
Collaborative Private Decision-Tree Evaluation using
(Multi-Key) Fully Homomorphic Encryption
with applications to Risk-Adaptive Access Control

D. G. van der Ende

Te
ch

ni
sc

he
Un

iv
er
si
te
it
De

lft





Collaborative Private Decision-Tree
Evaluation using (Multi-Key) Fully

Homomorphic Encryption
with applications to Risk-Adaptive Access Control

by

D. G. van der Ende

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on April 13th/14th, 2021 at 10:00 AM.

Student number: 4292014

Project duration: February 10th, 2020 – April 1st, 2021

Thesis committee AM: Prof. dr. D. C. Gijswijt, TU Delft, supervisor,

Dr. ir. M. van Gijzen, TU Delft,

Dr. G. Spini, TNO.

Thesis committee CS: Dr. Z. Erkin, TU Delft, supervisor,

Dr. M.M. de Weerdt, TU Delft,

Dr. ir. R.M. Seepers, TNO.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Preface

If someone told me at the start of my studies that I would write my Master’s thesis on homomorphic

encryption, I would have never believed this, let alone understood what homomorphic encryption is.

Only 1.5 years ago, I followed my first cryptography course in Melbourne, taught by an inspiring pro-

fessor that showed me the magical properties of homomorphic encryption. This immediately sparked

my interest. Cryptography is a research field on the intersection of mathematics and computer sci-

ence and is therefore the perfect research area for my thesis; this thesis is the final requirement to

obtain a degree in both Computer Science and Applied Mathematics. Next to this, cryptography has a

clear and important application in real life. Therefore, I am grateful for the knowledge I have obtained

during the past year. All in all, with handing in this thesis, my life as a student at Delft University of

Technology comes to an end. But without my supervisors, friends and family around me, this thesis

would not have been as it is now. Therefore, I would like to thank some people in particular.

First of all, I would like to thank my two TNO supervisors, Gabriele Spini and Robert Seepers.

Reserving time every two weeks to discuss the progress of this thesis always resulted in interesting

new insights or welcome non-thesis-related discussions. While Gabriele was always there to help me

with technical, mathematical challenges, Robert made sure that I kept seeing the whole picture. Next,

I would like to thank both my supervisors at the TU Delft: Dion Gijswijt from Applied Mathematics

and Zekeriya Erkin from Computer Science. I want to thank you both for all the time you took to

guide me in this research, the insightful discussions and the weekly check-ups of how I was doing,

since working from home has not always been easy. Also, a big thanks to all members of the thesis

committees for taking the time to evaluate my work. As I always will be, I am grateful to my family and

boyfriend whose support knows no limits and to all my friends who made my student life as exciting

as it was. Last, but not least, I would like to thank you for having finished the first page of my thesis. I

hope you will enjoy reading the rest of it as much as I enjoyed conducting this research.

Dieuwke van der Ende

Delft, April 2021

iii





Abstract

Decision-tree evaluation is a widely-used classification approach known for its simplicity and effec-

tiveness. Decision-tree models are shown to be helpful in classifying instances of fraud, malware, or

diseases and can be used to make dynamic, flexible access decisions within an access-control system.

These applications often require sensitive data of more than one party, like financial or health-related

records. It is important to keep this data private, especially when the decision-tree evaluation is done

in a collaborative manner where more than one party provides sensitive input data.

Current privacy-preserving solutions only consider scenarios in which input data originates from

a single source. However, collaboration for decision-tree evaluation tasks is needed more and more

since these collaborations often bear fruit. Therefore, in this work we address Private Decision-Tree

Evaluation in a collaborative setting. We assume one entity, called the server, that holds the decision

tree and multiple users that provide private data on which the decision tree is evaluated. The focus

of our research lies on solutions that make use of homomorphic encryption. We give ten different

protocols that each take place in a different setting; either the holder of the decision tree receives the

evaluation result or the users that provide the input. The protocols use Multi-Key Fully Homomorphic

Encryption (FHE) or normal FHE with a Semi-Trusted Third Party (STTP). Additionally, we introduce a

novel key-switching method within two of the STTP protocols such that the dependency on the STTP

is greatly reduced. All protocols are proven to be secure in the semi-honest model and compared in

terms of run-time complexity and communication costs.

Due to the high computational overhead for the Multi-Key FHE schemes, the protocols that make

use of these schemes are not yet feasible. Therefore, the protocols that use an STTP are the most

promising. All protocols take no more than 4 communication rounds. Assuming that the implemen-

tation can be parallelized and given an input bit length of 4, the decision-tree evaluation in our proto-

cols takes in the worst case between 60 and 160 hours, executed on an Intel Core Processor at 2.4 GHz

with 16 GB memory.
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1
Introduction

For proper treatment, it is crucial that doctors have access to medical information about their patients.

Moreover, in emergency situations access to the correct medical records should be given instanta-

neously in case these records are essential for proper treatment. In the Netherlands, information is

shared between medical providers via the General Practitioner (GP) of the patient, on the condition

that this patient gave permission sometime in the past. This information stored at the GP is often not

up-to-date or thorough, since medical providers often store medical data only on their own systems

and do not share it [89]. Therefore, to cope with the lack of information, medical files are sometimes

transported together with the patient in the ambulance via a USB-stick or even sent via e-mail or fax,

not secured or encrypted [103]. As a consequence, the privacy of the documents is not guaranteed

and in emergency situations those additional documents can often not be shared on time. This can

cause wrong or repeated treatment which in turn can lead to severe or fatal consequences [113]. On

top of this, since the current platform is based on ‘all-or-nothing’ according to the permission of pa-

tients, healthcare providers can view all or no medical files once permission is given or not given. In

April 2020, to tackle the delay in treatment caused by non-specified consents, the government of the

Netherlands registered 8 million Dutch citizens as ‘Covid-19-opt-in’ [78]. This means that all people

that did not yet specify their permission status, are registered as if they gave this permission sometime

in the past. Technically, all the Emergency Health Care (EHC) providers in the Netherlands now have

the possibility to see the medical information of all these people without the patient giving permis-

sion explicitly [110]. The aggregated security risk of this large amount of access points can become

significant as these points can be used for phishing or shoulder surfing attacks [113].

To address these problems, doctors and consultants in the field advocate the deployment of Elec-

tronic Health Records (EHRs) at the GP to which all medical information of each healthcare provider

is synchronised automatically [89]. This system needs to be coupled with an access-control system

that determines to whom – and in which circumstances – access to certain medical files is granted.

Such a system should be able to take into account the current context and change access decisions

depending on the severity of the situation [30]. Next to this, the doctors should only gain access to the

files that are in line with the treatment or symptoms or their current task; this is called the principle of

need-to-know or the principle of least privilege [113].

1



2 1. Introduction

Figure 1.1: An example of a RAdAC use-case.

1.1. Risk-Adaptive Access Control

Healthcare is only one of the domains where such a specialised access-control system is required.

Within the military, for example, there is also a need to exchange information to successfully complete

missions. On the theatre of war, circumstances can change drastically and emergency conditions can

occur. In these conditions, unplanned access decisions often need to be taken and the consequences

of not sharing information can be more grave than those of sharing it [75]. Also, access to information

may have to be granted in ways that were not previously foreseen. Other examples of environments

where specialised access-control systems are needed are within air traffic control, multinational part-

nerships, or when multiple governmental institutions work together.

Several access-control systems are proposed in the literature [81, 99]. Many of them are not capa-

ble of handling complex, dynamic environments and their associated challenges since they employ

rigid and static access control policies [43]. Fortunately, research has been done into new access-

control models that tackle the above limitations. In 2009, McGraw [75] proposed a novel access-

control model that dynamically provides access to information: Risk-Adaptive Access Control (RAdAC).

McGraw sees this model as an emulation of real-world decision making where operational need, se-

curity risks and the influence of situational conditions on these factors are taken into account. RAdAC

bases the access decision on the determined security risk instead of only a strict comparison of the in-

put with the system’s rules. It grants access in case the risk is lower than the acceptable risk associated

with the operational benefit of the access request. In this way, the system can handle more complex

and dynamic environments where risks can be accepted more often in case these are outweighed by

the operational benefit of granting access.
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Figure 1.2: An example of a RAdAC decision tree that can be used within the use-case of Figure 1.1; the input is classified towards
risk levels and in case the operational benefit outweighs this risk, access is granted.

As an example, in Figure 1.1 a use-case is given in which RAdAC can be applied. It demonstrates

an emergency situation in which a doctor tries to access some medical files of the patient. The doctor

works in a hospital close to the location of the accident, but this hospital is not the usual healthcare

provider of the patient. RAdAC can then base the access decision on attributes originating from mul-

tiple organisations; the hospital of the doctor, the GP and the 112 emergency centre. RAdAC translates

all attributes to a risk value related to the access request and checks how it compares to the operational

benefit of granting the access request.

1.2. Decision-tree evaluation

This thesis is the first work that proposes to use a decision tree as the function to determine risk within

RAdAC. In Figure 1.2, this is demonstrated for the use-case in Figure 1.1. The RAdAC system is given by

a decision tree that classifies the input attributes towards different risk levels. Access is granted if this

risk level is outweighed by the operational benefit regarding granting access to the file in the current

context. By using a decision tree, the system can be designed by associating sets of attributes to a

risk value. Other RAdAC systems need to assign a numeric risk score to every specific attribute value

and require a function that combines these scores to determine the total risk. Translating all attribute

values to risks and finding the correct aggregation function is known to be a hard task [19, 43].

Next to the application within RAdAC, decision-tree evaluation has shown to be very useful in

many other impactful areas, due to its effectiveness and low training cost [73, 104]. It is a valuable

tool that has a positive impact on our daily lives. Decision trees are used to provide users with proper

recommendations on products, are deployed to detect malware, and are even able to predict bacterial

infections [55, 92, 94]. Other applications include fraud detection, spam filtering, intrusion detection,

and remote diagnosis [56, 91, 98, 105]. Decision-tree evaluation is a preferred method in many real-

time applications due to the fact that it is easy to visualise and understand [12].
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1.3. Privacy concerns

Our RAdAC system comprises a decision-tree model for risk assessment. The decision tree requires

sensitive (external) data about the requestor, file, and context in order to do a proper risk assessment

of the access request [75]. This input information comes from multiple entities that all send their data

to one party that determines the access decision. The more detailed the input data, the better the

system can do the risk assessment. Recently, the privacy issues related to access-control mechanisms

have been acknowledged in the literature [10, 115, 116, 119]. One might understand that individuals

or entities do not want to share all the input information due to privacy constraints. In collaborative

environments where parties work together towards a common goal but share no mutual trust, this

problem becomes even more significant. Solving this issue makes the application of RAdAC more

attractive.

Also in the other application areas, access to sensitive input data, like financial or health records,

is required in order for the decision-tree evaluation to be successful. In these fields, collaboration

between parties for classification tasks is needed more and more since these collaborations often bear

fruit [44]. As an example, collaborations between financial institutions can improve the detection of

fraud [97]. This is only possible when the privacy of the data of all these institutions is guaranteed.

Next to this, the decision-tree model that is used for the classification might be a valuable asset to

the holder and should not be publicly known. Furthermore, it is shown that making the model public

could violate the privacy of the training data due to model-inversion attacks [50].

Therefore, it can be concluded that decision-tree evaluation within RAdAC and other contexts

raises many privacy concerns. Ideally, the evaluation should be done while keeping both the input

data and the model private.

1.4. Potential solutions

Related to our problem setting, namely the privacy concerns regarding decision-tree evaluation, mul-

tiple methods have been proposed that preserve the confidentiality of the input data and the decision

tree itself while evaluating a decision tree. These are called Private Decision-Tree Evaluation (PDTE)

protocols. The existing PDTE protocols make use of one of these techniques: homomorphic encryp-

tion [13, 59, 104, 107, 114], garbled circuits [106] or secret sharing [38, 40].

All the current PDTE protocols are placed in the two-party setting where a server holds a decision-

tree model and a user holds all inputs. These protocols try to reach the goal of outputting the eval-

uation result to the user, where both the user and the server do not gain any knowledge about the

decision tree or input respectively. These protocols are therefore in a promising direction with regard

to solving our privacy concerns.

1.5. Research questions

None of the current works focusing on PDTE propose privacy-preserving solutions when the input

data that needs to be classified is coming from more than one authority or organisation. However,

within RAdAC, the input that needs to be classified comes from different external sources, like a hos-

pital, GP or the device of the requestor. As mentioned earlier, collaboration for decision-tree evalua-

tion is needed more and more. Sometimes, even collaboration between mutually untrusted parties or

parties that have conflicts of interests, such as in the context of military operations, is required. This

can only happen if the privacy of each of those parties is guaranteed.
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Clearly, there is a need for solutions that address both the necessity of collaboration in the field

of decision-tree evaluation and the privacy issues that coexist with this collaboration. Our meaning

of collaboration is that the input variables originate from more than one party. These privacy issues

are addressed when both the input attributes and the decision-tree model stay private to the owners.

Therefore, in this thesis we try to answer the following research question:

How can we collaboratively evaluate a decision tree in a privacy-preserving way using ho-

momorphic encryption?

Our work focuses on using homomorphic encryption as the main technique for our solutions. Ho-

momorphic encryption is a type of encryption where computations can be performed on ciphertexts

without accessing the plaintexts. As a result, the number of required communication rounds stays low

and independent of the size of the tree. In addition, within homomorphic encryption many different

research areas exist, which makes the number of potential research directions widespread.

We compare our protocols in terms of run-time complexity and communication costs. It is as-

sumed that all protocols take place in the semi-honest model which means that all parties execute the

protocols correctly. In order to check the feasibility of our protocols regarding the use-case, we discuss

how different types of variables can be handled in our protocols. Therefore, we define the following

sub-questions:

1. How do we prove the correctness and the security in the semi-honest model of these protocols?

2. How do these protocols compare in terms of run-time complexity and communication?

3. How can numerical and categorical variables be handled in these protocols?

1.6. Contributions

This thesis takes a step towards feasible solutions for collaboratively evaluating a decision tree in a

privacy-preserving way. To our knowledge, this is the first work that addresses Private Decision Tree

Evaluation in a collaborative setting.

First of all, we give ten different collaborative PDTE protocols that each take place in a different

setting; the access-control use-case where the server, that holds the decision tree, receives the result

or the use-case where the decision-tree model is used as an external resource and where all users

receive the evaluation result. The protocols either use multi-key FHE or normal FHE. Multi-key FHE

allows homomorphic calculations on ciphertexts that are not encrypted under the same key. Six of our

protocols use an additional party that participates in the protocol but does not gain any knowledge

about the tree or the input. In this thesis we call this additional party a Semi-Trusted Third Party

(STTP), since the amount of trust that needs to be put into this party is very low. Additionally, we

introduce a novel key-switching method within two of the STTP protocols such that the dependency

on the STTP is greatly reduced.

Next to this, we show that all our protocols are secure in the semi-honest model. We give an elab-

orate analysis of the correctness of the FHE schemes and the noise propagation during all the op-

erations in the protocols, which is essential for a correct implementation. Also, we introduce some

adaptations and new operations within the FHE schemes that are required for the functionality of our

protocols and to make our schemes more intuitive and efficient. We give a first implementation of the

protocols in order to do an overall comparison of the protocols in terms of run-time complexity and

communications costs and give suggestions on how to implement these protocols in the use-cases

mentioned earlier.



6 1. Introduction

Concisely, our contributions are the following:

− We propose the first collaborative PDTE protocols using (multi-key) fully homomorphic encryp-

tion, an STTP and/or a key-switching procedure.

− We provide extensive analyses of the used homomorphic encryption schemes, which are re-

quired for implementation of the protocols. This includes the introduction of new homomor-

phic operations, adaptations to bigger plaintext space, and detailed description of the parame-

ter setting of the schemes and noise propagation per homomorphic operation. Additionally, we

provide proofs of correctness and elaborate upon security proofs from the literature.

− We implement all protocols ourselves, including all used encryption schemes and building blocks,

and compare them in terms of computational complexity and communications costs (number

of rounds and communication sizes).

− We are the first work that proposes the use of decision trees as a way of determining the risk of

an access request within RAdAC.

As a final remark, since our work is the first work to propose private decision-tree evaluation where

the input originates from more than one user, we introduce a new line of research within private

decision-tree evaluation.

1.7. Outline

The rest of this thesis is organised as follows. We present the related work in Chapter 2. Next, in

Chapter 3, we cover the preliminaries necessary for understanding the subsequent chapters including

some techniques and schemes that are used in the rest of this thesis.

Due to the fact that this is a thesis to obtain a degree in both Applied Mathematics and Computer

Science, the next chapters have a clear distinction between the two different aspects of this research.

Therefore, we introduce two parts in this thesis, where the focus of the first part lies within mathemat-

ics and the second part within computer science. Since the thesis is set up around one topic, which

addresses both research fields, we advice the reader to read this thesis as a whole.

The first part consist of two chapters. In Chapter 4, we give detailed mathematical analyses of the

used encryption schemes. This includes some adaptations required for the implementation, the in-

troduction of additional operations, and correctness proofs. We give our collaborative PDTE protocols

in Chapter 5, with several different approaches per scenario.

In the second part of this thesis, we analyse the protocols and implement them. In Chapter 6,

we give complexity and security analyses of all protocols. We give details of the implementation and

present the results regarding the run-times and communications costs of our protocols, in Chapter 7.

Finally, in Chapter 8 we discuss the results and give conclusions and recommendations for future

work. For the interested reader, the Appendix finishes this thesis with an additional proof draft, the

parameter setting per protocol, additional results and the evaluation of an example use-case tree.
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Related work

This chapter describes the literature related to this thesis, including the research within RAdAC and

existing privacy-preserving techniques within access control. Secure Multi-Party Computation (MPC)

is a field within cryptography that has the goal to design methods in which multiple parties can com-

pute an agreed function on their inputs in a secure way, where the correctness of the output is proved

and the input of every party is kept private [35]. This means that PDTE protocols are secure MPC

protocols. We build upon existing PDTE protocols, by extending the setting to multiple parties that

provide the input. Therefore, our work falls in the category of MPC using homomorphic encryption,

specifically where the evaluated function is a decision tree and the input comes from more than two

parties. Therefore, this chapter introduces some general secure MPC techniques and MPC methods

that use homomorphic encryption. Additionally, the existing PDTE protocols are described where

there is only one user that provides the input.

2.1. Towards Risk-Adaptive Access Control

Access control of data is defined as a way to protect the data against unauthorised access by checking

that a user presents proper certification before allowing them access [11]. The two commonly used

mechanisms are Role Based Access Control (RBAC) and Attribute Based Access Control (ABAC). While

RBAC makes use of predefined roles that carry a specific set of privileges associated with these roles,

ABAC grants access to those users with a certain set of attributes specifying for example the network

connection, role, and department [58].

As mentioned in the introduction, complex environments like healthcare or air traffic control de-

mand a dynamic and flexible access-control system, that is able to adapt itself to the current context

and can incorporate uncertainties in the access decision. An example is when an external doctor

acquires access to sensitive medical files in order to save the life of a patient. The traditional access-

control schemes can not offer all of this [48]. Gasparani [52] summarises the limitations of the cur-

rent schemes in three points: (i) they can only handle a certain amount of complexity making them

incapable of handling exceptional situations, (ii) they are risk-averse and therefore give little room to

support the dynamic and situational conditions in the real world, and (iii) they are not flexible enough

to handle changing behaviour of users or context.

In 2009, McGraw [75] proposed RAdAC as an emulation of real-world decision making where both

operational need, security risks, and the influence of situational conditions on these factors are taken

7
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into account. RAdAC incorporates a determination of security risk in the access decision instead of

only using a hard comparison of attributes [48]. In this way, the system can handle more complex and

dynamic environments where risks associated to granting access are accepted more often in case this

risk is outweighed by the operational benefit of the access request.

Since McGraw proposed this new idea of doing access control, several models have been devel-

oped to make an access-control system more based on risks. Some of these models were already

developed before McGraw officially defined RAdAC [27, 42]. Still, they try to incorporate risk in an

access-control system and therefore we discuss them here as well. All models are characterised by the

determination of the input factors and the function that assigns a risk value to each request [43, 48].

Kandala et al. [60] and dos Santos et al. [43] propose a framework in which an access request is defined

as a set of attributes and values to which a risk quantification function is applied. In [19] possible at-

tributes are discussed that can be taken into account within this framework. These are also used in

the work of dos Santos et al. [43]. In [42] the final risk score is a weighted mean of the risk values in

terms of availability, confidentiality, and integrity using the several input attributes. The above works

use a framework that is the closest to our approach in which we evaluate a decision tree towards risks.

Instead of assigning to each attribute a risk value on its own, we assign a risk level to a combination of

attributes. This makes it easier to design the system. Namely, defining the amount of risk contributed

by one attribute value and expressing this by a number is a very hard task [19].

Other approaches take only a few specific input factors on which the risk value is based. These

can be scores related to either the sensitivity of the document or the level of need-to-know of the

requestor. Wang et al. [112] propose a solution in this direction using a health information systems

use-case. Cheng et al. [27] and Ni et al. [83] use this approach and apply fuzzy logic to these parameters

to quantify risk values. A slightly different approach is proposed in [62, 100] where the focus lies on

the impact that a granted access can have, which is related to document sensitivity. Molloy et al. [79],

on the other hand, train classifiers on the history of made access decisions and use the confidence of

the classifiers as an indication of the risk of the access request.

2.2. Privacy-preserving techniques within access control

Recently, the privacy issues related to access-control systems have been acknowledged in the litera-

ture. According to Zhang et al. [119], frequent disclosure of the attributes will inevitably lead to leaks

of sensitive information. Xu et al. [115, 116] agree; they argue that the exposure of sensitive informa-

tion to the access-control system has an impact on the users’ privacy. Next to this, the access-control

model is often not hidden. Having this model publicly available can lead to disclosure of private

data [10]. These issues reduce the public trust in these access-control models and therefore affect

the models’ development [116]. Research has been done to tackle these privacy issues within access

control. The works that try to tackle the privacy issue regarding the access-control model require the

model to be invisible to the server that makes the access decision, for example when the access policy

is a combination of the private policies of multiple parties. To answer our research question, we are

looking for a solution that keeps the input and model private to the owners, where the access-control

model is defined by the access-control system itself. We present all proposed solutions in this section,

although some are not closely related to our research.

2.2.1. Anonymous credentials

Anonymous credentials can be seen as digitally-signed attributes that allow the owner to prove state-

ments about attribute values without revealing additional information [6]. The major advantage of

anonymous credentials is that it is not needed to disclose all attributes in the credential in order to
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authenticate yourself; the system allows for selective disclosure. Anonymous credentials work by en-

gaging the user and verifier in an interactive protocol during which the user proves that she owns

a valid credential in which some attribute values satisfy certain statements. These statements can

consist of inequalities (e.g. age > 18), ranges (e.g. 18 > age > 12) or set-membership (e.g. role ∈
[approvedroles]) [93]. The basic principle was put forward by Chaum in 1985 [23]. Efficient schemes

were proposed e.g. by Brands [17] and Camenish et al. [20].

Anonymous credentials have been applied in the context of access control, to preserve the privacy

of input attributes [6, 7, 21, 63, 93]. All these methods use selective attribute disclosure. The focus

lies on which attributes have to be revealed or what conditions have to hold over the attributes and,

based on this, certain attributes are hidden. The downside of using anonymous credentials within our

decision-tree model is that for every decision node the result of the comparison, set-membership or

equality test is still revealed.

2.2.2. Encryption-based methods

In [102] a method is proposed that preserves the privacy of an access-control model, using homomor-

phic encryption such that the model can stay hidden. In this method, first all different private policies

are homomorphically evaluated for a certain access request; then, the private decisions are combined

according to some multi-party policy. The final decision is then translated to plaintext.

To our knowledge, Xu et al. [115] propose the only cryptographic method that preserves the pri-

vacy of the input attributes. By using homomorphic encryption, each rule of the access-control policy

can be privately evaluated in two communication rounds. As for the anonymous credentials, the eval-

uator can see the outcome of every specific rule, so not all information leakage is counteracted by this

method.

Next to preserving the privacy of the input attributes or the access-control model, encryption can

also be used differently within access control. Encryption can serve as the access-control system it-

self [2, 68]. These methods work by encrypting the resources, and only users with a specific set of

attributes have the secret key to decrypt these resources. These methods can be extended to also ad-

dress the privacy concerns. In [47] a one-way anonymous key agreement protocol is added to this re-

source encryption scheme, to anonymize each attribute that is used for the key generation. Moreover,

research has been done into ways of keeping the model hidden in these schemes [67, 85, 117, 120].

2.2.3. Other privacy-preserving techniques

Next to using anonymous credentials or encryption, alternative approaches focus on disclosing less

attributes or using an additional party in the middle that is trusted more than the access-control party

and can provide evidence of the attributes.

Zhang et al. [119] have created a method in which the sensitivity of the attributes is compared to

the destination’s trust level and based on this, attributes are disclosed or not. Park and Chung [86] use

a similar approach: they define an optimal set of attributes that is essential to access a resource, based

on the attribute sensitivity and trust level of the resource provider. In [66] multiple decision points

are introduced within the access-control system. This means that users can choose which decision

point to use and disclose their attributes that are required by this decision point. Another approach

by Esmaeeli et al. [46] protects the user attributes by splitting the access-control system in a ‘home’

and ‘destination’ party using certificates. Only the first party sees the content of the attributes and

makes the access decision. Based on this, the system provides the destination party with a certificate

that denotes if access should be granted or not. Lin et al. [70] use attribute fuzzy grouping done by a

trusted third party so that a resource provider does not gain any information.
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All of these solutions result in the access-control system having access to less attributes, depending

on the sensitivity of the attributes and on the trust level of the access-control provider. To be able to

handle complex environments, the access-control system should have access to detailed information.

Neglecting attributes can therefore decrease the usability of the whole system. Some of the above

solutions introduce an additional party. In case the inputs come from more than one party, finding

such a third party that is trusted by everyone only shifts the problem: namely, now the trusted party

can see all the input attributes of all parties. Next to this, one of the solutions [46] shifts the access

decision to the party that owns the attributes, such that this party knows the exact access policy rules.

2.3. Secure Multi-Party Computation

Secure MPC protocols enable multiple parties to compute an agreed-upon function on their inputs

in a secure way, where the correctness of the output is proved and the input of every party is kept

private [35]. An example is the well-known millionaire’s problem of Yao, where two millionaires want

to find out who is richer. The function they agree upon to privately evaluate is thus x1 <? x2 with x1, x2

the amount of money the millionaires own. For constructing secure MPC protocols there are three

main building blocks that can be used; garbled circuits, secret sharing and homomorphic encryption.

The focus of this thesis lies on homomorphic encryption. Therefore, we first introduce garbled circuits

and secret sharing and how these can be used for secure MPC. After this, we discuss secure MPC using

homomorphic encryption more elaborately.

Figure 2.1: An example of a garbled table of an AND-gate [1].

Garbled circuits Yao [118] introduced garbled circuits in 1986. Garbled circuits can be applied in a

two-party setting and the function to be evaluated should be described as a Boolean circuit. One of the

parties garbles the Boolean circuit that represents the function, which is then evaluated by the other

party [1]. During the circuit garbling, every wire in the circuit is associated with a random encryption

key. The input keys are used to encrypt the value of the output key using a symmetric encryption

scheme, which can be sent to the other party in the form of a randomised table. As an example, in

Figure 2.1 such a table of an AND-gate is shown. The second party can then evaluate the circuit using

the encrypted input keys of the other party and his own input keys. The output key is gained by finding

out which value in the table can be decrypted. The two parties can then communicate with each other

to find the result of the boolean circuit.

Secret sharing Secret sharing divides secrets in a set of shares that do not reveal any information on

their own. One of the most commonly used secret-sharing schemes is the linear scheme of Shamir [101],

which is based on polynomial interpolation. This scheme works by choosing a random polynomial f

of degree at most t , such that f (0) = s with s the secret, and distributing the share f ( j ) to party j .

The correctness is proved by the fact that any set of t or less shares does not give away any informa-

tion about the secret s, but with at least t +1 shares the secret can be reconstructed [35]. Evaluating

a non-linear function, such as a multiplication, using a linear secret-sharing scheme requires some
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additional communication [1]. Therefore, the round complexity of a secret-sharing protocol is linear

in the multiplicative depth of the protocol. Multiple secret-sharing protocols have been developed

that take place in the preprocessing model where some pre-computation required for non-linear op-

erations is done in an ‘offline’ phase. An example is the SPDZ protocol [37].

2.3.1. Secure Multi-Party Computation using homomorphic encryption

Homomorphic encryption can be used for secure MPC. In contrast to secret sharing, the commu-

nication complexity of MPC with homomorphic encryption is independent of the size of the cir-

cuit [1]. Homomorphic encryption allows computations on ciphertexts without accessing the plain-

texts. The protocols that make use of homomorphic encryption either make use of FHE or additively-

homomorphic encryption. While the last one only allows additive operations on the ciphertexts with-

out accessing the plaintexts, the first allows both multiplications and additions. In contrast to proto-

cols using FHE, the protocols that use additively-homomorphic encryption often require more com-

munication.

When making use of FHE, it is straightforward to construct a secure two-party MPC protocol.

Namely, one party can encrypt its input, send it to the other party that evaluates the function on

the encryptions. FHE was first introduced in 2009 by Gentry [53]. It is suitable for contexts where

one server does all the computations on encrypted input from a client [1]. When more parties are in-

volved, creating a secure MPC protocol becomes more complicated. Ideally, all parties encrypt under

their own key, but this makes doing homomorphic operations impossible.

One way to tackle this problem is to use threshold FHE, in which the parties have the same com-

mon public key and each has a share of the secret key. A ciphertext encrypted under the public key

can only be decrypted when all parties work together. One main result in this area came from Asharov

et al. [8] that use the FHE constructions from [14]. This protocol is proven to be secure in the semi-

honest setting and works in 3 communication rounds in the Common Random String (CRS) model,

that assumes that there is a common random string that is known by all parties.

Mukherjee and Wichs propose the first 2-round MPC protocol that is secure in the CRS model,

based on Multi-Key FHE [80]. A Multi-Key FHE scheme allows homomorphic operations on cipher-

texts encrypted under different keys. As the scheme of Asharov et al. [8], this protocol is proven to be

secure in the semi-honest setting. The scheme can be used for on-the-fly MPC. This has the advantage

that parties can go online at any moment, send their encrypted input and go offline again.

2.4. Multi-Key Fully Homomorphic Encryption

The first Multi-Key FHE scheme based on a commonly-used hard mathematical problem, namely

Learning with Errors (LWE), is from Clear and McGoldrick [31] and is based on the GSW FHE scheme.

This scheme was simplified by Mukherjee and Wichs who built the 2-round multi-party computation

protocol around it, as mentioned in Section 2.3.1 [80]. These two schemes are static, so no additional

keys can be added during the protocol. So, either the protocol has to restart again or some expensive

bootstrapping procedure has to take place, that ‘refreshes’ the ciphertext, in case more parties are

added.

In the same year, both Peikert et al. and Brakerski et al. solved this problem by creating schemes

that are multi-hop for keys [15, 88]. The work of Brakerski et al. minimises the ciphertext size by using

an expensive bootstrapping procedure which is necessary for every homomorphic operation. This

work uses the extension algorithm from [80] to extend secret key encryptions to more keys, which

can then be used for this bootstrapping. Peikert et al.’s [88] solution has bigger ciphertexts but the
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homomorphic operations only require some matrix operations like in the GSW FHE scheme. Several

other multi-hop multi-key schemes have been proposed as well, extending other FHE schemes from

the literature [24–26].

2.5. Private Decision-Tree Evaluation protocols

The research within privacy-preserving methods for decision trees can be split in two parts: either it

focuses on creating the decision-tree model while keeping the training data private [72] or it proposes

a privacy-preserving evaluation method [13, 39, 40]. Since our work lies in the second category, we

discuss the current studies in that field.

The existing PDTE protocols make use of one of the MPC techniques: garbled circuits, secret shar-

ing or homomorphic encryption. Our works follows the works within homomorphic encryption. All

existing protocols are placed in the two-party setting where a server holds a decision-tree model and

a user holds all input, while we are looking for a solution in case the input originates from multiple

parties. All the protocols described below try to reach the goal of outputting the classification to the

user, where the user and the server do not gain any knowledge about the decision tree or the input,

respectively. We now introduce all protocols briefly per used technique. All the protocols are secure in

the semi-honest setting.

2.5.1. Protocols based on garbled circuits

The first PDTE protocols were introduced by Brickell et al. [18] and Barni et al. [9] in 2007 and 2011.

These protocols are based on garbled circuits and were quickly outperformed by some of the schemes

using homomorphic encryption in terms of complexity and communication. Tueno et al. [106] pro-

pose the first protocol that has sub-linear complexity of the size of the trees by representing the trees

as arrays and implementing oblivious array indexing, a protocol that makes it possible to access an

element of an array where the index stays private, together with garbled circuits. The tree is repre-

sented as an array with node elements that contain the threshold value, the indices of the child nodes

and the index within the attribute vector. In this protocol the server does not know which node it is

evaluating. In each iteration, first an oblivious array indexing protocol is executed in which the corre-

sponding attribute value from the attribute vector is shared between the parties. After this, a garbled

circuit evaluates the index of the next child node, which is secretly shared between the parties. The

corresponding node is found by using oblivious array indexing (but then with the server holding the

tree array). A garbled circuit can be evaluated to check if the new node is a leaf. This results in only

D necessary comparisons, with D the depth of the tree. The number of communication rounds and

communication sizes are also dependent on the depth of the tree, given by D2 +3D and O (D4).

2.5.2. Protocols based on secret sharing

A protocol using secret sharing was constructed by de Cock et al. [40]. It makes use of three sub-

protocols: an oblivious input selection for each node, a secure distributed-comparison protocol and

a secure multiplication-of-integers protocol. For each internal node, the corresponding attribute is

compared to a threshold. By using the oblivious input selection, which is similar to oblivious array

indexing, the user does not know which attribute is used at each node. The decision tree is then

evaluated by expressing it as a polynomial and using secure multiplication and local addition of the

secret shares. The final answer is shared between the two parties and the results can be reconstructed

by combining the shares of all parties. The user only gets to know the depth of the tree. The secure

multiplication protocol is placed in the commodity-based model where pre-distributed data is made
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available to the players by a trusted initialiser. This can be replaced by running pre-computations

during a setup phase. The complexity is linear in the number of nodes in the tree. The protocol makes

use of a comparison protocol that requires dlog2`e+1 communication rounds with ` the bit-size of

the input that is compared. Each secure multiplication requires 1 round as well.

Damgard et al. [38] adapt the model of de Cock et al. [40] by using a new secret-sharing based

comparison protocol that works over rings instead of field. This results in a small increase in com-

munication costs but a bigger improvement in efficiency. They also show how to make their model

actively secure.

2.5.3. Protocols based on homomorphic encryption

The homomorphic encryption protocols make use of FHE or additively-homomorphic encryption.

The schemes using additively-homomorphic encryption [59, 104, 114] require more communication

rounds than the schemes using FHE [13, 107], but are often computationally less expensive.

In [13] a privacy-preserving decision-tree protocol based on fully homomorphic encryption is pro-

posed, where the decision tree is represented by a polynomial whose output is the result of the classi-

fication. Wu et al. [114] improved this protocol two years later by using different techniques such that

the protocol only requires homomorphic additions and no homomorphic multiplications. In [104]

again an improvement, mostly for large trees, is gained by exploiting the structure of the decision tree.

In 2018, Joye et al. proposed another protocol based on the protocol of Wu et al. [59] by optimising the

comparison protocol and reducing the number of comparisons, but making the communication and

number of rounds dependent on the tree depth. They make use of additively-homomorphic encryp-

tion and oblivious transfer. Tueno et al. [107] give a client-server protocol that delegates the evalua-

tion to the server while preserving privacy by evaluating the tree on ciphertexts encrypted under the

client’s public key. Below, we describe the ideas of all main protocols using homomorphic encryption.

The two methods of Tai et al. [104] and Tueno et al. [107] require a low, constant number of rounds.

The protocol of Wu et al. [114] uses a comparison protocol (for the internal nodes) that requires

an additive homomorphic encryption scheme. The answers of the comparisons are secretly shared

between the two parties. The user sends all its shares in encrypted form to the server, which then

sends back the comparison results, after permuting the tree. The user then decrypts and finds the

index of the correct leaf node in the permuted tree. By engaging in an oblivious transfer protocol, the

client gets to know the value of the leaf. The protocol takes 6 rounds; its complexity is exponential in

the depth of the tree, and the number of comparisons is equal to the number of decision nodes.

Tai et al. also use additively-homomorphic encryption [104]. Their protocol takes 4 rounds and

the computational complexity is linear in the number of decision nodes. At each decision node the

user and the server interact in a comparison protocol [108], the results of which are secretly shared

between the two parties. After this, the user sends these shares in encrypted form to the server who

then homomorphically evaluates every path. This results in a cost value for each path, which is only

equal to zero if it corresponds to the actual evaluation path. These encrypted path costs, together with

the encrypted labels, are sent to the user in a random order. The user can then decrypt all costs and

find the classification label.

Joye et al. use the first scheme of Wu et al. as a baseline but permute at every level of the tree [59].

The number of comparisons is reduced to one per level, but the number of rounds depend on the

depth of the tree. It executes an oblivious-transfer protocol multiple times between the user and

server. The workload is reduced for both the user and the server compared to the other schemes,

but it is still linear in the number of decision nodes.

Tueno et al. [107] propose the first non-interactive PDTE protocol. It makes use of fully homomor-

phic encryption. The protocol is initialised by a one-time key generation, after which the user encrypts
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his input bit-wise and sends it to the server. The server then computes the decision bit for each com-

parison node by using the comparison scheme in [28]. In this scheme, the comparison is carried out

by homomorphic bit additions and multiplications. The result of each comparison is stored at both

child nodes. For every path the comparison bits are aggregated and combined with the classification

labels, which results in the encrypted classification label of the tree. The server then sends this to the

client who is able to decrypt it. In this way, the protocol only has one round of communication.



