
Development of a
model predictive
controller for motion
planning in a dynamic
urban search and
rescue environment
K. Rado

Development of a model
predictive controller for
motion planning in a

dynamic urban search
and rescue environment

Thesis report

by

K. Rado

to obtain the degree of Master of Science

at the Delft University of Technology

to be defended publicly on May 31, 2023 at 13:00

Thesis committee:

Dr. Ir. C.C. de Visser (chair)

Dr. A. Jamshidnejad

Dr.ir. E. Mooij

Dr. R.D. McAllister

Place: Faculty of Aerospace Engineering, Delft

Project Duration: July, 2021 - May, 2023

Student number: 4212169

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Faculty of Aerospace Engineering · Delft University of Technology

http://repository.tudelft.nl/

Copyright © Karlo Rado, 2023

All rights reserved.

Contents

List of Figures iv

List of Tables vi

Introduction 1

I Scientific Article 2

1 Development of a model predictive controller for motion planning in a dynamic urban

search and rescue environment 3

1.1 Introduction . 3

1.2 Background theory . 5

1.3 Problem definition . 9

1.4 Comparison algorithms. 14

1.5 Case study setup . 15

1.6 Simulation results. 17

1.7 Discussion . 19

1.8 Conclusion . 24

1.9 References . 25

II Preliminary Analysis 27

2 Literature Review 28

2.1 Introduction . 28

2.2 Search and rescue . 30

2.3 System design . 33

2.4 Model predictive controller . 47

2.5 Conclusion . 57

References 62

III Appendices for the scientific article 63

A Initial obstacle conditions for simulations 64

ii

Nomenclature

List of Abbreviations

APF Artificial Potential Function

GNSS Global Navigation Satellite Systems

HL-RRT Horizon-based Lazy RRT

IMU Inertial Measurement Unit

LiDAR Light Detection and Ranging

MCDM Multiple Criteria Decision Making

MPC Model Predictive Control

PoA Point of Attraction

POMDP Partially Observable Markov Decision

Process

RRT Rapidly-exploring Random Tree

SaR Search and Rescue

SLAM Simultaneous Localization and Mapping

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

uSaR Urban Search and Rescue

List of Symbols

α1 Reference trajectory weights for the MPC

cost function

α2 Input weights for the MPC cost function

∆tctrl Control update step

ηe Emergency maneuver scaling factor for

the APF

ηs Static obstacle scaling factor for the APF

κ Current control time step

ωrob Angular velocity of the robot

ρdet Sensor/detection/planning radius

ρobs Obstacle radius

ρrob Robot radius

urob(0,Hc) Vector of robot inputs from t = κ to

t = κ+Hc

xrob(1,Hp) Vector of robot states from t = κ + 1
to t = κ+Hp

xref Vector of reference states

θ Heading angle

Hc Control horizon for the MPC

Hp Prediction horizon for the MPC

t Current time

vrob Linear velocity of the robot

wmax Maximum noise value

iii

List of Figures

1.1 Illustration to clarify the predictive and control (input) horizons in a reference tracking model

predictive control approach. 5

1.2 Possible challenge for a purely local controller. The dashed circle denotes the sensor range,

and thus local knowledge. 6

1.3 The dashed line is the ideal trajectory. The black circle is the obstacle itself, while the empty

circle surrounding it is the expanded radius form following the point-vehicle assumption. . . 10

1.4 Generalized controller design. 10

1.5 Shortest paths found using the heuristic path planning algorithm, selected path is green-red-

green. Image taken from [16]. 11

1.6 Red and green lines following the implementation of [16] in a static environment. Stars are

temporary goals, and also where re-planning occurs. 11

1.7 Path smoothing in case of self-intersection, showing the start-goal line (blue), first iteration

(red), final iteration (green), and subsequent smoothing (black). 11

1.8 Setting of a new temporary goal (the end-point of either the red or green line). Only

considered if the original temporary goal cannot be reached (see dashed lines that go past

the light-blue detected zone). 12

1.9 Dashed line shows original trajectory, full lines show new trajectories around the dynamic

obstacle (red). These trajectories are tested again for collision-avoidance, and the shorter

one will be chosen. 12

1.10 Dynamic obstacle with predicted future states. The further in the future it is, the more the

dynamic noise bound expands, limiting the configuration space. 14

1.11 Sample robot paths generated by MPC, using high (blue) and low (green) computational

budget, in a simple noisy environment, with static (black) and dynamic obstacles (red). . . . 18

1.12 Nominal (real) distance from static (black) and dynamic obstacles (red) using MPC with a

high iteration budget in a simple environment, with the minimum safety radius (blue). 18

1.13 Nominal (real) distance from static (black) and dynamic obstacles (red) using MPC with a

low iteration budget in a simple environment, with the minimum safety radius (blue). 18

1.14 Sample robot paths generated by MPC, using high (blue) and low (green) computational

budget, in a cluttered noisy environment, with static (black) and dynamic obstacles (red). . 18

1.15 Nominal (real) distance from static (black) and dynamic obstacles (red) using MPC with a

high iteration budget in a cluttered environment, with the minimum safety radius (blue). . . 19

1.16 Nominal (real) distance from static (black) and dynamic obstacles (red) using MPC with a

low iteration budget in a cluttered environment, with the minimum safety radius (blue). . . . 19

1.17 Sample robot paths generated by HL-RRT*, using high (blue) and low (green) computational

budget, in a simple noisy environment, with static (black) and dynamic obstacles (red). . . . 19

1.18 Nominal (real) distance from static (black) and dynamic obstacles (red) using HL-RRT* with

a high computational budget in a simple environment, with the minimum safety radius (blue). 19

1.19 Nominal (real) distance from static (black) and dynamic obstacles (red) using HL-RRT* with

a low computational budget in a simple environment, with the minimum safety radius (blue). 20

1.20 Sample robot paths generated by RRT, using high (blue) and low (green) computational

budget, in a cluttered noisy environment, with static (black) and dynamic obstacles (red). . 20

1.21 Nominal (real) distance from static (black) and dynamic obstacles (red) using HL-RRT* with

a high computational budget in a cluttered environment, with the minimum safety radius (blue). 20

1.22 Nominal (real) distance from static (black) and dynamic obstacles (red) using HL-RRT* with

a low computational budget in a cluttered environment, with the minimum safety radius (blue). 20

1.23 Sample robot path (blue) using APF in a simple noisy environment, with static (black) and

dynamic obstacles (red). 21

1.24 Nominal (real) distance from static (black) and dynamic obstacles (red) using APF in a

simple environment, with the minimum safety radius (blue). 21

iv

List of Figures v

1.25 Sample robot path (blue) using APF in a cluttered noisy environment, with static (black) and

dynamic obstacles (red). 21

1.26 Nominal (real) distance from static (black) and dynamic obstacles (red) using APF in a

cluttered environment, with the minimum safety radius (blue). 21

1.27 Trajectory generation (blue) of APF following sub-optimal re-tuning of scaling factors (ηs =
3, 000, ηe = 200, 000, ceteris paribus). 21

1.28 Crushing motion scenario. Three dynamic obstacles (red) move towards the robot (green

star). 22

1.29 Tree structure (blue) of the HL-RRT* with a high computational budget, at the time of the

berth in Figure 1.17, with dynamic (red), and static (black) obstacles. Collision checking is

done from the current position (red star) to the horizon (black star). 22

2.1 Survival rate over time for victims who survived the initial effects of an earthquake. [4] . . . 30

2.2 Point-vehicle representation [28]. Obstacle space in black, configuration space in white,

free space in white + grey. 38

2.3 Time varying dynamic window [33]. 41

2.4 Non-linear velocity obstacles (NLVO) [26]. 42

2.5 Obstacle avoidance performed by formation flying UAVs in the work of Bemporad and

Rocchi [36]. 43

2.6 Obstacle avoidance performed by UGV in the work of Jamshidnejad and Frazzoli [34]. . . . 43

2.7 General decoupled control architecture for an agent. 46

2.8 Feedback model predictive controller . 48

2.9 Schematic diagram of model predictive control horizons [47]. 48

2.10 Decentralized MPC [68]. 53

2.11 Centralized MPC [68]. 53

2.12 Distributed MPC [68]. 53

2.13 (De-)centralized hierarchical MPC for a single agent [36]. 53

2.14 The disturbance model used by Lee and Yu [70]. 55

2.15 The disturbance model used for loop transfer recovery [70]. 55

List of Tables

1.1 Simulation variables used in the random environments, where applicable 17

1.2 Parameters used for the MPC controller. 17

1.3 Parameters used for the HL-RRT* controller. 17

1.4 Parameters used for the APF controller. 18

1.5 Simple environment results using different computational budgets, obtained from 10 different

environments. 19

1.6 Cluttered environment results using different computational budgets, obtained by changing

the noise profile 10 times. 20

2.1 Comparison of select features of different sensors used in victim detection [14]. 34

2.2 Classification of common fusion algorithms (adapted from [24]). 36

A.1 Obstacle initial conditions: simple simulation 1 . 64

A.2 Obstacle initial conditions: simple simulation 2 . 65

A.3 Obstacle initial conditions: simple simulation 3 . 65

A.4 Obstacle initial conditions: simple simulation 4 . 66

A.5 Obstacle initial conditions: simple simulation 5 . 66

A.6 Obstacle initial conditions: simple simulation 6 . 67

A.7 Obstacle initial conditions: simple simulation 7 . 67

A.8 Obstacle initial conditions: simple simulation 8 . 68

A.9 Obstacle initial conditions: simple simulation 9 . 68

A.10 Obstacle initial conditions: simple simulation 10 . 69

A.11 Obstacle initial conditions: cluttered scenario . 69

vi

Summary

Disasters are devastating to both communities and the areas they live in. Earthquakes, hurricanes,

fires, and many more, happen in both urban and rural areas. The disaster-stricken environment turns

inhospitable, and areas become harder to traverse or even inaccessible. To expand the search range,

speed up the victim search, and improve the safety of the rescue workers, search and rescue (SaR)

operations gradually adopted the use of robots. The purpose of SaR robots is thus to expedite the SaR

process. Designing a more autonomous system requires less operators per robot, and allows the benefit

of scale to support the victim detection mission in a more time efficient way.

To improve the search process of robots in SaR, preliminary research was done on both a local and a

global scale by comparing decision making, motion planning approaches and obstacle avoidance methods.

This is to realize the mission goal of victim detection and dynamic obstacle avoidance. The problems the

controller needed to address shaped the general design, where both motion planning and SaR literature

pointed towards decoupling the local control problem, which includes obstacle avoidance, from the global

optimization.

By addressing the general research objective, a key problem was found. The dynamic environment

and lack of accurate knowledge on top of the post-disaster clutter means many algorithms for obstacle

avoidance and motion planning cannot be used. To this end, the research question in the scientific article

has been focussed from both the local and global design approach to a local motion planning design, a

necessary step to realize better performance of SaR robots.

The scientific article develops such a controller by coupling a local greedy heuristic motion planner to a

tube robust MPC trajectory tracker, which is robust to a bounded additive noise on the positions of the

dynamic obstacles and the position of the robot itself. This is subsequently simulated in a case study to

compare performance in terms of path length, time to reach the goal, and success rate in reaching the

goal without collisions. Comparing the developed algorithm with two contemporary algorithms based on

rapidly-exploring random tree (RRT) and artificial potential function (APF) theory, the MPC based algorithm

outperformed them both in path length and success rate in cases with and without a computational budget.

The article in Part I contains the scientific article which addresses the research question of how effective

a bi-level MPC approach is in robust control for trajectory generation and tracking in a dynamic environment.

Part II contains the already graded preliminary report that discusses both the global and local perspective.

It contains background information and the research questions. Some questions have already been

answered at that stage, which meant the focus of the thesis was shifted to the development and evaluation

of a local trajectory planner and tracker. Appendix A presents additional material useful for repeating the

results of the main article.

1

Part I
Scientific Article

2

1

Development of a model predictive controller for
motion planning in a dynamic urban search and

rescue environment
Student: Karlo Rado (MSc Student)

Supervisors: M. Baglioni & Dr. A. Jamshidnejad
Control and Operations, Faculty of Aerospace Engineering

Delft University of Technology
Delft, the Netherlands

Abstract—A key challenge for SaR robotics is to avoid dynamic
obstacles in cluttered environments, with limited and noisy
information. In this research, a controller for SaR robots is
developed by coupling a local heuristic motion planner with
a model predictive control (MPC) based trajectory tracker.
Constraint tightening and tube-based control are used to make
the MPC robust to model mismatch and additive measurement
noise, while the motion planner is integrated with the MPC.
The motion planner periodically supplies a reference trajectory
to the trajectory tracker, but the MPC can request additional
updates in case of a noticeable mismatch between the predicted
and measured environment, based on a user-defined threshold.
A case study is designed in MATLAB where a single robot needs
to reach a goal through a cluttered environment with dynamic
obstacles. Results from the case study show that the MPC method
outperforms two state-of-the-art control approaches that are
based on the rapidly-exploring random tree (RRT) and artificial
potential function (APF) methods. In particular, the heuristic and
MPC coupled controller showed a higher success rate in reaching
the goal without collisions, and displayed a lower path length in
cases with both low and high computational budget.

Index Terms—Motion planning, mobile robots, local trajectory
generation, dynamic obstacles, obstacle avoidance, tube-based
model predictive control, robust control, urban search and rescue.

ACRONYMS

APF Artificial Potential Function.

HL-RRT Horizon-based Lazy RRT.

MPC Model Predictive Control.

PoA Point of Attraction.

RRT Rapidly-exploring Random Tree.

SaR Search and Rescue.

uSaR urban Search and Rescue.

NOMENCLATURE

α1 Reference trajectory weights for the MPC cost
function

α2 Input weights for the MPC cost function
∆tctrl Control update step
ηe Emergency maneuver scaling factor for the APF
ηs Static obstacle scaling factor for the APF
κ Current control time step
ωrob Angular velocity of the robot
ρdet Sensor/detection/planning radius
ρobs Obstacle radius
ρrob Robot radius
urob(0, Hc) Vector of robot inputs from t = κ to t = κ+Hc

xrob(1, Hp) Vector of robot states from t = κ + 1 to t =
κ+Hp

xref Vector of reference states
θ Heading angle
Hc Control horizon for the MPC
Hp Prediction horizon for the MPC
t Current time
vrob Linear velocity of the robot
wmax Maximum noise value

I. INTRODUCTION

Over the years, developments in robotics and control have
yielded improvements in both the range of applications and
the quality of their implementation. One such field that has
experienced a continuous improvement is the control of robots
in both autonomous motion planning and semi-autonomous
exploration. This has been demonstrated through successful
performances of robots in autonomous driving, cave explo-
ration, as well as Search and Rescue (SaR) missions [1].

One of the primary variables for SaR missions is the time it
takes to rescue a victim. The faster they are found, the greater
the chance for survival, as rescue operations can be prioritized
[2]. As mentioned in [3], the survival rates in finding victims
on the first day is 81%, while it is 36.7% on the second
day. Past events also show that the time taken for arrival and
starting the operations is one of the main limiting factors for
further contribution of SaR teams [4]. Robotics could help

2

improve the operational efficiency, by accessing unreachable
or dangerous regions even before the search party starts their
operations [5].

Earthquakes claimed over a million of lives in the 20th
century, while the 2010 earthquake in Haiti alone totalled
around 222,500 deaths [6]. Due to the change in environment,
areas could become dangerous to traverse for the human
rescuer, thus requiring additional time and information to
establish proper situational awareness. Failing to establish
proper situational awareness could cause hazards such as fires
or gas leaks to endanger both the victims and the rescuers’
lives [5].

Post-disaster, structural damage and collapsed buildings
reshape the environment, making some areas hard to reach or
even inaccessible. In cases like this, obtaining any information
is useful. Even knowing that there is no victim requiring
immediate rescue in an area can allow the rescue workers
to focus their efforts elsewhere. With this in mind, different
robots and control algorithms have been developed depending
on the SaR task they solve or support. Examples include
multi-target tracking for preventing losses and maintaining
an overview of the area, providing ad-hoc networks in post-
disaster environments for communication, mapping the post-
disaster environments for increased situational awareness, or
supporting the victim search task [5], [7]. From the many
different disciplines within SaR robotics, they each share some
aspects.

One of these aspects concerns itself with the path-finding
and obstacle avoidance in possibly unknown or dynamic envi-
ronments. Consider for instance victims or rescuers in motion;
a robot should not crash into them. Path planning and motion
planning address the problem of dynamic obstacle avoidance.
From the many surveys and review papers addressing this
theory (for SaR or general purpose [5], [8], [9], [10], [11]) it
can be seen there are various solutions for the same problem,
though rarely for a cluttered, time-constrained, and complex
environment, which is often present in indoor SaR scenarios.
One of the few theories that can address this is the one that
forms the basis for Model Predictive Control (MPC).

As mentioned in [12], the key advantage of MPC and why
it is often chosen for motion planning is the ability to robustly
account for bounded disturbances and modifying constraints
on states and inputs in the presence of new information.
Additionally it is often selected because it provides online
(on-the-go) stability and convergence guarantees [12], and is
both complete (finds a path if one is available) and optimal
(finds the best path given some heuristic) [9]. MPC is a control
theory based approach that is being developed continually,
with implementations varying from fast linear controllers [13],
to more complex non-linear stochastic ones [14]. These MPCs
vary in computational speed, accuracy, and the degree to which
they are or can be made robust to noise or disturbances.

From all these possible motion planning algorithms and
modifications, papers often list their performance without
testing them side-by-side, often citing qualitative values (as
is the case in [15]). A limiting factor is the lack of a
unified test platform [16], and that ones available are for more
mature software-in-the-loop approaches like uSARSim (which

simulate full subsystems [17]).

This work aims to adapt a greedy heuristic path planner
combined with an MPC-based motion planner [18] for dy-
namic obstacle avoidance, robust to the presence of noise on
the positions of the robot and dynamic obstacles. The con-
troller is tested against two state-of-the-art dynamic obstacle
avoidance papers, based on Artificial Potential Function (APF)
[15] and Rapidly-exploring Random Tree (RRT) [19], for both
nominal and noisy environments using both low and very high
iteration budgets per simulation. The results suggest that the
newly developed method has a larger success rate in reaching
the goal without collisions, and generally lower path length
in both noisy and nominal environments, in cases that are
constrained by a low or very high computational budget. The
investigation is then used to suggest various improvements to
both the MPC-based approach, as well as the approaches used
in the comparison papers.

The main contributions of this thesis stem from the follow-
ing three sources:

1) A heuristic path planner is modified to perform tra-
jectory planning for noisy dynamic obstacle avoidance.
Consequently, the motion planner finds the shortest path
and generates a trajectory using the positions and last-
known linear and angular velocities of obstacles in the
environment.

2) A controller architecture is designed where the motion
planner algorithm is coupled with a trajectory tracking
tube-based MPC, resulting in a control scheme robust to
additive uncorrelated bounded noise. The contribution is
that a noise robust tube-based MPC is designed to account
for bounded additive noise that also affects dynamic
obstacle positions.

3) A case study is developed in MATLAB to compare the
performance of the MPC approach with state-of-the-art
control schemes, for a single robot performance. Thereby
the algorithms are compared numerically with respect
to their shortest path length, shortest time to goal, and
highest success rate.

In order to do this, first a review is done in Section II
that looks into other motion planning approaches as well as
the modelling of the environment. Using this information,
Section III presents the design considerations for simulations
in terms of the model dynamics, while the problem is de-
scribed and resolved through the motion planning controller
design. Following, the comparison algorithms are introduced
in Section IV, where some possible sources of errors and
their effects in their implementations are addressed. Having
this, a case study is developed and discussed in Section V,
with the results shown through simulations in Section VI.
The results are evaluated in terms of the dependent variables
(success rate, path length and time taken to reach the goal) in
Section VII, and a minor discussion follows that helps suggest
possible uses or improvements for each approach. Section VIII
concludes the work done in this thesis and includes some
recommendations for future research.

3

II. BACKGROUND THEORY

To address the victim search task, the best possible motion
plan is to reach the goals without collisions, minimizing
the path length or the mission time in the process. To this
end, this section addresses the considerations for the motion
planner. First, literature on the topics of MPC and noise robust
theory is used to prepare the MPC implementation. Next, the
motion planner is defined through taxonomy, its tasks and the
knowledge it could or needs to assume. This helps define
the problem, eliminating possible confusion in using wrong
terminology. Following that, the obstacle and the robot (or
vehicle) dynamics commonly used in theory are also looked
into. Lastly, the key features used to simulate sensors and the
environment are presented to help form the basic principles
for the design of the case study.

A. Model predictive control

MPC is a control approach that works by minimizing or
maximizing an objective function over a prediction horizon
Hp. It does this by changing control inputs u over a control
input horizon Hc (< Hp). Any predicted states, x, which are
often used in the objective function, are found using a system
model. Meanwhile, the states and inputs can be constrained to
certain values within these horizons. This method results in a
control scheme shown in Figure 1.

Fig. 1. Illustration to clarify the predictive and control (input) horizons in a
reference tracking model predictive control approach.

The main reasons why MPC is often selected for motion
planning is the ability to combine planning with online stabil-
ity and convergence guarantees [12]. As shown in Figure 1, the
control inputs ensure that the predicted outputs of the system
follow the reference trajectory in a stable manner. Generally,
stability is achieved using either a contraction constraint, a
terminal set or a terminal weight [20]. Terminal sets are often
pre-computed (such as in [21], [22]), but there are also online
terminal set approaches, such as [23], where the terminal set
is tightened over time based on bounded disturbances.

Though it is possible to simply use one source for stability
(such as terminal cost in [24]), approaches can also use a
combination. Examples are [25] that combines terminal cost
and constraint tightening, or [26] using terminal cost and
terminal set constraints for autonomous driving. This way

the stability constraints can be tuned to be less conserva-
tive, especially when considering dynamic environments. The
impact of these conditions on the control inputs is directly
related to the inherent stability of a system, meaning these
could result in more conservative control inputs in case of an
autonomous car on the highway, compared to an autonomous
non-differentially constrained vacuuming robot. In cases such
as the autonomous cars, some instability can be accepted in
favor of a larger control input range. Not having to expend
computational effort in this direction can become beneficial
when considering one of the main practical limitations in using
MPC, the computational cost, which limits the prediction and
control horizons in implementations.

There are other conditions to consider when designing an
MPC, such as whether the model is continuous (e.g. [27], [28])
or discrete in time (e.g. [24], [29]), or whether the MPC should
be linear [13] or non-linear [30]. The reasons behind selecting
a specific approach before analysis is not always straightfor-
ward. For example, despite linearized approaches generally
trading off computational speed for accuracy, [24] shows that a
non-linear MPC could perform quicker computationally, while
having the benefit of higher model accuracy over the linearized
version. On a separate note, another major difference is
whether the MPC is designed probabilistic (as done in [28],
[31] or [32]), or deterministic (such as [33], [34], [18]). In a
probabilistic MPC the design changes substantially, where the
constraints become chance constraints and are defined by how
likely they are fulfilled, using the standard deviation around
the expected value. Avoiding the entire possible conflict region
either leads to an overly conservative control action, or is
simply infeasible. It should be noted that robust avoidance
of obstacles must guarantee avoidance under the specified
bounds, while probabilistic avoidance of obstacles has no such
guarantees.

B. Robustness

The perception and characterization of obstacles can be
uncertain due to sensor errors or linearization of non-linear
obstacle motion. To account for this, a design robust to noise
is used. There are several approaches, but robustness is always
characterized by bounded noise, whereas unbounded noise is
a probabilistic problem. Even when using linear noise bounds,
both the trajectory (velocity noise) or simply the position
can be influenced. The velocity noise would therefore have
a time-dependent influence on the solution space. When using
open-loop control (i.e. no state-feedback) and given a large
enough prediction time, the accumulation of noise can cause
the problem to be infeasible [20]. One approach is to limit the
prediction window, with the main drawback of sub-optimal
control actions. The other approach is to use closed-loop
control, which can be more computationally expensive, but
is mainly harder to implement because obstacle noise would
need to be fed into the robot dynamics. Closed-loop control is
therefore dependent on the definition of the robot and obstacle
motion, making it hard or impossible to generalize.

