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Abstract

The rise in renewable energy sources causes more imbalances in the power grid. These
imbalances are handled on the secondary control reserve (SCR) market. The prices on
the market are currently predominately determined by hydropower plants, making the
market unattractive to potential market players. This thesis explores the development
of a bidding strategy for these new players to enter the Swiss secondary control reserve
(SCR) market. This is a sensitive matter, since bidding too high would result in the bid
not being accepted, and bidding too low would mean a player could have earned more
money.

Two products are traded on the SCRmarket: negative control reserve (NCR), activated
in case of an overbalance of the grid, and positive control reserve (PCR), activated in case
of an underbalance of the grid. To develop a bidding strategy, the NCR and PCR bidding
prices were modelled by using an ARIMA model to forecast the next week’s maximum bid.
The order of the model was selected by minimising the Akaike information criterion and
the parameters were estimated by maximising the likelihood function. An ARIMA(1,2,1)
model provided the lowest AIC score for both the NCR and PCR data. The accuracy of the
models was tested by examining the mean absolute error (MAE), the root mean squared
error (RMSE) and the bias. To test the performance of the model on the SCR market,
two additional metrics were introduced: the percentage of the bids accepted (PAB), and
the percentage of the total potential revenue earned (PMR). Although the MAE, RMSE
and bias of the ARIMA(1,2,1) models were low, the PAB and PMR were low as well. This
is because both models tended to estimate the forecasts higher than the actual maximum
prices, resulting in the bids not being accepted. By shifting the model down to the lower
bound of the 95% one-step confidence interval, the PAB and PMR were more than doubled.
Therefore, the forecasts of the shifted ARIMA(1,2,1) models, generated the best bidding
price for the upcoming week.
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Layman Abstract

The rise in renewable energy sources causes more imbalances in the power grid. These
imbalances are handled on the secondary control reserve (SCR) market. The prices on
the market are currently predominately determined by hydropower plants, making the
market unattractive to potential market players. This thesis explores the development
of a bidding strategy for these new players to enter the Swiss secondary control reserve
(SCR) market. This is a sensitive matter, since bidding too high would result in the bid
not being accepted, and bidding too low would mean a player could have earned more
money.

Two products are traded on the SCRmarket: negative control reserve (NCR), activated
in case of an overbalance of the grid, and positive control reserve (PCR), activated in case
of an underbalance of the grid. To develop a bidding strategy, the NCR and PCR bidding
prices were modelled by using a model that could forecast the next week’s bidding price.
This model was then perfected such that its forecasts could be used to base bids on. That
is, new players can bid the price that is predicted by the model. Doing so, the players
would have a high chance for their bids to be accepted and would therefore create the
most revenue.
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Chapter 1

Introduction

The Renewable Energy Directive, published in 2018 by the EU, established a binding
target to increase renewable energy generation by 30 percent by 2030. As of November
2023 this target has been raised to 42.5 percent [1]. Motivated by this binding target, more
and more countries are transitioning away from fossil fuels and towards renewable energy
sources for their energy mix. So too does Switzerland, showing an increase of 45 percent
in the share of renewables in Switzerland’s energy consumption, mainly being driven by
hydropower [2].

As the share of renewables increases, energy production becomes less predictable, lead-
ing to more imbalances of the electricity grid. These imbalances are unfavourable, since
the grid only functions properly at a specific frequency. The imbalances of the electricity
grid are mitigated by Swissgrid, the Swiss transmission system operator, via a three-step
market: the primary, secondary and tertiary control reserve market. The product traded
on these markets is reserved electricity capacity which can be activated in case of an imbal-
ance. Primary control reserves are automatically activated within seconds, transitioning
to secondary control reserves after several minutes. If the imbalance persists beyond 15
minutes, tertiary control reserves are activated manually [3]. Each of these products is
handled on its respective primary, secondary and tertiary control reserve market. Players
on the markets are compensated for reserving capacity, and, in case of the secondary and
tertiary reserve market, for activation of the reserved electricity [4]. Secondary control re-
serve (SCR) is generally activated for a longer period of time than primary control reserve
(PCR) and is therefore tendered in greater volume than PCR [5]. Furthermore, SCR is
compensated for both reservation and activation, whereas PCR is only compensated for
reservation of electricity capacity. Tertiary control reserve (TCR) is less frequently acti-
vated, since it is only activated for persistent imbalances. The SCR market thus has the
potential to generate the most revenue, and will therefore be the focus of this research.

Players on the SCR market make bids consisting of a price and volume. Swissgrid
aggregates these bids, arranging volumes from lowest to highest price. It then accepts the
lowest bids sequentially until the required volume to mitigate the imbalance is reached.
Therefore it is important for players to not bid too high, as their bid might not get
accepted. If their bid is accepted, the players are compensated on a pay-as-bid basis.

Secondary control reserve comes in two forms: control reserve to compensate an over-
balance, called negative control reserve (NCR), and control reserve to compensate an
underbalance, called positive control reserve (PCR). Prior to 2018, NCR and PCR were
jointly tendered, meaning bidders had to be able to provide both NCR and PCR. As of
2018, secondary control reserve is tendered separately. This means that market players
can now bid only on positive control reserve or negative control reserve [6]. This develop-
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ment allowed new players, who can only bid in one direction to enter the market. Players
who can bid in both directions, are restricted to bid in one direction at a time.

Most active players are now hydropower plants, which is why the secondary control
market prices are predominantly defined by the opportunity costs of hydropower [7]. Other
types of players do not posses this knowledge on hydropower opportunity costs. Therefore,
the SCR market is unattractive to enter as a non-hydropower plant. But with the increase
of renewables in the Swiss energy mix comes an increase of imbalances of the grid, and thus
a need for balancing parties. To encourage new players to enter the market, this paper aims
to develop a bidding strategy that maximises the acceptance rate while also maximising
the revenue, based purely on what is available to these non-hydropower plant potential
players, namely historic data on the maximum accepted bid price. The research question is
thus as follows: what bidding strategy maximises the acceptance rate and potential revenue
of players on the SCR market, based on the historic data of the maximum accepted bid
prices?

The question is answered by first implementing a model to forecast the maximum
accepted bid price for the positive and negative control reserve, based on historic data
provided by Swissgrid. The statistical model used in this research is an autoregressive
integrated moving average (ARIMA) model. ARIMA is a classical time series model known
for its precision and accuracy in forecasting economic time series [8]. After constructing
the models for the NCR and PCR prices, the models are tested on their performance in
terms of acceptance rate and potential revenue. Thirdly, the confidence intervals of the
models are examined to optimise the model’s acceptance rate and payout. Lastly a bidding
strategy is formalised for players being able to only provide NCR and PCR, as well as a
bidding strategy for players being able to provide both.

Chapter 2 elaborates on the mathematical theory behind the research. Chapter 3 offers
a more thorough explanation of the Swiss’ energy market structure. In Chapter 4, the
methodology used for this research is described and substantiated. Chapter 5 analyses
the maximum accepted bid price data to correctly build a model for its forecasts. In
Chapter 6 and Chapter 7 the models for respectively the NCR prices and PCR prices are
constructed and tested. Chapter 8 finally formalises a bidding strategy that can be used
by new market players.



Chapter 2

Mathematical Theory

This chapter gives an overview of the mathematical theory that is used in this research
paper. There is a great deal of literature available on theory of time series analysis.
Different books and studies however, use different notation for this theory. The idea
behind this chapter is to summarise the theory used in a precise and unambiguous way
and to substantiate the mathematical context of the research. The reader may be so free
to use this chapter as a cheat sheet throughout the rest of the paper. The theory described
in this chapter is mainly based on the writings of Heij et al. [9], Shumway and Stoffer [10]
and Hyndman and Athanasopoulos [11].

2.1 Basic notions in time series analysis

This section enumerates various basic notions in time series analysis. Section 2.1.1 explains
some classic properties from probability theory, applied to time series analysis. Section
2.1.2 discusses the concept of stationarity, which will prove to be important for AR(I)MA
models.

2.1.1 Notions from probability theory

A time series is a collection of n > 0 random variables observed at time points t1, t2, ..., tn.
A time series can be described by its joint distribution function:

Ft1,t2,...,tn(c1, c2, ..., cn) = P (xt1 ≤ c1, xt2 ≤ c2, ..., xtn ≤ cn)

In practice this joint distribution function is a cumbersome tool for analysing time series
due to the large amount of variables (n) it takes in. Oftentimes the marginal distribution
function

Ft(x) = P (xt ≤ x) (2.1)

along with its corresponding marginal density function

ft(x) =
dFt(x)

dx

is used to examine the marginal behaviour of a series. Many notions from classical proba-
bility theory can be translated to fit time series analysis. The most important notions for
this research are listed below.
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2.1. BASIC NOTIONS IN TIME SERIES ANALYSIS 4

Mean function

The mean function µt is described by

µt = E(xt) =

∫ ∞

−∞
xft(x)dx (2.2)

where E denotes the usual expected value operator.

Autocovariance and variance

The autocovariance function is defined as

γ(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)] (2.3)

The autocovariance is a measure for the linear dependence between the observations xt
and xs of the same time series. If γ(s, t) = 0 then xs and xt are not linearly related,
though they may be related in a different dependence structure. By setting s = t the
variance of a time series is obtained (Eq. 2.4).

γ(t, t) = E[(xt − µt)
2] = var(xt) (2.4)

Autocorrelation function

The autocorrelation function (ACF) of a time series is defined as

ρ(s, t) = corr(xs, xt) =
γ(s, t)√

γ(s, s)γ(t, t)
(2.5)

and describes how well a time series at time s, xs, can be predicted by a previous value of
the time series, xt, also known as a lag.

Partial autocorrelation function

The partial autocorrelation function (PACF) of a time series is defined as

ϕ(s, t) = corr(xs, xt|xs−1, xs−2, ..., xt+1) (2.6)

The partial autocorrelation measures how well xs can be predicted by its lag xt, given
their intermediate values.

2.1.2 Stationarity

Many forecasting models only function properly if the time series shows regular behaviour
[12]. A formal definition of this regular behaviour is given by the notion of weak station-
arity. A time series is called weakly stationary if

(i) the mean function, µt (Eq. 2.2), is constant and does not depend on t,

(ii) the variance (Eq. 2.4) is constant and does not depend on time t, and

(iii) the autocovariance (Eq. 2.3) depends on k and t only through their difference |k−t|.
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For the ease of reading, the term stationary will henceforth be used to mean weakly
stationary. In case of a stationary time series the mean function will be denoted by
µ = µt. For stationary time series the notation of the autocorrelation function can be
simplified by setting s = t+ k.

γ(t+ k, t) = cov(xt+k, xt) = cov(xk, x0) = γk

Using the above expression, the autocorrelation function of a stationary time series can
be written as

ρk = corr(xt+k, xt) =
γk
γ0

(2.7)

The partial autocorrelation function of a stationary time series can be written as

ϕ(t+ k, t) = corr(xt+k, xt|xt+k−1, xt+k−2, ..., xt+1) = ϕk (2.8)

In case of unstationary time series, differencing can be useful to obtain stationarity.
The differencing process, is defined as taking two consecutive points of a time series and
computing their difference. A differenced time series, denoted by ∆xt, can be computed
as follows.