3
Theoretical background

In this chapter the background knowledge is discussed that is required for understanding the subse-

quent chapters. First, the general preliminaries are stated, followed by an explanation of the Learning

with Errors problem, a mathematical problem that defines the security of our encryption schemes.

After this, a description of two (Multi-Key) Fully Homomorphic Encryption schemes are given that are

implemented and used as encryption schemes for our protocols. Lastly, we formally define a deci-

sion tree and give a decision-tree evaluation algorithm. We give two methods from the literature for

privately evaluating a decision tree. Our protocols build upon these methods.

3.1. Preliminaries

The set of integers modulo q , namely {0,1, . . . , q −1}, is denoted by Zq . A column vector and a matrix

are written in bold letters, for example x ∈ Zn and M ∈ Zn×m . A row vector of length n with elements

x1, x2, . . . , xn is written as
(
x1 x2 . . . xn

)
. The inner product of two vectors x,y is denoted by x ·y.

The absolute value of an element x ∈Zq is given by |x| = min{x, q − x}. Let φ be a discrete probability

distribution over a countable setΩ. Then ω←φ denotes that ω is sampled at random according to φ

and ω←Ωmeans that it is sampled uniformly at random from the setΩ.

Definition 3.1 (O-notation and Õ-notation [32]). For a given function g : N → R+ where N is an un-

bounded subset of R+, the set of functions O (g (n)) is given by { f : N → R+ | ∃c > 0,n0 ∈ R such that

f (n) ≤ cg (n)∀n ≥ n0}. The set of functions Õ (g (n)) is given by
⋃

k O (g (n) logk g (n)), meaning that the

logarithmic factors are ignored in comparison to the set O (g (n)).

Definition 3.2 (Negligible function in n [95]). The function f (n) is a negligible function in n if for all

c > 0 it holds that limn→∞ nc f (n) = 0. Often, a negligible function in n is denoted by negl(n).

The encryption schemes that are implemented in this thesis make use of the tensor product and

require the definition of a gadget vector with a computable deterministic inverse function. The defi-

nitions of these can be found below.

Definition 3.3 (Tensor product [88]). The tensor product A⊗B of a matrix A ∈ Zn1×m1
q with a matrix

B ∈Zn2×m2
q is the n1n2 ×m1m2 matrix that is defined as

A⊗B =


a1,1B . . . a1,m1 B

...
. . .

...

an1,1B . . . an1,m1 B

 .

15
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The following property holds: (A⊗B) · (C⊗D) = (AC)⊗ (BD) for any matrices A,B,C and D with the

appropriate dimensions.

Definition 3.4 (Gadget vector and matrix [88]). For any integers q ≥ 2, n ≥ 1, the gadget (column)

vector g is defined as

g =



1

2

4
...

2`−1

 ∈Z`q

with `= ⌈
log2 q

⌉
. The gadget matrix In ⊗gᵀ is given by

In ⊗gᵀ =



gᵀ

gᵀ

. . .

gᵀ

gᵀ

 ∈Zn×n`
q .

There exists an efficiently computable function denoted by (In ⊗g−1)[·], that on input matrix M ∈Zn×m′
q

for any m′, gives as output (In ⊗g−1)[M] ∈ {0,1}n`×m′
such that (In ⊗ gᵀ) · (In ⊗g−1)[M] = M [77]. The

function (In ⊗g−1)[·] can be seen as the bit-decomposition function that decomposes every element of

the matrix in a length ` column {0,1}-vector.

A common way to describe the security of an asymmetric, or public-key, encryption scheme is by

proving that the scheme is Indistinguishable under Chosen Plaintext Attack (IND-CPA) secure. This

definition of security is given by a game in which a challenger that holds the secret key engages with

an adversary that has certain capabilities. The adversary then tries to break the scheme. The idea

behind the game is that, even though the adversary can encrypt many plaintexts, he still does not

gain any additional knowledge seeing all those encryptions. Please note here that the encryption is a

randomised process, so that an encryption of one specific plaintext is different each time. The official

definition of this IND-CPA security is given below.

Definition 3.5 (IND-CPA security [61]). Consider the following security game:

1. Challenger: generates the public and private key with security parameter κ and sends the public

key to the adversary.

2. Adversary: can generate any polynomial number of encryptions and can do additional operations

in polynomial time.

3. Adversary: generates two distinct messages m0, m1 of the same length and sends them to the

challenger.

4. Challenger: chooses a random bit b ∈ {0,1}, encrypts the message mb and sends it to the adversary.

5. Adversary: is free to do additional encryptions or operations in polynomial time. He guesses a bit

b′ and the output of the experiment is 1 of b′ = b, and 0 otherwise.

The asymmetric encryption scheme is IND-CPA secure if the outcome of the above experiment, for any

probabilistic polynomial adversary, is 1 with probability at most 1/2+negl(κ), with κ the security pa-

rameter.
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The analyses and proofs regarding the encryption schemes in this thesis make use of definitions

and theorems from probability theory. Therefore, we now state the definitions and theorems from this

field that are required to understand the subsequent chapters. We assume the reader is familiar with

some basic definitions from probability theory. For the definitions of continuous or discrete random

variables and probability (density) functions, we refer the reader to [41].

Definition 3.6 (Normal (or Gaussian) probability distribution [69]). The normal probability distribu-

tion over R is defined by the probability density function

ρ(x) = e−(x−µ)2/(2σ2)

p
2πσ2

(3.1)

for x ∈ R with µ,σ> 0 ∈ R the mean and standard deviation respectively. A normal variable X is a ran-

dom variable that is distributed according to the normal probability density function. This is denoted

by X ∼N (µ,σ2).

Definition 3.7 (Discrete normal (Gaussian) probability distribution [76]). For S a countable set of el-

ements in R and µ,σ2 ≥ 0 ∈ R, the discrete normal probability function with mean µ and variance σ2

over S is defined by the probability distribution

DS,µ,σ2 (x) =
ρµ,σ2 (x)∑

y∈S ρµ,σ2 (y)

where ρµ,σ2 (x) = exp
(−(x −µ)2/(2σ2)

)
for x ∈ S. When µ= 0, the function is denoted by DS,σ2 .

Theorem 3.8 (Normal linear transform theorem [69]). Given a normal variable X ∼N (µ,σ2), a linear

function α+βX of this normal variable is another normal variable with modified mean and variance

distributed according to

α+βN (µ,σ2) =N (α+βµ,β2σ2). (3.2)

Definition 3.9 (Statistically independent [69]). Two random variables X ,Y are statistically indepen-

dent if

∀x, y : P
(
X = x,Y = y

)= P (X = x)P (Y = y). (3.3)

This means that the realisation of X does not affect the probability density distribution of Y and vice

versa.

In case two normal variables are statistically independent, it can be shown that the distribution

of the sum of these two variables again follows a normal distribution, as given by the normal sum

theorem below.

Theorem 3.10 (Normal sum theorem [69]). The sum of two statistically independent normal variables

X ∼ N 1(µ1,σ2
1) and Y ∼ N 2(µ2,σ2

2) is again a normal variable distributed with mean µ1 +µ2 and

variance σ2
1 +σ2

2, so

X +Y ∼ N 1(µ1 +µ2,σ2
1 +σ2

2).

For the difference between X and Y it holds that

X −Y ∼ N 1(µ1 −µ2,σ2
1 +σ2

2).

Definition 3.11 (Statistical distance [76]). Let φ1 and φ2 be two probability functions over the same

countable set S. The statistical distance or the total variation distance between φ1 and φ2 is given by
1
2

∑
s∈S

∣∣φ1(s)−φ2(s)
∣∣. We denote this distance by d(φ1,φ2).

Clearly, the statistical distance ranges in [0,1], since
∑

s∈S φ1(s) = 1 and
∑

s∈S φ2(s) = 1. It can also

be noted that this statistical distance is a metric since for all φ1,φ2 and φ3 probability functions on a
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countable set S, the following conditions are satisfied: (i) d(φ1,φ2) ≥ 0, (ii) d(φ1,φ2) = 0 ⇔ φ1 = φ2,

(iii) d(φ1,φ2) = d(φ2,φ1) and (iv) d(φ1,φ3) ≤ d(φ1,φ2)+d(φ2,φ3). The last condition holds since

d(φ1,φ3) = 1

2

∑
s∈S

∣∣φ1(s)−φ3(s)
∣∣= 1

2

∑
s∈S

∣∣φ1(s)−φ2(s)+φ2(s)−φ3(s)
∣∣

≤ 1

2

∑
s∈S

∣∣φ1(s)−φ2(s)
∣∣+ 1

2

∑
s∈S

∣∣φ2(s)−φ3(s)
∣∣= d(φ1,φ2)+d(φ2,φ3).

3.2. Learning with Errors

The LWE problem is a mathematical problem underlying the security of many cryptographic systems.

The encryption schemes we implemented during this research are also based on the LWE problem.

Therefore, this problem plays an important role in the security proofs of this thesis. The LWE problem

is closely related to lattice problems. Below, the definitions of lattices and two lattice problems are

touched upon, after which the LWE problem is defined together with a hardness theorem. The lattice-

related definitions and problems can be found in [32, 77, 90].

Definition 3.12 (Lattice). A subset Λ of Rm is a lattice if there exists a set of n linearly independent

vectors {b1, . . . ,bn} in Rm such thatΛ= {
∑n

i=1 xi bi | xi ∈Z}. The set of vectors {b1, . . . ,bn} is called a basis

ofΛ. The n,m are the rank and dimension of the lattice, respectively. The lattice is full-rank if and only

if m = n.

For ease of notation, sometimes a basis is denoted by a matrix B =
(
b1 b2 . . . bn

)
. The lattice

generated by B, denoted byΛ(B), refers to the lattice with the columns of B as a basis.

Definition 3.13 (Shortest non-zero vector of a lattice). Let Λ⊆ Rm be a lattice. The shortest non-zero

vector is the vector of Λ \ {0} with the smallest Euclidean norm. We denote the length of this vector by

λ1(Λ).

Such a shortest non-zero vector does exist since a lattice is discrete. We now define two lattice

problems that have hardness results that are related to the hardness of LWE. The first problem is a

promise problem which means that the outcome sets do not exhaust all possible outcomes and when

the input does not belong to one of the output sets, there are no requirements on the output of the

algorithm.

Problem 3.14 (The γ-Gap Shortest Vector Problem (GapSVPγ)). Given B a basis generating a lattice

of dimension m and γ ≥ 1 a function of the dimension, the GapSVPγ promise problem is defined as

follows. For d > 0 a real number, decide between λ1(Λ(B)) ≤ d and λ1(Λ(B)) > γd.

Problem 3.15 (The Bounded Distance Decoding (BDD) problem). Given B a basis generating a lattice

of dimension m, the BDD problem is defined as follows. Let x ∈Rm be a vector whose Euclidean distance

to the latticeΛ(B) is at most d for d > 0 a real number, find the vector inΛ(B) closest to x.

Below, we state the LWE problem and give an important result which shows that solving LWE is at

least as hard as solving a worst-case lattice problem.

Problem 3.16 (Decisional and Search LWE [87]). Let n and q ≥ 2 be positive integers andχ a probability

distribution over Zq . The Decisional LWEn,m,q,χ problem is defined as follows. Given m independent

samples drawn from one of the two distributions below, decide from which one:

1. (a,b) uniformly from Zn+1
q ,

2. (a,b) ∈Zn+1
q with a ←Zn

q uniformly and b = a · s+e mod q with e ←χ and s ←Zn
q uniformly.



3.2. Learning with Errors 19

Here, s ∈Zn
q is the same for every sample from the second distribution. The Search LWEn,m,q,χ problem

is to recover the secret s given m independent samples only from the second distribution. The problems

are solved if the correct answer is given with probability exponentially (in n) close to 1.

The Search LWE problem is closely related to the BDD problem [96]. Let s ← Zn
q and denote the

m LWE samples by (ai ,bi ) with ai ← Zn
q uniformly and bi = ai · s+ ei mod q with ei ← χ. For A =(

a1 a2 . . . am

)
and b, e the column vectors containing all bi and ei respectively, it holds that b =

Aᵀs+ e mod q . So, b can be seen as an element of the lattice {z ∈ Zm |z = Aᵀs mod q} subject to an

error. Finding s is then related to solving a BDD on this lattice with b as input vector.

It is shown that the LWE problem is as hard as a worst-case lattice problem, using a quantum

reduction. Specifically, solving a random LWE instance implies an efficient quantum algorithm for all

instances of this lattice problem. This quantum reduction was given by Regev in 2009, in the following

main theorem:

Theorem 3.17 (Theorem 1.1 from [95]). Let n, q be integers and α ∈ (0,1) a real number be such that

αq > 2
p

n. Take χ as the distribution Ψ̄α
q (see definition below). If there exists an algorithm that solves

the Search LWEn,m,q,χ problem in polynomial (in n) time then there exists a polynomial time (in n)

quantum algorithm that approximates any GapSVPγ problem on arbitrary n-dimensional lattices to

within γ= Õ (n/α).

Here, Ψ̄α
q is defined as the distribution on Zq gained by sampling from a Gaussian distribution

with mean 0 and standard deviation α/
p

2π and rounding to the closest integer modulo q . A brief

description of the proof of Theorem 3.17 is given in the appendix in Section A.1.

According to theorem 3.17, solving a random LWEn,m,q,χ instance in polynomial time is at least as

hard as solving any n-dimensional GapSVPγ instance within γ= Õ (n/α) by a polynomial-time quan-

tum algorithm. Combining this with the fact that the best known classical algorithms for GapSVPγ
with polynomial approximation factors run in exponential time and that there are no known quan-

tum algorithms that outperform the classical ones, the average-case hardness of the Search LWEn,m,q,χ

problem is established [95, 96].

Applebaum et al. [5] showed that this hardness still holds in case the elements of secret s are drawn

from the same distribution as the error distribution χ. Furthermore, Regev [95] proved that Decisional

and Search LWE are equivalent, given a prime q of size polynomially bounded in n. Thereafter, this

was shown for essentially all values for q [87]. Accordingly, the specification ‘Decisional’ or ‘Search’ is

often neglected in the context of the LWE problem.

Important to note here is that the above reduction is not tight; the polynomial time of the quantum

algorithm is much higher than the polynomial time of solving the corresponding LWE problem [22].

This is called a tightness-gap. Therefore, for the same polynomial time, the parameters of the LWE

problem are higher than the parameters of the lattice problem. The exact tightness-gap of the reduc-

tion is not known. Therefore, the exact parameter setting is often chosen such that all possible attacks

take at least 2λ bit operations, with λ a security parameter. Albrecht et al. [3] created a model that can

estimate the running time of possible algorithms that can break a specific LWE instance. The security

parameter λ is normally chosen to be equal to 110 to guarantee security [24].
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3.3. (Multi-Key) Fully Homomorphic Encryption schemes

Homomorphic encryption schemes allow mathematical operations on ciphertexts without first de-

crypting them. The result is an encryption of the outcome that the mathematical operations would

give when applied to plaintexts. This property makes these schemes useful for outsourcing computa-

tions to a cloud when it is important to preserve the privacy of the data. Mathematically, a homomor-

phic encryption scheme is defined by two groups (C , ·), (P,∗), a key generation scheme that generates

a key pair (pk,sk), an encryption procedure Enc and a decryption procedure Dec. Here, P and C are

the plaintext and ciphertext space respectively. To be (partially) homomorphic it should hold that for

any m1,m2 ∈ P and c1,c2 ∈ C with m1 = Decsk(c1) and m2 = Decsk(c2), there exists an efficient oper-

ation f on C such that Decsk( f (c1,c2)) = m1 ∗m2 [61]. Typically, the operator ∗ is either addition or

multiplication. A Fully Homomorphic Encryption scheme is homomorphic regarding both addition

and multiplication.

The first FHE scheme was given by Gentry in 2009 [53]. FHE schemes are able to evaluate arbitrary

circuits of unbounded depth and can therefore be used for running any program by an untrusted

party. Below we state the formal definition of a FHE scheme to demonstrate its functionality. A de-

tailed description of a scheme is given later, together with its homomorphic operations, correctness

and security proofs. In the definition below, it is assumed that the plaintext space is {0,1}, i.e. only bits

can be encrypted and decrypted.

Definition 3.18 (Fully Homomorphic Encryption scheme [8]). A public-key Fully Homomorphic En-

cryption (FHE) scheme is a set of 4 algorithms {FHE.Keygen, FHE.Enc, FHE.Dec, FHE.Eval}, defined as

follows:

− FHE.Keygen(1κ) → (pk,sk): Outputs a public encryption key pk and a secret decryption key sk on

input the security parameter κ.

− FHE.Encpk(µ) → c: Encrypts a bit µ ∈ {0,1} under public key pk. It outputs a ciphertext c.

− FHE.Decsk(c) →µ∗: Decrypts the ciphertext c using sk. It outputs plaintext bit µ∗ ∈ {0,1}.

− FHE.Eval( f ,c1, . . . ,cl ) 7→ c f : The homomorphic evaluation algorithm takes as input a boolean

circuit f : {0,1}l → {0,1} and a set of l ciphertexts c1, . . .cl . It outputs the result ciphertext c f which

is the encryption of f (FHE.Decsk(c1), . . . ,FHE.Decsk(cl )).

The FHE scheme is shown to be correct if FHE.Decsk
(
FHE.Encpk(µ)

)=µ for any message µ ∈ {0,1}

and sk,pk a generated key-pair. Also, it should hold that

FHE.Decsk
(
FHE.Eval( f ,c1, . . . ,cl )

)=µ f = f (FHE.Decsk(c1), . . . ,FHE.Decsk(cl ))

with f a boolean circuit with f (µ1, . . .µl ) = µ f and c1, . . . ,cl the encryptions of µ1, . . .µl ∈ {0,1} plain-

texts. We require the FHE scheme to be IND-CPA secure as defined in Definition 3.5.

While a normal FHE scheme allows homomorphic operations on its ciphertexts when encrypted

under the same key, a Multi-Key FHE scheme allows this even when the ciphertexts are encrypted

under different keys. This is done by ‘expanding’ the ciphertext to multiple keys. The formal definition

of a Multi-Key FHE scheme and its functionality is given by:

Definition 3.19 (Multi-Key Fully Homomorphic Encryption scheme [80]). A public-key Multi-Key

Fully Homomorphic Encryption scheme is a set of 5 algorithms {MKFHE.Keygen,MKFHE.Enc,

MKFHE.Expand, MKFHE.Eval, MKFHE.Dec}, defined as follows:

− MKFHE.Keygen(1κ) → (pk,sk): Outputs a public encryption and extension keys denoted by pk and

a secret decryption key sk using the input security parameter κ.
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− MKFHE.Encpk(µ) → c: Encrypts a bit µ ∈ {0,1} under public key pk. Outputs ciphertext c.

− MKFHE.Expandpk1,...,pkk (i ,c) → ĉ : Given a sequence of k public keys of different parties and a

fresh ciphertext c encrypted under the i -th public key pki, it outputs an expanded ciphertext ĉ

encrypted under all k public keys.

− MKFHE.PartDecski (ĉ) → pi : Partially decrypts the extended ciphertext ĉ that is an encryption

under pk1, . . . ,pkk using a secret key ski. The output is a partial decryption pi .

− MKFHE.FinDec(p1, . . . , pk ) →µ∗ Combines partial decryptions p1, . . . , pk to find an output plain-

text µ∗ ∈ {0,1}.

− MKFHE.Eval( f , ĉ1, . . . , ĉl ) → ĉ f : The homomorphic evaluation algorithm takes as input a boolean

circuit f : {0.1}l 7→ {0,1} and a set of l expanded ciphertexts ĉ1, . . . ĉl . It outputs the result ciphertext

ĉ f which is the encryption of f (µ1, . . .µl ) where µ1, . . .µl are the plaintext values of the extended

ciphertexts ĉ1, . . . ĉl .

As for the normal FHE scheme, a Multi-Key FHE scheme is shown to be correct if

MKFHE.FinDec
(
MKFHE.PartDecsk1 (ĉ), . . . ,MKFHE.PartDecskk (ĉ)

)=µ
for any message µ ∈ {0,1} encrypted by any party i and extended to pk1, . . . ,pkk with as result

ĉ = MKFHE.Expandpk1,...,pkk

(
(i ,MKFHE.Encpki (µ)

)
.

We also require the Multi-Key FHE scheme to be IND-CPA secure. In all FHE schemes, homomorphic

operations on ciphertexts result in an increase in ciphertext noise. Therefore, the parameters of the

scheme should be set high enough such that the final ciphertext after the complete evaluation can still

be decrypted.

In this thesis, the GSW FHE scheme and its multi-key extension are used and implemented. The

GSW scheme is conceptually simpler than other schemes and has a natural homomorphic addition

and multiplication procedure [54]. This scheme was transformed to a single-hop multi-key scheme

in [80]. The meaning of single-hop is that the extension to multiple keys can only be done once for a set

of public keys known beforehand. Therefore, multi-hop solutions were proposed, in which ciphertexts

can again be extended to additional keys after homomorphic computations have been done already.

We use the scheme of Peikert et al. as this is the most feasible multi-hop scheme that extends the GSW

scheme [88]. Below, we describe these schemes in detail. We use the simplified notation of Alperin-

Sheriff et al. [4]. The security proofs and analysis of the correctness and the homomorphic operations

are given in subsequent chapters as this is not done elaborately in the literature, but is necessary for

implementation. Namely, the amount of noise that is propagated during our protocols requires the

parameters of our scheme to be high enough such that decryption is still possible.

3.3.1. GSW Fully Homomorphic Encryption scheme

Let n be the dimension, α ∈ (0,1) a real number, q the modulus and χ =Ψ̄α
q over Zq the probability

distribution of the noise gained by sampling from a Gaussian distribution with mean 0 and standard

deviation α/
p

2π and rounding to the closest integer modulo q . Also choose another dimension pa-

rameter value m which is specified later on and let `= ⌈
log2 q

⌉
. It is assumed that a random common

public matrix is defined, namely B ← Z
(n−1)×m
q uniformly. The gadget vector g is given in Definition

3.4. The GSW scheme consists then of the following set of algorithms [4, 54]:

− (Key generation) The secret key t is chosen as t =
(
−sᵀ 1

)ᵀ ∈Zn
q where s ← χn−1 uniformly. The

public key is defined as the matrix

A =
(

B
b

)
∈Zn×m

q
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where b = sᵀB+eᵀ with e ←χm . It holds that tᵀA =−sᵀB+b =−sᵀB+sᵀB+eᵀ = eᵀ.

− (Encryption) First, a random binary matrix is chosen R ← {0,1}m×n` uniformly. The encryption

of a message µ ∈Zq is then given by the ciphertext matrix C = AR+µ(In ⊗gᵀ) ∈Zn×n`
q .

− (Decryption) We give here the decryption procedure for small plaintext space {0,1}, since we

build upon this procedure in the rest of our thesis. The procedure for plaintext space Zq can be

found in [54]. Let c be the penultimate column of C and calculate the inner product µ′ = c · t. If

µ′ mod q is closer to 0 in Zq than to 2`−2 return 0, else return 1. Please note here that q −1 is

also very close to 0 since q mod q ≡ 0.

− (Homomorphic Addition) Homomorphic addition of two ciphertexts C1,C2 ∈ Zn×n`
q is done by

calculating C1 +C2 ∈ Zn×n`
q . We denote this addition by C1 �C2. The result is an encryption of

µ1 +µ2 where µi is the plaintext of ciphertext Ci for i = 1,2.

− (Homomorphic Multiplication) Homomorphic multiplication of two ciphertexts C1,C2 ∈Zn×n`
q

is done by calculating C1(In ⊗g−1)[C2] ∈ Zn×n`
q . We denote this multiplication by C1 � C2. The

result is an encryption of µ1 ·µ2 where µi is the plaintext of ciphertext Ci for i = 1,2.

Intuitively, when tᵀC = tᵀAR+µtᵀ(In ⊗gᵀ) = eᵀR+µ(tᵀ⊗gᵀ) for some e with small enough values

(we make this amount explicit in the next chapters), it holds that, for c the penultimate column of C,

µ′ = c · t = µ2`−2 + e ′ for some e ′ again small. So indeed, the decryption procedure outputs the right

value for a small enough e ′.

Regarding the homomorphic operations, take tᵀC1 = eᵀ1R1+µ1(tᵀ⊗gᵀ) and tᵀC2 = eᵀ2R2+µ2(tᵀ⊗gᵀ)

for some e1 and e2 with small enough values. After a homomorphic addition we find

tᵀ (C1 +C2) = eᵀ1R1 +eᵀ2R2 +
(
µ1 +µ2

)
(tᵀ⊗gᵀ).

Applying a homomorphic multiplication gives

tᵀ
(
C1(In ⊗g−1)[C2]

)= eᵀ1R1(In ⊗g−1)[C2]+µ1(tᵀ⊗gᵀ)(In ⊗g−1)[C2]

= eᵀ1R1(In ⊗g−1)[C2]+µ1eᵀ2R2 +µ1µ2(tᵀ⊗gᵀ).

The ciphertexts can therefore be decrypted towardsµ1+µ2 orµ1µ2 for small enough noise values since

R1,R2 and (In ⊗g−1)[C2] are binary matrices.

3.3.2. Multi-Key Fully Homomorphic Encryption scheme

In this section, the multi-hop Multi-Key FHE scheme of Peikert and Shiehian [88] is described. Now

the key generation is more elaborate, since every public key contains an encryption of its secret key

and an encryption of the randomness used for these encryptions. The parameter setup, decryption

and homomorphic operations are the same as in the previous section. However, a different random

common public matrix is now defined: A ← Zn×m
q uniformly. The extension procedure translates a

ciphertext under one specific key to a ciphertext of the same plaintext, that can only be decrypted

by the concatenation of the old secret key and the new secret key. In order to extend the ciphertext

for k keys, this procedure should be applied multiple times; once per new key. The homomorphic

operations can be done in the similar way as for the GSW FHE scheme. The Multi-Key FHE scheme of

Peikert et al. includes the following additional procedures, next to the ones introduced in the previous

section [88]:

− (Key generation) The secret key t is chosen as t =
(
−s 1

)ᵀ ∈Zn
q where s ← χn−1 uniformly. The

public extension key is set to (b,P,D), that is defined as follows:

• bᵀ = tᵀA+eᵀb with eb ←χm
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• P = AR+(In ⊗tᵀ⊗gᵀ) ∈Zn×n2`
q with R ← {0,1}m×n2` uniformly random. This is the commit-

ment to the secret key t.

• D = D̄+ (R⊗g⊗en) with en ∈ {0,1}n the n-th standard basis vector, R the random matrix

used for generating P and D̄ defined as

D̄ =


d1 . . . d(n2`−1)ml+1
...

. . .
...

dml . . . d(n2`)ml

 ∈Znml×n2`
q

where

d j =
(

a j

sᵀ ·a j +e j

)
with e j ← χ and a j ←Zn−1

q uniformly. Clearly, the d j are (n2`)ml independent LWE sam-

ples. It can be seen that

(Iml ⊗ tᵀ) · D̄ =


e1 . . . e(n2`−1)ml+1
...

. . .
...

eml . . . e(n2`)ml

 := ED ∈Zml×n2`
q

such that (Iml ⊗tᵀ) ·D = ED+(Iml ⊗tᵀ) ·(R⊗g⊗en) = ED+(Iml (R⊗g))⊗(tᵀen) = ED+(R⊗g).

D can be seen as the encryption of the random matrix R under the secret key.

− (Encryption) We now describe the encryption procedure under secret key t =
(
−s 1

)ᵀ
. Sample

nl independent LWE samples

c j =
(

a j

sᵀ ·a j +e j

)

with e j ←χ and a j ←Zn−1
q uniformly. Concatenate these samples as follows: C̄ =

(
c1 . . . cn`

)
∈

Zn×n`
q . The encryption of µ ∈ Zq is then given by: C = C̄ +µ(In ⊗ gᵀ) ∈ Zn×n`

q . Notice that

tᵀC =
(
e1 . . . en`

)
+µ(tᵀi ⊗gᵀ).

− (Extension to new keys) Here we demonstrate how we extend a (multi-key) ciphertext to a new

key, so we assume we have a ciphertext that is an encryption under the keys of k parties al-

ready. We denote the secret key and public extension key of party i by ti and (bi ,Pi ,Di ). Let

C ∈Znk×nk`
q be a ciphertext that encrypts µ under a key

t =


t1
...

tk

 ∈Znk
q

for k ≥ 1 the number of parties. We want to extend this ciphertext to an additional key, namely

tnew, of party ‘new’. Define

Y1 := Ik ⊗Pnew = (Ik ⊗ARnew)+ (
Ink ⊗ tᵀnew ⊗gᵀ) ∈Znk×n2k`

q

and

Y2 :=
(((

Ikm ⊗g−1) [−b]
)ᵀ⊗ In

)
· (Ik ⊗Dnew) ∈Zn×n2k`

q

where b is the concatenation of all public keys bi for i ∈ {1, . . . ,k} all parties connected to ci-

phertext C. So for the creation of Y1 and Y2, all public extension keys of the new party are used,

namely (bnew,Pnew,Dnew). Set

Y =
(

Y1

Y2

)
∈Zn(k+1)×n2k`

q
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and calculate the matrix

X = Y
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π ∈Zn(k+1)×n`

q

whereΠ ∈ {0,1}n`×n` the permutation matrix such that (gᵀ⊗tᵀnew)Π= (tᵀnew⊗gᵀ) and Ĉ = C·(enk⊗
Il ) ∈Znk×l

q as the last ` columns of the ciphertext C. Now output

C′ =
(

C
X

0

)
∈Zn(k+1)×n(k+1)`

q .

Let t be the concatenation of the k secret keys of the parties associated to the input ciphertext C
that encryptsµunder t. Then C′ is the ciphertext that extends C with one extra key tnew and is therefore

an encryption of µ under

t′ =
(

t
tnew

)
.

This is due to the fact that the matrices and public keys are constructed in such a way that t′ᵀX ≈
µ(tᵀnew ⊗gᵀ)+eᵀX . So, t′ᵀC′ =

(
tᵀC t′ᵀX

)
≈ µ

(
(tᵀ⊗gᵀ) (tᵀnew ⊗gᵀ)

)
= µ(t′ᵀ⊗gᵀ) which corresponds to

a correct extension of the ciphertext with one additional key.

3.4. Decision trees

In this section we give the definition of a decision tree and define how it can be evaluated given an

input. First, we formally define a graph and a tree.

Definition 3.20 (Graph [33]). A graph G consists of disjoint finite sets V of vertices and E of edges where

every edge is an unordered pair of nodes (informally, the edge connects these two nodes). The graph is

denoted by G = (V ,E).

We write an edge e as e = (starte ,ende ) where starte and ende are the begin and end node that are

connected by e. A path in a graph G = (V ,E) is a sequence of edges e1,e2, . . . ,en such that for all i it

holds that endei = startei+1 and all vertices are distinct. A connected graph is a graph where for every

pair of vertices u and v there is a path from u to v .

Definition 3.21 (Tree [33]). A tree is a graph in which any two vertices are connected by exactly one

path.

Equivalently, a tree is a connected graph without any cycles, where a cycle is, loosely speaking, a

path where the first and last vertex coincide. A proof for this can be found in [33]. A rooted tree is a tree

where one of the vertices has been labeled as the root of the tree. The parent of a vertex v is then the

first vertex w on the path from v to the root. We call v the child of vertex w . A leaf is a vertex without

children. The depth of a vertex is the number of edges on the path from the root to this vertex.

Definition 3.22 (Decision tree [107]). A decision tree T is a rooted tree T = (D ∪L ,E) where the set

of vertices is split in the set of decision nodes D (which includes the root) and the set of leaf nodes L .

Additionally, the decision tree includes the following functions: (i) t : D → Z a function that assigns to

each decision node a value from Z, (ii) m : D → {1, . . . , A} a function that assigns to each decision node

an index value from {1, . . . , A}, (iii) c : L → {c1, . . . ,cν} a function that assigns to each leaf node a label

from the set of leaf labels {c1, . . . ,cν}.
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(a) A threshold decision node. (b) A categorical decision node.

Figure 3.1: Two types of decision node in a decision tree.

Let T = (D ∪L ,E) be a decision tree with functions t,m and c which needs to be evaluated on

input x ∈ZA . This evaluation is denoted by the function T :ZA 7→ {c1, . . . ,cν} with {c1, . . . ,cν} the finite

set of ν classification labels. In Algorithm 1, the tree evaluation algorithm is given. Given v a node,

v.left returns the left child node and v.right the right child node.

The algorithm traverses the tree by evaluating the decision nodes that he comes across. For every

decision node, the functions m and t are called. The first function returns the index of the input value

that is being evaluated at the decision node within the input vector x. Every decision node is either a

threshold decision node or a categorical decision node. Examples of these type of nodes can be seen

in Figure 3.1. We assume that both threshold decision nodes and categorical decision nodes have

only two children. Please note here that every categorical node with more than two child nodes can

be translated to a tree with categorical decision nodes with only two children.

A threshold decision node compares an input value to a certain threshold, while a categorical de-

cision node tests if the input value is equal to a certain category. The function t gives this threshold or

category of a decision node. At each decision node the corresponding input variable is compared to

the decision node’s threshold or categorical value. Based on this, either the right or left child node is

picked as the next node. The traversal ends at a certain leaf node, which tells the classification label of

the input according to the decision tree, which is given by calling the function c.

Algorithm 1

1: function T (x)

2: v ← root

3: while v not leaf node do
4: if v threshold then
5: if xm(v) ≤ t(v) then
6: v ← v.left

7: else v ← v.right

8: if v categorical then
9: if xm(v) = t(v) then

10: v ← v.right

11: else v ← v.left

12: return c(v)
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3.5. Private path-evaluation techniques

In the literature, several techniques are proposed to evaluate a decision tree while keeping the input

and decision tree private. In this thesis, the focus lies on solutions that use homomorphic encryption.

The methods based on homomorphic encryption use a protocol to evaluate every decision node ho-

momorphically. This results in an encrypted decision bit for each decision node. Either an encrypted

value of 1 or an encrypted value of 0 is stored at the child nodes to denote the appropriate decision.

The fact that these outputs are encrypted shows the necessity of evaluating all decision nodes. After

this, each path needs to be evaluated. Below, two important approaches for this homomorphic path

evaluation are given. They either use homomorphic multiplications as their basis or homomorphic

additions. We call those two methods the multiplicative approach and the additive approach respec-

tively.

3.5.1. Multiplicative approach

Tueno et al. [107] use the idea that by storing an encryption of 1 at the correct child node (and 0 at

the wrong child node) and homomorphically multiplying all these bits per path, only the correct path

has a multiplication value equal to 1. This method can be seen in Algorithm 2. multiplications of

decision bits are done per level of the tree starting at the root. In this way, it is avoided that for each

new path the knowledge of previous multiplications within the path gets lost. This is implemented by

a queue with the functions enqueue to add nodes to the back of the queue and the function dequeue
to remove nodes from the front of the queue [107]. In the algorithm, [[. . .]] denotes an encryption of the

value within the brackets according to a fully homomorphic encryption scheme. For d ∈D a decision

node, d .cmp denotes the decision bit that is stored at this node which is during the path evaluation

changed to the multiplication of the decision bit itself with all decision bits on the path towards the

root. The decision bit of the root node is set to 1 before running this protocol. Multiplying the final

decision bit of the leaf nodes (which is only 1 for the correct leaf node) with the corresponding label

and adding all these results, gives the output label. In Figure 3.2a an example of such a path evaluation

is given.

Algorithm 2

1: function EVALPATHS(D,L )

2: Let Q be an empty queue

3: Q.enqueue(root)

4: while Q.empty() = false do
5: v ←Q.dequeue()

6: [[v.left.cmp]] ← [[v.left.cmp]]� [[v .cmp]]

7: [[v.right.cmp]] ← [[v.right.cmp]]� [[v .cmp]]

8: if v .left ∈D then
9: Q.enqueue(v .left)

10: if v .right ∈D then
11: Q.enqueue(v .right)

12: [[result]] ← [[0]]

13: for all l ∈L do
14: [[result]] ← [[result]]�

(
[[l .cmp]]� [[c(l )]]

)
15: return [[result]]
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(a) Path evaluation method of Tueno et al. [107]. Mul-
tiplying all decision bits on the correct path returns the
value 1 while for the other paths this returns 0.

(b) Path evaluation method of Tai et al. [104]. Adding all
decision bits on the correct path returns the value 0 while
for the other paths this returns a value ≥ 1.

Figure 3.2: An example of a decision tree trained on a heart-disease dataset [45] that is evaluated on input tal = 2,cp = 3 and
chol = 120 using different path evaluation methods. In these figures, the stored decision bits are denoted in red and the correct
path according to the input is given by red edges. These numbers could also be encrypted and homomorphically evaluated.

3.5.2. Additive approach

Tai et al. ’s [104] approach uses only homomorphic additions. The algorithm can be seen in Algorithm

3. Their method makes sure that a value of 0 is stored at the correct next child node (instead of 1 as

in the previous method). The paths are evaluated by homomorphically adding the encrypted com-

parison bits of all nodes on a path. This summation is called the path cost. Now, only if the path cost

evaluates to 0, this path corresponds to the correct leaf node and classification label. In contrast to

Algorithm 2, in order to find the classification label, all path costs are decrypted so that the zero-cost

path can be found. The leaf node labels can be sent by adding the label to the path cost homomorphi-

cally. Tai et al. [104] make sure that no more information is given away by multiplying the path costs

with a random value. In Figure 3.2b the method of Tai et al. is demonstrated.

