displacement controlled fatigue analysis. It is decreasing since the
structure gets more flexible if more elements are broken. It is logarithmically decreasing as the amount
of elements that will break will reduce each step.

The hysteresis plot of figure C.18 shows that the boundary conditions have been correctly
applied to the VCCT MS2 11 simulation. It is clear in both the load history plot as the hysteresis plot
that the forces get less. From figure C.17 is known that the maximum stress will not get less. Hence
the stresses will concentrate towards the crack tip as the crack propagates. The load history plot shows
this happens in a logarithmic regression. The hysteresis plot shows that a significant amount of energy is
dissipated each cycle.

The residual stiffness plot and the stiffness degradation parameter plot show that the ductile
damage model starts to have effect on the structure at about 20 [cycles]. That is also the moment when
the first element fails. In the residual stiffness plot this is observed as the material has a drop in stiffness.
A second drop in the residual stiffness indicates that the second element fails soon after. This transition
from the first stage to the third stage is also observed in the stiffness degradation plot. At 20 [cycles] the
stiffness degradation parameter starts to increase significantly. That happens progressively to about 100
[cycles]. The reason for this phenomenon will be explained by comparing the other three simulations to
the benchmark simulation VCCT MS2 11.

In figure C.19 an investigation is made if there is a Paris law[9] relationship between the crack
propagation rate and the equivalent fracture energy. Each row represents a different interface. Interface
1 is the interface between the 0 [°] layer and the −45 [°] layer. The second interface is between the
−45 [°] layer and the 90 [°] layer. Sequentially the third interface between the 90 [°] layer and the
45 [°] layer and finally the fourth interface is between the 45 [°] layer and the second 0 [°] layer. The
final row is not related to one interface, but to all interfaces as it contains the sum of the energies of all
interfaces. This order will be kept for further investigations. Clearly the total is mostly affected by the
fourth interface. In the first column the sum of the equivalent energy release rates observed in all the
nodes in a specific interface has been plotted with black dots for the different cycles. This has been done
on a double logarithmic scale. A representative regression line has been estimated by hand. A straight
line on this logarithmic scale means that a exponential relation is present between the data points. An
exponential relation has the standard form of aN b. The green line represents the overall behaviour of
the data well, but with a large scatter. The last two plots clearly indicate a plateau starting at about 100
cycles. Also the crack propagation has been plotted on a double logarithmic scale. The data is extracted
by looking per layer when the next element has cracked. This has only been done for the most critical
row of elements. In other words, if the crack was two elements thick initially, then only the row that
propagates furthest has been accounted for. This data is plotted with blue dots in the plots of the second
column of figure C.19 with double logarithmic axes. These plots are identical as the elements broke in all
layers simultaneously due to the quasi-isotropic stiffness properties. It confirms the hypothesis based on
the crack observed in figure C.17 that the propagation rate is logarithmic over cycles. Again a regression
line is estimated for the data. This time the red regression represents the crack propagation rate over the
number of cycles in an exponential relation.
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Based on these regression lines a new set of data where the number of cycles that have passed
for each observation is kept equal for both regression. This is done for 100, 101, 102,103,104 and 105

cycles. This allows to compare the regression line of the equivalent energy release rates with that of the
crack propagation speed as not every calculated increment leads to failure of an element. The obtained
values for the equivalent energy release rate (EERR) and the crack propagation rate based on the regres-
sion lines are plotted in the third column for each interface with blue dots on a double logarithmic scale.
To no surprise these dots are on one line as both regression lines are exponential. The regression line
through these six dots is calculated as the new values for c3 and c4 are related to that of the previous
regression lines. The equations for finding these constants are given in equations 5.6 and 5.7. Being
able to obtaining this regression line shows there is a Paris law relation[9] obtainable between the energy
release rate and the crack propagation speed if a large filter is used. However, the values for these regres-
sion lines are not equal to that of the input values of the interface which were c3 = 1 and c4 = 1 for all
interfaces.

c4,new =
c4,da/dN

c4,EERR
(5.6)

c3,dadN =
c3,dadN

(c3,EERR)c4,dadN1
(5.7)

Changing the value c3 to 10 changes the crack pattern as is performed in the VCCT MS2 101
model. Figure C.20 shows that the crack width starts at 4 [mm] (2 elements) and becomes 2 [mm] (1
element) wide at around 1500 cycles. Note that the figure at 1000 cycles is actually the figure of 600
cycles. The analysis automatically made the cycle jump from 600 cycles to 1500 cycles. Since the frame
of 600 is closer to 1000 cycles than 1500, the frame of 600 cycles is shown. The smaller crack width
decreases the area of peak stress thus the area is sharper around the crack tip. The decrease in area is
caused by a weaker VCCT interaction. Increasing c3 leads to the weaker interaction as the effect of
the equivalent energy release rate (Geq) on the crack propagation rate is proportional according to the
Paris law[9]. A decrease in area means less material is activated to dissipate the energy of the fatigue
load cycle. Thus the crack is focused which causes the crack propagation speed to increase for the rest
of the analysis. Eventually it will stabilise itself again to a new propagation rate, but that has not been
simulated.

The weaker VCCT interaction of the VCCT MS2 101 is also observed in figure C.40. At about
800 cycles an acceleration of degradation is observed. This is due to the crack becoming narrower, but
there is a difference between the number of cracks at the start of this process compared to the point at
which the narrowing results in less elements being broken in width. However, more energy is dissipated
during the narrowing resulting in more energy being dissipated as is observed in hysteresis plot of figure
C.40. This results in an acceleration of the crack propagation rate which starts at about 700 cycles. The
acceleration is also observed in the residual stiffness and the residual stiffness degradation plot of figure
C.40. Based on these two plots it is observed that now less distance is present between the crack tip and
the maximum stress as the stiffness degradation parameter progresses much faster than the degradation
of the residual stiffness. This is also observed at the crack tip in figure C.20. Stage III still starts at the
same amount of cycles as the benchmark simulation.

The opposite effect should be observed if c3 is decreases from 1 to 0.1. Now the crack should
progress slower according to the Paris law[9] in the VCCT MS2 011 model. That is exactly what is
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observed in figures C.23 and C.24. The stronger VCCT slows down the crack propagation rate in stage
III. Thus the VCCT is governing over the ductile damage model causing a delayed response in residual
stiffness degradation. Only a minor difference is observed for stage I. Thus the crack acceleration in the
VCCT MS2 101 model is due to the VCCT no longer being governing for the crack propagation rate.

A similar response of deceleration is observed by increasing c4 as is shown in figure C.26 and
C.21 for the VCCT MS2 13 model. At first this is counter intuitive as increasing the value c4 from 1 to
3 would increase the propagation rate as the power is increased. However, the equivalent energy release
rates are lower than 1. In that case the higher powers make the outcome of the function lower, thus
slower crack propagation. Again the VCCT is governing in this case. To come back at the plateau of 100
cycles during the simulation of VCCT MS2 11, this is now explained by the VCCT interface becoming
governing over the ductile damage model. Now the ductile damage model moves in the same pace as the
VCCT model.

It was already mentioned that both c3 and c4 have influence on the crack propagation rate.
Since increasing c4 decreases the crack propagation rate, it must be that the Geq < 1. In figure C.21 is
observed that the degradation of VCCT MS2 103 is slowed down from 300 cycles onwards compared
to VCCT MS2 011. So from that point Geq < 1 holds. In the first 300 cycles the Geq has to be large
enough such that the influence of a ten times larger c3 compensates the power three (c4 = 3). That means
that the Geq values in VCCT MS2 103 must be in the order of 0.1. This order of magnitude of the Geq
is also observed in figure C.19, C.22, C.25 and C.28. That shows there is a relation according to the
Paris law[9] defined for the VCCT between the input and the output. That means the crack propagation
is VCCT dominated. However, there is no Paris relation[9] found with the input parameters.

In short, compared to the TIE MS2 model in figure C.9 the crack propagation rate in the VCCT
models is lower, even with the narrowing. This is due to the rigidity of the tie constraint. The increased
rigidity also increases the number of elements in front of the crack tip that are loaded with the peak stress.
Add on top of that, that there is no material as interface for a tie constraint. Thus no energy could be
absorbed and there is no interaction that could lag behind. Therefore the material itself has to dissipate
all the energy. This leads to a faster degradation in the ply.

5.5.3. Isolation of the VCCT effect

Not much investigation has yet been performed into the VCCT of the model. Therefore it is
difficult to grasp the idea what VCCT does to the model. So extra simulations have been performed
on the CT specimen model with the plasticity module and the ductile damage module excluded. This
resulted in the VCCT isolated MS2 11 U5.0 model with: an element size of 2 [mm], c3 = 1, c4 = 1 and
Umax = 5 [mm].

The most obvious difference in results of the VCCT isolated MS2 11 U5.0 model versus the
results of the VCCT MS2 11 model is the lack of in-plane cracking, because there is no damage module
in the elements present that deletes the elements. For that reason it is more interesting to look at the
bondstatus (BDSTAT) of the interfaces. In figure C.32 and C.33 the bondstatus between the layer in
90 [°] direction versus the 45 [°] direction has visualised. The red area indicates that nodes are bonded
while the blue area indicates the nodes that have been released. The precrack that has been made is
clearly visible in figure C.32. Since there is no weakest direction anymore present in the material due to
the quasi-isotropic stiffness, the crack first expands vertically till it has become a circular pattern with a
cut-out due to the absence of the material. Hence the delaminated area will form an arc around the cut-out
in the CT specimen. Once it has become an arc, the crack propagates radially (equal crack propagation in
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all directions) as the influence of the stress concentration around the crack tip no longer has a significant
influence anymore to cause a preference in crack propagation. This slows down the crack propagation
drastically as the crack front, the borderline between the blue and red area, has become so large that
much of the material is activated to dissipate the energy from the external load.

What has to be stated is that the maximum stress in the VCCT isolated MS2 11 U5.0 model
is σult > 1000 [MPa], although it is only visualised for VCCT isolated MS2 11 U2.5 in figure C.29.
This value of peak stress is absurdly high. This high value is caused by the plasticity module being
defined with parameters and by the absence of a ductile damage module. Generally there would be a
limit in place due to the end of the stress-strain definition for the plasticity module. If the stress-strain
relation is entered using a tabular input, then that would be true. However, the stress-strain relation is
provided with the exponential function given in equation 4.2. Therefore the plasticity module is defined
continuously and indefinitely for positive strains. Thus it will never reach an end-value despite σult
reaching σy,0 +Q∞ closer for higher plastic strains. The absence of the ductile damage module removes
the second limit given to σult to reach zero stress at εf with a enclosed plastic surface area with a size of
Gf . These two options combined allows to reach high peak stresses at the crack tip. Therefore caution
has to taken if only the VCCT module is used.

The lack of degradation is also observed in figure C.37. The absence of the plasticity module
and the ductile damage module resulted in only a little force degradation for the same applied displace-
ment. That resulted in the hysteresis plot in only a small enclosed area, which means not much energy has
been dissipated in the structure. In other words, the load is applied almost entirely in the elastic regime of
the structure. For that reason only a little stiffness degradation is observed. Hence the load degradation
has to come from the plasticity module or the ductile damage module. From the one element models it is
known that the hardening of the material leads to an increase in the residual stiffness degradation. Thus
lack the stiffness degradation must come from the absence of the ductile damage module.

Another observation has to be made from figure C.37. There are no negative forces present
in the model. That excludes the possibility of the VCCT causing negative forces in VCCT MS2 11.
Additionally, the one element model showed already negative forces present in the element. In the
one element model the element would degrade quickly as soon as the ductile damage model becomes
governing. This is not the case in figure 4.11. Thus plasticity module is suspected to cause the negative
forces. From a physical point of view this is also understandable. The plasticity module is actually
designed to describe the non-linear behaviour of a metal. A metal does deform plasticly. This plastic
deformation during the tensioning of the specimen causes permanent deformation in one direction. After
releasing the forces, the element will undo its elastic deformation, but not its plastic deformation. But
before that point is reached the original crack has already been closed due to the plastic deformation.
This premature closing of the crack causes a phenomenon called "crack overclosure". This overclosure
effect will be amplified by requiring the displacements in the pins to become zero. In metals it is perfectly
fine as that phenomenon is present in reality, but in composites it is a misrepresentation as composites
would crack or crush instead of deform plasticly. Thus the VCCT MS2 11 model has to be taken with
caution regarding the use of the plasticity module to describe a damage mechanism.

To continue on the radial expansion observed in figures C.32 and C.33, the sum of the effective
equivalent energy release rates (EFENRRTR) per interface has been plotted in figure C.38. The EFENR-
RTR of the different interfaces of VCCT isolated MS2 11 are in the same order of magnitude as that of
VCCT MS2 11. That also indicates that the Paris law[9] of the combined trendlines have the same order
of magnitude. For that reason it is concluded that the model is governed by the delamination mechanism.
That will come to no surprise as the two other mechanisms are excluded. In other words, the slow down
of the crack propagation is also reflected in the EFENRRTR, thus there is still a Paris law[9] present in
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Table 5.8: An overview table with the differences in input for each simulation to investigate the mesh refinement. In the last
column the figure that correspond to the output of the simulation is given.

Simulation Interaction Mesh size [mm] Figures corresponding to output
VCCT MS2 11 (benchmark) VCCT 2 C.17, C.16, C.18 and C.19
VCCT MS1 11 VCCT 1 C.39, C.40 and C.41
VCCT MS05 11 VCCT 0.5 C.42, C.43 and C.44
TIE MS2 Tie 2 C.11, C.12 and C.13
TIE MS1 Tie 1 C.45, C.46 and C.47
TIE MS05 Tie 0.5 C.48 and C.49

the model.

These figures also show that the EFENRRTR bends of to constant values just over 1000
[cycles]. Each interface will have ten constant values present. These constants are related to the in-
crements that are exported in the output of the analysis. It has to be mentioned that Abaqus[3] was
assigned to only show the results for every ten increments to reduce the file size of the output. This was
required to prevent the workstation from crashing due to extreme file sizes. These values are constant
over the cycles and proportional with the load applied in the increment. Thus EFENRRTR is load de-
pendent even if no nodes are released. That could either mean that the mesh is not refined enough to
release a node in every cycle that has been calculated or EFENRRTR includes more than only the energy
that has been released due to the release of a node. No definite answer has been investigated on this issue.