∆xt = xt − xt−1 (2.9)

Differencing a time series, xt, of N data points yields a time series, ∆xt, of n − 1 data
points since it is not possible to calculate a difference for the first observation. If the
time series is not stationary after differencing once, it can be differenced multiple times to
obtain stationarity. Differencing a time serie d time series is denoted by ∆dxt. The time
series is then called d-order differenced.

2.2 ARIMA models

Autoregressive integrated moving average (ARIMA) models are commonly used in time
series forecasting. Section 2.2.1 elaborates on the structure of autoregressive, moving
average and ARIMA models. Section 2.2.2 explains how the parameters are estimated for
the model and section 2.2.3 describes how to choose the order of an ARIMA model and
therefore the best suitable model. Section 2.2.4 describes the accuracy metrics used to
evaluate the performance of the model.

2.2.1 ARIMA model structure

An ARIMA model is a combination of an autoregressive and moving average model. The
“integrated” part of ARIMA refers to the differencing of the data to obtain stationarity.

Autoregressive models

In autoregressive models, the dependent variable xt can be explained by a linear combi-
nation of its past values xt−i.

xt = ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p + ϵt (2.10)

where xt represents the value to be predicted at time t. xt is determined by a linear com-
bination of p of its previous values xt−i, commonly known as lags. ϕi are the parameters
determined during model fitting, which will be discussed in section 2.2.2. The white noise
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term ϵt is assumed to have a normal distribution with mean zero and variance σ2
ϵ and

the property that E[ϵtxt−k] = 0. Furthermore, xt has mean zero and is assumed to be
stationary.

If the mean µ is not zero, xi can be replaced by xi − µ:

xt − µ = ϕ1(xt−1 − µ) + ϕ2(xt−2 − µ) + · · ·+ ϕp(xt−p − µ) + ϵt

which can be rewritten as:

xt = α+ ϕ1xt−1 + ϕ2xt−2 + · · ·+ ϕpxt−p + ϵt (2.11)

where α = µ(1− ϕ1 − ϕ2 − · · · − ϕp). An autoregressive model using p lags is denoted by
AR(p), where p is said to be the lag order.

The following theory can be useful to determine if a time series behaves like an AR(p)
model.

Theorem 1. For the partial autocorrelation of an AR(p) process holds the following prop-
erty

ϕk = 0 for all k > p

The proof of this theorem can be found in Appendix A.1.

Moving average models

An autoregressive model assumes that the forecasted value xt is a product of a linear
combination of p of its lags. A moving average process of order q, however, can be
described by a linear combination of white noise terms:

xt = α+ ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q (2.12)

where ϵj ∼ N (0, σ2
ϵ ), α a constant and θ1, ..., θq parameters.

A moving average model of order q is denoted by MA(q). A MA(q) process is always
stationary. The following theorem can be useful to determine if a time series behaves
accordingly a moving average model.

Theorem 2. For the autocorrelation function of an MA(q) process holds the following
property

ρk = 0 for all k > q

The proof of the theorem can be found in Appendix A.2.

Combining autoregressive and moving average models: AR(I)MA

Combining the autoregressive model (eq. 2.11) and the moving average model (eq. 2.12),
an autoregressive moving average (ARMA) model is obtained. This model utilises the
property of an AR model that future values can be determined, based on past values,
and the property of an MA model, that uses previous errors to account for future errors.
ARMA models are of the form

xt = α+ ϕ1xt−1 + · · ·+ ϕpxt−p + ϵt + θ1ϵt−1 + · · ·+ θqϵt−q (2.13)

where α, as in equation 2.11 accounts for a nonzero mean. As in the previous models, xt−i

are the lags, ϕi and θj are the parameters determined during the fitting of the model and
ϵj ∼ N (0, σ2

ϵ ) the white noise terms. An ARMA model considering p lags and q white
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noise terms is denoted as ARMA(p,q), where p and q are referred to as the order. By
observing equation 2.13, it can be seen that autoregressive and moving average models
are special cases of ARMA models. By setting q to zero, the moving average part of the
ARMA model is eliminated, resulting in an autoregressive model of order p. Similarly, by
setting p to zero, the autoregressive part is deleted, leading to an moving average model
of order q.

An autoregressive integrated moving average model or ARIMA(p, d, q) model is similar
to an ARMA model. They only differ in their requirement for stationary time series. An
ARMA model requires a stationary time series as input, whereas an ARIMA model also
allows non-stationary time series. An ARIMA(p, d, q) model takes a non-stationary time
series as input and differences it d times to make it stationary. Based on the differenced,
stationary time series, an ARMA model is constructed accordingly to equation 2.13.

2.2.2 Parameter estimation

If a time series xt behaves like an ARIMA(p,d,q) process, where p, d, q are known, it can
be written as

∆dxt = α+ ϕ1∆
dxt−1 + · · ·+ ϕp∆

dxt−p + ϵt + θ1ϵt−1 + · · ·+ θqϵt−q (2.14)

where α = µ(1 − ϕ1 − · · · − ϕp) a constant, ϕ1, ..., ϕp, θ1, ..., θq parameters and {ϵj} ∼
N (0, σ2

ϵ ).
To fit an ARIMA model on a time series, {ϕ1, ..., ϕp, µ, θ1, ..., θq, σ

2
ϵ } need to be de-

termined. This can be done by several methods. The method used in this paper is the
method of maximum likelihood. The following notation is used.

θT = (ϕ1, ..., ϕp, µ, θ1, ..., θq)

XT
t = (xt, xt−1, ..., x1)

The likelihood function of an ARIMA model [13] is given by

L(XN : θ, σ2
ϵ ) = f(XN |θ, σ2

ϵ ) (2.15)

The likelihood function gives the probability that the observed data comes from the esti-
mated model. The parameters that are obtained by maximising the likelihood function are
denoted by {ϕ̂1, ..., ϕ̂p, µ̂, θ̂1, ..., θ̂q, σ̂ϵ

2}. The predicted values resulting from an ARIMA
model using the estimated parameters are denoted by x̂t, that is

∆̂dxt = α̂+ ϕ̂1∆
dxt−1 + · · ·+ ϕ̂p∆

dxt−p + ϵt + θ̂1ϵt−1 + · · ·+ θ̂qϵt−q (2.16)

where α̂ = µ̂(1− ϕ̂1 − · · · − ϕ̂p) and xt−1, ..., xt−p observed values.
Deriving the likelihood function and maximising it to find the model parameters is a

tedious task that is usually done by computers. Therefore the derivation and maximisation
of the likelihood function will not be discussed in any further detail.

2.2.3 Akaike’s information criterion

In section 2.2.2 the order p, d, q of the model was assumed to be known. In practice this
is usually not the case. Akaike’s information criterion (AIC) offers a measure to choose a
model out of a set of possible models with varying order. The AIC is defined as

AIC(k) = −2 log(L) + 2k (2.17)
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where L denotes the maximum likelihood function and k the amount of parameters esti-
mated. The larger the maximum likelihood and the lower the number of parameters, the
lower the AIC. Good models are obtained by minimising the AIC. That is, finding a good
balance between a high likelihood function and a low number of parameters. The AIC for
an ARIMA(p, d, q) model is given by

AIC(k) = −2 log(L(XN : θ̂, σ̂ϵ
2) + 2(p+ q + l + 1) (2.18)

where l = 0 if µ = 0, since µ then needs not to be estimated, and l = 1 if µ ̸= 0.

2.2.4 Accuracy metrics for model performance

Accuracy metrics are used to determine the accuracy of a models predictions. The three
classical metrics used to evaluate the performance of the models treated in this research
paper are the mean absolute error (Eq. 2.19), the root mean square error (Eq. 2.20) and
the bias (Eq. 2.21).

MAE =
1

N

N∑
i=1

|x̂i − xi| (2.19)

RMSE =

√√√√ 1

N

N∑
i=1

(x̂i − xi)2 (2.20)

Bias =
1

N

N∑
i=1

x̂i − xi (2.21)

Here, N is the number of observations, xi the observed value and x̂i the predicted
value.

Equation 2.19 shows the mean absolute error, as defined as the average value of all
forecasting errors in absolute value. The mean absolute error gives a sense of the overall
performance of the model. All outliers are weighted equally, therefore it is not sensitive
to large outliers. Since the errors are averaged in absolute value it also does not disclose
any information about whether or not the model has a bias in forecasting, meaning the
forecasts are systematically too high or too low. The RMSE (Eq. 2.20) is more sensitive
to outliers due to the squaring process. By summing over the difference between the
observed and predicted values instead of the absolute difference like the MAE, the bias
(Eq. 2.21) gives an indication of the model’s tendency to systematically underestimate or
overestimate.

2.3 Forecasting using ARIMA models

This section describes how one-step forecasting can be performed using an ARIMA model
(sec. 2.3.1) and how the one-step confidence interval can be determined (sec. 2.23).

2.3.1 One-step forecasting

If a proper ARIMA model for time series data is established, the model can be used to
forecast future values. If xt, xt−1, ..., x1 are the observed values and one is interested in
forecasting the future value after one time steps, by use of an ARIMA model, ˆxt+1 can be
written as
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∆̂dxt+1 = α̂+ ϕ̂1∆
dxt + · · ·+ ϕ̂p∆

dxt−p+1 + ϵt+1 + θ̂1ϵt + · · ·+ θ̂qϵt−q+1 (2.22)

Since the observations xt, xt−1, ..., x1 are known, the only values on the right hand side
that are unknown are ϵt+1, ϵt, ..., ϵt−q+1. The future error et+1 is replaced by zero, since
it cannot be determined at this point. The past error terms ϵt, ..., ϵt−1+1 are replaced by
their corresponding residuals (difference in observed value and by model predicted value).

2.3.2 Confidence intervals

Recall that the white noise terms were assumed to be normally distributed with mean zero
and standard deviation σ2

ϵ , which was estimated by σ̂2
ϵ . To determine the confidence inter-

val of confidence level 1−α0, first the z-score ξ1−α0/2 is derived from the standard normal
distribution table. The z-score gives the number of standard deviations the forecasted
value deviates from the actual observed value. The margin of error is then calculated by
E = ξ1−α0/2 · σ̂ϵ.The confidence interval around the forecasted value x̂t is then given by

[x̂t − ξ1−α0/2 · σ̂ϵ, x̂t + ξ1−α0/2 · σ̂ϵ] (2.23)

This is the region in which the actual (to be) observed value xt lies with a certainty of
level 1− α0.