Algorithm 3

1: function EVALPATHS+(D,L )

2: Let Q be an empty queue

3: Q.enqueue(root)

4: while Q.empty() = false do
5: v ←Q.dequeue()

6: [[v.left.cmp]] ← [[v.left.cmp]]� [[v .cmp]]

7: [[v.right.cmp]] ← [[v.right.cmp]]� [[v .cmp]]

8: if v .left ∈D then
9: Q.enqueue(v .left)

10: if v .right ∈D then
11: Q.enqueue(v .right)

12: for all l ∈L do
13: r,r ′ ← uniformly random

14: [[costl ]] ← r � [[l .cmp]]

15: [[labell ]] ← (
r ′ � [[l .cmp]]

)
� [[c(l )]]

16: return ([[costl ]], [[labell ]]) for all l ∈L





I
Mathematical analyses of the

encryption schemes and formulation of

the protocols

29





4
Detailed analyses and adaptations of

encryption schemes

The aim of this chapter is to introduce some adaptations and new procedures essential for the func-

tionality of our protocols and to analyse the correctness and security of the encryption schemes used

in this thesis. Our protocols require some additional homomorphic operations, an encryption method

using a public key, a collaborative-decryption procedure and the possibility of a bigger plaintext space.

In this chapter these contributions are described. The correctness analysis needs to be done elabo-

rately, since for implementation the exact noise propagation in our protocols has to be known for

setting the parameters of the schemes. We are not aware of any literature that has done this, since all

previous works focus on the theory behind the encryption schemes and do not implement it. Firstly,

we describe the adaptations we propose in order for our protocols to work. Next, we give a detailed

description of the correctness of the schemes. We end this chapter by proving the security of the en-

cryption schemes, based on proof drafts from the literature.

4.1. Adaptations of Fully Homomorphic Encryption schemes

For usage within our protocols, the (Multi-Key) FHE schemes described in Sections 3.3.1 and 3.3.2 are

not sufficient. Namely, in our protocols we need some additional homomorphic operations and we

require the decryption to be done in a collaborative way. Some of our protocols use the path evaluation

technique of Section 3.5.2, where the path cost is the sum of the comparison bits on the path. This

can reach values higher than 1. Therefore, the schemes should be extended such that an encryption

of an element that is not a bit can still be decrypted. First of all, we describe our method of setting

the modulus q in the encryption schemes, which has an effect on the decryption procedure and its

effectiveness. Also, this is essential for the parts of our protocols that take place in Z2 or {0,1}.

4.1.1. Modulus setting

During our research, we concluded that in the literature no requirements are given regarding the value

of q , only to set it high enough such that the ciphertext noise does not obstruct a correct decryption.

But, it is important in case the scheme needs to operate in the Z2 plaintext space. This holds for

both the GSW and the Multi-Key FHE scheme. In order to understand why the modulus setting is

important, we first describe the original decryption procedure.

31
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(a) As an example, say q = 2` such that 2`−2 = q/4, then the red area denotes the possible values of µ′ that lead to a decryption
to 0.

(b) As an example, say q = 2`−1 +1 such that 2`−2 = q
2 − 1

2 , then the red area denotes the possible values of µ′ that lead to a
decryption to 0.

Figure 4.1: The Zq space demonstrating the original {0,1} decryption procedure. Since ` = ⌈
log2 q

⌉
, we know that 2`−2 ∈

[q/4, q/2) (denoted in green).

Figure 4.2: The Zq space demonstrating the new {0,1} decryption procedure. Since q = 2`, we know that 2`−1 = q/2. The red
and blues area denote the possible values of µ′ that lead to a decryption to 0 or 1 respectively.

As mentioned in Section 3.3.1, the output of the first step of the decryption is the value µ′; the

inner product between the key and the penultimate column of the ciphertext. After choosing the

value for q , we can calculate ` = dlog2 qe that determines the size of the gadget vector used in the

encryption schemes. It holds that µ′ ≈µ2`−2 with µ the encrypted message of the ciphertext from the

plaintext space {0,1}. In case µ′ is closer to 0 than to 2`−2, we decrypt to 0, else to 1. In case we add two

ciphertexts that are both an encryption of 1, the result should be a ciphertext encrypting 0, since 1+1

mod 2 ≡ 0 in the plaintext space {0,1}. After such a homomorphic addition µ′ ≈ 2`−2 +2`−2 = 2 ·2`−2.

Here, we know that q ≤ 2` since ` = ⌈
log2 q

⌉
and therefore that q/4 ≤ 2`−2 < q/2. In case 2`−2 is

between q/4 and q/3 this gives the wrong result. For 2`−2 = q/4 we find µ′ = 2 · 2`−2 = q/2 which

is closer to 2`−2 than it is to 0 and is therefore decrypted towards 1, as shown in Figure 4.1a. For

2`−2 = q/3 we find µ′ = 2 ·2`−2 = 2q/3 which is as close to 2`−2 as it is to 0. Correctly decrypting when

two values of 1 are added inZ2, is impossible for these values of q . In case 2`−2 is higher than but close

to q/3, a first addition can still be decrypted, but multiple additions after each other can result in the

same problem. In Figure 4.1a, it can be seen that optimally, 2`−2 is close to q/2.

The GSW FHE scheme of Gentry et al. [54] is designed for the plaintext space Zq . They propose

to evaluate a boolean circuit in Z2 by NAND-gates out of which any boolean circuit can be created.

This means that the sum of two messages µ1 +µ2 in {0,1} is evaluated by multiple NAND-gates that

each contain a homomorphic multiplication. Namely, a homomorphic multiplication does not have

the problem as above. For a more efficient calculation of a bit addition in Z2 we take q a power of 2

such that q = 2` with `= log2 q such that the ciphertext addition does not give any problems. This is

demonstrated in Figure 4.2. Gentry et al. [54] propose to take ` = log2 q +1 in case q is a power of 2,

such that the inner product of the penultimate column with the secret key will be close to q/2. Instead

of taking the penultimate column (and define ` differently), we take the last column of the ciphertext

for decryption, since then µ′ ≈ µ2`−1 = q/2 and we can keep our definition of `. In the rest of this

thesis, it is assumed q is chosen as a power of 2. The new decryption procedure is given below.
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Figure 4.3: The Zq space demonstrating the {0,1, . . . ,3} decryption procedure for D = 22 −1. Here, q = 2`. The areas denote the
possible values of µ′ that lead to a decryption of the denoted values for µ.

− (New decryption for bit plaintext space) Let q = 2` for some integer ` and let c be the last column

of the ciphertext C and calculate the inner product µ′ = c · t. If µ′ mod q is closer to 0 than to

2`−1 = q/2 return 0, else return 1.

4.1.2. Extended plaintext space

For some of our protocols non-bit values need to be encrypted, thus for both the GSW FHE scheme

and the Multi-Key FHE a decryption procedure for non-bit values is required as well. Gentry et al. [54]

propose, instead of taking one column for decryption, to multiply the secret key with the last` columns

of the ciphertext and ‘decode’ this to the appropriate output value µ such that the found row vector is

the closest to µ ·gᵀ.

Since we know the maximum value of our plaintext space we can approach this problem a bit

differently such that only one multiplication with a column is required. Say we have a plaintext space

equal to {0,1, . . . ,D} ⊆ Zq with D a fixed value. We divide the space Zq into D +1 intervals. Again we

take q as a power of 2, namely q = 2`. We assume that D < q is given by 2κ−1 for some positive integer

κ (else take the next such value). The decryption for this plaintext space is given below. By taking the

κ-th column from the right, we have µ′ ≈µ2`−κ =µ 2`

D+1 . Then the output is 0 if µ′ is closest to 0 and D

if µ′ is the closest to D 2`

D+1 . In Figure 4.3 this is demonstrated for D = 3.

− (Decryption for extended plaintext space) Let q = 2` and {0,1, . . . ,D} ⊆Zq the plaintext space with

D = 2κ−1 for some positive integerκ. Take c as the κ-th column from the right of C and calculate

the inner product µ′ = c · t. Return the value i ∈ {0,1, . . . ,D} for which i 2`

D+1 is the closest to the

value of µ′.

4.1.3. Encryption and decryption

In Table 4.1 a summary of the constructions of the Multi-Key FHE scheme of Peikert et al. [87] is shown,

together with corresponding noises per equation. This scheme uses new LWE samples for every en-

cryption (which is denoted by the matrix C̄). In order to make it possible to encrypt plaintexts under

the secret key of another party by using their public key, we introduce a new public-key encryption

procedure for the multi-key scheme. Additionally, this makes it possible to do a re-randomisation of a

ciphertext, which will be explained in more detail in the next section. This new encryption procedure

is given below. It is based on the encryption procedure of the GSW FHE scheme, but using different

notation.

− (Encryption by party i ) Let A′ be the matrix given by the first n −1 rows of the common public

matrix A and a ∈Zm
q the vector containing the elements of the last row of A, i.e.

A =
(

A′

aᵀ

)
.
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Also, a random binary matrix is chosen R ← {0,1}m×n` uniformly. The encryption of a message

µ ∈ {0,1, . . . ,D} ⊆Zq by party i with secret key ti =
(
−si 1

)ᵀ ∈Zn
q is then given by the ciphertext

matrix

C =
(

A′

−bᵀ
i +aᵀ

)
R+µ(In ⊗gᵀ) ∈Zn×n`

q .

Notice that −bᵀ
i +aᵀ = −tᵀi A−eᵀbi

+aᵀ = sᵀi A′−aᵀ−eᵀbi
+aᵀ = sᵀi A′−eᵀbi

. Therefore, it holds that

tᵀi C = µ(tᵀi ⊗gᵀ)+ (−sᵀi A′−bᵀ
i +aᵀ)R = µ(tᵀi ⊗gᵀ)−eᵀbi

R and therefore encrypts µ correctly. Next

to this, all elements in the matrix (
A′

−bᵀ
i +aᵀ

)
are publicly known and can therefore be seen as the public key.

In the protocols using Multi-Key FHE, the decryption should be done partially since all parties

posses their own key. Peikert et al. [87] do not introduce a way in which the decryption can be done

in a collaborative manner where all parties do not give away any information about their secret key.

Mukherjee et al. [80] do give such a procedure by introducing a ‘smudging noise’ that hides the partial

decryption which is the result of multiplying one of the secret keys with the corresponding ciphertext

rows. This decryption procedure is introduced below. We slightly adjusted it to incorporate our way

of doing decryption, as defined above. Note that we can do a collaborative decryption for an extended

plaintext space in a similar way.

− (Collaborative decryption) Let q = 2` and C ∈Znk×nk`
q be a ciphertext associated to k parties, an

encryption under the key t, which is the concatenation of the k secret keys of all parties. Now,

take c as the last column of C and for each party i , let ci be the concatenation of the n elements

with the same indices in c as the elements of ti have in t. Every party i then calculates the partial

decryption pi = ti ·ci + esmudge
i ∈Zq with esmudge

i ← [0,Bsmudge] ⊆Zq uniformly. The purpose of

the smudging noise esmudge
i is to hide the value of the inner product, such that no information

about the party’s secret keys is shared. The exact value of Bsmudge is given in the security analysis.

The partial decryptions are then combined by calculating µ′ =∑
i pi . Output 0 if µ′ is closer to 0

and 1 if µ′ is closer to 2`−1.

As mentioned before, the encryption procedure of the Multi-Key FHE scheme given in Table 4.1

uses new LWE samples for every fresh encryption. This has the advantage that these fresh ciphertexts

have a lower noise than fresh ciphertext encrypted using the public key. Namely, the noise vector is not

multiplied with a random matrix. Therefore, it can be beneficial to also use this encryption procedure

within GSW FHE when possible.
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Table 4.1: A summary of the constructions of the Multi-Key FHE scheme from Peikert et al. [87] (the used notation can be found in Section 3.3.2). Here, n and m are the dimensions and χ=Ψ̄α
q over Zq with

α ∈ (0,1) a real number and q the modulus. Also, `= ⌈
log2 q

⌉
and A ←Zn×m

q uniformly the random common public matrix.

Name Construction Equation Noise

Key generation

bᵀ = tᵀA+eᵀb with eb ←χm bᵀ ≈ tᵀA eᵀb
P = AR+ (In ⊗ tᵀ⊗gᵀ) - -

D = D̄+ (R⊗g⊗en) - -

Encryption C = C̄+µ(In ⊗gᵀ) tᵀC ≈µ(tᵀ⊗gᵀ) eᵀC

Extension

bᵀ =
(
bᵀ

1 . . . bᵀ
k

)
bᵀ ≈ tᵀ · (Ik ⊗A) eᵀb =

(
eᵀb1

. . . eᵀbk

)
Y1 = Ik ⊗Pnew - -

Y2 =
(((

Ikm ⊗g−1
)

[−b]
)ᵀ⊗ In

) · (Ik ⊗Dnew) - -

Y =
(

Y1

Y2

)
t′ᵀY ≈ (tᵀ⊗ tᵀnew ⊗gᵀ) eᵀY = ((

Ikm ⊗g−1
)

[−b]
)ᵀ · (Ik ⊗EDnew )−eᵀb · (Ik ⊗Rnew)

X =
(

X1

X2

)
= Y

(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π t′ᵀX ≈µ(tᵀnew ⊗gᵀ)

eᵀX = eᵀX,1 +eᵀX,2 with eᵀX,1 = eᵀY
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π and

eᵀX,2 = (eᵀC(enk ⊗ I`)⊗ tᵀnew)Π

C′ =
(

C X1

X2

)
t′ᵀC′ ≈µ(t′ᵀ⊗gᵀ) eᵀC′ =

(
eᵀC eᵀX

)



36 4. Detailed analyses and adaptations of encryption schemes

4.1.4. Additional homomorphic operations

In this thesis’ protocols, ciphertexts also need to be added to and multiplied with plaintexts. Therefore,

we add the following homomorphic operations to the standard description of both FHE scheme. The

homomorphic multiplication with a plaintext method is shortly described by Gentry et al. [54]. We add

the re-randomisation step which is important when the ciphertext is directly shared with other parties

after the homomorphic operation. Other parties can then possibly derive the value of the plaintext.

This is especially the case when the matrix is multiplied by a value 0, which results in a ciphertext with

only 0-values.

− (Homomorphic addition with a plaintext) Homomorphic addition of a ciphertext C ∈ Znk×nk`
q

with a plaintext message ζ ∈ {0,1, . . . ,D} ⊆Zq is done by calculating C+ζ(Ink ⊗gᵀ) ∈Znk×nk`
q . We

denote this addition by C�ζ or by ζ�C.

− (Homomorphic multiplication with a plaintext) Homomorphic multiplication of a ciphertext

C ∈Znk×nk`
q encrypted under the public key A ∈Znk×m

q with a plaintext message ζ ∈ {0,1, . . . ,D} ⊆
Zq is done by calculating ζC ∈Znk×nk`

q . We denote this multiplication by ζ�C.

− (Re-randomisation) The ciphertext C ∈Znk×nk`
q is re-randomised by adding a matrix AR′ as fol-

lows: ζC+AR′ ∈Znk×nk`
q with R′ ← {0,1}m×nk` a random binary matrix.

Also, since the encryptions and extensions are not always done in the same order during the exe-

cution of the protocols, a re-ordering of the ciphertext rows is done such that all ciphertexts have the

same common extended key which is necessary for doing homomorphic operations.

− (Re-ordering) Let C ∈ Znk×nk`
q be a ciphertext associated to k parties, encrypted under the key

t, which is the concatenation of the k secret keys of all parties. The order of the keys within t is

in the order of the encrypted party followed by the extensions. Re-ordering the rows results in a

ciphertext C′ ∈ Znk×nk`
q that encrypts under a key t′ ∈ Znk

q given by t′ =
(
t0 t1 . . . tk−1

)ᵀ
for

parties i ∈ {0, . . . ,k −1} with corresponding keys ti .

4.1.5. Key-switching

We introduce a procedure called key-switching in the FHE schemes. Key-switching transforms a ci-

phertext to a different ciphertext that encrypts the same message, but is now decryptable under a

different secret key. This makes it possible to translate multiple ciphertexts, encrypted under differ-

ent keys, to the same key such that they can be homomorphically combined. We make use of this

procedure in our last two protocols.

Key-switching was introduced by Brakerski et al. [16]. One of the inputs of the switching procedure

is a switching key, which is the encryption of 0 under the new key to which some information about

the old key is added. Therefore, the party holding the old key, the ‘old’ party, and the party holding

the new key, the ‘new’ party, have to communicate with each other in order to create this switching

key. The method in [16] assumes the ciphertext to be a vector instead of a matrix. The correctness

and security is proved in Lemma 3 in [16]. We describe the procedure below. Let cold ∈ Zn
q be the

decryption column of a ciphertext under the secret key told ∈ Zn
q , that needs to be translated to an

encryption cnew under the secret key tnew ∈Zn
q . Here told is the secret key of the old party and tnew the

secret key of the new party.

− (Switching key generation) First, the new party with key tnew, creates an encryption S̄ ∈ Zn×nl
q

of 0 using this secret key. It now holds that tᵀnewS̄ =
(
e1 . . . enl

)
with ei ←Ψ̄α

q from the noise
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distribution. This new party then send this encryption to the old party. The old party then

calculates the switching key

Stold�tnew = S̄+


0
...

0
tᵀold ⊗gᵀ

Zn×nl
q .

− (Switch the key) The party that does the key-switching, should not be the same party as the

new party, since then this new party can find the secret key of the old party upon receiving the

switching key. The party that does the key switching calculates the new ciphertext column by

cnew = Stold�tnew · (In ⊗g−1)[cold].

In our protocols, after key-switching, still some homomorphic operations on the full ciphertexts

are performed. Therefore, we need the whole ciphertext, and not just the decryption column, during

the rest of the protocol. Luckily, the procedure above works in exactly the same way when the cipher-

texts are matrices Cold,Cnew ∈ Zn×nl
q . In this case, the procedure of switching consists of one homo-

morphic multiplication between the switching key and the ciphertext given by Stold�tnew ·(In ⊗g−1)[Cold].

4.1.6. New gadget vector

In our protocols that need an extended plaintext space {0,1, . . . ,D} for D some integer, we need to

randomise some ciphertexts by multiplying them with a random value. This can be done by homo-

morphically multiplying the ciphertexts by a plaintext. The functionality of our protocols requires the

result to be non-zero values. In case D+1 is not a prime, we see that the multiplication with a random

value can result in a zero value which is not desired. As an example, take D +1 = 4, then when a result

of 2 is multiplied by a random value of 2, we find 2·2 = 4 ≡ 0 mod D+1. Therefore, we need D+1 to be

prime. We take the plaintext space {0,1, . . . ,D ′} with D ′+1 the first prime number that is bigger than

D . Dividing the Zq space in D ′+1 parts can be done by choosing q = (D ′+1)` and using a different

gadget vector, namely

g =



1

D ′+1

(D ′+1)2

...

(D ′+1)l−1

 ∈Z`q with l = logD ′+1 q. (4.1)

Micciancio and Peikert [77] show that this gadget vector can securely be used within FHE and show

that it has computable ‘inverse’ function as in Definition 3.4. This inverse function translates elements

from Zq to a vector in {0,1, . . . ,D ′}` which is a representation of the elements by expressing them into

the terms of the new gadget vector. Formally, the new inverse function is now from a matrix M ∈Zn×m′
q

for any n,m′ to a matrix in {0,1, . . . ,D ′}nl×m′
with `= dlogD ′+1 qe such that (In ⊗gᵀ) · (In ⊗g−1)[M] = M.

The decryption is now again defined by the inner product between the secret key and the last column

of the ciphertext, as given below.

− (Decryption for new gadget vector) Let q = (D ′+1)` for some integer ` and let c be the last column

of the ciphertext C and calculate the inner product µ′ = c · t. Return the value i ∈ {0,1, . . . ,D ′} for

which i q
D ′+1 is the closest to the value of µ′.
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4.2. Correctness

To be able to prove correctness of the used encryption schemes, we need to analyse the encryption

and decryption procedures together with the noise of each ciphertext and its bound needed for de-

cryption. This is also crucial in the implementation phase, where the exact noise propagation should

be defined. In order to do so, we define a noisy ciphertext in the same way as Mukherjee et al. [80]

in combination with the definition of a bounded distribution from [88]. This definition of a bounded

distribution is given in Definition 4.1.

Definition 4.1 (Nτ-bounded distribution [88]). A distribution χ over Zq or R is called Nτ-bounded if

for x ← χ the following holds: P (|x| > N ) ≤ 2−τ with τ, N positive integers and |x| = min{x, q − x} if

x ∈Zq .

Mukherjee et al. [80] define a noisy ciphertext by a strict bound on the noise where the probability

of exceeding this bound should be equal to 0. To make the noise analysis easier and more flexible, we

slightly adjust this definition of a noisy ciphertext to the more flexible bound on the noise distribution

given by Peikert et al. [88] in the definition above; the probability of exceeding the bound is now 2−τ

for some positive integer τ. The resulting definition can be seen in Definition 4.2.

Definition 4.2 (Nτ-noisy ciphertext [80]). A Nτ-noisy ciphertext of a message µ under secret key t,

which is a concatenation of the secret keys of k ≥ 1 parties, is a matrix C ∈Znk×nk`
q such that tᵀC =µ(tᵀ⊗

gᵀ)+eᵀ with the elements of e distributed according to a Nτ-bounded zero-mean normal distribution.

Let q be an integer, α ∈ (0,1) a real number. We denote the normal distribution on R with mean 0

and standard deviation αqp
2π

byΨα
q . The noise distribution Ψ̄α

q of the encryption schemes is then given

by rounding the samples from the distributionΨα
q to the closest integer modulo q . We now show that

if the distributionΨα
q is bounded by some value, this also holds for the distribution after rounding to

the closest integer modulo q . The corresponding proposition and proof is given below.

Proposition 4.1. Let q be an integer, α ∈ (0,1) a real number and Ψα
q the normal distribution with

mean 0 and standard deviation αqp
2π

. If Ψα
q is Nτ-bounded for τ, N positive integers, then also Ψ̄α

q is

Nτ-bounded.

Figure 4.4: The probability density functionφ of the continuous Gaussian distribution onRwith mean 0 and standard deviation
αq/

p
2π with example values q = 100,α= 2.2. In blue the example boundary value of N = 30 < q/2 is shown. The light red area

underneath the curve denotes the chance of values x for which |x| > N , which is clearly lower then P (|y | > N ) which is the total
area underneath the curve on the outside of the blue lines.
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Proof. Take and y ← Ψα
q ∼ N

(
0, (αq)2

2π

)
and let x take the value of y rounded to the closest integer

modulo q . If the distributionΨα
q is Nτ-bounded it holds that P (|y | > N ) ≤ 2−τ with τ, N positive inte-

gers. We have two possibilities:

− N ≥ q/2, which means that P (|x| > N ) = 0 ≤ 2−τ or

− 0 < N < q/2, which results in P (|x| > N ) < P (|y | > N ) ≤ 2−τ.

In Figure 4.4, the reasoning of the second possibility is given in the description. So we can conclude

that Ψ̄α
q is indeed Nτ-bounded.

To be able to formalise the noise of ciphertexts, we first prove that the distribution Ψα
q is Bτ-

bounded for certain positive integers B ,τ. This immediately gives that Ψ̄α
q is also Bτ-bounded given

Proposition 4.1. The proof mainly depends on Lemma 4 in [3] which is a standard fact about a Gaus-

sian distribution. The proposition uses the Lambert W function which is a multi-valued function that

describes the inverse of the relation f (w) = w exp(w) where w ∈R.

Proposition 4.2. The distribution Ψα
q on R is a Nτ-bounded distribution for N = αq

√
W (22τ+1/π)

2π with

W (·) the Lambert W function and τ a positive integer.

Proof. Let y ← Ψα
q . We have to prove that P (|y | > N ) ≤ 2−τ with N = αq

√
W (22τ+1/π)

2π . According to

Lemma 4 in [3], forΨα
q a normal distribution with mean 0 and standard deviation αqp

2π
, it holds for all

C > 0 that

P

(
|y | >C

αqp
2π

)
≤ 2

C
p

2π
exp

(−C 2/2
)

. (4.2)

Take N =C αqp
2π

such that C = N
p

2π
αq . We can make the inequality P (|y | > N ) ≤ 2−τ hold by isolating N

as follows:

αq

Nπ
exp

(
− N 2π

α2q2

)
= 2−τ⇐⇒

(
Nπ

αq

)2

exp

(
2N 2π

α2q2

)
= 22τ⇐⇒

(
2N 2π

α2q2

)
exp

(
2N 2π

α2q2

)
= 22τ+1/π. (4.3)

This gives the required result with W (·) the Lambert W function.

In order to analyse the propagation of noise during homomorphic operations, we need to prove

some statements about adding or transforming several normally-distributed variables, since the initial

noise is distributed according to a normal distribution. These are given in Propositions 4.3 and 4.4.

These proofs are based on some probability theory theorems introduced in Chapter 3.

Proposition 4.3. Let q be an integer, α ∈ (0,1) a real number andΨα
q the normal distribution on Rwith

mean 0 and standard deviation αqp
2π

that is Uτ-bounded for τ,U positive integers. Take e ←Ψα
q . For

n a positive integer, n ·e is distributed according to the (nU )τ-bounded zero-mean normal distribution

given byΨnα
q .

Proof. According to the linear transform theorem in Theorem 3.8, n · e is again normally distributed

with zero mean and standard deviation equal to nσχ = nαqp
2π

. So we can conclude that n · e is indeed

distributed according to a zero-mean normal distribution, namelyΨnα
q . From Proposition 4.2 we can

deduce thatΨnα
q is Wτ-bounded with W = nαq

√
W (22τ+1/π)

2π ≤ nU since U ≥αq
√

W (22τ+1/π)
2π . SoΨnα

q is

indeed (nU )τ-bounded. This can also be seen by P (|n ·e| > nU ) = P (n ·|e| > nU ) = P (|e| >U ) ≤ 2−τ.

Proposition 4.4. Let q be an integer, α1,α2 ∈ (0,1) real numbers and Ψα1
q ,Ψα2

q normal distributions

on Rwith mean 0 and standard deviations α1qp
2π

, α2qp
2π

that are Uτ-bounded and Vτ-bounded respectively

for τ,U and V positive integers. Take e1 ←Ψ
α1
q and e2 ←Ψ

α2
q independently. Then e1 + e2 and e1 − e2
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are distributed according to a zero-mean normal distribution that is (U +V )τ-bounded given by Ψα′
q

with α′ =
√
α2

1 +α2
2. In case α1 = α2, the distributions of e1 + e2 and e1 − e2 are both (

p
2U )τ- and

(
p

2V )τ-bounded.

Proof. According to the normal sum theorem in Theorem 3.10, e1+e2 and e1−e2 are normal variables

with mean 0 and variance
α2

1q2

2π + α2
2q2

2π = (α2
1+α2

2)q2

2π . Thus, they are distributed according to Ψα′
q with

α′ =
√
α2

1 +α2
2. Proposition 4.2 shows thatΨα′

q is Wτ-bounded for

W =α′q

√
W (22τ+1/π)

2π
=

√
α2

1 +α2
2q

√
W (22τ+1/π)

2π
≤ (α1 +α2)q

√
W (22τ+1/π)

2π
≤U +V

since U ≥α1q
√

W (22τ+1/π)
2π and V ≥α2q

√
W (22τ+1/π)

2π . Since P (|e1+e2| >U +V ) ≤ P (|e1+e2| >W ) ≤ 2−τ,

we can conclude that Ψα′
q is indeed (U +V )τ-bounded. In case α1 = α2, we find α′ = p

2α1 = p
2α2.

Then, α′q
√

W (22τ+1/π)
2π = p

2α1q
√

W (22τ+1/π)
2π ≤ p

2U . The same holds for α2 and V . Therefore, Ψα′
q is

both (
p

2U )τ- and (
p

2V )τ-bounded.

Below, we describe the noise after encryption, homomorphic operations, extensions and decryp-

tions and prove that the schemes return the correct decryption. Drafts of the proofs in the following

subsections can be found in [4, 54, 80, 88]. To the best of our knowledge, we are the first work that gives

a detailed description of the noise during these procedures. The newly introduced procedures and ho-

momorphic operations can be found in the sections above. For the other homomorphic operations,

Sections 3.3.1 and 3.3.2 can be consulted.

It is important to note here that in order to make the derivations more straightforward, from now

on the intermediate rounding in the noise analysis is neglected. By doing that, the combined noises

can be analysed by the combination of normal distributions (not rounded). This induces only a small

discrepancy in the final noise distribution, but still gives a proper image of the noise distribution and

its bound.

4.2.1. Encryption

A fresh ciphertext is a ciphertext which is not yet extended and on which no homomorphic operations

are applied yet. We can formalise the noise of a fresh ciphertext for both the encryption procedure

from the Multi-Key FHE scheme and the encryption procedure using a public key A. This formalisa-

tion is given in Propositions 4.5 and 4.6.

Proposition 4.5. Let n,m be the dimensions and q the modulus of the cryptosystem and Ψ̄α
q overZq the

noise distribution that is Bτ-bounded for τ a positive integer andα ∈ (0,1) a real number. A fresh single-

key ciphertext C = AR+µ(In ⊗gᵀ) ∈Zn×n`
q of message µwith public key A, random matrix R ∈ {0,1}m×n`

for secret key t is a (mB)τ-noisy ciphertext.

Proof. We have tᵀC =µ(tᵀ⊗gᵀ)+tᵀAR =µ(tᵀ⊗gᵀ)+eᵀR where eᵀ =
(
e1 . . . em

)
with ei ← Ψ̄α

q . Assum-

ing ei ←Ψα
q (so not rounded), Proposition 4.4 proves that the elements in eᵀR are distributed accord-

ing to a (mB)τ-bounded zero-mean normal distribution. So neglecting the intermediate rounding and

given Proposition 4.1, we can conclude that this fresh single-key ciphertext is indeed (mB)τ-noisy.

Proposition 4.6. Let n be the dimensions and q the modulus of the cryptosystem and Ψ̄α
q over Zq the

noise distribution that is Bτ-bounded for τ a positive integer andα ∈ (0,1) a real number. A fresh single-

key ciphertext C = C̄+µ(In ⊗gᵀ) ∈ Zn×n`
q of message µ with C̄ a concatenation of n` independent LWE

samples for secret key t is a Bτ-noisy ciphertext.
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Proof. We have tᵀC =µ(tᵀ⊗gᵀ)+tᵀC̄ =µ(tᵀ⊗gᵀ)+eᵀ where eᵀ =
(
e1 . . . en`

)
with ei ← Ψ̄α

q . Assuming

ei ←Ψα
q (so not rounded), Proposition 4.4 proves that the elements in eᵀ are distributed according to

a Bτ-bounded zero-mean normal distribution. So neglecting the intermediate rounding and given

Proposition 4.1, we can conclude that such a fresh single-key ciphertext is indeed Bτ-noisy.

4.2.2. Homomorphic operations

In this subsection we analyse the noise propagation after a homomorphic addition, multiplication,

addition or multiplication with a plaintext, and re-randomisation of a ciphertext.

Proposition 4.7. Let n be the dimension and q the modulus of the cryptosystem. Also, let C1,C2 ∈
Znk×nk`

q be two ciphertexts of messages µ1 and µ2 from the plaintext space {0,1, . . . ,D} ⊆ Zq under the

secret key t, which is a concatenation of the secret keys of k ≥ 1 parties, that are Uτ- and Vτ-noisy re-

spectively. When doing homomorphic addition (C1 �C2), the resulting ciphertext is a (U +V )τ-noisy

ciphertext of µ1 +µ2.

Proof. We have C1,C2 ∈ Znk×nk`
q such that tᵀCi = µi (tᵀ ⊗ gᵀ)+ eᵀi for i = 1,2 with the elements of ei

distributed according to a (assuming continuous) zero-mean normal distribution that is either Uτ- or

Vτ-bounded. Therefore, tᵀ(C1 �C2) = µ1
(
tᵀ⊗gᵀ)+eᵀ1 +µ2

(
tᵀ⊗gᵀ)+eᵀ2 = (µ1 +µ2)

(
tᵀ⊗gᵀ)+ (eᵀ1 +eᵀ2).

Therefore, the resulting ciphertext is indeed (U+V )τ-noisy since the distribution of (eᵀ1+eᵀ2) is (U+V )τ-

bounded according to Propositions 4.1 and 4.4.

Proposition 4.8. Let n be the dimension and q the modulus of the cryptosystem. Also, let C1,C2 ∈
Znk×nk`

q be two ciphertexts of messages µ1 and µ2 from the plaintext space {0,1, . . . ,D} ⊆ Zq under the

secret key t, which is a concatenation of the secret keys of k ≥ 1 parties, that are Uτ- and Vτ-noisy respec-

tively. When doing homomorphic multiplication (C1 �C2), the resulting ciphertext is a (nk`U +DV )τ-

noisy ciphertext of µ1µ2.

Proof. We have C1,C2 ∈ Znk×nk`
q such that tᵀCi = µi (tᵀ ⊗ gᵀ)+ eᵀi for i = 1,2 with the elements of ei

distributed according to a zero-mean normal distribution that is either Uτ- or Vτ-bounded. Thus,

tᵀ(C1 �C2) = tᵀC1(Ink ⊗g−1)[C2] = (µ1
(
tᵀ⊗gᵀ)+eᵀ1)(Ink ⊗g−1)[C2] =µ1tᵀC2 +eᵀ1(Ink ⊗g−1)[C2] =

µ1
(
µ2

(
tᵀ⊗gᵀ)+eᵀ2

)+eᵀ1(Ink ⊗g−1)[C2] =µ1µ2
(
tᵀ⊗gᵀ)+µ1eᵀ2 +eᵀ1(Ink ⊗g−1)[C2]. Also, µ1 ∈ {0,1, . . . ,D}

and (Ink ⊗g−1)[C2] a binary nk`×nk`matrix. Neglecting the rounding and using Propositions 4.1, 4.3

and 4.4, µ1eᵀ2 +eᵀ1(Ink ⊗g−1)[C2] is (nk`U +DV )τ-bounded distributed.

Proposition 4.9. Let n be the dimension and q the modulus of the cryptosystem. Also, let C ∈Znk×nk`
q

be a Uτ-noisy ciphertext of message µ from the plaintext space {0,1, . . . ,D} ⊆ Zq under the secret key t,

which is a concatenation of the secret keys of k ≥ 1 parties. When doing homomorphic addition of the

ciphertext with a plaintext ζ ∈ {0,1, . . . ,D} (C�ζ), the resulting ciphertext is a Uτ-noisy ciphertext of

ζ+µ.

Proof. We have C ∈Znk×nk`
q such that tᵀC =µ(tᵀ⊗gᵀ)+eᵀ with the elements of e distributed according

to a zero-mean normal distribution that is Uτ-bounded. Then, tᵀ (C�ζ) = tᵀ
(
C+ζ(Ink ⊗gᵀ)

)= µ(tᵀ⊗
gᵀ)+eᵀ+ tᵀζ(Ink ⊗gᵀ) =µ(tᵀ⊗gᵀ)+eᵀ+ζ(tᵀ⊗gᵀ) = (µ+ζ)(tᵀ⊗gᵀ)+eᵀ which shows that the resulting

ciphertext is indeed a Uτ-noisy ciphertext of ζ+µ.

Proposition 4.10. Let n be the dimension and q the modulus of the cryptosystem. Also, let C ∈Znk×nk`
q

be a Uτ-noisy ciphertext of message µ from the plaintext space {0,1, . . . ,D} ⊆ Zq under the secret key t,

which is a concatenation of the secret keys of k ≥ 1 parties. When doing homomorphic multiplication of

the ciphertext with a plaintext ζ ∈ {0,1, . . . ,D} (ζ�C), the resulting ciphertext is a (ζU )τ-noisy ciphertext

of ζ ·µ for ζ> 0.
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Proof. We have C ∈Znk×nk`
q such that tᵀC =µ(tᵀ⊗gᵀ)+eᵀ with the elements of e distributed according

to a zero-mean normal distribution that is Uτ-bounded. Then for ζ > 0, tᵀ (ζ�C) = tᵀ (ζC) = µζ(tᵀ⊗
gᵀ)+ ζeᵀ. Neglecting the rounding and using Propositions 4.1 and 4.3, we can conclude that ζeᵀ is

(ζU )τ-bounded distributed.

Proposition 4.11. Let n,m be the dimensions and q the modulus of the cryptosystem and Ψ̄α
q over Zq

the noise distribution that is Bτ-bounded for τ a positive integer and α ∈ (0,1) a real number. Also, let

C ∈ Znk×nk`
q be a Uτ-noisy ciphertext of message µ from the plaintext space {0,1, . . . ,D} ⊆ Zq under the

public key A ∈ Znk×m
q and the secret key t, which is a concatenation of the secret keys of k ≥ 1 parties.

When doing re-randomisation of the ciphertext, the resulting ciphertext is a (U +mB)τ-noisy ciphertext

of µ.

Proof. We have C ∈Znk×nk`
q such that tᵀC =µ(tᵀ⊗gᵀ)+eᵀ with the elements of e distributed according

to a zero-mean normal distribution that is Uτ-bounded. After re-randomisation, the result is C+AR ∈
Znk×nk`

q with R ← {0,1}m×nk` a random binary matrix. So we find tᵀ (C+AR) = µ(tᵀ⊗gᵀ)+eᵀ+ tᵀAR.

So, an additional noise term e′ᵀR is added where e′ᵀ =
(
e1 . . . em

)
with ei ← Ψ̄α

q . According to

Propositions 4.1 and 4.4, this results in a (U +mB)τ-noisy ciphertext.

4.2.3. Decryption

We now prove that the decryption procedure returns the correct decryption of a Uτ-noisy ciphertext

with probability at least 1−2−τ for a certain bound on U . We do this for both the extended and {0,1}

plaintext space. The definition of Bsmudge can be found in Section 4.1.3 where we explained the col-

laborative decryption procedure. In case GSW FHE is used in the protocols, it can be assumed that

this smudging noise is equal to 0 since these protocols do not require collaborative decryption.