One concern that must be addressed before deciding on
the obstacle dynamics is understanding the probabilistic ap-

4

proach, and the consequences when using a simpler, non-
linear approach. First, when using probabilistic control, the
constraints are defined through probability distributions and
likelihood of fulfilment [28]. Avoiding the entire possible
conflict region either leads to an overly conservative control
action, or an infeasible problem. Thus, rather than accepting a
drastically limited solution space, motion planning is instead
done either using probabilistic programming or through the
nominal behavior. With probabilistic programming, determin-
istic constraints are re-defined into chance constraints, and
the robot becomes probabilistically safe. The degree of safety
is dependent on the likelihood of constraint satisfaction that
the planner incorporates around the expected values of the
solution. Although this approach is valid for urban Search and
Rescue (uSaR), the intent of this work is robust planning, with
the aim to guarantee safety.

Several approaches exist to make an MPC robust to noise,
through either min-max control (which considers the worst-
case disturbances), using stability theory (constraint tighten-
ing), or using closed loop control [20], [12]. Closed loop
noise feedback is also known as tube MPC. Closed loop con-
trol attempts to reduce the cumulative effect of disturbances
through feeding back the noise. In [12] the authors claim min-
max MPC is the optimal solution to linear robust control,
but that the high computational cost limits its use in vehicle
navigation. Constraint tightening reduces the configuration
space by expanding the constraints by a margin for each time
step. In case the noise is time marched this could quickly cause
the problem to grow infeasible, so usually it is combined with
a feedback term to limit the reduction in solution space [12].

A tube MPC, on the other hand, instead reduces the
cumulative effect of disturbances through feeding back the
noise, ensuring the state eventually converges to the nominal
state. Note that tube robust control is not limited to linear
or linearized MPC approaches, see [35]. This form of active
control fits the vehicle control problem, since active control is
not as conservative in limiting the possible input envelope. A
simplified way to look at tube robust control is (inspired from
[36]):

1) First the nominal control input v is calculated.
2) The nominal system dynamics are used to relate the noise

on the state to the input (using the state space x+ =
Ax+Bu).

3) A difference between the nominal and measured values
(state, inputs, reference trajectory) is found d = xnom −
xmeas.

4) Pole placement is performed to find a nilpotent matrix K
such that limn→+∞(A+BK)n = 0.

5) The pole placing matrix is combined with the noise and
fed back into the nominal control input, resulting in the
actual control input µ = v +Kd.

C. Motion planning

According to [37], [9] and [11], motion planning considers
a sequence of inputs that drives the initial state to a goal state.
While path planning considers a time independent sequence,
motion planning considers the trajectory. This is why different

sources of knowledge are used to resolve different problems.
There are several ways knowledge can be grouped for plan-
ning, but one approach is dividing it as global and local. While
global knowledge would contain a possibly outdated map of
the whole environment, local knowledge is the knowledge
directly obtained from the sensors.

In time-varying environments, not using both types of
knowledge can cause problems. On one hand, when relying on
global knowledge, [1] noted an example at Fukushima, where
rubble on an emergency staircase blocked a path otherwise
thought feasible. Dogmatic following of outdated information
could, following the logic of that example, bring more harm
than good. On the other hand, a problem when using only local
knowledge is most evident in an APF, where a robot can get
stuck in a locally optimal solution, such as in Figure 2.

Fig. 2. Possible challenge for a purely local controller. The dashed circle
denotes the sensor range, and thus local knowledge.

To avoid these, a combination of a local controller and
a global controller is identified as the solution. This is not
to say it is not possible to solely rely on local knowledge,
as [38] identifies a specific sub-problem of target detection
that does not use global knowledge as a hunting problem.
Algorithms in this vein often rely on distributed control
and communication or marking of the environment. Many
other approaches to solve the motion planning problem are
summarized and evaluated in more detail in the review papers
such as [9], [39] and [11].

On a separate note, online performance is highly desired,
and one way to achieve this is using linear programming.
The problem is that the circular shape of the obstacles and
the Euclidean L2 norm used for the distance to obstacles are
non-linear. To resolve this, literature suggests using distance
approximations or free-space pre-computation.

• Distance approximations (inspired from computer vision)
have been developed for mixed-integer linear program-
ming which are a linear combination of the L1- and
L∞-norms, see [40] for a comparison. If required, a
generalized linear approximation is suggested in [41]
based on a user-defined set of directions and desired
accuracy.

• Pre-computation instead changes the problem by trans-
lating obstacle constraints into smaller, convex, obstacle-
free regions (such as in [42] or [43]). Here a smaller
solution space is traded-off for a decrease in computa-

5

tional complexity. Combining this with linearization, [13]
limited the solution space through a set of iteratively
defined linear constraints, such that only linear program-
ming needs to be used in the optimization.

Unfortunately, as is the case in most other simplifications,
there are either downsides that are not acceptable or there is a
limited use to these approaches. The distance approximations
are usually non-isotropic, and require several constraints rather
than a single constraint per simulated obstacle, oftentimes
resulting in mixed-integer programming. Though often still
faster than non-linear programming, the reduction in solu-
tion space is a problem for a cluttered environment. Pre-
computation, on the other hand, is guaranteed to reduce the
computational time, especially in a cluttered environment.
Though interestingly, it also has the largest drawback in a
cluttered environment, because it works by limiting the solu-
tion space. Any optimal path is found within a sub-space of
the free space, thus solving a smaller problem rather than the
global problem. Due to the borders between the regions, the
initial and terminal state per sub-space can influence the global
solution negatively, yielding a sub-optimal global solution.
Another, lesser downside, is that the sub-space computation
is biased towards maximizing the area. The approach in [13]
would therefore bias the path towards larger pockets, unless
heavily guided by a global planner. These reasons are why the
approach of pre-computing obstacle free regions is avoided,
despite performing well computationally.

D. Robot and obstacle modelling

1) Robot model: The robot model is defined by the system
dynamics, which in turn heavily depend on the type of robot
used. Aerial drones have more degrees of freedom than ground
robots, but also greater agility. However, because of flight-time
limitations, ground robots are better suited for more extensive
searches [44] and are therefore selected in this work. Robot
dynamics can also be described in terms of the underlying
locomotion system, or even how the actuation subsystem
acts on the locomotion subsystem. Several different forms of
locomotion exist for both aerial and terrestrial robots, each
with their own benefits and drawbacks (see [45] for a limited
study on UAVs, and [46] for terrestrial). Further still, it is even
possible to define the dynamics as armature voltages supplied
to the motors by the controller instead of the general linear
and angular velocities often used in literature (see [47] for
details). Prioritizing the development and design of a robust
MPC, rather than a detailed optimized robot controller, an easy
to implement non-linear model is preferred. For this reason, a
circular 2-dimensional wheeled terrestrial robot using variable
linear and angular speed is selected, as done in [18], referred
to as the differential drive mobile robot [47].

Considering the possible complexity of modelling, ap-
proaches exist to simplify the robot model. Simplifications act
on the concept level of the problem, calculations or assume
certain value ranges. There are many concepts to interpret the
motion and path planning problem, based on the dynamics
and vehicle motion, as [9] identified 9 of them. The simplest
form of these is the point-vehicle assumption. Under the point-

vehicle assumption, the robot is transformed into point by find-
ing the smallest possible radius that defines a ball that could
cover the entire vehicle. Following, all obstacles are expanded
with the covering radius, while the vehicle is “shrunk” to a
point. The free space thus becomes the configuration space. To
clarify, free space is the region unoccupied by obstacles while
configuration space is the region where the robot could exist
in and move through without touching any obstacles [37].

The problem is that the point-vehicle assumption does
not account for any differential constraints due to vehicle
dynamics. In other words, the limits of the dynamics (such
as maximum acceleration) do not influence the configuration
space. By adding these constraints the problem changes to a
point-vehicle problem with differential constraints [9]. Sub-
sequently a sensor range is included to ensure the controller
is viable for real-life applications. At this point the problem
is identified as a jogger’s problem [9] in a time-varying
environment. The metrics used to evaluate the performance
of an algorithm for this problem are given in [9] to be the
success rate (obstacle avoidance and reaching the goal), path
length and mission time.

Two additional approaches to simplify the robot model are
addressed here. If exploring the full range of states and inputs
is a computational bottleneck, a library of maneuvers can
be used instead, also known as motion automaton. Though
specifically aimed to reduce the 3D complexity, using motion
primitives (e.g. turn right, serpentine, U-turn) to supplement
the controller means that the full range does not always need to
be explored, reducing the computational burden (for a more in-
depth discussion see [9]). The other approach is linearization.
Though not a guarantee, as shown in [24], it is often used to
speed up computation. In fact, linearizing a trigonometric term
in the system model often does result in an improvement of
computational speed. The main downside here is linearization
error, as the non-linear dynamics do not perfectly translate to
a linear form.

2) Obstacle model: Besides the robot model, the obstacles
would also need to be defined. As described in [18], following
the simplifications for the ad-hoc simulator, it is possible to
model simple obstacles as circles, and more complex obstacle
shapes as a combination of these circular obstacles. The
choice to design obstacles as circles or groups of circles is
a conceptual assumption, reducing the solution space since
every obstacle is replaced by a circle or a set of circles
covering it. Note that this approach does have a possible,
though not very realistic, direct application. When using a
point cloud ranging system such as Laser Imaging, Detection,
And Ranging (LIDAR) each point-distance combination that
is measured can be plotted as a circular obstacle with a radius
as a function of its distance. This, however, is not very realistic
since at the time of writing LIDARs have a downside that they
are sensitive to weather conditions such as fog or rain [17].

Regardless, with the point vehicle modelling, any bounded
uncertainties regarding obstacle position can be added as a
radius on top of the obstacle or robot radius. There are some
other assumptions for the obstacles in [18], one of them is
that the robot correctly identifies the center of the obstacle.
The drawback is that in reality, interpreting the environment

6

would require computation which is not done here, introducing
an unspecified computational overhead. Besides, there is also
an assumption on the placement of obstacles to ensure that
the problem is feasible, which may not always hold true
in time-varying environments, since moving obstacles may
temporarily cause the problem to become infeasible. As such
some parts need to be addressed in the redesign.

A dynamic environment could be as simple as static ob-
stacles appearing/disappearing with respect to the initial map
(causing the initial plan to be infeasible, or sub-optimal).
However, a more interesting case is when obstacles move
(addressed in [10] and [11]). Dynamic obstacle avoidance
is a large field, but it assumes only one of a few types of
motion. Different algorithms are identified for a linear obstacle
dynamics compared to a fully unknown, reactive, or non-linear
obstacles [12].

Linear obstacles are the simplest case, and move with a
constant linear velocity. Many algorithms are designed around
them as a result. A way to use these algorithms on other obsta-
cles types is through successive linearization of the dynamics.
Obstacles in uSaR, however, can take many different forms,
even as victims or other robots limiting the configuration
space. Victims or robot obstacles act on some conditions,
changing their dynamics if those are fulfilled, making them
reactive obstacles. Reactive obstacles are vital when testing
for adversarial or multi-agent environments, but not necessary
for the initial design of the motion planner. If needed, reactive
motion can be approximated through a timed or conditional
change in the obstacle dynamics, as done in [15]. Non-linear
obstacles instead have non-linear dynamics, which may or may
not be known to the motion planner. However, in reality, any
prediction based solely on perceived data is a probabilistic
problem. In other words, the estimated future position would
be defined by a bounded probabilistic distribution. To account
for this, some approaches are fully probabilistic, defining
probabilistic obstacles where constraints become chance con-
straints and likelihood of success is used as a metric to define
the best “possible” trajectory [28]. Though possibly of interest
for future development, probabilistic obstacles are outside the
scope of this work. In this case, the objective is to achieve
dynamic obstacle avoidance, so non-linear obstacle dynamics
are sufficient for the case study.

It should also be noted that errors are introduced by sources
besides simplifying assumptions (such as linearization). In
reality, a robot rarely knows its position with a 100% accuracy,
due to sensor limitations, model inaccuracies, or changes in
robot dynamics (resulting from damage, rugged environments,
or lack of tuning). To represent these errors, a bounded
uncorrelated additive noise (w) is added to the state, where
the bounds are based on worst-case estimates. Note that this
is a conservative estimate, as sensor noise is often correlated
to the magnitude of the sensed value (larger speed means
larger error), so a dynamic set of bounds would be less
conservative, but still safe. However, keeping all different
noise sources uncorrelated, and simply representing them as a
set of scalar bounds, is a simplifying assumption that should
be rectified when working with a real robot. Detailed noise
characterization is considered to be outside the scope of this

work (though [31] can be a good start, since it lists some
approaches used for stochastic MPC). In this work, a robust
approach to account for bounded noise is used, where the error
bound on the predicted dynamics can be designed around.

E. Simulation of the dynamic environment

1) Sensors: Depending on what is developed (the con-
troller, another subsystem, or some combination/interaction
thereof), different types of fidelity are required for the sim-
ulation. While a highly realistic simulation is used to validate
robot performance with different sensors and weathers before
in-situ testing [17], in the early development stages a sim-
ple environment with only key features for a subsystem is
needed. This is confirmed by other contemporary literature,
since papers on autonomous vehicle path and motion planners
usually use ad-hoc simulators when evaluating performance
[16]. There are many implicit and explicit assumptions in ad-
hoc simulators. When working with noise, ad-hoc simulators
tend to assume the sensors and other subsystems have a
bounded error despite the reality being highly complex. For
instance, a glass obstacle may be hard to distinguish from
free space with only a visual camera, while rustling plastic
bags would influence measurements from a microphone [48].
Regardless, the purpose behind these simulations is often to
prove some form of motion control, and deferring proper noise
characterization and inaccuracies for another time or to the
perception subsystem.

In this work the environment is kept as simple as possi-
ble, since a simulation that only tests the key features of
dynamic obstacle avoidance is sufficient to test and develop the
planners for time-varying environments. In the case that real
sensors need to be used, additional computational overhead
would come from algorithms such as sensor fusion, which
are designed to improve the sensor subsystem (see [49],
[50], [51] or [52] for details on sensor fusion). A simple
simulation thus lowers computational overhead, which means
that during hardware tests additional delays could be incurred,
a consideration for future work.

2) Dynamic environment: Before identifying the key fea-
tures, the environment that describes uSaR must be clarified.
uSaR is usually performed in online and real-time dynamic
environments, which means the controller must find a solu-
tion on-the-go while time-constrained. Various attempts are
made to describe uSaR, though each approach differs in the
details (such as degree and/or presence of fire spread, victim
knowledge, etc.). Though a clear and strictly defined consensus
is lacking, the general perception of a search task in uSaR
encompasses static victims and dynamic environments, in
a knowledge limited environment [5]. Victims are assumed
static since any non-trapped and mobile victim would rescue
themselves. Two key features can thus be identified in the form
of the static goal or region, and dynamic environment.

According to [53], an environment is only dynamic if the
predicted model of the environment can (and does) turn out
to be wrong. This means that it is not sufficient to simply
define the model of the moving obstacles. Instead, it must
also be ensured that a lack of knowledge exists when solving

7

the motion planning problem, which would affect the future
state prediction of the dynamic obstacles. From a conceptual
standpoint, however, moving obstacles can come in the form
of wildlife, hanging lamps, victims or other robots, so moving
obstacles are included as a key feature.

Given enough time, there are several algorithms that can
find the best possible trajectory, as explained in [9]. The
problem is that in reality, there is a limited amount of time
(and knowledge) to find the best motion plan, which in turn
influences the best possible trajectory [54]. To better evaluate
the motion planners, time-marched simulations are expected
to equalize the conditions for obstacle avoidance regarding
computational time. If an online controller takes too long to
update, a change in the environment may not be accounted for
before the next update step, causing a collision or a substantial
inefficiency in the planning, where another planner might
improve. As such, the final key feature in the simple simulator
is the online and time-marched condition.

It should be clarified that the time-marching condition is
not always strictly adhered to throughout motion planning
literature. Technically, this refers to a system that enforces
strict deadlines, and updating a process despite a possible
lack of up to date inputs. This is not often used throughout
literature (see for example [55], [54], [56], [15] and [19]).
Instead, hardware tests are done soon after and tend to validate
the results (for example, [24]).

As a final consideration for the simulator, there are many
other aspects which are not considered key factors, despite
being key in some other simulations. Details such as fire spread
(such as [57], [58]) and the predicted motion of humans (see
[59], [60]) are vitally important in most scenarios, but these
are not accounted for here. The main reason is that this defines
the global planning, which sets the goals based on a variety of
criteria, while the local planner simply needs to avoid danger
or obstacles. Designing an autonomous system that addresses
a mission optimal trajectory is deferred to future work and
recommendations.

To conclude, circular obstacles, where some follow a curved
trajectory with accelerating and decelerating velocities, are
placed in the environment of the robot. These either tem-
porarily block the path, serve as background noise (increasing
information that needs to be interpreted), or directly threaten a
collision unless avoided. Uncertainties are included in obstacle
positions and motions, the extent based on the number of
simplifying assumptions required for computational efficiency.
This has to be addressed by a controller design robust to this
noise, and a planner that supports it.

III. PROBLEM DEFINITION

To address the research objectives, the details of the design
and influence of other subsystems on the motion planner and
trajectory tracker is reduced. Thus, the design is limited to
autonomous control, considering the possibly communication
denied environments [1]. The uSaR search task encompasses
nonlinearly moving obstacles, where a global goal or sequence
of goals is given to the heuristic motion planner. A dynamic
obstacle avoiding motion planner and trajectory tracker are de-
signed for a differential drive mobile ground robot. The control

algorithm is made deterministic to ensure the collision avoid-
ance is robust to additively bounded noise on the positions of
both the robot and the dynamic obstacles. The aim is to create
a motion planner that reaches a specified goal using local
knowledge, avoiding non-linearly moving dynamic obstacles
in the process. This is done in a time-marched simulated
environment. Both the dynamic obstacles and robot position
are affected by a bounded uniformly random generated noise.

The control approach is limited to a local controller, and
any design considerations that use global knowledge, such as
fire spread or human motion modelling, are deferred to future
work. Any detailed human-to-robot or robot-to-robot interac-
tion is ignored at this stage. The communication subsystem
can technically be added as an afterthought (with additional
tuning), by means of a constraint or a goal with respect
to the motion planner. Using the same logic, supervisory
control can be implemented by using a goal that can be
redefined throughout the search process. There are limits to
this approach, mostly because there will be some design
debt due to a lack of exploiting possible synergies, such as
decentralized localization, among others [44]. Regarding the
simulation fidelity and case study, a simplified sensor model
is used, where the robot can detect everything within a radius.
Detailed design of the perception subsystem, however, cannot
be done at this stage of the development.

A. Model dynamics

The development of the controller is one of the main
purposes of this work, meaning the design problem is defined
through the models and controller design. To this end, the
robot and obstacle dynamics used in the simulation, heuristic
motion planner and trajectory tracking MPC are discussed.

1) Robot model: The model used in the MPC is the
differential drive mobile robot [47]. The equations of motion
are using the explicit Euler method of integration are shown in
(1). Here the state (2a) is defined using the x and y position,
as well as the angle of rotation θ with respect to the inertial
frame. The input (2b) consists of the variables that are linear
(v) and angular velocity (ω).

∆x = ∆tctrl (v0 cos θ0 +∆v cos θ0 −∆θv0 sin θ0) (1a)
∆y = ∆tctrl (v0 sin θ0 +∆v sin θ0 +∆θv0 cos θ0) (1b)
∆θ = ∆tctrl(ω0 +∆ω) (1c)
xrob = [x, y, θ]T (2a)
urob = [v, ω]T (2b)

While the equations shown here are integrated over a control
time step using the Euler method, it is also possible to use
Runge-Kutta or other methods. The equilibrium point (around
which is linearized) is subscribed with “0”, meaning (v0, ω0)
are the inputs at the linearized point. The robot model is
required and used by the simulation and the trajectory tracking
MPC. The heuristic planner instead has no such constraints, as
obstacles have a sufficient radius to ensure a turn is feasible.
The MPC uses the linearized set of equations shown in (1),
while the simulation uses the non-linear form.

8

2) Obstacle model: The uSaR environment is dynamic,
with dynamic obstacles possibly taking the shape of rescuers,
animals or other robots. In order to ensure it is a dynamic
environment as defined in [53], just having moving obstacles
is insufficient. Instead, the internal model used by the robot
to predict the obstacle motion must possibly turn out to be
wrong. One way is to obtain model mismatch solely through
additive noise, assuming knowledge the full set of nominal
obstacle equations of motion as shown in (3).

ẋ = f (vx,∆tctrl) (3a)
ẏ = f (vy,∆tctrl) (3b)

v̇x = f

(
(xatt − x)

x1
ax,∆tctrl

)
(3c)

v̇y = f

(
(yatt − y)

y1
ay,∆tctrl

)
(3d)

xobs = [x, y, vx, vy]
T (4a)

uobs = [ax, ay, xatt, yatt]
T (4b)

Where “f(·,∆tctrl)” represents Runge Kutta 3/8 rule, used
to integrate a term over the control timestep ∆tctrl. The
obstacle dynamics are specifically designed to ensure that their
motion continuously obstructs the optimal trajectory. While
the Point of Attraction (PoA) (xatt, yatt) and acceleration terms
(ax, ay) do not vary over time, the position (x, y) and velocity
terms (vx, vy) do. The variables x1 and y1 can serve as values
to ensure the fraction remains between -1 and 1. Using these
kinematics, the dynamic obstacles would oscillate or circle
around the point of attraction, ensuring that the robot cannot
simply wait for the dynamic scenarios to be resolved, see
Figure 3.

Fig. 3. Moving obstacle dynamics using the variables from (3). The dashed
line is the ideal trajectory. The black circle is the obstacle itself, while the
empty circle surrounding it is the expanded radius form following the point-
vehicle assumption.

In reality, full knowledge of the dynamic obstacle motion,
(3), cannot be assumed. The heuristic planner assumes the
obstacles have a constant linear and angular velocity (circular
motion) between update steps, meaning they follow (1) with
the difference that v and ω are constant and that the Runge-
Kutta 3/8 rule is used instead of the explicit Euler method.

In the MPC, the obstacle motion prediction is instead
assumed completely linear, limiting the assumed knowledge

of the obstacle dynamics. The linearization error can also be
added to the additive noise (similar to [25]). These velocities
are sampled every timestep, see (5) for the obstacle model used
in the MPC, using vx and vy as the velocities sampled in the x
and y direction, respectively. The MPC uses the explicit Euler
integration to predict the future position of the obstacles.

∆x = vx∆tctrl (5a)
∆y = vy∆tctrl (5b)
xobs = [x, y]T (6a)
uobs = [vx, vy]

T (6b)

B. Control system design
The control system gives a clearer view of what is being

developed and how subsystems could interact with the motion
planner. For now, it should only be noted that it is hard to
guarantee that the robot will always reach the goal, and specific
circumstances that must be identified may influence this. The
controller has thus been designed by feeding the outputs of
the motion planner into the motion tracking MPC, while the
MPC can request a re-planning when needed, as illustrated in
Figure 4.

Fig. 4. Generalized controller design.

To improve the computational time and responsiveness it
is opted to separate the motion planning into a planner and
reference tracker. This is inspired from [61], [30] and others
where computational performance is desired. In each case, a
hierarchical design is used where the motion plan is optimized
separately due to the size of the problem, while leaving
subsequent control actions to a responsive trajectory tracking
algorithm. As can be seen from the design, the obstacle
modelling is done separately.

C. Heuristic path planner redesign
In the end, inspired by the simplicity of the ad-hoc simulator

and jogger’s problem representation, an equally simple ap-
proach is taken as a baseline. Here the shortest-path generating
algorithm from Jamshidnejad and Frazzoli’s work [18] was
chosen, but there are two problems. One drawback of this
approach is that it relies on local knowledge and the problem
in Figure 2 could persist. The other drawback is that it does
not consider dynamic obstacles.

9

1) Original algortihm: In this algorithm, a greedy heuristic
approach is taken, where circular obstacles and obstacle belts
are avoided by charting a path using tangential lines and arcs.
The discussion in this section does not concern the detailed
description of the original shortest path algorithm from [18].
Instead the focus here is on the changes that account for
dynamic obstacle avoidance and temporary goal selection.

To summarize, the path generation is purely a minimum
distance optimization, which is fed into the MPC. It works by
drawing a line between the position of the robot at the time
of planning and a temporary goal, forming upper and lower
tangent lines around interfering obstacles, and selecting the
shorter of the two. This is repeated until a collision-free path
is found between the two points (see Figure 5). A random path
is chosen in case the two paths have the same length.

Fig. 5. Shortest paths found using the heuristic path planning algorithm,
selected path is green-red-green. Image taken from [18].

Coordinates (yellow stars in Figure 5) are selected along the
shortest path and provide a reference trajectory for the local
controller. This way the local controller avoids the possible
trap shown in Figure 2 to the extent defined by the sensor
range. The way coordinates are selected can be “equidistant
points on the shortest path trajectory” as one of the suggestions
by the authors. This method has thus also been reproduced
in a similar environment, see Figure 6, before moving on to
modifications.