Chapter 3

Swiss Energy Market Background

Electricity is transported from producers to consumers via a transmission grid. In Europe
this transmission grid functions at a frequency of 50 Hertz [6]. Power plants connected to
the grid are designed to operate within a specific range of this frequency. If the supply
surpasses the demand, the grid frequency increases. Significant increases in frequency can
stress and potentially damage the equipment. That is why generators are automatically
disconnected, which leads to partial black-outs. If the consumers demand surpasses the
supply, power plants are not able to meet the consumers demand, resulting in power black-
outs. Therefore, the frequency of the transmission grid must be kept stable at 50 Hertz
at all times.

This leads to some particularities in the energy market structure. J. Abrell [4] provides
an overview of the Swiss energy market’s structure: electricity transmission grids are
operated by a so-called Transmission System Operator (TSO). In Switzerland, the TSO
is Swissgrid. Swissgrid is responsible for the transport of energy in the form of electricity
and natural gas from suppliers to consumers through the transmission grid. Electricity
generators and consumers are organised into so-called balancing groups (BGs). A BG is a
group of various generators and consumers, represented by a single balancing responsible
party (BRP). The BRP measures the consumption and generation of electricity at the BG
level and communicates this to the TSO.

To account for the need for stability, the electricity market is organised into two differ-
ent types of sub-markets: energy-only markets (EOM) and imbalance markets (IBM). An
overview of the Swiss energy market’s structure is depicted in Figure 3.1. Swissgrid uses
electricity demand forecasts to determine the amount of energy that needs to be traded
on the EOM to balance the grid. Most times, the expected demand and supply deviate
from the actual demand and supply, resulting in an imbalance. These imbalances can be
caused by, for example, a power plant shutting down. They can also be due to the inter-
mittent character of renewable energy sources, making it harder to forecast their energy
supply. The market actors responsible for causing an imbalance are fined in a process
called imbalance pricing. Mitigating the imbalance is handled by the imbalance markets
(IBM).

The EOM is further organised into sub-markets distinguished by their gate closure
time, i.e. the point in time the market is cleared prior to delivery time. Amongst these
markets are the day-ahead market (DAM), cleared a day before delivery, and the intra-
day market (IDM), cleared on the day of delivery. The product traded on the EOM is
electricity itself. The product traded on the IBM is reserved electricity capacity, which
can be activated in case of an imbalance. The IBM is organised in three markets: one
for primary control reserve (PCR), secondary control reserve (SCR) and tertiary control
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reserve (TCR). In case of an imbalance, PCR is activated automatically. Within minutes,
PCR is replaced by secondary control reserves, restoring the frequency of 50 Hertz. If
the imbalance lasts longer than 15 minutes, TCR is activated manually. Providers are
paid for reserving the electricity capacity. In addition, if secondary or tertiary reserve are
activated, providers receive compensation.

There are about fifteen players active on the SCR market, of which 95 percent are
hydropower plants. The bidding is done via a weekly auction, meaning power plants must
ensure the availability of the power for one week. As of 2018, secondary control reserve
is procured as asymmetric product [6], meaning that overbalances and underbalances are
handled separately, by tendering negative control reserve (NCR), used to compensate for
an overbalance, and positive control reserve (PCR), used to compensate for an under-
balance. Swissgrid may require both positive and negative reserve at a time. Players,
however, are restricted to bidding in one direction at a time. Market players submit bids
in the form of price and capacity volume. Swissgrid aggregates the bids, arranging the
volumes from lowest to highest price. Swissgrid then accepts the lowest bids sequentially
until the required volume to mitigate the imbalance is reached. Compensation of the
providers is done on a pay-as-bid basis, meaning providers get paid the amount they have
bidden. If a bid is accepted, the plant must deliver. The volume demanded by Swissgrid
is not known to the players.

Figure 3.1: Overview of the Swiss energy market structure [4]



Chapter 4

Methodology

This chapter explains and substantiates the research methodology. Section 4.1 discusses
the model that is used to forecast the data, namely an autoregressive integrated moving
average (ARIMA) model. Section 4.2 discusses the method of analysing and preparing
the data prior to modelling. There are several ways to determine the orders of an ARIMA
model. Section 4.3 elaborates on the method that is handled in this paper. Section 4.4
discusses how the parameters are estimated for the model. Section 4.5 gives the step-by-
step instruction of how a series of one-step forecasts is generated to test the accuracy of
the model. The accuracy metrics used to test the accuracy are illustrated in section 4.6.
The 95% confidence interval of the model will be examined. Section 4.7 explains why this
is done, and why in particular the 95% confidence interval is examined and not intervals
of lower certainty levels.

4.1 ARIMA

An autoregressive integrated moving average model forecasts future outcomes purely based
on historical time series. It uses the assumption of autoregression, where future values can
be described as linear combination of its lags. In addition, the moving average part utilises
previous errors to account for future errors. The integrated part allows the modelling of
non-stationary time series [14]. ARIMA models do not make any assumptions about
the distribution of the data, making it applicable to data with any kind of distribution.
ARIMA models are more suitable for short-term forecasting, since their accuracy tends to
reduce for longer forecast horizons. Another downside is the model’s sensitivity to outliers
and its shortcomings in predicting turning points in time series [15].

ARIMA models have a wide range of applications, many of which find its place in
price forecasting. Gao et al. [16] compare the performance of an ARIMA model and an
artificial neural network (ANN) on the forecasting of electricity prices for power markets.
The results show that the ARIMA model gives greater results than the ANN. Zhou et al.
[17] use an ARIMA model to forecast the electricity spot market price. They furthermore
extend their ARIMA model with error correction to increase the model’s accuracy.

Due to its proven success in electricity price forecasting, its usefulness for short-term
forecasting – as is the case in this research – and its requirement for only historical data,
the ARIMA model is used to model and forecast the maximum bidding price of the SCR
market in this research.

12
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4.2 Data analysis and preprocessing

Prior to modelling, the data is analysed first to spot any notable behaviour of the time
series. For instance, if the time series shows seasonal behaviour, the ARIMA model has
to be extended to a seasonal ARIMA model [11]. The data analysis is done by plotting
the data and visually spotting trends, seasonal components, and outliers.

After analysing the data, it must be preprocessed to properly fit an ARIMA model.
Outliers are removed to ensure smoother forecasting and transformations of the data are
made to stabilise the variance. In addition, the data is differenced, to examine if doing so
makes the data stationary.

The last step in preparing the data for modelling, is splitting it into a training and
test set. The training set is used to “train” the model, that is, determining the order and
parameters of the model. The test set is used to test the predictive accuracy of the model.
The training set should be sufficiently large to train the model but leave enough data for
the test set to assess the performance of the model. A common split assigns 80 percent
of the data to the training set and 20 percent of the data to the test set [18]. This split
offers sufficient data to train the model. The forecast of the maximum bidding price is
only needed for one week. Therefore, the test set should also be large enough to evaluate
the model’s performance, given the short forecasting horizon.

4.3 Order selection

Selecting the right order p and q of an ARIMA(p, d, q) model is a well-studied topic in
statistics. In this research, the order is selected by means of the Akaike information criteria
(AIC) [9]. A collection of ARIMA models with different orders, is tested. This selection
is composed by setting a maximum order and, subsequently, testing all models with order
less than or equal to the maximum order. From the model collection, the model with the
lowest AIC score is then selected. Recall from section 2.2.3 that the AIC is a trade-off of the
fit and complexity of the model. Therefore choosing the model with the lowest AIC score
provides a good fit for the model while avoiding overfitting. The AIC score is chosen as
criterion over other model selection information criteria, such as the Bayesian information
criterion (BIC), since it allows more complex models while preventing overfitting [19].

As for the order d of differencing, this is determined by examining how many times
the time series needs to be differenced to become stationary. This examination is done by
iteratively differencing the time series until stationarity is obtained.

4.4 Parameter estimation

Shumway and Stoffer [10] present different methods of parameter estimation. A frequently
used method, is the one of maximum likelihood, i.e. maximising the likelihood function
(Eq. 2.15). The ARIMA function in Python estimates the parameters by the method
of maximum likelihood as well [20]. Therefore, this method is handled in this research.
Deriving and maximising the likelihood function by hand is beyond the scope of this
research, and will therefore not be discussed any further.

4.5 Forecasting

To test the accuracy of the model, a series of forecasts is generated over the domain
of the test data. The forecasts are then compared to the actual data to determine the
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model’s accuracy (see sec. 4.6). Since the forecasting horizon of the model is one week,
the following is done to create the forecasts for the test part of the data:

1. The model is trained on the training data.

2. Using the trained model, a one-step forecast is calculated (Eq. 2.22).

3. The maximum accepted bid of the current week is made public after market clear-
ance. To calculate the forecast of the next step, the forecasted value of the current
week is replaced by the actual maximum accepted bid price.

4. Using the original model, – that is, not re-training the model using the new data
point of the current week – the next one-step forecast is generated.

5. Step 3 and 4 are iterated over the domain of the test data to create a series of
one-step forecasts.

4.6 Accuracy metrics

To assess the accuracy of the model, five accuracy metrics are used. Three of these
are classical accuracy methods and have already been mentioned briefly in section 2.2.4,
namely the mean absolute error (MAE), root mean squared error (RMSE) and bias.

Equation 2.19 shows the mean absolute error, as the average value of all forecasting
errors in absolute value. The mean absolute error provides a sense of the overall per-
formance of the model. All outliers are weighted equally, therefore it is not sensitive to
large outliers. Since the errors are averaged in absolute value, it also does not disclose
any information about whether or not the model has a bias in forecasting, meaning the
forecasts are systematically too high or too low.

Large outliers in this forecasting would mean a bid is either excessively high or low. A
bid excessively high would not be accepted and one much too low would mean the BRP
could have earned more money for their service. Both cases are undesirable. Therefore,
another accuracy metric more sensitive to outliers is used, namely the root mean square
error (Eq. 2.20). This accuracy metric is more sensitive to outliers and has proven useful
to models whose errors are normally distributed [21], which is an assumption for ARIMA
models.

In case of a systematic error, i.e. the model is systematically too high or too low, the
forecasted bid would either never be accepted due to the systematically high forecast or
the BRP would be underpaid by bidding the structurally under forecasted price. The bias
2.21 is used to detect this phenomenon in the models [22]. As shown in Equation 2.21, the
bias averages all forecasting errors. In the case of systematic over- or underforecasting,
the bias would respectively take on a strong positive or negative value.

The MAE, RMSE and bias are classic accuracy metrics often used in literature. Since
the objective of finding a good fitted model on the data is for a BRP to bid as high as
a price as possible while not surpassing the maximum price, two extra accuracy metrics
for the purpose of this research are composed. The first metric is called the “percentage
accepted bids” (PAB) and returns the percentage of the bids being accepted if one were
to bid according to the model. The second additional metric is called the “percentage
maximum revenue” (PMR) and returns the percentage of the maximum income a BRP
can earn using the model’s forecasts. These metrics are introduced to test the model’s
usefulness on the SCR market. The PAB and PMR are defined as
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PAB =

∑N
i=1 1x̂i≤xi

N
(4.1)

PMR =

∑N
i=1 x̂i1x̂i≤xi∑N

i=1 xi
× 100 (4.2)

where x̂i denotes the forecasted value, xi the observed value and N the number of
observations. The indicator function, 1x̂i≤xi

ensures that only the bids below the observed
maximum price xi are included in the summation.