5.6. Mesh refinement study

The goal of the mesh refinement study is to check if a correct mesh size is chosen by observing
the convergence. Also if there are parameters that are size dependent, then it will be recognised in these
analyses. A new set of analyses has been performed that will be compared to the benchmark analysis
VCCT MS2 11. Table 5.8 provides an overview of the differences in the analyses. All other aspects such
as the geometry, the mesh, the boundary conditions and the material properties are equal to that of the
benchmark VCCT MS2 11 model.

The mesh refinement for the tie and the VCCT analyses resulted in a better defined area where
the peak stresses are present. For the VCCT MS1 11 analysis with 1 [mm] nominal element size this
resulted in a larger area during the first cycle than the VCCT MS2 11 analysis with 2 [mm] nominal
element size as is visible upon comparing figure C.39 with figure C.16. On the other hand, for the TIE
MS1 11 analysis with 1 [mm] nominal element size the area remains roughly equal during the first cycle
compared to the TIE MS2 11 analysis with 2 [mm] element size. This is observed by comparing figures
C.11 and C.12 with figures C.45 and C.46. These figures also show that with the element size of 2
[mm] it is less clear which elements are under influence of the plasticity model and which elements are
under influence of the ductile damage model. Here one element is present between the crack tip and
the maximum stress leading to a degradation of maximum stress to zero stress in one element. With the
1 [mm] size of the elements this is distinguished better as over the distance of 4 elements the material
degrades from the maximum stress to zero stress in the ductile damage model.

Despite the increase in peak stress area in the VCCT MS1 11 analysis, the crack length does
not alter that much. The opposite is true for the tie constraints. Upon decreasing the element size from 2
[mm] to 1 [mm], the crack propagates less far while the intial peak stress area has the same size. This is
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caused by the decrease in area in the sequential cycles of TIE MS2 while the area for TIE MS1 remains
equal for longer. For the VCCT MS2 11 and the VCCT MS1 11 analyses the areas of peak stress are
equal in size from cycle 2 onwards, only the shape is somewhat different.

Refining the mesh even further to an element size of 0.5 [mm] does not change the results
compared to a mesh with element size 1 [mm]. Both the crack length, crack shape and area of peak
stress remain equal as is observed by comparing figure C.48 with figure C.45 and figure C.42 with figure
C.39.

A note has to be given that for the VCCT MS05 11 analysis the analysis has been stopped at
4.3 [mm] of the 5 [mm] displacement during the first half cycle. The analysis has been stopped as this
mesh size resulted in extremely long computation time. For the VCCT analyses the computational time
(simulated cycles per hour) decreased with a factor of 50 each time the nominal element size decreased
by a factor 2. For the tie analyses this was less severe with only a factor 5 if the element size was
decreased by a factor 2.

Only upon comparing the forces of the VCCT MS2 11 model and the VCCT MS1 11 model in
figure C.40 it is visible that the smaller mesh size results in less degradation. This is observed in the load
history plot of figure C.40 by having larger forces for more cycles. It is not that the CT specimen has
failed at 50 [cycles], but the analysis has been stopped due to computational time. This lesser degradation
is also observed in the residual stiffness plot of figure C.40. The shape of the degradation is followed,
but with an increasing delay. That delay is also observed in the stiffness degradation parameter plot of
figure C.40. Do not underestimate that delay as the plots are given on a logarithmic time axis. In other
words, after 50 [cycles] with 1 [mm] element size the same degradation is observed as 25 [cycles] with
a 2 [mm] element size. This is a factor of two even if the crack is not double in length. This factor of
two is not directly related to the fact that the element size has been decreased by a factor of 2. That is
shown in the simulations with the tie constraints. In the load history plot of figure C.48 it is clear that
some delay is present. For an element size of 0.5 [mm] versus 1 [mm] that delay is larger than that
for an element size of 1[mm] versus 2 [mm]. The effect of the delay is also visualised in the stiffness
degradation diagram of figure C.48. The degradation observed at 50 cycles with 0.5 [mm] elements
is equal to the degradation observed at about 35 [cycles] with 1 [mm] elements and about 20 [cycles]
with 2 [mm] elements. It is expected that this delay will become less for both refinements of the mesh.
Although this is not explicitly simulated, TIE MS1 shows that it catches up with the residual stiffness
degradation of TIE MS2 at 300 [cycles] of figure C.49. This behaviour is also expected based on the
crack lengths and the crack propagation rates observed in figure C.50. The crack propagation rate plot
on the right shows a convergence in crack propagation rate for decreasing element sizes.

However, this catching up is not observed in the stiffness degradation parameter plot of figure
C.49. Here the mesh refinements lead to exponential growth of the stiffness degradation parameter
while that of the 2 [mm] elements levels off. This is related to the number of elements that are under
the influence of the ductile damage model, not necessarily the intensity of the degradation per element
alone. As already explained, the smaller elements in the tie analyses lead to maintaining the initial size
of the peak stress area for longer. Therefore more elements are involved. Since the crack size does not
change in width or length with the change in the element size, the elements that do resolve in a crack
will not have a higher degradation intensity.

In other words, mesh with element size of 2 [mm] is fine enough to predict the fatigue life.
For the VCCT analyses it will even result in an underestimation of the fatigue life which is safe to
do. However, decreasing the element size from 2 [mm] to 1 [mm] does improve the stress distribution
without compromising too much on the computational time. This does give more accurate result on the
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crack pattern of the CT specimen. Decreasing the mesh size from 1 [mm] to 0.5 [mm] does not improve
the accuracy of the results, but does lead to much longer computational time. Therefore 2 [mm] elements
size is advised for quick simulations and 1 [mm] for accurate simulation.

The energy values from the VCCT MS1 11 analysis is similar to that of the first part of the
VCCT MS2 11 analysis. This supports the idea that the mesh refinement does not lead to different
results. However, there is less scatter in the energy values upon comparing figure C.41 with figure C.19.
Thus the mesh refinement decreases the scatter due to having less outliers, therefore it is more accurate.
For that reason the trend line for the energies of the VCCT MS1 11 analysis are better estimates than that
of the VCCT MS2 11 analysis since the VCCT MS1 11 model only has the first governing mechanisms
simulated. In other words, it stops before the bend in data occurs due to entering a new stage with a
different governing mechanism.

Unfortunately there is only one point in the crack propagation plots of figure C.19. That means
that any regression line could be drawn through that point. However, it could be checked if the point itself
is on the line that it is supposed to be on. This line is based on the Paris law of the input parameters. This
is performed according to equation 5.8 for interface 4 which has the most influence. The propagation
rate is based on the fact that the first element fails after 36 cycles. The energy value is based on the
regression line found for that interface as it resembles the data point quite accurately. Since there is a
large discrepancy in equation 5.8, there is no Paris law relation found with regard to the input parameters.

da

dN
=

1

36
6= 0.098 = 1 ∗ 0.0981 = 1 ∗ (1.2 ∗ 36−0.7)1 = c3 ∗ (1.2 ∗ t−0.7)c4 (5.8)

Figures C.51 up to and including C.55 investigate if there is any Paris law relation observable
between stress intensity factor and the crack propagation speed. The stress intensity factor is calculated
according to equation 5.9 where it is based on the stress field of the simulations, the definition of the
stress intensity factor in equation 2.15 and the stress concentration factor in equation 2.10. It is assumed
that the FEM automatically takes into account all the geometric effect (Kt and β) in representing the
peak stresses. The peak stresses are about constant at the ultimate stress σult of the material. Therefore
it is assumed that the peak stress of the resultant cross-section will always equal the ultimate stress
σpeak,res = σult = 290 [MPa]. The resultant cross-section is the thickness of the cross-section (t =
5 ∗ 1.125 [mm]) multiplied with residual length (lres = 90 − a). Remember that the crack length a is
the length of the initial precrack plus the crack added due to the fatigue loading. Then stress intensity
factors are compared to the crack propagation rate in the cycle that the crack propagates (the next element
breaks).

K = βKtσmax,nom
√
πa = σpeak,res

√
πa = σult

√
πa (5.9)

Based on these results a Paris law is observed with a negative material parameter of c4 in
figures C.51, C.53 and C.55. This is opposite to what should be observed.
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Table 5.9: An overview table with the differences in input for each simulation to investigate the differences in load level. In
the last column the figure that correspond to the output of the simulation is given.

Simulation Modules included
Load level:
displacement [mm]

Figures corresponding to
output

VCCT MS2 11 (benchmark)
Plasticity, VCCT,
Ductile damage

5.0 C.17, C.16, C.18 and C.19

VCCT MS2 11 U2.5
Plasticity, VCCT,
Ductile damage

2.5 C.56, C.57, C.58 and C.59

VCCT MS2 11 U7.5
Plasticity, VCCT,
Ductile damage

7.5 C.60, C.61, C.62 and C.63

VCCT isolated MS2 11 U2.5 VCCT 2.5 C.29, C.30 and C.31
VCCT isolated MS2 11 U5.0 VCCT 5.0 C.32, C.33, C.34 and C.35
VCCT isolated MS2 11 U7.5 VCCT 7.5 C.36, C.37 and C.38

5.7. Influence of different load levels

Since the material is supposed to be applied in design, it is important to know what different
load level does to the material. Therefore it is common practice to formulate S,N-curves of the material,
even if it is mainly about the crack propagation as is explained in section 2.3.2 of chapter 2. In order to
create these theoretical S,N-curves of the material, the model should be applied at different load levels.
It has been chosen to investigate the different load levels based on the different maximum displacements
applied on the benchmark model (the VCCT MS2 11 model). It has to be stated that different levels
of applied displacement U are applied, not different levels of stress S. Therefore it will be called U,N-
curves from now on instead of S,N-curves to emphasise this difference. The analysis that have been
performed with the differences and output figures are summarised in table 5.9.

Figures C.56 and C.57 of the VCCT MS2 11 U2.5 model show a decrease in the material
being activated to respond plasticly compared to figures C.17 and C.16 of the VCCT MS2 11 model.
Not only in longitudinal direction of the crack formation, but also in transverse direction. Especially the
transverse direction indicate it requires less material to resist the forces. For that reason the peak stress
area is merely bulb in front of the crack tip of about 6 [mm] in diameter (3 elements). In contrast to the
reduces load, the increased load of the VCCT MS2 11 U7.5 model shows that an increase in load results
in a larger peak stress area as is shown in figures C.60 and C.61. Thus the load level dictates how many
elements are hardening due to the plasticity model.

Also the more elements that are loaded in the plastic regime due to a higher load, the more
energy that is dissipated as is shown in the hysteresis plot of figure C.62. Larger enclosed areas show that
more energy is dissipated each cycle. That implies a faster degradation as more elements are reaching
σult earlier, thus reaching εf earlier. This faster degradation is also observable as the applied forces
decrease faster. The faster an element reaches εf , the faster the crack propagates. Thus the load level
dictates how fast the crack propagates. The faster the crack propagates, the shorter the fatigue life. What
has to be noted is that the VCCT MS2 11 U7.5 model is able to support two cracks. Although it is not
fully understood why this happens, currently the best explanation is that the amount of energy that is
dissipated within one cycle is enough to propagate two cracks at once. The peak stress area in front of
each crack tip is much smaller. It is as if these areas are joint to one during one crack propagating. In
short, a higher load level results in a faster crack propagation, therefore a shorter fatigue life. This is
conform the intuition and the formulation of S,N-curves.
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Furthermore, a larger applied load also results in a higher maximum force initially as is shown
in figure C.62. This is observed in the first half cycle where the structural response for all three load
levels the same for the first 2.5 [mm] and for VCCT MS2 11 U5.0 and VCCT MS2 11 U7.5 also for
the next 2.5 [mm]. This is not so strange as the starting conditions for the first half cycle is identical for
the three models. Thus that means it are three identical static analyses, only the 7.5 [mm] displacement
will allow to monitor the structure for longer. What is more interesting to observe is that the ultimate
force applicable to the structure during a static analysis will be at about 17 [kN] as the force decreases
during the first half cycle after U = 5.7 [mm]. Also next load cycle this maximum force is exceeded
between 7.0 [mm] and 7.5 [mm] displacement in the top pin. It now reached an overall maximum force
of 20 [kN]. Although this is not expected to happen for composites in reality, it is still explainable for
the model. This is again due to the plasticity model. The hardening of certain elements allow the second
cycle to reach higher stress levels as even more elements are now able to go beyond the initial yield stress
σy,0. In other words, the plasticity model has to be taken with caution.

In figures C.59 and C.63 there is not much change in the regression of the EFENRRTR ob-
served. The only difference that is observed is that the higher load level also induces more outliers. Thus
the results are relatively less accurate. That means that higher load levels require smaller mesh sizes at
the end of analysis. Contrary, smaller load levels require smaller mesh sizes at the start of the analysis to
allow a more accurate result in the first cycles.

Upon comparing the intraply crack length over the cycles, figure C.64 reveals that the crack
propagation rates are converging, but the crack lengths themselves are diverging. This indicates that
from a certain moment onward the cracks will propagates roughly at the same pace. Thus after applying
a certain amount of cycles the load size influence becomes less important and the crack length itself
becomes more important to determine the crack propagation rate. This is conform the theory of the Paris
law.

However, figure C.65 reveals that the crack propagation slows down to much for the increase in
K. Moreover, it should not slow down, it should speed up. Although a slow down in crack propagation
rate would be expected since it is a displacement controlled analysis instead of a force controlled analysis.
The increase in crack length buffs K so much that overall the crack should still accelerate. This is in
contrast to the Paris law.

A load size effect has also been performed for the isolated VCCT models. For the VCCT MS2
11 U2.5 model the same effects are observed as for the VCCT MS2 11 U5.0 with only two differences.
First of all, a difference is observed in how much reaction force is observed. To no surprise the reaction
forces are smaller for the smaller displacement. They are about half of the VCCT MS2 11 U5.0 as is
shown in figure C.34. This is not so strange since the applied displacement is half of the original. This
reduction in load caused a reduction in crack propagation rate. Thus a smaller crack is observed. This is
reflected upon comparing figure C.29 with figures C.32 and C.33.