2) Self-intersection clarification: Before the modifications
to the algorithm are elaborated, one point should be clarified.
When the heuristic algorithm draws tangent lines it is pos-
sible that (during the conflict-resolution iterations), the path
becomes self-intersecting. The moment a self-intersection is
detected on a path (at the end of step 5 in [18]), the two
tangent lines connecting to the “inner” obstacle are deleted,
and a new tangent line is drawn between the “outer” obstacles.

Fig. 6. Red and green lines following the implementation of [18] in a static
environment. Stars are temporary goals, and also where re-planning occurs.

For visualization, see Figure 7 where the path changes from
the green line to the black line.

Fig. 7. Path smoothing in case of self-intersection, showing the start-goal line
(blue), first iteration (red), final iteration (green), and subsequent smoothing
(black).

3) Unreachable goals modification: The first modification
concerns unreachable goals. The algorithm in [18] assumes no
knowledge besides that which falls within the detected zone
(see the light blue area in Figure 8). In case a temporary
goal falls in a hard-to-reach, or impossible to reach area,
the original algorithm would struggle to create a feasible
path. Instead, the furthest feasible point that can be reached
following the “shortest” red or green path is selected as a
temporary goal, in case the temporary goal cannot be reached
(in Figure 8).

4) Dynamic obstacle modification: The second set of mod-
ifications are done to make the algorithm compatible with dy-
namic obstacles. To this end, a dynamic obstacle is translated
into a set of static obstacles using their predicted dynamics,
see (1). First the case of perfect knowledge is addressed, and
subsequently the case of limited knowledge and noise.

10

Fig. 8. Setting of a new temporary goal (the end-point of either the red or
green line). Only considered if the original temporary goal cannot be reached
(see dashed lines that go past the light-blue detected zone).

1) The static obstacle avoiding red and green paths are
generated, after which points are sampled on the paths
per time step (from t1 to tend).

2) For each time step the robot position is tested with the
obstacle positions of the past (tc−1), current (tc) and
future (tc+1) time steps.

3) When a collision is predicted on a path, the dynamic
obstacle causing the collision is treated as an obstacle
belt, and a new collision-free path is generated.

4) Repeat steps 1-3 until the shortest path trajectory is found
A downside of generating the belt from tc−1 to tc+1 is that
it requires several iterations if the robot moves in front of
a moving obstacle. To avoid this, the solution is biased away
from future time steps, by defining the obstacle belt from tc−1

to tc+3, see Figure 9.

Fig. 9. Dashed line shows original trajectory, full lines show new trajectories
around the dynamic obstacle (red). These trajectories are tested again for
collision-avoidance, and the shorter one will be chosen.

5) Obstacle noise: Though this works in scenarios with
perfect knowledge, a final set of modifications needs to be
made for the heuristic planner to be robust to noise. In case
of noise around obstacles, a common method to make the
planner robust is to expand the obstacle radius by the bounded
value wmax (increasing the radius of the hollow circles in
Figure 6). This bounded value is defined by both the state

noise from the robot and the possible perception noise. When
considering time-marched noise, the bounds grow as time is
increased. This mostly depends on the degree of inaccuracy
in modelling the obstacles. To re-iterate, the heuristic planner
assumes constant angular and linear velocity of obstacles.

Unfortunately, in reality, motion prediction cannot be as-
sumed to be fully accurate, and noise accumulation is a
problem. Generally though, the predicted obstacle positions
will be more accurate the closer in the future it is (less time
steps to march the possible error). But even then, sudden
shifts in obstacle dynamics or other unexpected events could
cause sufficiently large offsets that invalidate the shortest
path trajectory. To avoid a large influence of noise to the
heuristic motion planner either a frequent update step can be
employed, or a closed-loop noise feedback could somehow be
implemented.

Regardless of the approach taken to address this, with no
certain knowledge of the environment, a long-term prediction
leads to either excessive control actions or only a probabilis-
tically safe control method. At this point it is important to
realize that the benefit of a bi-level controller is to delegate
these conceptual “obstacles” to the reference tracking MPC.
If the local controller notices a significant (user-defined)
deviation, it can request the heuristic planner to re-evaluate the
reference trajectory based on newer information. Meanwhile,
the MPC must keep the robot safe.

Therefore, the ideal path is kept as a guideline, with the
initial time steps weighed heavier than the final ones, such that
other objectives in the MPC help guide the motion planner.
In the ideal case, the assumptions are that the obstacles have
constant linear speed, and constant angular velocity. With these
assumptions in mind, the path-planner needs to be tested.

D. Model predictive controller design

MPC was identified as a possible control scheme for the
reference tracker, since it can track a reference signal based
on certain heuristics and subject to constraints while robust to
a bounded noise [20]. Additionally, [18] has a MPC motion
planner combined with their path planner. Unfortunately, their
approach does not account for noise and is limited to static
obstacles, which is why it is redesigned. In their case, a
dynamic obstacle could temporarily block the goal, leading
to a possible conflict between the obstacle avoidance and
goal reaching constraints. Another reason for starting with a
new MPC is that it makes testing and development easier.
Thus, even though [18] is used as inspiration, a new MPC
is developed for the motion planner. In order to do so, the
nominal (noiseless) case must first be expressed in terms of
the system model (1), dynamic obstacle model (5), integration
method, constraints (10) and objective function (9). Finally
the short-term planner is made robust to noise by using a tube
robust approach on the noise acting on the state and obstacle
positions.

1) Method of integration: The integration method for both
models is chosen to be Euler’s explicit integration, primarily
because the system (1) and dynamic obstacle models (5) used
by the MPC are already linear. Initial testing also suggested

11

that using higher order integration was counterproductive for
computationally limited control. As shown in Figure 1 a
prediction Hp and control input horizon Hc are used. Because
of the linear system model in (1), any future states have a linear
relationship with any previous predicted states and inputs.
Thus the first predicted state x(κ+1) is defined by the initial
state x(κ) and the first input u(κ), and subsequent states follow
the same logic. The linear relationship can then be translated
to matrix notation, as a linear combination of terms translates
into the future state, see (8). For brevity, x(1, Hp) is a vector
containing the states from x(κ+1) to x(κ+Hp) and u(0, Hc)
is a vector of the inputs from u(κ) to u(κ + Hc), assuming
u(κ+ i) = u(κ+Hc) between Hc ≤ i < Hp.

x(κ+1) = A(κ)x(κ) +B(κ)u(κ) (7a)
x(κ+2) = A(κ) (A(κ)x(κ) +B(κ)u(κ))

+B(κ)u(κ+1)
(7b)

x(1, Hp) = Abig(κ)x(κ) +Bbig(κ)u(0, Hc) (8)

Following state-space notation, the future state is described
through the state A(κ) and input matrix B(κ) linearized at
timestep κ. These are re-linearized every timestep. Future
states can be written in matrix format using Abig(κ) =
[A(κ), A(κ)2, . . . , A(κ)Hp]T , where A ∈ Rn×n, with n the
number of states. Bbig(κ) follows a similar structure resulting
in a matrix sized nHp ×mHc, with B(κ) ∈ Rn×m, where m
is the number of inputs. The last rows in the Bbig(κ) matrix are
[A(κ)Hp−1B(κ), A(κ)Hp−2B(κ), . . . ,

∑Hp−Hc

n=0 A(κ)nB(κ)].
2) Objective function: For its objective function in (9),

something simple was chosen since the MPC must repeatedly
minimize it until the goal is reached or deemed unreachable
by the heuristic planner. In part to streamline development, the
objective function here only uses the offset from the reference
trajectory and a term used to represent the kinetic energy,
weighed by the vectors α1 and α2 respectively. The first
term is used to minimize the path length by following the
trajectory from the heuristic planner. The second term reduces
the speed of the robot, intended to improve energy use and
collision avoidance by reducing the kinetic energy. Following
the jogger’s problem definition in [9], a lower speed would
assist the obstacle avoidance.

min
u

(
α1 (x(1, Hp)− xref)

2
+α2 (u(0, Hc))

2
)

(9)

Where x(1, Hp) means all timesteps from the first predicted
state t = κ+1 to the last predicted state t = κ+Hp are used.
Also, the values of the reference trajectory xref are based on
the closest point to the current position of the robot xrob. This
means the reference trajectory is consistently shifted forward,
unless the robot reverses course (for example during obstacle
avoidance maneuvers), as constraints take priority to achieving
a lower objective value. Lastly, note that while α2 is constant,
α1 is biased towards the earlier timesteps. This is because the
reference path coordinates in the far future are less likely to
be optimal than the earlier ones.

3) Nominal MPC design: Despite the linearized system
dynamics, the MPC is still nonlinear because of the Euclidean
norm term present in (9) and some constraints. From the
constraints the zoning (10e), static obstacle (10f) and dynamic

obstacle (10g) avoidance constraints, use the Euclidean norm
making them non-linear. The state (10b), input (10c) and
smoothness (10d) constraints on the other hand are linear and
expanded to include the future states.

xrob(1, Hp) = f(Abig(κ), Bbig(κ), xrob(κ),

urob(0, Hc),∆tctrl)
(10a)

xmin ≤ xrob(1, Hp) ≤ xmax (10b)
umin ≤ urob(0, Hc) ≤ umax (10c)
|urob(−1, Hc − 1)− urob(0, Hc)| ≤ usmooth (10d)
∥xrob(i)− x0∥ ≤ ρdet − ρsafe, ∀i=κ+1, . . . , κ+Hp (10e)
∥xrob(i)− xobs, static∥ ≥ ρobs + ρrob + ρw, state(i− 1) (10f)
∥xrob(i)− xobs, dyn(i− 1)∥ ≥ ρobs + ρrob + ρw, dyn(i− 1)

∥xrob(i)− xobs, dyn(i)∥ ≥ ρobs + ρrob + ρw, dyn(i− 1)

∥xrob(i)− xobs, dyn(i+ 1)∥ ≥ ρobs + ρrob + ρw, dyn(i− 1)

(10g)

When κ +Hc ≤ i < κ +Hp, then urob(i) = urob(κ+Hc),
following Figure 1. The robot state and control input vectors,
xrob and urob respectively, are defined using the linearized
differential drive robot dynamics in (1) and the method of
integration. They are enforced through the system dynamics
constraints in (10a). Other constraints can enforce limitations
of the vehicle, models, or the environment (in the form of
obstacles).

Constraint (10b) is a state constraint that limits the maxi-
mum and minimum values of the robot x, y and θ, and works
as a bound for the simulation. Constraint (10c) is a control
input constraint that limits the maximum and minimum values
of the robot v and ω, while constraint (10d) limits the rate of
change thereof, representing mechanical or dynamic limits of
the robot. Here u(κ − 1) represents the past control input.
Constraint (10e) forces the current and predicted robot states
to stay within a detected zone defined by the planning radius
ρdet. A safety radius ρsafe is subtracted from ρdet to account
for possible obstacles just outside of the detected zone, which
could cause conflicts. Constraint (10f) constrain the robot away
from the detected static obstacles based on a sum of the
obstacle ρobs, robot ρrob, and state noise bound ρw, state. The
dynamic obstacle avoidance constraints in (10g) instead use
dynamic noise ρw, dyn radius that includes the noise acting
on the dynamic obstacle. The state and dynamic obstacle
noise vary over time, because tube robust control will lead
to a limited accumulated error over time [20]. The dynamic
obstacle state xobs, dyn is predicted using the model in (5). So
the obstacle avoidance constraints use the predicted positions,
not velocities or orientations. At this point, if the reference
trajectory is considered infeasible by the MPC despite a (user-
defined) margin, it calls back to the heuristic planner to find
a new reference trajectory.

4) Noise robust design: To reduce the accumulation of lin-
earization error, every timestep the dynamics are re-linearized.
Also, the smaller the timestep used, the smaller the error and
more responsive the MPC becomes. Despite these changes,
the nominal MPC still has sizable inaccuracies and is also
not robust to noise. To this end, the linear MPC approach is
further developed and made robust to noise. There are several
ways to do this, based on how the noise is characterized and

12

the desired results [20]. First, the noise is assumed to affect
the robot state and the dynamic obstacle position. Second,
the noise is assumed to be a bounded uncorrelated additive
noise, meaning no chaos or mixture models need to be used.
Therefore, third, a tube robust approach is used to account for
this noise. Adding a bounded uncorrelated additive noise (w)
to the state equations, results in (11).

∆x = f(v0 cos θ0 +∆v cos θ0 −∆θv0 sin θ0,

∆tctrl) + wx

(11a)

∆y = f(v0 sin θ0 +∆v sin θ0 +∆θv0 cos θ0,

∆tctrl) + wy

(11b)

∆θ = f(ω0 +∆ω,∆tctrl) + wθ (11c)

To use tube robust MPC, the nominal response is limited by
looking at the possible results of the control inputs. Ensuring
that the noise can be accounted for by a feedback term that
uses up a margin of the control input range, the remainder of
the input can be used to control the robot. With the state noise
feedback, the state and input matrices A and B of the system
dynamics are used. Though this is straightforward for the state
noise, the problem is that the dynamic obstacle noise affects
the state indirectly through the future states. Thus to address
that, a method is used that combines constraint tightening with
feedback control.

5) Pole placement and feedback: Although the noise is
preferred to fade away as soon as possible, setting the poles at
0 can be overly conservative in reducing the range of control
inputs. The pole placement for the state noise is done using
A(κ) and B(κ), placing the poles at [0.5,0.5,1], obtaining a
feedback matrix Kstate(κ). For the dynamic obstacle the poles
are placed at [0.7,0.7,1], splitting 30% of the noise towards
noise feedback, and 70% towards constraint tightening, re-
sulting in feedback matrix Kdyn(κ). This leads to a maximum
possible bound of 2 times for the state noise, and 3.333 times
the dynamic obstacle noise. The maximum possible noise
values are found using the geometric sequence in (12).

ρw, state(κ+n) = wmax,state

n∑
i=0

(1− ξx)
i (12a)

ρdyn(κ+n) = wmax,dyn

n∑
i=0

(1− ξdyn)
i (12b)

Where ξx is the damping value for the state noise (50%),
ξdyn damping value for dynamic obstacle noise (30%), and n is
the number of future time steps, ranging between 1 and Hp.
The noise bounds are defined by wmax,dyn for the dynamic
obstacle noise bound, and wmax,state for the state noise bound.
Constraint (10g) refers to ρw,dyn, which in this case is simply a
sum of the constraint tightening due to the dynamic obstacle
noise, ρdyn, and state noise, ρw,state. Based on these values
constraint tightening can be done to limit the control inputs.

6) Constraint tightening: For the state noise, the state con-
straint is tightened by [1, 1.5, . . . ,

∑Hp−1
n=0 0.5n] times the max-

imum state noise for each time step. For the dynamic obstacles,
the safety radius is expanded by [1, 1.7, . . . ,

∑Hp−1
n=0 0.7n]

times their maximum noise bound for each of the n future

time steps, respectively. With regards to dynamic obstacles,
the future obstacle positions would therefore be increasing in
radius up to their maximum value, as shown in Figure 10.

Fig. 10. Dynamic obstacle with predicted future states. The further in
the future it is, the more the dynamic noise bound expands, limiting the
configuration space.

7) Feedback control: The state noise feedback determines
the control input µ1 using the nominal control input u, where
µ1(κ+ i) = u(κ+ i) +Kstate(κ)wstate, for all i = 0, 1, ...,Hc.
With regards to the dynamic obstacle noise, a limit has been
put in place, so that only obstacles that are on the trajectory
predicted by the MPC are accounted for. The noise shifts the
obstacle away from its nominal trajectory, so the feedback
must drive the robot towards the new position of the obstacle.
This results in a sign change, such that µ2(κ + i) = µ1(κ +
i)−Kdyn(κ)wdyn, for all i = 0, 1, ...,Hc.

However, if two obstacles with perfectly opposite noise
spectra would intersect the trajectory at different time points
the robot would not change from its nominal trajectory and
simply risk collision. To account for this case, the trajectory
tracking MPC can request a re-planning from the heuristic
motion planner for a new reference trajectory. However, since
that can take several time steps, the immediate action is to
only perform noise feedback on the first dynamic obstacle.
With this logic in mind, the shift in dynamic obstacle position
is directly translated to a shift in predicted robot positions.
Ideally, the further in the future the dynamic obstacle is, the
more spread out the noise correction is. This would then only
lead to a minor course correction in the reference trajectory,
thereby incorporating the long distance noise feedback into the
reference trajectory motion planner, while ensuring the short-
term reference tracker is locally robust.

IV. COMPARISON ALGORITHMS

For a comparison of performance, two state-of-the-art ap-
proaches were taken, based on different algorithms that solve
the same dynamic obstacle avoiding problem. The first method
is Horizon-based Lazy RRT (HL-RRT)* based on the sampling
approach RRT*. The second method is an APF approach
developed for naval collision avoidance. Both papers are
modified versions of their original algorithms, developed for
a dynamic environment. Following is a summary on their
working with some comments regarding their presentation and
implementation.

13

A. Sampling-based: HL-RRT*

There are many possible types of sampling methods for
the purposes of motion planning, from probabilistic roadmaps
(PRM) to RRT, see [62]. Since the asymptotically optimal
versions of PRM (PRM*), and RRT (RRT*) published in [54],
further improvements based on these are available, such as
kinodynamic RRT or RRTx. From the methods designed for
dynamic environments, a recent work that seems similar to the
MPC is HL-RRT* proposed in [19].

There are two main differences between HL-RRT* and
RRT*. The first is the lazy collision checking, meaning the HL-
RRT* only tests branches within a collision-checking horizon.
While following the optimal path found by the algorithm
regular updates occur, which shift the horizon forward. In these
events, the collision checking horizon is re-centered on the
current position of the robot and a new tree is generated. The
second difference is a learned sampling approach for future
growth of the tree.

The original RRT* samples the free space uniformly, and
finds a nearby vertex to “grow” a new branch from. The
sampled point might not be reached, since the steering function
might be constrained, so instead the closest reachable point is
used for the branch. Any nearby nodes are then tested if they
can connect to the new branch at a lower cost, and then the tree
gets rewired. On the other hand, the HL-RRT* samples the free
space, goal, or a learned set randomly, taken from [63]. The
learned set is defined by a robust expectation-maximization
algorithm, taken from [64]. It then grows a branch by steering
to the new node the same way as RRT*.

A possible error could be present in their implementation,
however unlikely. One thing to note is that one of the variables
does not follow the definition as given in [54] or [53]. In
RRT*, η is defined as a tunable parameter set as the supremum
of the segment length between two points in the free space,
reachable by the steering function and subject to no obstacle
intersections. On the other hand, [19] defines η as a tunable
parameter often set as the infimum of a reachable set breadth.
This variable is used to limit the steering function, and serves
as the “radius” in the parenting and rewiring sub-processes.
Based on the metric function it might not be a radius, but
regardless of that, overestimating it makes the RRT* result
in a lower path cost at the expense of slower calculations
(negligible when considering the performance of the HL-
RRT*). Also, several follow-up equations (such as: r ≥ 4η)
are thus different compared to the other RRT implementations
(where r = min([...], η)).

Only when everything can be justified by connecting the
underlying theory or results, can the implementation be seen
as correct. Regarding the other sub-functions or variables these
are either newly defined in [19] or a reference is provided
to another paper. As a result, whenever a reference is made
to another work, all variables, equations, and algorithms are
double-checked with regards to their definitions and use. In
case of a possible conflict such as with η (note that this is also
the only possible misinterpretation with a substantial effect on
the performance), the basic RRT* algorithm takes precedence
over the unclear HL-RRT*. This decision is made because:

“Finally, RRT* is selected as the underlying algorithm in HL-
RRT* ...” [19].

B. Artificial potential field

For the other comparison algorithm an APF was selected.
There are many types, though an interesting one was found in
the form of a COLREGS compliant design [15]. COLREGS
refers to international regulations for preventing collisions at
sea, and there are other APF algorithms designed for this. The
reason why this one is interesting is three-fold, because the
simulations used in the paper match the ones planned here, it is
computationally inexpensive, and has a qualitative comparison
that included an MPC approach. Regarding the simulation,
there is a mix of dynamic and static obstacles with a circular
shape and random motion in a 2D environment with clearly
defined goals.

The algorithm is described quite clearly and completely, and
no additional clarifications or interpretations need to be made
besides the ones written in the paper. Regarding the similarity
of the algorithm with the MPC approach implemented here,
there is a horizon in the form of a collision risk range. The
only difference (besides not being able to explicitly define
constraints) is that the algorithm in [15] is used to control
the orientation of the robot, but it does not control its speed.
Instead, the speed is assumed constant, which is a valid
assumption in naval environments. The source paper [65]
suggested possibly reducing the speed as the proximity to an
obstacle increases, but this was not tested. As given in [15],
by summing a set of clearly defined attractive and repulsive
forces a resulting force defines the orientation. While in the
negotiation zone COLREGS is hardcoded, so for dynamic
obstacles the passing side is limited to starboard. A possible
problem that could arise here comes from testing the algo-
rithm for obstacles with limited changes in orientation. As a
consequence, it might struggle with highly dynamic obstacles,
or obstacles that do not follow COLREGS.

Finally, regarding the qualitative comparison, the authors of
[15] claim MPC has a “high?” computational time. Specif-
ically, [15] presents a table where a qualitative comparison
was made between several algorithms (among which an MPC
approach) and an artificial potential function. This did not
inform the reader sufficiently on why they should select their
algorithm, and the qualitative comparison could end up being
misleading.

V. CASE STUDY SETUP

The first step towards proving the research objectives set
forth is to create a simulation environment in which the tests
can be held. To realize this, the input and output variables of
interest can be used to help evaluate the simulations. First, by
setting several performance metrics, the same criteria can be
used to evaluate the control designs. Second, using the same
parameters where applicable ensures the simulations are the
same. To ensure this, these parameters are analyzed in greater
detail and some supporting theory is used where needed.
Finally all assumptions and their effects are summarized, such
that the scope of the simulations is clear.

14

A. Performance metrics

When running the simulations a variety of information
is available, in a variety of states. As such, selecting the
performance metrics and the way they are measured is no
trivial task. From [15], [19] and several others, success rate,
path length and mission time (the time to reach the goal)
are the three main dependent variables used to measure their
performance. In fact, these are explicitly suggested in [9], and
therefore used to evaluate the performance. A combination of
a high success rate, low path length and little time is the ideal
case.

Regarding success rate, the result to consider is whether
the algorithm succeeds in a specific criterion. This is to reach
the goal. However, there are two ways the goal might not be
reached, be it either a livelock scenario (for example, circling
in place) or due to a collision. It is decided that any collision
instantly fails the simulation, since at that point the robust
control has failed. In either case, the success rate is clearly
defined, but when analyzing the failures, both scenarios are
considered individually.

Path length is the second variable, and while success rate
is a binary choice (fail/pass), path length has an associated
value. Here either the ideal planned path length, the ideal
motion planned length or the actually taken path length can
be used. Considering the use of noise in the environment, the
actually taken path length is considered, and those values are
compared among the algorithms. Since the path length is a
numeric value, the average and standard deviation are used to
define the results. However, this is only done for the successful
results, meaning some tabulated values might need additional
explanation or are left empty.

Lastly, the simulated time in this case refers to the mission
time. Though it is interesting to compare the algorithms in
their computational time, this does not necessarily give a
good insight into whether an algorithm is better suited for
this environment. Instead more simulations are done but with
different conditions. The first type limits the iteration budget
of fmincon and limits the time allotted to sub-functions, to
attempt to realize real-time performance. This also ensures
the algorithms are tested with the same computational perfor-
mance limitations in the form of a maximum control update
step, akin to a time-marched simulation. Note that real-time
simulations are not always based on a real-time operating
system, but sometimes refer to near real-time, for example
[55], [19]. To prevent misunderstandings, in this work these
words are referred to as computationally constrained, or it is
referred to a computational budget. The second type is allotted
an unconstrained amount of time for each calculation, permit-
ting the ideal path and motion planning approach. This way
the mission time is considered from a mission optimization
perspective, and is completely separate from computational
time. The computational time is instead implemented as a
time-marching condition that affects the success rate, with an
influence on the path length and mission time.

B. Simulation scenarios

There are two types of scenarios that are interesting to
consider. The first type contains several randomly placed
obstacles that obstruct the direct path to the goal, but are
not intended to form an infeasible problem. This is often
used when evaluating the performance of path and motion
planners, as is the case for [19] and [15]. In this scenario
6 static and 5 dynamic obstacles are randomly placed and
used to evaluate the performance. This number is based on
a visual inspection of the environment after initialization,
ensuring that dynamic obstacles are in the way of the shortest
path, but also ensuring the problem is always feasible. The
positions, velocities, accelerations and points of attraction of
the obstacles for each simulation are shown in Appendix A.