Using these five accuracy metrics provides a thorough overview of the model’s perfor-
mance.

4.7 Confidence intervals

The aim of the research is to formalise a bidding strategy by utilising one-step forecasts
of the maximum price. If one were to bid according to the forecast, the bid might not
be accepted if the forecast were even slightly higher than the actual maximum price.
To increase the certainty of one’s bid getting accepted, the 95% confidence interval is
inspected. The 95% confidence interval gives a range around the forecasted value in which
the actual value lies with a certainty of 95%. If favourable for the PMR, the model
is shifted down to the lower bound of the confidence interval. In that case, there is a
95% chance that the actual value is greater than or equal to the shifted forecasted value
and, therefore, for the bid to be accepted. Confidence intervals of lower certainty are not
considered. This is because using lower-level confidence intervals, could lead to the bid not
to get accepted because the actual value lies below the lower bound. Confidence intervals
of higher levels are not considered, since the 95% confidence interval is assumed to provide
sufficient certainty of bid acceptance.



Chapter 5

Data

This chapter elaborates on the data used in this research. Section 5.1 offers details on
the entire dataset available for this research. Section 5.2 provides a statistical analysis of
the data used for the model. Section 5.3 explains the data preparations and modifications
applied prior to modelling.

5.1 Definitions of available data

The data used in this research is provided by Swissgrid and consists of two datasets. Both
datasets concern biddings on the secondary control reserve market. A bid consists of a
price per megawatt and a volume of electricity (in megawatts). As stated in Chapter 3, the
secondary control reserve market is enabled in case of an underbalance or an overbalance
of the electricity grid. Therefore, biddings can be done in two directions: downbidding,
to compensate for an overbalance of the grid, and upbidding, to compensate for an un-
derbalance of the grid. One of the datasets provides statistics on negative control reserve
(NCR), used in case of an overbalance, the other one on positive control reserve (PCR),
used in case of an underbalance.

The data from both datasets span from 01-01-2018 until 29-03-2020 and provide weekly
data on the biddings. The datasets provide the maximum price of the accepted bids,
the minimum price of all accepted bids and the average price per megawatt electricity.
In addition, they provide information on the capacity of the accepted bids, namely the
largest and smallest bid accepted in terms of megawatt, and the average, median and
standard deviation of the bids in terms of megawatt. Lastly, both provide the total under-
or overbalance of the grid, the total amount paid to the BRP’s for compensating the
disbalance and the number of bids made. The object of this research is to forecast the
maximum price of all accepted bids. Therefore, the data on the maximum accepted bid
prices is discussed in more detail in the next sections.

5.2 Statistical analysis

This section is divided in two subsections. Section 5.2.1 gives a statistical analysis of the
NCR data and section 5.2.2 covers the PCR data.

5.2.1 Analysis of NCR data

The maximum accepted bid prices of NCR is depicted in figure 5.1, where week 0 corre-
sponds to the first week of 2018.
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Figure 5.1: Weekly maximum bidding price of NCR

Figure 5.1 shows that the time series shows a downward trend and cyclic behaviour.
In case of seasonal data, fluctuations occur in a fixed frequency, that is, in a monthly,
quarterly or yearly pattern. In Figure 5.2, the peaks in the data are highlighted with grey.
The first peak occurs from around week 8 (end of February 2018) until weak 23 (end of
May 2018). The second peak occurs from around week 31 (end July 2018) until week 54
(begin January 2019). The third peak occurs around 66 (begin April 2019) until week 75
(begin June 2019). The last peak occurs around week 89 (mid-September 2019) and lasts
until week 107 (mid-January 2020). These peaks do not occur in a monthly, quarterly or
yearly fixed frequency.

Figure 5.2: Weekly maximum bidding price of NCR, seasonality assessment

The peaks occurring around week 50 and week 100, however, hint at a seasonal pattern.
These peaks coincide with the last week of the year and the first week of the new year
and are marked with a red ‘x’ in Figure 5.2. The data point at week 0 (first week of 2018)
seems to follow this pattern as well. It is, however, difficult to say with full certainty that
these points follow a seasonal pattern due to the small size of the dataset. The peaks
could also be outliers.

The downward trend implies that the mean function of the time series is not constant
over time. The fluctuations in the time series are dampened over time, implying the
variance is not constant as well. Therefore, it needs to be examined if just differencing
the data is enough to make it stationary.
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5.2.2 Analysis of PCR data

The maximum accepted bid prices of PCR are depicted in figure 5.3, where week 0 is the
first week of 2018.

Figure 5.3: Weekly maximum bidding price of PCR

This data too shows a downward trend, implying an inconstant mean function. To
assess seasonality the peaks are highlighted with grey in Figure 5.4. The peaks in the data
occur around week 12-14 (end of March 2018, beginning of April 2018), around week 47
(half November 2018), in week 55 and 56 (half of January 2019) and from week 71 until
week 73 (half of May 2019). Since these peaks do not occur in a seasonal pattern – that
is in a monthly, quarterly or yearly pattern –, the data is interpreted to be non-seasonal.
Since the fluctuations are not of equal size, the variance is inconstant over time. Therefore,
just as for the NCR data, it needs to be examined if just differencing the data is enough
to make it stationary.

Figure 5.4: Weekly maximum bidding price of PCR, seasonality assessment

5.3 Data preparation

This section discusses the data modifications and preparations necessary for the NCR (sec.
5.3.1) and PCR (sec. 5.3.2) data to be properly modelled.
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5.3.1 NCR data preparation

Since it cannot be said with certainty that the peaks around week 52 and week 104 (Fig.
5.1) are due to seasonality, they are treated as outliers. Outliers do not follow the pattern
of the data and therefore create noise that is unwanted for proper modelling [23]. To
solve this issue, the outliers are deleted from the dataset. The gaps in the dataset are
filled in by linear interpolation [24], resulting in Figure 5.5a. To stabilise the variance,
a logarithmic transformation [25] is applied to the data, resulting in Figure 5.5b with a
more stable variance. To see if the differencing done by the ARIMA model is enough to
make the data stationary, the data is differenced (Eq. 2.9) to eliminate trend (Fig. 5.5c).
The data, however, still does not appear to be stationary. Differencing the data a second
time results in Figure 5.5d. Figure 5.5d shows the time series to have a stable mean and
roughly constant variance. Therefore, using the logarithmic transformed data and letting
the ARIMA model difference it twice, should result in a proper model.

(a) Removal of outliers from NCR data (b) Logarithmic transformation of data

(c) Differencing data once (d) Differencing data a second time

Figure 5.5: NCR data preparation

5.3.2 PCR data preparation

No clear outliers are spotted in Figure 5.3. Therefore the whole dataset will be used for
modelling. Similarly to the NCR data, a logarithmic transformation is applied to the PCR
data to stabilise the variance (Fig. 5.6a). After which the data is differenced to remove the
trend (Fig. 5.6b). Again, the data does not appear to be stationary. Therefore the data
is differenced a second time, resulting in Figure 5.6c, showing a time series with constant
mean function and roughly constant variance. Therefore, using the ARIMA model on the
logarithmic transformed data should generate accurate predictions.
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(a) Logarithmic transformation of PCR data (b) Differencing data once

(c) Differencing data a second time

Figure 5.6: PCR data preparation



Chapter 6

Modelling Negative Control
Reserve Bidding Strategy

In this chapter, a bidding strategy is composed for the negative control reserve, using an
ARIMA model. Section 6.1 describes the modelling of the maximum accepted bid prices of
negative control reserve (NCR). Section 6.2 adapts the model to develop a version whose
forecasts can be used for bidding. The Python code used for this chapter can be found in
Appendix B.1.

6.1 Modelling maximum accepted NCR bidding prices

This section discusses the modelling of the NCR data, using an ARIMA model. Section
6.1.1 determines the order settings. Section 6.1.2 discusses the implementation of the
tested models and selects the best model. The model’s performance on forecasting is
tested in section 6.1.3.

6.1.1 Order setting

Prior to implementing the ARIMA(p, d, q) model, the orders of the tested models need to
be determined. To clarify, using an ARIMA model for the logarithmic transformed data,
amounts to the same as using an ARMA model for the logarithmic, twice-differenced data.
The differencing order is encapsulated in the integration part of ARIMA, that is, in the
order of d. The logarithmic transformation is not encapsulated in the ARIMA model but
is used to stabilise the variance. Figure 5.5d shows that the logarithmic transformed, twice
differenced data is stationary. Therefore the ARIMA model is used for the logarithmic
transformed data, and the order of d is set at 2.

Setting the order of p or q to zero, leads to a moving average or autoregressive model for
the logarithmic transformed, twice-differenced data. Recall from Theorem 1 and Theorem
2 that the autocorrelation function of an MA(q) process drops to zero after q lags and
that the partial autocorrelation function of an AR(p) process drops to zero after p lags.
Examining the ACF and PACF plots of the modified time series, ∆2log(xt), could thus
simplify the modelling process. If the ACF and PACF show clear signs of being a moving
average or autoregressive process, the number of models tested can be reduced. The
respective ACF and PACF plots are depicted in Figure 6.1 and Figure 6.2.
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Figure 6.1: ACF of ∆2log(xt) Figure 6.2: PACF of ∆2log(xt)

Both figures show fluctuating behaviour around zero and thus no clear signs of ∆2log(xt)
behaving like an autoregressive or moving average process. Based on the plots, no orders
can be excluded. Additionally, since ACF and PACF plots can be ambiguous for real
data, it is not excluded that ∆2log(xt) behaves like an autoregressive or moving average
process.

The Akaike information criteria (AIC, Eq. 2.17) gives an indication of the quality of
a model. By increasing the orders p and q, chances are that the AIC increases as well, in
case the likelihood function cannot compensate for the increasing amount of parameters.
Setting the orders of an ARIMA function too high could lead to overfitting the data, in
which case the white noise is captured rather than the underlying trend of the time series.
Therefore the orders are restricted by a maximum order. The maximum orders for the
first modelling cycle are set at pmax = 10 and qmax = 10, assuming that a higher order
will cause overfitting, which is represented by a higher AIC. If upon evaluation of the AIC
scores, the AIC scores corresponding to high orders are relatively low, it can be decided
to increase the maximum orders and test the corresponding models.

Summarising, the models tested on log(xt) (note that differencing is included in the
order setting) are of the form

̂∆2log(xt) = α̂+ ϕ̂1∆
2log(xt−1) + · · ·+ ϕ̂p∆

2log(xt−p) + ϵt + θ̂1ϵt−1 + · · ·+ θ̂qϵt−q (6.1)

where p ∈ {0, 1, ..., pmax}, q ∈ {0, 1, ..., qmax}, and ϕ̂1, ..., ϕ̂p, µ̂, θ̂1, ..., θ̂q, σ̂ϵ
2 result from

maximising the likelihood function (Eq. 2.15). To obtain a result that is of the same form

as the original time series, ̂∆2log(xt) is “differenced back” and its exponential is taken.