The VCCT MS2 11 U7.5 does not show much results in figures C.36 and C.38. Abaqus[3] was
unable to find a converged solution during the first half cycle within a reasonable amount of time (2 days
of simulations). For that reason Abaqus[3] has been interrupted and the simulation is considered com-
putationally too heavy. From figure C.37 some indication is concluded: applying a larger displacement
would also result in a larger reaction force.
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5.8. Hypotheses review chapter 5

5.8.1. Proofs to eleven hypotheses listed in section 5.2 of chapter 5

Circumstantial proof of hypothesis 10: If the direct cyclic analysis is applied on a one
element model with the plasticity model, then no plasticity will be extrapolated during the cycle
jumping. This hypothesis is tested in section 5.4.2 of chapter 5. Figure C.4 shows that the output
of the model with cycle jumping actually follows the first part of the model without cycle jumping by
Abaqus[3]. The first part of the model without cycle jumping is dominated by the plasticity model,
therefore it could be concluded that the plasticity is not extrapolated during a cycle jump. Is this a
problem? Perhaps it is not a problem when cycle jumping is applied after the transition point between
stage I and III on a structural level.

Proof of hypothesis 11: If the direct cyclic analysis is applied on a compact tension spe-
cimen with the ductile damage included, which is loaded with a displacement or force causing the
stress in an element to be larger than the ultimate stress, then it transfers its burden of load to its
surrounding elements in order to find equilibrium. As the proof of contradiction was already stated,
the fact that the compact tension specimen does not fail in one cycle after the first element has failed,
proves the hypothesis.

Circumstantial proof of hypothesis 13: Using the plasticity model for the inter fibre frac-
ture will result in an overclosure of the crack due to the plastic deformation which is not present
in reality. The overclosure of the crack is observable by the fact that the triple mechanism compact
tension models of chapter 5 show negative forces at the end of the first several cycles. These negative
forces are the result of the plastic deformation caused during the tensile loading. In order to bring the
pin back to zero displacement it requires a negative force to have enough compression at the crack tip to
deform plasticly again. This deformation is called the overclosure. The isolated VCCT compact tension
specimen models show that the overclosure is not caused by the VCCT as there are no more negative
forces present.

Circumstantial proof of hypothesis 21: If cycle jumping is enabled for the compact ten-
sion specimen with a ductile damage model and VCCT model included and the load leads to a local
stress higher than the ultimate stress, then the damage obtained during cycle n− x will be extra-
polated x times to obtain cycle n. The VCCT MS2 11 model shows that Abaqus[3] still performs cycle
jumping, even if it was explicitly assigned not to do so. The cycles that were jumped were the cycles
without a change in nodes being released or elements that reached final degradation. That means that
the plasticity is the only part that was changing. This is not extrapolated. However, figure C.18 shows
that the damage done is still extrapolated. This is clearly visible between cycle 40 and 80. The SDEG
increases with a straight line indicating that there is a damage difference between the end of cycle 40 and
the start of cycle 80. As such the damage is still extrapolated, but do notice that this is not performed
linearly.

Circumstantial proof of hypothesis 22: If the element size is refined from 2 [mm] to 1
[mm] in a model that has either VCCT or tie interactions, the fatigue life will not change more
than a few percent due to the mesh refinement. As is observed in the mesh refinement study in section
5.6 of chapter 5, not much change in results is observed in the long run. Only temporary differences
are observed that could be related to the accuracy depending on the element size that determines if the
element would have failed in cycle x or cycle x + i with i a small natural number. It is even noticed in
figure C.47 that a catching up in structural stiffness degradation is present after some local deviations.
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Circumstantial proof of hypothesis 23: If the element size is refined from 2 [mm] to 1
[mm] in a model that has either VCCT or tie interactions, the transition from stage I to stage III
will not change more than a few cycles due to the mesh refinement. Figures C.40 and C.49 show only
a slight delay in transition between stage I of about 3 cycles.

Proof of hypothesis 24: Loading the compact tension specimen with a fatigue load in the
direct cyclic analysis will result in a crack propagating in the weakest direction of the ply. Section
5.4.1 of chapter 5 explained that the direction with the highest stiffness will determine the direction of
the principal stresses. Since there is no distinction made between the strengths in different directions, the
direction with the highest stiffness will fail first. This is shown in figure C.1 where the crack propagates
perpendicularly to the first direction of the unidirectional material.

Proof of hypothesis 25: Changing the material properties has the same effect on the fa-
tigue life of a compact tension specimen as on the one element model with a displacement controlled
analysis. Increasing σy,0 increases the fatigue life as less plastic response will occur. Decreasing Ei de-
creases the amount of force needed to allow the displacement, thus more fatigue life. Increasing Q∞
increases the amount of stress allowed till failure, thus higher resistance against load. Increasing b would
increase the plastic loads faster, thus reaches ultimate stress earlier. Increasing εf will allow more strain
till failure, thus more elements are still involved in the analysis that could take load. IncreasingGf would
decrease the ultimate stress with parametric values for the plasticity model, thus an element will reach
ultimate stress faster. Although this is the opposite compared to the one element model with tabular
input, the decrease would also be present in the one element model if the one element model is based
on the parametric formulation. This is explained as followed: with the tabular input a change in Gf
requires a corresponding change in εf to avoid errors, while with the parametric formulation, to a certain
extend, a change in Gf will automatically change σult as well. The model is still strain rate and pressure
independent, thus η and ε̇ will not have any effect on the model.

Proof of hypothesis 26: Increasing a critical energy release rate (GI,c, GII,c or GIII,c)
will increase the fatigue life. It has not been simulated. However, as the slow down of the VCCT
interaction improves fatigue life as will be shown for hypotheses 27 and 28, increasing the energy release
rates will also increase the fatigue life.

Proof of hypothesis 27: Increasing c3 will decrease the fatigue life. This has been investig-
ated in section 5.5.2 of chapter 5. Figure C.24 shows that increasing c3 with a factor of ten will decrease
the fatigue life with about a factor ten as well. This has to be taken with caution, because in order for this
to happen, the VCCT interaction must be governing. There is no restriction on the applied range, nor a
dependency on the range of the equivalent energy release rate Geq due to the relation with the Paris law.
In other words, this will hold for all Geq and c3 as long as the VCCT of a certain ply stays governing.

Proof of hypothesis 28: Increasing c4 will increase the fatigue life if Geq < 1 for each
node. This has been investigated in section 5.5.2 of chapter 5. Figure C.27 shows that increasing c4 with
a factor of three will increase the fatigue life about the same as reducing the c3 value with a factor 100.
That would mean that the equivalent energy release rates Geq must be in the order of magnitude of 0.1
to allow this equivalent fatigue life to happen. This order of magnitude for Geq has been observed in the
simulations of VCCT MS2 11 and VCCT MS2 103 as is shown in figures C.19 and C.28 respectively.
Note that the increase in fatigue life is due to Geq < 1. If Geq > 1, then a decrease in fatigue life is
expected for an increasing c4 based on the Paris law. This has to be taken with caution, because in order
for this to happen, the VCCT interaction of a certain ply must stay governing.
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5.9. Conclusion chapter 5

Starting from the one element with ductile isotropic material properties and having no interac-
tions, the model has been upgraded successfully on multiple fronts. Changes were made in the material
properties to become brittle material properties, having orthotropic stiffness properties and the geometry
from one element to that of the compact tension specimen to include multiple plies. These changes were
successful. Additionally, the upgrade to include VCCT interaction shows promising results. However,
two hurdles remain to overcome: the calculation speed and the crack pattern. Despite the quasi-isotropic
stiffness properties of the layer do not require different strength of the material in different material dir-
ections to obtain a crack path in the weakest direction of the layer, the different strengths have to be
included to obtain more accurate results. Moreover, this is certainly required to obtain the correct crack
path if composites are simulated that do not have quasi-isotropic material properties in a single layer. A
solution would be to implement the Hashin damage model[10] which is already available in Abaqus[3]
for the general static analysis, but not for the direct cyclic analysis. Thus a user-defined material1 would
be the solution to that problem. The increase in calculation speed in particular with regard to cycle jump-
ing is a more difficult problem. This requires extensive programming of a user-defined subroutine or the
software developers of Abaqus[3] need to implement a version in Abaqus[3] that is capable of handling
extrapolation of plasticity.

As already discussed in chapter 3, the second stage of residual relative stiffness will not be
present in the compact tension specimen model as it is in-plane bending instead of out-of-plane bending.
Even if the VCCT is included for interply failure, it is merely to enhance the prediction of the first and
third stage. In other words, stage II will be overlapping with stages I and III where the delamination is
only present to allow extra crack path opportunities that involve a combination of interply and intraply
cracking. This provides opportunities to identify crack paths which have less resistance than individual
intraply paths. That will be more interesting if two cracks start at different locations or if non-quasi-
isotropic layers are modelled with the VCCT interaction included. Since more elements are involved,
stage I and III will no longer be separated by the definition of the SDEG parameter of the structure
being equal to zero or larger than zero. It is perfectly possible that the first element undergoes damage
degradation while the next element is just in its plastic phase and further down the future crack the
material is still in its virgin elastic state. Therefore a slightly new definition is needed that is more closely
related to the overall definition between crack initiation and crack propagation phase on a structural level.
Stage I of the stiffness degradation of the structure, caused by the inter fibre failure mechanism, shall be
considered to have ended as soon as the first element has fully degraded. Once the first element has fully
degraded, stage III of the stiffness degradation of the structure has started which is dominated by the
fibre failure mechanism. Now stage I is related to the crack initiation phase and stage III to the crack
propagation phase. One downside of this definition is the fact that it will be element size dependent.

The crack propagation rate da
dN is in coherence with a Paris law curve based on the energy

release rates of the VCCT interaction. The fatigue life of the CT specimen could be controlled by the
strength of the VCCT interaction if the VCCT mechanism is governing. However, the tie constraints will
always result in a faster crack propagation as the tie constraints lead to a smaller but more concentrated
peak stress area. For the Paris law based on the calculated stress intensity factor a negative material
parameter is observed. That should not happen, therefore it is questionable if the crack propagation is
modelled correctly.

1A user-defined material is implemented by creating an external input file for the material parameters that contain a standard
formulation in Abaqus[3] listed in section 3.4 of chapter 3. These options were not investigated as these are outside the scope
of this thesis
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The CT specimen models allows to extract the force and the displacement over time in the pins
(holes) and the stiffness degradation parameter of the integration points. Since the elements, that are
used, only have one integration point, it means that the stiffness degradation parameter of the element
will be extracted. These three outputs are required to perform a fatigue assessment of the structure. The
forces and displacement could be combined to obtain hysteresis plots which give insight in the amount
of energy dissipated during a cycle and how the cycles progress towards failure. This progression is then
plotted as a residual relative stiffness curve. This curve allows to identify the different stages happening
in the composite structure and determine after how many cycles stage I is left and stage III starts. The
residual strength could be obtained by stopping the fatigue analysis at a certain number of cycles and
perform a static test to obtain the remaining strength. The stiffness degradation parameter shows how
much overall damage has been brought to the structure which is the cumulative over all elements (even
the elements which are not close to the crack). S,N-curves could be obtained by running the model for
different load levels. The constant life diagrams (CLD) could be obtained if the model is not only run for
different load levels, but also with different load ratios. It is always important to check the stages of the
stiffness degradation, the evolution of the speed of the increasing stiffness degradation parameter and the
crack pattern itself. These are simple checks to see whether a simulation resulted in a plausible result or
not.

The parameters that influence the fatigue life include the ones that were already discussed in
the one element model: Gf , εf , εult, σult σy,0 and E2. Add to that list E1 as well as for plies with
different material orientation, as the highest stiffness leads to faster failure. Additionally, the fatigue
life of the structure is largely influenced by the interaction between two plies. Hence the critical energy
values GI,c, GII,c and GIII,c with their exponents for the mixed law behaviour are important. On top
of that the Paris law definition is completed with c3 and c4 having major influence as well. Whether the
earlier parameters that define the intraply properties are more dominant in determining the fatigue life
or the VCCT parameters, depends on which mechanism is the slowest. If the delamination is lagging
behind, then the VCCT parameters will be dominant on the number of cycles till failure, if the intraply
is lagging behind it will be the intraply parameters in order of being summed up.

A mesh refinement study has been performed to check the influence of smaller elements. De-
creasing the element size from 2 [mm] to 1 [mm] does have a positive effect on the accuracy. This is
observed in the crack path and the equivalent energy release rates. However, it takes the analysis 5 times
as long to simulate the cycles. This is still useful if more accurate results are desired. On the other hand,
reducing the mesh size from 1 [mm] to 0.5 [mm] does not increase the accuracy of the results signi-
ficantly. Therefore it is a waste of time, even if the 10 times longer calculation time is not considered.
Therefore the solution is considered to have converged sufficiently at a mesh size of 1 [mm].

The VCCT has been isolated for some models. The VCCT isolated MS2 11 U5.0 model
revealed that the degradation in stiffness is caused by the ductile damage module. Only a minor degrad-
ation in residual stiffness was observed at the start of the VCCT isolated MS2 11 U5.0 model and it had
already been eliminated in chapter 4 that a hardening formulation for the plasticity module would lead to
a degradation in residual stiffness. The absence of the ductile damage model also lead to the removal of
the maximum Von Mises stress allowed in the material. Now the observed maximum stress at the crack
tip was at least four times as large as the previously imposed limit of σult. It was also observed that the
VCCT isolated MS2 11 models had a radial expansion of the interply crack showing there is no weak
direction present in the material. This would slow down the crack propagation growth for increasing
the number of cycles, but not for increasing crack length a. On top of that, the absence of the plasticity
model meant there are no negative loads present in the material. Thus the plasticity model simulates a
crack overclosure effect that is not present in composites. Therefore the plasticity model has to be taken
with caution.
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Although no S,N-curves, or better to state U,N-curves, were constructed, the change in load
does reveal there would be a change in fatigue life. A higher load resulted in a faster crack propagation
due to more material being activated plastically to dissipate the energy. Since the fatigue life is defined
by the amount of cycles are required to let the first crack reach completely through the cross-section,
it implies that a faster observed crack propagation rate would imminently lead to a shorter fatigue life
unless a change in failure mechanism occurs. This is conform the expectations of an U,N-curve.



Chapter 6: Discussion

Since there was no literature present that proves whether the plasticity model is compatible
with the direct cyclic analysis or not, the plasticity model was tested first on a single element. The one
element models of chapter 4 show that the implemented plasticity model is in line with the hypothesis
of plasticity. This has been proven by comparing the one element model with a self-made program in
Python[58] that calculates results for one element based on the plasticity theory. This plasticity model
is used to complement the ductile damage model that is already in use to describe the onset of stage
III. This improvement was required to allow one element mimic an entire compact tension specimen
(CT specimen) that shows stiffness degradation in stage I due to isotropic softening component of the
plasticity model. This is in line with the hypothesis that a compact tension specimen is an in-plane
bending test where two stages are observed. Some important assumptions were made upon using the one
element model to describe an entire full compact tension specimen.