Proposition 4.12. Let n be the dimension and q = 2` the modulus of the cryptosystem. Also, let C ∈
Znk×nk`

q be a Uτ-noisy ciphertext of a bit message µ under the secret key t, which is a concatenation of

the secret keys of k ≥ 1 parties. The ciphertext C can be decrypted with probability at least 1−2−τ when

U < q
4 −kBsmudge.

Proof. Let c be the last column of C and for each party i , let ci be the n rows of c that have the corre-

sponding positions as ti has in t. We have

µ′ =∑
i

pi =
∑

i

(
ti ·ci +esmudge

i

)
= tᵀ ·c+∑

i
esmudge

i =µ2`−1 +e +∑
i

esmudge
i

with e ← χ for a distribution χ that is Uτ-bounded. We know that
∑

i esmudge
i ≤ kBsmudge. Looking at

Figure 4.2, the decryption procedure works if e +∑
i esmudge

i < q/4. This happens with probability at

least 1−2−τ if U +kBsmudge < q/4 or U < q
4 −kBsmudge. This concludes the proof.

Proposition 4.13. Let n be the dimension and q = 2` the modulus of the cryptosystem. Also, let C ∈
Znk×nk`

q be a Uτ-noisy ciphertext of a message µ ∈ {0,1, . . . ,D} ⊆ Zq under the secret key t, which is a

concatenation of the secret keys of k ≥ 1 parties. The ciphertext C can be decrypted with probability at

least 1−2−τ when U < q
2(D+1) −kBsmudge.

Proof. Let c be the
(
log2(D +1)

)
-th column of the right of C and for each party i , let ci be the n rows of

c that have the corresponding positions as ti has in t. We have

µ′ =∑
i

pi =µ 2`

D +1
+e +∑

i
esmudge

i
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with e ← χ for a distribution χ that is Uτ-bounded. Again,
∑

i esmudge
i ≤ kBsmudge. Looking at Figure

4.3, the decryption procedure works if e +∑
i esmudge

i < q
2(D+1) . This happens with probability at least

1−2−τ if U +kBsmudge < q
2(D+1) or U < q

2(D+1) −kBsmudge. This concludes the proof.

4.2.4. Extension

We now show how the error propagates during one ciphertext extension in the Multi-Key FHE scheme.

In order to do this, we first need to show the correctness of the extension procedure within the multi-

key scheme, which is also given in [88].

Proposition 4.14. Let n,m be the dimensions and q the modulus of the cryptosystem and Ψ̄α
q over

Zq the noise distribution that is Bτ-bounded for τ a positive integer and α ∈ (0,1) a real number. Let

C ∈ Znk×nk`
q be a Uτ-noisy ciphertext of message µ under secret key t, which is a concatenation of the

secret keys of k ≥ 1 parties. After extension to one extra key tnew of party new, the resulting ciphertext C′ ∈
Z

n(k+1)×n(k+1)`
q is approximately a

(
(
p

n +nk)`
p

kmB +U B
)
τ

-noisy multi-key ciphertext of message µ

under secret key t′ =
(
tᵀ tᵀnew

)ᵀ
.

Proof. In Table 4.1, a summary of the extension procedure within the Multi-Key FHE scheme is shown.

We first show that this procedure indeed results in a ciphertext C′ ∈ Zn(k+1)×n(k+1)`
q that correctly

encrypts µ under the secret key t′, or t′ᵀC′ = µ(t′ᵀ ⊗ gᵀ) + eC′ with the noise values normally dis-

tributed with a zero mean. This derivation can also be found in [88]. We have C ∈ Znk×nk`
q such that

tᵀC = µ(tᵀ⊗gᵀ)+eᵀC with the elements of e distributed according to a zero-mean normal distribution

that is Uτ-bounded. The method includes the creation of a matrix X =
(
Xᵀ

1 Xᵀ
2

)ᵀ
with X1 ∈Znk×n`

q and

X2 ∈Zn×n`
q such that

t′ᵀX = tᵀX1 + tᵀnewX2 =µ(tᵀnew ⊗gᵀ)+eᵀX (4.4)

for some eX ∈Zn`
q of which the elements are normally distributed with zero mean. Choosing

C′ =
(

C X1

X2

)

then gives the required extended matrix, namely t′ᵀC′ = µ
(
(tᵀ⊗gᵀ)+eᵀC (tᵀnew ⊗gᵀ)+eᵀX

)
= µ(t′ᵀ ⊗

gᵀ)+
(
eᵀC eᵀX

)
. The construction of this X consists of the following two steps.

− First, a matrix Y =
(

Y1

Y2

)
∈Zn(k+1)×n2k`

q is created that satisfies

t′ᵀY = tᵀY1 + tᵀnewY2 = (tᵀ⊗ tᵀnew ⊗gᵀ)+eᵀY (4.5)

with eY ∈Zn2k`
q .

For constructing the matrix Y, we need the public extension keys of the parties. Say bi for

i ∈ {1, . . . ,k} are the first extension keys of the k parties and b the concatenation of all these

bi . Then, bᵀ = tᵀ · (Ik ⊗A)+eᵀb with A the common public matrix and the elements in eb ∈ Zmk
q

distributed according to Ψ̄α
q . Let Pnew and Dnew be the extension keys of the new party, asso-

ciated with the private key tnew and the random binary matrix Rnew. By construction, Pnew =
ARnew + (In ⊗ tᵀnew ⊗gᵀ). Now define Y1 = Ik ⊗Pnew = (Ik ⊗ARnew)+ (

Ink ⊗ tᵀnew ⊗gᵀ) ∈ Znk×n2k`
q

and Y2 := (((
Ikm ⊗g−1

)
[−b]

)ᵀ⊗ In
) · (Ik ⊗Dnew) ∈Zn×n2k`

q . So,

tᵀY1 = tᵀ · (Ik ⊗ARnew)+ (tᵀ⊗1⊗1) · (Ink ⊗ tᵀnew ⊗gᵀ)
= tᵀ · (Ik ⊗A) · (Ik ⊗Rnew)+ (

tᵀ⊗ tᵀnew ⊗gᵀ)
= (bᵀ−eᵀb) · (Ik ⊗Rnew)+ (

tᵀ⊗ tᵀnew ⊗gᵀ)
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and

tᵀnewY2 = tᵀnew ·
(((

Ikm ⊗g−1) [−b]
)ᵀ⊗ In

)
· (Ik ⊗Dnew)

= ((
Ikm ⊗g−1) [−b]

)ᵀ · (Ikm`⊗ tᵀnew) · (Ik ⊗Dnew)

= ((
Ikm ⊗g−1) [−b]

)ᵀ · ((Ik ⊗Rnew ⊗g)+ (Ik ⊗EDnew )
)

=−bᵀ(Ik ⊗Rnew)+ ((
Ikm ⊗g−1) [−b]

)ᵀ · (Ik ⊗EDnew )

since by construction (Iml ⊗ tᵀnew) ·Dnew = (Rnew ⊗ g)+EDnew where the elements in the noise

matrix are sampled from Ψ̄α
q . So indeed, Equation 4.5 holds for eᵀY = ((

Ikm ⊗g−1
)

[−b]
)ᵀ · (Ik ⊗

EDnew )−eᵀb · (Ik ⊗Rnew).

− In the second step the matrix X is derived from the matrix Y. First, take Ĉ = C · (enk ⊗ I`) ∈Znk×`
q

as the last ` columns of the ciphertext C and Π ∈ {0,1}n`×n` the permutation matrix such that

(gᵀ⊗ tᵀnew)Π= (tᵀnew ⊗gᵀ). Take

X = Y
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π ∈Zn(k+1)×n`

q .

Then,

t′ᵀX = t′ᵀY
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π

= (tᵀ⊗ tᵀnew ⊗gᵀ)
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π+eᵀX,1

= (tᵀ⊗ tᵀnew)(Ĉ⊗ In)Π+eᵀX,1

= ((tᵀĈ)⊗ tᵀnew)Π+eᵀX,1

= (((µ(tᵀ⊗gᵀ)+eᵀC)(enk ⊗ I`))⊗ tᵀnew)Π+eᵀX,1

=µ(gᵀ⊗ tᵀnew)Π+eᵀX,2 +eᵀX,1

=µ(tᵀnew ⊗gᵀ)+eᵀX,2 +eᵀX,1

=µ(tᵀnew ⊗gᵀ)+eᵀX

with eᵀX = eᵀX,1 +eᵀX,2 with eᵀX,1 = eᵀY
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π and eᵀX,2 = (eᵀC(enk ⊗I`)⊗ tᵀnew)Π. This is

exactly given in Equation 4.4.

So the only thing left to prove is that eX is distributed according to a zero-mean normal distribution

with the given bound. We have

eᵀX =
(((

Ikm ⊗g−1) [−b]
)ᵀ · (Ik ⊗EDnew )−eᵀb · (Ik ⊗Rnew)

)(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π

+ (
eᵀC(enk ⊗ I`)⊗ tᵀnew

)
Π

=((
Ikm ⊗g−1) [−b]

)ᵀ · (Ik ⊗EDnew ) · ((In2k ⊗g−1)[Ĉ⊗ In]
)
Π−eᵀb · (Ik ⊗Rnew)

(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π

+ (
eᵀC(enk ⊗ I`)⊗ tᵀnew

)
Π.

We know that
(
Ikm ⊗g−1

)
[−b] ∈ {0,1}km`, so

((
Ikm ⊗g−1

)
[−b]

)ᵀ · (Ik ⊗EDnew ) ∈ Zn2k`
q where the el-

ements are distributed according to Ψα′
q with in the worst case α′ =p

mlα that is (
p

ml B)τ bounded

according to Proposition 4.4 and ignoring the intermediate rounding. Also,
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π ∈

{0,1}n2k`×n` with maximum of nk` non-zeroes per column. With the same reasoning above this re-

sults in the elements of
((

Ikm ⊗g−1
)

[−b]
)ᵀ ·(Ik ⊗EDnew ) ·((In2k ⊗g−1)[Ĉ⊗ In]

)
Π distributed in the worst

case according toΨα′
q with α′ =

p
nkm`2α= `pnkmα that is (`

p
nkmB)τ bounded.

For the second term, we have (Ik ⊗Rnew)
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π a mk ×n` matrix where the ele-

ments have a maximum value of nk`. Neglecting the rounding and using Propositions 4.3 and 4.4, the

elements of eᵀb · (Ik ⊗Rnew)
(
(In2k ⊗g−1)[Ĉ⊗ In]

)
Π are distributed according to Ψα′

q with in the worst

case α′ = nk`
p

mkα that is (nk`
p

kmB)τ bounded.
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The row vector
(
eᵀC(enk ⊗ I`)⊗ tᵀnew

)
Π of size n` consists of elements that are the multiplication of

a secret key element from Bτ-bounded Ψ̄α
q and an element from eC that is distributed according to a

zero-mean normal distribution that is Uτ-bounded. We wish to express the noise by a normal distri-

bution and therefore we approximate the bound on the elements by assuming that all the elements in

eC are equal to U . By doing that, we can say that this final vector’s elements are distributed according

to Ψ̄α′
q with α′ = Uα and is therefore (U B)τ-bounded according to Proposition 4.3. This affects the

final bound only slightly, since for an element in eC, say e, it holds that P (e >U ) ≤ 2−τ and therefore

P (|et | >U |t |) = P (|e||t | >U |t |) ≤ 2−τ for a given t ← Ψ̄α
q .

To conclude, from neglecting the intermediate rounding and proposition 4.4 and 4.1 the final

noise elements can be approximated in the worst case by a zero-mean normal distribution that is

Qτ-bounded with Q =p
n`

p
kmB +nk`

p
kmB +U B = (

p
n +nk)`

p
kmB +U B . So we can conclude

that the ciphertext C′ is a Qτ-noisy ciphertext of message µ under secret key t′.

4.2.5. Key-switching

In this section we prove the correctness of the key-switching procedure, which we slightly adapted

such that it can also be applied on ciphertext matrices. Also, we show how the error propagates during

this procedure. The results are given by the proposition and proof below.

Proposition 4.15. Let n be the dimensions and q the modulus of the cryptosystem and Ψ̄α
q over Zq

the noise distribution that is Bτ-bounded for τ a positive integer and α ∈ (0,1) a real number. Also, let

C ∈ Zn×nl
q be a ciphertext of message µ from the plaintext space {0,1, . . . ,D} ⊆ Zq under the secret key t

that is Uτ-noisy. After key-switching to tnew, the resulting ciphertext is a (U +p
nlB)τ-noisy ciphertext

of µ under tnew.

Proof. We have tᵀC = µ(tᵀ⊗gᵀ)+eᵀ with the elements of e distributed according to a (assuming con-

tinuous) zero-mean normal distribution that is Uτ-bounded. Let

St�tnew = S̄+


0
...

0
tᵀ⊗gᵀ

Zn×nl
q

be the switching-key. The switched ciphertext is then given by St�tnew · (In ⊗g−1)[C]. Multiplying the

new key with the switched ciphertext gives

tnew
(
St�tnew · (In ⊗g−1)[C]

)=
tᵀnewS̄+ tᵀnew


0
...

0
tᵀ⊗gᵀ


 ·(In ⊗g−1)[C] =

(
e1 . . . enl

)
·(In ⊗g−1)[C]+tᵀC

with ei ←Ψ̄α
q and S̄ ∈Zn×nl

q an encryption of 0 under the new key tnew. Since (In ⊗g−1)[C] is a matrix in

{0,1}nl×nl , we find that the above is equal to µ(tᵀ⊗gᵀ)+eᵀ+e′ᵀ where the elements of e′ are distributed

according to a (assuming continuous) zero-mean normal distribution that is (
p

nlB)τ-bounded, given

Proposition 4.4. Therefore, the resulting ciphertext is indeed (U +p
nlB)τ-noisy since the distribution

of (eᵀ+e′ᵀ) is (U +p
nlB)τ-bounded according to Propositions 4.1 and 4.4.
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4.2.6. New gadget vector

We now analyse the decryption procedure that makes use of the new gadget vector introduced in

Section 4.1.6. The result is given in Proposition 4.16. The definition of Bsmudge can be found in Section

4.1.3 where we explained the collaborative decryption procedure. In case GSW FHE is used in the

protocols, it can be assumed that this smudging noise is equal to 0 since these protocols do not require

collaborative decryption.

Proposition 4.16. Let n,m be the dimensions and q = (D ′+1)` the modulus of the cryptosystem with

D ′+1 a prime number. Also, let C ∈Znk×nkl
q be a Uτ-noisy ciphertext of a message µ ∈ {0,1, . . . ,D ′} ⊆Zq

under the secret key t, which is a concatenation of the secret keys of k ≥ 1 parties. The ciphertext C can

be decrypted with probability at least 1−2−τ when U < q
2(D ′+1) −kBsmudge.

Proof. Let c be the last column of C and for each party i , let ci be the n rows of c that have the corre-

sponding positions as ti has in t. We have

µ′ =∑
i

pi =µ q

D ′+1
+e +∑

i
esmudge

i

with e ← χ for a distribution χ that is Uτ-bounded. We know that
∑

i esmudge
i ≤ kBsmudge. Concluding,

the decryption procedure works if e+∑
i esmudge

i < q/
(
2(D ′+1)

)
. This happens with probability at least

1−2−τ if U +kBsmudge < q/
(
2(D ′+1)

)
or U < q

2(D ′+1) −kBsmudge.

Using the new gadget vector, the result matrix after the inverse gadget operation is not a binary ma-

trix anymore, which impacts the noise propagation of a homomorphic multiplication, the extension

and key-switching procedure, as given in the propositions below. The proofs of these propositions are

straightforward given the proofs of Propositions 4.8, 4.14 and 4.15 by changing the definition of the

function (Ink ⊗g−1)[·]. We therefore do not give these proofs.

Proposition 4.17. Let n be the dimension and q the modulus of the cryptosystem, using the new gadget

vector. Also, let C1,C2 ∈ Znk×nk`
q be two ciphertexts of messages µ1 and µ2 from the plaintext space

{0,1, . . . ,D ′} ⊆Zq under the secret key t, which is a concatenation of the secret keys of k ≥ 1 parties, that

are Uτ- and Vτ-noisy respectively. When doing homomorphic multiplication (C1 �C2), the resulting

ciphertext is a (nk`D ′U +D ′V )τ-noisy ciphertext of µ1µ2.

Proposition 4.18. Let n,m be the dimensions and q the modulus of the cryptosystem, using the new

gadget vector. Let Ψ̄α
q over Zq be the noise distribution that is Bτ-bounded for τ a positive integer

and α ∈ (0,1) a real number. Let C ∈ Znk×nk`
q be a Uτ-noisy ciphertext of message µ ∈ {0,1, . . . ,D ′} ⊆

Zq under secret key t, which is a concatenation of the secret keys of k ≥ 1 parties. After extension

to one extra key tnew of party new, the resulting ciphertext C′ ∈ Zn(k+1)×n(k+1)`
q is approximately a(

(
p

nD ′+nk)`
p

kmD ′B +U B
)
τ

-noisy multi-key ciphertext of messageµunder secret key t′ =
(
tᵀ tᵀnew

)ᵀ
.

Proposition 4.19. Let n be the dimensions and q the modulus of the cryptosystem, using the new gadget

vector. Let Ψ̄α
q over Zq be the noise distribution that is Bτ-bounded for τ a positive integer and α ∈ (0,1)

a real number. Also, let C ∈Zn×nl
q be a ciphertext of message µ from the plaintext space {0,1, . . . ,D ′} ⊆Zq

under the secret key t that is Uτ-noisy. After key-switching to tnew, the resulting ciphertext is a (U +p
nlD ′B)τ-noisy ciphertext of µ under tnew.
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4.3. Security

In this section we prove the IND-CPA security of the two FHE schemes, according to Definition 3.5.

Recall that an encryption scheme is IND-CPA secure, if the outcome of the game in Definition 3.5, for

any probabilistic, polynomial time-bounded adversary, is 1 with a probability at most 1/2+negl(κ)

with κ the security parameter. Drafts of the proofs can be found in [54, 80, 88]. Our proofs are slightly

more detailed. First, the Leftover Hash Lemma is introduced. The proof of the Leftover Hash Lemma

can be found in [95].

Lemma 4.3 (Leftover Hash Lemma [95]). Let G be some finite Abelian group and let j be some integer.

For any j elements g1, . . . , g j ∈G consider the distribution given by the sum of the elements in a random

subset of {g1, . . . , g j }. Then, the expectation of the statistical distance between this distribution and the

uniform distribution on G, for a uniform choice of g1, . . . , g j ∈G, is at most
√
|G|/2 j .

In an ideal game the public keys and ciphertext are picked uniformly at random and independent

of the message. In order to prove the IND-CPA security, it is sufficient to show that an adversary in the

ideal game can learn as much as an adversary in the real game and vice versa [88]. The security proof

of the GSW encryption scheme is given below.

Theorem 4.4 (IND-CPA security of the GSW scheme). Let n,m be the dimensions and q the modu-

lus of the cryptosystem and Ψ̄α
q over Zq the noise distribution with α ∈ (0,1) a real number such that

αq ≥ 2
p

n −1 that define the GSW cryptosystem. If m ≥ n log2 q + 2κ and assuming the hardness of

the LW En−1,q,Ψ̄α
problem, the GSW scheme from Section 3.3.1 is IND-CPA secure with κ the security

parameter.

Proof. We prove that the view of the attacker in the real game is not different than his view when

every ciphertext and all public keys are uniformly random, which is sufficient for proving the IND-

CPA security. We define three games for which we prove that the view of the adversary is equivalent:

− Game 0: The real IND-CPA game,

− Game 1: The IND-CPA game where public keys b,A and the common matrix B are chosen uni-

formly at random and sent to the adversary,

− Game 2: The same as the previous game, but now also the ciphertexts are chosen uniformly at

random; the ideal game.

To prove that the adversary does not gain extra information in game 0 compared to game 1, we use the

hardness of the LWE problem. Namely, according to Theorem 3.17 with αq ≥ 2
p

n −1, we can replace

the columns of A with m uniformly random samples from Zn
q since the adversary is polynomial time-

bounded. It is clear that also B and b are uniformly random in that case. Therefore, the adversary has

no advantage in game 0 compared to game 1.

In game 1, the encryption of any plaintextµ is given by C = AR+µ(In⊗gᵀ) ∈Zn×n`
q with A uniformly

random. We can now apply the Leftover Hash Lemma. Take G = Zn
q which is a finite Abelian group

and j = m. The columns of A are j elements of G . When multiplying A with R, the result is a matrix

with column vectors that are the sum of random subsets of the j elements of G . According to Lemma

4.3, these are distributed with an expected statistical distance of at most
√

qn/2m to a uniform distri-

bution over Zn
q . We wish to make the statistical distance negligible in the security parameter κ. The

dimension m has a certain lower bound in order to achieve this, namely√
qn

2m ≤ 2−κ⇐⇒ qn

2m ≤ 2−2κ⇐⇒ qn ≤ 2m−2κ⇐⇒ n log q ≤ m −2κ⇐⇒ m ≥ n log q +2κ.
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It can be concluded that for m ≥ n log q+2κ the expected statistical distance between the distribution

of AR and the uniform distribution is negligible in κ. Therefore, the adversary has only a negligible (in

κ) advantage in game 2, the ideal game, in comparison to game 1.

Combining the above conclusions, the adversary has the same view and can therefore learn the

same in all three games up to a negligible amount in κ. This proves the IND-CPA security in the secu-

rity parameter κ.

Theorem 4.5 (IND-CPA security of the Multi-Key FHE scheme). Let n,m be the dimensions and q the

modulus of the cryptosystem and Ψ̄α
q over Zq the noise distribution with α ∈ (0,1) a real number such

that αq ≥ 2
p

n −1 that define the encryption scheme. If m ≥ n log2 q +2κ and assuming the hardness of

the LW En−1,q,Ψ̄α
problem, the Multi-Key FHE scheme from Section 3.3.2 with the encryption procedure

from Section 4.1.3 is IND-CPA secure with κ the security parameter.

Proof. We again define several games for which we prove that the view of the adversary is equivalent:

− Game 0: The real IND-CPA game,

− Game 1: The IND-CPA game where public keys b,D and the common matrix A are chosen uni-

formly at random and send to the adversary,

− Game 2: The same as the previous game, but now also the ciphertexts and the public key P are

chosen uniformly at random; the ideal game.

It can be seen that in the real game, A is chosen to be uniformly random and therefore also b is uni-

formly random due to the way it is constructed. According to Theorem 3.17 with αq ≥ 2
p

n −1, we

can replace the samples out of which D̄ is constructed by uniformly random samples in Zn
q since the

adversary is polynomial time-bounded. Concluding, the adversary has no advantage in game 0 com-

pared to game 1.

The encryption of any ciphertext µ is given by C =
(
A′ᵀ −b+a

)ᵀ
R+µ(In ⊗gᵀ) ∈ Zn×n`

q with R ←
{0,1}m×n` uniformly. Next to this, P = AR′+(In ⊗tᵀ⊗gᵀ) ∈Zn×n2l

q with R′ ← {0,1}m×n2l uniformly. Both

the matrix
(
A′ᵀ −b+a

)ᵀ
and A are uniformly random since b is uniformly random and A′ and a are

parts of A. Using the same reasoning as in the proof of Theorem 4.4, the Leftover Hash Lemma in

Lemma 4.3 gives that the distributions of C and P are close to uniform. Namely, for m ≥ n log q +2κ

the expected statistical distance between the distribution and the uniform distribution is negligible

in κ. Therefore, the adversary has only a negligible (in κ) advantage in game 2, the ideal game, in

comparison to game 1. So, the adversary has the same view and can therefore learn the same in all

three games up to a negligible amount in κ. This proves the theorem.

Additionally, it has to be proved that the partial decryptions in the collaborative decryption pro-

cedure do not give away additional information. Namely, in some of the protocols these partial de-

cryptions are send to other parties such that they can be used to find the full decryption. This can be

done by showing that the partial decryption of a party i can be simulated given the plaintext and the

secret keys of all other parties. In other words, the partial decryption of party i can be simulated with-

out knowing its secret key. This property tells us that the partial decryption does not reveal additional

information about the secret key of party i [80]. We call this simulation security. Simulations are often

used for proving security [71]. Below we define the simulation security of our collaborative decryption

procedure. The proof can be found in [80].

Theorem 4.6 (Security of collaborative decryption procedure [80]). Let C ∈ Znk×nk`
q be a Uτ-noisy

ciphertext of message µ under the secret key t, which is a concatenation of the secret keys of k ≥ 1 parties.

The collaborative decryption procedure within the Multi-Key FHE scheme, explained in Section 4.1.3,

satisfies simulation security in the security parameter κ when U
Bsmudge

= negl(κ).
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Collaborative Private Decision-Tree

Evaluation protocols

In the previous chapter we gave detailed analyses of the correctness and security of the encryption

schemes that are used in our protocols. In addition, we made some adaptations essential for the func-

tionality of our protocols. In this chapter we describe our private decision-tree evaluation protocols.

We consider a collaborative setting, where the input variables originate from more than one user.

These users communicate with a server that holds the decision tree. The goal of our protocols is to

perform the collaborative evaluation in a privacy-preserving way: the server should not get to know

anything about the input attributes of all users (except for the output of the decision tree evaluation

for some protocols), and the users should not get to know anything about the decision tree.

In the context of access control, the server that holds the decision tree does the evaluation and has

to receive the evaluation result in order to make the access decision. In other contexts, where the de-

cision tree is used as an external resource, the parties need to receive the evaluation result themselves.

An example of such a scenario is when multiple banks work together to detect fraud. Therefore, two

scenarios are considered that are defined in Definitions 5.1 and 5.2. Either the server gets the final

classification result, or the users get the result. In the scenario where the server learns the classifica-

tion label the server can deduce the possible tree paths taken by the users’ input. This is inherent to

the problem statement.

Definition 5.1 (Multi-Party Server Private Decision-Tree Evaluation). Let k users have private inputs

x(i ) for i ∈ {0,1, · · · ,k −1} and a server hold a decision tree T = (D∪L ,E). A Multi-Party Server Private

Decision-Tree Evaluation of T is an evaluation of T on x = (
x(0), . . . ,x(k−1)

)
, where the users do not

learn anything and the server only learns T (x).

Definition 5.2 (Multi-Party User Private Decision-Tree Evaluation). Let k users have private inputs

x(i ) for i ∈ {0,1, · · · ,k −1} and a server hold a decision tree T = (D ∪L ,E). A Multi-Party User Private

Decision-Tree Evaluation of T is an evaluation of T on x = (
x(0), . . . ,x(k−1)

)
, where the server does not

learn anything and the users only learn T (x).

49
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(a) The scenario of Definition 5.1 where the
server receives the final evaluation result, as for
the access-control use-case.

(b) The scenario of Definition 5.2 where the
users receive the final evaluation result, for ex-
ample when multiple banks work together for
fraud detection.

Figure 5.1: Demonstration of the two different scenarios considered in this thesis, defined in Definitions 5.1 and 5.2.

We propose 6 different types of of protocols of which the first four are placed in both settings

above. The fifth and sixth protocol can only be applied in the second setting. Our protocols either use

the multiplicative [107] path evaluation or the additive path evaluation [104] described in Section 3.5.

Either Multi-Key FHE is used or a Semi-Trusted Third Party (STTP), with our without key-switching.

Each protocol has their own properties and trade-offs. While the advantage of the Multi-Key FHE

protocols is that the users can encrypt under their own key and do not need to put their trust anywhere

else, it requires a server with high computational power due to the higher complexity of the encryption

scheme and the fact that it has to extend all incoming ciphertexts to multiple keys. The protocols

using an STTP require such an additional party to be found that generates a key pair that is used by

the users for encryption. Additionally, this party does the decryption. Finding such a party should not

be a hard task since this party does not gain any knowledge about the users’ input and server’s tree due

to randomisation. Lastly, the protocol that in addition uses a procedure called key-switching, makes

the trust that needs to be put in the STTP even lower, since now the decryption can be done by the

users themselves. It is only required that they generate some keys in communication with the server,

which costs an additional key-exchange communication round. The protocols that use an STTP have

the overall benefit that the GSW FHE encryption scheme can be used, which yields a lower complexity

than the multi-key encryption scheme.

In this thesis it is assumed that the corrupted parties are passive (a.k.a. semi-honest or honest-

but-curious), which means that these parties execute the protocol correctly. In our protocols, when

a user colludes with the server, both do not gain any additional knowledge. This also holds when the

STTP colludes with one of the users. Only in case the server colludes with the STTP, the server can

gain knowledge about the input of the users.

We now describe all protocols in detail. First, we introduce the notation used in the protocols.

In Sections 5.2 and 5.3, our protocols for both the multiplicative as the additive approach are given

that use Multi-Key FHE. In Section 5.4 and 5.5 we give four protocols that an STTP with or without

key-switching, both using the GSW FHE encryption scheme. Then, in Section 5.6, we compare sev-

eral comparison protocols to perform the decision-node evaluations and give a private equality test.

These are all building blocks of the first part of our protocols, which we treat as a black box in the first

sections.
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5.1. Notation

The input variables originate from k ≥ 2 users that communicate with a server that holds the decision

tree. The users’ inputs are given as a vector x(i ) ∈ Zai
p for i ∈ {0,1, · · · ,k − 1} with ai the number of

input variables of user i and p ≥ some integer. In total there are A = ∑k−1
i=0 ai input variables. These

are encrypted bit-wise by the k users. An encryption of an element y ∈Zp with plaintext space Zp for

some integer p ≥ 2 is denoted by [[y]]p . Homomorphic multiplication and addition are denoted by the

symbols � and � respectively. Let x ∈ ZA
p be the concatenation of all x(i ), so x = (

x(0), . . . ,x(k−1)
)
. As

described in Section 3.4, the evaluation of decision tree T = (D ∪L ,E) on input x = (
x(0), . . . ,x(k−1)

)
is given by T (x) with T : ZA

p 7→ {c1, . . . ,cν} the decision-tree evaluation function with class labels

{c1, . . . ,cν}. The bit-wise representation of a final evaluation label is denoted by T (x)0T (x)1 . . .T (x)ρ
with ρ the bit-length of the class label. The evaluation makes use of the functions t,m and c. We

define σ := |D| and γ := |L |. Also, for a decision node d ∈ D, d .i denotes its i -th child node and

d .children the set of child nodes of d . Additionally, d .cmp denotes the bit result of the decision-node

evaluation by the black box comparison or equality protocol. The collaborative decryption of a multi-

key ciphertext is split in two parts, explained in Section 4.1.3. In the protocols these parts are denoted

by two algorithms, PartialDecrypt and CombinePartials. The first algorithm is the calculation

of the partial decryption with the secret key of the specific party. The second algorithm sums these

partial decryptions to find the full decryption.

5.2. Multiplicative protocols using Multi-Key Fully Homomorphic En-

cryption

Multi-Key FHE is an approach to build secure MPC protocols based on homomorphic encryption, and

requires only two communication rounds. Therefore, we propose two collaborative PDTE protocols

(for both scenarios one) using Multi-Key FHE. The advantage is that all users can encrypt their input

under their own key and send it to the server together with their public extension key. They do not have

to interact any more, except when the complete tree is evaluated and they have to partially decrypt the

result. The server is able to combine the inputs of all users by extending all ciphertexts to all the keys of

the users. The server does not have to generate keys himself. Since the multi-key encryption scheme

requires a commonly known matrix, the protocols take place in the CRS model in which it is assumed

that all parties have access to a common random string.

The protocols in this section make use of the multiplicative path evaluation [107] method, pre-

sented in Section 3.5. The complete tree evaluation algorithm Evaluate is given in Algorithm 4. As

a reminder, only 1-values are stored on the correct evaluation path in the tree and 0’s elsewhere. The

final label is found by multiplying the path evaluation result with each leaf node label. Note here that

we do this bit-wise to stay in the Z2 plaintext space; we first translate every class label to its bit rep-

resentation, after which every bit is multiplied by the path evaluation result. By adding these values,

only the correct path’s label bits are counted and returned. The correctness of this method follows

directly from Lemma 1 in [107]. We improve upon [107] by introducing the plaintext multiplication

such that the server does not need to encrypt the leaf labels. By using plaintext multiplications instead

of ciphertext multiplication, the noise increases less.

In Protocol 1, our Multi-Party User Private Decision-Tree Evaluation protocol based on Multi-Key

FHE is given. Upon receiving all encrypted input variables, the server evaluates the tree. He sends

the encrypted result to all users. Each user then partially decrypts the results and communicates the

partial decryptions with all other users. Every user can combine these to get the evaluation result in

plaintext.
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Clearly, the encryptions of the users do not reveal anything to the server since these are encrypted

by the IND-CPA secure Multi-Key FHE scheme. According to Theorem 4.6, the partial decryptions do

not reveal any information about the secret key used for the partial decryption. Therefore, the users

do not gain any information other than the final evaluation result.

The Multi-Party Server Private Decision-Tree Evaluation protocol is shown in Protocol 2. It works

in the same way as the previous protocol. The difference is that now the users send their partial de-

cryption to the server, such that the server can obtain the evaluation result in plaintext. The server

does learn the possible paths taken in the decision tree, which is inherent to the problem statement.

For additional security, the server adds a random value R to the encrypted result such that when the

users share their partial encryption with each other, they still can not find the result.

Algorithm 4

1: function EVALUATE(D,L , [[x]]2)

2: for all d ∈D do

3: if d a threshold node then

4: [[d .right.cmp]]2 ← [[xm(d) > t(d)]]2

5: [[d .left.cmp]]2 ← [[xm(d) > t(d)]]2 �1

6: if d a categorical node then

7: [[d .right.cmp]]2 ← [[xm(d) = t(d)]]2

8: [[d .left.cmp]]2 ← [[xm(d) = t(d)]]2 �1

9: for all d ∈D do

10: If Multi-Key FHE scheme is used: extend [[d .cmp]]2 to all users’ keys

11: If key-switching is used: switch [[d .cmp]]2 to an encryption under the public key of the STTP

12: Let Q be an empty queue

13: for all v ∈ root.children do

14: Q.enqueue(v)

15: while Q.empty() = false do

16: v ←Q.dequeue()

17: for all w ∈ v.children do

18: [[w.cmp]]2 ← [[w.cmp]]2 � [[v .cmp]]2

19: Q.enqueue(w)

20: ρ← highest bit-length of class labels

21: for all i ∈ {0,1, . . . ,ρ} do

22: [[resulti ]]2 ← [[0]]2

23: for all l ∈L do

24: c0c1 . . .cρ ← bit representation of c(l )

25: for all i ∈ {0,1, . . . ,ρ} do

26: [[resulti ]]2 ← [[resulti ]]2 �
(
[[l .cmp]]2 � ci

)
27: return [[result0]]2, . . . , [[resultρ]]2
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Protocol 1: Multi-Party User Private Decision-Tree Evaluation Protocol based on Multi-Key FHE.

User i Server

Input: x(i ),pki , ski Input: D,L

Output: T (x) Output: −
pki ,[[x(i )]]2−−−−−−−→

[[x]]2 ←
(
[[x(0)]]2, [[x(1)]]2, . . . , [[x(k−1)]]2

)
[[T (x)0]]2, . . . , [[T (x)ρ]]2 ← Evaluate(D,L , [[x]]2)

[[T (x)0]]2,...,[[T (x)ρ ]]2←−−−−−−−−−−−−−−−
for j = 0, . . . ,ρ do:

p(i )
j ← PartialDecrypt([[T (x) j ]]2)

Send p(i )
0 , . . . , p(i )

ρ to all other users (not server)

for j = 0, . . . ,ρ do:

T (x) j ← CombinePartials(p(0)
j , . . . , p(k−1)

j )
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Protocol 2: Multi-Party Server Private Decision-Tree Evaluation Protocol based on Multi-Key FHE.

User i Server

Input: x(i ),pki , ski Input: D,L

Output: − Output: T (x)

pki ,[[x(i )]]2−−−−−−−→
[[x]]2 ←

(
[[x(0)]]2, [[x(1)]]2, . . . , [[x(k−1)]]2

)
[[T (x)0]]2, . . . , [[T (x)ρ]]2 ← Evaluate(D,L , [[x]]2)

for j = 0, . . . ,ρ do:
R j ← uniformly random bit

[[T ′(x) j ]]2 ← [[T (x) j ]]2 �R j
[[T ′(x)0]]2,...,[[T ′(x)ρ ]]2←−−−−−−−−−−−−−−−−

for j = 0, . . . ,ρ do:

p(i )
j ← PartialDecrypt([[T ′(x)]]2)

p(i )
0 ,...,p(i )

ρ−−−−−−−→
for j = 0, . . . ,ρ do:

T (x) j ← CombinePartials(p(0)
j , . . . , p(k−1)

j )−R j
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5.3. Additive protocols using Multi-Key Fully Homomorphic Encryp-

tion

From Section 4.2.2 it can be concluded that the ciphertext noise is lower after a homomorphic addition

than after a homomorphic multiplication. The lower the total noise propagation, the smaller we can

set the parameters of the encryption scheme, which is beneficial for the efficiency of the protocol. We

therefore propose two protocols using Multi-Key FHE, where the additive path evaluation approach

from Section 3.5 is used. The main difference with the previous two protocols is that now the tree

evaluation algorithm of Algorithm 5 is used, which uses additions instead of multiplications for the

path evaluation.