The intent is to ensure there would always be a feasible path.
On the other hand, the second type contains obstacles that are
intended to create a temporarily infeasible problem. Here an
environment of 8 static and 8 dynamic obstacles was generated
where the goal region would be placed behind a layer of
dynamic obstacles. A robot can only pass if it considers the
time-varying trajectory but not the time-invariant path. Though
an infeasible problem most of the time, there are small time
windows where the robot could potentially squeeze in between
dynamic obstacles. Due to the cyclical motion of the dynamic
obstacles a path is cyclically feasible, which is intended to
assist the biased sampling of HL-RRT*. These environments
are designed to assess not only the performance, but rather also
the difficulties and limitations in exploring motion planning in
high complexity environments.

One of the final concerns regarding the simulation scenarios
is the noise. Obstacle noise and state noise are assumed
additive and uncorrelated, affecting only the positions. The
noise is randomly generated, but it is generated before testing
and supplied to the different algorithms such that they are
tested with the same noise profiles. However, another issue
that affects reproducibility is related to the solver. The number
of iterations in a solver might not be enough to find the best
possible constraint-adhering set of inputs in the control scheme
with a low iteration budget, which could terminate the opti-
mization prematurely. Performance with a low computational
budget is thus difficult to guarantee.

To show that the performance falls within some bounds,
results are shown after repeating the tests 10 times for the
complex case, and once for each of the simple environments,
displaying the average and standard deviation in the process.
Therefore, the results are shown for different simulation en-
vironments, repeated 10 times with different noise profiles.
Besides that, two more aspects are varied, namely the type of
algorithm (heuristic and MPC, HL-RRT*, APF) and whether
the simulations are done with a low or high computational
budget.

C. Parameter values

Having addressed the dependent and independent variables,
the software and hardware configuration could also affect the
simulation. To limit that influence, the same parameters are
used wherever possible. With regard to the hardware variables,

15

the CPU is a 4 core 2.5 GHz Intel® Core™ i7-4710MQ with
8GB of RAM memory and an integrated GPU that is Intel®
HD Graphics 4600. The operating system is Ubuntu 18.04.6
LTS, a 64-bit OS, with open-source drivers where applicable.
The simulations are done on MATLAB R2020b. Though not
needed, for fear of the influence of performance throttling, all
background processes in the OS were turned off when running
simulations, and MATLAB was limited to a single core.

Having addressed the simulation hardware, the remaining
parameters were all used to defined values for the simulation.
However, even with general values there are differences among
the algorithms that lead to different results. One example is
the APF approach, which has no velocity constraint since it is
designed for constant speed. So, in as far as it is possible, all
simulations on the case studies are done using the variables
presented in Table I.

TABLE I
SIMULATION VARIABLES USED IN THE RANDOM ENVIRONMENTS, WHERE

APPLICABLE.

Variable Value

Control time step, ∆tctrl 0.2
State noise per ∆tctrl ≤ 0.2umax

Dynamic obstacle noise per ∆tctrl ≤ 0.5umax

Environment upper bound, xmax [12,12]
Environment lower bound, xmin [-2,-2]

Minimum-maximum speed, umax,1 [-0.1,1]
Minimum-maximum turn rate, umax,2 [-1,1]

Smoothness limits, usmooth [0.4,1]
Robot radius, ρrob 0.5

Obstacle radius, ρobs 0.5
Sensor radius, ρdet 5
Goal radius, ρgoal 0.5
Initial position, x0 [0,0]
Goal position, xg [10,10]

The control time step size is sourced from the original
heuristic algorithm described in [18]. The values describing the
vehicle dynamics are inspired by the TurtleBot3 (1.82 rad/s,
0.26 m/s), but the difficulty of the control problem is increased
by lowering the turn rate and increasing the maximum possible
speed.

The other parameters are tuned to ensure the robot has the
solution space for ad-hoc motion planning. For example, the
dynamic and static obstacle values listed in Appendix A are
tuned with the environment bounds and obstacle radii to ensure
a a sufficiently simple or cluttered environment. The MPC
specific parameters are shown in Table II.

TABLE II
PARAMETERS USED FOR THE MPC CONTROLLER.

Variable Value(s)

Low budget fmincon max iterations 103

High budget fmincon max iterations 105

Prediction horizon, Hp 5
Control horizon, Hc 3

Reference trajectory weights, Q [4,4,1]
Control input weights, R [1,0]

Goal weights, P [10,10,0]

The low computational budget limits the iterations in
fmincon, such that the combination of these parameters and

hardware means a solution is generated within 0.18 seconds
per control time step. However, the results are not guaranteed
to be local minima. By contrast, the high computational budget
is designed to use more iterations to find a local minimum,
but can take up to 12 seconds per control time step. The
other variables in Table II are tuned using [66] and testing
to improve the computational speed, lower costs and improve
constraint satisfaction. Combining Table II with Table I and
Appendix A, enables reproducing the results unconstrained by
the iteration budget. The low budget results, however, could
be influenced by the premature stop in the solver.

Second, HL-RRT* is considered. Most HL-RRT* specific
parameters used in the controller are shown in Table III, and
are sourced from test cases used in [19]. Anything that is
not listed as a variable is hard-coded, as a function based on
underlying theory or papers. For example, the volume of a unit
n-dimensional sphere ζdim=2 = π is used to find the steering
radius [54]. Despite combining Table III with Table I and
Appendix A, due to the probabilistic sampling-based nature
of the algorithm, the same results cannot be guaranteed. Note
that the short time step is designed to be the same length as
the control time step for fair comparison.

TABLE III
PARAMETERS USED FOR THE HL-RRT* CONTROLLER.

Variable Value(s) units

Maximum number of nodes, nsamp 1500 -
Short-term steering step size, ts 0.2 s

Lazy steering step size, tl 0.5 s
Predictive horizon, TH 10 s
Goal sampling bias, ϵ 0.01 -

Learned-set sampling bias, ζ 0.4 -
Bounded disturbance (robust), δ 0.1ts · umax m

Maximum steer (and/or) rewiring radius, η ts · umax m
Heuristic learning parameter, k 1.3 -

Convergence threshold, ϵEM 10−3 -
Regularization value, γEM 10−4 -
EM maximum iterations 100 -

Compared to the original algorithm in [19], the low compu-
tational budget approach splits the sampling after pruning over
several time steps. This way, if a sizable number of nodes need
to be regrown, obstacle avoidance can be performed despite
the time-marched control update step. The high computational
budget approach regrows all the nodes before moving, pausing
the environment simulations in the process.

Finally, most APF specific parameters used in the controller
are shown in Table IV. Combined with Table I and Appendix
A, this allows reproducing the results, barring the noise profile.
The APF is not computationally constrained by the time-
marched simulation, and thus no changes are implemented to
make it compatible with a low budget. Note that the influence
range is defined to have the same length as the detection range
in the MPC approach.

VI. SIMULATION RESULTS

In this section results are presented for the MPC, HL-
RRT* and COLREGS compliant APF methods based on a
sample from the case study. Note that any visualized results are

16

TABLE IV
PARAMETERS USED FOR THE APF CONTROLLER.

Variable Value(s) units

Attraction weight, ϵ 3000 -
Dynamic obstacle scaling factor, ηd 2000 -

Static obstacle scaling factor, ηs 300000 -
Emergency maneuver scaling factor, ηe 2000 -

Artificial safety margin, τ 0.3 m
Influence range, ρo ρdet − ρrob − ρobs m
Safety radius, ρsafe 0.5 m

samples from a set of generated paths, from a set of generated
problems.

A. Model predictive control

Samples of the results for the simulations with the simple
dynamic environment are shown in Figures 11-13 and samples
of the complex dynamic environment results in Figures 14-16.

Fig. 11. Sample robot paths generated by MPC, using high (blue) and low
(green) computational budget, in a simple noisy environment, with static
(black) and dynamic obstacles (red).

Fig. 12. Nominal (real) distance from static (black) and dynamic obstacles
(red) using MPC with a high iteration budget in a simple environment, with
the minimum safety radius (blue).

Fig. 13. Nominal (real) distance from static (black) and dynamic obstacles
(red) using MPC with a low iteration budget in a simple environment, with
the minimum safety radius (blue).

Fig. 14. Sample robot paths generated by MPC, using high (blue) and low
(green) computational budget, in a cluttered noisy environment, with static
(black) and dynamic obstacles (red).

B. Horizon-based lazy RRT*

Similar to the MPC approach, the simple dynamic envi-
ronment results are shown in Figures 17-19 and the complex
dynamic environment results in Figures 20-22. Only one
modification has been made to support the HL-RRT* in case
of a low computational budget, which was to spread out the
“regrowing” of the RRT post pruning over several time steps.
Otherwise, the HL-RRT* would halt in place for too long,
causing unnecessary crashes with dynamic obstacles.

17

Fig. 15. Nominal (real) distance from static (black) and dynamic obstacles
(red) using MPC with a high iteration budget in a cluttered environment, with
the minimum safety radius (blue).

Fig. 16. Nominal (real) distance from static (black) and dynamic obstacles
(red) using MPC with a low iteration budget in a cluttered environment, with
the minimum safety radius (blue).

C. Artificial potential function [15]

In contrast to the other two approaches, the APF is so quick
that the performance is not impacted by the computational
budget. In other words, it is never bottle-necked by computa-
tional limitations in these simulations. Unfortunately, this does
not mean the results are good. Therefore only one result is
plotted for the simple case in Figures 23-24 and the cluttered
case in Figures 25-26.

D. Summarized results

Considering the size the images take up, the remaining
results are tabulated. The first set of results is summarized
in Table V for a variety of simple environments. The second
set are summarized in Table VI using the same environment
as in Figure 14 with the only difference being the obstacle
and state noise.

Fig. 17. Sample robot paths generated by HL-RRT*, using high (blue) and
low (green) computational budget, in a simple noisy environment, with static
(black) and dynamic obstacles (red).

Fig. 18. Nominal (real) distance from static (black) and dynamic obstacles
(red) using HL-RRT* with a high computational budget in a simple environ-
ment, with the minimum safety radius (blue).

TABLE V
SIMPLE ENVIRONMENT RESULTS USING DIFFERENT COMPUTATIONAL

BUDGETS, OBTAINED FROM 10 DIFFERENT ENVIRONMENTS.

High budget MPC APF COLREGS HL-RRT*

µ σ µ σ µ σ

Success rate 100% 10% 100%
Path length (m) 17.4 1.78 15.4 - 20.5 3.18
Time taken (s) 41.4 6.13 30.8 - 40.7 7.74

Low budget MPC APF COLREGS HL-RRT*

µ σ µ σ µ σ

Success rate 100% 10% 70%
Path length (m) 19.2 2.40 15.4 - 20.0 2.99
Time taken (s) 48.6 8.50 30.8 - 44.5 8.94

VII. DISCUSSION

Although all methods were designed for dynamic environ-
ments, a large variety of results is noted. In this section,

18

Fig. 19. Nominal (real) distance from static (black) and dynamic obstacles
(red) using HL-RRT* with a low computational budget in a simple environ-
ment, with the minimum safety radius (blue).

Fig. 20. Sample robot paths generated by RRT, using high (blue) and low
(green) computational budget, in a cluttered noisy environment, with static
(black) and dynamic obstacles (red).

TABLE VI
CLUTTERED ENVIRONMENT RESULTS USING DIFFERENT COMPUTATIONAL

BUDGETS, OBTAINED BY CHANGING THE NOISE PROFILE 10 TIMES.

High budget MPC APF COLREGS HL-RRT*

µ σ µ σ µ σ

Success rate 70% 0% 0%
Path length (m) 18.0 1.16 - - - -
Time taken (s) 46.8 4.01 - - - -

Low budget MPC APF COLREGS HL-RRT*

µ σ µ σ µ σ

Success rate 20% 0% 0%
Path length (m) 20.0 1.26 - - - -
Time taken (s) 49.4 2.26 - - - -

the results are presented alongside possible reasons behind
the differences, exploring the limitations and strengths of the
algorithms in the process. This way possible recommendations

Fig. 21. Nominal (real) distance from static (black) and dynamic obstacles
(red) using HL-RRT* with a high computational budget in a cluttered
environment, with the minimum safety radius (blue).

Fig. 22. Nominal (real) distance from static (black) and dynamic obstacles
(red) using HL-RRT* with a low computational budget in a cluttered envi-
ronment, with the minimum safety radius (blue).

can be identified that could be implemented in future work.
First the APF is addressed in detail due to its lacking

performance in these simulations. Following, both case studies
are addressed separately, where a general overview of the
results and performance is described. An in-depth analysis is
done that attempts to illustrate the reasons behind the various
success rates, path lengths and time taken.

A. APF

First off, the APF only has a single success from the 10
simple environment tests. This case had a wide swath of free
space across the diagonal between the origin and goal points.
Besides that success, failures occurred due to the planner
getting stuck in a figure eight path, as visible in Figure 25,
which could be related to the tuning of the weights with
respect to the sensor range and velocity. Another possibility
is that the tests in [15] were for a relatively open space,
with the dynamic obstacles moving in straight lines excepting

19

Fig. 23. Sample robot path (blue) using APF in a simple noisy environment,
with static (black) and dynamic obstacles (red).

Fig. 24. Nominal (real) distance from static (black) and dynamic obstacles
(red) using APF in a simple environment, with the minimum safety radius
(blue).

Fig. 25. Sample robot path (blue) using APF in a cluttered noisy environment,
with static (black) and dynamic obstacles (red).

an instantaneous course correction. In other words, the APF
algorithm is designed and tested for obstacles moving in a
straight line, not the curved trajectories used in this work.

However, since the APF struggles to even pass the static
obstacles in Figure 25 and Figure 23, it is much more likely

Fig. 26. Nominal (real) distance from static (black) and dynamic obstacles
(red) using APF in a cluttered environment, with the minimum safety radius
(blue).

that every different environment requires a re-tuning. Initial
testing and results from other implementations, such as [67],
confirms that this is more likely the case. To test the first idea,
the factors are re-tuned for the current conditions, with the
static obstacle scaling factor changed to ηs = 3, 000, and the
emergency maneuver scaling factor changed to ηe = 200, 000,
ceteris paribus. When done so, the figure eight livelock ceases
to exist, and instead a trajectory is found, see Figure 27.

Fig. 27. Trajectory generation (blue) of APF following sub-optimal re-tuning
of scaling factors (ηs = 3, 000, ηe = 200, 000, ceteris paribus).

This confirms that when the sensor parameters or velocities
change, the other weighted parameters must change as well.
There are limits to this approach, especially in uSaR where
such knowledge and pre-tuning cannot be guaranteed. With
this in mind a supporting algorithm, perhaps in the form of a
neural network, can be used to modify the weights online for
the dynamic environment. However, without such a supporting
function, the APF approach is not as useful for uSaR or
another dynamic environment that has limited information.

On the other hand, the MPC and RRT tuning is not as
correlated to the parameters from the environment. This means
that they do not require substantial re-tuning whenever they
are tested for a new problem. Regardless of the situation, the

20

original tuning did ensure safe motion as no simulation in
Table V or Table VI was due to an obstacle crash.

B. Simple environment

Following the results summarized in Table V the MPC
approach is shown to outperform the HL-RRT* when com-
putationally constrained. All HL-RRT* failures were obstacle
crashes, and can be traced back to a specific “crushing” motion
scenario. In this scenario the robot ends up between two
dynamic obstacles or a dynamic and static obstacle, and does
not find a new lower cost path in time that would move it to
safety. The crushing motion scenario is illustrated in Figure 28.

Fig. 28. Crushing motion scenario. Three dynamic obstacles (red) move
towards the robot (green star).

This is a challenging scenario for any motion planner, and
the MPC therefore also struggles here. The difference in their
performance can thus better be explained by the proclivity of
the motion planner in the MPC to avoid this scenario. By
considering obstacle positions at multiple possible locations,
the trajectory is pre-tested to an extent. Thus this scenario
either creates a dynamic obstacle belt to be avoided, or the
reference trajectory is set to update outside the “crushing”
region.

Returning to the HL-RRT*, it can handle this scenario in
with a high computational budget, but the robot cannot always
manage to find a better path with a low budget. So it follows
that a computational bottleneck is the cause of this problem,
and not a fundamental concept. When analyzing the algorithm,
a robot would only move on a path that leads to a lower cost,
which in this case means closer to the goal. So unless a node
is found that is closer to the goal than its current position, a
robot controlled by HL-RRT* will simply not move. In the
tests using a high computational budget such a node is always
found, which is why there is a 100% success rate.

What is concerning is that one of the contributions in the
HL-RRT* is introducing the Gaussian mixed elite set using
[64], which caused a substantial decrease in performance

when computationally constrained. According to the tuning
tool available in MATLAB, the eliteset calculation and node
re-growth takes over 80% of the computational time. Though
[64] shows good performance compared to its peers, the
expectation-maximization function is called whenever replan-
ning is required and has a sizable “elite” set that can grow
larger than the tree. Due to their exclusion of this step, the
RRT* and RRTx algorithms have a higher iteration speed.
Higher iteration speed leads to a larger chance that a better
node, enabling collision avoidance by the time the dynamic
obstacles would otherwise collide with the robot.

When comparing path lengths, the HL-RRT* seems to
generally take a longer path compared to the MPC controller,
while the path is usually shorter when generated with a
higher computational budget. Table V does display a shorter
average path length for the HL-RRT* when using a lower
computational budget, but this is because only the successful
tests are considered, which brought the average down. In a
few cases, however, this also happened because of the random
nature of HL-RRT*. This is somewhat visualized in the path
planned by the HL-RRT* in Figure 17, where there is a wide
berth made to avoid the middle obstacles. The reason behind
this wide berth is partly due to the sampling and partly because
of the local cost propagation in the tree, a limitation of the
RRT*. The RRTx fixes this through a global cost update. This
is confirmed when considering the tree that is used at the time
of the berth, shown in Figure 29.

Fig. 29. Tree structure (blue) of the HL-RRT* with a high computational
budget, at the time of the berth in Figure 17, with dynamic (red), and static
(black) obstacles. Collision checking is done from the current position (red
star) to the horizon (black star).

To clarify, some path lines seem to pass through obstacles in
Figure 29, but this is how HL-RRT* works. By only collision
checking the lines within a time horizon from the current
position it saves calculation time by reducing the use of the
checking function, which is usually the slowest part in RRT
[19]. This is an acceptable simplification because the dynamic
nature of the environment implies that any branches in the
future (past the horizon) would need to be re-tested in case of
an unexpected change.

By comparison, Table V, shows a shorter average path
length for the MPC compared to the HL-RRT*. When com-

21

pared with itself, the MPC takes an approximately 10% longer
path length on average when computationally constrained.
This can be explained using the behavior of the MPC in
Figure 11, which shows a small berth in the green line (low
iteration budget), which is avoided in the blue line (high
iteration budget).

The reason behind the overcompensation in Figure 11 is
the limited knowledge of the obstacle dynamics coupled with
a limited computational window to find an optimal path. Since
the MPC assumes obstacles move in straight lines of constant
velocity, with a bounded noise, it sometimes overcompensates
despite there being no reason for it. To successfully avoid
the obstacles (see Figure 13), the computationally constrained
MPC overcompensated and even brought the robot in proxim-
ity to another dynamic obstacle. In contrast, the MPC with a
high iteration budget (blue line) found a cheaper path by only
slightly changing course and speeding up. In the subsequent
iterations the high budget MPC methodalso yields a lower cost
as it almost always finds a local minimum, in contrast to the
computationally constrained version which sometimes stops
prematurely.

Regarding the mission time, the HL-RRT approaches are
faster on average. The same cost function and constraints
are used where possible, so the HL-RRT* approach simply
performed better. The most effective change would be to
redesign how the reference trajectory is generated and used in
the MPC. Figures 12 and 13 show the distances of the MPC
controlled robot to obstacles over time. Looking at the slopes
with respect to the static obstacles (black lines), variations in
speed can be noted. Here steeper curves are found at a time
of 28 and 25 seconds, for the low and high budget controller
respectively. There are other times where the slopes change,
but also note that during regular movement, as is the case in the
first 10 seconds, the controller usually sticks to lower speeds.
Therefore a possible point of improvement is to optimize the
reference trajectory based on parameters or the cost function.

Summarizing the simple environment analysis, the MPC
approach has a higher success rate and produces a shorter
path than the HL-RRT* and APF, with both a high and a low
computational budget.

C. Complex environment

Having identified some limitations of the HL-RRT*, the rea-
sons why the computationally constrained trajectories ended
up crashing into obstacles become clearer. Unfortunately, the
high budget HL-RRT* also failed to show a single success.
Theoretically, multiple collision-free paths are possible at
various times through the moving wall environment despite the
constraints imposed by the bounded noise. In the case of using
a high computational budget, none of the failures of the HL-
RRT* were due to obstacle collision, but simply artificial time
outs when no feasible path was found even after 2 minutes.

When looking at the blue (high budget) path found in
Figure 20, the algorithm seems to explore a variety of possible
entrances, but is quick to dismiss them. This follows from
the lack of collision-checking beyond the time horizon. The
path the HL-RRT* finds is also not based on the trajectory

of obstacles or a velocity obstacle, but instead on their actual
positions. The main reason behind the back-and-forth motion
is that a generated path is infeasible, but is beyond the time
horizon so the HL-RRT* planner believes it is feasible. By
not checking obstacle trajectories, a path may be discarded
despite it being feasible in the near future. Note that by not
accounting for the obstacle motion, there are no successes but
also no collisions.

The same cannot be said for the MPC approach. Suc-
cesses have been noted, even some for the computationally
constrained case. However, even when there is a high iter-
ation budget, the algorithm still failed by collision in 3/10
simulations, see Table VI. This is a concerning result, since
this means the safety of the robot is not robustly guaranteed.
Another way to interpret the failures is that because noise is
the only variable in these simulations, noise can lead to a
collision despite the intent to design the MPC robust to noise.
All three failures in the high computational budget case can be
traced back to the same crushing failure mode of Figure 28, in
the same location, where the robot entered a zone after which
no control inputs could lead it back to safety.

On the other hand, the MPC with a low iteration budget
crashed 7 times due to the crushing failure mode, and in
all seven simulations the minimization function (fmincon)
reached maximum iterations without finding a safe trajectory.
It also failed once by exceeding the velocity constraint instead.
To test whether the scenario can be salvaged if more iterations
were allotted, the problem is re-solved using a larger number
of iterations (same as the high budget) upon passing point
(8,8) in Figure 14. Three simulations still failed, despite these
conditions.

To understand why the MPC failed in these scenarios, the
states and knowledge of the robot near the time of collision
were looked at. First, before the crashes, the path planner
created a feasible, collision-free trajectory. Second, the crash
and entrapment scenario happened somewhere in the middle
of the robot position at the planning stage and temporary goal.
Third, when increasing the MPC prediction horizon to 11, and
control input horizon to 9, the robot avoids the crash.

While the short-term noise is successfully accounted for
in the tube approach of the MPC, the limited update rate of
the reference trajectory results in a dangerous accumulation
of errors. Concerns regarding the accumulation of errors were
already identified in the motion planner design, which resulted
in later points not being weighted as much. The problem is, no
alternative reference trajectory is provided for the MPC for the
weights to matter. To fix this, two approaches are considered:

1) Increasing the MPC prediction and control window such
that the robot manages to avoid these traps. The downside
is the additional computation which will make the compu-
tationally constrained controller perform even worse for
the current control update rate.

2) Increasing the update rate of the heuristic motion planner.
One downside is that the heuristic planner minimizes the
path length for motion planning, and does not consider
other variables. In other words, since only the path length
is considered, turning 180 degrees in its place has no
influence in its decision on which path is shorter, despite

22

this possibly causing sizable inefficiencies or infeasible
scenarios. Another possible problem is the additional
computational effort. Though it finds a trajectory within
a second, doing so frequently would require a design that
accounts for this delay.

For these two cases, it must be said that the heuristic path
and MPC motion planner combination controller performs
best when compared to the other algorithms with respect to
success rate as well as path length. This is especially true
when the computationally limited performance is considered,
as the controller is shown to work under less than ideal con-
ditions, and is shown to be feasible for this specific hardware
and software configuration. Additional testing must be done
with hardware-in-the-loop to ensure that it is feasible outside
of the simulated environment. Though the mission time is
higher on average compared with the HL-RRT*, the controller
does ensure a lower path length. By modifying the way
the reference trajectory is used, this controller can possibly
have better results in all performance metrics. Moreover, with
some additional development invested into the heuristic path
planner this combination could even tackle more complex
environments.