6.1.2 Implementation and model selection

The data is loaded into Python and split into the training and test set, containing 80
and 20 percent of the datapoints, respectively. The models as described in the previous
section are implemented, using the ARIMA function from the statsmodels module. The
parameters are estimated by maximising the likelihood function (Eq. 2.15). The AIC (Eq.
2.17) score is calculated for each of the models. The AIC scores of all models tested can be
found in Appendix B.2. Recall that the lower the AIC scores, the better the model. The
model with the lowest AIC is the ARIMA(1,2,1) model with a score of -6.224. By printing
the model’s summary (App. B.3) in Python, the estimated parameters can be extracted:
ϕ̂1 = 0.3923, θ̂1 = −0.9986, σ̂ϵ

2 = 0.0494. The model summary does not return any value
for µ̂. This can be explained by the fact that, by applying a logarithmic transformation
and differencing the data twice, the mean has become constant and equal to zero, which
can be seen in Figure 5.5d.
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The accuracy of this model is further evaluated in the next section. The models with
high orders show high AIC scores, therefore the maximum order will not be increased to
test more models.

6.1.3 Forecasting performance

As described in section 4.5, to test the model’s accuracy, a series of one-step forecasts is
generated over the domain of the test data. Figure 6.3 shows the original, predicted and
forecasted time series of the ARIMA(1,2,1) model.

Figure 6.3: ARIMA(1,2,1) predictions and forecasts on NCR data

As can be seen from the plot, the model does not show large deviations from the original
time series. One of ARIMA’s weaknesses, however, is visible from the plot, namely her
ability to predict turning points. As can be seen around week 18, while the peak in the
original time series has already occurred, the peak of the prediction occurs one time step
later, as is the case for all local maxima. This can be explained by the structure of the
model. The model takes only one lag into account. Futhermore, the data is differenced
twice to obtain stationarity. If the previous lag of the differenced time series were to be
positive, it would indicate a rising trend. Since the model only looks at the previous lag,
it suspects that this trend will persevere so it estimates that the next data point is higher
than the previous one, when in fact it is lower. For the next time step the model again
looks at one lag. This lag is a result of differencing too. So the lag is negative since the
actual data is now following a downward trend. The model then estimates a decrease as
well. But all of this will happen exactly one time step later than the original data. The
result is a model whose local maxima and minima occur exactly one step later than the
actual data.

Table 6.1 shows the mean absolute error (MAE), root mean squared error (RMSE),
bias, percentage accepted bids (PAB) and the percentage maximum revenue (PMR) of the
model. For the calculation of the PAB and PMR, the forecasted value has been rounded
down to two decimal points. This is to prevent the forecast from surpassing the actual
value by rounding up. The rounding is done to two decimal points since bids are in
euro, which only use two decimal points. The accuracy metrics from the table have been
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rounded to three decimal points. The PAB and PMR have been rounded to one decimal
point and are given in percentage.

ARIMA(1,2,1)

MAE 0.589
RMSE 0.791
Bias 0.255
PAB 23.8
PMR 23.5

Table 6.1: Accuracy metrics for ARIMA(1,2,1) on NCR data

The MAE and RMSE are both small. Still the PAB and PMR remains low with only
23.8% and 23.5%. This can be caused by the model’s tendency to slightly overestimate
the forecast for each time step. The bias of 0.255 hints at this problem. The next section
attempts to solve this issue of overestimation by inspecting the confidence interval

6.2 Adapting ARIMA(1,2,1) for the SCR market

The problem with the ARIMA(1,2,1) model is that it slightly overestimates the forecasted
value. Even with a slight overestimation the bid will not be accepted. Therefore, bidding
based on the ARIMA(1,2,1) model would not be very beneficial in the SCR market.

By shifting the model slightly down, this issue could be solved. The forecasts would
then lie below the actual maximum prices, resulting in the bids getting accepted. This
shift in the model will be based on the one-step confidence interval of the model. If the
model were to be shifted to the lower bound of the 95% confidence interval, then there
would be a 95% chance of the bid being accepted. Recall from section 2.23 that the
confidence interval of level 1− α0 for an ARIMA model is given by

[x̂t − ξ1−α0/2 · σ̂ϵ, x̂t + ξ1−α0/2 · σ̂ϵ]

As mentioned in section 6.1.2, σ̂ϵ
2 = 0.0494. ξ1−α0/2 can be obtained from the standard

normal distribution table [26]. For α0 = 0.05, ξ1−α0/2 = 1.96. By shifting the model down
with 1.96σ̂ϵ, there is a 95% chance that the forecasted value is less than or equal to the
actual value and, therefore, for the bid to be accepted. The shifted model returns the
following accuracy metrics

shifted
ARIMA(1,2,1)

MAE 0.556
RMSE 0.770
Bias -0.180
PAB 71.4
PMR 58.0

Table 6.2: Accuracy metrics for shifted ARIMA(1,2,1) on NCR data

Both the MAE and the RMSE are lower compared to the unshifted model. The bias,
too, is lower. Furthermore it has become negative, which is, in the context of this research,
a good thing since this means that the model tends to slightly underestimate the forecast,



6.2. ADAPTING ARIMA(1,2,1) FOR THE SCR MARKET 25

which results in the bid being accepted. This is apparent in the PAB and PMR which are
47.6 and 34.5 percent points higher for the shifted model than for the unshifted model.

It can be concluded that shifting the model down is beneficial for both the PAB and
PMR. However, shifting the model even further down is not guaranteed to be beneficial
over the long run. As described before, local minima and maxima of the model occur
exactly one time step later than they occur in the original data. This property of the
model is not just restricted to local minima and maxima. The model mimics the entire
behaviour of the original data, only one time step ahead in time. That is why, when
there is a rising trend in the price, the model falls below the actual maximum accepted
bid prices. Shifting the model even further down would then decrease the PMR. Since
the test data shows a predominately falling trend, this would not reflect in the accuracy
metrics calculated over the test data’s domain. However, since the historical data shows a
pattern of rising and falling prices, it is decided to not shift the model further down. The
final model, which forecasts form the bidding strategy, is then the shifted ARIMA(1,2,1)
model with a shift of 1.96σ̂ϵ.



Chapter 7

Modelling Positive Control
Reserve Bidding Strategy

The steps taken to compose a bidding strategy for the positive control reserve (PCR) are
similar to the steps taken in the previous chapter. That is why some explanations might
be a bit briefer. The reader is referred to the previous chapter if any clarifications are
needed. The structure of this chapter is the same as in the previous chapter. That is, in
section 7.1, the maximum accepted bid prices of PCR are modelled. In section 7.2, the
model is modified, resulting in a version whose forecasts serve as the basis for bids. The
Python code used for this chapter can be found in Appendix C.1.

7.1 Modelling maximum accepted PCR bidding prices

The modelling of the maximum accepted bid prices using an ARIMA model is discussed
in this section. In section 7.1.1 the order settings are determined. Section 7.1.2 elaborates
on the implementation of the models and selects the best model. Section 7.1.3 discusses
the performance of the model on the SCR market.

7.1.1 Order setting

Again, the orders of the models to be tested need to be determined. Figure 5.6c shows
that the logarithmic transformed, twice-differenced PCR data is stationary. Therefore,
d is set at 2. Figure 7.1 and Figure 7.2 show the respective autocorrelation and partial
autocorrelation function of the logarithmic transformed, twice differenced data.

Figure 7.1: ACF of ∆2log(yt) Figure 7.2: PACF of ∆2log(yt)
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Both the ACF and the PACF show fluctuating behaviour around zero, so neither of
them drops to zero after a certain amount of lags. Therefore no order is ruled out based
on the ACF and PACF plots. Following the same arguments made in section 6.1.1 the
maximum order for p and q is set at 10. The models that will be tested on the PCR data
are thus of the form

̂∆2log(yt) = α̂+ ϕ̂1∆
2log(yt−1) + · · ·+ ϕ̂p∆

2log(yt−p) + ϵt + θ̂1ϵt−1 + · · ·+ θ̂qϵt−q (7.1)

where p ∈ {0, 1, ..., pmax}, q ∈ {0, 1, ..., qmax}, and ϕ̂1, ..., ϕ̂p, µ̂, θ̂1, ..., θ̂q, σ̂ϵ
2 result from

maximising the likelihood function (Eq. 2.15). The maximum bidding price of the PCR
is denoted by yt.

7.1.2 Implementation and model selection

After loading the data into Python and splitting it into a training and test set, the models,
as described in the previous, section are implemented using again the ARIMA function from
the statsmodels module. The parameters are estimated by maximising the likelihood
function. The AIC is calculated for each model and the scores can be found in Appendix
C.2. The model with the lowest AIC score is the ARIMA(1,2,1) model with an AIC of
-49.982. The model summary (App. C.3) in Python returns the estimated parameters,
namely ϕ̂1 = 0.4698, θ̂1 = −0.9974 and σ̂ϵ

2 = 0.0312. Again, the model summary does not
return a value for µ̂ since the logarithmic transformed, twice-differenced data is stationary
with mean equal to zero. The accuracy of the ARIMA(1,2,1) model is further examined
in the next section. Models of higher orders show higher AIC scores as well. Therefore,
the maximum order will not be increased to test more models.

7.1.3 Forecasting performance

A series of one-step forecasts is generated over the domain of the test data. Figure 7.3
shows the original time series, the predictions and forecasts based on the ARIMA(1,2,1)
model.

Figure 7.3: ARIMA(1,2,1) predictions and forecasts on PCR data
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Again, the ARIMA model struggles with turning points.
Table 7.1 shows the MAE, RMSE, bias, PAB and PMR of the model. The rounding

is the same as in the previous section.

ARIMA(1,2,1)

MAE 0.256
RMSE 0.478
Bias 0.035
PAB 38.1
PMR 37.6

Table 7.1: Accuracy metrics for ARIMA(1,2,1) on PCR data

Again the MAE, RMSE are relatively small. The bias however shows a small tendency
to overestimate, which is why the PMR is only 37.5%. Therefore the confidence interval
will be examined in the next section in an attempt to solve this issue.

7.2 Adapting ARIMA(1,2,1) for the SCR market

Due to the low PAB and PMR scores of the ARIMA(1,2,1) model, the forecasts of the
model would not be very useful to base bids on. Similarly to section 6.2, the idea is to
shift the model down to the lower bound of the 95% confidence interval to increase the
chances of the bid being accepted (PAB) and therefore to increase the PMR. The 95%
one-step confidence interval of the PCR data is given by

[ŷt − ξ1−α0/2 · σ̂ϵ, ŷt + ξ1−α0/2 · σ̂ϵ]

The model estimated the following value for the standard deviation of the white noise
terms, σ̂ϵ

2 = 0.0312. Using the value of ξ1−α0/2 in section 6.2, the following confidence
interval is derived.