1. The effects of the delamination (DEL) mechanism need to be included partly in the description of
the inter fibre failure (IFF) and partly in the fibre failure (FF) since one element represents multiple
plies.

2. The CT specimen is assumed to have free movement for side-ways contraction.

3. The CT specimen is assumed to be constrained at the top and bottom instead of two internal holes.

4. Stage III starts at increasing SDEG instead of the failure of the first element.

5. Final failure is reached if the element has failed in stage III due to the damage model instead of a
crack running through the element.

Upgrading to a full compact tension specimen model with multiple plies as is performed with the two
models VCCT MS2 11 and TIE MS2, did not disprove the hypothesis of a CT specimen having two
stages.

However, in these two models it was no longer required to have isotropic softening to mimic
stiffness degradation. Even the isotropic hardening parameters of table 6.1 based on the static coupon
tests [43] still resulted in structural stiffness degradation. Thus there is a difference in concept between
modelling every behaviour with one element and modelling behaviour with multiple elements. This
indicates that for the general behaviour only the ultimate stress is important to model the first stage.
Another option would be to model the the inter fibre failure (IFF) with a damage model. If the plasticity
model is substituted by a damage model, then it is required to have a damage initiation stress σini to
define the onset of inter fibre failure (IFF) at element level with a crack initiation strain εini. If the
damage model is used to define the onset of fibre failure (FF) at element level, then the ultimate stress
σult, with a corresponding strain εult, has to be larger than σini as is shown in the static coupon test
results [43]. This could be achieved either by having two damage models or in a simpler manner with
one damage model that has a bi-linear degradation. For the latter the situation is illustrated in figure
3.7. For this a tabular input is required and the linear damage evolution is no longer sufficient. Notice
that stage 0 is used to describe the elastic response which is small since composites crack early due
to their brittleness. This option has not been investigated, thus there is no clue if Abaqus[3] allows
this input. Anyway, it will not be a possibility if the evolution is based on the fracture energy since a
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tabular input is not possible on the fracture energy basis. Therefore there is no readily available damage
model in Abaqus[3] that explicitly describes an increase in stress after damage initiation. One could still
investigate the effect of having an ultimate stress equal or slightly lower than the initiation stress on a
CT specimen model with multiple elements. Perhaps the effect of σult < σini is not as detrimental as it
is thought to be. In literature only the Lemaitre model[44] is found to allow an increase of stress in an
element on bases of the effective stress model. This model is not included in one of the readily available
models in Abaqus[3]. All these options of a readily available damage models with fracture energies
would lead to an undesired material response definition. For that reason the plasticity model is preferred
to describe the IFF.

The plasticity model has a second advantage, it will not show cracking due to IFF. Thus only
the ductile damage model will result in cracking. So it is always clear due to the crack visualisation
when an element has failed completely. For both groups of models (the one element models and the
CT specimen models) it is assumed that only three damage mechanisms are present (IFF, delamination
and FF), but only the ductile damage (FF) leads to intraply cracking. IFF does lead to small cracks in
reality and actually is a damage mechanism, but in all the models these cracks are considered as too small
to visualise. Therefore only the stiffness degradation effect of these cracks is included. Consequently,
a critical view has to be kept on using the plasticity model for the IFF with respect to overclosure as
proven with the VCCT isolated MS2 11 U5.0 model. For now it is the most convenient solution with the
limitation of using readily available techniques in Abaqus[3]. Preferably IFF is modelled with a damage
model as well. Perhaps a solution could be to define the stiffness degradation due to damage based on
displacements instead of on energy as already mentioned.

For now a choice has been made to use the ductile damage model for FF as is explained in
section 3.7.2 of chapter 3, but the XFEM would have been a valid choice for a CT specimen. In CT
specimen the crack initiation location is known. Moreover, the crack propagation path is to a certain
extend already known as well. The general direction of the crack is based on the fibre orientation. A
damage model has to be included to limit the observed σult to realistic values as is demonstrated by the
VCCT isolated MS2 11 U5.0 model.

For the CT specimen the transition from stage I to stage III is much more nuanced. This is
more nuanced since one element could be already fully degraded while the next element in the crack
pattern could still have had only an elastic response. For that reason it has been chosen to define the end
of stage I and the start of stage III in the CT specimen at the moment that the first element has failed.
This is at the same moment when the degradation of the residual stiffness levels off. This is detected by
observing the shape of the residual stiffness plots of the VCCT MS2 11 model and the TIE MS2 model.
It is in resemblance with the results of the discontinuous-continuous specimen loaded at 69% of ultimate
tensile load [2]. The value of the decrease in stiffness on the other hand is 3 and 5 times larger for the
VCCT MS2 11 model and the TIE MS2 model respectively.

The VCCT MS2 11 model and the TIE MS2 model discussed in sections 5.5.2 and 5.6 of
chapter 5 respectively show promising results. The crack path is in horizontal direction as is expected for
a material with quasi-isotropic stiffness and one failure strength. The quasi-isotropic stiffness results in
that no extra stresses are attracted in any direction and the strength is equal in all directions even in tension
as well as compression. Therefore it has no preferred direction to crack based on the material model as
is mentioned already in section 5.4.4 of chapter 5. The compact tension specimen (CT specimen) does
have a preferred direction due to its geometry. The CT specimen has a stress intensity at the crack tip
with the highest stresses a bit in front of the crack tip. Therefore the element in front of the crack tip is
degraded more, thus the crack moves straight ahead (horizontally). During the CT specimen testing the
crack has to move horizontally within a certain deviation as is required by ISO-norm 15850[4]. Thus it
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Table 6.1: Input table containing the parametric values used in the compact tension model for unidirectional and
quasi-isotropic elastic stiffness parameters.

Unidirectional Quasi-isotropic
E1 [MPa] 12285 12285
E2 [MPa] 3000 12285
E3 [MPa] 3000 3071
ν12 [-] 0.35 0.35
ν13 [-] 0.30 0.30
ν23 [-] 0.30 0.30
G12 [MPa] 2000 4550
G13 [MPa] 2000 4725
G23 [MPa] 1000 4725

is in coherence with reality.

The orthotropic stiffness properties are included in the models VCCT MS2 11 and TIE MS2.
The values that are used for these two models are summarised in table 6.1. The longitudinal normal
stiffness E1 and Poisson’s ratio ν12 are based on an earlier performed static tensile coupon test [43] in
accordance with ISO-norm 527-1 [45]. Based on the fact that these test specimen have a quasi-isotropic
layup, the other stiffness parameters are worked out. Only the value of either one of the Poisson’s ratios
in the other direction had to be assumed to complete this. With these quasi-isotropic stiffness properties
a good representation of the stress distribution and stress intensity is obtained.

The unidirectional (UD) stiffness properties are also summarised in table 6.1, but these were
used in earlier models discussed in section 5.3 of chapter 5 and the first model of section 5.4.4 of chapter
5. From these models it is observed that the UD stiffness properties lead to false crack patterns. The crack
propagates through the material perpendicular to the first direction of the material with the first direction
of the material being in fibre direction as was shown in figures C.1 and C.7. This is contradictory to
the expectations as the crack is expected along the fibre, therefore parallel to the first material direction.
This is caused by modelling one ultimate stress for all failure directions of the composite. Hence no
strength parallel or perpendicular to the fibre is distinguished. There is even no compressive strength
distinguished from the tensile strength. The UD model suffers from the lack of orthotropic strength
definition, but the quasi-isotropic model does not since the quasi-isotropic material has equal in-plane
stiffness and strength. Additionally, the material is mainly loaded in tension thus defining a weaker
compression strength is of lesser importance.

The VCCT MS2 11 model and the TIE MS2 model include brittle material properties for the
ductile damage model. The material properties for the ductile damage model are summarised in table
6.2. The fracture strain εf is based on the assumption that the material was about to fail during the
static tensile coupon test [43]. This leads to a brittle failure which is a well-known property of glass
fibre composites. The stress triaxiality η and strain rate ε̇ do not have influence on all the models as the
problem is not stress nor strain dependent as was discussed in section 4.6.2 of chapter 4. Although it
was successful in obtaining results with the brittle material input, the ductile damage model is originally
designed for ductile materials such as metals. Metals are isotropic, therefore the ductile damage model
acts as if the composite is isotropic in strength and stiffness. This has been shown earlier in models and
raises concern as the strength and the stiffness are actually orthotropic in composites. Especially the
compression strength and the tensile strength are different for a single direction. For the quasi-isotropic
models VCCT MS2 11 and TIE MS2 this is not that big of a deal.
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Table 6.2: The input table containing the parametric values used in the CT model for the brittle material properties of the
ductile damage module.

εfracture [-] 0.0052
η [-] 0.33333
ε̇ [-] 1
Gf [N/mm] 25

Table 6.3: The input table containing the parametric values used in the CT model for the brittle material properties of the
plasticity module.

σy,0[MPa] 39.53
Q∞[MPa] 250
b[-] 300

Similarly both models include brittle material properties for the plasticity model. These values
are summarised in table 6.3. It is rather contradicting to have a plasticity model for brittle materials as
brittle materials are defined not to have a plastic response; unlike metals. For all the models discussed in
chapter 5 the definition of plastic response is adapted. Now the plastic response is defined as the response
for which the initial stiffness no longer applies. In other words, the plasticity model is only used to model
the stiffness degradation up to the point where damage starts. The values for the plasticity model in the
VCCT MS2 11 and the TIE MS2 model are based on the stress-strain relation of the static tensile coupon
test results[43]. The initial yield strength σy,0 is based graphically on the pen line of the initial stiffness
E1 leaving stress-strain relation as is shown in figure 3.6. The values for the stress increase Q∞ and
conversion speed b are based on calibration according to the conversion explained in section 4.5.1 of
chapter 4. This calibration is shown in figure 4.10. It is not required for the plasticity model to have
reached conversion. Lastly the fracture energy Gf of the ductile damage model determines the precise
point on which the maximum stress is reached.

There are two final models: the VCCT MS2 11 model and the TIE MS2 model. The VCCT
MS2 11 model has the virtual crack closure technique (VCCT) defined as interface between two plies
while the TIE MS2 uses tie constraint for the interfaces resulting in some differences between the two
final models. The input values of the VCCT criterion are summarised in table 6.4 for the VCCT MS2
11 model. Some typical characteristics are observed for the VCCT model such as the peak stress area in
front of the crack tip and the crack propagation rate, but the residual stiffness remained about equal. The
peak stress area is slightly larger and more stubby, therefore more elements are involved in the plasticity
model as is for the ductile damage model. Also the crack propagation rate is slower. In section 5.5.2 of
chapter 5 these phenomena are explained by the fact that the VCCT interaction is able to absorb energy
by releasing nodes. On the other hand, the tie constraint cannot release nodes, therefore more energy
must be absorbed by the elements themselves. This results in more damage in the elements, thus a faster
crack propagation. By absorbing more energy in the interaction, the elements ahead of the crack tip have
a slightly lower peak stress, thus could endure more cycles. However, a slightly lower maximum peak
implies a larger area of peak stress is needed. For that reason more elements are involved that undergo
stiffness degradation. Hence the residual stiffness diagram shows no significant difference.

Table 6.4: Template for the input data line to provide a VCCT interface for the fatigue analysis of the five ply CT.

Line 1 *Debond, slave="Front_ply_< n >", master="Back_ply_< n− 1 >", debonding force=STEP, frequency=1

Line 2 BK
*FRACTURE CRITERION, TYPE=fatigue, MIXED MODE=BK, TOLERANCE=<tolerance>
„1,1,0.001,0.9,7,
7,1,20
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There is an exponential relation between the crack propagating and the observed critical energy
release rates in the VCCT MS2 11 model. The exponential relation shows that some type of Paris law
exists between the crack propagation and the equivalent energy release rate. However, the exponential
relation is not equal to that based on the input values of the Paris law. A further investigation of the
SDEG might show resemblance with the Paris law input values.

A mesh refinement study performed in section 5.6 of chapter 5 has demonstrated that decreas-
ing the element size from 2 [mm] in the VCCT MS2 11 model to 1 [mm] in the VCCT MS2 11 does
improve the accuracy of results. There is a better defined area of peak stress in the shape of an arc instead
of a bulb in front of the crack tip. This arc allows entire elements to be in stage III between the peak
stress and the crack tip instead of one element with one edge at maximum stress and the other at zero
stress. Refining the mesh also reduces the scatter observed in figure C.40 compared to first 50 [cycles]
in figure C.18. However, this improved accuracy is at the cost of computational speed. The VCCT MS1
11 model took five times as long as the VCCT MS2 11 model to complete the first 50 [cycles]. The
converging of the solution leads to an absence of further significant improvements upon decreasing the
element size from 1 [mm] to 0.5 [mm]. Therefore it does not justify to increase the computational time
again by a factor of 10. For that reason the mesh is best kept at 1 [mm] for accurate calculations and 2
[mm] if time is limited.

Also a load differentiation effect has been performed in section 5.7 of chapter 5. The change
in load does reveal there would be a change in fatigue life. A higher load resulted in a faster crack
propagation due to more material being activated plastically to dissipate the energy. Since the fatigue
life is defined by the amount of cycles are required to let the first crack reach completely through the
cross-section, it implies that a faster observed crack propagation rate would imminently lead to a shorter
fatigue life unless a change in failure mechanism occurs. This is conform the expectations of an U,N-
curve. However, this valid as long as no extra cracks are added during the analysis. In other words,
as long as the cracks do not split. For the VCCT MS2 11 U7.5 a crack split was possible at the start,
therefore it did not have much influence on the total crack propagation rate. But if the crack would have
split after a several thousands of cycles, then a slow down in crack propagation rate would have clearly
been observable as the energy would have to be distributed over two cracks instead of one. Generally this
results in one crack absorbing all the energy an propagates significantly faster. As this crack propagates,
then it will absorb more energy till it has arrested the other crack. Since this split is at the start, it is able
to continue both cracks equally.

Other methods to accelerate the calculation speeds have been tried with varying success. It is
still a debate whether cycle jumping is possible in combination with the plasticity model. Abaqus[3] is
able to calculate with it, but both the one element model of chapter 4 and the CT single ply UD[0] dN=10
model showed that the amount of final plastic strain is dependent on the ratio of the number of cycles
jumped over the number of cycles to be simulated dN

N and simply on the number of cycles to be simulated
N as was shown in figure C.4. The VCCT criterion is well known to be compatible with cycle jumping
[24]. The ductile damage model has not specifically been tested on cycle jumping as an incorrect cycle
jumping during the plasticity model makes it no longer required on the ductile damage model.