VIII. CONCLUSION

In this study a local controller was developed that can
perform path and motion planning in dynamic environments
with limited knowledge of moving obstacles. Sourced from
[18], the greedy heuristic path planner was successfully mod-
ified for dynamic obstacle environments, while a nonlinear
MPC approach performs trajectory tracking. The controller is
made robust to noise through tuning, robust control theory
and limited integration between the heuristic motion planner
and MPC. The noise is modelled to be additive and uncor-
related, and affects the robot and dynamic obstacle positions.
Assuming the linear velocity of the obstacles is measured from
timestep to timestep, a noise bound on an obstacle position of
up to 50% of the input envelope per time step was tested to
succeed.

Tested against two state-of-the-art approaches (based on
APF and RRT), it is shown to have the same or higher success
rate in cases with a low and a high computational budget. It
also has shorter path lengths on average, despite the HL-RRT*
reaching the goal quicker. The RRT and MPC based controllers
have proven to be able to produce collision-free trajectories
despite having multiple dynamic obstacles. The APF approach
however seemed to be tuned for a specific problem type,
meaning the algorithm failed to succeed in a different, gener-
alized case. When considering a highly complex scenario the
MPC approach has a number of successful trajectories, with a
70% success rate using a high computational budget, and 20%
using a low computational budget, showing that through some
improvements in computational performance, the results of the
control algorithm can be improved. This is an improvement
over the 0% success rate of the comparison methods.

Focus was placed on developing the controller, modifying
the path planner, and designing a case study in which the three
approaches are compared, such that results can be evaluated

quantitatively. This work proves that MPC with a guiding path
planner is a viable motion planner for the jogger’s problem in
a time-varying environment. On top of this, several sources of
possible improvements are found. Note that the controller has
not been optimized in terms of computational performance,
which leaves more opportunities for performance improve-
ments. Especially in the case of highly complex environments
such as those present in uSaR.

A. Future work

1) Reflection: During the course of the research, several
possible improvements have been identified. Planning-wise,
the problem is initially defined quite generally, where an uSaR
environment was meant to be tackled. The aim was to solve
an uSaR scenario such as in the RoboCup Rescue simulation,
with a newly developed motion and path planner combination.
Though not infeasible in the time constraint of a master thesis,
when developing the controller architecture, literature in this
field usually takes one of three paths.

• One path is solving the global problem or making a
simulation for it, using environmental variables (such as
pre-existing human motion or fire spread models). Often
limited to a scope defined by the sourced models, further
development could then be done by refining the model
by including responses, task allocation, or improving the
resolution with other models.

• Another path is the development of a combination of a
global and local controller, which often requires a number
of simplifying assumptions to obtain results. Further
development, if done, is suggested by abolishing each
assumption step-by-step, bringing it closer to hardware.

• The last path is employed here, where a detailed sub-
problem is solved, before moving on to a larger problem.
Further development is done to increase the scope of the
problem, combine it with other solutions, or to try to
implement it in hardware.

2) Recommendations: One recommendation is to create a
simple set of unified model-in-the-loop test cases, and start
benchmarking various available controllers. This way a dataset
for researchers and engineers using ad-hoc simulators can be
used to quantify the results of their developments. This will not
only help future research when intending to choose a model
to expand on, but it will help put other work into context in
this field of research.

Although the controller is tested with a noise affecting
the obstacle position of up to 50% of the control input
range, no analytical limit was determined. A future study
could be made in determining the limits of the noise such
a controller can be made robust to. There are other technical
recommendations for the comparison papers. By comparing
various RRT approaches such as RRTx, RRT-rope and such,
a valuable insight into the strengths of the RRT approach
was noted, namely the rapid sampling and growth of the
random tree, and thus the weakness of HL-RRT* (the repeated
expectation-maximization). To best improve the HL-RRT*,
an increase in computational performance can be done by
decreasing the magnitude of pruning and regrowing steps. In

23

the case with a high computational budget, the complex case
study suggests that the HL-RRT* could benefit from sampling
space-time (thus considering predicted obstacle motion) rather
than simply sampling space. Trying to find an optimal path in
a heavily cluttered environment was not feasible in the case
study, despite there being feasible trajectories. As far as future
research for the COLREGS APF, or even APF in general,
the correlation between environmental and robot parameters
with the scaling factors would be interesting to find. With that
in mind, to make the APF more robust to limited knowledge
environments, a possible future development is to combine the
APF with an MPC (as done in [67]), but this would require
some additional development and tuning.

The short-term goal with respect to the heuristic motion
planner would be to develop and test the controller with limited
perception and make it work with other vehicle models. The
ideal multi-robot team for an uSaR scenario is heterogeneous
after all. The motion planner, as implemented, detects all
obstacles within the sensor range, despite the line of sight
possibly being broken. Addressing blind spots and suddenly
appearing obstacles would ensure robust obstacle avoidance
under the line-of-sight condition, enabling higher order sim-
ulations such as uSARSim. Additional online support would
likely be needed, for example through a global localization
algorithm or an additional local swarming condition.

In order to avoid any possible tech debt, it is suggested
to develop a (multi robot) global controller only after the
local controller is tested for a variety of system models.
Much like how the COLREGS APF method is tuned for a
specific problem and vehicle model, it is possible that the MPC
approach suffers the same problem. Following that, the long-
term development goal would be to translate the controller into
Robot Operating System (ROS) 2.0 and test it by possibly
combining it with the TurtleBot software and testing the
global and local controller in uSARSim or RoboCup Rescue
simulations.

REFERENCES

[1] R. R. Murphy, Disaster robotics, ser. Intelligent Robotics and Au-
tonomous Agents series. Cambridge, MA: MIT press, 2014.

[2] M. Statheropoulos, A. Agapiou, G. Pallis, K. Mikedi, S. Karma, P. J.
Vamvakari, M. Dandoulaki, F. Andritsos, and C. Thomas, “Factors that
affect rescue time in urban search and rescue (usar) operations,” Natural
Hazards, vol. 75, 01 2015.

[3] J. Qi, D. Song, H. Shang, N. Wang, C. Hua, C. Wu, X. Qi, and J. Han,
“Search and rescue rotary-wing uav and its application to the lushan ms
7.0 earthquake,” Journal of Field Robotics, vol. 33, no. 3, pp. 290–321,
2016.

[4] A. Rom and I. Kelman, “Search without rescue? evaluating the
international search and rescue response to earthquake disasters,”
BMJ Global Health, vol. 5, no. 12, 2020. [Online]. Available:
https://gh.bmj.com/content/5/12/e002398

[5] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey from
the control perspective,” J. Intell. Robotics Syst., vol. 72, no. 2, p.
147–165, Nov. 2013.

[6] S. Doocy, A. Daniels, C. Packer, A. Dick, and T. D. Kirsch, “The
human impact of earthquakes: a historical review of events 1980-2009
and systematic literature review,” PLoS currents, vol. 5, 2013.

[7] J. Rajan, S. Shriwastav, A. Kashyap, A. Ratnoo, and D. Ghose, “Disaster
management using unmanned aerial vehicles,” in Unmanned Aerial
Systems. Elsevier, 2021, pp. 129–155.

[8] S. Grogan, R. Pellerin, and M. Gamache, “The use of unmanned
aerial vehicles and drones in search and rescue operations–a survey,”
Proceedings of the PROLOG, 2018.

[9] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous uav guidance,” Journal
of Intelligent and Robotic Systems, vol. 57, no. 1, pp. 65–100, 2010.

[10] M. Mohanan and A. Salgoankar, “A survey of robotic motion
planning in dynamic environments,” Robotics and Autonomous
Systems, vol. 100, pp. 171–185, 2018. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0921889017300313

[11] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time
motion planning methods for autonomous on-road driving: State-of-
the-art and future research directions,” Transportation Research Part C:
Emerging Technologies, vol. 60, pp. 416–442, 2015. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0968090X15003447

[12] M. Hoy, A. S. Matveev, and A. V. Savkin, “Algorithms for collision-
free navigation of mobile robots in complex cluttered environments: a
survey,” Robotica, vol. 33, no. 3, pp. 463–497, 2015.

[13] M. A. Mousavi, Z. Heshmati, and B. Moshiri, “Ltv-mpc based path
planning of an autonomous vehicle via convex optimization,” in 2013
21st Iranian Conference on Electrical Engineering (ICEE). IEEE, 2013,
pp. 1–7.

[14] J. Marzat, S. Bertrand, A. Eudes, M. Sanfourche, and J. Moras, “Reactive
mpc for autonomous mav navigation in indoor cluttered environments:
Flight experiments,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 15 996–
16 002, 2017, 20th IFAC World Congress. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2405896317325375

[15] H. Lyu and Y. Yin, “Colregs-constrained real-time path planning for
autonomous ships using modified artificial potential fields,” The Journal
of navigation, vol. 72, no. 3, pp. 588–608, 2019.

[16] Y. Mualla, A. Najjar, A. Daoud, S. Galland, C. Nicolle, A.-U.-H.
Yasar, and E. Shakshuki, “Agent-based simulation of unmanned aerial
vehicles in civilian applications: A systematic literature review and
research directions,” Future Generation Computer Systems, vol. 100,
pp. 344–364, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X18328462

[17] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A
systematic review of perception system and simulators for autonomous
vehicles research,” Sensors, vol. 19, no. 3, 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/3/648

[18] A. Jamshidnejad and E. Frazzoli, “Adaptive optimal receding-
horizon robot navigation via short-term policy development,” in 15th
International Conference on Control, Automation, Robotics and Vision,
ICARCV 2018, Singapore, November 18-21, 2018. IEEE, 2018, pp. 21–
28. [Online]. Available: https://doi.org/10.1109/ICARCV.2018.8581157

[19] Y. Chen, Z. He, and S. Li, “Horizon-based lazy optimal rrt for fast,
efficient replanning in dynamic environment,” Autonomous Robots,
vol. 43, no. 8, pp. 2271–2292, 2019.

[20] A. Bemporad and M. Morari, “Robust model predictive control: A
survey,” in Robustness in identification and control. London: Springer
London, 1999, pp. 207–226.

[21] S. Dixit, U. Montanaro, S. Fallah, M. Dianati, D. Oxtoby, T. Mizutani,
and A. Mouzakitis, “Trajectory planning for autonomous high-speed
overtaking using mpc with terminal set constraints,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 1061–1068.

[22] T. Schoels, P. Rutquist, L. Palmieri, A. Zanelli, K. O. Arras, and
M. Diehl, “Ciao*: Mpc-based safe motion planning in predictable
dynamic environments,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6555–
6562, 2020.

[23] Z. Liu and O. Stursberg, “Recursive feasibility and stability of mpc with
time-varying and uncertain state constraints,” in 2019 18th European
Control Conference (ECC). IEEE, 2019, pp. 1766–1771.

[24] M. Kamel, M. Burri, and R. Siegwart, “Linear vs nonlinear
mpc for trajectory tracking applied to rotary wing micro aerial
vehicles,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3463–3469,
2017, 20th IFAC World Congress. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896317313083

[25] R. Gonzalez, M. Fiacchini, T. Alamo, J. L. Guzmán, and F. Rodrı́guez,
“Online robust tube-based mpc for time-varying systems: A practical
approach,” International Journal of Control, vol. 84, no. 6, pp. 1157–
1170, 2011.

[26] P. F. Lima, J. Mårtensson, and B. Wahlberg, “Stability conditions for
linear time-varying model predictive control in autonomous driving,” in
2017 IEEE 56th Annual Conference on Decision and Control (CDC).
IEEE, 2017, pp. 2775–2782.

[27] L. Magni and R. Scattolini, “Stabilizing model predictive control
of nonlinear continuous time systems,” Annual Reviews in Control,
vol. 28, no. 1, pp. 1–11, 2004. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1367578804000021

24

[28] A. Völz and K. Graichen, “Stochastic model predictive control of
nonlinear continuous-time systems using the unscented transformation,”
in 2015 European Control Conference (ECC). IEEE, 2015, pp. 3365–
3370.

[29] J. Berberich, J. Köhler, M. A. Müller, and F. Allgöwer, “Linear tracking
mpc for nonlinear systems part i: The model-based case,” arXiv preprint
arXiv:2105.08560, 2021.

[30] M. Basescu and J. Moore, “Direct NMPC for post-stall motion planning
with fixed-wing uavs,” CoRR, vol. abs/2001.11478, 2020. [Online].
Available: https://arxiv.org/abs/2001.11478

[31] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Systems Magazine,
vol. 36, no. 6, pp. 30–44, 2016.

[32] N. Ozaki, S. Campagnola, and R. Funase, “Tube stochastic optimal
control for nonlinear constrained trajectory optimization problems,”
Journal of Guidance, Control, and Dynamics, vol. 43, no. 4, pp. 645–
655, 2020.

[33] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[34] A. Bemporad, C. A. Pascucci, and C. Rocchi, “Hierarchical and hybrid
model predictive control of quadcopter air vehicles,” IFAC Proceedings
Volumes, vol. 42, no. 17, pp. 14–19, 2009.

[35] D. Q. Mayne, E. C. Kerrigan, E. Van Wyk, and P. Falugi, “Tube-
based robust nonlinear model predictive control,” International journal
of robust and nonlinear control, vol. 21, no. 11, pp. 1341–1353, 2011.

[36] S. V. Rakovic, A. R. Teel, D. Q. Mayne, and A. Astolfi, “Simple
robust control invariant tubes for some classes of nonlinear discrete time
systems,” in Proceedings of the 45th IEEE Conference on Decision and
Control. IEEE, 2006, pp. 6397–6402.

[37] S. M. LaValle, Planning algorithms. Cambridge: Cambridge university
press, 2006.

[38] C. Robin and S. Lacroix, “Multi-robot target detection and tracking:
taxonomy and survey,” Autonomous Robots, vol. 40, 04 2016.

[39] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145,
2016.

[40] M. E. Celebi, F. Celiker, and H. A. Kingravi, “On euclidean norm
approximations,” Pattern Recognition, vol. 44, no. 2, pp. 278–283, 2011.

[41] J.-T. Camino, C. Artigues, L. Houssin, and S. Mourgues, “Linearization
of euclidean norm dependent inequalities applied to multibeam satellites
design,” Computational Optimization and Applications, vol. 73, pp. 679–
705, 2019.

[42] M. Spahn, B. Brito, and J. Alonso-Mora, “Coupled mobile manipulation
via trajectory optimization with free space decomposition,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 12 759–12 765.

[43] K. S. Narkhede, A. M. Kulkarni, D. A. Thanki, and I. Poulakakis, “A
sequential mpc approach to reactive planning for bipedal robots using
safe corridors in highly cluttered environments,” IEEE Robotics and
Automation Letters, 2022.

[44] D. Drew, “Multi-agent systems for search and rescue applications,”
Current Robotics Reports, vol. 2, 06 2021.

[45] C. T. Recchiuto and A. Sgorbissa, “Post-disaster assessment with
unmanned aerial vehicles: A survey on practical implementations and
research approaches,” Journal of Field Robotics, vol. 35, no. 4, pp.
459–490, 2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/rob.21756

[46] Z. Wang and H. Gu, “A review of locomotion mechanisms of urban
search and rescue robot,” Industrial Robot: An International Journal,
2007.

[47] R. Dhaouadi and A. A. Hatab, “Dynamic modelling of differential-drive
mobile robots using lagrange and newton-euler methodologies: A unified
framework,” Advances in Robotics & Automation, vol. 2, no. 2, pp. 1–7,
2013.

[48] S. Burion, “Human detection for robotic urban search and rescue,” Ph.D.
dissertation, École Polytechnique Fédérale de Lausanne, 2004.

[49] J. P. Queralta, J. Taipalmaa, B. C. Pullinen, V. K. Sarker, T. N.
Gia, H. Tenhunen, M. Gabbouj, J. Raitoharju, and T. Westerlund,
“Collaborative multi-robot search and rescue: Planning, coordination,
perception, and active vision,” IEEE Access, vol. 8, pp. 191 617–191 643,
2020.

[50] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, “Deep learning
sensor fusion for autonomous vehicle perception and localization:
A review,” Sensors, vol. 20, no. 15, 2020. [Online]. Available:
https://www.mdpi.com/1424-8220/20/15/4220

[51] R. C. Luo and C.-C. Chang, “Multisensor fusion and integration:
A review on approaches and its applications in mechatronics,” IEEE
Transactions on Industrial Informatics, vol. 8, no. 1, pp. 49–60, 2012.

[52] F. Castanedo, “A review of data fusion techniques,” The scientific world
journal, vol. 2013, 2013.

[53] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” The Interna-
tional Journal of Robotics Research, vol. 35, no. 7, pp. 797–822, 2016.

[54] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846–894, 2011.

[55] P. Yao, H. Wang, and Z. Su, “Real-time path planning of unmanned
aerial vehicle for target tracking and obstacle avoidance in complex
dynamic environment,” Aerospace Science and Technology, vol. 47, pp.
269–279, 2015.

[56] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From
perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots,” in 2017 ieee international
conference on robotics and automation (icra). IEEE, 2017, pp. 1527–
1533.

[57] S. Lee, R. Davidson, N. Ohnishi, and C. Scawthorn, “Fire following
earthquake—reviewing the state-of-the-art of modeling,” Earthquake
spectra, vol. 24, no. 4, pp. 933–967, 2008.

[58] T. Korhonen and S. Hostikka, “Fire dynamics simulator with evacuation:
Fds+ evac,” Technical Reference and User’s Guide. VTT Technical
Research Centre of Finland, 2009.

[59] G. Solmaz and D. Turgut, “A survey of human mobility models,” IEEE
Access, vol. 7, pp. 125 711–125 731, 2019.

[60] T. A. Nüssle, A. Kleiner, and M. Brenner, “Approaching urban disaster
reality: The resq firesimulator,” in RoboCup 2004: Robot Soccer World
Cup VIII 8. Springer, 2005, pp. 474–482.

[61] R. Scattolini, “Architectures for distributed and hierarchical model
predictive control - a review,” Journal of Process Control, vol. 19, pp.
723–731, 2009.

[62] J. D. Gammell and M. P. Strub, “Asymptotically optimal sampling-based
motion planning methods,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, pp. 295–318, 2021.

[63] J. Bruce and M. M. Veloso, “Real-time randomized path planning for
robot navigation,” in Robot soccer world cup. Springer, 2002, pp.
288–295.

[64] M.-S. Yang, C.-Y. Lai, and C.-Y. Lin, “A robust em clustering algorithm
for gaussian mixture models,” Pattern Recognition, vol. 45, no. 11, pp.
3950–3961, 2012.

[65] S. S. Ge and Y. J. Cui, “Dynamic motion planning for mobile robots
using potential field method,” Autonomous robots, vol. 13, pp. 207–222,
2002.

[66] J. L. Garriga and M. Soroush, “Model predictive control tuning methods:
A review,” Industrial & Engineering Chemistry Research, vol. 49, no. 8,
pp. 3505–3515, 2010.

[67] X. Wang, J. Liu, H. Peng, X. Qie, X. Zhao, and C. Lu, “A simulta-
neous planning and control method integrating apf and mpc to solve
autonomous navigation for usvs in unknown environments,” Journal of
Intelligent & Robotic Systems, vol. 105, no. 2, p. 36, 2022.

*This part has been assessed for the course AE4020 Literature Study.

Part II
Preliminary Analysis

27

2
Literature Review

2.1. Introduction
Disasters are devastating to both communities and the areas they live in. Earthquakes alone claimed over

a million of lives in the 20th century, while the 2010 earthquake in Haiti totalled around 222,500 deaths

[1]. The number of people injured or forcefully displaced due to disasters is higher. Disaster management

is the response to these events, where search and rescue (SaR) operations are performed to mitigate

any further life losses or injuries. Many lives have been saved through the tireless efforts of SaR teams.

However, past events show that the time taken for arrival and starting the operations is one of the main

limiting factors for further contribution [2]. Improving the search speed is therefore one of the ways the

contribution can be further improved.

In the past 2 decades SaR has become increasingly augmented with robotics [3]. There are many tasks

that robots can be developed to undertake, from search and mapping, to the actual rescue itself. One of the

key reasons robots are used, is the ability to traverse hazardous environments, and the ability to search for

victims and map disaster areas which could otherwise be hard to reach. This not only increases the search

speed and search area, but also improves the efficiency of further rescue operations. Many shortcomings

and challenges still exist, as the widespread use of search robots has not yet been adopted (see chapter

2 in Murphy’s book [3]). For this thesis, two problems will be tackled, namely obstacle avoidance in the

dynamic environment, and the autonomous motion planning and control accompanying the search mission.

2.1.1. Project scope
This project’s scope encompasses the design of multi-agent software using a hierarchical bi-level model

predictive control (MPC), and the possible hardware implementation for a single robot. The simulations are

to be done on a multi-agent system under various levels of control, communication, prior environmental

knowledge, sensor quality, and number of robots. The mission is victim detection in a SaR scenario.

The research focus for the thesis is the controller design. The sensor, communication, and locomotion

subsystems are all of importance to the controller design but they are not the focus. They shall only be

developed to the extent that is required to specify the effect and the requirements for the controller.

2.1.2. Project objectives
SaR missions aim to rescue as many people in distress as possible and to limit any further effects of

disasters in a limited time frame. Robots are used to expedite this process. Different designs and controllers

have been developed for different missions but all serving this purpose. As such, whenever a new controller

has been developed, it would be interesting to compare its performance to the established solutions and

evaluate possible future developments. The research objective follows this logic:

The research objective is to develop a distributed hierarchically structured MPC with obstacle
avoidance to optimize the search time for victims in an urban search and rescue (uSaR) sce-
nario using amulti-agent SaR system, and to evaluate its performance by comparing it to other
solutions.

The main goal of this research is to develop a working multi-agent obstacle avoiding distributed

hierarchical MPC-based controller that is compatible with various conditions. The second goal is to

28

2.1. Introduction 29

test and compare its performance with other solutions in terms of search efficiency (time use), obstacle

avoidance, reliability, and cost. When done with simulations, an optional further goal would be to test the

hierarchical MPC using hardware, such that the controller can be compared to both simulated and practical

implementations.

First of all, the testing and simulation environment needs to be accurately defined through the mission’s

description. The first step is thus to understand the environment, challenges, and the system goals and

constraints that stem from these definitions. Once that is done, the desired direction of development and

suggestions from a SaR team’s perspective in conjunction with other works on the topic can be used to

establish the simulation and testing of the controller. That is the first sub-goal.

Secondly, the system’s robustness to variable conditions and an unsafe environment is of vital impor-

tance. Failing to succeed is, at worst, the same as failing to save a life. Designing the robustness for a

mission, system, robot, and subsystem level, within the scope of the project, is another sub-goal.

From a design perspective, the multi-agent distributed system is a sub-goal by itself. Regarding this,

all system design considerations from task division to perception need to be described, and the parts that

fall within the scope of this research must be addressed. Any possible recommendations that stem from

this part would impact future work and describe possible extensions to a hierarchical MPC implementation

for the uSaR mission.

From a single robot’s perspective, there are a multitude of navigation and path-planning algorithms.

Thesemethodsmust be compared to each other, and after a selection, the optimal bi-level MPC combination

can be made for victim search efficiency. The other possible algorithms can serve as test-cases for

comparing performance. Selecting and implementing the navigation and hierarchical MPC is another

sub-goal.

Recognizing all the different sub-goals, a modular design approach has to be taken, where each

part can be tested and modified individually. Creating a clear modular structure for ease of testing and

prototyping is the final sub-goal.

2.1.3. Research questions
The main objective of this project is to evaluate the performance of a hierarchical MPC for SaR applications

and provide future design suggestions for a multi-robot system. From the objective and sub-objectives

several research questions follow, which form the direction for both the literature study and the thesis.

1. What are the main considerations for developing a distributed autonomous control system for a

multi-robot team in a SaR scenario?

(a) What are the most important characteristics, requirements, and tasks for the robot team in case

of a victim search mission, and how do they affect the design of the control system?

(b) To what extent do the sensor, communication, and other sub-systems affect the robot motion

planning?

(c) How does a controller achieve a desired performance considering non-homogeneous sensors,

levels of communication, and (prior) knowledge for the robots?

(d) How is robustness of the control system with respect to both mission and sensor uncertainties

defined and how can it be guaranteed?

2. How effective is a hierarchical bi-level MPC control system for a multi-robot SaR team in an urban

environment?

(a) What is the effect of real-time control on the controller, and what methods exist for improving

computational efficiency to this end?