[ŷt − 1.96 · σ̂ϵ, ŷt + 1.96 · σ̂ϵ]

Therefore, by shifting the ARIMA(1,2,1) model down with a shift of 1.96σ̂ϵ, the fore-
casts lie on the lower bound of the 95% confidence interval, meaning there is a 95% chance
that the actual value is higher than the forecasted, and thus for the bid to be accepted.
The shifted model returns the accuracy metrics shown in Table 7.2.

ARIMA(1,2,1)

MAE 0.439
RMSE 0.570
Bias -0.312
PAB 90.5
PMR 76.5

Table 7.2: Accuracy metrics for shifted ARIMA(1,2,1) on PCR data

While the MAE, RMSE and the bias have increased compared to the original model,
the PMR has doubled in percent points. Therefore it can be concluded that bidding,
according to the shifted model, would be more profitable.



Chapter 8

Formalised Bidding Strategy

Chapter 6 and Chapter 7 both concluded that a shifted ARIMA(1,2,1) would be most
beneficial to base bids on. This chapter formalises a bidding strategy based on these
shifted ARIMA models. Section 8.1 defines the strategy for players who can only provide
negative control reserve (NCR) or positive control reserve (PCR). Section 8.2 defines the
strategy for players who can provide both.

8.1 Bidding strategy for players bidding on NCR or PCR
only

Players who can only provide NCR, can use the shifted ARIMA(1,2,1) model from Chapter
6 as follows: generate a one-step forecast for every week and bid the price from the one-
step forecast. When the market is cleared, feed the actual maximum accepted bid price of
that week to the model without retraining it. To determine the price to bid for the next
week, generate a one-step forecast again. The forecasted value is then the price to bid for
the next week.

Generating a bid for PCR is done in the exact same way. Expect for one thing, instead
of using the model based on the NCR data, use the shifted ARIMA(1,2,1) model based
on the PCR data, described in Chapter 7.

8.2 Bidding strategy for players bidding on both NCR and
PCR

Recall that players being able to provide both NCR and PCR are restricted to bidding on
one of the two at a time. Therefore the player should bid on the one that has the highest
potential revenue.

To determine which one has the highest potential revenue, the expected value of the
bids on NCR and PCR is inspected. If one were to bid on NCR, following the strategy
proposed in the previous section, one would bid the price generated by the one-step forecast
of the shifted ARIMA model, trained on the NCR data, x̂t+1. If one bids on PCR, one
would bid the price generated by the one-step forecast of the shifted ARIMA model,
trained on the PCR data, ŷt+1. The expected value of both bids can be calculated by
multiplying the forecasted price with the probability that the bid is accepted, that is

E(revenue from NCR) = x̂t+1 · P(x̂t+1 ≤ xt+1)
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and for PCR,

E(revenue from PCR) = ŷt+1 · P(ŷt+1 ≤ yt+1)

Since both models were shifted to the lower bound of the 95% confidence interval, the
theoretical probability of the bid being accepted is 0.95. The percentage accepted bids
(PAB), however, says something different. For the shifted ARIMA model for NCR, it has
a value of 0.580, for PCR it has a value of 0.905.

Although the PAB deviates from the theoretical probability of the bids being accepted,
the theoretical probability is used to calculate the expected value. That is, because the
PAB was only calculated over a short time interval and it is assumed that the PAB will
converge to 0.95 over a longer time period.

Returning to the bidding strategy, players should first determine which of the two bids
has the highest expected revenue. Since the probability of the bids being accepted is 0.95
for both, it would suffice to compare the forecasted NCR price to the forecasted PCR
price. The player should bid on the control reserve that has the highest forecasted price.
The price to bid is then determined by the forecast of the shifted ARIMA(1,2,1) model,
belonging to the control reserve with the highest price.



Chapter 9

Conclusion

The research question was: what bidding strategy maximises the acceptance rate and
potential revenue of players on the SCR market, based on the historic data of the maximum
accepted bid prices?

To answer the question, an ARIMA model was created for both the negative control
reserve (NCR) and the positive control reserve (PCR) data. It was found that for both
the data, an ARIMA(1,2,1) provided the best balance in fit and model complexity.

For the NCR data, the original ARIMA(1,2,1) model resulted in an acceptance rate
(PAB) of 23.8% while earning 23.5% of the potential revenue (PMR). Both of these num-
bers were on the lower side due to the tendency to slightly overestimate the forecasts of
the model. In an attempt to improve the PAB and PMR, it was shifted down to the lower
bound of the 95% confidence interval. Theoretically, there would then be a 95% chance of
a bid getting accepted, based on the forecasts of this model. Comparing a series of fore-
casts to the test data showed that this was actually 71.4%, and the new PMR was 58.0%.
Both these metrics showed an improvement compared to the original model. Therefore, it
was concluded that bidding according to the shifted ARIMA(1,2,1) model would generate
the most revenue.

The bidding strategy for the PCR data was developed in a similar way. For the PCR
data, the ARIMA(1,2,1) model had a PAB of 38.1% and a PMR of 37.6%. This model too
was shifted down to the lower bound of its one-step 95% confidence interval. The PAB and
PMR resulting from the shifted model were 90.5% and 76.5% respectively. Similarly to
the NCR data, the shifted model for the PCR data showed improvement over the original
model. Therefore, using the forecasts of this model to form a bid would produce more
revenue.

Players, able to provide only NCR or PCR, can use the forecasts for the next week of
the models mentioned above to form a bid. Players, able to provide both NCR and PCR,
should first compare the forecasted prices of both models. They should then bid on the
control reserve with the highest forecasted price. The bid they then make, consists of the
highest forecasted price, as generated by the corresponding model.

31



Chapter 10

Discussion

This chapter discusses the shortcomings of this research paper and proposes topics to
investigate in future research.

Firstly, the orders of the models were determined by first setting a maximum order and
subsequently comparing the AIC scores of all models with order less than or equal to this
maximum order. By doing this, the complexity of the model was limited. However, it did
exclude a wide range of models from testing. It can only be said that the ARIMA(1,2,1)
provided the best model for the NCR and PCR data from all models tested. It cannot,
however, be said that it was in fact the best model. For example, an ARIMA(21,2,15)
could have had a lower AIC score, and would therefore have been selected, had it been
tested.

Secondly, from both models was apparent that ARIMA does not do well with turning
points (local maxima or minima). Peaks in the ARIMA(1,2,1) models occurred exactly
one time step later than they occurred in the observed data. This could be an explanation
for why the ARIMA(1,2,1) model for the PCR data had a better performance in terms of
PAB and PMR than the ARIMA(1,2,1) model for the NCR data. Namely, because the
performance was tested on the test data. The test data of the PCR shows less fluctuating
behaviour than the test data of the NCR, making it easier for the ARIMA model to
generate accurate forecasts.

For further research, more accurate order selection methods can be used, as to not
exclude any good models from the testing. In section 5.3.1, outliers were removed from
the original dataset. This was done to create a smoother model for the data. For further
research, the model can be extended to include the outliers as well since they seemed to
occur in a yearly pattern.

The models in this research were selected based on the Akaike information criterion
(AIC). The lowest AIC, however, does not guarantee that the accuracy metrics have the
best scores as well. To improve the models, they could be selected based on a good balance
between a low AIC score and good accuracy metrics scores.

To ensure a good long-term performance of the models, the models can be retrained
every year. If a different model provides a better fit, then bids can be based on the new
model’s forecasts.

Since the goal of this research was to determine a bidding strategy purely based on the
historic data, no external factors that could influence the maximum bidding price have
been taken into consideration. For further research, one can look into the factors that
influence the price, starting with the opportunity costs of hydropower plants.

Bids on the secondary control reserve market consist of a price per megawatt and a
capacity. In this paper, only the price was considered. Swissgrid aggregates secondary
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control reserve by accepting the bids from lowest to highest until the the needed capacity
is obtained. So bidding slightly under the maximum price could imply that, although the
price is high, the capacity is not. Therefore it could be more advantageous to bid a low
price against a high volume than a high price against a lower volume. This could be an
interesting topic to research.

Lastly, other models to forecast the price can also be considered. Time series fore-
casting methods that do not struggle as much with turning points, such as exponential
smoothing, can be examined to construct a model. Forecasting by use of neural networks
could also give more accurate results. Research from Gao et al. [16] stated that the
ARIMA model performed better on electricity price forecasting than a neural network.
However, neural networks have improved since this paper was published. Therefore, a
neural network might outperform ARIMA models in price forecasting in this day and age,
and is therefore worth examining.
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Appendix A

Proofs

A.1 Proof Theorem 1

Theorem 1. For the partial autocorrelation of an AR(p) process holds the following prop-
erty

ϕk = 0 for all k > p

Proof. Let xt ben an AR(p) process. Thus xt can be written as

xt = α+ ϕ1xt−1 + · · ·+ ϕpxt−p + ϵt

where ϵt is white noise with mean zero, variance σ2
ϵ , and property E[ϵtxt−k] = 0. α =

µ(1− ϕ1 − · · · − ϕp) and ϕ1, ..., ϕp are parameters. xt is assumed to be stationary.
Recall that stationarity implies a constant mean, i.e. µt = µ. To simplify notation,

xt+1, ..., xt+k−1 is denoted by Xk. It suffices to show that cov(xt, xt+k|xt+1, ..., xt+k−1) = 0
for all k > p (see Eq. 2.3, Eq. 2.5).

cov(xt, xt+k|xt+1, ..., xt+k−1) = E[(xt − µ)(xt+k − µ)|xt+1, ..., xt+k−1]

= E[(xt − µ)(µ(1−
p∑

i=1

ϕi) +

p∑
i=1

ϕixt+k−i + ϵt+k − µ|Xk]

= E[(xt − µ)(−µ

p∑
i=1

ϕi +

p∑
i=1

ϕixt+k−i + ϵt+k|Xk]

= E[−µxt

p∑
i=1

ϕi + xt

p∑
i=1

ϕixt+k−i + xtϵt+k + µ2
p∑

i=1

ϕi − µ

p∑
i=1

ϕixt+k−i − µϵt+k|Xk]

= E[−µxt

p∑
i=1

ϕi|Xk] + E[xt

p∑
i=1

ϕixt+k−i|Xk] + E[xtϵt+k|Xk] + E[µ2
p∑

i=1

ϕi|Xk]

− E[µ

p∑
i=1

ϕixt+k−i|Xk]− E[µϵt+k|Xk] (**)

It will be shown that either the terms cancel out or are equal to zero. First of all,
µ2

∑p
i=1 ϕi (the fourth term), is a constant and the expected value of a constant is just

the constant itself. Secondly, since ϵt+k is a future term independent of xt, ..., xt+k−1, the
third and last term amount to zero. Thirdly, k > p implies that t+k−p > t. Therefore all
terms xt+k−i : i ∈ {1, ..., p} appear in the conditional part of the expectation. Therefore,
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since xt+k−i is known, it becomes constant and can be brought out of the conditional
expectation, i.e.