As a reminder, this approach works by calculating for every path a cost; the addition of all decision

bits on the path. Now, each path cost can have a value up to the depth of the tree. Therefore, the

ciphertexts have the plaintext space {0,1, . . . ,D} with D the depth of the tree T . In case D +1 is not a

prime, we see that the required multiplication with a random value can result in a zero value which

is not desired. As an example, take D +1 = 4, then when l .cmp = 2 and r = 2 the result is 2 ·2 = 4 ≡ 0

mod D +1. Therefore, we need D +1 to be prime. We extend the plaintext space to {0,1, . . . ,D ′} with

D ′+1 the first prime number that is bigger than D . Dividing the Zq space in D ′+1 parts can be done

by choosing q = (D ′+1)l and using a different gadget vector as introduced in Section 4.1.6.

After the path evaluation, only the correct path has zero-cost. Now for every leaf node the en-

crypted path cost and corresponding encrypted leaf label is communicated back to the users. The

decryption works in the same way as for the previous two protocols. Randomising every path cost

by a random value makes sure that all non-zero path costs do not give away any additional infor-

mation [104]. Since we introduced the plaintext addition, we do not need to encrypt the label in

contrast to the work of Tai et al. [104]. For the leaf node l ∈ L with path cost equal to 0, we have

[[l .cmp]]D ′+1 = [[0]]D ′+1 and therefore [[costl ]]D ′+1 = [[0]]D ′+1. Thus, once the final user decrypts the

label of the zero-cost path this results in the result c(l ). This immediately shows the correctness of the

protocol. The labels are again communicated bit-wisely, since the possible number of leaf nodes can

be higher than D ′+1, which is the plaintext space size.

Since these protocols take place in the plaintext space {0,1, . . . ,D ′} the decision bits have to be

stored at the child nodes in a different way than for the protocols that use the multiplicative path

evaluation. Namely, when the result of a comparison or equality protocol is equal to 1, we would like to

store 0 at the right child node. But this can not be realised by adding a 1 since now 1+1 ≡ 2 mod D ′+1.

We solve this by calculating 1�
(
D ′ � [[xm(d) > t(d)]]D ′+1

)
. When [[xm(d) > t(d)]]D ′+1 = [[1]]D ′+1 the result

is 1�(D ′�[[1]]D ′+1) = [[D ′+1]]D ′+1 ≡ [[0]]D ′+1. When [[xm(d) > t(d)]]D ′+1 = [[0]]D ′+1 the result is [[1]]D ′+1.

Therefore, the functionality is as desired. We can do the same for the categorical nodes.

Our Multi-Party User Private Decision-Tree Evaluation protocol according to the additive approach

can be seen in Protocol 3. This protocol requires more communication, since for every leaf node both

the encrypted path cost and label are send from the server to the users. Namely, in order to find the

classification label of the zero-cost path, all path costs need to be decrypted. This does give away the

number of leaf nodes in the tree. Randomly permuting the order of the communicated ciphertext

makes sure that the location if the zero-cost path within the tree stays hidden for the users.

Our protocol in the second scenario, where the server learns the evaluation label instead of the

users, can be seen in Protocol 4. Since the users do not have to receive the result, it is sufficient that

only one of the users finds the path with a path cost of 0 using the partial decryption of all other users.

Again, we introduce the random variable R which is only known by the server, to hide the exact value

of the evaluation label. Once the final user decrypts the label of the zero-cost path, he finds the value

c(l )+R which is send to the server. Clearly, the server can then find T (x) by subtracting R.
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Algorithm 5

1: function EVALUATE+(D,L , [[x]]D ′+1)

2: for all d ∈D do

3: if d a threshold node then

4: [[d .right.cmp]]D ′+1 ← 1�
(
D ′� [[xm(d) > t(d)]]D ′+1

)
5: [[d .left.cmp]]D ′+1 ← [[xm(d) > t(d)]]D ′+1

6: if d a categorical node then

7: [[d .right.cmp]]D ′+1 ← 1�
(
D ′� [[xm(d) = t(d)]]D ′+1

)
8: [[d .left.cmp]]D ′+1 ← [[xm(d) = t(d)]]D ′+1

9: for all d ∈D do

10: If Multi-Key FHE scheme is used: extend [[d .cmp]]D ′+1 to all users’ keys

11: If key-switching is used: switch [[d .cmp]]2 to an encryption under the public key of the STTP

12: Let Q be an empty queue

13: for all v ∈ root.children do

14: Q.enqueue(v)

15: while Q.empty() = false do

16: v ←Q.dequeue()

17: for all w ∈ v.children do

18: [[w.cmp]]D ′+1 ← [[w.cmp]]D ′+1 � [[v .cmp]]D ′+1
19: Q.enqueue(w)

20: ρ← highest bit-length of class labels

21: for all l ∈L do

22: c0c1 . . .cρ ← bit representation of c(l )

23: r ← uniformly random from {1,2, . . . ,D ′}
24: [[costl ]]D ′+1 ← r � [[l .cmp]]D ′+1
25: for all i ∈ {0,1, . . . ,ρ} do

26: r ′ ← uniformly random from {1,2, . . . ,D ′}
27: [[labell ,i ]]D ′+1 ← (

r ′� [[l .cmp]]D ′+1
)
� ci

28: return ([[costl ]]D ′+1, [[labell ,0]]D ′+1, . . . , [[labell ,ρ]]D ′+1) for all l ∈L
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Protocol 3: Additive Multi-Party User Private Decision-Tree Evaluation Protocol based on Multi-Key FHE.

User i Server

Input: x(i ),pki , ski Input: D,L

Output: T (x) Output: −
pki ,[[x(i )]]D′+1−−−−−−−−−−→

[[x]]D ′+1 ←
(
[[x(0)]]D ′+1, [[x(1)]]D ′+1, . . . , [[x(k−1)]]D ′+1

)(
[[costl ]]D ′+1, [[labell ,0]]D ′+1, . . . , [[labell ,ρ]]D ′+1

)
l ← Evaluate+(D,L , [[x]]D ′+1)

P ← Random permutation

Φ := (
[[costP (l )]]D ′+1, [[labelP (l ),0]]D ′+1, . . . , [[labelP (l ),ρ]]D ′+1

)
l

Φ←−−
for j = 1, . . . ,γ do:

c(i )
j ← PartialDecrypt([[cost j ]]D ′+1)

for x = 0, . . . ,ρ do:

r (i )
j ,x ← PartialDecrypt([[label j ,x ]]D ′+1)

Send (c(i )
j ,r (i )

j ,0, . . . ,r (i )
j ,ρ) j to all other users (not server)

Find j with CombinePartials(c(0)
j , . . . ,c(k−1)

j ) = 0

for x = 0, . . . ,ρ do:

T (x)x ← CombinePartials(r (0)
j ,x , . . . ,r (k−1)

j ,x )
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Protocol 4: Additive Multi-Party Server Private Decision-Tree Evaluation Protocol based on Multi-Key FHE.

User i Server

Input: x(i ),pki , ski Input: D,L

Output: − Output: T (x)

pki ,[[x(i )]]D′+1−−−−−−−−−−→
[[x]]D ′+1 ←

(
[[x(0)]]D ′+1, [[x(1)]]D ′+1, . . . , [[x(k−1)]]D ′+1

)
(
(
[[costl ]]D ′+1, [[labell ,0]]D ′+1, . . . , [[labell ,ρ]]D ′+1

)
l ← Evaluate+(D,L , [[x]]D ′+1)

P ← Random permutation

R0, . . . ,Rρ ← uniformly random bit

Φ := (
[[costP (l )]]D ′+1, [[labelP (l ),0]]D ′+1 �R0, . . . , [[labelP (l ),ρ]]D ′+1 �Rρ

)
l

Φ←−−
for j = 1, . . . ,γ do:

c(i )
j ← PartialDecrypt([[cost j ]]D ′+1)

Send c(i )
1 , . . . ,c(i )

γ to all other users (not server)

Find j with CombinePartials(c(0)
j , . . . ,c(k−1)

j ) = 0

for x = 0, . . . ,ρ do:

r (i )
x ← PartialDecrypt([[labelx ]]D ′+1)

r (i )
0 ,...,r (i )

ρ−−−−−−→
for j = 0, . . . ,ρ do:

T (x) j ← CombinePartials(r (0)
j , . . . ,r (k−1)

j )−R j
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5.4. Semi-Trusted Third Party protocols using GSW Fully Homomor-

phic Encryption

The next four protocols we propose use an additional party. Only this party is required to do the key

generation of the encryption scheme. All users encrypt under the public key pk of this party. This

means that instead of a Multi-Key FHE scheme, we can use the GSW FHE scheme. Namely, the server

receives encrypted input from the users that are all encrypted under the same key. The server sends

the evaluation result to this additional party that does the decryption. Since the server randomised

the result by adding a value that is only known by him and/or the users, this additional party does

not gain any knowledge. We therefore call this additional party an STTP; this party is only involved in

the protocol by performing the key generation and decryption properly. Even when the STTP colludes

with one of the users, this user can not see the evaluation result since this is randomised by the server.

The result is a more straightforward and efficient protocol. Finding such an STTP should not be

a hard task since the STTP does not get any insight into the input of the other parties. The protocols

that make use of STTP in combination with the multiplicative approach in Algorithm 4, can be seen in

Protocols 5 and 6. The protocols that make use of the additive approach of Algorithm 5, can be seen in

7 and 8. The setup and key generation does add an extra round compared to the previous protocols,

since the public key pk of the STTP has to be shared with all users.
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Protocol 5: Multi-Party User Private Decision-Tree Evaluation Protocol using GSW FHE and an STTP.

STTP User i Server

Input: pk,sk Input: x(i ) Input: D,L

Output: − Output: T (x) Output: −
pk−−→

Encrypt x(i ) under received pk
[[x(i )]]2−−−−−→

[[x]]2 ←
(
[[x(0)]]2, [[x(1)]]2, . . . , [[x(k−1)]]2

)
[[T (x)0]]2, . . . , [[T (x)ρ]]2 ← Evaluate(D,L , [[x]]2)

for j = 0, . . . ,ρ do:
R j ← uniformly random bit

[[T ′(x) j ]]2 ← [[T (x) j ]]2 �R j
R0,...,Rρ←−−−−−−

[[T ′(x)0]]2,...,[[T ′(x)ρ ]]2←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for j = 0, . . . ,ρ do:

T ′(x) j ← Decrypt([[T ′(x) j ]]2)
T ′(x)0,...,T ′(x)ρ−−−−−−−−−−−→

for j = 0, . . . ,ρ do:
T (x) j ←T ′(x) j −R j
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Protocol 6: Multi-Party Server Private Decision-Tree Evaluation Protocol using GSW FHE and an STTP.

User i Server STTP

Input: x(i ) Input: D,L Input: pk,sk

Output: − Output: T (x) Output: −
pk←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Encrypt x(i ) under received pk
[[x(i )]]2−−−−−→

[[x]]2 ←
(
[[x(0)]]2, [[x(1)]]2, . . . , [[x(k−1)]]2

)
[[T (x)0]]2, . . . , [[T (x)ρ]]2 ← Evaluate(D,L , [[x]]2)

for j = 0, . . . ,ρ do:
R j ← uniformly random bit

[[T ′(x) j ]]2 ← [[T (x) j ]]2 �R j
[[T ′(x)0]]2,...,[[T ′(x)ρ ]]2−−−−−−−−−−−−−−−−→

for j = 0, . . . ,ρ do:
T ′(x) j ← Decrypt([[T ′(x) j ]]2)

T ′(x)0,...,T ′(x)ρ←−−−−−−−−−−−
for j = 0, . . . ,ρ do:

T (x) j ←T ′(x) j −R j
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Protocol 7: Additive Multi-Party User Private Decision-Tree Evaluation Protocol using GSW FHE and an STTP.

STTP User i Server

Input: pk,sk Input: x(i ) Input: D,L
Output: − Output: T (x) Output: −

pk−−→
Encrypt x(i ) under received pk

[[x(i )]]D′+1−−−−−−−−→
[[x]]D ′+1 ←

(
[[x(0)]]D ′+1, [[x(1)]]D ′+1, . . . , [[x(k−1)]]D ′+1

)(
[[costl ]]D ′+1, [[labell ,0]]D ′+1, . . . , [[labell ,ρ ]]D ′+1

)
l
← Evaluate+(D,L , [[x]]D ′+1)

P ← Random permutation
R0, . . . ,Rρ ← uniformly random bit

Φ :=
(
[[costP (l )]]D ′+1, [[labelP (l ),0]]D ′+1 �R0, . . . , [[labelP (l ),ρ ]]D ′+1 �Rρ

)
l

R0 ,...,Rρ←−−−−−−−
Φ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Find j with Decrypt([[cost j ]]D ′+1) = 0

for x = 0, . . . ,ρ do:
T ′(x)x ← Decrypt([[label j ,x ]]D ′+1)

T ′(x)0 ,...,T ′(x)ρ−−−−−−−−−−−−−→
for j = 0, . . . ,ρ do:

T (x) j ←T ′(x) j −R j



5.4.Sem
i-Tru

sted
T

h
ird

Party
p

ro
to

co
ls

u
sin

g
G

SW
Fu

lly
H

o
m

o
m

o
rp

h
ic

E
n

cryp
tio

n
63

Protocol 8: Additive Multi-Party Server Private Decision-Tree Evaluation Protocol using GSW FHE and an STTP.

User i Server STTP

Input: x(i ) Input: D,L Input: pk,sk
Output: − Output: T (x) Output: −

pk←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Encrypt x(i ) under received pk

[[x(i )]]D′+1−−−−−−−−→
[[x]]D ′+1 ←

(
[[x(0)]]D ′+1, [[x(1)]]D ′+1, . . . , [[x(k−1)]]D ′+1

)(
[[costl ]]D ′+1, [[labell ,0]]D ′+1, . . . , [[labell ,ρ ]]D ′+1

)
l
← Evaluate+(D,L , [[x]]D ′+1)

P ← Random permutation
R0, . . . ,Rρ ← uniformly random bit

Φ :=
(
[[costP (l )]]D ′+1, [[labelP (l ),0]]D ′+1 �R0, . . . , [[labelP (l ),ρ ]]D ′+1 �Rρ

)
l

Φ−−→
Find j with Decrypt([[cost j ]]D ′+1) = 0

for x = 0, . . . ,ρ do:
T ′(x)x ← Decrypt([[label j ,x ]]D ′+1)

T ′(x)0 ,...,T ′(x)ρ←−−−−−−−−−−−−−
for j = 0, . . . ,ρ do:

T (x) j ←T ′(x) j −R j
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5.5. Semi-Trusted Third Party protocols using key-switching and GSW

Fully Homomorphic Encryption

We propose two other protocols where the dependency on the STTP is even lower. In these protocols,

no ciphertexts are communicated with the STTP. The keys of the STTP are only used by the server in

order to translate the input ciphertexts of all parties to the same key. This is necessary since during

the tree evaluation the ciphertexts can only be combined if they are encrypted under the same key.

The STTP only needs to join the key generation in which he generates his public key and switching

keys that can be used by the server. These switching keys can switch encryptions by user i to an en-

cryption under the public key of the STTP. The advantage is that the trust that needs to be put into

this additional party is even lower since it does not execute any part of the protocol. At the end of the

protocols, the result ciphertexts are switched back to the users’ keys. The key-switching procedure is

described in Section 4.1.5.

Our protocols that make use of an STTP in combination with key-switching, can be seen in Pro-

tocols 9 and 10. In the protocols where the server receives the evaluation result, using key-switching

is not possible. Namely, from the switching key, the secret key of the party can be determined and

therefore all intermediate ciphertexts can be read by the server. Therefore, the STTP still has to be the

decrypting party which is also the case in the other STTP protocols. The STTP approach has its ad-

vantage only in case the users are receiving the evaluation results; no communication of ciphertexts

with the STTP is necessary. This makes trusting the STTP much easier. Protocol 9 makes use of the

multiplicative path evaluation and Protocol 10 of the additive path evaluation.

The STTP only engages in the setup procedure to generate a public key and secret key pair (pk,sk)

and k switching keys Ssk�ski ; one together with each user. We denote an encryption ofµwith plaintext

space Z2 encrypted under secret key sk by [[µ]]sk
2 . Applying the key-switching procedure to change the

public key of an encryption from sk to sk′ is denoted by [[µ]]sk
2

switch−−−−→ [[µ]]sk′
2 . Please not that the public

keys pk in the protocols are now an encryption of 0 under the corresponding secret key. First, the STTP

and the users communicate with each other to share these public keys. Then, this public key can be

used by the user i to create the switching key Sski �sk. The STTP creates Ssk�ski for all i and sends

these to the server. This does require an additional round, in which the users communicate with the

STTP to share their public keys. Note here that the evaluation algorithms now include the switching

procedure to the STTP’s secret key after every decision node is evaluated.
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Protocol 9: Multi-Party User Private Decision-Tree Evaluation Protocol using GSW FHE, an STTP and key-switching.

STTP User i Server

Input: pk,sk Input: x(i ),pki , ski Input: D,L

Output: − Output: T (x) Output: −
pk,pki←−−−→

Ssk�sk1 ,...,Ssk�skk−1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Sski �sk,[[x(i )]]

ski
2−−−−−−−−−−−→

[[x]]2 ←
(
[[x(0)]]sk0

2 , [[x(1)]]sk1
2 , . . . , [[x(k−1)]]skk−1

2

)
[[T (x)0]]sk

2 , . . . , [[T (x)ρ]]sk
2 ← Evaluate(D,L , [[x]]2)

for j = 0, . . . ,ρ do:
for i = 0, . . . ,k −1 do:

[[T (x) j ]]sk
2

switch−−−−→ [[T (x) j ]]ski
2

[[T (x)0]]
ski
2 ,...,[[T (x)ρ ]]

ski
2←−−−−−−−−−−−−−−−−−

for j = 0, . . . ,ρ do:

T (x) j ← Decrypt([[T (x) j ]]ski
2 )
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Protocol 10: Additive Multi-Party User Private Decision-Tree Evaluation Protocol using GSW FHE, an STTP and key-switching.

STTP User i Server

Input: pk,sk Input: x(i ),pki , ski Input: D,L

Output: − Output: T (x) Output: −
pk,pki←−−−→

Ssk�sk1 ,...,Ssk�skk−1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Sski �sk,[[x(i )]]

ski
D′+1−−−−−−−−−−−−−−→

[[x]]D ′+1 ←
(
[[x(0)]]sk0

D ′+1
, [[x(1)]]sk1

D ′+1
, . . . , [[x(k−1)]]skk−1

D ′+1

)(
[[costl ]]sk

D ′+1
, [[labell ,0]]sk

D ′+1
, . . . , [[labell ,ρ]]sk

D ′+1

)
l
← Evaluate+(D,L , [[x]]D ′+1)

for i = 0, . . . ,k −1 do:(
[[costl ]]sk

D ′+1

)
l

switch−−−−−→
(
[[costl ]]ski

D ′+1

)
l

for j = 0, . . . ,ρ do:

([[labell , j ]]sk
D ′+1

)l
switch−−−−−→ ([[labell , j ]]ski

D ′+1
)l

P ← Random permutation

Φi :=
(
[[costl ]]ski

D ′+1
, [[labell ,0]]ski

D ′+1
, . . . , [[labell ,ρ]]ski

D ′+1

)
l

Φi←−−
Find j with Decrypt([[cost j ]]ski

D ′+1
) = 0

for j = 0, . . . ,ρ do:

T (x) j ← Decrypt([[label j ]]ski
D ′+1

)
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5.6. Decision-node evaluation

Every decision node needs to be evaluated, which amounts to either a comparison with a threshold

value or an equality test with a categorical value. The comparison protocol should output 1 if the input

exceeds the threshold and the equality protocol should output 1 if the input is the same as the node’s

category. We propose protocols that can be evaluated locally on the encrypted inputs. First we outline

the comparison protocol, after which we give details of the equality protocol.

5.6.1. Comparison protocol

There are many comparison protocols that require multiple rounds and communication between the

users. In [34], it is shown that there are two protocols that are the most promising in terms of commu-

nication and computational complexity. These protocols are given in [51, 65]. Both these protocols

can be adapted such that they can be applied in our setting and do not require communication; they

propose Boolean circuits that we are able to evaluate homomorphically with our (Multi-Key) FHE

scheme. Tueno et al. [107] adopt another comparison protocol given by Cheon et al. [28]. The idea of

all these protocols is to translate the comparison problem to some operations on the bits of the two

input values. The work of Fischlin is one of the first that approaches the problem in this manner [49].

He notices that x = xn . . . x0 is greater than y = yn . . . y0, if there is a location i such that xi = 1 and yi = 0

and for all more significant bits j = {i +1, . . . ,n} it holds that x j = y j .

Below, we describe these three methods and evaluate which one is the best for our purpose. First,

the functionalities are demonstrated and compared for plaintext spaceZ2. After that we show that the

most suitable protocol can also be extended to a bigger plaintext space. It is assumed that we have two

δ-bit integers x, y ∈Zwith corresponding bit representations xδ−1 · · ·x0 and yδ−1 · · · y0 with δ≥ 1. The

x value is the user’s input value that is bit-wise encrypted and y the non-encrypted threshold value

known by the server. The result of the protocols should be the comparison bit [[x > y]]2 that encrypts

1 if x > y and 0 otherwise. This output can then be used by the server for further computations and

the server does not gain any knowledge about x or b (since both are encrypted).

First, we describe the comparison protocol of Cheon et al. [28]. They assume that both integers

are bit-wise encrypted and propose a Boolean circuit. In our setting, the threshold values are not

encrypted so that some homomorphic multiplications or additions between two ciphertexts can be

replaced by homomorphic multiplications or additions with plaintexts. The circuit is given by

[[x > y]]2 = (1⊕ yδ−1) · [[xδ−1]]2 +
δ−2∑
i=0

(1⊕ yi ) · [[xi ]]2 � [[di+1]]2 � [[di+2]]2 � · · ·� [[dδ−1]]2 (5.1)

with [[d j ]]2 = (
(1⊕ y j )� [[x j ]]2

)
. It can be seen that this circuit includes in the worst case (when all

yi = 0)
∑δ−2

i=0 (δ−1− i ) = (δ−1)+ (δ−2)+·· ·+2+1 = 1
2δ(δ−1) homomorphic multiplications and δ−1

homomorphic additions. The proof of correctness can be found in [28]. The intuition behind this

scheme is the same as that of Fischlin [49]. It tries to find a location i where xi > yi (so xi = 1 and

yi = 0) and where for all j > i it holds that x j = y j .

The next comparison protocol is from Garay et al. [51], where multiplications are done using so-

called conditional gates (using some communication) based on a threshold additive homomorphic

encryption scheme. Since we use fully homomorphic encryption, we can do multiplication over the

ciphertexts and therefore no communication is necessary. The result is again a Boolean circuit that

can be evaluated homomorphically. They propose to split the bit strings in equally long parts which

are compared recursively. The Boolean circuit consists of two auxiliary functions; ti , j that denotes

the value of xi+ j−1 · · ·xi > yi+ j−1 · · · yi and zi , j that is equal to 1 if the two substrings xi+ j−1 · · ·xi and
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yi+ j−1 · · · yi are equal, else 0. These functions are given by

[[ti , j ]]2 =
{

[[xi ]]2 � (yi · [[xi ]]2), j = 1;

[[ti+l , j−l ]]2 � ([[zi+l , j−l ]]2 � [[ti ,l ]]2), j > 1.
(5.2)

and

[[zi , j ]]2 =
{

(1⊕ yi )� [[xi ]]2, j = 1;

[[zi+l , j−l ]]2 � [[zi ,l ]]2, j > 1.
(5.3)

Here, l = d j /2e. The encrypted comparison bit [[x > y]]2 that encrypts 1 if x > y and 0 else, is then

given by [[x > y]]2 = [[t0,δ]]2. The calculation of a zi , j requires j −1 homomorphic multiplications and

j plaintext additions. Each ti , j is calculated by again j −1 homomorphic multiplications, 2 j −1 homo-

morphic additions and j plaintext multiplications (not taking into account the operations required for

the zi+l , j−l value). Thus, for t0,δ a maximum of 2δ−2 homomorphic multiplications and 2δ−1 homo-

morphic additions have to be calculated. So for δ> 3 less multiplications are needed compared to the

previous protocol, but the noise propagation is much bigger since in the calculation of a ti , j , two ci-

phertexts are multiplied that are both a result of another multiplication. In this way, the multiplicative

depth is higher than for the previous method.

Lasty, we demonstrate the protocol of Koleskinov et al. [65]. Their solution is based on garbled cir-

cuits where the evaluation function is a Boolean comparison circuit. In our protocols we can again use

this Boolean circuit and evaluate it homomorphically such that no communication has to take place.

The Boolean comparison circuit sequentially compares each bit by computing

[[ci+1]]2 =
(
([[ci ]]2 � yi )� ([[ci ]]2 � [[xi ]]2)

)
� [[xi ]]2 (5.4)

where c0 = 0. The result is then given by [[x > y]]2 = [[cδ]]2. Clearly, this method requires δ−1 homo-

morphic multiplications and 2(δ−1) homomorphic additions. Again, the multiplications take place

between ciphertext that are again the result of multiplications (namely the ci ), which gives a high noise

propagation.

To give an example of the noise propagation in the above three protocols, we take [[xi ]]2 ∈ Zn×nl
q all

Uτ-noisy ciphertexts with plaintext spaceZ2 and deduce the noise propagation for all three protocols,

in case δ= 4.

For the first protocol in Equation 5.1, we have

[[x > y]]2 = (1⊕ y3) · [[x3]]2 +
2∑

i=0
(1⊕ yi ) · [[xi ]]2 � [[di+1]]2 � · · ·� [[d3]]2.

We know that all [[d j ]]2 terms are Uτ-noisy according to Proposition 4.9. The term behind the sum con-

tains in the worst case (when yi = 0 for all i ) δ−1− i = 3− i homomorphic multiplications of Uτ-noisy

ciphertexts, resulting in ((3− i )nlU +U )τ-noisy ciphertexts given Propositions 4.8 and 4.10. These are

summed for i = 0,1,2 and, in the worst case that y3 = 0, added to [[x3]]2, giving a (6nlU +4U )τ-noisy

ciphertext according to Propositions 4.7 and 4.9. So, 6 homomorphic multiplications and 3 homo-

morphic additions are performed.

According to Equations 5.2 and 5.3 we have for the second protocol that

[[x > y]]2 = [[t0,4]]2 = [[t2,2]]2 �
(
[[z2,2]]2 � [[t0,2]]2

)
where

[[t2,2]]2 = [[t3,1]]2 � ([[z3,1]]2 � [[t2,1]]2),

[[z2,2]]2 = [[z3,1]]2 � [[z2,1]]2,
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[[t0,2]]2 = [[t1,1]]2 � ([[z1,1]]2 � [[t0,1]]2).

All [[zi ,1]]2 are Uτ-noisy and all [[ti ,1]]2 are (2U )τ-noisy according to Propositions 4.7 and 4.9. There-

fore, [[t2,2]]2 is (nlU +4U )τ-noisy, [[z2,2]]2 is (nlU +U )τ-noisy and [[t0,2]]2 is (nlU +4U )τ-noisy. From

this we can conclude that [[t0,4]]2 and therefore [[x > y]]2 is
(
(nl )2U +3nlU +8U

)
τ-noisy. Here, we

used Propositions 4.7 and 4.8. In total 4 homomorphic multiplications are done together with 7 ho-

momorphic additions.

For the third protocol, according to Equation 5.4 the following equations hold:

[[b]= [[c4]]2 =
(
([[c3]]2 � y3)� ([[c3]]2 � [[x3]]2)

)
� [[x3]]2,

[[c3]]2 =
(
([[c2]]2 � y2)� ([[c2]]2 � [[x2]]2)

)
� [[x2]]2,

[[c2]]2 =
(
([[c1]]2 � y1)� ([[c1]]2 � [[x1]]2)

)
� [[x1]]2,

[[c1]]2 =
(
y0 � [[x0]]2

)
� [[x0]]2.

Clearly, 3 homomorphic multiplications take place and 6 homomorphic additions. Propositions 4.7

and 4.8 give that [[x > y]]2 = [[c4]]2 is
(
2(nl )3U +8(nl )2U +12nlU +8U

)
τ-noisy. Every time δ increases

by one, the maximum factor to which the nl terms are raised, increases by one as well.

It is clear that homomorphic multiplications of ciphertexts that are the result of a multiplication

already, give a high increase in the noise. The higher the noise propagation, the higher the modu-

lus q of the of the cryptographic scheme needs to be. The higher these parameters, the bigger the

ciphertext matrices and the elements in the ciphertext. This results in a decrease of the efficiency of

the operations on the ciphertexts. Since the comparisons are done before the rest of the protocol is

executed, the aim is to keep this noise as low as possible. Therefore, in our protocols, we make use of

the comparison protocol of Cheon et al. [28] in Equation 5.1.

Our additive protocols take place in a bigger plaintext space given by ZD ′ with D ′+1 the first prime

higher than the depth of the tree D . The protocol of Cheon et al. [28] only works in the plaintext space

{0,1}. Namely, if x j = 1 and y j = 0, the value d j = 2 in ZD ′ , while this needs to be equal to 0. To solve

this, we change the comparison circuit such that it always outputs the correct bit value. Our adapted

Boolean circuit is given by

[[x > y]]D ′+1 =
(
(1⊕ yδ−1) mod 2

) · [[xδ−1]]D ′+1+
δ−2∑
i=0

(
(1⊕ yi ) mod 2

) · [[xi ]]D ′+1 � [[di+1]]D ′+1 � [[di+2]]D ′+1 � · · ·� [[dδ−1]]D ′+1

(5.5)

with

[[d j ]]D ′+1 =
{

[[xi ]]D ′+1, y j = 1;

1�
(
D ′ � [[xi ]]D ′+1

)
, y j = 0.

(5.6)

It can be seen that this circuit has the desired functionality. Namely, in Table 5.1, it can be seen that

[[d j ]]D ′+1 in ZD ′ gives exactly the same results as the original formula [[d j ]]2 =
(
(1⊕ y j )� [[x j ]]2

)
in Z2.

So the output of the circuit is exactly the same, since the multiplications in ZD ′ for 0,1 values give the

same result as these multiplications in Z2.

According to the additive tree evaluation in Algorithm 5, if [[x > y]]D ′+1 = [[1]]D ′+1, which is the case

when x > y , the value 1�
(
D ′ � [[1]]D ′+1

)= [[0]]D ′+1 is stored at the right child node and [[1]]D ′+1 at the

left child nodes, as desired. If [[x > y]]D ′+1 = [[0]]D ′+1, the ciphertext 1�
(
D ′ � [[0]]D ′+1

) = [[1]]D ′+1 is

stored at the right child node and [[0]]D ′+1 at the left child node. So the correct path has indeed a path

cost equal to 0.
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Table 5.1: Truth table for the homomorphic calculation of d j in plaintext space Z2 and ZD ′ .

x j y j [[d j ]]D ′+1 [[d j ]]2

0 0 [[1]]D ′+1 [[1]]2

0 1 [[0]]D ′+1 [[0]]2

1 0 [[0]]D ′+1 [[0]]2

1 1 [[1]]D ′+1 [[1]]2

5.6.2. Equality protocol

Again we have two δ-bit integers x, y ∈ Z with corresponding bit representations of xδ−1 · · ·x0 and

yδ−1 · · · y0 with δ ≥ 1. The x value is the user’s input value that is bit-wise encrypted and y the non-

encrypted threshold value known by the server. The result of the protocols should be the bit [[x = y]]2

that encrypts 1 if x = y and 0 else. Since x = y if and only if x j = y j for all j , in the plaintext space Z2 it

is clear to see that

[[x = y]]2 =
δ−1∏
j=0

(
(1⊕ y j )� [[x j ]]2

)
.

This circuit consists in the worst case (when all y j = 0) of δ−1 homomorphic multiplications and δ

plaintext additions.

For bigger plaintext space, looking at Table 5.1 we find [[x j = y j ]]D ′+1 = [[d j ]]D ′+1 with [[d j ]]D ′+1

given by Equation 5.6. Therefore it holds that

[[x = y]]D ′+1 =
δ−1∏
j=0

(
[[d j ]]D ′+1

)
.

This circuit contains again δ−1 homomorphic multiplications and in the worst case (when all y j = 0)

δ plaintext additions and plaintext multiplications.
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Complexity and security analyses of the

protocols, implementation, and results
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6
Analyses of protocols

In the previous chapters we gave the mathematical formulations of our protocols and the underlying

encryption schemes. In this chapter, we analyse the protocols in terms of run-time complexity and

security. This is given in Section 6.1. Next to this, in Section 6.2, we describe the noise propagation

during each part of the protocols, which is essential for setting the appropriate parameters of the

encryption schemes.

6.1. Complexity and security analysis

In this section we discuss the complexity and security of all our protocols. As a reminder, in Table 6.1,

the parameters of our protocols and encryption schemes are given. To get a clear overall picture, in

Table 6.2, all our protocols are summarised. The additional rounds, denoted in between the brackets,

are the rounds required for communication of the public and/or switching keys. These rounds are

only required once, even when multiple trees are evaluated on different inputs.

Table 6.1: The parameters of the protocols and the encryption schemes.

σ The number of decision nodes of the tree
γ The number of leaf nodes of the tree
D The depth of the tree

D ′+1 The closest prime bigger than D
δ The bit length of the input variables
ai The number of input variables of user i
A The total number of input variables

∑
i ai

k The number of users
q The modulus of the encryption scheme

`
dlog2 qe for the multiplicative protocols and dlogD ′+1 qe for the additive protocols that
together with n defines the ciphertext size

n
The secret-key size and the dimension of the underlying LWE problem that together
with ` defines the ciphertext size

λ,τ Security parameters
m Size of the public key given by m = ndlog2 qe+2τ

We can compare our work with other works within private decision-tree evaluation that also make

use of homomorphic encryption, namely the works of Tueno et al. [107] and Tai et al. [104]. The com-

plexity in terms of the homomorphic operations for the server, the communication sizes and number
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of communication rounds of their protocols is given in Table 6.3. Please note here that these protocols

only have one user that provides the input.

Table 6.2: Protocols summary.

Page number FHE scheme Path evaluation Result disclosed to STTP Rounds

Protocol 1 53 Multi-Key Multiplicative Users No 3
Protocol 2 54 Multi-Key Multiplicative Server No 3
Protocol 3 57 Multi-Key Additive Users No 3
Protocol 4 58 Multi-Key Additive Server No 4
Protocol 5 60 GSW Multiplicative Users Yes 3 (+1)
Protocol 6 61 GSW Multiplicative Server Yes 3 (+1)
Protocol 7 62 GSW Additive Users Yes 3 (+1)
Protocol 8 63 GSW Additive Server Yes 3 (+1)
Protocol 9 65 GSW Multiplicative Users Yes 2 (+2)
Protocol 10 66 GSW Additive Users Yes 2 (+2)

Table 6.3: Number of homomorphic operations of server and communication (expressed in the number of ciphertexts) of the
protocols in [104] and [107] with the operations for the decision-node evaluations neglected (AHE := additively-homomorphic
encryption, U −S := user to server communication, S −U := server to user communication).

Complexity server Communication Rounds
Encryption

scheme
C1 �C2 C1 �C2 ζ�C U → S S →U

Tai et al. [104] σ+2γ−3 - 2γ O (Aδ+σ) O (Aσ+2γ) 4 AHE
Tueno et al. [107] γdlog2γe σ+γ−3+γdlog2γe - O (Aδ) O (log2γ) 2 FHE

6.1.1. Complexity analysis

In Table 6.2, it can be seen that all our protocols require a constant, low number of rounds. All pro-

tocols differ in the number of homomorphic operations and amount of communication. The com-

munication sizes, including the key-exchange, and number of homomorphic operations done by the

server per protocol are given in Tables 6.4 and 6.6. The operations required for the evaluation of each

decision node are neglected in these tables, because this can be chosen to be the same for every pro-

tocol. The complexity of the comparison and equality protocol in both the bit plaintext space and the

extended plaintext space are given in Table 6.5.

Table 6.4: The communication (expressed in the number of ciphertexts) required for the protocols (U − S := user to server
communication, S−U := server to user communication, U −U := user to user communication, S−T := server to STTP commu-
nication, T −S := STTP to server communication).

Communication
U → S S →U U →U S → T T → S T →U

Protocol 1 O (aiδ+nml ) O (k2 log2γ) O (1)* - - -
Protocol 2 O (aiδ+nml ) O (k2 log2γ) - - - -
Protocol 3 O (aiδ+nml ) O (k2γ log2γ) O (1)* - - -
Protocol 4 O (aiδ+nml ) O (k2γ log2γ) O (1)* - - -
Protocol 5 O (aiδ) O (1)* - O (log2γ) - O (1)*

Protocol 6 O (aiδ) - - O (log2γ) O (1)* O (1)*

Protocol 7 O (aiδ) O (1)* - O (γ log2γ) - O (1)*

Protocol 8 O (aiδ) - - O (γ log2γ) O (1)* O (1)*

Protocol 9 O (aiδ+1) O (log2γ) - - O (k) O (1)*

Protocol 10 O (aiδ+1) O (γ log2γ) - - O (k) O (1)*

* This means that there is communication of an element from Zq , random numbers, the randomised class
label bits or a public key of the GSW scheme.
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In Table 6.4, it can be seen that the amount of communication from the users to the server depends

on the bit-length δ and the number of input variables ai of the users since the users always encrypt

each bit of each input variable separately. This is also the case for the two protocols from the literature.

The main difference between the protocols in terms of communication is that the protocols that

use the additive-path evaluation from Algorithm 5, communicate more ciphertexts, since for these

protocols for every leaf node ciphertexts are communicated. The bit-length of the classification la-

bels is O (log2γ). For the multiplicative approach, for each label bit an encryption is sent. For the

additive approach, O (log2γ) encryptions (cost and label) per leaf node have to be sent, resulting in

O (γ log2γ) ciphertexts. This can also be seen in the in server-to-user communication in the protocols

of [104] and [106], that use the additive and multiplicative approach, respectively. The first requires

O (γ) communication, while the second requires only O (log2γ) communication. The fact that the first

is not dependent on log2γ is because they use an additively-homomorphic encryption scheme that

has plaintext space equal to Zq , such that they can encrypt a label in one ciphertext.