The number of iterations that have to be used depends on the type of loading. It has been
verified on the one element model of section 4.4.2 of chapter 4 that 10 iterations are needed for the
force controlled analysis to obtain equilibrium while only 2 iterations are needed for the displacement
controlled analysis. Although the VCCT MS2 11 and TIE MS2 models have displacement controlled
analysis, the element itself undergoes certain forces based on the adjacent elements. Therefore it is
questionable if more iterations are required.
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On top of that, it is required to model the first half cycle with a static analysis. In theory this
should not be required as was proven in figure 4.4 where the static analysis is only performed to visualise
the first half cycle. However, comparing figure C.9 with figure C.12 does show a major influence on the
fatigue behaviour of the material due to a different approach in modelling the first half cycle. For that
reason it seems safer to model the first half cycle with the static analysis.

The VCCT MS2 11 model and the TIE MS2 model still holds some assumptions based on the
included and the excluded mechanisms. Although Brod et al[1] and Bartkowiak et al [2] only observed
the inter fibre failure, the delamination and the fibre failure mechanisms, other mechanisms could have
effect in a CT specimen. These mechanisms such as the braider yarn periphery mechanism and a crack
along the fibre mechanism are neglected. That means they will be included together with the other
mechanism during calibration. This results in small differences between the parameters that should be
used and what is obtained from tests. These differences could have influence when up-scaling the model
from a CT specimen to a full size joint. For that reason there is always a trade-off between the number of
mechanisms included, the number of tests required for calibration and the computational time. Including
more mechanisms in a model will require more material tests to define all the parameters, but these
models are more likely to need less calibration after up-scaling. However, including more mechanisms
in a model definitely takes more time to simulate. There are different models developed by other research
groups that are not based on the mechanisms or only describe one mechanism as a lump mechanism. If
only ductile damage models are used to describe all the mechanisms that will be considered, then only
the most governing ductile damage model will have its effect. A single mechanism is certainly a lot
easier to model. A single predefined crack along the symmetry line of the CT specimen with a VCCT
interaction would do the trick. There is one big “but” to that, you have to know the crack path in advance.
An alternative has been tried as the VCCT slicing model, but that turned out to be unattainable for the
current computers. It takes too much time to perform the analysis, even if the CT specimen is loaded only
with static loading. Having a single ductile damage model will not suffice either. The ductile damage
model is one of the two damage models compatible with fatigue and requires a definition of plasticity
in order to define the ultimate stress. Finally, one could argue to use a probabilistic model. For simple
problems this is possible based on one parameter providing the probability of success[62]. However, this
is unattainable for full size joints. Other methods are merely a variation of the S,N-curve by providing
an estimation of the scatter. These probabilistic methods need a lot of fatigue testing to obtain their
parameters with a reasonably accurate prediction of the scatter.

Even if all mechanisms are accounted for, the model is phenomenological. Even the virtual
crack closure technique (VCCT) for the delamination phase is phenomenological. Hence not the real
mechanism is modelled, but rather the mechanism is mimicked. That implies that the model will only
predict the fatigue behaviour and the fatigue life accurately for the region it has been calibrated for. A fair
degree of interpolation and nearby extrapolation will be possible. Even if a prediction would be made for
the joint in the jacket structure, first calibrations with the material test results will be required. It is also
questionable if the precise cracking behaviour will ever be correctly presented as the model is a smeared
crack model. One of the underlying assumption is that the static coupon test initially loses its stiffness due
to static IFF that would be the cause of embedment failure. It is not verified if this assumption is valid. In
spite of the model just being a phenomenological model, it still has to prove itself in predicting the fatigue
behaviour on physical applications since the real mechanisms are modelled by a dummy mechanisms.
Even then, it still has potential to obtain accurate results. This is similar to how in the medieval times
the positions of the stars were predicted based on epicycles. Although those models had the Earth as
the centre of the universe, those models provided more accurate results in predicting the position of the
planets and the stars than the early models with the Earth moving in a constellation. However, those
phenomenological models will be outdated once more knowledge and stronger computers are available.
For the moment it is the best option present with today’s widely available knowledge and resources. In



137

other words, this is the best available model with the readily available tool in Abaqus[3] to describe the
mechanisms without considering user-defined materials and subroutines.



Chapter 7: Conclusion

The master thesis is performed to investigate the applicability of a combined model that pre-
dicts the fatigue behaviour of glass fibre composites. First research was done on a one element model
with a plasticity model and a continuum damage model (CDM) included in the material properties. This
model has been improved in order to predict the behaviour of a compact tension specimen (CT speci-
men). The CT specimen consists of interconnected multiple layers which are researched with a Virtual
Crack Closure Technique (VCCT) interface model. The CT specimen model was used to investigate
certain aspects such as: stiffness degradation, fatigue life, the influence of the material parameters of all
three modules (plasticity, ductile damage and VCCT) included in the model, cycle jumping and mesh
refinement.

There are three significant failure mechanisms considered for the in-plane bending fatigue of
a compact tension specimen as explained in section 2.5 of chapter 2. The significant failure mechanisms
that were included are: the inter fibre failure, delamination and fibre failure. The inter fibre failure and
fibre failure are intraply mechanisms. The first to occur is the inter fibre failure mechanisms starting
at the crack tip that reduce the stiffness of the material, then the fibre failure mechanism occurs in the
ply that reduce the strength and stiffness progressively. Delamination occurs simultaneously with either
of the intraply mechanisms. The delamination allows to find more critical crack patterns than each ply
individually.

A triple mechanism model with a distinctive effect for each of the mechanisms has been de-
veloped with the readily available tools in Abaqus[3]. The model consists of a plasticity model to de-
scribe the inter fibre failure, a ductile damage model to describe the fibre failure and a virtual crack
closure technique (VCCT) model to describe the delamination.

The CT model with VCCT interaction discussed in paragraph 5.5.1 of chapter 5 that includes
these three mechanisms shows expected results based on the requirements set in the introduction. First
of all, it is possible to show simulate different fatigue life for different load levels. Secondly, the CT
model with VCCT interaction is capable of handling brittle materials with orthotropic stiffness. Thirdly,
it shows an expected crack pattern for quasi-isotropic material which is in the direction of the peak
stress. However, the orthotropic strength of the composite is not taken into account. This resulted in a
simulated crack pattern that is not correct for unidirectional materials. Fortunately, the cycle jumping for
the VCCT and ductile damage model is possible since both models are damage based and Abaqus[3] is
able to extrapolate damage. On the other hand, the cycle jumping is not possible for the plasticity model
since the plasticity model is based on plastic strain which could not yet be extrapolated by Abaqus[3].
This results in a cycle jumping that is questionable for the CT model with VCCT interactions. Also
the plasticity model has to be taken with caution as it will lead to the crack overclosure effect which is
present in metals, but not in composites. Therefore the CT model with VCCT interaction is promising,
but not yet qualified to predict the fatigue behaviour of composites.

There are solutions possible that are not readily available techniques in Abaqus[3]. A user-
defined material could be written adapt to the Hashin damage model for the direct cyclic analysis. That
would allow to handle the orthotropic strengths. Perhaps an anisotropic hardening formulation, which
is readily available, is sufficient enough. Also a user-defined subroutine could be written to perform
plasticity extrapolation and to allow cycle jumping in the plasticity model.

The parameters that have the most influence on the fatigue life are: the elastic stiffness, the
ultimate strength, the fracture plastic strain, the fracture energy, the energy release rates and the two
material constants for the Paris law of the interface.
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Chapter 8: Recommendations

The current CT specimen models are not yet ready to handle fatigue failure in composites. First
a couple of issues have to be solved. The most important issue to find a solution for, is to allow cycle
jumping. For the VCCT model there is a cycle jumping algorithm readily available in Abaqus[3], but
not for the plasticity model. Therefore it is not applicable for the combination of these three models. A
user-defined subroutine needs to be defined or future versions of Abaqus [3] should have it implemented.
The second opportunity is to handle the orthotropic strength, which is not dramatic for quasi-isotropic
laminates. For the static analysis the Hashin model is readily available, but it is not yet applicable for the
direct cyclic step. Therefore a user-defined material needs to be written or the anisotropic plasticity must
be investigated further.

For future research it is required to first calibrate the model with parameters determined by
material testing. Some of the parameters could be obtained by static tests such as the elastic stiffness in
the different directions. Other values have to be obtained by simple fatigue tests that determine certain
values such as the critical energy values (double cantilever beam test for GIc and end notch fracture test
for GIIc). The final parameters for the plasticity model and ductile damage model could initially be
estimated on static tests, but will require compact tension tests to calibrate them accurately as static and
fatigue input are likely to be different. There is one trick that helps to determine Q∞. As mentioned
during the sanity checks, the peak stress is determined by the sum of the yield stress and Q∞. Since the
yield stress is already known, Q∞ could be obtained from the stress concentration formula in ISO-norm
15850 [4]. In the end the idea is to predict the residual strength based on the residual stiffness. In order to
obtain the residual strength from the model, an additional static step is required which tears the compact
tension specimen apart after a certain number of cycles has been simulated. Also the S,N-curves could be
determined by switching to force controlled analysis and applying different load levels. If also different
load ratios are added, then constant life diagrams could be obtained. These will help to design the joints
easier.
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Appendix A: Python source code

The additional explanation is already given in the source code as string between """...""" which
will also be shown when using the function or after # which will not be shown when using the function.

Figure A.1: Part 1 of the Python code to predict the response of the plasticity of one element under fatigue loading.
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Figure A.2: Part 2 of the Python code to predict the response of the plasticity of one element under fatigue loading.

Figure A.3: Part 3 of the Python code to predict the response of the plasticity of one element under fatigue loading.
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Figure A.4: Part 4 of the Python code to predict the response of the plasticity of one element under fatigue loading.

Figure A.5: Part 5 of the Python code to predict the response of the plasticity of one element under fatigue loading.



Appendix B: VCCT slicing model

B.1. Introduction

The VCCT slicing model was the first model developed for determining the crack behaviour of
composites due to fatigue. One type of formulation was enough to describe the two mechanisms that had
the largest influence on the residual stiffness: delamination between the plies and matrix failure within the
plies along the unidirectional fibre (UD). These mechanisms will often be referred to as interply failure
and intraply failure following the idea to incorporate the effects of all interply mechanisms together in one
model and the effects of all intraply mechanisms in another model. The expected failure combinations
were similar to that of figure 2.27.

The basic concept of the VCCT slicing model is slicing the plies in multiple parts (not parti-
tions). Slicing allows to define not only interfaces between plies, but also in the ply parallel to the fibre.
Each interface is set to be a VCCT interface except for one as will be explained later. Each VCCT inter-
face is a weak-spot in the model allowing a crack to propagate through. This provides a predetermined
crack path as it is a discrete crack formulation. The idea is to find the crack pattern that needs the least
force, energy, displacement or cycles to failure. The more slices are present, the more freedom the model
has to crack in a certain manner. Therefore the accuracy is improved upon refinement. Theoretically the
best solution would be to have a slicing pattern that isolates all elements. Although the intraply slices
are parallel to the fibre orientation, fibre failure actually does occur. However, the idea is to predict the
behaviour until fibre failure happens as until that point the stiffness degrades, but the strength not so
much. The initial crack would then be created by the non-selected nodes in the bonded nodes sets as is
described in paragraph 4.7.2 of chapter 4 already.

B.2. One hypothesis will be answered in appendix B

Appendix B will give answer to one hypothesis. This hypothesis will be answered in section
B.7.1 of appendix B.

Hypothesis 12: If only the VCCT model is used to describe both the interply and intraply
interactions with a delamination mechanism, then the compact tension specimen model with fa-
tigue loading will become computational too heavy to execute.

B.3. Advantages of the VCCT slicing model

At first sight the VCCT slicing model seems feasible since not much trouble is expected, be-
cause the VCCT is a criterion specifically developed for the direct cyclic analysis. The advantages that
come along the concept are:

• Only one type of formulation is needed that only requires energies as input. These energies could
be obtained by elementary tests for which ISO-norms [4] are present.
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• The VCCT interface for fatigue analysis directly uses the Paris law to calculated the crack propaga-
tion. The Paris law is well known for its capabilities of predicting crack propagation under fatigue
loading condition.

• As the VCCT is a discrete formulation of the crack pattern, the results are mesh independent
making calibration along different models easier.

• Despite being difficult to find the path of least resistance by hand, the final result could be checked
by hand to see if the number of cycles expected for a certain crack propagation match up with the
hand calculations of the Paris law.

• The VCCT is compatible with the cycle jumping algorithm.

B.4. Disadvantages of the VCCT slicing model

The VCCT slicing model seems an elegant solution to the problem with full freedom. However,
there are a lot of comprimises to be made:

• The VCCT interaction is a phenomenological model in itself, hence testing is required. As the
input is directly from fatigue tests only, that means that a lot of fatigue tests are needed. Other
models such as the plasticity model and ductile damage model could first attempt to calibrate their
parameters on static tests. For the VCCT model this is only possible for the energy parameters.

• Although the two intraply mechanisms could be joined into one formulation, it is capable of pre-
dicting only one intraply failure mechanism. That means a compromise has to be made in optim-
ising predictions to stages I and II or stages II and III as the most governing of these will prevail.
There is no waiting out as an augmentation.

• The VCCT slicing model requires a lot of interactions to be defined which is a tedious and time
consuming job to do properly and consistently.

• As the VCCT requires master and slave surfaces, it is likely to tangle up multiple masters nodes
to one slave node. Sometimes it is unavoidable unless gaps are made between two interactions,
especially between two intraply interactions. These corner elements belong in that case only to
one of them leaving a gap on the other interaction. By making the gaps smaller, the error will be
minimised. Despite the small size, the increasing number of slices also increases the number of
gaps, therefore undoing the extra gained accuracy obtained by more slices.

• The VCCT model needs a large precrack in the terms of unbonded nodes in order to allow the
crack propagate without convergence problems.

• Even if the precrack is large enough, sometimes the smallest allowed increment by Abaqus (10−60)
is not even small enough to obtain convergence. And if convergence is obtained, it would still take
large amounts of computational time to complete the analysis.