E[xt

p∑
i=1

ϕixt+k−i|Xk] =

p∑
i=1

ϕixt+k−iE[xt|Xk]

Using all of this, (**) can be written as

−µ2
p∑

i=1

ϕi + µ

p∑
i=1

ϕixt+k−i + µ2
p∑

i=1

ϕi − µ

p∑
i=1

ϕixt+k−i = 0

A.2 Proof Theorem 2

Theorem 2. For the autocorrelation function of an MA(q) process holds the following
property

ρk = 0 for all k > q

Proof. Let xt be a moving average process of order q. Thus xt can be written as

xt = α+ ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q

where ϵj are i.i.d. with mean zero and variance σ2
ϵ , α a constant and θ1, ..., θq parameters.

Since MA(q) is a stationary process, it has a constant mean function given by

µt = E[xt] = E[α+ ϵt + θ1ϵt−1 + θ2ϵt−2 + · · ·+ θqϵt−q]

= E[α] + E[ϵt] + E[θ1ϵt−1] + E[θ2ϵt−2] + · · ·+ E[θqϵt−q]

= α

Let k > q. It suffices to show that the autocovariance is zero for all k > q. Since the
process is stationary, the autocovariance be written as

γk = cov(xt+k, xt) = cov(xt, xt−k) = E[(xt − µt)(xt−k − µt−k]

= E[(α+ ϵt + θ1ϵt−1 + ...+ θqϵt−q − α)(α+ ϵt−k + θ1ϵt−k−1 + ...+ θqϵt−k−q − α)]

= E[(ϵt + θ1ϵt−1 + ...+ θqϵt−q)(ϵt−k + θ1ϵt−k−1 + ...+ θqϵt−k−q)] (*)

Since k > q, xt and xt−k have no overlapping white noise terms, i.e. ϵt−i ̸= ϵt−k−j

∀i, j ∈ {1, ..., q}. Recall that ϵj are i.i.d. with mean zero and therefore E[ϵiϵj ] =
E[ϵi]E[ϵj ] = 0 for i ̸= j. Thus E[ϵt−iϵt−k−j ] = 0 ∀i, j ∈ {1, ..., q}. Therefore, and by
the linearity of the expectation operator, (*) can be written as

E

[
ϵtϵt−k + ϵt

q∑
i=1

θiϵt−k−i + ϵt−k

q∑
i=1

θiϵt−i +

q∑
i=1

θ2i ϵt−iϵt−k−i

]
= 0
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Modelling NCR Data

B.1 Python code

import math

import seaborn as sns

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

from statsmodels.tsa.arima.model import ARIMA

from sklearn.metrics import mean_absolute_error, mean_squared_error

### Python script for NCR data ###

## Importing data from excel file

minweekly=pd.read_excel(’C:/Users/berbe/OneDrive/Documenten

/Studie/Technische Wiskunde 3/BEP/Bewerkte data/minweekly.xlsx’)

maxprice=pd.DataFrame(minweekly.loc[:,’Max Price’])

# Plot max price + seasonality check

plt.axvspan(7, 23, color=’grey’, alpha=0.3)

plt.axvspan(31, 55, color=’grey’, alpha=0.3)

plt.axvspan(66,78, color=’grey’, alpha=0.3)

plt.axvspan(88,107, color=’grey’, alpha=0.3)

sns.lineplot(maxprice)

sns.scatterplot(maxprice)

plt.xlabel(’Week’)

plt.ylabel(’Maximum price per MW’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.scatter([0, 51, 52, 103, 104], [32.13, 35.60, 27.50, 21.81, 21.77],

color=’red’, marker=’x’)

plt.show()
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## Defining accuracy metrics

# Defining PMR

def pmr(x: pd.DataFrame, x_hat):

pmr_num=0

for i in range(len(x)):

if x.iloc[i][0] >= x_hat[i]:

pmr_num+=math.floor(x_hat[i]*100)/100

else :

pmr_num+=0

pmr_den=x.sum()

pmr=(pmr_num/pmr_den) *100

return pmr

# Defining bias

def bias(x: pd.DataFrame, x_hat):

x_mean=x.mean()

x_hat_mean=np.mean(x_hat)

bias=x_hat_mean-x_mean

return bias

# Defining PAB

def pab(x: pd.DataFrame, x_hat):

pab_num=0

for i in range(len(x)):

if x.iloc[i][0] >= x_hat[i]:

pab_num+=1

else :

pab_num+=0

pab_den=len(x)

pab=(pab_num/pab_den) *100

return pab

## Data preparation

# Removing outliers and substituting with lin. interpolated values

maxprice.iloc[51]=11.82

maxprice.iloc[52]=11.81

maxprice.iloc[103]=8.23

maxprice.iloc[104]=7.66

maxprice.iloc[105]=7.08

maxprice.iloc[106]=6.51

# Plot of modified data

sns.lineplot(maxprice)

sns.scatterplot(maxprice)

plt.xlabel(’Week’)

plt.ylabel(’Maximum price per MW’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()
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# Log transformation

maxprice_log=np.log(maxprice)

sns.lineplot(maxprice_log)

plt.xlabel(’Week’)

plt.ylabel(’log(x$_t$)’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

# Differencing log data

maxprice_logd=maxprice_log.diff()

sns.lineplot(maxprice_logd)

plt.xlabel(’Week’)

plt.ylabel(’log(x$_t$)’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

# Differencing log data second time

maxprice_logd2=maxprice_logd.diff()

sns.lineplot(maxprice_logd2)

plt.xlabel(’Week’)

plt.ylabel(’$^2$log(x$_t$)’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

## Inspection ACF and PACF

# ACF plot log, 2 times differenced data

plot_acf(maxprice_logd2[2:118], title=None, alpha=None, lags=25)

plt.xlabel(’k’)

plt.ylabel(’ACF’)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

# PACF plot log, 2 times differenced data

plot_pacf(maxprice_logd2[2:118], title=None, alpha=None, lags=25)

plt.xlabel(’k’)

plt.ylabel(’PACF’)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

## Modelling NCR data

# Splitting data

maxprice_train=maxprice_log.iloc[0:96]

maxprice_test=maxprice_log.iloc[96:118]
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# Testing models on AIC

max_p=10

max_q=10

d=0

ARMA_table=np.zeros(((max_p+1)*(max_q+1),3))

for i in range(0,max_p+1):

for j in range(0,max_q+1):

ARMA=ARIMA(maxprice_train, order=(i,2,j))

ARMA_fit=ARMA.fit()

ARMA_aic=ARMA_fit.aic

ARMA_table[d][0]=i

ARMA_table[d][1]=j

ARMA_table[d][2]=ARMA_aic

d+=1

print(ARMA_table)

## One-step forecasting using ARIMA(1,2,1)

# Fit the ARIMA model on the training data

model = ARIMA(maxprice_train[’Max Price’], order=(1, 2, 1))

fitted_model = model.fit()

model_pred=np.exp(fitted_model.predict(start=2,

end=len(maxprice_train)-1, dynamic=False))

# Extracting parameters

print(fitted_model.summary())

# One-step forecasts on the test data

history = list(maxprice_train[’Max Price’])

forecasts = []

for t in range(len(maxprice_test)):

output = fitted_model.forecast(steps=1)

a=output.tolist()

yhat = a

forecasts.append(yhat)

obs = maxprice_test[’Max Price’].iloc[t]

history.append(obs)

fitted_model = fitted_model.append([obs], refit=False)

print(f’predicted={yhat}, expected={obs}’)

# Plotting the results

plt.figure(figsize=(12,6))

plt.xlabel(’Week’)

plt.ylabel(’Maximum price per MW’)

plt.plot(np.exp(maxprice_train), label=’Train data’)

plt.plot(np.exp(maxprice_test), label=’Test data’)

plt.plot(model_pred, label=’Predictions’ )

plt.plot(maxprice_test.index, (np.exp(forecasts)),

label=’One-step forecasts’, color=’red’)
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plt.grid(axis=’x’, linestyle=’:’)

plt.legend()

plt.show()

# Computing accuracy metrics for ARIMA(1,2,1)

model_MAE = mean_absolute_error(maxprice[96:118],np.exp(forecasts))

model_RMSE=math.sqrt(mean_squared_error(maxprice[96:118],

np.exp(forecasts)))

model_bias=bias(maxprice[96:118],np.exp(forecasts))

model_PMR=pmr(maxprice[96:118],np.exp(forecasts))

model_PAB=pab(maxprice[96:118],np.exp(forecasts))

# Computing accuracy metrics for shifted ARIMA(1,2,1)

shift=math.sqrt(0.0494)*1.96

shift_MAE = mean_absolute_error(maxprice[96:118],np.exp(forecasts)-shift)

shift_RMSE=math.sqrt(mean_squared_error(maxprice[96:118],

np.exp(forecasts)-shift))

shift_bias=bias(maxprice[96:118],np.exp(forecasts)-shift)

shift_PMR=pmr(maxprice[96:118],np.exp(forecasts)-shift)

shift_PAB=pab(maxprice[96:118],np.exp(forecasts)-shift)
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B.2 AIC scores

p q AIC

0 1 3.410
0 2 -5.105
0 3 -4.660
0 4 -2.780
0 5 -0.926
0 6 -0.537
0 7 1.012
0 8 2.752
0 9 -0.652
0 10 0.899
1 0 14.817
1 1 -6.224
1 2 -4.434
1 3 -2.789
1 4 -0.791
1 5 1.208
1 6 1.065
1 7 2.587
1 8 2.142
1 9 0.997
1 10 2.981
2 0 10.084
2 1 -4.432
2 2 -2.228
2 3 -1.942
2 4 -5.656
2 5 -3.652
2 6 -1.799
2 7 -1.112
2 8 0.196

p q AIC

2 9 3.024
2 10 3.325
3 0 3.664
3 1 -2.473
3 2 -0.492
3 3 -5.219
3 4 -3.643
3 5 -0.664
3 6 -0.569
3 7 0.317
3 8 1.796
3 9 4.794
3 10 6.733
4 0 3.940
4 1 -2.003
4 2 1.042
4 3 -3.305
4 4 -1.411
4 5 3.898
4 6 1.052
4 7 -2.383
4 8 3.992
4 9 6.670
4 10 8.656
5 0 5.759
5 1 -0.011
5 2 1.971
5 3 -3.006
5 4 0.382
5 5 1.926
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p q AIC

5 6 5.204
5 7 2.851
5 8 6.467
5 9 9.014
5 10 10.856
6 0 6.398
6 1 7.921
6 2 3.669
6 3 9.705
6 4 8.211
6 5 5.123
6 6 4.795
6 7 3.939
6 8 6.680
6 9 -2.125
6 10 7.462
7 0 7.373
7 1 9.227
7 2 5.418
7 3 12.737
7 4 10.190
7 5 3.999
7 6 6.674
7 7 4.784
7 8 0.299
7 9 9.074
7 10 7.837
8 0 9.068
8 1 11.023
8 2 7.273

p q AIC

8 3 14.712
8 4 4.224
8 5 9.406
8 6 7.868
8 7 6.662
8 8 8.378
8 9 6.971
8 10 5.680
9 0 10.906
9 1 12.801
9 2 -0.956
9 3 4.063
9 4 6.032
9 5 10.961
9 6 9.400
9 7 7.934
9 8 13.080
9 9 8.317
9 10 6.086
10 0 12.558
10 1 3.608
10 2 4.009
10 3 5.136
10 4 7.992
10 5 2.571
10 6 11.878
10 7 13.655
10 8 15.476
10 9 10.575
10 10 11.950
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B.3 Model Summary