In Protocols 9 and 10, the communication from the STTP to the server is higher, since this com-

munication consists of k switching keys. Also, the communication from each user to the server is a bit

higher due to the switching key that is sent. In the first four protocols, the ciphertexts are extended

such that the ciphertext size is k2 times bigger that the initial ciphertext; nk ×nkl instead of n ×nl .

This is denoted by the additional k2 term. Also, a big public extension key is communicated between

the user and server, with a size equal to O (nml ) ciphertexts.

Table 6.5: Number of homomorphic operations required for the comparison and equality protocols used for the evaluation of
one decision node. Here, x ∈ Z is the user’s input variable and y ∈ Z the threshold or categorical variable that have both a bit
length of δ.

C1 �C2 C1 �C2 ζ�C ζ�C

[[x > y]]2 ≤ δ−1 ≤ 1
2δ(δ−1) ≤ δ ≤ δ−1

[[x > y]]D ′+1 ≤ δ−1 ≤ 1
2δ(δ−1) ≤ 2δ−1 ≤ δ−1

[[x = y]]2 − ≤ δ−1 − ≤ δ
[[x = y]]D ′+1 − ≤ δ−1 ≤ δ ≤ δ

In Table 6.5, it can be seen that the comparison protocol requires more homomorphic plaintext

multiplications if the plaintext space is bigger. This is also the case for the equality protocol. This is

caused by a different calculation of d j ; when y j = 0 it requires an additional homomorphic plaintext

multiplication. On average, the equality protocol is less expensive than the comparison protocol since

it requires less homomorphic multiplications. In Algorithms 4 and 5, the comparison or equality pro-

tocol is executed once for each decision node. So in case all decision nodes are threshold decision

nodes, a maximum of σ
2 δ(δ−1) homomorphic multiplications and σ(δ−1) homomorphic additions

are required for this. Our protocols use the same comparison protocol as in the protocol of Tueno

et al. . The comparison procedure used by Tai et al. [104] requires two communication rounds, where

the communication sizes are dependent on the number of decision nodes σ and the number of input

variables A. The evaluation of one decision node is done by a maximum of δ2 homomorphic addi-

tions.

The number of homomorphic operations required for the rest of the evaluation depends on the

number of leaf nodes γ and decision nodes σ. This can be seen in Table 6.6. The Evaluate algo-

rithm requires σ+γ−3 multiplications for the path evaluation. Namely, for each of the total number

of nodes σ+ γ a multiplication takes place with the parent node, except for the root node and its

two children. The final evaluation of the leaf nodes takes (worst-case) γdlog2γe homomorphic addi-

tions in the Evaluate algorithm, since each label is stored in a maximum of dlog2γe ciphertexts. To

conclude, the server’s number of homomorphic operations in Protocols 1, 2, 5 and 6 required for the

path and leaf nodes evaluation are similar to the number of homomorphic operations in the proto-
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Table 6.6: Number of homomorphic operations of server in the protocols with the decision-node evaluations neglected (γ:= the
number of leaf nodes, σ:= the number of decision nodes, k := the number of users).

C1 �C2 C1 �C2 ζ�C ζ�C

Protocol 1 γdlog2γe σ+γ−3 dlog2γe -

Protocol 2 γdlog2γe σ+γ−3 dlog2γe -

Protocol 3 σ+γ−3 - γ(1+dlog2γe) γdlog2γe
Protocol 4 σ+γ−3 - γ(1+dlog2γe) γdlog2γe
Protocol 5 γdlog2γe σ+γ−3 dlog2γe -

Protocol 6 γdlog2γe σ+γ−3 dlog2γe -

Protocol 7 σ+γ−3 - γ(1+dlog2γe) γdlog2γe
Protocol 8 σ+γ−3 - γ(1+dlog2γe) γdlog2γe
Protocol 9† γdlog2γe 2σ+γ−3+kdlog2γe dlog2γe -

Protocol 10† σ+γ−3 σ+kγ(1+dlog2γe) γ(1+dlog2γe) γdlog2γe
† The key-switching procedure is seen as one homomorphic multiplication.

col of Tueno et al. [107]. Our approach does not require the label to be encrypted, so the evaluation

of the leaf nodes is slightly more efficient; we do the multiplications with a plaintext label instead of

homomorphically multiplying two ciphertexts and only when the leaf-label bit is non-zero a homo-

morphic addition takes places. Clearly, Protocol 9 requires more homomorphic operations due to the

key-switching procedure. Namely, the key-switching procedure has to take place σ+kdlog2γe times.

The first term comes from the number of input ciphertexts and the second term from the translation

of the dlog2γe output ciphertexts for each party.

For Protocols 3, 4, 7 and 8, σ+γ−3 homomorphic additions are needed for the path evaluation,

which is comparable with the path evaluation in [104]. The leaf node evaluation only requires some

plaintext additions and multiplications. The difference with [104] is that they can encrypt the label

in one ciphertext, since their encryption scheme has plaintext space Zq . We introduce plaintext addi-

tion, such that less homomorphic additions are required. Again, Protocol 10 requires more homomor-

phic operations due to the key-switching procedure that has to take place σ+kγ(1+dlog2γe) times.

Additionally, the computational complexity of user i is defined by the cost of key generation, the

encryption of aiδ input variables and/or some decryptions. The STTP only participates in the key

generation and decrypts the result ciphertexts for the protocols that do not use key-switching. The

exact complexity of these partial decryptions depend on the underlying encryption scheme. The ad-

vantage of using an STTP is that the users only have to send a message once, both when they are

decrypting and when the server is decrypting. Also, the complexity of all homomorphic operations

using GSW FHE is much lower and no expensive extension method has to be used. When making

use of key-switching, the involvement of the STTP is decreased, but the downside is that additional

homomorphic operations are required.

We can therefore conclude that the number of homomorphic operations in our multiplicative pro-

tocols is similar to that of the protocol of Tueno et al. [107]. Also, our additive protocols require a

similar number of homomorphic operations as for the protocol of Tai et al. [104]. However, since we

make use of a comparison and equality protocol that do not require any communication rounds, the

number of homomorphic operations required for the decision-node evaluations is higher. Next to

this, in [104] an additively-homomorphic encryption scheme is used instead of a FHE, which is more

efficient. Our first four protocols depend on Multi-Key FHE. Therefore, the computational complexity

of the server in the first four protocols is, in addition to the homomorphic operations denoted in Table

6.6, also dependent on this ciphertext extension procedure.
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6.1.2. Security analysis

The security of our protocols follows from the IND-CPA security of the encryption schemes and the

fact that the partial decryptions do not give away any information about the secret key of the decrypt-

ing party. This is proved in Theorems 4.4, 4.5 and 4.6. Below, we shortly describe the security per

protocol.

In Protocols 2 and 4, the protocols where the server receives the evaluation result, the users cannot

learn anything from the server or other users, since only some ciphertexts or partial decryptions are

sent to the users. In Protocol 2 only the bit-size of the classification label is revealed, since the output

is encrypted bit-wisely. For Protocol 4 specifically, the ciphertexts per leaf node are randomly per-

muted such that the users do not know the exact location of the leaf nodes within the tree. For all leaf

nodes which have non-zero path costs, a random value is added to the classification labels, such that

it appears to be random to the user. For the leaf node with a path cost of 0, the classification can still

not be found, since the server again randomised this. The only leakage from the server towards the

users is the number of leaf nodes based on the number of ciphertexts returned. Since the users only

send IND-CPA secure ciphertexts of their inputs, we can also conclude that the users privacy is guar-

anteed. Even when one of the users colludes with the server or when all users collude, no additional

information is gained about the input of the other users or the evaluation result.

For Protocols 1 and 3, the same conclusions can be drawn. In these protocols the users receive the

final evaluation result. Again, the users only see ciphertexts from the server and only learn the bit-size

of the classification label. It is possible that the server returns a wrong classification result to the users

by using a wrong tree. This can not be prevented since the decision tree is evaluated by the server

that also holds the tree. In Protocol 3, the leaf nodes are randomly permuted and the path costs are

randomised, so no other information than the number of leaf nodes, is revealed to the users. Again,

when one of the users colludes with the server, no additional information is gained about the input of

the other users.

For Protocols 5 to 8, the STTP does not learn the evaluation label because of the random value that

is added. It is clear that the users’ privacy is also kept, since only some ciphertexts are send to the

server. When the STTP colludes with one of the users in Protocols 6 and 8 where the server receives

the result, they gain no advantage due to randomisation. Possibly, in Protocols 5 and 7 the server can

collude with the STTP to find the evaluation result or to decrypt the input of the users.

Protocols 9 and 10 partly counteract this by eliminating the STTP from communication during

the protocol, such that the evaluation result is never communicated with the STTP. However, when

colluding with the STTP, the public keys used for generating the switching keys can be shared with the

server. The server is then able to calculate the users’ secret keys from the switching keys that are sent

to him. This makes the server able to decrypt the input of the users. Therefore, it should be ensured

that the server is not colluding with the STTP.
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6.2. Noise propagation and parameter setting

In this section we describe the noise propagation during each part of the protocols. This defines the

parameter setting of the FHE schemes such that they can cope with this propagated noise. Namely, it

should be possible to decrypt this final ciphertext with very high probability. To make this explicit, the

probability of a proper decryption should be 1−negl(τ) with τ a correctness parameter. Therefore, for

each building block of the protocols we analyse the noise. It is clear that the noise is not increasing

during (partial) decryption or during communication. Therefore, this analysis only focuses on the

propagation during the server’s tree evaluation, using one of the methods in Algorithms 4 or 5. Next

to this, the noise propagation during key-switching is analysed as well. The noise is expressed in the

number of decision nodes σ, the number of leaf nodes γ, the bit-size δ of the input and threshold

variables, the depth D of the tree, the smallest prime D ′+1 bigger than D , and the number k of users.

Next, we assume all nodes to be worst-case threshold nodes, since the noise propagation is smaller

for the equality protocol (due to less homomorphic operations), such that the parameter setting for

worst-case threshold nodes is also valid for categorical nodes. We define Ψ̄α
q over Zq to be the noise

distribution of the underlying encryption scheme that is Bτ-bounded for

B =αq

√
W (22τ+1/π)

2π

with W (·) the Lambert W function, α ∈ (0,1) a real number and τ the security parameter, given by

Propositions 4.1 and 4.2. For the multiplicative protocols we take q = 2` and for the additive protocols

q = (D ′+1)` for some positive integer ` (which can be different for the two approaches). A summary

of the below results is given in Table 6.7.

We wrote a program that can determine the parameters q,α,n,m such that αq ≥ 2
p

n −1 and

m ≥ n log2 q+2τ and the requirements on the modulus q are met and the security of the whole system

is guaranteed according to Theorems 4.4 and 4.51. Additionally, for the protocols using the Multi-

Key FHE scheme, the security of the collaborative decryption is guaranteed by taking the appropriate

value of Bsmudge given by Theorem 4.6. Also, the parameters are checked by the model of [3], such that

all possible attacks take at least 2λ bit operations, for λ a security parameter. For determining these

parameters, we took λ,τ= 110 which is a common reference in the domain [24]. The parameters can

be found in Appendix A.2. In the next sections, we describe the noise propagation of our protocols, on

which we based the requirements on q given in Table 6.7.

6.2.1. Multiplicative protocols

We now describe the noise propagation of the multiplicative decision-tree evaluation method in Al-

gorithm 4. Protocols 1, 2, 5, 6 and 9 make use of this evaluation method. We detail what happens with

the noise during the decision node, path and leaf node evaluation. For Protocols 1 and 2, after the

decision-node evaluations, all encryptions are extended to the keys of all users. This means that the

ciphertexts are extended k −1 times. Below we also define the noise propagation for these ciphertext

extensions. Initially, it is assumed that the initial users’ input ciphertexts are all inZn×nl
q and Bτ-noisy.

We find:

− (Threshold decision-node evaluation) According to Equation 5.1, in the worst case δ−1 cipher-

texts with the same noise values are summed. These ciphertexts are the result of δ−1 multipli-

cations between ciphertexts. Then, these are again added to a Bτ-noisy ciphertext. Propositions

4.8 and 4.7 give that the resulting comparison bit encryption is a
(
(δ−1)2nlB +δB

)
τ -noisy-

noisy.

1This code can be found at https://github.com/Dieuwkevdende/Thesis-LWEparameters.

https://github.com/Dieuwkevdende/Thesis-LWEparameters
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− (For the Multi-Key FHE protocols: ciphertext extension) We have Q0 = (δ− 1)2nlB +δB . Given

Proposition 4.14, after one extension the ciphertext is
(
(
p

n +n)l
p

mB +Q0B
)
τ-noisy. After the

second extension the ciphertext is
(
(
p

n +2n)l
p

2mB + (
p

n +n)l
p

mB 2 +Q0B 2
)
τ-noisy. So after

k −1 extensions they are(
(
p

n + (k −1)n)l
√

(k −1)mB +·· ·+ (
p

n +2n)l
p

2mB k−2 + (
p

n +n)l
p

mB k−1 +Q0B k−1
)
τ

-noisy.

Since
∑k−1

i=1 B i = B k−B
B−1 , we can bound this by Q1 := (

p
n + (k −1)n)l

p
(k −1)m B k−B

B−1 +Q0B k−1. So

with this definition of Q1, after extension the ciphertexts are (Q1)τ-noisy.

− (Path evaluation) The path evaluation consists of at most D −1 multiplications. Proposition 4.8

proves that the result after the path evaluation is a ((D −1)nlQ1 +Q1)τ-noisy ciphertext with Q1

the bound on the noise of the ciphertext of previous step.

− (Leaf node evaluation) The leaf node evaluation consists of ≤ 2D homomorphic additions of ci-

phertexts with independent noises, distributed according to a ((D −1)nlQ1 +Q1)τ-bounded dis-

tribution. So, the final ciphertexts are (
p

2DQ2)τ-noisy ciphertext according to Proposition 4.7

with Q2 := (D−1)nlQ1+Q1. The plaintext multiplications and (for some protocols) the addition

with a random plaintext do not increase the noise bound of the ciphertexts. Re-randomisation

is only required when for a certain bit location, all the leaf labels have a zero bit on this location.

According to Proposition 4.12, the collaborative decryption procedure results in the correct de-

cryption with probability higher than 1−2−τ when
p

2DQ2 < q
4 −kBsmudge with τ the security param-

eter. In Protocols 5, 6 and 9 the ciphertexts are single-key and therefore do not have to be decrypted

collaboratively. Therefore, the decryption is correct with overwhelming probability if
p

2DQ2 < q
4 .

6.2.2. Additive protocols

Protocols 3, 4, 7, 8 and 10 make use of the additive path evaluation approach given by Algorithm 5.

We again assume that the initial users’ input ciphertexts are all in Zn×nl
q and Bτ-noisy. Please note

here that the noise propagation for homomorphic multiplication and extension is different than for

the additive protocols, due to the new gadget vector. This is given by Propositions 4.17 and 4.18. The

noise propagates then as follows:

− (Threshold decision-node evaluation) The difference with the previous approach is that now all

encryptions of d j are (D ′B)τ-noisy when y j = 0 by Proposition 4.10. Since we do know that all

d j are either equal to 0 or to 1, Proposition 4.8 shows that after the worst-case δ−1 multiplica-

tions the ciphertexts are
(
nlB + (δ−2)nlD ′2B +D ′2B

)
τ-noisy. After the additions, the result bit

encryption of one threshold decision-node evaluation is then(
(δD ′−2D ′+1)(δ−1)nlD ′B + (δD ′−D ′+1)D ′B

)
τ -noisy

by Proposition 4.7. Additionally, in Algorithm 5, the negation of this result bit requires another

homomorphic plaintext multiplication resulting in a worst-case comparison bit encryption that

is (Q0)τ noisy with Q0 : (δD ′−2D ′+1)(δ−1)nlD ′2B + (δD ′−D ′+1)D ′2B .

− (For the Multi-Key FHE protocols:: ciphertext extension) According to Proposition 4.14, the noise

propagation during the extension method is not dependent on the plaintext space. So we can

again conclude that after extension the ciphertexts are (Q1)τ-noisy with Q1 := (
p

nD ′ + (k −
1)n)lD ′p(k −1)m B k−B

B−1 +Q0B k−1.

− (Path evaluation) The additive path evaluation consists of maximal D − 1 additions of the ci-

phertexts resulting from different decision-node evaluations with a noise that is distributed

similarly but independent. Proposition 4.7 proves that the result after the path evaluation is

a
(p

D −1Q1
)
τ-noisy ciphertext.
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− (Leaf node evaluation) During the leaf node evaluation one additional homomorphic plaintext

addition and multiplication with plaintext value D ′ in the worst-case takes place. This results in

a
(
D ′pD −1Q1

)
τ-noisy ciphertext, according to Propositions 4.9 and 4.10.

According to Proposition 4.16, the collaborative decryption procedure results in the correct de-

cryption with probability higher than 1−2−τ when D ′pD −1Q1 < q
2(D ′+1) −kBsmudge for τ the security

parameter.

6.2.3. Key-switching

In Protocols 9 and 10 the encryptions after the decision-node evaluations are switched to the key of

the STTP. Next to this, after the whole evaluation the ciphertexts are once more switched back to the

users’ keys. In this section we analyse the noise during these tasks. We assume that all initial users’

input ciphertexts and the zero encryptions as public keys are Bτ-noisy (fresh) ciphertexts in Zn×nl
q .

For the multiplicative approach in Protocol 9, before the first key-switching procedure toward the

STTP’s public key, the input ciphertext is
(
(δ−1)2nlB +δB

)
τ-noisy. Let Q1 := (δ−1)2nlB +δB +p

nlB .

According to Proposition 4.15, the ciphertexts after key-switching are (Q1)τ-noisy. Then after the path

and leaf node evaluations, the ciphertexts are (Q2)τ -noisy with Q2 =
p

2D (D − 1)nlQ1 +
p

2DQ1 as

shown in Section 6.2.1. The last key switching gives final ciphertexts that are
(
Q2 +

p
nlB

)
τ

-noisy.

The same derivation can be done for the additive approach in Protocol 10. We now use Proposition

4.15, since this protocol uses the new gadget vector. After the first key-switching the ciphertexts are(
(δD ′−2D ′+1)(δ−1)nlD ′2B + (δD ′−D ′+1)D ′2B +

p
nlD ′B

)
τ

-noisy.

Let Q1 := (δD ′−2D ′+1)(δ−1)nlD ′2B+(δD ′−D ′+1)D ′2B+p
nlD ′B . Then after the path and leaf node

evaluations, the ciphertexts are
(
D ′pD −1Q1

)
τ-noisy as shown in Section 6.2.2. The last key switching

gives final ciphertexts that are (
D ′pD −1Q1 +

p
nlD ′B

)
τ

-noisy.
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Table 6.7: Summary of the requirements on the modulus q of the FHE scheme of the several protocols. Here, δ is the bit-size of the users’ input, D the depth of the tree, D ′+1 the first prime number higher

than D , `= dlog2 qe or `= dlogD ′+1 qe for the multiplicative or additive approach respectively, k the number of users and B =αq
√

W (22τ+1/π)
2π for α ∈ (0,1).

Bound on modulus

Protocols 1 and 2 q > 4
√

2D ((D −1)nlQ +Q)+4kBsmudge with Q := (
p

n + (k −1)n)l
p

(k −1)m B k−B
B−1 + (

(δ−1)2nlB +δB
)

Bk−1

Protocols 3 and 4 q > 2(D ′+1)D ′pD −1
(
(
p

nD ′+ (k −1)n)lD ′p(k −1)m B k−B
B−1 +QBk−1

)
+2(D ′+1)kBsmudge with Q := (δD ′−2D ′+1)(δ−1)nlD ′2B + (δD ′−D ′+1)D ′2B

Protocols 5 and 6 q > 4
√

2D ((D −1)nl +1)
(
(δ−1)2nlmB +δmB

)
Protocols 7 and 8 q > 2(D ′+1)D ′pD −1

(
(δD ′−2D ′+1)(δ−1)nlD ′2mB + (δD ′−D ′+1)D ′2mB

)
Protocol 9 q > 4

√
2D ((D −1)nl +1)

(
(δ−1)2nlB +δB +p

nlB
)
+4

p
nlB

Protocol 10 q > 2(D ′+1)D ′pD −1
(
(δD ′−2D ′+1)(δ−1)nlD ′2B + (δD ′−D ′+1)D ′2B +p

nlD ′B
)
+2(D ′+1)

p
nlD ′B
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Results

One of the goals of this thesis is to compare the proposed protocols based on their run-time com-

plexity and communication requirements. Therefore, in this chapter we evaluate and compare the

run-time and communication costs of each protocol based on several parameters. Before the results

sections, we first give details about and justification of the experiments in Section 7.1. Next, we pro-

vide a short description of our code and used libraries, together with some implementation details

in Section 7.2. In Section 7.3 we describe some general results that hold for all the proposed proto-

cols. We give the detailed results per protocol in Sections 7.4 to 7.6. In Section 7.7 we compare all

protocols. We analyse the decision-node evaluations in Section 7.8 and lastly, we give some protocol

modifications in Section 7.9. For the interested reader, in Appendix A.4, we give the results of using

our protocols for evaluating the use-case tree in Figure 1.2.

7.1. Experimental description

In this section we shortly describe the experiments of which the results are presented in the next chap-

ter. As a reminder, in Table 7.1, the parameters of the protocols and their meaning are given.

Table 7.1: The parameters of the protocols and the encryption schemes.

σ The number of decision nodes of the tree

γ The number of leaf nodes of the tree

D The depth of the tree

D ′+1 The closest prime bigger than D

δ The bit length of the input variables

ai The number of input variables of user i

A The total number of input variables
∑

i ai

k The number of users

q The modulus of the encryption scheme

`
dlog2 qe for the multiplicative protocols and dlogD ′+1 qe for the additive pro-

tocols that together with n defines the ciphertext size

n
The secret-key size and the dimension of the underlying LWE problem that

together with ` defines the ciphertext size

λ,τ Security parameters

m Size of the public key given by m = ndlog2 qe+2τ

83
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As shown in the previous chapter, the number of homomorphic operations and the communi-

cation depends on the number of leaf nodes γ, the number of decision nodes σ and the bit-size of

the inputs δ. We can also conclude that the depth of the tree D and the number of users k influence

the complexity of the protocols. Namely, the higher these values, the higher q and therefore ` which

impacts the size of each ciphertext. The bigger the ciphertexts, the higher the complexity of matrix

multiplications or additions. The communication needed can be expressed in the number of rounds

and the size of the communication.

A complete tree evaluation consists of (i) an evaluation for each decision node, (ii) optionally an

extension or key-switching procedure per decision node, (iii) one homomorphic multiplication or

addition for each node (minus the root and its children) during the path evaluation and (iv) an eval-

uation for each leaf node. The run-time complexity and communication sizes of these components

are constant for a certain set of parameters D,k,δ and the corresponding parameter setting of q,n.

Therefore, it is possible to define the run-time complexity of each of the above components sepa-

rately. From this, the total run-time of evaluating complete trees according to the different protocols

can be determined. We can assess if this leads to the correct run-time by evaluating a complete tree

and comparing its run-time with the expected run-time. Since the evaluation time of a threshold de-

cision node depends on the bits of the threshold value, we evaluate the run-time in the worst-case,

with all threshold values equal to 0.

The parameters q,n for proper security need to be set according to the tables in Appendix A.2 given

D,k,δ. These values are chosen such that both λ and τ are at least 110, which is a common reference

according to [24]. The required values for n according to these tables are very high, which we were

not able to run in practice for all parameter sets. Therefore, we choose to take n = 5,10,25 and 50 and

deduce the dependency of the complexity on the parameter n. In this way we can derive the run-times

for realistic and secure values of n for each protocol.

Next to determining the run-time complexity, we evaluate the communication sizes by determin-

ing the size of a ciphertext. The first experiments assume that all decision nodes are threshold nodes,

where it is checked if x > y with x the input variable and y a threshold value. To evaluate the differ-

ence in case the tree also has categorical decision nodes, where x = y is evaluated, we test what the

difference is between evaluating one categorical decision node or one threshold decision node for one

specific set of parameters. To summarise, we run the following experiments:

− For every protocol and different setting of D,k,δ, we evaluate the run-time of all separate com-

ponents of the complete decision-tree evaluation for n = 5,10,25 and 50,

− For every different setting of D,k,δ, we evaluate the ciphertext size to calculate the communi-

cation costs for each protocol and n = 5,10,25 and 50,

− For the threshold decision-node evaluation we evaluate the worst-case run-time which corre-

sponds to a threshold value of 0,

− For one specific setting of D,k,δ,n, we evaluate the run-time of one categorical decision-node

evaluation.

We vary the variables δ,k,D and determine the required modulus values based on Table 6.7. We

choose δ ∈ {4,6,8}, k ∈ {2,3,4} and D ∈ {3,7,15}. For δ= 8, per input variable, 28 = 256 different values

can be used. Also, a tree of depth 15 gives a maximum number of 215 − 1 decision nodes when it is

assumed this tree is binary. The use-case in Figure 1.1 requires k = 3. Therefore, we believe these pa-

rameter sets give a realistic overview of possible decision trees and number of users. In the appendix in

Chapter A.2, the parameters are given for all protocols based on our code 1 and the model of Albrecht

et al. [3].

1Our code can be found at https://github.com/Dieuwkevdende/Thesis-LWEparameters.

https://github.com/Dieuwkevdende/Thesis-LWEparameters
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7.2. Experimental setup

Our code is written in C++ and is executed on a server with 16 Intel Core Processors @ 2.4 GHz run-

ning 16.04.1-Ubuntu with 16 GB memory. Only one processor is used per run, since our code is not

parallelized. For the implementation of big integers and matrices holding these big integers (our ci-

phertexts), the C++ Boost Multiprecision [74] and the Boost Basis Linear Algebra [111] libraries are

used. Since all operations are done modulo q , all standard operations on the vectors or matrices are

implemented by ourselves. In addition, we implemented all encryption schemes and other building

blocks ourselves. The input decision tree is given by several mappings. The first mapping returns for

each node the right and left child node (if these exist). The second mapping returns for every decision

node the threshold/category with the corresponding input attribute name and for every leaf node the

class label. The last mapping gives a boolean value that denotes if the respective node is a leaf node or

not. The code of the protocols can be found at the below repositories. Next to this, in each repository

a folder ‘results’ can be found which holds all result .txt files.

− https://github.com/Dieuwkevdende/Thesis-Protocols1-2,

− https://github.com/Dieuwkevdende/Thesis-Protocols3-4,

− https://github.com/Dieuwkevdende/Thesis-Protocols5-6,

− https://github.com/Dieuwkevdende/Thesis-Protocols7-8,

− https://github.com/Dieuwkevdende/Thesis-Protocol9,

− https://github.com/Dieuwkevdende/Thesis-Protocol10.

To conclude, the readers should note that our implementation is primarily used to compare the several

protocols. The code is not yet optimised and therefore give an idea of the run-times of our protocols.

7.3. Common results

In this section we give some general results that hold for all our proposed protocols. In the next sec-

tions, specific results per protocol are given. As a reminder, a summary of all protocols can be found

in Table 6.2.

7.3.1. Modulus

All the protocols’ complexities are affected by the ciphertext sizes. One of the parameters that has an

influence on the ciphertext size is `, which is given by `= dlog2 qe for the multiplicative protocols and

` = dlogD ′+1 qe for the additive protocols with q the modulus of the encryption scheme. Namely, the

ciphertext size is nk ×nkl for the first four protocols, with k the number of parties associated to the

encryption. For the protocols that do not use Multi-Key FHE, the ciphertext size is always n ×n`. The

modulus q is defined by the noise propagation formulas in Table 6.7 that depend on the parameters

D,δ,k. The exact values of q are given in the tables in Appendix A.2. In these tables it can be seen

that ` is hardly affected by the parameter δ. The parameters k and D do have a higher impact on

the value of q and therefore on `. This can be explained by noise propagation formulas in Table 6.7,

since for the multiplicative protocols, q depends exponentially on k and D and only quadratically on

δ. For the additive protocols, q depends on D ′ in a power of five. For the multiplicative protocols, the

higher D or k, the higher the value of `. For the additive protocols, ` increases for increasing k but

decreases for higher D . This can be explained by the fact that D ′+1 is the first prime higher than D

and ` = dlogD ′+1 qe. In the run-time analysis for all protocols, we assume that this factor ` is known

based on the parameters δ,D,k given in Appendix A.2.

https://github.com/Dieuwkevdende/Thesis-Protocols1-2
https://github.com/Dieuwkevdende/Thesis-Protocols3-4
https://github.com/Dieuwkevdende/Thesis-Protocols5-6
https://github.com/Dieuwkevdende/Thesis-Protocols7-8
https://github.com/Dieuwkevdende/Thesis-Protocol9
https://github.com/Dieuwkevdende/Thesis-Protocol10
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7.3.2. Decryption

For all protocols, the run-time of the (partial) decryptions is very low. As an example, for n = 25 all

partial decryptions (or full decryption for Protocols 5 to 10) for all values of δ,k,D run in less than 0.05

seconds. Since the (partial) decryption is an inner product of two n-length vectors and therefore runs

in O (n) time, we expect that one partial decryption does not take more than (0.05/25) ·n seconds. To

justify this expectation, we simulated the partial decryption for Protocols 1 and 2 (that have the worst

error propagation) with the parameter setting δ = 8,D = 15,k = 4 and n = 2250 such that both λ,τ =
110 according to Table A.3. The run-time of the partial decryption in this setting was 1.47 seconds

which is indeed lower than (0.05/25) · 2250 = 4.5 seconds. This is less than 0.0001% of the run-time

of a homomorphic addition for these parameters. Therefore, the run-time is much less than the run-

time of the key generation, encryption procedure or decision-tree evaluation. In this chapter the focus

therefore lies on the run-time analysis of these three parts.

7.4. Multi-Key Fully Homomorphic Encryption protocols

We first give the results of the first four protocols, which require a Multi-Key FHE scheme and evaluate

the tree either in the multiplicative way or the additive way. Because these protocols all make use of

the Multi-Key FHE, they require a key extension procedure for the tree evaluation in order to combine

the ciphertexts of the different users. Below, we show the run-times of the key generation, extension

and the other parts of the complete tree evaluation. We also give the required communication costs

per round. The most important results are summarised at the end of this section. Since the results of

Protocols 3 and 4 are similar to that of Protocols 1 and 2, we mainly focus on the results of Protocols 1

and 2 in this section. We do address the aspects on which these protocols differ. The plots of Protocols

3 and 4 that are not given in this section, can be found in Appendix A.3.

7.4.1. Key generation

In these protocols, every user needs to generate public keys. Each user needs to generate three keys,

of which the third key D is the biggest with size nm`×n2`. The complexity of the key generation is

O (n3m`2). Here, m = ndlog2 qe+2τ. We performed the key generation for n = 2,3,4. The results can

be seen in Figure 7.1 for Protocols 1 and 2. The differences between the plots can be explained by the

effect of D,k and δ on ` which again affects the size of the public keys and therefore the generation

time. Clearly, the key generation is very expensive, since for only a value of n = 4, the run-time can

reach 8000 seconds already.

To give an idea of how the run-time is for even higher values of n, we take n = 20 such that 204/44 ≈
600. This means that for n = 20 and k = 2,D = 3,δ = 4, the run-time of the key generation is at least

600 ·3000 seconds which is equal to around 21 days. It is clear that for values of n above 1300 which is

necessary for the security of the scheme, the key generation time gets too high.

In a similar way, we performed the key generation for n = 2,3,4 for Protocols 3 and 4. The result

can be seen in the appendix in Figure A.5. Using the same approach as above, for n = 20 we can expect

the key generation to take at least 90000 seconds (with k = 2,D = 15,δ= 4). This is equal to 25 hours.

The key generation for Protocols 3 and 4 is a bit lower than for the other two protocols, due to a lower

error propagation and, therefore, a lower `. But, the dependency on n to the power 4 makes the key

generation quickly as high as for the other two protocols, even though the required value of n is now

around 1000.
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Figure 7.1: The run-time of the key generation for Protocols 1 and 2 plotted against n for different values of D , k with δ= 4.

Figure 7.2: The run-time of an initial encryption of one bit for Protocols 1 and 2 plotted against the dimension n for a tree with
D = 15, δ= 8 and different k. The dashed functions are given by 2.53 ·10−5 ·n2`.

7.4.2. Encryption

As for the key generation, the parameters δ,D,k affect the run-time of the users’ initial bit encryptions.

This can again be explained by the difference in the factor ` that defines the generated ciphertext size

n ×n`. As an example, in Figure A.2, the run-time one bit encryption is plotted against n for different

values of D,δ for Protocols 1 and 2. A similar plot can be found for fixed δ and varying k. Clearly,

the run-time is mostly dependent on the dimension n and less on the parameters of the tree and the

number of users.

The generated ciphertext has n2` elements and, therefore, the expectation is that we can approxi-

mate the run-time for different values of n and `. We also plotted a function a ·n2`with a = 2.53·10−5,

to clearly show the dependency of the results on n and `. In Figure 7.2, the results can be seen for

fixed D = 15,δ = 8. For n = 800, the run-time of one bit encryption for a tree with k = 2 is around

1200 seconds according to Figure 7.2. Taking the appropriate value n = 1700 to have proper security

as given in Appendix A.1, gives an expected run-time of (1700/800)2 · 1200 ≈ 5419 seconds, which is

equal to 90 minutes per bit encryption.

For Protocols 3 and 4, the same conclusions can be drawn regarding the complexity of the encryp-

tion procedure as for the first two protocols. The dependency on n and ` is similar to this dependency
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Figure 7.3: The run-time of one decision-node evaluation (worst-case with a threshold value of 0) for Protocols 1 and 2 plotted
against δ for different values of D , k with n = 10.

for protocols 1 and 2. This is as expected, since the encryption only depends on the ciphertext size

n×n`. Again, the run-time of one bit encryption for these two protocols is lower, because of the lower

value for `. Taking the value for n for a security level of 110, for example n = 1000,`= 20 for δ= 4,k = 2

and D = 3, gives an expected run-time of (1000/800)2 ·320 ≈ 500 seconds, which is equal to around 8

minutes per bit encryption.

7.4.3. Extension

Per decision node, each ciphertext is extended k−1 times, which is part of the decision-tree evaluation.

The most expensive part of this extension procedure is the calculation of matrix Y2 which is the result

of a multiplication of a matrix of size n ×nk ′m` with a matrix of size nk ′m`×n2k ′l , where the k ′

is defined to be the number of parties connected to the ciphertext so far. The complexity of k −1 of

these matrix multiplications is therefore dependent on n with a power of 5. Therefore, as for the key

generation, the run-time of the extension procedure greatly increases in n, resulting in non-practical

execution times of the extension for realistic values of n. For k = 2,D = 3,δ = 4 the run-time of the

extension of Protocols 1 and 2 is around 200 seconds already for n = 4, which can be found in the

appendix in Figure A.1. Since n = 20 gives 205/45 ≈ 3000, the expectation is that the run-time of the

extension for n = 20 and k = 2,D = 3,δ = 4 is at least 3000 · 200 seconds. This is equal to almost 7

days. The same conclusion can be drawn regarding the extension procedure of Protocols 3 and 4. The

results for these two protocols can be found in the appendix in Figure A.6.

7.4.4. Decision-tree evaluation

In the protocols, the server evaluates the decision tree using the encryptions of the users. The com-

plete evaluation of the tree consists, next to the extension, out of the decision-node evaluations, the

path evaluations and the leaf-node evaluations. We now discuss these three parts one by one.

Decision-node evaluations In Figure 7.3 (and in Figure A.10 in the appendix), it can be seen that

the time complexity of one decision-node evaluation mostly depends on the parameter δ, compared

to D and k. Since δ does not affect the parameter ` that much for a fixed D,k, the difference in com-

plexity can not completely be explained by the factor `. The reason for this dependency is that the

number of homomorphic operations for a decision-node evaluation depends on the input bit length
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Figure 7.4: The run-time of one decision-node evaluation (worst-case with a threshold value of 0) for Protocols 1 and 2 plotted
against the dimension n for different values of δ with D = 15,k = 4. The dashed functions are given by 2.49 ·10−7 · (δ2 −δ)n3`2.

δ. Namely, the node evaluation with a threshold value of 0 consists of 1
2δ(δ−1) homomorphic multi-

plications, δ−1 homomorphic additions and δ−1 plaintext additions. This can be found in Table 6.5.

The complexity of one homomorphic multiplication of two matrices of size n×n` and nl ×n` is given

by O (n3l 2) and the complexity of an addition, required for the homomorphic addition or plaintext

addition, of matrices of size n ×n` is given by O (n2`). Therefore, the complexity of one worst-case

decision-node evaluation depends on n, l and δ as input. Assuming the complexity regarding the ma-

trix additions can be neglected compared to the matrix multiplications, we find that the complexity is

O ((δ2 −δ)n3`2). The result can be seen in Figure 7.4. Similar results are found for Protocols 3 and 4

and be found in Figure A.9 in the appendix.

Path evaluations The path evaluation for Protocols 1 and 2 consists of multiple homomorphic mul-

tiplications. Now, the ciphertext matrices are of size nk×nkl such that the complexity of a homomor-

phic multiplication is O (n3k3l 2) (a multiplication of a nk ×nkl and nkl ×nkl matrix). In Figure 7.5, it

can be seen that the run-time of one path multiplication now greatly depends on the value of k given

a fixed n, since now the ciphertext size also depends on k (and not only indirectly via the parameter

`). The path evaluation for Protocols 3 and 4 uses homomorphic additions instead of homomorphic

multiplications. The complexity of one homomorphic addition is O (n2k2l ) based on a ciphertext size

of nk×nkl . The run-time dependency on k can again be seen in the appendix in Figure 7.6. There, the

results are plotted against n for different values of k. Clearly, the run-time of doing a homomorphic

addition is much lower than that of a homomorphic multiplication.