• The last but not least, as VCCT is intended to model the weak-points in the model, slicing could
only be performed in unidirectional plies with the slices parallel to the fibres to model cracking
along the fibre. Slicing in perpendicular direction should make it possible to crack through the
fibres, but with large resistance. This would determine if a shortcut through the fibres is still less
strong than a longer crack path including more inter fibre failure and delamination. In unidirec-
tional layers this is fine, but in woven fabrics it would mean that strong intraply properties are
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present in both directions. In that case, delamination could only occur in combination with fibre
failure.

B.5. Input required for the VCCT slicing model

A simplified geometry of the compact tension specimen with two plies is made. This geometry
is given in figure B.1. The thickness of each ply is 1.5 [mm]. The total height is 60 [mm] and total
length of the specimen is 60 [mm]. Important to note is that each part has a partition with 0.2 [mm]
offset from each border, including in thickness direction. This partitions are to create gaps between the
different master and slave surfaces. The allowed failure lines (VCCT interaction lines) are highlighted
with orange and green in figure B.2. The ties in both plies at the second half of the horizontal centre
line are forcing the analysis to go up, go down or to split. The ties act as an infinitely strong and stiff
VCCT interaction. The loads and boundary conditions are introduced over the first 14 [mm] from the
left at the top and bottom area as an alternative for the pins in the holes. A large introduction surface is
required to avoid large bending stresses at the end of the load introduction that could cause premature
failure. Each of the boundary conditions restricts every node attached to it in horizontal in-plane and
out-of-plane translation and rotations around the two in-plane axes. That results in U1 = U3 = 0 [mm]
and R1 = R2 = 0 [rad]. R3 is kept free and U2 has a prescribed displacement of 5 [mm] for static
loading. No fatigue loading has been applied yet successfully.

The meshing is done for each part separately and by copying one part multiple times, it is made
sure that the mesh of one ply matches that of the other ply. Although Abaqus[3] is capable of handling
unmatched meshes by accepting a certain tolerance, this manner of meshing avoids unnecessary problems
in the interaction definitions. If the element is not in one of the border partitions, then the mesh size is
about 1.5 [mm] in all directions with a slight bias towards the Y-junction. In the border partitions the
elements have a length of 1 [mm] but a width and thickness of 0.1 [mm]. Despite that a mesh refinement
would increase accuracy, a regular mesh is a lot easier for Abaqus[3] to handle, thus less convergence
problems. The current mesh used is given in figure B.3.

What seems to be important upon defining the VCCT interaction properties is to keep in mind
the different element sizes due to the bias. The total energy needed to move the crack one element
forward either along the entire interply interaction or intraply should be roughly equal. This concerns
for the GI,c of the intraply with the GII,c and GIII,c of the interply. Equation B.1 helps to find out the
equivalence. Figure B.4 shows the visualisation of the mentioned areas. The GII,c and GIII,c of the
intraply could be set at values that keep the same proportion to GI,c of the intraply. Analogously GI,c of
the interply with that of GII,c and GIII,c of the interply.

GI,C,intraplyAI,intraply = GII,C,interplyAII,interply = GIII,C,interplyAIII,interply (B.1)

These values of energies have to be set in the keywords using the fracture criterion lines of
table 3.1 along with certain value describing the speed of crack propagation. Higher values for c4 > 1
means that the crack growth will be more exponential. If c4 = 1, then the crack growth rate will be
rougly constant through the entire analysis and if c4 < 1, then the crack will slow down. The parameters
used during the analysis are given in the input lines given in table B.1.

In order to finish the modelling a bonded node set has to be defined in order to get the crack
started. If no set is given, then the interface is perfectly bonded either requiring ridiculous amount of
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(a) Front view (b) Side view

(c) Top view

Figure B.1: The geometry of the compact tension specimen used for the VCCT slicing model. The measurements are in [mm].
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Figure B.2: The interaction scheme showing where ties and VCCT interactions are defined for both plies in one drawing.

Table B.1: Template for the input data line to provide a VCCT interface for the fatigue analysis.

Line 1 *Debond, slave="<name of slave surface>", master="<name of master surface>", debonding force=STEP, frequency=1

Line 2 BK Interply
*FRACTURE CRITERION, TYPE=fatigue, MIXED MODE=BK, TOLERANCE=<tolerance>
„2 ∗ 10−4,3,0.1,0.9,30,10
10,1,20

Line 2 BK Intraply
*FRACTURE CRITERION, TYPE=fatigue, MIXED MODE=BK, TOLERANCE=<tolerance>
„2 ∗ 10−4,3,0.1,0.9,30,2
2,1,20

force that will lead to broken parent material or will not fail at all. One node may result in a total different
answer, but sometimes a change in a lot of nodes are needed to push it over a certain edge. The bonded
node sets defined along the interply interface where the precrack is present is provided in figure B.5.
For the intraply interfaces along the interply interface is nothing more than extrapolating it in thickness
direction on the edge instead of ending just before it.

B.6. Output obtained from the VCCT slicing model

The most obvious output to look at is the force-displacement diagram of the CT specimen.
This diagram is provided in figure B.6. What immediately pops-out is the high peak and sudden drop at
about 0.5 [mm] of applied displacement. Moreover, the forces tend to stay flat afterwards. It looks like
as if it was a stuck zipper that zips through once the obstacle has been passed. Figures B.7 up to and
including B.12 show the Von Mises stress, the displacement magnitude, the bond status of the VCCT
interply of the left interface on the third row and the effective energy release rate of that interface for the
important increments. View these results as a comic book as an alternative to an animation. Comments
on it will be provided afterwards.
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(a) Front view (b) Side view

(c) Top view

Figure B.3: The mesh of the compact tension specimen used for the VCCT slicing model. The numbers provide how many
elements are used along a certain edge with the colour corresponding to the colour of the edge.
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Figure B.4: The surfaces that need roughly equivalent energies to fracture. These interactions are: the intraply action on the
second line between part one of row two and part one of row three of the zero degree ply is drawn in yellow. And the intraply
action on the first part on the third row with that of the zero degree ply with that of the 45 degree ply in red.
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Figure B.5: Bonded node set with precrack in the interply interface of the left part on the third row.
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Figure B.6: The force displacement diagram of the VCCT slicing model for static loading.

(a) The Von Mises stress (b) The magnitude displacement

(c) The bond status of the interply of the
left part on the third row. Red means fully
bonded and blue means debonded.

(d) The effective energy release rate of the interply of the left part on the third row

Figure B.7: The output of frame 16 at Uapplied = 0.272 [mm] for the static loading of the VCCT slicing model.
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(a) The Von Mises stress (b) The magnitude displacement

(c) The bond status of the interply of the
left part on the third row. Red means fully
bonded and blue means debonded.

(d) The effective energy release rate of the interply of the left part on the third row

Figure B.8: The output of frame 113 at Uapplied = 0.455 [mm] for the static loading of the VCCT slicing model.
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(a) The Von Mises stress (b) The magnitude displacement

(c) The bond status of the interply of the
left part on the third row. Red means fully
bonded and blue means debonded.

(d) The effective energy release rate of the interply of the left part on the third row

Figure B.9: The output of frame 114 at Uapplied = 0.461 [mm] for the static loading of the VCCT slicing model.
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(a) The Von Mises stress (b) The magnitude displacement

(c) The bond status of the interply of the
left part on the third row. Red means fully
bonded and blue means debonded.

(d) Effective energy release rate of the interply of the left part on the third row

Figure B.10: The output of frame 115 at Uapplied = 0.469 [mm] for the static loading of the VCCT slicing model.
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(a) The Von Mises stress (b) The magnitude displacement

(c) The bond status of the interply of the
left part on the third row. Red means fully
bonded and blue means debonded.

(d) The effective energy release rate of the interply of the left part on the third row

Figure B.11: The output of frame 120 at Uapplied = 0.639 [mm] for the static loading of the VCCT slicing model.
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(a) The Von Mises stress (b) The magnitude displacement

(c) The bond status of the interply of the
left part on the third row. Red means fully
bonded and blue means debonded.

(d) The effective energy release rate of the interply of the left part on the third row

Figure B.12: The output of frame 128 at Uapplied = 4.66 [mm] for the static loading of the VCCT slicing model.
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The stuck zipper that suddenly unblocks and moves is actually a good description of what is
happening at U = 0.455 [mm]. First the Von Mises stresses locally increase linearly with the applied
forces. However, at a certain point the local energy release rate is high enough to start the debonding of
a bonded node. The force in the structure falls drastically due to that debonding which is also observable
in the effective energy release rate since forces and energies are related by displacements. Once one node
had started, the next node follows quickly. Now the domino effect has started by taking the next row of
nodes and the step after that multiple row of nodes as shown in the bond status. Here the unstable crack
tolerance shows its purpose. Otherwise it would have had to cut back the increment size a lot of times.
The debonding continues along the−45 [°] line until the final node where in theory an infinite rotation is
possible as the 3D stress elements do not have a rotational degree of freedom. Without a rotational degree
of freedom, there is also no rotational strength, thus free to rotate around that single node. The effective
energy release rate shows the energy released at a certain node during a time frame of the analysis. At
the crack tip (the line between the fully bonded and fully released nodes) the highest response of energy
released shows up during that frame. This is not so strange as the most energy is released upon the
breaking of the bonding. The area before the crack tip (the bonded area) shows no energy release as is
expected since the bond is able to take up all the energy without breaking. No breaking means no energy
released. Remember to look at the scales of the graphs as these may vary for the energy release rate. The
energy release rates increase until that certain point of crack propagation has been reached. The energy
release rate may decrease in a displacement controlled analysis as is shown in figure B.11d compared to
figure B.10d. This is caused by the less force required to break the bond.

B.7. Hypothesis review appendix B

B.7.1. Proof to one hypothesis listed in section B.2 of appendix B

Proof to hypothesis 12: If only the VCCT model is used in Abaqus[3] to describe both
the interply and intraply interactions with a delamination mechanism, then the compact tension
specimen model with fatigue loading will become computational too heavy to execute. This option
has been tried in appendix B. However, for the static analysis increments of 10−40 were sometimes
needed. That leads to requiring two full days of simulation on the high performance cluster (HPC) with
64 cores activated (that is a lot of computational power). An attempt has been made with a direct cyclic
analysis with larger steps that allowed less accuracy. Even then the analysis became too heavy that the
HPC gave out and resulted in an error. That means it is currently unfeasible to run such type of models,
certainly when realising that these are the simple versions of the desired VCCT slicing model.

B.8. Conclusion Appendix B

Although the VCCT slicing model is an elegant solution in terms of only using the energy
equations to describe the cracking behaviour, it is impracticable to use. It is a lot of effort to set up, it
needs a lot of testing and it requires strong computational resources. The advantage does not weight up
against these disadvantages. Therefore this solution is perhaps possible, but certainly impracticable.



Appendix C: Output of the compact tension speci-
men in chapter 5

C.1. Compact tension geometry with one ply

C.1.1. CT single ply UD [0]
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Figure C.1: A visualisation of the deformed compact tension specimen showing the distribution of Von Mises stresses at a
maximum loading of 5 [mm] vertical displacement in the top pin in cycle 56. This is the final cycle before complete failure of
the specimen.
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Figure C.2: In four plots the output is represented for the compact tension specimen that is fatigue loaded with an applied
displacement of 5 [mm] failing after 56 cycles. Counting from the left to the right and from the top to the bottom, the load
history plot is given first. This plot shows the applied force over time as resultant of a constant applied displacement amplitude
function. The second plot is the force-displacement diagram which acts as hysteresis plot of the element as structural
response. The third plot shows the stiffness of the structure relative to the response of the first cycle and the fourth plot shows
the cumulative value of the damage parameters of the individual elements that leads to stiffness degradation (0 equals no
damage and 1206 equals all elements fully damaged).
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C.2. Cycle jumping

C.2.1. CT single ply UD [0] dN = 10



167

Figure C.3: A visualisation of the deformed compact tension specimen showing the distribution of Von Mises stresses at
maximum loading of 5 [mm] vertical displacement in the top pin in cycle 100. The analysis was limited to a 100 [cycles].
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Figure C.4: In four plots the output is represented for the compact tension specimen for a fatigue load with an applied
displacement of 5 [mm] finishing computations at a 100 [cycles]. The black line shows the output for a 100 cycles without
cycle jumping which is identical to the output of figure C.2 and the red line represents a 100 cycles with cycle jumping to
every tenth cycle. Counting from the left to the right and from the top to the bottom the load history plot is given first. This
plot shows the applied force over time as resultant of a constant applied displacement amplitude function. The second plot is
the force-displacement diagram which acts as hysteresis plot of the structural response. The third plot shows the stiffness of
the structure relative to the response of the first cycle. Here is not only the stiffness degradation for with and without cycle
jumping provided, but also a scaled case of the cycle jumping. This is done with a factor of 10 which results in compliance
with the first part of the analysis without cycle jumping. The fourth figure plots the cumulative value of the damage parameters
of the individual elements that leads to stiffness degradation (0 equals no damage and 1206 equals all elements fully damaged).
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C.3. Automatic incrementation

C.3.1. CT single ply UD [0] dN = 10 auto increments
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Figure C.5: A visualisation of the deformed compact tension specimen showing the distribution of Von Mises stresses at
maximum loading of 5 [mm] vertical displacement in the top pin in cycle 100. The analysis was limited to a 100 [cycles].