(b) How is dynamic obstacle avoidance best implemented in terms of power usage, robustness to

obstacle behaviours, and robustness to uncertainties?

(c) How does the bi-level MPC compare to other controllers in terms of power usage, robustness,

and real-time performance, for both the mission and obstacle avoidance?

3. How can the controller best be implemented and evaluated, and with what methods and accuracy

can it be verified or validated?

2.2. Search and rescue 30

(a) What approaches for model and controller simulation exist, and to what extent do they need to

be done?

(b) What are the metrics and scenarios to evaluate the performance of the controller and its

implementation?

(c) What is a hardware test required for and how can it be used to improve the controller?

2.1.4. Literature study structure
The literature study finds research to support a thesis which can answer the research questions and fulfil

the research objectives. Firstly, in Chapter 2.2 the mission itself is further defined through SaR literature

specific for robots and the environment. Subsequently, in Chapter 2.3 various perception and motion

planning designs are listed, and evaluated to an extent. Further design choices such as communication and

fleet design are also considered, such that the general controller architecture can be formulated. Chapter

2.4 focuses on MPC literature to define the theory and variations for the specific implementation of the

hierarchical MPC. Furthermore, several tuning methods for MPC are presented alongside a development

plan for the thesis.

2.2. Search and rescue
In the event of a disaster, the first step is to organize the response. When people could be in distress,

search and rescue (SaR) operations will take place with a search for victims. Since the 9/11 disaster,

robots started to be used for SaR operations [3]. Throughout the years search and rescue has been

increasingly augmented with robotics to improve the search speed, to map inaccessible or dangerous

areas, or even to perform direct intervention such as opening doors or blocking oil pipes [3].

Whatever the environment (be it collapsed structures or the wilderness) there are hostile elements and

limited sources of information. Secondly, a unanimous truth is that the quicker the response, the greater

the chance for survival, and the quicker the recovery, see Figure 2.1.

Figure 2.1: Survival rate over time for victims who survived the initial effects of an earthquake. [4]

In order to design for the multi-faceted nature of search missions, each aspect will be addressed

separately. Firstly, Part 2.2.1 reviews some examples and literature on how robotics and SaR have

cooperated so far, to obtain an overview of how SaR robotics were developed, and to assist in defining the

mission. Having an initial overview, Part 2.2.2 uses the environment to define several SaR sub-types. Part

2.2.3 then uses the mission taxonomy, and combines it with the environmental definitions to specify the

scope of the mission.

2.2.1. Previous use-cases
Reviewing the possible missions for SaR robotics, applications range from direct intervention (such as the

case of inserting a tube and regulators in the Deepwater Horizon spill of 2010), to a search mission (to

2.2. Search and rescue 31

reach areas rescue workers cannot easily reach, or to expedite the process) [3]. As far as the thesis is

concerned, the controller design and literature will be performed for the search mission, which so far has

mostly been done to locate miners in collapsed caves [3].

Past uses of unmanned aerial vehicles (UAVs) include assessing the damage and assisting reconstruc-

tion efforts. Examples include FINDER with UAVs in the 2015 earthquake in Nepal [5], and the post-disaster

assessment after the 7.0 earthquake in Lushan as done by Qi et al [4]. Qi et al also summarized the

previous work of UAV support teams designed for various environments, such as the case with Pratt et al

[6] who analysed the success of a post-disaster assessment of hurricane Katrina using a UAV.

Most literature on this topic pointed towards the use of UAVs as scouts, as they have the greatest

flexibility in motion, and can provide a birds-eye view to the operator [7]. Another point of interest is

that there is some success with both simple map-less algorithms (such as bug algorithms or pre-trained

deep-learned networks), and complex sensor-fused map-using algorithms (such as decentralized visual

simultaneous localization and mapping (SLAM), or SLAM with ML-RANSAC) algorithms ([8], [9], [10]).

2.2.2. Search and rescue environment
The robot applications in SaR depend on the environment. The type of disaster and the environment define

the mission and constraints at both an agent and system level, changing the complexity of the search

mission, and the subsequent agent design.

Grogan, Gamache, and Pellerin [8] described the variety of environments as uSaR, wilderness SaR,

air-sea rescue, and combat SaR. These are SaR missions in an urban, wilderness (including mountains

and caves), maritime, and combat environments, respectively. USaR occurs in urban areas where the

search mission is to find an unknown number of stationary victims, in a somewhat localized environment.

Wilderness SaR and air-sea rescue, on the other hand, deal with a known number of mobile victims in an

open-ended search location. [8]

Two examples will be given to illustrate the impact of the environment:

1. Air-sea rescue usually requires a UAV to sweep over a large area of water, find men overboard, and

rescue them with either seafaring drone support or through human intervention. An autonomous

solution can exist in the form of E.M.I.L.Y., with an overhead robot (UAV) as a spotter [11]. There

are other solutions, but that study is beyond the scope of this project.

2. On the other hand, uSaR has dynamic obstacles, danger zones such as rooms at risk of fire or further

collapse, and a constrained flight space. It is even possible for the robot to get lost before being able

to return and communicate its findings. A successful semi-autonomous example is the quadcopter

UAV solution by Qi et al developed for the post-disaster assessment of the 2013 Lushan earthquake

[4].

Compared to air-sea rescue, uSaR requires higher mobility, but lower endurance on its flight hardware.

Secondly, uSaR requires greater situational and spatial awareness, but lower resolution sensors (among

other differences such as with its control logic, see Part 2.2.3). Every environment has its own set of

peculiarities. Moreover, the SaR environment is further defined by the disaster affecting it.

Another very important aspect is that due to all the rubble and obstructions to the line-of-sight in

indoor environments, uSaR applications tend to be global navigation satellite systems (GNSS) denied

environments [3]. The rubble also tends to affect remote control and data streams, suggesting the

need for non-centralized control. This will have consequences for the perception system in Part 2.3.1,

communication in Part 2.3.3, and several topics beyond the scope of the project (such as the human-robot

interaction, and possible formation constraints due to tasks such as daisy-chaining).

Characteristics and risks

Any type of disaster, be it of natural (flood, hurricane, or earthquake) or technical origins (explosion, gas

leak, sinkhole, etc.), has its own set of latent and active risks and size of impact. These change the optimal

system’s design and control. For the purpose of this work a disaster encompassing collapsed buildings is

selected, with risks of fires and explosions, and a multitude of both dynamic and static obstacles.

Unfortunately there is no exhaustive list of environmental characteristics and risks made for a robotic

system in an uSaR environment. Rosique et al. did mention the distinction of the environment either

influencing the sensors or the physics while discussing simulators [12].

2.2. Search and rescue 32

For a collapsed building disaster various environmental variables and risks must be modeled and

designed for, such as dust, rubble, and possible fires. These can be categorized as influences on the

sensors, motion, or the mission:

• Sensor-related influences: There are two types, those who affect the ability to measure, and those

which can lead to false positives/negatives. From the first type examples include fog, illumination, dust,

fire, and obstacles. From the second type, examples include ambient noise, cluttered environment,

and warm objects. These depend on the features detected by the sensors.

• Motion-related influences: Examples include rain, wind, loose sediment, and obstacles. There are

types which must be avoided (obstacles) and types which cannot (rain/wind).

• Mission-related influences: Examples include fire, possible air quality measurements, and obstacles.

These must be separately addressed through the robot’s control logic with prioritization. In the event

of the loss of an agent, the fleet’s subsequent search operations are affected.

For example, consider an uSaR mission with a mission-related influence of fire. The fire is present in a

stairway connecting floors, while victims are possibly stuck in rooms. The robot search team must perform

the search for victims, despite possible obstacles such as closed doors. The robots must therefore quickly

traverse the stairway and check for a possible victim in the rooms (despite the possibility of not being able

to enter all rooms), knowing some robots could possibly become inoperable.

Will losing a robot at the start of the search mission lead to more possible casualties, or more specifically

what are the consequences of agent-loss? Secondly, which areas should the controller prioritize? These

are some of the concerns for fleet and controller design. Although the example is both complex and highly

time-constrained, the controller must be designed to account for it.

2.2.3. Mission taxonomy
As mentioned in the work of Robin and Lacroix [13], the taxonomy clearly defines the scope of the mission.

By clarifying the problem, the best method to obtain the solution becomes apparent.

For uSaR, the mission defined by Grogan, Gamache, and Pellerin [8] concerns finding immobile

(or trapped) victims, with no knowledge on the number of victims. Due to the collapse of structures

(roofs/walls/entrances) or the displacement/destruction of objects (fallen wardrobes), any given map cannot

be assumed to be fully accurate. Sometimes a map can even be unavailable due to security or privacy

concerns.

The robotic support team can assist/perform the search through one of three specific missions. The

missions could be search for victims, mapping of a disaster-struck area, or tracking and surveillance [8].

The work in this thesis will focus on the search for victims. A search (or target detection) does not require

mapping.

Classifying it as a search mission, Robin and Lacroix [13] define uSaR as a target detection problem

with mobile search, the same as Grogan, Gamache, and Pellerin. A target is an entity (e.g. victim or object)

that can be localised within the environment. There are three sub-types of missions then defined based on

the information and resources that are available: capture, probabilistic search, and hunting.

Each sub-type has a variety of control algorithms made. The algorithms can be selected based on the

system’s degree of (de-)centralization, cooperation, stochasticity (considering uncertainties), and whether

the pathing is done using optimization (solved on-the-go) or planning (solved off-line).

Target detection - Planning

If the map is known, and there are sufficient robots and time for full coverage then the problem becomes a

capture, which simplifies to a path optimization or graph clearing task. As it stands, most literature defined

in the work of Grogan et al. [8] uses a capture problem. Either graph-based, or set covering methods

are used. In case of an outdated map (or new information), task allocation is mentioned as a remedy.

Robin and Lacroix [13] also mentioned the scalability problems of using a centralized system and why

decentralized cooperation algorithms perform better. In essence, with capture there is a clear worst-case

scenario which can be optimized for before-hand.

When there is a lack of resources (robots or time), probabilistic search is more applicable. Here the

”worst-case guarantee” cannot or is not fulfilled. Probabilistic search assumes SaR would have non-

adversarial targets, drastically decreasing the complexity of the problem. Here, Markovian models (MDP)

2.3. System design 33

(specifically partially observable Markov decision process (POMDP)) are mentioned as suitable, but as

the targets in uSaR are mostly immobile, particle filters were also mentioned as suitable. Particle filters

perform better regarding scalability and can subsequently be used for tracking if the mission requires it

[13].

Target detection - Optimization

So far the target detection problem, or rather its solutions, were solved as a planning problem, where the

path is pre-planned. Formulating it as an optimization problem means optimization is performed on-the-go,

leading to a globally sub-optimal solution. Note that this is more compatible with the dynamic nature of

SaR, where new information and developments could occur at any time.

By definition of having full information, a planning approach would always perform better than opti-

mization. Probabilistic search on the other hand, can benefit from this. Gradient-based optimization, or a

two-step approach using rough planning and a detailed optimizer can be used. Multiple criteria decision

making (MCDM), in particular stands out as a good choice [13].

Lastly, in case of hunting there is not only a lack of resources but also a major lack of information. For

hunting, both the map and number of targets are unknown. In the absence of a map, and/or due to lack

of resources (bad sensors, small number of robots, limited time, etc.), a pathing problem degenerates

into a hunting problem. The robots could collaborate through reactive (react to obstacles/environment)

random search, map-less graph-clearing through local frontiers, or through emergent behaviour (e.g. from

”anti-”flocking), as summarized in [13].

Initial design choices

Map generation and localization are not necessarily required. Numerous solutions avoiding mapping were

listed in [13] and [10]. Opting to avoid a map reduces the computational load on the controller, allowing

for a cheaper single robot. This choice does incur additional design considerations which have to be

addressed in the form of the system’s robustness, through testing and simulations.

As it stands, both MCDM and a two stage controller seem to be a good choice for uSaR, as well as a

simple emergent agent-based hunting method. These will be further considered on how to be implemented

as MPC in Chapter 2.3.

2.3. System design
As identified by Drew [7], even though publications on multi-agent systems has over tripled on a per-year

basis since 2010, the number of papers on multi-agent systems for SaR has remained about the same.

There are four challenge areas he identified: Perception and planning, communication, human-robot

interaction, and cost/function trade-off.

In this chapter both the single and multi-agent aspects of the robot’s design will be looked at. Using

Drew’s work as a reference, the chapter is structured similarly. First, in Part 2.3.1 the sensor subsystem

is considered through victim detection sensors, navigation sensors, some perception algorithms, and

sensor fusion algorithms. Part 2.3.2 discusses various path-planning and optimization based on the target

detection mission. Communication can have a strong influence on motion planning, and is therefore

covered to some extent in Part 2.3.3. Any other aspects beyond the scope of the project are listed in Part

2.3.4. All system-level and robot-level decisions which can be made at this point will be presented in Part

2.3.5. Lastly, simulator types and considerations for simulation will be addressed in Part 2.3.6.

2.3.1. Perception
Sensors are vital for positive identification of the target, path-finding, and obstacle avoidance. There

are numerous surveys comparing sensors for each task, each having different rankings, but there is no

clear ”optimal” choice. This is why a trade-off must be performed based on individual task performance,

synergies with other subsystems and sensors, and resource usage, which will be done in Part 2.3.5.

It should be understood that the detailed design of the sensor subsystem falls beyond the scope of this

project. However, the extent to which it is done is necessary to establish the possible means by which the

navigation and victim detection will be done, such that some uncertainties can be bounded (by looking

at the errors in navigational algorithms, or victim identification accuracy), and the cost of an agent (in

2.3. System design 34

case of agent-loss) can be determined. Besides that, it will be required to select sensors for the hardware

implementation.

Victim detection sensors

Victim detection is defined by how good and reliable the sensors (and interpretation) are. Sensors can

be used to detect the heartbeat, voice, temperature, texture, motion, scent, color, oxygen levels, and the

shape of the victim. The sensors can be visual, acoustic, thermal, ultrasonic, seismic, or chemical ([14],

[15]). A selection were compared in Burion’s work [14], see Table 2.1. The laser rangefinders mentioned

Table 2.1: Comparison of select features of different sensors used in victim detection [14].

Technology Feature

detected

Exter-

nal size

Cost Human

distinction

Strengths Weaknesses

Linear

camera

CCD/CMOS EM

0.4-1.1 µm
vision - - - price low

resolution

USB

camera

CCD/CMOS EM

0.4-1.1 µm
vision + + ++ cost / perfor-

mance

low

resolution

Stereo vi-

sion

CCD/CMOS EM

0.4-1.1 µm
vision/ dis-

tance

++ ++ ++ vision,

distance info

computa-

tional cost

Laser

rangefinder

ToF/ triangula-

tion EM 620 -

820 nm

distance ++ +++ - measure-

ment preci-

sion

price

Radar ToF EM 5 - 24

GHz

distance + +++ - precision with

big range

price

Ultrasonic

sensor

Membrane SW

130 - 290 kHz

distance - - - price echo

sensitivity

Microphone Membrane SW

100Hz - 16 kHz

sound - - + price noise

sensitivity

Infrared

camera

CCD/CMOS EM

7-14 µm
heat ++ ++ +++ human

distinction

price

Pyroelectric Crystalline sen-

sor EM 7-14 µm
body heat - - ++ price, human

distinction

only motion

detection

Thermopile Thermocouple

EM 5.5 - 13 µm
-25 - 100 °C

heat - - + price noise

sensitivity

CO2 sensor Electro-

chemical

gas ++ ++ ++ human

distinction

too

directional

SpO2 Light absorption

(650nm, 805nm)

blood oxy-

gen/ pulse

rate

- N/A +++ human

distinction

not available

for robotics

EM = Electromagnetic waves; SW = Sound waves; ToF = Time of Flight

in Burion’s work, are a family of sensors that contains the subset of Light detection and ranging (LiDAR).

Rosique et al. [12] further compared a selection of sensors under various criteria such as resolution or

durability. Additionally, ToF cameras were mentioned which perform ranging using the phase difference of

reflected near-infrared light to the original light. However, neither Rosique et al. nor Burion mentioned the

power use of the sensors, which would also be of interest in lightweight robot designs.

Stepanova et al. [16] specifically mentioned acoustic sensors to identify knocking behind closed doors

or collapsed walls, and that a robot should ”broadcast the message that it is there on the rescue mission to

the potential survivors to encourage them to start signalling that they need help.” They also suggest that

the overview provided by drones with visual feeds speeds up the initial search process.

From Table 2.1, the best solution is a combination of sensors that detect different features (such as

thermal and visual) such that positive victim detection is highly probable. Even under circumstances which

could affect the feature detection of a sensor such as low illumination, a mixed-sensor approach could

still reliably identify victims through other features. The main downside is the added complexity of sensor

fusion (see Part 2.3.1).

2.3. System design 35

Another, cheaper, less-energy consuming solution comes in the form of deep-learned neural networks.

In the past few years, progress has been made with both real-time and relatively small-sized (54 megabytes

[17]) neural networks for victim identification. These methods boast mean accuracy precisions of over 70%

(a metric for quality of object detection algorithms), with the one in by Martinez-Alpiste et al. [17] at 95%.

YOLOv3 is another very popular contender, often used due to its high quality real time classification [18].

One sensor that has not been mentioned in Table 2.1 are ground penetrating radars. Though mostly

used in post-avalanche SaR scenarios, they can also be applied to uSaR [19]. This way buried victims can

be detected, who might otherwise be missed. The drawbacks are the high price, power use (2-4 Watts

for the sensor itself), and weight (about 1kg) [20]. There are two ways to use this system, however. The

first is to use it directly on every agent, which is too costly. The other is to design a separate robot that

performs the ground scan, collaboratively setting goals with the other agents.

To conclude, Stepanova et al. suggest both a visual and acoustic sensor, while Rosique et al. and

Burion both suggest the infrared camera to be included in a sensor fused subsystem. The best for victim

detection would therefore be a combination of these three, but when limited to only one sensor, a visual

camera is the sensor of choice. If a swarm approach is intended, the lowest-cost solution would take

priority in the form of a possibly (inference) sensor-fused pyroelectric sensor and cheap USB camera.

Secondly, in case of a UAV, the external size, power use, and weight of the sensor subsystem is limiting

the flight time and thereby influencing the robot design.

Navigation sensors

From the point of view of navigation, sensors are needed to detect the robot’s position or path relative to a

starting point, a reference signal, etc. Rosique et al. [12] separated sensors into two groups. Those that

are used for environmental perception and those used in position estimation. For uSaR the sensors can

be better distinguished as physical, and signal tracking.

Physical sensors are inertial measurement units (IMUs), cameras, magnetometers, and similar sensors,

which do not necessarily require an external signal. These sensors measure the physical state of the

world or the robot’s motion through inertial means. The algorithms used in navigation are based on dead

reckoning, normal or visual odometry, referencing a map or objects (can be self-made using SLAM), or

referencing a set of tabulated values. Other sensors, such as proximity sensors (which work by measuring

reflected infrared signals), only measure if there is an object, without providing any state estimation. Very

cheap, and useful for detecting proximate objects, but nothing else.

On the other hand, signal tracking sensors include GNSS receivers and other antennas. These rely on

the capability to communicate with a foreign signal (not made by the robot itself), or only to receive the

reference signal. The methods used to establish position and heading are usually based on either the

signal’s strength, time-of-arrival, frequency difference-of-arrival, carrier phase, or angle-of-arrival [21].

The benefit of a signal tracking sensor is a comparatively low-energy, high-accuracy, low-cost sensor

subsystem that can define the robot position with respect to a coordinate system. Moreover, it does not

run into closed-loop problems such as positional drift (accumulated error over time). The drawback is that

it relies on the availability of the reference signal. In practice, a combination is often used, such as an IMU

in combination with a GNSS receiver in car navigation systems.

A simple GNSS signal, though tempting, is not necessarily sufficient. As mentioned by Breßler et al.

[22], in dense urban and indoor environments, the non-line-of-sight GNSS rarely produces sub-meter-level

positioning. Possible solutions exist in the form of sensor fusion (for example, GNSS/IMU), a high-accuracy

(expensive) base station, or using additional signals.

Most surveys regarding sensor use in uSaR (including [22], [8], [16], and [15]) show interest in a

wireless sensor which aims to detect WiFi, Bluetooth, and cellular signals for improving positioning and

victim detection performance. It is low-cost, lightweight, and possibly highly accurate. In uSaR scenarios

this is due to the many different possible reference signals, despite the obstructions of rubble and buildings.

It does run into the same problem as the other signal tracking sensors regarding signal availability, where

the availability could be affected by scenarios such as an empty battery, or disabled power lines. If used

for victim detection it assumes that a signal implies a victim, and no signal implies no victim. This could be

a false assumption. Navigation-wise, for a swarm-based approach, combining the GNSS/IMU with the

wireless signal sniffer would be a cheap, yet sufficiently accurate (sub-meter) solution.

2.3. System design 36

One last note specific for the navigation aspect of the perception system is that the perception range

limits the speed of the agent. Consider the following: if an agent requires 2 seconds to reach a full stop and

the sensor range is 20 meters, then the theoretical maximum allowable speed of the agent is 20/2 = 10m/s.
If it is any quicker, the agent would bump or crash into an obstacle before it can perform the avoidance.

Sensor fusion

Burion [14] reported that the sensor fused microphone, visual camera, and thermal camera has the best

results in his constructed uSaR environment. It was an indoor environment with mirrors, windows, plastic

sheets, noise, knocking, computer screens, heaters, as well as various levels of illumination. It simulated a

possible gas leak or post-earthquake scenario. He also concluded that data fusion in general reduces the

amount of false positives. There are several ways to perform sensor fusion, however.

Sensor fusion methods are all rooted in statistics. There are many different ways to classify them

and criteria to measure them by. If interested in the possible classifications and design strategies thereof

see Castanedo’s work [23]. Sensor fusion can be done low-level (directly combining the sensor data for

more accurate data), medium-level (combine results to establish features for classification), or high-level

(combine symbolic representations for a more accurate decision). A classification of various algorithms is

presented in [24], see Table 2.2.

Table 2.2: Classification of common fusion algorithms (adapted from [24]).

Low level fusion Medium level fusion High level fusion

Estimation methods Classification methods Inference methods

Recursive: Covariance-based: • Parametric templates • Bayesian inference

• Kalman filter • Cross covariance • Cluster analysis • Particle filters

• Extended Kalman filter • Covariance intersection • K-means clustering • Dempster-Shafer theory

Non-recursive: • Covariance union • Learning vector quantization • Expert system

• Weighted average • Kohonen feature map • Fuzzy logic

• Maximum likelihood • Artificial neural network

• Support vector machines

Out of these methods, state estimation techniques are of interest to reduce navigation or victim

identification errors. The higher-level fusion methods could be used for the goal searching and pathing,

but that is beyond the scope of the sensor subsystem. But the low-level fusion methods are designed with

different applications in mind.

For a swarm approach, the state estimation and victim detection can use a maximum likelihood or

weighted average approach due to the computational constraints. A swarm can gather many signals

(through co-localization), for which the function x̃(k) = argmax
p

(z|x) can be used to determine the estimated
state (x̃), using a probability density function dependent on k previous observations (z = (z(1), ..., z(k))).
The other methods require a bit more of an explanation.

For a multi-agent approach with less restrictive computational limits, the unscented or extended Kalman

filters or particle filters are of interest. The covariance methods are only useful in case of a distributed or

centralized system, explained in Part 2.4.3, where hierarchies are reliant on communication. The Kalman

and particle filters can be implemented decentralized (without explicit communication), which is why they

will be focused on.

A Kalman filter estimates the state x based on a measured and predicted state, essentially:
xestimated = xpredicted + K(zmeasured − zpredicted). The Kalman filter uses the Kalman gain K, which is a

measure of trust between the prediction and measured state: The lower the measurement uncertainty is

compared to the prediction uncertainty, the higher the gain K becomes. It is determined (Equation 2.1c)

using the prediction covariance matrix P , observation matrix H, and the sensor noise covariance matrix R.

2.3. System design 37

See Equation 2.1 for a single iteration of a linear Kalman filter.

x̂k+1,k = Φk+1,kx̂k,k +Ψk+1,kuk (2.1a)

Pk+1,k = Φk+1,kPk,kΦ
T
k+1,k + Γk+1,kQd,kΓ

T
k+1,k (2.1b)

Kk+1 = Pk+1,kH
T
k+1

(
Hk+1Pk+1,kH

T
k+1 +Rk+1

)−1
(2.1c)

x̂k+1,k+1 = x̂k+1,k +Kk+1 (zk+1 −Hk+1x̂k+1,k) (2.1d)

Pk+1,k+1 = (I −Kk+1Hk+1)Pk+1,k (2.1e)

Where Φ is the state transition matrix, Ψ is the input distribution matrix, and Γ is the noise input matrix.