Leaf-node evaluations Lastly, we look at the run-time of one leaf node evaluation. One leaf node

evaluation of Protocols 1 and 2 consists of one homomorphic addition per label bit in the worst case,

when all leaf label bits are equal to 1. This homomorphic addition has a complexity of O (n2k2l ).

Therefore, the expectation is that the run-time is similar to that found for one path addition in Figure

7.6. In Figure A.4 in the appendix it can be seen that this is indeed the case. The only difference is that

now the run-times are slightly higher for the given parameters due to the higher value of ` for Protocols

1 and 2 compared to Protocols 3 and 4. One leaf node evaluation of Protocols 3 and 4 consists of one

homomorphic plaintext multiplication and one plaintext addition per label bit with both a complexity

of O (n2k2l ). The result can be seen in Figure 7.7.
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Figure 7.5: The run-time of one path multiplication for Protocols 1 and 2 plotted against the dimension n for different values of
k with D = 15,δ= 8. The dashed functions are given by 5.40 ·10−7n3k3l 2.

Figure 7.6: The run-time of one path addition for Protocols 3 and 4 plotted against the dimension n for different values of k with
D = 15,δ= 8. The dashed functions are given by 5.76 ·10−7n2k2l .

7.4.5. Communication

Both multiplicative protocols consist of 3 rounds. In the first round, user i communicates with the

server and sends aiδ ciphertexts of his input and his public keys to the server. All these encryptions

are ciphertexts of size n ×n` that contain elements out of Zq . Every element in Zq consists of 48

bytes due to the way these elements are stored by the C++ Boost Multiprecision library [74]. Every big

integer in Zq is represented by 8 integers with a maximal bit-length of 6, with a total space of 8 ·6 = 48

bytes. So a matrix of size n ×n` is 48 ·n2` bytes. Therefore, in total user i sends 48 · aiδn2` bytes

to the server in the first round. Next to this, each user sends his public keys to the server in the first

round. These public keys are three matrices of sizes m ×1, n ×n2` and nm`×n2` of 48 ·m, 48 ·n3l

and 48 ·n3m`2 bytes respectively. These public keys only have to be sent once, since they can be

re-used. In the second round, the server sends the result of the evaluation to each user. This result

consists of dlog2γe encryptions; for every leaf label bit one encryption. Since for decryption only one

column of the ciphertext is multiplied with the key, the result encryptions are of size nk×1. Therefore,

this communication contains 48 · dlog2γenk bytes. For Protocols 1 and 2, the third round is the users

communicating the dlog2γe partial decryptions with each other or with the server, respectively. This

communication is of size 48 · dlog2γe bytes.
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Figure 7.7: The run-time of one leaf bit evaluation for Protocols 3 and 4 plotted against the dimension n for different values of
k with D = 15,δ= 8. The dashed functions are given by 1.29 ·10−6n2k2l .

The additive protocols have 3 and 4 rounds, respectively. The communication in the first round

for these protocols is the same as for the multiplicative protocols. In the second round, now the result

consists of γ(dlog2γe+1) encryptions; for every leaf node the encrypted label bits and the encrypted

cost. Again, only the column used for decryption needs to be communicated. Therefore, this com-

munication contains 48 ·γ(dlog2γe+1)nk bytes. In the third round either γ(dlog2γe+1) or γ partial

decryptions are communicated that are each 48 bytes. The fourth round for Protocol 4 communicates

dlog2γe elements that are also 48 bytes each.

Table 7.2: Communication sizes in bytes of the different rounds in Protocols 1 to 4. The communication between brackets in
the first round only has to occur once and not every time a tree is evaluated.

Round 1 Round 2 Round 3 Round 4

Protocol 1 48aiδn2`+ (48m +48n3l +48n3m`2) 48dlog2γenk 48dlog2γe -

Protocol 2 48aiδn2`+ (48m +48n3l +48n3m`2) 48dlog2γenk 48dlog2γe -

Protocol 3 48aiδn2`+ (48m +48n3l +48n3m`2) 48γ(dlog2γe+1)nk 48γ(dlog2γe+1) -

Protocol 4 48aiδn2`+ (48m +48n3l +48n3m`2) 48γ(dlog2γe+1)nk 48γ 48dlog2γe

7.4.6. Summary

The run-time complexities are dominated by the key generation and the extension procedure. We can

give an example of this. By choosing the parameters δ = 4,D = 3,k = 2,σ = 2,γ = 3, ai = 1 and the

corresponding parameters of q = 260,` = 60 with n = 50 for Protocols 1 and 2. For these parameters,

the run-time for user i consists of aiδ encryptions that cost aiδ ·3.49 = 13.96 seconds. The key gen-

eration for these parameters is expected to cost around 504/44 ·3000 ≈ 20,000 hours which is equal to

around 2.3 years. For the server the evaluation without extension takes 5934 seconds. The extension

is expected to take 505/45 ·200 ≈ 17000 hours per decision node. Clearly, the run-times of the encryp-

tion and other evaluation parts can be neglected compared to the costs of the key generation for the

user and the costs of the extension procedure. This also holds for Protocols 3 and 4. On top of this,

for realistic values of n, given in Section A.2, for which the security is guaranteed, the run-times of the

extension and key generation of our implementation on our used machine is expected to go beyond

the order of years since the run-times increase with a power of 4 or a power of 5 in n, respectively.
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Regarding the communication, Section 7.4.5 showed that the size of the third public key D, which

is communicated in the first round, is 48 ·n3m`2 bytes. Using the parameters above, this results in

a size of 6.9552 · 1013 bytes or almost 70 terabytes for the multiplicative protocols, which is far from

practical. Assuming a communication speed of around 15 megabytes per seconds, sharing this key

will cost at least 70 days. This key only has to be sent once, since it can be re-used. For the additive

protocols the corresponding parameters are q = 520,` = 20 such that the size of D for n = 50 with

m = 2570 is 6 terabytes. Also for these sizes holds that they greatly depend on the dimension n and

grow fast when n is chosen such that the protocols’ security is guaranteed.

7.5. Semi-Trusted Third Party protocols

Protocols 5 to 8 make use of an STTP. This STTP is the only party that is required to do the key gen-

eration. The users use its public key to do the encryption. The error propagation and therefore the

values of q and ` are therefore independent of the number of users. Only the parameter δ,D and n

now affect the run-time complexity of these protocols. Again, the value of ` for the additive protocols

is lower which automatically results in a lower run-time for similar procedures in comparison to the

multiplicative protocols. Due to similar results, we neglect some results of Protocols 7 and 8. These

plots can be found in Appendix A.3.

7.5.1. Key generation

The key generation for the STTP consists of generating both the secret key of size n ×1 and the public

key of size n×m. In contrast to the key generation required for the Multi-Key FHE encryption scheme,

the complexity is much lower. These protocols do not require the extension procedure such that the

extension keys do not have to be shared. Now, for n = 50 the run-time of the key generation does

not go above the 0.4 seconds. The expectation is therefore that for n = 1550 (which is required for a

secure protocol for δ= 4 and D = 3), the key generation only takes approximately 15502/502 ·0.4 ≈ 384

seconds or 6 minutes.

7.5.2. Encryption

The encryption procedure for these protocols is the encryption under the public key of the STTP. This

encryption is more costly than the encryption procedure that only uses the secret key, since now a

matrix multiplication with a random binary matrix is required. The matrices that are being multiplied

are the n ×m public key matrix and the m ×n` random binary matrix. Next to this, the random ma-

trix needs to be generated. Therefore, the complexity of the encryption amounts to O (n2m`+nm`).

Here, m = ndlog2 qe+2τ. The first term accounts for the multiplication and the second term for the

generation of the binary matrix. In Figure 7.8, the run-times of one bit encryption for Protocols 5 and

6 can be seen. Similar results can be found for Protocols 7 and 8 in Figure 7.9.

7.5.3. Decision-tree evaluation

The complete evaluation done by the server consist out of the decision-node evaluations, the path

evaluations and the leaf-node evaluations. We now discuss these three parts one by one.

Decision-node evaluations The decision-node evaluations are similar to the previous protocols.

Therefore, the complexity of these operations is again O ((δ2 −δ)n3`2). This can be seen in Figures

A.12 and A.14 in the appendix.
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Figure 7.8: The run-time of an initial encryption of one bit for Protocols 5 and 6 plotted against the dimension n for a tree with
δ= 4 and different D . The dashed functions are given by 4.57 ·10−7 ·n2m`+2.29 ·10−5nm`.

Figure 7.9: The run-time of an initial encryption of one bit for Protocols 7 and 8 plotted against the dimension n for a tree with
δ= 4 and different D . The dashed functions are given by 4.23 ·10−7 ·n2m`+2.38 ·10−5nm`.

Path evaluations The path evaluation for Protocols 5 and 6 consists of multiple homomorphic mul-

tiplications, but now the ciphertexts are not extended. Therefore, they are of size n ×n` such that

the complexity of a homomorphic multiplication is O (n3`2) (a multiplication of a n ×n` and nl ×n`

matrix). In Figure 7.10, the results of the run-time is plotted against n where δ is fixed to 4. The depen-

dency on n and ` is similar to this dependency for the path multiplication run-time of Protocols 1 and

2. This is explained by the fact that it is exactly the same procedure for both protocols, but only the

ciphertext sizes differ. The path evaluation for Protocols 7 and 8 consists of multiple homomorphic

additions of matrices of size n ×n` such that the complexity of a homomorphic addition is O (n2`).

The results can be seen in Figure 7.11. The dependency on n and ` is the same as for Protocols 3 and

4 in Figure 7.6, but now the value of k does not have an impact on the run-time.

Leaf-node evaluations The leaf node evaluation of Protocols 5 and 6 consists of one homomorphic

addition per label bit in the worst case, when all leaf label bits are equal to 1. This homomorphic

addition now has a complexity of O (n2`). In Figure A.13 in the appendix, this dependency on n and

` is clearly visible for these two protocols. For Protocols 7 and 8 this operation consists of one ho-

momorphic plaintext multiplications and one plaintext additions per label bit with both a complexity

of O (n2`). The result can be seen in Figure 7.12. We can estimate the total decision-tree evaluation
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Figure 7.10: The run-time of one path multiplication for Protocols 5 and 6 plotted against the dimension n for different values
of D with δ= 4. The dashed functions are given by 5.25 ·10−7n3`2.

Figure 7.11: The run-time of one path addition for Protocols 7 and 8 plotted against the dimension n for different values of D
with δ= 4. The dashed functions are given by 4.85 ·10−7n2`.

run-time for some input parameters, based on the analysis and the found dependencies above. First,

all σ decision nodes are evaluated. Next, the path evaluation takes place that consists of σ+γ−3 path

multiplications or additions, depending on the approach. Then γdlog2γe leaf node bit evaluations

take place (if we neglect the γmultiplications of the path costs with a random number for the additive

approach). To test this prediction, we evaluate a simple tree shown in Figure 7.13. Clearly, σ= 2,γ= 3.

Taking δ = 4,D = 3 and the corresponding parameters of q and `, it is expected that for n = 50, the

multiplicative approach evaluates the simple tree in 2 · 1824+ 2 · 290+ 6 · 0.08 ≈ 4228 seconds. The

exact run-time for this instance was 4185 seconds, around the same as expected. The additive eval-

uation run-time can be approximated by 2 · 179+ 2 · 0.025+ 6 · 0.065 ≈ 358 seconds for n = 50. The

exact run-time for this instance was 360.7 seconds. We can therefore conclude that by using our fond

dependencies on all involved parameters, we can do a proper estimation of the total run-time of a

specific instance.
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Figure 7.12: The run-time of one leaf bit evaluation for Protocols 7 and 8 plotted against the dimension n for different values of
D with δ= 4. The dashed functions are given by 1.21 ·10−6n2`.

Figure 7.13: The decision tree used for testing the estimated total decision-tree evaluation run-time.



96 7. Results

Figure 7.14: The expected run-times of the several parts executed by the users or server in Protocols 5 and 6 for n = 1900,D =
15,δ= 4.

7.5.4. Communication

The protocols consist of 4 rounds. The communication sizes of the different rounds can be seen in

Table 7.3. In the first round, the STTP communicates his public key to the users. This round only has

to occur once, even when multiple trees are evaluated. The public keys of the STTP can be reused

by the users to encrypt their input. The public key is a matrix of size n ×m and is therefore of size

48 ·nm bytes. In the second round every user i send his aiδ encryptions to the server with a total size

of 48 ·aiδn2` bytes. In the third round, the server sends the result encryptions of either 48 · dlog2γen

or 48 · γ(dlog2γe + 1)n bytes to the STTP, depending one the approach. Namely, only one column

per ciphertext needs to be communicated in order to do the decryption. The second amount is for the

additive approach where for every leaf node the encrypted label bits and the encrypted cost have to be

communicated. Additionally for Protocols 5 and 7, the server sends dlog2γe random bits to each user.

In the fourth round, dlog2γe partial decryptions are communicated from the STTP to the decrypting

party. This last communication is of size 48 · dlog2γe bytes.

Table 7.3: Communication sizes in bytes of the different rounds in Protocols 5 to 8. The communication between brackets in
the first round only has to occur once and not every time a tree is evaluated.

Round 1 Round 2 Round 3 Round 4

Protocol 5 (48nm) 48aiδn2` 48dlog2γen +dlog2γe 48dlog2γe
Protocol 6 (48nm) 48aiδn2` 48dlog2γen 48dlog2γe
Protocol 7 (48nm) 48aiδn2` 48γ(dlog2γe+1)n +dlog2γe 48dlog2γe
Protocol 8 (48nm) 48aiδn2` 48γ(dlog2γe+1)n 48dlog2γe

7.5.5. Summary

To give a better idea of the run-time complexity required for each party, in Figures 7.14 and 7.15, the

distribution of the expected run-time of the separate parts for both the users and the server can be

seen assuming the parameters D = 15 and δ = 4. The run-time is again based on the times found for

n = 50 and taking into account the found dependency on n. Here, we neglected the run-time required

for the STTP, since this party only executes one key generation and some decryptions of which the

run-times can be neglected compared to the run-times for the users and server. Here, n is chosen such

that the security is guaranteed. Clearly, the run-time required for the leaf-node evaluations is very

low compared to the decision-node and path evaluations. For the additive protocols, also the path
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Figure 7.15: The expected run-times of the several parts executed by the users or server in Protocols 7 and 8 for n = 1400,D =
15,δ= 4.

Figure 7.16: The communication sizes on a logarithmic scale of the different rounds in Protocols 5 and 6 for n = 1900,D = 15,δ=
4, ai = 1 for a tree with γ= 256.

evaluation (which are homomorphic additions) run-time is very low. The main bottlenecks regarding

the run-time are the encryption time and the decision-node evaluation. Again, the reader should note

here that the decision-node evaluation’s run-time is worst-case here; it is assumed that all threshold

values are equal to 0. In practice, this run-time can be lower. It should be noted here that the total

encryption times increase linearly with the number of input variables ai per user and the input bit-

length δ. Also, for the users the total time for the decision-node evaluations is increasing linearly with

the number of decision nodes and for the path multiplications linearly with both σ and γ.

For Protocols 5 and 6, One decision-node evaluation for δ= 4 is expected to take 14600 hours for

a tree with depth 3, which is around 1.5 years. For a tree with depth 15, this is even 38500 hours or 4.5

years. One path multiplication takes between 100 and 266 days. For one bit encryption executed by

the users, we find run-times for these trees between 2200 and 5700 seconds or 92 and 237 days. For

Protocols 7 and 8 one decision-node evaluation takes between 570 and 805 hours. One bit encryption

between 233 and 594 hours. Clearly, the run-time complexity of the additive protocols is much lower.

We can also plot the communication costs per round. Here, we assume that the number of leaf

nodes is equal to γ = 256 and that all users have one input variable, ai = 1. The result can be seen

in Figures 7.16 and 7.17. For these figures, we again took n such that both λ,τ= 110 and the security



98 7. Results

Figure 7.17: The communication sizes on a logarithmic scale of the different rounds in Protocols 7 and 8 for n = 1400,D = 15,δ=
4, ai = 1 for a tree with γ= 256.

is guaranteed. As expected, rounds 1 and 2 are significantly more costly than all other rounds. It

is assumed that every user only has one input value (ai = 1), thus the communication in round 2

is even bigger when the users have more inputs. For these parameters, the communication in the

second round is around 55 or 6 gigabytes per input variable. The public key sizes in the first round

are 14 and 6.2 gigabytes, respectively. For the third round, in Protocols 5 and 6, dlog2γe ciphertext

columns of size n are communicated. In Protocols 7 and 8 this is γ
(dlog2γe+1

)
columns. Therefore,

the communication in this round for the last two protocols is slightly higher.

7.6. Semi-Trusted Third Party protocols using key-switching

The role of the STTP for Protocols 9 and 10 is only to generate multiple public keys and multiple

switching keys. The public keys are used by the users to generate other switching keys. The server

can then use these switching keys to switch all input ciphertexts to the same secret key (of the STTP).

By doing this, the server is then able to combine the different decision-node evaluation results. Since

the decision-node evaluations, the path evaluations and the leaf-node evaluations have similar re-

sults as Protocols 5 and 6 or 7 and 8, we do not show the result figures here. The plots can be found

in Appendix A.3. Also, the encryption procedure is not mentioned in this section since it is the same

method as for Protocols 1 to 4. Namely, now the encryption is done using the users’ secret key. These

results can also be seen in Appendix A.3.

7.6.1. Key generation

Now, the STTP needs to generate, next to his secret key, also one public key (an encryption of 0) for

every user and, using the public keys of the users, one switching key per user. The users also need to

generate one public key and one switching key. The generation time of the secret key and the switching

keys can be neglected compared to the generation of the public keys. As an example, for n = 50 and

δ = 8,D = 15, the key generation times are 0.004,3.867 and 0.017 for one secret, public or switching

key. We therefore neglect the computational cost of the secret key and switching key generation. The

public key generation time can be estimated by the encryption run-time of one bit. The difference

between the key generation of the STTP and the users, is that the server has to generate k public keys

and the users only one public key.
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7.6.2. Key-switching

The server switches the key of the input ciphertexts of the different users, such that these can be com-

bined during the evaluation. The key-switching procedure switches the key of a ciphertext by homo-

morphically multiplying this ciphertext with the switching key. Therefore, the cost is similar to that

of one path multiplication as can be seen in Figure 7.18. In total, the server has to do σ+ kdlog2γe
or σ+ kγ(dlog2γe + 1) key-switches for Protocol 9 or 10 respectively. A similar result was found for

Protocol 10 and can be seen in Figure A.21 in the appendix.

Figure 7.18: The run-time of one key-switching procedure for Protocol 9 plotted against the dimension n for different values of
D with δ= 4. The dashed functions are given by 4.71 ·10−7n3`2.

7.6.3. Communication

Again these protocola consist of 4 rounds, of which the first two are the rounds required to communi-

cate the public keys and switching keys. These two rounds only have to occur once, since the public

and switching keys can be re-used. In the first round, the STTP engages with every user to exchange

their public key of size 48 ·n2` bytes (an encryption of 0). In the second round, the STTP sends k

switching keys to the server with a total size of 48 ·kn2` bytes. After this, every user sends their aiδ

encryptions plus a switching key to the server. This together has size 48 · (aiδ+ 1)n2` bytes. In the

fourth round, the server sends the result that consists of either dlog2γe ciphertext column for Protocol

9 or γ(dlog2γe+ 1) encryptions for Protocol 10 to the user. Therefore, this communication contains

48 · dlog2γen or 48 ·γ(dlog2γe+1)n bytes.

Table 7.4: Communication sizes in bytes of the different rounds in Protocols 9 and 10. The communication between brackets
in the first two rounds only has to occur once and not every time a tree is evaluated.

Round 1 Round 2 Round 3 Round 4

Protocol 9 (48n2`) (48kn2`) 48aiδn2`+48n2` 48dlog2γen

Protocol 10 (48n2`) (48kn2`) 48aiδn2`+48n2` 48γ(dlog2γe+1)n



100 7. Results

Figure 7.19: The expected run-time of the several parts executed by the users, server or STTP in Protocol 9 for n = 1350,D =
15,δ= 4.

Figure 7.20: The expected run-time of the several parts executed by the users, server or STTP in Protocol 10 for n = 950,D =
15,δ= 4.

7.6.4. Summary

In Figures 7.19 and 7.20, the distribution of the expected run-time of the separate parts for all parties

can be seen for both protocols. These expectations are again based on the run-time found for the

highest value of n of our runs, adapted for the found dependency on n. The parameters used here

are the parameters for a secure protocol with λ = 110 and τ = 110. The total contribution of the key-

switches in the total run-time of the server depends linearly on k, since the result encryptions have to

be switched to the key of all users. Clearly, the computation costs required by the users and the STTP

are negligible compared to that of the server. The total contribution of the decision-node evaluations

is linear in the number of decision nodes σ. Again, the run-time of a decision-node evaluation is for

the worst-case situation (where all the threshold values are equal to 0). In practice, this run-time is

lower. Protocol 9 requires σ+ k(dlog2γe) key-switches and σ+γ− 3 path multiplications. Protocol

10 requires σ+ kγ(dlog2γe+ 1) key-switches. It can also be seen that the run-time of one decision-

node evaluation of Protocol 9 parts is more than 75 times higher than for Protocol 10. The run-time

of one key-switch for these parameters is 49 days and 15 hours for the two protocols respectively. This

means that the run-time of one key-switch of Protocol 9 parts is also more than 75 times higher than

for Protocol 10.
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Figure 7.21: The communication sizes on a logarithmic scale of the different rounds in Protocol 9 for n = 1350,D = 15,δ= 4, ai =
1 and k = 2 for a tree with γ= 256.

Figure 7.22: The communication sizes on a logarithmic scale of the different rounds in Protocol 10 for n = 950,D = 15,δ= 4, ai =
1 and k = 2 for a tree with γ= 256.

In the first three rounds, 1, k, aiδ+ 1 ciphertexts are communicated respectively. The first two

rounds only have to occur once. In the fourth round dlog2γe ciphertext columns of size n are shared.

For protocol 10, this is γ(dlog2γe+1) columns. This communication is very low compared to the com-

munication in the other rounds. The first round stays constant in size. The other rounds depend on

the parameter values of ai ,δ,k. An example of the communication for these two protocols can be seen

in Figures 7.21 and 7.22 for a tree with γ= 256. The size of one ciphertext for Protocol 9 for δ= 4,D = 15

is 5.3 gigabytes. For Protocol 10, this is 0.52 gigabytes, which is more than 10 times smaller. Only the

communication in the fourth round is lower for Protocol 9 than for Protocol 10.
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7.7. Comparison of the protocols

In this section we compare the different protocols on the aspects of key generation, encryption, decision-

tree evaluation, and communication costs.

7.7.1. Key generation

The key generation of the protocols that make use of an STTP, namely Protocols 5 to 10, is very ef-

ficient compared to the key generation of the Multi-Key FHE protocols. For n = 50 and for all input

parameters, the key generation for these protocols does not take more than 4 seconds. This is in great

contrast to the key generation run-time of Protocols 1 to 4. For those protocols, the run-time can

reach 8000 seconds already for only a value of n = 4. The key generation of these protocols is far from

practical for realistic parameters.

7.7.2. Encryption

The encryption procedure of the STTP protocols without key-switching is more costly than for the

other protocols. Namely, that encryption procedure encrypts under the public key instead of the se-

cret key, which requires a costly multiplication of a n ×m matrix and a m ×n` matrix. The differ-

ence can be seen in Figure 7.23, where the encryption time is plotted against n for all protocols for

D = 3,δ= 4. Here, again we extrapolated our result for the highest value of n using the found depen-

dencies of the previous sections.

Figure 7.23: The expected encryption time of one bit (by a user) for the different protocols plotted against n for D = 3,δ= 4.

7.7.3. Decision-tree evaluation

The decision-tree evaluation of the protocols that make use of Multi-Key FHE contains the extension

procedure after every decision-node evaluation. The extension procedure depends on n with a power

of 5 and therefore its run-time complexity greatly increases for higher n. Realistic values of n give

non-practical decision-tree evaluation times. For these protocols, in comparison to the extension

procedure, all other components of the evaluation can be neglected. As an example, for k = 2,D =
3,δ = 4 the run-time of one complete extension procedure is around 200 seconds already for n = 4.

For n = 50, the run-time will be in the order of years. In comparison to the other protocols that use an

STTP, the decision-tree evaluation is much more costly.
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Figure 7.24: The expected decision-tree evaluation run-time for different protocols plotted against n for D = 3,δ= 4,σ= 2,γ= 3
with k = 8.

To compare the additive decision-tree evaluation with the multiplicative evaluation, Figure 7.24

gives the expected total evaluation time of Protocols 5 to 10. Here, we took a tree with σ = 2,γ = 3

and k = 6. Clearly, the additive procedure is less expensive. This also holds for bigger trees. This

can be explained by the fact that the paths are evaluated by less expensive additions instead of mul-

tiplications. Additionally, this causes the value of ` to be much lower, which makes the sizes of the

ciphertexts smaller. Next to this, since q is lower due to lower error propagation, this also results in a

lower necessary value of n for security. The key-switches do not cause a significant higher error prop-

agation since each ciphertext is switched only twice: after the decision-node evaluation and before it

is send back to a user (Table A.7 to A.11 in the appendix). Therefore, even Protocol 10, that needs to do

more key-switches, namely a number that depends linearly on kγ instead of only k, is more efficient

than Protocol 9. This is due to the fact that every homomorphic multiplication of Protocol 9 is more

expensive than of Protocol 10.

In Figure 7.25, the run-time of each evaluation component for the different protocols can be found.

Here, n is fixed to 800. Clearly, the costs of the path evaluations are much smaller for Protocols 7, 8

and 10. The main cost for all protocols come from the decision-node evaluations and/or the key-

switches. The difference between the run-times for the decision-node evaluations of the protocols

can again be explained by the difference in ` and therefore in the size of each ciphertext. Protocol

10 requires many key-switches for this instance with k = 8, that, together, are more costly than the

decision-node evaluations. Since the number of key-switches is linearly dependent on bothσ,γ and k

(and the decision-node evaluation only on σ), increasing either γ or k causes this protocol to be more

expensive than Protocols 7 and 8. However, increasing γ always comes together with an increase in σ

or vice versa. Therefore, of these parameters mainly the value of k impacts the difference in run-times

between the additive protocols. But still, for a value of n that guarantees the security, which is higher

for Protocols 7 and 8 than for Protocol 10, the total run-time is higher, even for k = 8. This can be seen

in Figure 7.26.
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Figure 7.25: The expected decision-tree evaluation run-time for different protocols for n = 800 and D = 3,δ= 4,σ= 2,γ= 3 with
k = 8.

Figure 7.26: The expected decision-tree evaluation run-time for different protocols for D = 3,δ= 4,σ= 2,γ= 3 with k = 8. The
value of n is chosen such that security is guaranteed according to Tables A.8 and A.11.
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Figure 7.27: The required communication on a logarithmic scale per round for Protocols 9 and 10 for D = 3,δ = 4,γ = 3, ai =
1,k = 2. The value of n is chosen such that security is guaranteed according to Tables A.10 and A.11.

7.7.4. Communication

In this section we compare the communication costs of all protocols. Previously, we already concluded

that the public key required for extension in the first four protocols is very big. The communication in

the other rounds is very low compared to the communication of this big public key in the first round.

To be specific, this public key is of size 48·n3m`2 which already reaches a size in the order of terabytes

for n = 50 and the lowest possible tree parameters.

Protocols 5 to 10 do not require such a big key to be communicated. In order to compare these

protocols on the communication costs in the different rounds, in Figure 7.27 these are plotted for

the protocols that use an STTP in combination with key-switching. This is done for the parameters

that guarantee security, namely such that λ,τ= 110. It was already demonstrated above that the run-

time of Protocol 10 is the lowest. In Figure 7.27, it can be seen that this protocol also requires less

communication in the first three rounds. This is caused by the lower value for ` and n such that

the ciphertext sizes are smaller. Only in the fourth round, for Protocol 10 for every leaf node some

ciphertexts are communicated which results in a slightly higher communication size. In comparison

to the first three rounds, the communication in the last round is that low, that the small difference

does not have a big effect on the communication costs in total. The number of input variables per

users is set to ai = 1, which means that the communication in the third round will be higher if this is

chosen to be a higher value (increases linearly in ai ).

The same conclusions can be drawn for Protocols 7 and 8 compared to Protocols 5 and 6. This can

be seen in Figure 7.28. Now, the third round is the round where for every leaf node some ciphertexts

are sent for the additive approach. Therefore, the communication in that round is a bit higher for

Protocols 7 and 8. The first two rounds are again less expensive in terms of communication, due to a

lower ` and n.

In Figure 7.29, the communication sizes of Protocols 7, 8 and 10 are shown together. Here, all key-

exchange rounds are summed together. The input round is the round in which a user sends his input

to the server. The result round is the round where the server communicates the result ciphertexts with

another party. Clearly, the total communication required for the key exchange is lower for Protocol

10, even for the fixed value k = 8. The number of keys that needs to be communicated in Protocol 10

depends on the number of parties. But, these keys are equal in size to ciphertexts, such that they are

much smaller than the public keys communicated in Protocols 7 and 8. The difference in the other

rounds can be explained by the lower value of n and ` for Protocol 10.
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Figure 7.28: The required communication on a logarithmic scale per round for Protocols 5 to 8 for D = 3,δ= 4,γ= 3, ai = 1. The
value of n is chosen such that security is guaranteed according to Tables A.7 and A.8.

Figure 7.29: The required communication on a logarithmic scale per round for Protocols 7, 8 and 10 for D = 3,δ= 4,γ= 3, ai = 1
and k = 8. The value of n is chosen such that security is guaranteed according to Tables A.8 and A.11.
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7.8. Decision-node evaluations

In the above analyses, we assumed the threshold values of all decision nodes to be equal to 0. This

gives the worst-case run-time, since now for all bit positions multiple homomorphic multiplications

(see Formula 5.1) need to be calculated. To give an idea of the run-time for other threshold values,

in this section we evaluate the run-time of one decision-node evaluation while varying the threshold

values. We fix the ciphertext dimension to n = 100 and choose ` = 16 which is the value of ` for

Protocol 10 given δ = 4,D = 3. The result can be seen in Table 7.5. We also compute the number

of homomorphic multiplication required for the decision-node evaluation given the threshold value.

Clearly, the run-times agree with the number of homomorphic multiplications that are required for

the specific threshold value.

Table 7.5: The run-time in seconds of one threshold or categorical decision-node evaluation for different threshold or category
values (denoted in bits), given n = 100,`= 16,δ= 4.

Threshold / Category # Hom. multiplications comparison Comparison protocol time (s) Equality protocol time (s)

0000 6 689.7 333.7
0001 3 336.4 333.0
0010 4 447.3 332.7
0011 1 111.2 336.6
0100 5 577.5 334.9
0101 2 225.0 335.5
0110 3 339.1 349.1
0111 0 0.01145 338.7
1000 6 695.5 335.9
1001 3 336.9 332.3
1010 4 446.2 339.5
1011 1 110.5 332.1
1100 5 561.9 331.7
1101 2 224.0 346.9
1110 3 330.6 337.9

The comparison protocol sometimes homomorphically multiplies the same ciphertexts. Take for

example the threshold value 0000, then

[[x > 0]]2 = [[x3]]2 + [[x0]]2 � [[d1]]2 � [[d2]]2 � [[d3]]2 + [[x1]]2 � [[d2]]2 � [[d3]]2 + [[x2]]2 � [[d3]]2.

It can be seen that the result of [[d2]]2 � [[d3]]2 is used two times. This means that storing this value

lowers the number of homomorphic multiplications by one. This also holds for all threshold value

where the last two bits are 0, so the threshold values 0000,0100,1000 and 1100. Depending on the tree,

this can slightly lower the run-time of some of the decision-node evaluations.

Next to threshold decision nodes, there can also be categorical decision nodes. In Section 5.6.2,

we demonstrated how to evaluate these homomorphically. Every equality protocol requires δ−1 ho-

momorphic multiplications. In Table 7.5, also the evaluation times of one categorical decision node

for different category values are given. As expected, the run-times are similar to evaluating a threshold

decision node that requires δ−1 = 3 homomorphic multiplications. Dependent on the threshold or

category value, either the comparison protocol or equality protocol is more efficient.
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7.9. Possible modifications

In this section we shortly describe two protocol modifications, that make some of the protocols slightly

different and thereby impact the run-times or communication costs.

7.9.1. Encryption in STTP protocols without key-switching

Protocols 7 and 8 that use an STTP without key-switching have the most efficient decision-tree eval-

uation. The downside of these two protocols is that the users have to encrypt all their bits using the

STTP’s public key. This is a very expensive procedure, of which the run-time can be seen in Figure 7.8.

Inspired by the key-switching procedure and the use of zero encryptions as public keys to produce the

switching keys, we can change the encryption procedure for these protocols. The STTP can send to

every user aiδ encryptions of 0 which we again call public keys. The cost of generating these encryp-

tions by the STTP are reasonable, since the STTP uses his private key for this encryption. Then, each

user can use these 0 encryptions to encrypt their input bits under the STTP’s secret key, namely apply-

ing the plaintext addition procedure with as plaintext the input bit. This procedure is less expensive

than the initial encryption method. Also, the error propagation is reduced since the bit encryptions

are less noisy, such that ` can be chosen as a lower value (Table A.9 in the appendix). The downside

is that this communication has to take place each time the user sends input encryptions to the server.

This can be solved by letting the STTP communicate more 0-encryptions such that multiple trees can

be evaluated. As an example, in Figures 7.30 and 7.31, the expected run-times for the users and server

and the communication sizes per round are given for Protocols 7 and 8 with the proposed adapted

encryption procedure. In Table 7.6, we give the communication sizes of the different rounds for the

adapted version of Protocols 7 and 8.

Table 7.6: Communication sizes in bytes of the different rounds in the adapted versions of Protocols 7 and 8.

Round 1 Round 2 Round 3 Round 4

Protocol 7 - adapted 48aiδn2` 48aiδn2` 48γ(dlog2γe+1)n +dlog2γe 48dlog2γe
Protocol 8 - adapted 48aiδn2` 48aiδn2` 48γ(dlog2γe+1)n 48dlog2γe

Figure 7.30: The expected run-time of the several parts executed by the users, server or STTP in Protocols 7 and 8 for n = 950,D =
15,δ= 4.
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Figure 7.31: The communication sizes on a logarithmic scale of the different rounds in Protocols 7 and 8 with the adapted
encryption procedure for n = 950,D = 15,δ= 4, ai = 1 for a tree with γ= 256.

7.9.2. Homomorphic operations on column ciphertexts

The protocols that follow the additive approach have the benefit that after the decision-node eval-

uations, no more homomorphic multiplications are executed. Only homomorphic additions, plain-

text multiplications and plaintext additions are done next. Since for decryption only one column is

needed, these operations can also be done on only this specific column. This results in the complex-

ity of these operations to be O (n) instead of O (n2`). This can slightly change the run-times of the

protocols. Since the decision-node evaluations are still the most expensive procedures, this does not

impact the overall execution times much. This is not possible for the protocols that make use of key-

switching, since the key-switching procedure is a homomorphic multiplications which also needs to

be executed at the end of the complete tree evaluation.





8
Discussion, conclusions and future work

This chapter starts with a short summary of our research. Next, we present the discussion and con-

clusions. Afterwards, we give recommendations for future research.

8.1. Summary

Decision-tree evaluation is a useful tool in many application areas. It is a promising method for deter-

mining access within a Risk-Adaptive Access Control (RAdAC) system where access-related informa-

tion is provided by multiple entities, as considered as the exemplary use-case of this thesis. Decision

trees can be used to make access decisions that are dynamic and flexible and can be adapted to the

current context and exceptional or critical circumstances. Within healthcare, sharing EHRs of patients

between medical providers is an example of where these dynamic-access decisions are essential. Next

to this, decision-tree models are shown to be effective in classifying instances of fraud, malware or

diseases. Especially when data of more than one party is combined for the evaluation, the results can

be very fruitful.

However, collaborative decision-tree evaluation raises many privacy concerns. In order for the

decision-tree classification to be successful, it needs access to sensitive data, like financial or health-

related records. It is important to keep this data private. This is even more necessary when the

decision-tree evaluation is done in a collaborative manner where more than one party provide sensi-

tive input data. In addition, the decision-tree model can be a valuable asset to the holder and can not

always be publicly known. As long as no solution exists for these privacy issues, parties are expected

to be hesitant regarding working together using decision-tree evaluation in these application areas.

Therefore, we investigated whether it is possible to evaluate a decision tree in a privacy-preserving

way when the input originates from more than one party, while making use of homomorphic en-

cryption. We proposed four different protocols in the access-control setting where the holder of the

decision tree gains the evaluation result, and six different protocols in the setting where the users gain

the result. Additionally, we thoroughly analysed and implemented all protocols.

111
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8.2. Discussion

The first protocols we proposed for both settings make use of Multi-Key Fully Homomorphic Encryp-

tion (FHE). This makes it possible for the users to encrypt under their own key such that they do not

have to put trust in another party. These characteristics make this method very promising. However,

the implemented Multi-Key FHE is very inefficient due to the high run-time for the extension method,

which extends a ciphertext to a new key. In addition, the method requires the users to generate big

public keys which are needed by the server to perform the extension procedure. Our results show that

the run-time complexity for both the users and the server reaches non-practical values in the order of

years, even for very small trees. Namely, the run-times of the key generation and the extension proce-

dure grow with a power of four or five in the order of the dimension n of the ciphertexts respectively,

where n is a fixed value with a certain minimum to guarantee security of the protocols. Therefore,

these protocols are currently not feasible. Nonetheless, since the exact complexity of these protocols

depends on the underlying Multi-Key FHE, and given the progressing research within Multi-Key FHE,

these protocols can become more and more efficient. Therefore, future application is not completely

excluded.