SARIMAX Results

==============================================================================

Dep. Variable: Max Price No. Observations: 117

Model: ARIMA(1, 2, 1) Log Likelihood 16.570

Sample 0 AIC -27.140

- 117 BIC -18.906

Covariance Type opg HQIC -23.798

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.3923 0.093 4.197 0.000 0.209 0.575

ma.L1 -0.9986 1.346 -0.742 0.458 -3.637 1.640

sigma2 0.0494 0.064 0.773 0.440 -0.076 0.175

==============================================================================

Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 38.14

Prob(Q): 0.94 Prob(JB): 0.00

Heteroskedasticity (H): 0.21 Skew: 0.89

Prob(H) (two-sided): 0.00 Kurtosis: 5.19

==============================================================================
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Modelling PCR Data

C.1 Python code

import seaborn as sns

import numpy as np

import math

import pandas as pd

import matplotlib.pyplot as plt

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

from statsmodels.tsa.arima.model import ARIMA

from sklearn.metrics import mean_absolute_error, mean_squared_error

### Python script for upbidding data ###

## Importing data from excel file

plusweekly=pd.read_excel(’C:/Users/berbe/OneDrive/Documenten

/Studie/Technische Wiskunde 3/BEP/Bewerkte data/plusweekly.xlsx’)

maxprice=pd.DataFrame(plusweekly.loc[:,’Max Price’])

# Plot max price + seasonality check

plt.axvspan(7, 23, color=’grey’, alpha=0.3)

plt.axvspan(44, 60, color=’grey’, alpha=0.3)

plt.axvspan(68,80, color=’grey’, alpha=0.3)

sns.lineplot(maxprice)

sns.scatterplot(maxprice)

plt.xlabel(’Week’)

plt.ylabel(’Maximum price per MW’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

## Defining accuracy metrics

# Defining PMR

def pmr(x: pd.DataFrame, x_hat):

pmr_num=0

for i in range(len(x)):

if x.iloc[i][0] >= x_hat[i]:
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pmr_num+=math.floor(x_hat[i]*100)/100

else :

pmr_num+=0

pmr_den=x.sum()

pmr=(pmr_num/pmr_den) *100

return pmr

# Defining bias

def bias(x: pd.DataFrame, x_hat):

x_mean=x.mean()

x_hat_mean=np.mean(x_hat)

bias=x_hat_mean-x_mean

return bias

# Defining PAB

def pab(x: pd.DataFrame, x_hat):

pab_num=0

for i in range(len(x)):

if x.iloc[i][0] >= x_hat[i]:

pab_num+=1

else :

pab_num+=0

pab_den=len(x)

pab=(pab_num/pab_den) *100

return pab

## Data preparation

# Log transformation

maxprice_log=np.log(maxprice)

sns.lineplot(maxprice_log)

plt.xlabel(’Week’)

plt.ylabel(’log(x$_t$)’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

# Differencing log data

maxprice_logd=maxprice_log.diff()

sns.lineplot(maxprice_logd)

plt.xlabel(’Week’)

plt.ylabel(’log(x$_t$)’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

# Differencing log data second time

maxprice_logd2=maxprice_logd.diff()

sns.lineplot(maxprice_logd2)

plt.xlabel(’Week’)
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plt.ylabel(’$^2$log(x$_t$)’)

plt.legend([],[],frameon=False)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

## Inspection ACF and PACF

# ACF plot log, 2 times differenced data

plot_acf(maxprice_logd2[2:118], title=None, alpha=None, lags=25)

plt.xlabel(’k’)

plt.ylabel(’ACF’)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

# PACF plot log, 2 times differenced data

plot_pacf(maxprice_logd2[2:118], title=None, alpha=None, lags=25)

plt.xlabel(’k’)

plt.ylabel(’PACF’)

plt.grid(axis=’x’, linestyle=’:’)

plt.show()

## Modelling PCR data

# Splitting data

maxprice_train=maxprice_log.iloc[0:96]

maxprice_test=maxprice_log.iloc[96:118]

# Testing models on AIC

max_p=10

max_q=10

d=0

ARMA_table=np.zeros(((max_p+1)*(max_q+1),3))

for i in range(0,max_p+1):

for j in range(0,max_q+1):

ARMA=ARIMA(maxprice_train, order=(i,2,j))

ARMA_fit=ARMA.fit()

ARMA_aic=ARMA_fit.aic

ARMA_table[d][0]=i

ARMA_table[d][1]=j

ARMA_table[d][2]=ARMA_aic

d+=1

print(ARMA_table)

## One-step forecasting using ARIMA(1,2,1)

# Fit the ARIMA model on the training data

model = ARIMA(maxprice_train[’Max Price’], order=(1, 2, 1))

fitted_model = model.fit()

model_pred=np.exp(fitted_model.predict(start=2,

end=len(maxprice_train)-1, dynamic=False))
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# Extracting parameters

print(fitted_model.summary())

# One-step forecasts on the test data

history = list(maxprice_train[’Max Price’])

forecasts = []

for t in range(len(maxprice_test)):

output = fitted_model.forecast(steps=1)

a=output.tolist()

yhat = a

forecasts.append(yhat)

obs = maxprice_test[’Max Price’].iloc[t]

history.append(obs)

fitted_model = fitted_model.append([obs], refit=False)

print(f’predicted={yhat}, expected={obs}’)

# Plotting the results

plt.figure(figsize=(12,6))

plt.xlabel(’Week’)

plt.ylabel(’Maximum price per MW’)

plt.plot(np.exp(maxprice_train), label=’Train data’)

plt.plot(np.exp(maxprice_test), label=’Test data’)

plt.plot(model_pred, label=’Predictions’)

plt.plot(maxprice_test.index, (np.exp(forecasts)),

label=’One-step forecasts’, color=’red’)

plt.grid(axis=’x’, linestyle=’:’)

plt.legend()

plt.show()

# Computing accuracy metrics for ARIMA(1,2,1)

model_MAE = mean_absolute_error(maxprice[96:118],np.exp(forecasts))

model_RMSE=math.sqrt(mean_squared_error(maxprice[96:118],

np.exp(forecasts)))

model_bias=bias(maxprice[96:118],np.exp(forecasts))

model_PMR=pmr(maxprice[96:118],np.exp(forecasts))

model_PAB=pab(maxprice[96:118],np.exp(forecasts))

# Computing accuracy metrics for shifted ARIMA(1,2,1)

shift=math.sqrt(0.0312)*1.96

shift_MAE = mean_absolute_error(maxprice[96:118],np.exp(forecasts)-shift)

shift_RMSE=math.sqrt(mean_squared_error(maxprice[96:118],

np.exp(forecasts)-shift))

shift_bias=bias(maxprice[96:118],np.exp(forecasts)-shift)

shift_PMR=pmr(maxprice[96:118],np.exp(forecasts)-shift)

shift_PAB=pab(maxprice[96:118],np.exp(forecasts)-shift)
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C.2 AIC scores

p q AIC

0 1 -37.662
0 2 -48.126
0 3 -47.198
0 4 -46.719
0 5 -44.986
0 6 -43.021
0 7 -41.263
0 8 -43.491
0 9 -42.325
0 10 -40.522
1 0 -32.671
1 1 -49.982
1 2 -48.120
1 3 -44.656
1 4 -44.967
1 5 -43.664
1 6 -41.664
1 7 -39.914
1 8 -43.692
1 9 -40.190
1 10 -41.195
2 0 -37.188
2 1 -48.086
2 2 -46.581
2 3 -44.635
2 4 -43.845
2 5 -39.877
2 6 -39.630
2 7 -42.798
2 8 -41.321

p q AIC

2 9 -39.358
2 10 -38.927
3 0 -35.811
3 1 -46.380
3 2 -44.307
3 3 -45.137
3 4 -44.649
3 5 -41.774
3 6 -40.715
3 7 -41.146
3 8 -39.224
3 9 -37.304
3 10 -31.772
4 0 -35.398
4 1 -45.242
4 2 -42.389
4 3 -45.161
4 4 -42.213
4 5 -40.022
4 6 -37.519
4 7 -38.869
4 8 -36.591
4 9 -34.933
4 10 -33.245
5 0 -33.577
5 1 -43.414
5 2 -41.618
5 3 -40.582
5 4 -41.227
5 5 -40.592
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p q AIC

5 6 -37.735
5 7 -37.644
5 8 -33.399
5 9 -33.219
5 10 -32.095
6 0 -31.820
6 1 -42.966
6 2 -39.631
6 3 -40.408
6 4 -39.347
6 5 -38.933
6 6 -35.804
6 7 -35.315
6 8 -33.542
6 9 -29.900
6 10 -32.088
7 0 -33.951
7 1 -42.834
7 2 -40.979
7 3 -41.901
7 4 -39.425
7 5 -41.165
7 6 -34.815
7 7 -34.394
7 8 -31.487
7 9 -28.106
7 10 -29.622
8 0 -32.303
8 1 -41.024
8 2 -39.339

p q AIC

8 3 -40.005
8 4 -38.383
8 5 -37.330
8 6 -34.925
8 7 -31.450
8 8 -30.083
8 9 -28.033
8 10 -27.414
9 0 -30.700
9 1 -39.873
9 2 -37.337
9 3 -38.122
9 4 -36.821
9 5 -34.107
9 6 -31.871
9 7 -31.496
9 8 -28.058
9 9 -26.650
9 10 -27.537
10 0 -30.409
10 1 -38.580
10 2 -35.899
10 3 -35.935
10 4 -34.662
10 5 -34.794
10 6 -32.141
10 7 -30.739
10 8 -31.169
10 9 -23.141
10 10 -30.055
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C.3 Model summary

SARIMAX Results

==============================================================================

Dep. Variable: Max Price No. Observations: 117

Model: ARIMA(1, 2, 1) Log Likelihood 39.827

Sample 0 AIC -73.655

- 117 BIC -65.420

Covariance Type: opg HQIC -70.313

==============================================================================

coef std err z P>|z| [0.025 0.975]

------------------------------------------------------------------------------

ar.L1 0.4698 0.080 5.850 0.000 0.312 0.627

ma.L1 -0.9974 0.572 -1.743 0.081 -2.119 0.124

sigma2 0.0312 0.017 1.873 0.061 -0.001 0.064

==============================================================================

Ljung-Box (L1) (Q): 0.09 Jarque-Bera (JB): 74.40

Prob(Q): 0.76 Prob(JB): 0.00

Heteroskedasticity (H): 0.30 Skew: 1.00

Prob(H) (two-sided): 0.00 Kurtosis: 6.40

==============================================================================
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