These are obtained by discretizing the continuous F (state transition) and B (input) matrices, and the

continuous process noise input matrix G. u is the input, and w (process noise) and v (sensor noise) are
two Gaussian random noises with zero mean and covariance matrices Q and R, respectively. In case of
non-linear models, there are two common solutions.

To deal with non-linearities, the unscented Kalman filter is based on sampling points around the mean,

and propagating these through non-linear models such that the covariance of the estimations can be

obtained, while the extended Kalman filter uses the Jacobian (computationally expensive). Kalman filters

assume full knowledge of the model (Φ,Ψ,H), and noise matrices (Γ, Q,R).

Particle filters, similar to the Kalman filters, have a prediction and update step. They essentially work

by first randomly sampling a set of N points, which contain the state information. Each sampled point

(or particle) gets a future state prediction based on their previous state, a state transition matrix F , and a
noise distribution. Each particle has its weight calculated by predicting their observation z, and computing
the likelihood based on that. At that point, the points with the lowest weights get removed, and the state is

adjusted using the mean of the remaining particles. Particle filters perform better than Kalman filters when

there are non-linear dependencies and non-Gaussian noise, but a large number of particles are required

for a precise estimator [23].

Knowing the theory behind sensor fusion approaches makes it possible to use either in case of merging

different signals from different sensors. The most common solution used for uSaR UAV search teams is a

simple RGB camera, not considering sensor fusion with inertial or GNSS units [25]. Each combination of

sensors, perception algorithms, and possible sensor fusion has its own strengths and weaknesses, so it

ends up being a trade-off. A greater level of sensor fusion can lead to higher accuracy at a higher cost. A

more accurate perception algorithm is often traded off against a higher computational burden.

If heavily constrained by financial cost the choice is a cheap camera and IMU using visual odometry or

SLAM for navigation, and a neural network for victim detection. When heavily limited by computational cost,

a pyroelectric sensor with a camera should be used for victim detection, while navigation can be performed

primarily through GNSS/IMU with proximity sensors. For swarms the choice can be co-localization and

wireless sniffing for localization, using proximity sensors for additional obstacle avoidance, and a pyroelectric

sensor with a microphone for victim detection. For the most sophisticated multi-agent team that is only

concerned with the accuracy, the choice rests on a sensor fused GNSS/IMU using map- or feature-based

matching when GNSS is denied, using a visual camera, infrared camera, and a microphone for additional

victim detection accuracy.

The uSaR application in mind falls between the extreme cases. To address possible GNSS-denied

environments, a wireless sniffer could be used, supplementing an IMU/visual camera combination for

better localization using visual odometry, SLAM, or feature matching. If a high-level of localization is not

required then the sensor subsystem would primarily be used for obstacle avoidance and victim detection.

Optional improvements follow: Using a LiDAR for computational reduction (no depth estimation required)

and improved navigational accuracy. An infrared camera could improve feature detection and obstacle

avoidance in low-light environments, while also improving victim identification accuracy. A microphone can

be added to further improve victim detection accuracy, and finding potential visually obstructed victims.

2.3.2. Vehicle motion planning
Vehicle motion planning is done by acquiring the environmental data (such as obstacles), the vehicle’s

trajectory, and direction, and combining those to decide on a path towards the goal. As stated in Part

2.2.3, from a mission perspective (target detection), the algorithms that fit the mission the best are MCDM,

2.3. System design 38

a two-stage optimizing controller, or a reactive swarm method. Though the algorithms identified in Part

2.2.3 can be used directly, they are not necessarily optimal or sufficient for the dynamic environment. This

part will evaluate the motion planning and obstacle avoidance algorithms in more detail using literature to

that end. Specifically, a review on motion planning algorithms in dynamic environments [26], real-time

applications [27], and specific for UAVs [28] are used for further reading.

Clear terminology exists within the field of motion planning, which is used to unambiguously describe

an algorithm’s functioning. The following definitions are mostly taken from Goerzen, Kong, and Mettler [28].

The vehicle (UAV) exists in a physical space known as the world space. The vehicle has a certain position

and orientation, which would be its configuration. The set of all possible configurations in the world space

is the configuration space. In the case of dynamic objects, the dynamics are also of high interest. The

state includes the rates of change of the configuration, and possible further derivatives. In much the same

way the set of all possible states is the state space.

Regarding the world there is the free space where a vehicle can exist, and the obstacle space where

it cannot. A path is a curve traced by the vehicle in the configuration space, and a trajectory is a path

including the time along the path. Motion planning is either path or trajectory planning between an initial

state or configuration to a goal state or configuration ([28], [27], [26]). See Figure 2.2 for some clarification,

if needed.

Figure 2.2: Point-vehicle representation [28]. Obstacle space in black, configuration space in white, free

space in white + grey.

Motion planning algorithms are complete if they find a path when one exists, and return no path if no

collision-free path exists. A planner is optimal when it returns a path that is optimal according to some criteria.

Lastly, a sound planner guarantees that despite the uncertainties in sensing and control, the vehicle will

enter the goal region without colliding with an obstacle. Planners that are resolution complete/optimal, only

find a solution if the problem is sufficiently discretized. Insufficient discretization might paint a region of free

space as occupied, and exclude that from the configuration space. For probabilistically complete/optimal

if a solution exists, it will be found with the right conditions or randomness, which given infinite time to a

random number generator will succeed [28].

Path planning

There are many different solutions for both motion planning and dynamic obstacle avoidance. Thankfully the

scope can be limited. Goerzen, Kong, and Mettler [28] summarized that excluding the equations of motion

lead to worse performing optimization for pathing, especially in the case of a vehicle with many degrees of

2.3. System design 39

freedom such as an aircraft. Secondly, considering the uncertainties and the dynamic environment, using

an optimization algorithm is a better fit compared to planning. This also agrees with Robin and Lacroix’s

[13] summary.

The vehicle can either be modeled as a rigid vehicle, or it can be bounded by a radius. Bounding the

vehicle by a ball allows it to be reduced to a point for obstacle avoidance. The configuration space is

modified by expanding the obstacles by the radius of the bounding ball. It is a conservative simplification,

reducing the calculation time, problem complexity, maximum optimization of the solution, and possibly the

feasibility. Regarding the feasibility: a piece of A4 (297x210x0.1mm) paper can fit in more places than its

bounded ball size (a diameter of
√
2972 + 2102 = 364mm).

Uncertainties remain the same despite such simplifications. Motion planning in general struggles with

uncertainties, as there are no sound or complete solutions when characterizing uncertainty with an infinite-

tail [28]. It can be understood that bounded uncertainties can still be worked with (practical applications

exist), though they may not be sound. A comparison of various solutions that are not differentially

constrained are listed, with information taken from Goerzen, Kong, and Mettler [28] unless otherwise cited.

• Roadmap methods reduce the problem to a graph search on which Dijkstra’s algorithm or A* can

run. All methods assume a point vehicle. A visibility graph connects each vertex of the polygonal

or polyhedral obstacles (2D or 3D) to other obstacle vertices. The optimal path is then found by

following the shortest path that grazes the obstacles. It is complete and optimal (resolution optimal

for 3D). The Voronoi roadmap builds a skeleton that is maximally distant from obstacles, which is

sub-optimal (or optimal if maximum margins are intended), but complete.

• Exact cell decomposition, decomposes the configuration space into small convex polygons. Trape-

zoidal decomposition reduces the free space to many trapezoids, connecting the centre points, and

then using graph search to find a path. Critical curve based decomposition (and cylindrical algebraic

decomposition for 3D) can work with rigid vehicles by taking into account the turning motion, such

that the path consists of piecewise polynomial curves. These solutions are complete, and most can

work with rigid vehicles, but they are non-optimal.

• Approximate cell decomposition methods are all resolution complete, but non-optimal. Rectanguloid

cell decomposition works similar to trapezoidal decomposition, but instead divides the configuration

space in rectanguloid regions, labelling the cells as empty (free space only), full (obstacle only), or

mixed (both). Approximate and decompose aims to reduce the volume of mixed cells, but maintain a

sufficiently small number for computational speed. 2m tree (octree) decomposition aims to reduce

the number of points required to represent obstacles compared to full grid solutions; it has been

demonstrated on a helicopter UAV [29].

• Potential field methods work through assigning the free space a potential function, giving the goal

the lowest potential, while obstacles are given a maximum value. They have low computational

complexity, and are sometimes implemented for swarms. Virtual force field uses distance-decaying

functions which peak at the obstacle regions, such that the vehicle safely moves by ’descending’ to

a lower potential. It is neither optimal nor complete (due to possible local minima). Potential field

guided search uses a probabilistically or resolution complete search, to avoid local minima (such

as A*). Harmonic potential functions solve the local minimum by using smooth partial differential

equations (one minimum), thus being complete, and has been proven to work real-time on a rotorcraft

UAV [30]. Other methods include wavefront expansions which essentially run Dijkstra’s algorithm for

the navigation function.

• Probabilistic approaches are non-optimal, and, for instance, modify the potential field approach by

using a random walk, avoiding a local minimum. The probabilistic roadmap (PRM) tests if random

samples of the configuration space belong to the free space, and then uses graph search to find a

probabilistically complete path. There is also a probabilistically optimal version called the PRM* [31].

• Weighted region approaches modify the configuration space with a weight function. Using polygonal

weighted regions the approach can either be done using Snell’s law of refraction and finding an

optimal path, or an approximation thereof which is resolution optimal. To extend this in higher

dimensions a weighted grid approach can be used, reducing it to a discrete search over a grid, which

is both resolution complete and resolution optimal.

Most of these methods are not explicitly designed to take into account the limited sensor range or

lack of a map, assuming a capture problem (see Part 2.2.3, or Robin and Lacroix [13]). They can be

2.3. System design 40

adapted, as these are rather the theoretical baseline. Secondly, when defining path planning for UAVs and

other vehicles the differential constraints are of interest, where even in a trivial case of an obstacle-free

configuration space, connecting two states in 3D is not generally exact [28]. To address these differential

constraint approaches, Goerzen, Kong, and Mettler [28] compared sampling-based, minimum distance,

mathematical programming, and potential-based approaches.

• Sampling-based approaches are usually resolution complete, resolution optimal, and resolution

sound, but tend to be too slow to be used in real-time due to the high dimensionality of the state

space. State space lattice search discretizes the search by mapping the state space of the vehicle

as a lattice, and searching for a time-optimal path therein. State-space navigation with interpolation

approximates the time-optimal path by returning a navigation function, which can be optimized through

value iteration or with a control policy, but it runs into the same problem with higher order dimensions.

A reachability graph looks into possible states, which quickly runs into high combinatorial complexity.

The only feasible real-time sampling method mentioned is the rapidly-expanding random tree (RRT),

a probabilistically complete approach, which works by randomly sampling the configuration space for

a feasible trajectory. There is an expansion called RRT* which is also probabilistically optimal [31].

• Decoupled trajectory planning methods are generally non-optimal, but resolution complete, and

resolution sound. More importantly, these can usually be implemented real-time. They work by

first finding a path through the discretized configuration space (for instance through a probabilistic

roadmap), setting waypoints, and then generating a trajectory for a vehicle based on that path. The

two-step approach is the simplest form. A modified form that is commonly used for UAV applications

is the hierarchical decoupled planning and control, but both of these methods have no general proof

of completeness, soundness, or optimality. Besides this there is the discrete configuration space

search, which for instance produces a set of ordered waypoints through which a spline is fitted

through (adhering to acceleration constraints). The spline method’s trajectory can then be used for

speed optimization for a minimum-time solution. Last of this type is using 2-D Voronoi solutions using

multiple planes differentiated by a single angle which include initial and goal point, which has also

been proven to work in a multi-level controlled rotorcraft.

• Maneuver automaton or control quanta use a discrete set of motion primitives to find an optimal

path. These primitives are composed of the trim trajectories (equilibrium motions), and maneuvers

(non-equilibrium transitions, such as braking or a U-turn with a car, or a simple banked turn to a

hammerhead for aircraft). Any states between these pre-defined motions are interpolated. As can

be expected, the more agile and controllable a vehicle is, the more maneuvers and trim states need

to be recorded. The difference between these methods is that whereas the maneuver automaton

chooses from a set of motion primitives, the control quanta instead chooses from a set of control

policies.

• Mathematical programming approaches treat trajectory planning as numerical optimization. Various

methods exist such as a linear quadratic regulator (LQR), or using mixed integer linear programming

(MILP), but the idea is the same where a certain, possibly heuristic, cost-function can be minimized.

These methods can be resolution complete, resolution optimal, and resolution sound, depending on

how the problem (local minima, obstacle constraints) and controller (robustness, stability) are defined.

Applications have been developed for multi-vehicle path planning and methods with risk avoidance.

A commonly used method for UAV applications is MPC, where optimality and completeness again

heavily depend on the definitions of constraints and the goal. Using the vehicle model, a trajectory is

optimized within a certain control horizon.

• Other methods include the dynamic window approach, where a set of translational and rotational

velocities are periodically optimized based on a distance from the goal, and the position of obstacles.

This method has been combined with a global path planner, hierarchically decoupling the problem

of planning and control. The potential field approach can also work with a differentially constrained

problem serving as part of a feedback controller, though care must be taken for stability. Another

approach is reactive planning which assumes no prior knowledge of obstacle positions nor do

they perform global planning. As such these methods are usually developed as a local, lower-

level, obstacle avoidance controller using (among others) visual flow, fuzzy logic, bio-inspired AI, or

learning-based methods, while a separate controller ensures global goal following.

This has almost all been sourced from Goerzen, Kong, and Mettler [28], and the logic agrees with

the target detection perspective from Robin and Lacroix [13]. Certain methods perform better for a UAV

2.3. System design 41

path-planning application. From those, there are even fewer that can take into account the real-time

computation constraints, limited sensor range, and possible lack of a map, besides the problem of the

UAV state space. From those, the hierarchically decoupled planning and control, reactive planning, and

the mathematical optimization (specifically the MPC) are chosen as a baseline design direction.

González et al. [32] took a different approach to characterizing the methods in Part 2.3.2 (which will

not be reiterated for brevity). Simply put the methods can be summarized as Graph-searching methods

(A*, Dijkstra, state lattices, etc.), sampling based planners (such as rapidly-expanding random trees),

interpolating curve planners (line and circle, splines, polynomials, Bézier curves), and numerical optimizers

(such as MPC). Line and circle approaches combine straight lines with curves around obstacles to find

a shortest path, it has low computational cost and ensures shortest path for car-like vehicles. To clarify,

their work focuses on methods for planar motion, but even in the 2-dimensional case they identified that

real-time dynamic obstacle avoidance is an unsolved challenge. Specifically, due to the real-time constraint

in high-speed scenarios, and the main problem being time-consuming perception algorithms.

Dynamic obstacle avoidance

The motion planning algorithms introduced so far concern themselves with the problems of static environ-

ments, which is not necessarily the case in uSaR. Mohanan and Salgoankar [26] have summarized various

robot motion planning approaches in dynamic environments in their work, from potential fields methods

and visual motion planning, to probability based methods. As most methods were already addressed by

Goerzen, Kong, and Mettler in [28], summarized further in Part 2.3.2, only a few methods will be addressed

here and the modelling of the dynamic obstacles.

Most higher level information used in these methods, such as the velocity or predicted path of objects,

cannot always be directly measured (such as the distance which can be measured with a LiDAR). Rather

the vehicle often uses a costly perception algorithm that might assume knowledge of self-motion, and

periodic sensor inputs. This takes its own inaccuracies which were mentioned but not discussed in detail.

Velocity-based motion planning algorithms use the velocity of dynamic obstacles to predict a collision-

free path. One example is the time-varying dynamic window, see Figure 2.3, where a set of trajectories

are calculated based on the predicted motion of the obstacle.

Figure 2.3: Time varying dynamic window [33].

However, most approaches assume erroneously that the obstacle moves in a straight line. So other

methods assume a piecewise linear obstacle by using a smaller prediction window (partial motion planning).

Another method exploits more detailed knowledge about the obstacle’s trajectory, as is the case with

inevitable collision state (ICS) and ICS-AVOID, which use non-linear velocity obstacles (i.e. obstacles that

do not move in a straight line), see Figure 2.4.

Real-time adaptive motion planning (RAMP) performs simultaneous planning of path, trajectory and

execution of motion, and can be used to minimize multiple criteria (such as energy, time, or flexibility).

Whereas an MCDM generally requires plenty of precise information before making the best decision,

RAMP is an optimization process that performs on-the-go.

Trajectory planning with differential constraints must have fast online performance, and as a result is

slightly less strict on the accuracy and interpretation of the sensors. Several methods mentioned in Part

2.3.2 fall under this category, and to perform dynamic obstacle avoidance, most of these methods rely on

some accuracy or continuity regarding sensor data and interpretation for the obstacles’ trajectories.

2.3. System design 42

Figure 2.4: Non-linear velocity obstacles (NLVO) [26].

There are also other interesting algorithms. Probability based motion planning, for instance, assumes

uncertainties (particularly state uncertainties) as part of the controller design. POMDP falls under this

category. POMDP works by discretizing the system to a finite set of states. The agent, using probabilities,

assumes a belief state based on observations affected by uncertainties. The belief state limits the choice

of actions. The best action is selected to maximize a reward function. The current action and state lead to

a future state. Future state optimization can be performed by including future state estimates and actions,

leading to a decision tree, where the long-term reward can be maximized. The main drawback is the time

complexity as the decision tree expands geometrically, due to the branching. There are methods to resolve

or ameliorate this, such as branch-and-bound techniques.

It should be noted that it is possible to modify the other algorithms to include such uncertainties. For

instance, the MPC can use stochastic control. Velocity obstacles can instead use probability velocity

obstacles (PVO) which uses a probability grid to encompass possible obstacle states, but it is not efficient

for velocity obstacles which do not move in straight lines [26].

Another set of algorithms concern themselves with multi-agent systems. In this case the obstacles

(which can include other agents) are no longer passive, but reactive by design, because the agents

can adapt their behaviour based on an underlying model or through communication (see Part 2.3.3).

There are various models which include the agency of obstacles by design (rule-based, centralized,

crowds), but other methods that were mentioned can be adapted to (possibly inefficiently) account for that

possibility. Assuming non-linear velocity obstacles is sufficient for obstacle avoidance, but not optimal for

the multi-agent system as a whole.

Regardless of what path-planning approach is taken, the performance of dynamic obstacle avoidance is

as good as the dynamic obstacle model. Some methods are less reliant on sensor information than others.

Following the requirements of real-time computation, UAV state space, limited sensor range, and possibly

unreliable sensors, the complexity of the dynamic obstacle avoidance algorithm has to be decoupled from

the global path-planning problem.

Selected path-planning method and further development

From the review so far, a hierarchically decoupled planning and control MPC approach with dynamic

obstacle avoidance is one of the better controller combinations. This was indirectly obtained using the

comparisons of several review papers ([26], [32], [28], and [13]). The details of the MPC are extensive

enough to be discussed in chapter 2.4. There are two hierarchical MPC path-planning papers that will

be used as inspiration: Jamshidnejad and Frazzoli’s work [34] for 2D which will be expanded to 3D, and

Bemporad and Rocchi’s work [35] for 3D UAVs.

Bemporad, Pascucci, and Rocchi [35] developed a hierarchical MPC for a UAV, with a linear MPC for

tracking generic position references, and a hybrid MPC for obstacle avoidance, subsequently applied for

formation flight [36]. Jamshidnejad and Frazzoli developed a hierarchical MPC which is used to control

2.3. System design 43

circular unmanned ground vehicle (UGV), using a shortest path planner which includes obstacle avoidance.

Figure 2.5 shows the static obstacle avoidance by Bemporad and Rocchi [36], while Figure 2.6 shows the

static obstacle avoidance by Jamshidnejad and Frazzoli [34].

Figure 2.5: Obstacle avoidance performed by formation

flying UAVs in the work of Bemporad and Rocchi [36].

Figure 2.6: Obstacle avoidance performed

by UGV in the work of Jamshidnejad and

Frazzoli [34].

The obstacle-avoidance method in Jamshidnejad and Frazzoli’s work [34], is a variation on the com-

putationally inexpensive line and circle method. However, rather than interpolating path waypoints with

straight lines and circular arcs, instead a heuristic algorithm is used to find the shortest path. Using straight

lines, and circular arcs around obstacle boundaries impeding its path, the robot vehicle can safely reach

the goal. If the goal is outside the sensor range, a temporary goal is generated between the robot’s position

and final goal, based on a customizable trigger. Finally, once the shortest path algorithm is done, it returns

a set of waypoints which the waypoint following MPC (with a free space constraint) aims to follow by

minimizing its cost function.

The obstacle avoidancemethod in Bemporad and Rocchi’s work [36], models the obstacles as tetrahedra

(for simplicity). The obstacle is avoided by setting binary ’obstacle avoidance’ variables to 0, which return 1

if the linear inequality (position of UAV is inside the obstacle) is violated. They compared the method with

a potential fields approach, and found that obstacle avoidance with the potential fields method is computed

in the order of a few milliseconds, the decentralized approach took about 73ms, and the centralized 466ms.

Though the communication is addressed through a hierarchical system, it does not take into account

real-life factors such as communication delays and data transmission accuracy. This shows a relatively

slower controller, but one that is sufficiently quick for real-time applications.

Interestingly, the MPC by Jamshidnejad and Frazzoli contains an autotuning approach for the prediction

horizon (explained in Chapter 2.4), but it does not have hierarchically decoupled controllers. The MPC by

Bemporad and Rocchi, on the other hand, has the opposite. Note that, though they have been identified

as possible future developments, neither method includes sensor uncertainties, dynamic obstacles, effects

of communication on the locomotion, or the effect of real-life practical implementation. These are the

directions of development which will be considered.

2.3.3. Communication
Communication for the application of a multi-agent robotic uSaR team is either done between the human

in the loop and the robots, or between the robots themselves. When looking at inter-agent communication

the problem can be classified through its means or its goal. Rossi et al. [37] made a review and taxonomy

for multi-agent algorithms with collective behaviour. Drew [7] performed a multi-agent study for motion

planning and navigation. Regarding communication, he claims that (efficient) task allocation is required to

address the scalability of multi-robot systems.

2.3. System design 44

Methods deemed viable for multi-agent motion-planning, including task division, will therefore quickly

be covered in Part 2.3.3. Human-robot interaction is beyond the scope of this project, so it is heavily

summarized in Part 2.3.4. Control hierarchies within the selected controller’s perspective will be discussed

in Part 2.4.3. Means of communication (subsystem design), bandwidth allocation, and maintaining

communication through, for instance, daisy-chaining or formations are deemed beyond the scope of this

project. Instead the controller will be simply made compatible to various constraints from the communication

aspect.

Considerations for path-planning

Does communication imply a black-box data transmission, does it determine or influence the goal, or does it

define the details of the control strategy (such as through cooperative planning and task division)? It can be

assumed to be unknown, so the controller must be made compatible with various communication strategies.

In the definitions set forth by Rossi et al. [37], a range of algorithms are compared for motion planning, goal

searching, and other missions. They defined motion planning as path-finding in cluttered environments (a bit

more than obstacle avoidance). Goal searching is defined as target searching (optimotaxis source-search

which works similar to a potential function, and global frontier techniques which are capture solutions [13]).

From the global mission perspective the proposed algorithms following the taxonomy of Robin and Lacroix

[13] are preferred.

The task allocation problem can be formulated and performed many ways. Task division for this

research is mostly, if not only, the division of regions for search. For example, this can be done using

auctions or swarm-based methods, but a detailed design and comparison of the effects of communication

and task division algorithms is beyond the scope of the project. For more details, the reader is referred to

Khamis et al. [38] and Rizk et al. [39].

Explicit communication is not necessary. It is also possible to ensure that the self-assigned task of

the agent leads to a cooperative victim localization strategy (emergent strategies). Among the methods

for decentralized control identified by Drew [7], some can be used to do this such as modifying the

environment using supplementary networking devices (RFID tags), or mechanical means (such as sprayed

chemicals). Other ways use implicit communication through stigmergy (the honeybee’s waggle dance), or

machine-learned approaches, possibly based on the motion or behaviour of the other agents.

The approaches determined in Part 2.3.2 (hierarchically decoupled planning and control, reactive

planning, and the mathematical optimization in the form of an MPC), can directly address the addition of

new constraints to their motion planning. When considering communication with motion planning, two of

the methods suggested by Rossi et al. [37] are both hardware tested and MPC in nature: decentralized

and distributed MPC. The difference between these two approaches lies in the extent of collaboration

between robots, addressed in further detail in Part 2.4.3.