All our proposed protocols differ in the type of path evaluation they perform: either they make

use of the multiplicative approach where all decision bits per path are multiplied, or the additive ap-

proach where they are added per path. The additive approach has the advantage that σ+γ−3 fewer

homomorphic multiplications are required in the complete protocol, where σ is the number of deci-

sion nodes and γ the number of leaf nodes. Homomorphic multiplications are a factor of n` times

less complex in terms of run-time than additions, such that the run-time of a homomorphic addition

is negligible compared to a homomorphic multiplication. One homomorphic multiplication in our

implementation takes at least 10 hours, depending on the tree parameters and the protocol. Replac-

ing these path multiplications by additions can therefore result in a speed-up of at leastσ+γ−3 times

10 hours. In addition, the amount of noise in the final result ciphertexts is lower which enables us

to set the modulus q and therefore also the parameters n,` to a lower value. Since this results in a

lower ciphertext size, all operations can be done more efficiently. Therefore, the results show that the

additive approach is less costly in terms of decision-tree evaluation run-time by the server.

For the additive approach, the communication sizes in the key-exchange round(s) and the input

round are less costly. This can again be explained by the lower value of n an ` and therefore smaller ci-

phertext sizes. It is interesting to see that for higher D , the value of ` is lower, since D ′ is higher. There-

fore, for fixed value of n, the higher D , the smaller the ciphertext sizes. The number of ciphertexts

that the server needs to communicate in order to find the correct (randomised) evaluation, however,

is γ times higher than for the multiplicative path evaluation approach. So, the communication cost of

this round is higher than for the multiplicative protocols. However, in comparison to the other earlier

rounds, this communication is at least 10000 times smaller. Therefore, this slightly higher communi-

cation does not have a big impact on the overall communication costs. Therefore, it can be concluded

that both the overall communication costs and the run-time are lower for the protocols that make use

of the additive approach.

The use of a Semi-Trusted Third Party (STTP) allows the users to encrypt under the public key pro-

vided by the STTP, such that the server is able to combine the different input ciphertexts. Therefore,

no expensive key-extension method is required as for the protocols that make use of Multi-Key FHE.

The protocols differ in the amount of trust that needs to be put into this additional party: either the

STTP needs to generate keys and perform decryption; or it only participates in the key generation

in which some additional keys are generated. These additional keys can then be used by the server

to apply key-switching to switch the key under which a ciphertext is encrypted. This last method

has the advantage that the users can encrypt under their own key (instead of the key of the STTP)

and that no further communication is required with the STTP after the keys are exchanged. Unfortu-
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nately, the method that uses an STTP in combination with key-switching, can not be applied within

the access-control setting. Namely, the server would then able to decrypt the input ciphertexts of the

users making use of the key-switching keys.

Due to randomisation, the STTP without key-switching does not gain any knowledge about the

evaluation result, the tree, or the users’ input in our protocols, except for the number of leaf nodes.

Therefore, finding such an STTP is not a complex task. When key-switching is applied, this task is even

easier since the STTP only joins the key generation. In case the STTP colludes with one of the users,

both gain no advantage in our STTP protocols due to randomisation. When the server colludes with

the STTP, the server can decrypt the input of the users. So, this should be prevented. For the protocol

without key-switching and where the users receive the evaluation result, the evaluation result can also

be determined by the server when the sever colludes with the STTP. In all protocols, the users do get

to know the number of leaf nodes of the tree, but, sending fake additional ciphertexts can hide this

value.

The protocol that makes use of an STTP without key-switching is suitable for access control, where

the server receives the evaluation result. The protocol requires 4 rounds, of which the first round

consists of the key-exchange and only needs to be executed once. After the tree evaluation done by

the server, in which the additive approach is used, the randomised result is decrypted by the STTP

and sent back to the server. The encryption procedure executed by the users, where encryption takes

place using the public key of the STTP, is very expensive in comparison to encryption using a secret

key. Concretely, the encryption time (of one bit) is in the order of days for all tree sizes. At the cost of

more communication, we proposed an alternative; the STTP sends 0-encryptions to the users in the

first round which can then be used by the users to encrypt their input bits. These 0-encryptions can

be generated by the STTP in 150 to 300 seconds per encryption depending on the tree depth and the

input bit length. Although this encryption time is quite high, the advantage is that these encryptions

can be generated at any time and can be stored for later use. The run-time for the user to add their

plaintext bits to the 0-encryptions is lower than 5 seconds per bit for any tree depth and input bit

length. Therefore, this greatly reduces the load on the users. This is beneficial, since not all users have

a high computational power. The communication size of one bit ciphertext varies between 376 MB

and 606 MB depending on the tree depth and the input bit length. Assuming an internet speed of

15 MB per second, receiving/sending one ciphertext can take up to 40 seconds. The communication

sizes in the last two rounds can be neglected compared to the communication in the other rounds.

For the setting where the users receive the classification result, and the decision tree acts as an ex-

ternal resource, two of our protocols are the most feasible options. One of those is the same as for the

access-control setting, but now the last communication round takes place between the STTP and the

users in order to communicate the result with the users instead of the server. This protocol requires 3

communication rounds every time a tree is evaluated, assuming that in the first key-exchange round

enough 0-encryptions are sent for multiple tree evaluations. The other possibility is the method us-

ing key-switching in combination with an STTP. This method only requires 2 communication rounds

for every new tree that is evaluated. Only once two key-exchange rounds have to take place between

the server and both the users and the server. In the first round, the users and STTP interact to share

0-encryptions that again vary between 376 MB and 606 MB per encryption. Then some information

is added by the server and the users, who then send the result to the server. The server receives 2k

switching keys with the same size as the 0-encryptions. Clearly, in comparison to the other protocol,

the advantage of using key-switching is that every evaluation only takes 2 rounds and that less com-

munication is required in the key-exchange. The drawback of this method is that, since the server

needs to switch the keys of the ciphertexts during the tree evaluation, more homomorphic multipli-

cations are required. Therefore, the run-time complexity of the server is higher. The additional total

run-time required is equal to the run-time of σ+kγ
(dlog2γ+1

)
homomorphic multiplications that

each take at least 10 hours. Clearly, much more computational time is needed by the server for the

protocols that makes use of key-switching. Depending on the preference, a decision can be made be-
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tween the two protocols by determining if either a low number of communication rounds or a low

computational overhead for the server is more important.

We now describe the computational complexity of the decision-tree evaluation in all STTP pro-

tocols, which is executed by the server. It is clear that the decision-node evaluations and the key-

switching procedures are the most expensive. Namely, this is the only part of the whole evaluation

where homomorphic multiplications need to take place. Neglecting the run-time of all other opera-

tions that are not homomorphic multiplications, the total evaluation requiresσdecision-node evalua-

tions, that each take in the worst-case 1
2δ(δ−1) multiplications. The protocol that uses key-switching

requires in addition σ+ kγ
(dlog2γ+1

)
homomorphic multiplications. Depending on the input bit

length δ and the depth of the tree D , the run-time of one homomorphic multiplication varies between

10 hours and 20 hours.

Looking at the structure of a decision tree, it can be noticed that the decision-node evaluations

can be done in parallel. In addition, the key-switches before and after the decision-node evaluations

can be done in parallel. This means that the run-time can be optimised when having access to parallel

processors. For the protocols without key-switching, the worst-case run-time is then defined by one

decision-node evaluation. For the key-switching protocols, two homomorphic multiplications have

to be added. Assuming an input bit length of δ= 4, one decision-node evaluation requires in the worst

case 6 homomorphic multiplications. This means that on a parallel machine that acts as our server

with processors of the same computational power as ours, the protocols without key-switching take in

the worst-case between 60 and 120 hours. The protocols that do use key-switching take in the worst-

case between 80 and 160 hours. For an input bit length of 6 this is between 150 and 300 hours and

between 170 and 340 hours, respectively.

Clearly, the best achievable run-time of the evaluation is in the order of days. Such a run-time is

currently considered impractical for real-life application within access-control, since these systems

should be able to make access decisions quickly. Still, we discuss how our protocols can be applied

within access-control. Optimally, an access-control server does not learn anything about the input

except for a bit-value that denotes the access decision. Our current approach evaluates the access

request towards a risk level denoting the risk of granting access. This is then compared to an accept-

able risk value based on the current context and the operational benefit of granting access. We wish

to avoid that the access-control system gains insight into the access risk level. This can be achieved

by letting the server privately evaluate two decision trees; one that gives the access risk and one that

gives the acceptable risk. These risk values can homomorphically be compared such that the result

is an encryption of 1 in case the access risk is lower than the acceptable risk. In two communication

rounds with the STTP, the server can then receive this result, without the STTP gaining any knowledge.

Within an access-control system, there is a chance that some input variables are missing or not

delivered on time. Since the server knows the decision tree, this can be solved by choosing the child

node of the associated decision node that results in the highest risk value. Next to this, sometimes

more complex evaluations of the inputs than comparison or equality tests are required. An example

is that the sum of two input variables has to meet a certain condition. Since we make use of homo-

morphic encryption, this is easily solvable. The sum (or any other function regarding more than one

input variable) can be homomorphically evaluated. However, this makes the decision-tree evaluation

more costly, since the additional homomorphic operations that are required cause some additional

overhead.



8.3. Conclusions 115

8.3. Conclusions

This thesis takes a step towards feasible solutions for collaboratively evaluating a decision tree in a

privacy-preserving way. Our work is the first work to propose private decision-tree evaluation where

the input originates from more than one user. Therefore, our protocols introduce a new line of re-

search within private decision-tree evaluation. We focused on solutions that make use of homomor-

phic encryption. First, we gave ten different protocols that take place in a different setting; either

the server that holds the decision tree receives the evaluation result or the users that send the input

receive the evaluation result. The protocols make use Multi-Key FHE or normal FHE with an STTP.

Additionally, we introduced a novel key-switching method within two of the STTP protocols such that

the dependency on the STTP is greatly reduced.

All protocols are proven to be secure in the semi-honest model. Next to this, we did an elabo-

rate correctness analysis of the FHE schemes and the noise propagation during all the operations in

the protocols, which is essential for a correct implementation. We introduced some adaptations of

the FHE schemes to make the schemes more intuitive and our protocols more efficient and provided

several new operations or procedures that are essential for our protocols.

We gave a first implementation of the protocols in order to do an overall comparison of all pro-

tocols in terms of run-time complexity and communications costs. Due to the high computational

overhead of the key generation and the extension method for the Multi-Key FHE schemes, the proto-

cols that make use of these schemes are not yet feasible. Therefore, the protocols that use an STTP

are the most promising. These protocols have a very low computational overhead for the users; per

input bit, they need to execute a procedure that does not take more than 5 seconds. The protocols take

3 rounds, but requires an additional key-exchange round. The communication sizes of the first two

rounds dominate the other rounds and vary between 376−606 MB (size of one ciphertext) per input

bit value. Assuming that the implementation can be parallelized, the protocols without key-switching

take in the worst-case between 60 and 120 hours for an input bit length of 4. For the use-case where

the decision tree is an external resource and the users receive the evaluation result, the key-switching

method can be applied. This reduces the number of required communication rounds: only 2 rounds

are needed every time a tree is evaluated. Only for initialisation, two rounds instead of one round is

needed for the exchange of keys. The STTP only participates in the protocol for key generation. This

reduces the amount of trust that needs to be put into the STTP. This method does have the drawback

that the run-time of the total evaluation for the server is higher. Again assuming that the implementa-

tion can be parallelized, these protocols take in the worst-case between 80 and 160 hours for an input

bit length of 4. The exact run-time depends on the depth of the tree.

Clearly, the best achievable run-time of the evaluation is in the order of days. Such a run-time is

currently considered impractical for real-life application within risk-adaptive access-control systems,

since these systems should be able to make access decisions quickly. In the other setting, when the

decision tree is used as an external resource, the requirements on the total evaluation time are lower.

Therefore, the application of our two proposed protocols in this setting is only feasible in case the

server has enough computational power and possible optimisations regarding the implementation

are applied. As a final remark, the research within (Multi-Key) FHE schemes and their efficiency is

progressing. Since the efficiency of our protocols directly depends on the efficiency of these underly-

ing schemes, it is expected that our protocols will become more efficient in the future.
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8.4. Future work

Whilst doing this research, we gained some insights into different ways of improving or continuing

our research. Below, we propose several interesting research directions for future work.

Size of the plaintext space First of all, for the additive path evaluation, we used the extended plain-

text space {0,1, . . . ,D ′} where D ′+1 is a prime number that is at least bigger than the depth D of the

tree. One of the parameters that determines the size of the ciphertext is `= logD ′+1 q . Clearly, increas-

ing D ′ results in a lower `. Therefore, it is expected that by taking D ′ higher than required by the tree

and q the same, our protocols will be more efficient, due to the decrease in `. But, a higher D ′ also

impacts the noise propagation and therefore increases the value of q and n. The expectation is that

there is a certain optimal value for D ′ where the lower ` value does not compensate the increase in n

anymore. Finding this optimal value of D ′ will give the most efficient protocol. A higher value of D ′

also has the advantage that the class labels can be encrypted in one ciphertext. For future research it

would be interesting to look into this dependency.

Semi-honest model Our protocols take place in the semi-honest model in which it is assumed that

all parties follow the protocol correctly. But, users can send wrong ciphertexts that are no encryptions

of their inputs or execute the partial decryption incorrectly. Also the STTP can communicate wrong

partial decryptions. An interesting research direction would be to find out how our our protocols can

be extended such that they are secure in the malicious model.

Other main techniques Our research focused on using homomorphic encryption. However, other

techniques, such as secret sharing, can be used for privately evaluating decision trees. Although the

number of communication rounds will increase, the computational complexity for the server and the

communication sizes will possibly decrease. Therefore, it is interesting to look at potential solutions

that make use of a different technique than homomorphic encryption and make it possible to privately

evaluate a decision tree in a collaborative manner.

Decision-node evaluation In our protocols we make use of a comparison protocol and an equality

test for the decision-node evaluations that do not require any additional communication rounds but

have a high run-time complexity. Therefore, the evaluation time is almost completely determined by

the costly decision-node evaluations. There are many more private comparison protocols and equal-

ity tests that differ in terms of complexity and communication [34, 36, 51, 64, 82, 108]. Depending

on the requirements of the use-case, research can be done into the effect of using a different way of

performing the decision-node evaluation and the impact that this will have on the complexity and

communication costs.

Different encryption schemes In [8], a threshold FHE scheme is introduced that was also briefly

mentioned in Chapter 2. We decided to use the Multi-Key FHE scheme since this requires one commu-

nication round less in comparison to this threshold FHE scheme. Next to this, in [57, 84, 109] thresh-

old additively-homomorphic encryption schemes are given. Using an additive encryption scheme re-

quires us to change the decision-node evaluation method since this currently relies on homomorphic

multiplications, which will incur more communication rounds. A direction for future work would be

to investigate how these two schemes could be used for collaborative private decision-tree protocols.
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Hardware and software optimisations The processor we used for running our code is 2.4 GHz and

has a memory of 16 GB. We expect a significant performance upgrade by using a more advanced server

with a better CPU and memory. Additionally, our code is not optimised. For example, we use an

iterative algorithm for the matrix multiplication that does not do parallel calculations. Next to this,

we did not implement any of the tree evaluation in parallel. It would be interesting to find out how

much the performance of the server can be improved by optimising the code, changing the available

computational power and using a parallelized implementation.

Novel FHE scheme Recently, as an improvement of the GSW FHE scheme, Chen et al. [29] propose

a new scheme called TFHE which is a fully homomorphic encryption scheme over a mathematical

Torus. They propose a novel way of doing homomorphic operations. This scheme is extended to a

multi-key scheme in [24]. This extension evaluates a binary gate on multi-key ciphertexts followed

by a bootstrapping procedure after every homomorphic operation. We decided to focus on the GSW

FHE scheme and its multi-key variant, since this scheme is more intuitive to implement and does

not require this expensive bootstrapping procedure. It would be interesting to investigate how the

complexity of these new schemes compares to our schemes and what the impact will be of using

these schemes in our protocols.

Single-hop FHE scheme Our used Multi-Key FHE scheme is multi-hop for keys, which means that

additional keys can be added during the protocol, even when some homomorphic operations are

done already. This has the advantage that the evaluation of a certain path can be done directly after all

corresponding parties have communicated their input and public keys. There also exists a single-hop

Multi-Key FHE scheme [80]. This scheme requires the ciphertexts to be extended to all users in the

same procedure. Research can be done into how this scheme compares in terms of computational

complexity and if this outweighs the reduction in flexibility of the system.

RAdAC using decision trees We are the first work that propose to use a decision tree as the RAdAC

system. It would be interesting to investigate the feasibility of translating an access policy into a de-

cision tree. Next to this, our approach can be compared with existing RAdAC systems in terms of

model complexity, flexibility and ability to cope with complex and dynamic contexts. Regarding the

privacy-preserving techniques within access-control, research can be done into how the other existing

solutions compare to our solution. For example, anonymous credentials can be used to evaluate every

decision node. Next to this, attributes can be disclosed based on the attribute sensitivity and the trust

level of the access-control party. These solutions are easier to implement but also have their down-

sides; anonymous credentials still reveal the comparison result of each decision node and disclosing

less attributes reduces the amount of input information given to the access-control system.
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In ⊗g−1 The function from a matrix M ∈ Zn×m′
q for any n,m′ to a ma-

trix in {0,1}nl×m′
with l = dlog2 qe or l = dlogD ′+1 qe such that

(In ⊗gᵀ) · (In ⊗g−1)[M] = M.

LWEn,m,q,χ Learning with Errors problem with dimension n,m, modulus

q and error distribution χ.

Ψ̄α
q The distribution on Zq gained by sampling form a normal

variable with mean 0 and standard deviation α/
p

2π and re-

ducing modulo q .
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A
Appendix

A.1. Proof description of Theorem 3.17

We will briefly describe the idea of the proof of Theorem 3.17. It combines two important statements

which Regev proves in his work, namely [95]:

− When having access to a Search LWEn,m,q,Ψ̄α
oracle, the BDD problem for a lattice Λ∗ and dis-

tance αq/
p

2r for some r can be clasisally solved given a polynomial number of samples from a

discrete Gaussian distribution DΛ,σ2 with σ2 = r 2

2π .

− For any d > 0, there is a efficient quantum reduction from sampling from DΛ,σ2 with σ2 = n
2πd 2

to solving the BDD problem onΛ∗ to within distance d .

Here Λ∗ is the dual of the lattice Λ ∈ Rm which is defined as {y ∈ Rm : x ·y ∈Z,∀x ∈Λ}. The dual of

a latticeΛwith basis B can be shown to be a lattice with basis B(BᵀB)−1 [77].

The intuition behind the first statement is that, given the LWE oracle, the unknown closest lattice

point can be found by solving for several LWE samples. These LWE samples, of which the secret vector

is equal to this unknown vector, can be generated by the discrete Gaussian distribution given in the

statement.

Assuming αq > 2
p

n and starting from the fact that for a sufficiently large r , sampling from DΛ,σ2

with σ2 = r 2

2π can be done efficiently [96], a solution to the BDD problem can be obtained within dis-

tance
p

2n/r . Given the second statement, now we can create samples from DΛ,σ′2 with σ′2 = (r /
p

2)2

2π .

Going back and forth between the two statements, each time we can sample from a Gaussian distri-

bution over Λ with a lower variance. At some point, the variance is low enough such that the narrow

samples can be used to solve the GapSVPγ problem [95].
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A.2. Parameters

A.2.1. Protocols 1 and 2

Table A.1: Parameter setting for Protocols 1 and 2 for different δ,D based on Table 6.7 and [3] for k = 2 and m = ndlog2 qe+2τ
such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 260,α= 10−16,n = 1350 q = 263,α= 10−17,n = 1450 q = 270,α= 10−19,n = 1600

δ= 6 q = 263,α= 10−17,n = 1450 q = 267,α= 1−18,n = 1500 q = 270,α= 10−19,n = 1600

δ= 8 q = 263,α= 10−17,n = 1450 q = 267,α= 1−18,n = 1500 q = 273,α= 10−20,n = 1700

Table A.2: Parameter setting for Protocols 1 and 2 for different δ,D based on Table 6.7 and [3] for k = 3 and m = ndlog2 qe+2τ
such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 270,α= 10−19,n = 1600 q = 277,α= 1−21,n = 1800 q = 283,α= 10−23,n = 2000

δ= 6 q = 273,α= 10−20,n = 1700 q = 277,α= 1−21,n = 1800 q = 283,α= 10−23,n = 2000

δ= 8 q = 273,α= 10−20,n = 1700 q = 280,α= 1−22,n = 1900 q = 283,α= 10−23,n = 2000

Table A.3: Parameter setting for Protocols 1 and 2 for different δ,D based on Table 6.7 and [3] for k = 4 and m = ndlog2 qe+2τ
such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 283,α= 10−23,n = 2000 q = 287,α= 10−24,n = 2050 q = 293,α= 10−26,n = 2250

δ= 6 q = 283,α= 10−23,n = 2000 q = 290,α= 10−25,n = 2150 q = 293,α= 10−26,n = 2250

δ= 8 q = 283,α= 10−23,n = 2000 q = 290,α= 10−25,n = 2150 q = 293,α= 10−26,n = 2250

A.2.2. Protocols 3 and 4

Table A.4: Parameter setting for Protocols 3 and 4 for different δ,D based on Table 6.7 and [3] for k = 2 and m = ndlog2 qe+2τ
such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 520,α= 10−12, n = 1000 q = 1117,α= 10−15,n = 1200 q = 1714,α= 10−15,n = 1250

δ= 6 q = 522,α= 10−13, n = 1050 q = 1117,α= 10−15,n = 1200 q = 1715,α= 10−16,n = 1300

δ= 8 q = 522,α= 10−13, n = 1050 q = 1117,α= 10−15,n = 1200 q = 1715,α= 10−16,n = 1300

Table A.5: Parameter setting for Protocols 3 and 4 for different δ,D based on Table 6.7 and [3] for k = 3 and m = ndlog2 qe+2τ
such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 526,α= 10−16, n = 1350 q = 1121,α= 10−19,n = 1550 q = 1717,α= 10−19,n = 1650

δ= 6 q = 526,α= 10−16, n = 1350 q = 1121,α= 10−19,n = 1550 q = 1717,α= 10−19,n = 1650

δ= 8 q = 526,α= 10−16, n = 1350 q = 1122,α= 10−20,n = 1800 q = 1717,α= 10−19,n = 1650
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Table A.6: Parameter setting for Protocols 3 and 4 for different δ,D based on Table 6.7 and [3] for k = 4 and m = ndlog2 qe+2τ
such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 530,α= 10−19, n = 1600 q = 1123,α= 1−22,n = 1900 q = 1721,α= 10−23,n = 1900

δ= 6 q = 530,α= 10−19, n = 1600 q = 1123,α= 1−22,n = 1900 q = 1722,α= 10−25,n = 2100

δ= 8 q = 530,α= 10−19, n = 1600 q = 1123,α= 1−22,n = 1900 q = 1722,α= 10−25,n = 2100

A.2.3. Protocols 5 and 6

Table A.7: Parameter setting for Protocols 5 and 6 for different δ,D based on Table 6.7 and [3] for k = 2,3,4 and m = ndlog2 qe+2τ
such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 267,α= 1−18,n = 1550 q = 273,α= 10−20,n = 1700 q = 280,α= 1−22,n = 1900

δ= 6 q = 270,α= 10−19,n = 1600 q = 273,α= 10−20,n = 1700 q = 280,α= 1−22,n = 1900

δ= 8 q = 270,α= 10−19,n = 1600 q = 277,α= 1−21,n = 1800 q = 280,α= 1−22,n = 1900

A.2.4. Protocols 7 and 8

Table A.8: Parameter setting for Protocols 7 and 8 for different δ,D based on Table 6.7 and [3] for k = 2,3,4 and m = ndlog2 qe+2τ
such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 523,α= 10−14,n = 1150 q = 1118,α= 10−16,n = 1300 q = 1716,α= 10−17,n = 1400

δ= 6 q = 525,α= 10−15,n = 1250 q = 1118,α= 10−16,n = 1300 q = 1716,α= 10−17,n = 1400

δ= 8 q = 525,α= 10−15,n = 1250 q = 1119,α= 10−17,n = 1400 q = 1717,α= 10−19,n = 1600

Table A.9: Parameter setting for Protocols 7 and 8 with adapted encryption procedure for different δ,D based on Table 6.7 and
[3] for k = 2,3,4 such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 516,α= 1−9,n = 700 q = 1113,α= 1−11,n = 900 q = 1712,α= 10−12,n = 950

δ= 6 q = 516,α= 1−9,n = 700 q = 1113,α= 1−11,n = 900 q = 1712,α= 10−12,n = 950

δ= 8 q = 517,α= 1−10,n = 850 q = 1114,α= 10−12,n = 950 q = 1712,α= 10−12,n = 950

A.2.5. Protocol 9

Table A.10: Parameter setting for Protocol 9 for different δ,D based on Table 6.7 and [3] for k = 2,3,4 such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 250,α= 10−13,n = 1100 q = 253,α= 10−14,n = 1200 q = 260,α= 10−16,n = 1350

δ= 6 q = 250,α= 10−13,n = 1100 q = 257,α= 10−15,n = 1250 q = 260,α= 10−16,n = 1350

δ= 8 q = 253,α= 10−14,n = 1200 q = 257,α= 10−15,n = 1250 q = 263,α= 10−17,n = 1450
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A.2.6. Protocol 10

Table A.11: Parameter setting for Protocol 10 for different δ,D based on Table 6.7 and [3] for k = 2,3,4 such that λ,τ= 110.

D = 3 D = 7 D = 15

δ= 4 q = 516,α= 1−9,n = 700 q = 1113,α= 1−11,n = 900 q = 1712,α= 10−12,n = 950

δ= 6 q = 516,α= 1−9,n = 700 q = 1113,α= 1−11,n = 900 q = 1712,α= 10−12,n = 950

δ= 8 q = 517,α= 1−10,n = 850 q = 1114,α= 10−12,n = 950 q = 1712,α= 10−12,n = 950

A.3. Additional results

Figure A.1: The run-time of the extension procedure for Protocols 1 and 2 plotted against n for different values of D , k with
δ= 4.

Figure A.2: The run-time of an initial encryption of one bit for Protocols 1 and 2 plotted against the dimension n for different
values of D,δ with k = 2.
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Figure A.3: The run-time of one path multiplication for Protocols 1 and 2 plotted against the number of users k for different
values of D,δ with n = 10.

Figure A.4: The run-time of one leaf-bit evaluation for Protocols 1 and 2 plotted against the dimension n for different values of
k with D = 15,δ= 8. The dashed functions are given by 6.26 ·10−7n2k2l .

Figure A.5: The run-time of the key generation for Protocols 3 and 4 plotted against n for different values of D , k with δ= 4.
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Figure A.6: The run-time of the extension for Protocols 3 and 4 plotted against k for different values of D , δ with n = 4.

Figure A.7: The run-time of an initial encryption of one bit for Protocols 3 and 4 plotted against the dimension n for different
values of D,δ with k = 2.
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Figure A.8: The run-time of an initial encryption of one bit for Protocols 3 and 4 plotted against the dimension n for a tree with
D = 15, δ= 8 and different k. The dashed functions are given by 2.55 ·10−5 ·n2l .

Figure A.9: The run-time of one decision-node evaluation (worst case with a threshold value of 0) for Protocols 3 and 4 plotted
against the dimension n for different values of δ with D = 15,k = 4. The dashed functions are given by 2.32 ·10−7 · (δ2 −δ)n3`2.

Figure A.10: The run-time of one decision-node evaluation (worst case with a threshold value of 0) for Protocols 3 and 4 plotted
against δ for different values of D , k with n = 25.
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Figure A.11: The run-time of one path addition for Protocols 3 and 4 plotted against the number of users k for different values
of D,δ with n = 25.

Figure A.12: The run-time of one decision-node evaluation (worst case with a threshold value of 0) for Protocols 5 and 6 plotted
against the dimension n for different values of δ with D = 3. The dashed functions are given by 2.63 ·10−7 · (δ2 −δ)n3`2.

Figure A.13: The run-time of one leaf-bit evaluation for Protocols 5 and 6 plotted against the dimension n for different values of
D with δ= 4. The dashed functions are given by 4.75 ·10−7n2`.
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Figure A.14: The run-time of one decision-node evaluation (worst case with a threshold value of 0) for Protocols 7 and 8 plotted
against the dimension n for different values of δ with D = 3. The dashed functions are given by 2.44 ·10−7 · (δ2 −δ)n3`2.

Figure A.15: The run-time of an initial encryption of one bit for Protocol 9 plotted against the dimension n for a tree with δ= 4
and different D . The dashed functions are given by 2.42 ·10−5 ·n2`.
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Figure A.16: The run-time of one decision-node evaluation (worst case with a threshold value of 0) for Protocol 9 plotted against
the dimension n for different values of δ with D = 3. The dashed functions are given by 2.31 ·10−7 · (δ2 −δ)n3`2.

Figure A.17: The run-time of one path multiplication for Protocol 9 plotted against the dimension n for different values of D
with δ= 4. The dashed functions are given by 4.76 ·10−7n3`2.

Figure A.18: The run-time of one leaf-bit evaluation for Protocol 9 plotted against the dimension n for different values of D with
δ= 4. The dashed functions are given by 4.36 ·10−7n2`.
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Figure A.19: The run-time of an initial encryption of one bit for Protocol 10 plotted against the dimension n for a tree with δ= 4
and different D . The dashed functions are given by 2.41 ·10−5 ·n2`.

Figure A.20: The run-time of one decision-node evaluation (worst case with a threshold value of 0) for Protocol 10 plotted
against the dimension n for different values of δ with D = 3. The dashed functions are given by 2.27 ·10−7 · (δ2 −δ)n3`2.

Figure A.21: The run-time of one key-switching procedure for Protocol 10 plotted against the dimension n for different values
of D with δ= 4. The dashed functions are given by 4.50 ·10−7n3`2.
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Figure A.22: The run-time of one path addition for Protocol 10 plotted against the dimension n for different values of D with
δ= 4. The dashed functions are given by 4.66 ·10−7n2`.

Figure A.23: The run-time of one leaf-bit evaluation for Protocol 10 plotted against the dimension n for different values of D
with δ= 4. The dashed functions are given by 1.29 ·10−6n2`.
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A.4. Example use-case

In Figure 1.2 in the introduction, we gave an example use-case tree which demonstrates how a de-

cision tree can be used within access control. In this section we show the results of evaluating this

example tree using our protocols, to give an idea of how our protocols will behave for such a tree. We

focus on Protocols 7, 8 and 10, since we concluded that these are the most promising ones. Of these

protocols, only Protocol 8 can be applied within access control. The other two protocols can only be

applied when the users receive the evaluation result. Still, it is interesting to see how these protocols

will behave for this example tree.

In order to evaluate the tree, the input values and the threshold and categorical values need to

be numerical. These translations to numerical values can be seen in Table A.12. We set the input bit

length to δ= 6 such that at most 16 different values per input variable can exist. Using these sets, we

can translate the tree to a numeric tree which can be seen in Figure A.24. For this use-case we have

k = 3, since three parties send their input to the sever, namely the party that tries to gain access, the

hospital of the requestor and the emergency centre where the location of the emergency situation and

region is known.

Table A.12: The numerical sets of the different input variables of the example decision tree in Figure 1.2.

Employment years 0,1,2, . . . ,15

Function 0,1,2,3,4 := Nurse, co-assistant, ANIOS, AIOS, specialist

Hospital region
0,1,2, . . . ,11 := Friesland, Groningen, Drenthe, Overijssel, Gelderland, Flevoland, Noord-
Brabant, Utrecht, Limburg, Noord-Holland, Zuid-Holland, Zeeland

Department 0,1,2, . . . ,7 := Cardiology, EHC, IC, Surgery, Gynecology, Neurology, Radiology, Pediatrics

Owner device 0,1,2 := Private, Public, Hospital

Owner network 0,1,2 := Private, Public, Hospital

Location 0,1,2, . . . ,15

It can be seen that for this tree it holds that the number of decision nodes σ= 12 and the number

of leaf nodes γ = 13. The depth of the tree is 5. Looking at Table A.8 in the appendix, the correct

parameters for Protocols 7 or 8 are q = 1118 such that `= 18 with n = 1300 to guarantee security. For

Protocol 10, we find q = 1113 such that `= 13 and n = 900. The decision-tree evaluation run-times can

be seen in Table A.13, for fixed n = 100 and n = 200. The numbering of each decision node is in the

order of breadth-first search as given in Figure A.24.

As expected, the decision-node evaluation run-times of nodes 0,1,2,6,8,10 and 11 are similar,

since these are all categorical decision nodes. Nodes 3 and 5 have the same threshold value given

by 0010. This requires 4 homomorphic multiplications and is therefore more costly than the equality

protocol that requires 3 homomorphic multiplications for δ = 4. Nodes 4,7 and 9 have the threshold

value 0001 which requires the same number of homomorphic multiplications as the equality protocol.

This agrees with the results in Table A.13.

Comparing the two different protocols, it can be seen that the total evaluation time of Protocol 10

is higher, although the time per decision-node evaluation is lower due to the smaller value of `. The

additional time is caused by the σ+ kγ(dlog2γe + 1) key switches that have to take place, that each

require around 73 or 613 seconds for n = 100 and n = 200 respectively. The result labels are stored in

dlog2 5e = 3 ciphertexts (5 different class labels). Therefore, the total cost of all key switches for Protocol

10 for n = 100 is around 73 · (σ+4kγ) = 12264 seconds. For n = 200, 613 · (σ+4kγ) = 102984 seconds.
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Figure A.24: The decision tree of the use-case in Figure 1.2 translated to numeric characters and in the same breadth-first order
as the implementation.

Table A.13: The run-time in seconds of the several parts of the server’s evaluation of the use-case tree in Figure A.24 for Protocols
7, 8 and 10, for fixed n = 100 and n = 200.

Part
n = 100 n = 200

Protocols 7 and 8 Protocol 10 Protocols 7 and 8 Protocol 10

Total evaluation 5573.5 15119.8 43109.9 123450.0
Decision-node evaluation 0 445.2 212.5 3384.5 1839.3
Decision-node evaluation 1 451.0 211.1 3373.9 1781.1
Decision-node evaluation 2 443.3 213.3 3387.6 1825.5
Decision-node evaluation 3 582.8 291.9 4541.0 2422.0
Decision-node evaluation 4 435.1 216.1 3382.3 1790.6
Decision-node evaluation 5 585.6 285.0 4534.2 2396.0
Decision-node evaluation 6 440.8 221.6 3413.8 1787.8
Decision-node evaluation 7 436.3 217.0 3403.8 1793.4
Decision-node evaluation 8 434.6 216.9 3387.1 1809.0
Decision-node evaluation 9 431.2 213.2 3395.0 1797.5

Decision-node evaluation 10 435.3 218.3 3433.8 1822.2
Decision-node evaluation 11 437.4 218.5 3403.0 1809.4

Key switch - 72.78 - 613.0
Path addition 0.08273 0.06150 0.4267 0.2477

Leaf node evaluation 0.2081 0.1505 0.9688 0.6362
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For the same security level, the value for n in Protocols 7 and 8 should be 1300, while in Proto-

col 10 this is 900. We can give an expectation of the total run-times for these values assuming the

protocols only consist of homomorphic multiplications. The complexity of a homomorphic mul-

tiplications depends on n with a power of 3, which can also be seen by the difference in the re-

sults between n = 100 and n = 200. Therefore, for Protocol 10, it is expected that the total eval-

uation time is 9003/2003 · 123450.0 ≈ 130 days. For Protocols 7 and 8 this expectation is given by

13003/2003 ·43109.9 ≈ 137 days.

Protocols 7 and 8 require the users to do an expensive encryption procedure which, according

to the results in Figure 7.9, results in encryption times of around 12 days per input bit for the above

parameters. Luckily, in Section 7.9.1 we proposed a modification to Protocols 7 and 8, in which for

every input bit a 0-encryption is sent from the STTP to the user. Since the value of ` for this adapted

version is the same as the value of ` for Protocol 10, the run-time of the total evaluation is the same as

for Protocol 10 minus the costs for the key switches. The expected run-time for this adapted version is

then 9003/2003 · (123450.0−102984) ≈ 22 days. Please note that all of the above run-times do not take

into account the possibility of a parallelized implementation.

In Figure A.25, the communication sizes are given for the first one or two key-exchange rounds

and the rounds in which the three users send their input to the server. The communication in the

key exchange round(s) is the sum of all communication required in those rounds between the users

and the STTP. The key-exchange communication of the adapted version of Protocols 7 and 8 needs

to occur every time a decision tree gets evaluated. This is not the case for the other protocols. In red,

it can be seen that the communication for Protocols 7 and 8 is higher than for the adapted version.

Clearly, the public key is bigger than the aiδ 0-encryptions that are communicated to the users. Also,

the ciphertext sizes are bigger due to higher n and `. Since k = 3, the number of switching-keys is

lower than the number of 0-encryptions that are communicated. Therefore, the communication in

the key-exchange rounds of Protocol 10 is lower than in the adapted version of Protocols 7 and 8. The

differences in communication between the input rounds can be explained by the fact that user 1 and

3 have two input variables and user 2 three input variables.

Figure A.25: The communication sizes on a logarithmic scale of the different rounds in (adapted) Protocols 7, 8 and 10 of the
use-case in Figure A.24. The value of n is chosen such that security is guaranteed according to Tables A.8, A.9 and A.11.
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