171

Figure C.6: In four plots the output is represented of the fatigue analysis for the compact tension specimen with an applied
displacement of 5 [mm] finishing computations at a 100 [cycles]. The red line shows the output for a 100 cycles with cycle
jumping to every tenth cycle and a fixed incrementation of size 0.001 which is identical to the red output of figure C.4. The
blue line represents the analysis with a 100 cycles with cycle jumping to every tenth cycle and an automatic incrementation.
Counting from the left to the right and from the top to the bottom the load history plot is given first. This plot shows the
applied force over time as resultant of a constant applied displacement amplitude function. The second plot is the
force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows the
stiffness of the structure relative to the response of the first cycle. This is done with a factor of 10 which complies with the first
part of the analysis without cycle jumping. The fourth plot shows the cumulative value of the damage parameters of the
individual elements that leads to stiffness degradation (0 equals no damage and 1206 equals all elements fully damaged).
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C.4. Replacing tie constraints with VCCT interactions

C.4.1. TIE MS2 UD [0|-45|90|45|0]
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(a) Ply 1 at material orientation angle 0 [°] (b) Ply 2 at material orientation angle −45 [°]

(c) Ply 3 at material orientation angle 90 [°] (d) Ply 4 at material orientation angle 45 [°]

(e) Ply 5 at material orientation angle 0 [°]

Figure C.7: A visualisation of the deformed compact tension specimen of each individual ply. The distribution of Von Mises
stresses at maximum loading of 5 [mm] vertical displacement in the top pin in cycle 100 are displayed in colour. The analysis
was limited to a 100 [cycles].
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Figure C.8: In four plots the output of is represented of the fatigue analysis for the compact tension specimen with an applied
displacement of 5 [mm] finishing computations at a 100 [cycles]. The red line shows the output for a single ply which is
identical to the output provided in figure C.2. The black line represents the analysis of a compact tension specimen with five
plies with a layup of [0| − 45|90|45|0]. Counting from the left to the right and from the top to the bottom the load history plot
is given first. This plot shows the applied force over time as resultant of a constant applied displacement amplitude function.
The second plot is the force-displacement diagram which acts as hysteresis plot of the element as structural response. The
third plot shows the stiffness of the structure relative to the response of the first cycle. The fourth plot shows the cumulative
value of the damage parameters of the individual elements that leads to stiffness degradation. For the single ply 0 equals no
damage and 1206 equals all elements fully damaged. For the multiply layup these values are 0 and 6030 respectively.
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C.4.2. TIE MS2 QI0
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 5 (d) One of the plies at cycle 10

(e) One of the plies at cycle 20 (f) One of the plies at cycle 100

Figure C.9: Visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness and
tie interactions with its adjacent plies. As all the plies had the same reaction due to quasi-isotropic stiffness, one ply is
presented at different cycles to show crack propagation rate instead of each individual ply at final stage. The distribution of
Von Mises stresses at maximum loading of 5 [mm] vertical displacement in the top pin are displayed in colour. The analysis
was limited to a 100 [cycles].



177

Figure C.10: In the entire (relevant) output of the fatigue analysis for the compact tension specimen with five quasi-isotropic
plies with tie interaction is represented in these four figures. A displacement of 5 [mm] is applied and the computations is
truncated at a 100 [cycles]. The red line shows the output for a single ply which is identical to the output provided in figure
C.7. The black line represents the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. Counting from left to right and from top to bottom the
load history plot is given first. This figure shows the applied force over time as resultant of a constant applied displacement
amplitude. The second figure is the force-displacement diagram which acts as hysteresis plot of the element as structural
response. The third figure shows the stiffness of the structure relative to the response of the first cycle. The fourth figure shows
the cumulative value of the damage parameters of the individual elements that leads to stiffness degradation. For the multiply
layup these values are 0 and 6030 respectively as there are 1206 elements in each ply.
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C.4.3. TIE MS2
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 5 (d) One of the plies at cycle 10

(e) One of the plies at cycle 20 (f) One of the plies at cycle 30

(g) One of the plies at cycle 40 (h) One of the plies at cycle 50

Figure C.11: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and tie constraints with its adjacent plies. As all the plies had the same reaction due to quasi-isotropic stiffness, one ply is
presented at different cycles to show crack propagation rate instead of each individual ply at final stage. The distribution of
Von Mises stresses at maximum loading of 5 [mm] vertical displacement in the top pin are displayed in colour. The analysis
was limited to a 2000 [cycles]. The used mesh size is 2 [mm].
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(a) One of the plies at cycle 100 (b) One of the plies at cycle 150

(c) One of the plies at cycle 200 (d) One of the plies at cycle 250

(e) One of the plies at cycle 500 (f) One of the plies at cycle 1000

(g) One of the plies at cycle 2000

Figure C.12: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and tie constraints with its adjacent plies. As all the plies had the same reaction due to quasi-isotropic stiffness, one ply is
presented at different cycles to show crack propagation rate instead of each individual ply at final stage. The distribution of
Von Mises stresses at maximum loading of 5 [mm] vertical displacement in the top pin are displayed in colour. The analysis
was limited to a 2000 [cycles]. The used mesh size is 2 [mm].
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Figure C.13: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with tie interaction. A displacement of 5 [mm] is applied and the computations is truncated at a 50
[cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. The black line represents the output with a mesh size of
2 [mm]. Counting from the left to the right and from the top to the bottom, the load history plot is given first. This plot shows
the applied force over time as resultant of a constant applied displacement amplitude. The second plot is the
force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows the
stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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C.5. VCCT interactions

C.5.1. VCCT MS2 0053
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(a) One of the plies at cycle 500 (b) One of the plies at cycle 1000

(c) One of the plies at cycle 2000 (d) One of the plies at cycle 5000

(e) One of the plies at cycle 10000 (f) One of the plies at cycle 20000

(g) One of the plies at cycle 50000 (h) One of the plies at cycle 100000

Figure C.14: Visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and VCCT interactions with its adjacent plies. The VCCT interaction had c3 = 0.005 and c4 = 3. As all the plies had the
same reaction due to quasi-isotropic stiffness, one ply is presented at different cycles to show crack propagation rate instead of
each individual ply at final stage. The distribution of Von Mises stresses at maximum loading of 5 [mm] vertical displacement
in the top pin are displayed in colour. The analysis was limited to a 100000 [cycles].
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Figure C.15: In the entire (relevant) output of the fatigue analysis for the compact tension specimen with five quasi-isotropic
plies with VCCT interaction is represented in these four figures. A displacement of 5 [mm] is applied and the computations is
truncated at a 100 [cycles]. The red line shows the output for a single ply which is identical to the output provided in figure
C.9. The black line represents the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. Counting from left to right and from top to bottom the
load history plot is given first. This figure shows the applied force over time as resultant of a constant applied displacement
amplitude. The second figure is the force-displacement diagram which acts as hysteresis plot of the element as structural
response. The third figure shows the stiffness of the structure relative to the response of the first cycle. The fourth figure shows
the average value of the damage parameters of the individual elements that leads to stiffness degradation, hence it is already
normalised with the number of elements. Do recognise that the time axes are now on log scale instead of linear.
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C.6. VCCT parameteric influence

C.6.1. VCCT MS2 11 (benchmark)
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 5 (d) One of the plies at cycle 10

(e) One of the plies at cycle 20 (f) One of the plies at cycle 50

Figure C.16: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and VCCT interactions with its adjacent plies. The applied Paris law material constants are c3 = 1 and c4 = 1. As all the plies
had the same reaction due to quasi-isotropic stiffness, one ply is presented at different cycles to show crack propagation rate
instead of each individual ply at final stage. The distribution of Von Mises stresses at maximum loading of 5 [mm] vertical
displacement in the top pin are displayed in colour. The analysis was limited to a 5000 [cycles]. Only the first 50 cycles are
shown with mesh size 2 [mm] for comparison in the mesh refinement.
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(a) One of the plies at cycle 50 (b) One of the plies at cycle 100

(c) One of the plies at cycle 200 (d) One of the plies at cycle 500

(e) One of the plies at cycle 1000 (f) One of the plies at cycle 2000

(g) One of the plies at cycle 5000

Figure C.17: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and VCCT interactions with its adjacent plies. The applied Paris law material constants are c3 = 1 and c4 = 1. As all the plies
had the same reaction due to quasi-isotropic stiffness, one ply is presented at different cycles to show crack propagation rate
instead of each individual ply at final stage. The distribution of Von Mises stresses at maximum loading of 5 [mm] vertical
displacement in the top pin are displayed in colour. The analysis was limited to a 5000 [cycles].
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Figure C.18: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction. A displacement of 5 [mm] is applied and the computations is truncated at a 5000
[cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. The applied Paris law material constants for the black
line are c3 = 1 and c4 = 1. Counting from the left to the right and from the top to the bottom, the load history plot is given
first. This plot shows the applied force over time as resultant of a constant applied displacement amplitude. The second plot is
the force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows the
stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.19: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.18 with c3 = 1 and c4 = 1. Each row is for the next interface from the layup [0| − 45|90|45|0]
and the fifth is the summation. The first column represents the equivalent energy release rate on the interface for each cycle.
The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The third column shows the
relation between crack propagation rate and the equivalent energy release rate.
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C.6.2. VCCT MS2 101
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(a) One of the plies at cycle 100 (b) One of the plies at cycle 200

(c) One of the plies at cycle 500 (d) One of the plies at cycle 1000

(e) One of the plies at cycle 2000 (f) One of the plies at cycle 5000

Figure C.20: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and VCCT interactions with its adjacent plies. The applied Paris law material constants are c3 = 10 and c4 = 1. As all the
plies had the same reaction due to quasi-isotropic stiffness, one ply is presented at different cycles to show crack propagation
rate instead of each individual ply at final stage. The distribution of Von Mises stresses at maximum loading of 5 [mm] vertical
displacement in the top pin are displayed in colour. The analysis was limited to a 5000 [cycles].
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Figure C.21: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction. A displacement of 5 [mm] is applied and the computations is truncated at a 5000
[cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. The applied Paris law material constants for the black
line are c3 = 10 and c4 = 1. Counting from the left to the right and from the top to the bottom, the load history plot is given
first. This plot shows the applied force over time as resultant of a constant applied displacement amplitude. The second plot is
the force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows the
stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.22: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.21 with c3 = 10 and c4 = 1. Each row is for the next interface from the layup [0| − 45|90|45|0]
and the fifth is the summation. The first column represents the equivalent energy release rate on the interface for each cycle.
The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The third column shows the
relation between crack propagation rate and the equivalent energy release rate.
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C.6.3. VCCT MS2 011
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(a) One of the plies at cycle 100

(b) One of the plies at cycle 200 (c) One of the plies at cycle 500

(d) One of the plies at cycle 1000 (e) One of the plies at cycle 2000

(f) One of the plies at cycle 5000 (g) One of the plies at cycle 10000

Figure C.23: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and VCCT interactions with its adjacent plies. The applied Paris law material constants are c3 = 0.1 and c4 = 1. As all the
plies had the same reaction due to quasi-isotropic stiffness, one ply is presented at different cycles to show crack propagation
rate instead of each individual ply at final stage. The distribution of Von Mises stresses at maximum loading of 5 [mm] vertical
displacement in the top pin are displayed in colour. The analysis was limited to a 10000 [cycles].
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Figure C.24: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction. A displacement of 5 [mm] is applied and the computations is truncated at a
10000 [cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup
[0| − 45|90|45|0] for which only the first direction of the quasi-isotropic plies is mentioned. The applied Paris law material
constants for the black line are c3 = 0.1 and c4 = 1. Counting from the left to the right and from the top to the bottom, the
load history plot is given first. This plot shows the applied force over time as resultant of a constant applied displacement
amplitude. The second plot is the force-displacement diagram which acts as hysteresis plot of the element as structural
response. The third plot shows the stiffness of the structure relative to the response of the first cycle. The fourth plot shows the
average value of the damage parameters of the individual elements that leads to stiffness degradation, hence it is already
normalised with the number of elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.25: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.24 with c3 = 0.1 and c4 = 1. Each row is for the next interface from the layup [0| − 45|90|45|0]
and the fifth is the summation. The first column represents the equivalent energy release rate on the interface for each cycle.
The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The third column shows the
relation between crack propagation rate and the equivalent energy release rate.



198

C.6.4. VCCT MS2 103
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(a) One of the plies at cycle 50 (b) One of the plies at cycle 100

(c) One of the plies at cycle 200 (d) One of the plies at cycle 500

(e) One of the plies at cycle 1000 (f) One of the plies at cycle 2000

(g) One of the plies at cycle 5000 (h) One of the plies at cycle 10000

Figure C.26: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and VCCT interactions with its adjacent plies. The applied Paris law material constants are c3 = 10 and c4 = 3. As all the
plies had the same reaction due to quasi-isotropic stiffness, one ply is presented at different cycles to show crack propagation
rate instead of each individual ply at final stage. The distribution of Von Mises stresses at maximum loading of 5 [mm] vertical
displacement in the top pin are displayed in colour. The analysis was limited to a 10000 [cycles].
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Figure C.27: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction. A displacement of 5 [mm] is applied and the computations is truncated at a
10000 [cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup
[0| − 45|90|45|0] for which only the first direction of the quasi-isotropic plies is mentioned. The applied Paris law material
constants for the black line are c3 = 10 and c4 = 3. Counting from the left to the right and from the top to the bottom, the
load history plot is given first. This plot shows the applied force over time as resultant of a constant applied displacement
amplitude. The second plot is the force-displacement diagram which acts as hysteresis plot of the element as structural
response. The third plot shows the stiffness of the structure relative to the response of the first cycle. The fourth plot shows the
average value of the damage parameters of the individual elements that leads to stiffness degradation, hence it is already
normalised with the number of elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.28: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.27 with c3 = 10 and c4 = 3. Each row is for the next interface from the layup [0| − 45|90|45|0]
and the fifth is the summation. The first column represents the equivalent energy release rate on the interface for each cycle.
The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The third column shows the
relation between crack propagation rate and the equivalent energy release rate.
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C.7. Isolation of the VCCT effect

C.7.1. VCCT isolated MS2 11 U2.5
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 10

(c) One of the plies at cycle 20 (d) One of the plies at cycle 25

(e) One of the plies at cycle 116 (f) One of the plies at cycle 195

(g) One of the plies at cycle 20135

Figure C.29: VCCT isolated MS2 11 U7.5
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Figure C.30: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction and linear elastic material. A displacement of 2.5 [mm] is applied. The plots
represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for which only the first
direction of the quasi-isotropic plies is mentioned. The applied Paris law material constants for the black line are c3 = 1 and
c4 = 1 and a mesh size of 2 [mm]. Counting from the left to the right and from the top to the bottom, the load history plot is
given first. This plot shows the applied force over time as resultant of a constant applied displacement amplitude. The second
plot is the force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows
the stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.31: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.30 with c3 = 1 and c4 = 1 and a load of 2.5 [mm]. Each row is for the next interface from the
layup [0| − 45|90|45|0] and the fifth is the summation. The first column represents the equivalent energy release rate on the
interface for each cycle. The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The
third column shows the relation between crack propagation rate and the equivalent energy release rate.
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C.7.2. VCCT isolated MS2 11 U5.0
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 5 (d) One of the plies at cycle 6

(e) One of the plies at cycle 7 (f) One of the plies at cycle 31

(g) One of the plies at cycle 47 (h) One of the plies at cycle 98

Figure C.32: VCCT isolated MS2 11 U5.0
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(a) One of the plies at cycle 211 (b) One of the plies at cycle 465

(c) One of the plies at cycle 910 (d) One of the plies at cycle 1975

(e) One of the plies at cycle 5169 (f) One of the plies at cycle 10139

(g) One of the plies at cycle 20079 (h) One of the plies at cycle 50000

Figure C.33: VCCT isolated MS2 11 U5.0
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Figure C.34: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction and linear elastic material. A displacement of 5 [mm] is applied. The plots
represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for which only the first
direction of the quasi-isotropic plies is mentioned. The applied Paris law material constants for the black line are c3 = 1 and
c4 = 1 and a mesh size of 2 [mm]. Counting from the left to the right and from the top to the bottom, the load history plot is
given first. This plot shows the applied force over time as resultant of a constant applied displacement amplitude. The second
plot is the force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows
the stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.35: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.30 with c3 = 1 and c4 = 1 and a load of 5 [mm]. Each row is for the next interface from the
layup [0| − 45|90|45|0] and the fifth is the summation. The first column represents the equivalent energy release rate on the
interface for each cycle. The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The
third column shows the relation between crack propagation rate and the equivalent energy release rate.
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C.7.3. VCCT isolated MS2 11 U7.5
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Figure C.36: VCCT isolated MS2 11 U7.5 at cycle 1
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Figure C.37: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction and linear elastic material. A displacement of 7.5 [mm] is applied. The plots
represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for which only the first
direction of the quasi-isotropic plies is mentioned. The applied Paris law material constants for the black line are c3 = 1 and
c4 = 1 and a mesh size of 2 [mm]. Counting from the left to the right and from the top to the bottom, the load history plot is
given first. This plot shows the applied force over time as resultant of a constant applied displacement amplitude. The second
plot is the force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows
the stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.38: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.37 with c3 = 1 and c4 = 1 and a load of 7.5 [mm]. Each row is for the next interface from the
layup [0| − 45|90|45|0] and the fifth is the summation. The first column represents the equivalent energy release rate on the
interface for each cycle. The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The
third column shows the relation between crack propagation rate and the equivalent energy release rate.
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C.8. Mesh refinement study

C.8.1. VCCT MS1 11
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 5 (d) One of the plies at cycle 10

(e) One of the plies at cycle 20 (f) One of the plies at cycle 50

Figure C.39: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and VCCT interactions with its adjacent plies. The applied Paris law material constants are c3 = 1 and c4 = 1. As all the plies
had the same reaction due to quasi-isotropic stiffness, one ply is presented at different cycles to show crack propagation rate
instead of each individual ply at final stage. The distribution of Von Mises stresses at maximum loading of 5 [mm] vertical
displacement in the top pin are displayed in colour. The analysis was limited to a 50 [cycles]. Only the first 50 cycles are
shown with mesh size 1 [mm] for comparison in the mesh refinement.
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Figure C.40: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction. A displacement of 5 [mm] is applied and the computations is truncated at a 50
[cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. The applied Paris law material constants for the black
line are c3 = 1 and c4 = 1 and a mesh size of 1 [mm]. Counting from the left to the right and from the top to the bottom, the
load history plot is given first. This plot shows the applied force over time as resultant of a constant applied displacement
amplitude. The second plot is the force-displacement diagram which acts as hysteresis plot of the element as structural
response. The third plot shows the stiffness of the structure relative to the response of the first cycle. The fourth plot shows the
average value of the damage parameters of the individual elements that leads to stiffness degradation, hence it is already
normalised with the number of elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.41: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.40 with c3 = 1 and c4 = 1 and a mesh size of 1 [mm]. Each row is for the next interface from the
layup [0| − 45|90|45|0] and the fifth is the summation. The first column represents the equivalent energy release rate on the
interface for each cycle. The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The
third column shows the relation between crack propagation rate and the equivalent energy release rate.
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C.8.2. VCCT MS05 11
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Figure C.42: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and VCCT interactions with its adjacent plies. The applied Paris law material constants are c3 = 1 and c4 = 1. As all the plies
had the same reaction due to quasi-isotropic stiffness, one ply is presented at different cycles to show crack propagation rate
instead of each individual ply at final stage. The distribution of Von Mises stresses at maximum loading of 5 [mm] vertical
displacement in the top pin are displayed in colour. The analysis was limited to a 50 [cycles]. Only the first 50 cycles are
shown with mesh size 0.5 [mm] for comparison in the mesh refinement.
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Figure C.43: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction. A displacement of 5 [mm] is applied and the computations is truncated at a 50
[cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. The applied Paris law material constants for the black
line are c3 = 1 and c4 = 1 and a mesh size of 0.5 [mm]. Counting from the left to the right and from the top to the bottom, the
load history plot is given first. This plot shows the applied force over time as resultant of a constant applied displacement
amplitude. The second plot is the force-displacement diagram which acts as hysteresis plot of the element as structural
response. The third plot shows the stiffness of the structure relative to the response of the first cycle. The fourth plot shows the
average value of the damage parameters of the individual elements that leads to stiffness degradation, hence it is already
normalised with the number of elements. Do recognise that the time axes are now on log scale instead of linear.



222

Figure C.44: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.43 with c3 = 1 and c4 = 1 and a mesh size of 0.5 [mm]. Each row is for the next interface from
the layup [0| − 45|90|45|0] and the fifth is the summation. The first column represents the equivalent energy release rate on
the interface for each cycle. The second column provides the crack propagation rate for each 2 [mm] of crack propagation.
The third column shows the relation between crack propagation rate and the equivalent energy release rate.
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C.8.3. TIE MS1
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 5 (d) One of the plies at cycle 10

(e) One of the plies at cycle 20 (f) One of the plies at cycle 30

(g) One of the plies at cycle 40 (h) One of the plies at cycle 50

Figure C.45: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and tie constraints with its adjacent plies. As all the plies had the same reaction due to quasi-isotropic stiffness, one ply is
presented at different cycles to show crack propagation rate instead of each individual ply at final stage. The distribution of
Von Mises stresses at maximum loading of 5 [mm] vertical displacement in the top pin are displayed in colour. The analysis
was limited to a 250 [cycles]. The used mesh size is 1 [mm].
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(a) One of the plies at cycle 100 (b) One of the plies at cycle 150

(c) One of the plies at cycle 200 (d) One of the plies at cycle 250

Figure C.46: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and tie constraints with its adjacent plies. As all the plies had the same reaction due to quasi-isotropic stiffness, one ply is
presented at different cycles to show crack propagation rate instead of each individual ply at final stage. The distribution of
Von Mises stresses at maximum loading of 5 [mm] vertical displacement in the top pin are displayed in colour. The analysis
was limited to a 250 [cycles]. The used mesh size is 1 [mm].
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Figure C.47: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with tie interaction. A displacement of 5 [mm] is applied and the computations is truncated at a 50
[cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. The black line represents the output with a mesh size of
1 [mm]. Counting from the left to the right and from the top to the bottom, the load history plot is given first. This plot shows
the applied force over time as resultant of a constant applied displacement amplitude. The second plot is the
force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows the
stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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C.8.4. TIE MS05
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 5 (d) One of the plies at cycle 10

(e) One of the plies at cycle 20 (f) One of the plies at cycle 30

(g) One of the plies at cycle 40 (h) One of the plies at cycle 50

Figure C.48: A visualisation of the deformed compact tension specimen of an individual ply that has quasi-isotropic stiffness
and tie constraints with its adjacent plies. As all the plies had the same reaction due to quasi-isotropic stiffness, one ply is
presented at different cycles to show crack propagation rate instead of each individual ply at final stage. The distribution of
Von Mises stresses at maximum loading of 5 [mm] vertical displacement in the top pin are displayed in colour. The analysis
was limited to a 250 [cycles]. The used mesh size is 1 [mm].
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Figure C.49: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with tie interaction. A displacement of 5 [mm] is applied and the computations is truncated at a 50
[cycles]. The plots represent the analysis with a compact tension specimen with five plies with a layup [0| − 45|90|45|0] for
which only the first direction of the quasi-isotropic plies is mentioned. The black line represents the output with a mesh size of
0.5 [mm]. Counting from the left to the right and from the top to the bottom, the load history plot is given first. This plot
shows the applied force over time as resultant of a constant applied displacement amplitude. The second plot is the
force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows the
stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.50: Comparison of the crack propagation for the tie constraint mesh refinement discussed in figures C.13, C.47 and
C.49. On the left the crack length over the cycles and on the right the crack propagation speed over the cycles. The green line
relates to the output in figure C.13 with a mesh size of 2 [mm]. The black line relates to the output in figure C.47 with a mesh
size of 1 [mm]. The red line relates to figure C.49 with a mesh size of 0.5[mm].

Figure C.51: A crack propagation plot showing the crack propagation rate versus the stress intensity factor for a CT specimen
with tie constraints. In green it is performed for an element size of 2 [mm], in black for an element size of 1 [mm] and in red
for 0.5 [mm].
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Figure C.52: Comparison of the crack propagation for the VCCT interface with mesh refinement. On the left the crack length
over the cycles and on the right the crack propagation speed over the cycles. In green it is performed for an element size of 2
[mm] and in black for an element size of 1 [mm]. The mesh size of 0.5 [mm] had no relevant data.

Figure C.53: A crack propagation plot showing the crack propagation rate versus the stress intensity factor for a CT specimen
with VCCT interactions. In green it is performed for an element size of 2 [mm] and in black for an element size of 1 [mm].
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Figure C.54: Comparison of the crack propagation for the VCCT interface with mesh refinement. On the left the crack length
over the cycles and on the right the crack propagation speed over the cycles. In green it is performed for a VCCT interaction
with properties c3 = 1 and c4 = 1, in black for a VCCT interaction with properties c3 = 10 and c4 = 1 and in red for a
VCCT interaction with properties c3 = 0.1 and c4 = 1.

Figure C.55: A crack propagation plot showing the crack propagation rate versus the stress intensity factor for a CT specimen
with VCCT interactions. In green it is performed for a VCCT interaction with properties c3 = 1 and c4 = 1, in black for a
VCCT interaction with properties c3 = 10 and c4 = 1 and in red for a VCCT interaction with properties c3 = 0.1 and c4 = 1.
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C.9. Influence of different load levels

C.9.1. VCCT MS2 11 U2.5
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 9 (d) One of the plies at cycle 12

(e) One of the plies at cycle 21 (f) One of the plies at cycle 42

Figure C.56: VCCT MS2 11 U2.5 part 1
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(a) One of the plies at cycle 98 (b) One of the plies at cycle 217

(c) One of the plies at cycle 535 (d) One of the plies at cycle 1023

(e) One of the plies at cycle 1939 (f) One of the plies at cycle 5000

Figure C.57: VCCT MS2 11 U2.5 part 2
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Figure C.58: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction. A displacement of 2.5 [mm] is applied. The plots represent the analysis with a
compact tension specimen with five plies with a layup [0| − 45|90|45|0] for which only the first direction of the
quasi-isotropic plies is mentioned. The applied Paris law material constants for the black line are c3 = 1 and c4 = 1 and a
mesh size of 2 [mm]. Counting from the left to the right and from the top to the bottom, the load history plot is given first.
This plot shows the applied force over time as resultant of a constant applied displacement amplitude. The second plot is the
force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows the
stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.59: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.58 with c3 = 1 and c4 = 1 and a load of 2.5 [mm]. Each row is for the next interface from the
layup [0| − 45|90|45|0] and the fifth is the summation. The first column represents the equivalent energy release rate on the
interface for each cycle. The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The
third column shows the relation between crack propagation rate and the equivalent energy release rate.
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C.9.2. VCCT MS2 11 U7.5
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(a) One of the plies at cycle 1 (b) One of the plies at cycle 2

(c) One of the plies at cycle 5 (d) One of the plies at cycle 10

(e) One of the plies at cycle 22 (f) One of the plies at cycle 52

Figure C.60: VCCT MS2 11 U7.5 part 1
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(a) One of the plies at cycle 95 (b) One of the plies at cycle 200

(c) One of the plies at cycle 502 (d) One of the plies at cycle 1007

(e) One of the plies at cycle 1982 (f) One of the plies at cycle 5001

Figure C.61: VCCT MS2 11 U7.5 part 2
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Figure C.62: In four plots the output is represented of the fatigue analysis for the compact tension specimen with five
quasi-isotropic plies with VCCT interaction. A displacement of 7.5 [mm] is applied. The plots represent the analysis with a
compact tension specimen with five plies with a layup [0| − 45|90|45|0] for which only the first direction of the
quasi-isotropic plies is mentioned. The applied Paris law material constants for the black line are c3 = 1 and c4 = 1 and a
mesh size of 2 [mm]. Counting from the left to the right and from the top to the bottom, the load history plot is given first.
This plot shows the applied force over time as resultant of a constant applied displacement amplitude. The second plot is the
force-displacement diagram which acts as hysteresis plot of the element as structural response. The third plot shows the
stiffness of the structure relative to the response of the first cycle. The fourth plot shows the average value of the damage
parameters of the individual elements that leads to stiffness degradation, hence it is already normalised with the number of
elements. Do recognise that the time axes are now on log scale instead of linear.
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Figure C.63: A visualisation of the effect of the Paris law material constants on the fatigue analysis for the compact tension
specimen related to figure C.62 with c3 = 1 and c4 = 1 and a load of 7.5 [mm]. Each row is for the next interface from the
layup [0| − 45|90|45|0] and the fifth is the summation. The first column represents the equivalent energy release rate on the
interface for each cycle. The second column provides the crack propagation rate for each 2 [mm] of crack propagation. The
third column shows the relation between crack propagation rate and the equivalent energy release rate.
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C.9.3. Comparing results of different load levels for VCCT MS2 11
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Figure C.64: Comparison of the crack propagation for the VCCT interface with load change for each interface. On the left the
crack length over the cycles and on the right the crack propagation speed over the cycles. In green it is performed for a 5 [mm]
cyclic displacement, in black for a 2.5 [mm] cyclic displacement and in red for a 7.5 [mm] cyclic displacement.
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Figure C.65: A crack propagation plot showing the crack propagation rate versus the stress intensity factor for a CT specimen
with VCCT interactions. In green it is performed for a 5 [mm] cyclic displacement, in black for a 2.5 [mm] cyclic
displacement and in red for a 7.5 [mm] cyclic displacement.
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Figure C.66: Comparison of the crack propagation for the VCCT interface with load change for each interface. This is if the
material is linear elastic, thus isolates the VCCT mechanism. On the left the crack length over the cycles and on the right the
crack propagation speed over the cycles. In green it is performed for a 5 [mm] cyclic displacement, in black for a 2.5 [mm]
cyclic displacement and in red for a 7.5 [mm] cyclic displacement.