Communication could also be used to perform co-localization, using the data of other nearby rovers to

improve the state estimate. A problem that could arise in this case is asynchronous data transfers, where

the controller receives inputs from the different time steps from different robots [40]. This can be resolved

to some extent by either idling during each communication update step, using a prediction-belief approach

(for instance, with a Kalman filter), or to constrain the problem and subsequently relax certain constraints

or costs based on the communicated data (for example, from robot A’s perspective, robot B can move at

least 10cm before hitting an obstacle, so after communication, robot B can move closer to the wall if so

desired).

For now, considering the multi-agent nature of the simulations, two approaches can be programmed:

either fully decentralized (with no explicit communication) or distributed/centralized (with explicit communi-

cation). The more robust solution would be one that is not reliant on data transmissions. On the other hand,

using communication could lead to more globally optimal searches, at basically the same computational

efficiency (using methods such as separating the MPC problem as in [40]). This is a trade-off that can be

avoided by having a hybrid MPC that changes based on the reliability and availability of communication

data, or to have event-driven communication. Event-based communication addresses both communication

and its absence, by making the controller compatible with a set of flexibly-programmed behaviours (or

constraints) or respective triggers ([41], [42]). State estimates can be updated using the event-based

measurements, dealing with asynchronous data using synchronous updates within a space bounded using

the event-based measurements.

2.3. System design 45

When relying on communication, several constraints need to be set up such that the agents remain in

communication range throughout the mission, to share the data they find or the actions they undertake.

Secondly, task switching and goal setting needs to be made compatible with communication (for task

allocation - the main benefit of communication). Creating a hybrid model (conditional communication) would

avoid having to make that choice. Rossi et al. [37] identify the resilience to communication disruptions for

a collective behavioral algorithm as a research area of interest. Formulating a distributed or decentralized

controller in the proposed form is not necessarily a collective algorithm, but the underlying concept could

be a solution for robust communication (namely, a controller compatible with communication, using event-

driven communication, where communicated data supersedes/adapts local autonomy based on certain

parameters).

2.3.4. Other
There are a few other considerations which fall beyond the scope of this project, but through research

were found to be of interest for a final implementation. These are the fleet design (e.g. ground vs. air

vehicle), system robustness (e.g. how to deal with agent loss), and human-robot interaction (e.g. adjustable

autonomy). A detailed controller design flexible to these concerns is beyond the scope of this project,

however, if possible, it should be attempted to make the controller compatible with them by virtue of a

modular design approach.

Fleet design

UAVs have been mentioned as scouts, since UGVs could struggle with unknown terrain. However, UGVs

could assist in obstacle manipulation to improve exploration or victim detection efforts [7]. Secondly, the

usual flight time of 10 minutes for teleoperated UAVs, or (ideal) 30 minutes for micro UAVs, is too short for

an extended SaR mission. Simply due to this, a heterogeneous system (with UGVs serving as potential

charging platforms and data fusion centers) is recommended [7]. Besides the distinction between the

method of locomotion of UGVs/UAVs, the agents can also be made heterogeneous by using different

sensors.

When using heterogeneous fleets a different controller architecture must be designed that would

take into account the differences between the agents. The communication architecture, motion planning,

robustness, and global controller design must be designed to account for the heterogeneity.

Controller robustness to hardware states

Hardware robustness for the controller can be achieved at two stages: system-level and agent-level.

Luckily, the methods for robustness are the same at both levels. Robustness can be achieved through

redundant use of parts (e.g. multiple visual cameras) or through active fault-tolerant control (see [43] and

[44]). In case of multi-agent systems, the redundancy comes in the form of the multi-agent aspect, while

fault-tolerant control could be achieved through reactive communication in case of communication loss.

Human-robot interaction

Human-robot interaction is perceived as a major challenge for both researchers and practitioners ([16],

[7]). As the number of agents in the system increases, so too does the cognitive burden on the human

practitioner who controls or supervises the system. To combat this, interfaces with future state prediction

and greater abstraction are used.

Adjustable autonomy is also provided as a strategy, where an agent’s autonomy scales from fully

autonomous to tele-operated based on situational context (e.g. for SaR: a dangerous environment or

possible victim identification) [7]. So far, this is mostly done using machine-learned models.

2.3.5. Proposed robot design
”There is an inherent trade-off between the price, functionality, and agent count in the system. Given a

static budget, the core effort is to balance the gains of parallelization with the loss of a robot’s functionality”

[7]. As far as the controller is concerned the main trade off is the computational cost of the perception and

locomotion algorithms compared to the search speed and accuracy.

Following the logic of the hierarchically decoupled global planning and local control design suggested

in Part 2.3.2, the problem can be decoupled even further into its constituent tasks, see the architecture

in Figure 2.7. The global planner sets the direction of exploration, and optimizes the path for victim

2.3. System design 46

identification based on communication, sensors, and other data. The local planner uses the waypoints or

weights set by the global planner and uses victim detection and obstacle avoidance constraints to safely

and successfully perform pathing.

Decoupling the problem, and thereby the controller, means trade offs can be performed on a controller

level, while possibly simplifying the other subsystem selections. The hierarchically decoupled controllers

could be coded using artificial potential functions, MPC variations, or some other path-planning approach

mentioned in Part 2.3.2. However, for the purpose of this project MPC is chosen, where sub-choices

regarding MPC design are further studied in Chapter 2.4.

Figure 2.7: General decoupled control architecture for an agent.

General controller design

Considering the decoupled structure, each task (and thus controller) has different requirements. The

position/attitude controller requires very quick updates cycles to accommodate the results of the other

tasks. Requirements for sensors/perception is low latency data with just enough accuracy to be within an

acceptable state estimate. This will follow from the local MPC (or possibly just a separate PID) controller

with IMU feedback. Thus there are no other direct requirements besides the high update speed which is

mostly controller dependent.

Furthermore, another task for the local controller is to accurately identify obstacles, and aim to avoid

them. It modifies the waypoints set by the global controller through one of the methods listed in Part 2.3.2. It

requires a quick update cycle, mostly dependent on the speed of the vehicle, and how constrained/cluttered

the environment is. It could possibly be decoupled from the victim identification controller. At a high

speed, the controller requires moderately accurate sensors, with low latency feedback from the perception

subsystem. At lower speeds, the latency is not that important. The controller therefore is a limit to the

operational speed of the system.

The victim identification controller has to modify the pathing to possibly include a few (2-3) different

view angles of an area, possibly more if required to verify a potential victim (feedback from the perception

subsystem). The perception needs to be as accurate as possible within a set time constraint, as this is the

underlying mission. High accuracy perception is required, but low latency is not necessarily required.

The global path-planning controller uses possible information from the controller subsystem, internalized

map, or weighted function to specify the goal for the local controller. It is formulated in such a way to reach

2.4. Model predictive controller 47

areas and fulfil the system level mission task. The autonomous task allocation could issue a ”return” task

when the battery is nearing depletion, or some other tasks based on circumstances. It requires a slow but

accurate positional estimation.

Perception selection

It is possible to select a LiDAR to address obstacle avoidance and further mapping. Though good for

obstacle avoidance (not victim detection), it is costly, reducing the availability of the system to impoverished

communities. An infrared camera unfortunately runs into the same cost problem. The solution is therefore

to rely on several infrared proximity sensors to assist the short-range or possible out-of-frame obstacle

avoidance with a visual camera. Victim identification, preferring the multi-feature detecting approach,

could be done using the camera (YOLOv3 or [17]), pyroelectric sensor, and a microphone. Limiting any

further financial cost increases, a GNSS/IMU/visual camera sensor fused approach is used for the global

localization.

Fleet selection

Not only low in financial cost, the sensors are also low in power consumption. Therefore the main power

use comes in the form of the controllers’ optimization processes and the locomotion system of the robot.

Both a UGV or UAV are possible. The ground vehicle is less power hungry due to the passively stable idle

state and can carry more/larger batteries due to less strict weight requirements, while an air vehicle can

reach areas the ground vehicle cannot. The proposed multi-agent system is therefore heterogeneous,

using UAVs to reach places the UGV cannot reach or are out of its way. This way, the power storage

features of the UGV can be used with the mobile exploration of UAVs. Multi-copters will be selected for the

UAV, though it should be noted that traditional helicopter designs are equally viable for indoor exploration

(a miniaturized version as in [45]).

2.3.6. Simulation platforms
Simulators can happen on multiple stages, namely model-, software-, or hardware-in-the-loop (MIL, SIL,

HIL) [12]. The MIL approach uses high level of abstraction, useful to develop algorithms without involving

dedicated hardware. SIL uses a model close to the real one, where code that is tested is written for that

particular mechatronic system, within a modelling environment which would be useful to verify (or validate)

that software. HIL tests the actual hardware (sensors, actuators, etc.) with the final software, connected

to the simulator, providing feedback regarding possible signal/sensor smoothing, and might give rise to

details that were not considered during the simulation design process.

With respect to MIL, an interpreted programming language such as Python or MATLAB is sufficient.

For SIL, Mualla et al. [46] performed a literature review on the agent-based simulation of UAVs, presenting

many different frameworks. Most researchers, however, tend to use their own simulation frameworks

from scratch, possibly because existing simulation frameworks do not cover their area of interest (such

as continuous-time simulation or specific environmental conditions), or because slightly modifying their

MIL approach is sufficient. In case of the current scenario it would be of interest to also simulate possible

mission-affecting levels by virtue of the environment, e.g. a roof collapse blocking the exit, leading to a

possible loss of an agent.

Considering the intent of this thesis, MIL is sufficient to develop the general controller design. SIL is

instead useful for a higher level verification which can be used for multi-agent testing in ”real” simulated

conditions, which include sensor and environmental uncertainties. HIL is going to be used for the develop-

ment as it is the usual course of action [12]. For HIL, if required, it can be tested at the TU Delft’s MAVLab.

Test-driven development will be used throughout.

2.4. Model predictive controller
MPC has been identified as the control theory that could be used to optimize both the global and local task.

Compared to a simple feedback gain, there is more underlying theory which requires a bit of research into

both the fundamentals and any further developments.

Part 2.4.1 lists the fundamental theory of how an MPC works. Part 2.4.2 on the other hand, introduces

the concepts of stability, feasibility, and robustness, with several means to account for them in the controller

design. At this stage a working MPC can be made, but considering the multi-agent aspect, the sensor and

2.4. Model predictive controller 48

state uncertainties, as well as the non-linearity of both the agent model and obstacles, several extensions

to the original linear MPC are considered in Part 2.4.3. Part 2.4.4 contains several tuning methods for

the various parameters in an MPC, as well as tuning for its robustness. Lastly, using this knowledge, a

development plan is set forth for the hierarchically structured MPC in Part 2.4.5, which will be used in the

thesis.

2.4.1. Fundamentals
MPC is a control method which uses the knowledge of the model to predict its future states and future

inputs for ”t” timesteps. In general control terms, there are two gains that require tuning, namely the

throughput and the feedback gain that modify some error or a reference signal. The MPC is more complex

than the usual controller, using an optimizer and a model of the controlled system. See Figure 2.8 for a

visual representation of this process using discrete time variables.

The optimizer usually aims to minimize a cost function (for example
∑

(xr − x̂)
2
) based on a reference

signal xr, and the predicted future states (x̂) or outputs (ŷ). These are predicted using a model of the
system. The controller (consisting of the optimizer and model), optimizes x̂ within a number of future steps

called the prediction horizon (Nm or Hp). It does this by changing the controller output (û) over the control
horizon (Nc or Hc), which drives the system. As the model of the system is used to predict x̂ and û, it can
be understood that an accurate model is a cornerstone for the MPC method. It should also be noted that

the state is not always fully observable (or badly observed due to sensor quality), and state estimation

techniques can be employed. See Figure 2.9 for an illustration of the control and prediction horizon.

Figure 2.8: Feedback model predictive controller

Figure 2.9: Schematic diagram of

model predictive control horizons [47].

The optimization can be constrained by real-life limitations or design considerations, which are translated

into mathematical constraints. Constraints can act on the input signal u by, such as in the case of an

aircraft controller, limiting the maximum deflection of a control surface or the maximum power that can go to

a motor. Besides enforcing input limitations, the system state can also be constrained. Continuing with the

aircraft example, it is thus possible to set constraints to its state to avoid stalling during flight maneuvers.

Another way to define constraints is by looking at how they are enforced. A linear or linear quadratic

solver (linear constraints, quadratic cost function) cannot resolve convex or concave constraints (such as

variable multiplication). These definitions play a large role in how quickly (or even if!) an optimizer can

find a solution to the problem. For more complex constraints (stochastic or quadratic) second-order cone

programming can be used. A common way to represent the MPC mathematically is shown in Equation 2.2.

min J =

Hp−1∑
k=0

x′
kQxk +

Hc−1∑
k=0

u′
kRuk + Vf (xHp

)

 (2.2a)

2.4. Model predictive controller 49

subject to

F1uk ≤ G1 (2.2b)

E2xk + F2uk ≤ G2 (2.2c)

and ”stability constraints” (2.2d)

Where Q and R are weight matrices for the state and input signal, respectively, and E, F , and G are

matrices that set the input and state constraints [47]. x′
k is the transposed state vector at discrete time step

k. It also includes a terminal cost Vf and/or stability constraints that ensure closed loop stability. Stability

of an MPC, terminal cost, and stability constraints (Equation 2.2d) are explained in Part 2.4.2. Note that

the constraints in Equation 2.2 can also include future (xk+1 or uk+1) and past terms (xk−1 or uk−1). Using

the system model as a constraint is one way future states can get estimated.

2.4.2. Stability, feasibility, and robustness
To understand how to work with an MPC, the challenges surrounding an MPC must be understood. Stability

implies the output in Figure 2.9 will converge to the reference value. Feasibility implies there is a solution

to the problem (given the constraints). Robustness implies that a usually bounded uncertainty does not

affect the stability or feasibility of the MPC.

Stability

By definition, Equation 2.2 is not necessarily stable nor feasible. There are various methods to ensure

stability, each aiming to eventually set the system’s state x to either 0 or to guide it to an linear quadratic
(LQ) invariant set. As was summarized by Bemporad and Morari [47], there are 5 directions to ensure

stability (1-4 are proven through Lyapunov stability theory, whereas 5 is norm-shrinking by definition):

1. It is possible to set a terminal constraint, where x(t+Hp|t) = 0.

2. For asymptotically stable systems the terminal constraint can be avoided by using an infinite prediction

horizon, with a limited control horizon.

3. It is also possible to use a weighted terminal cost instead, based on the stabilizing solution from the

algebraic Riccati equation. This is done by substituting the solution P , into Equation 2.2a, such that
Vf (xHp

) = x′
Hp

PxHp
.

4. Another way is to find a terminal set, which is LQ-invariant. Stability can be ensured if the state at

time t+Hp is contained within the set, as a feedback controller (usually linear, ut+1 = K(xt − xref))
can take over at that point.

5. A contraction constraint instead states that ‖xt+1 − xref‖ < ‖xt − xref‖, which naturally leads to
convergence if the constraint is fulfilled.

All are valid methods, with their own considerations or drawbacks regarding computation or optimization.

The terminal constraint formulations have a few problems: Setting the state to 0 within Hp time requires a

large control cost, larger still when using a small prediction horizon [48]. Considering the input constraint

in 2.2b, maintaining feasibility could limit the set of stabilizable states even further (possibly leading to a

larger control cost). To some extent these problems can be mitigated by increasing the prediction horizon

or by only stabilizing the unstable modes.

The infinite prediction horizon is a good solution, but only if the system is inherently stable will the

optimization lead to a locally optimal solution [48]. The weighted terminal cost does not assume inherent

stability, such as the infinite horizon [48], but it does not guarantee the optimal solution and can run into

problems with feasibility. Terminal sets therefore more common [49]. There are variations on this based

on scaling [50] or translating (moving) the terminal set based on the state.

Contraction constraints do not require long prediction horizons, and avoid the computation of the

terminal set and enforcement of the constraints. This is mainly the reason why they have become popular

for complex non-linear systems. Combinations of contraction constraints and terminal costs also perform

well [49].

2.4. Model predictive controller 50

Feasibility

Compared to stability, feasibility can be better understood in real-world terms. Suppose an uSaR scenario,

where an autonomously controlled robot enters a hallway, after which the only exit collapses. At that point

the MPC can no longer find a solution to lead the robot back to the rescue team. The lack of feasibility

can also happen due to the controller’s inputs, using an aircraft as an example, by pitching the nose too

high, there is flow separation on the wing, leading to a stall. This drastically reduces the effect of the

control surfaces, thus possibly leading to infeasible cases (though there are controllers that can specifically

resolve this [51]).

The reasons why feasibility can come into question is possibly due to a disturbance, a prediction window

that is too short, or due to inflexible state constraints [49]. Resolving these can be done through robust

design, increasing the prediction window or setting additional constraints for feasibility, or by ’softening’ the

state constraints, respectively.

State constraints can be modified to include slack variables, such that the violation of state constraints

is done at the cost of a penalty to its cost function, yielding a solution which could otherwise not exist.

However, this only applies to state constraints, as input constraints are always ’hard’ (as they are usually

based on real-life equipment which only operates within certain conditions). It is possible to use a ”reference

governor” ([47], [49]) that creates a feasible reference trajectory for the input signal (it essentially smoothes

the reference signal when abrupt changes would lead to constraint violations).

Robustness

Another one of the main drawbacks of the basic MPC is that it does not take into account disturbances and

uncertainties (such as wind gusts for an aircraft) in the input, or sensor noise in the output. For real-world

applications these are vitally important, perhaps even more than the speed of solving the MPC. As put by

Bemporad and Morari, robustness means that the system maintains stability and a certain performance for

a specified range of model variations and a class of noise signals (uncertainty range) [47].

In other words, the first step to designing a robust MPC is to specify the uncertainty, the second is to

account for them. There are methods, though they come at a cost of performance (in both computation

and optimization) [47], [49]:

1. Uncertainty intervals through step- and impulse-response analysis: Not sufficient to guarantee

robustness, as oscillating step responses could be allowed [49]. Still used in practical applications

due to the very low computational cost [47].

2. Structured feedback: By modelling the uncertainty (as multiplicative, additive, or parametric) and

feeding it back into the system. Based on the uncertainty (whether it can be modelled as a diagonal

matrix, or full matrix), singular value decomposition or computational approximation can be used to

evaluate whether robust stability is satisfied.

3. A set of possible models (or model states): Either a full set of finite possible models, or a set based

on the extreme cases (and generating an ’envelope’). Then using the L∞-norm, the worst case error

is minimized (or by using the L2-norm the least-squares errors can be minimized).

These methods can be applied to any MPC formulation. However, it is also possible to include

robustness in design. One way is to define the cost function of the MPC to favor robustness, in a way such

that the worst-case prediction must contract [49]. Another method is a stochastic MPC, where a stochastic

dynamical model of the process is used to predict its possible future evolution [52]. Regardless of which

method is chosen, the truth is that robustness is traded-off against optimization based on how bounded

the uncertainties are.

2.4.3. Variations
So far, the fundamentals of MPC have been analyzed, with various possible methods to assert the stability

of the whole system, and robustness of the controller. There are many variations of MPC based on the

data, use-case, and type of system to be controlled. The way the MPC is defined is through the underlying

model, constraints, objective function, and input signal. Depending on these factors various optimization

algorithms can be used, from simple linear, to sequential quadratic programming, or even other non-linear

methods such as genetic algorithms which define the computational speed, and to a much lesser extent

the optimization.

2.4. Model predictive controller 51

The main distinction on the model side is whether it is described as linear or non-linear. Once it is

known what the model is, it is possible to implement robustness with either the methods in Part 2.4.2,

or through a dedicated robust MPC design. If stochastic variables or inputs are used stochastic MPC

is a required design direction. Lastly the level of centralization can be developed through specifying a

centralized, decentralized, or distributed MPC.

Linearity

MPC is linear or non-linear based on the model, constraints, and optimizer. It is even possible to have a

hybrid MPC with discretized states when using switches. Considering the UAV use-case (a non-linear

system), the way to use a linear MPC would be through piece-wise or repetitive linearization. When dealing

with a linear system (and thus linear constraints), quadratic programming is the highest level of complexity,

already setting the stage for a fast MPC.

As a matter of fact, linear MPC can use the (approximate) primal barrier method in order to solve the

quadratic programming problem. As far as speed is concerned, linear or quadratic programming problems

can be solved in milliseconds [53]. However, it is limited to only linear systems. This means for non-linear

systems, the non-linear residuals can be used, but the system dynamics have to be linearized around the

new point, as is done with [54]. There are several ways to perform linearization, see [55] for a comparison.

On a hardware level, attempts to create a faster MPC led to a scalable embedded systems approach.

Linear programming problems implemented in such a way can be solved in mere microseconds ([56],[57]).

However, not all controllers can be designed using successive linearization, but high speed solutions are

still desired. In the words of Oberdieck and Pistikopoulos with explicit MPC ”... the online computational

requirements are reduced to a point location and a function evaluation, avoiding in principle the need for

online optimization” [58]. To account for the hybrid system, the usual state-space model representation in

Equation 2.3 is adjusted by using auxiliary variables seen in Equation 2.4a and constraints in 2.4b.

xk+1 = Axk +Buk

yk = Cxk +Duk

(2.3)

xk+1 = Axk +B1uk +B2δk +B3zk

yk = Cxk +D1uk +D2δk +D3zk
(2.4a)

E2δk + E3zk ≤ E1uk + E4xk + E5 (2.4b)

Where A, B, C, and D are the system’s state-space equations, xk is the state at a discretized time

step k, and z and δ are auxiliary control variables for real or binary control, respectively. Following the
methods defined in [59], [60], and [58]; the state-space adjusted for the hybrid system is re-defined as

a multi-parametric mixed integer (linear or quadratic) problem. Based on the parameters several critical

regions are defined, each with a (linear or quadratic) optimal value function. Each critical region CR, has its
own solution given by xi,k(θ) = Ki,kθ + ri,k,∀θ ∈ CRi,k, with k = 1, ..,m, i = 1, ..., n, where n is the upper

bound for the number of critical regions, m is the number of critical regions created, θ are the parameters,
with offset r and control gain K. Upon solving the multi-parametric problem in each critical region, the

solutions and boundaries are stored in look-up tables which the online, i.e. real-time, controller will use.

Unfortunately one of the main drawbacks of the explicit MPC is that ”the number of entries in the table

can grow exponentially with the horizon, state, and input dimensions” [53], suggesting the use of more

costly hardware, or online MPC approaches. With the interest for neural networks growing, neural networks

with rectified linear basis functions were found ideal for approximating large solution spaces [49], thus

reducing the downsides. Other drawbacks are that it cannot adequately respond to untrained scenarios,

and that highly non-linear behaviour requires many critical regions.

When neither method can be used, due to the required control accuracy or adaptability to a changing

environment, non-linear MPC is the other choice. Theoretically, the non-linear MPC is higher in accuracy

as it can exploit state interdependencies and push the system’s limits [61]. In case accuracy is of such

concern, it is possible to model the system dynamics in continuous time to even get rid of the discretization

error [62].

2.4. Model predictive controller 52

Kamel, Burri, and Siegwart [61], compared a non-linear and linearized MPC for their simulated hexa-

copter implementation, with the non-linear being more accurate. Interestingly, despite the theory claiming

otherwise, the non-linear implementation was computationally quicker. This proves that at the practical

stage it is not the theoretical limitations that dictate controller performance, but that it would mostly be

on the way the controller is implemented, thus the researcher’s or engineer’s work. Though they did not

discuss their results, it is possible that significant computational effort was devoted to re-linearizing the

problem.

One work in particular dealt with an experimental implementation of a UAV exploring an underground

environment with a nonlinear MPC for control and obstacle avoidance [63]. The experimental set up was

rather slow (1.2 m/s was the quickest speed in the tests), but the autonomous exploration on the field trials

was successful. It had a sampling speed of 50 ms, with the nonlinear MPC computation speed of 10 ms.

To summarize, the highest computational complexity is theoretically found in the non-linear case,

followed by the explicit and then the linear. There can be cases such as with Kamel, Burri, and Siegwart

[61], where other factors (such as linearization) might influence the controller’s computational speed. The

highest accuracy (minimum L2 error term over the control period) in reference tracking or disturbance

rejecting scenarios is found in the non-linear case which fully models the interdependent dynamics. Explicit

MPC follow closely behind, with the linearized methods trailing last. Regarding adaptability, explicit MPC

cannot resolve scenarios that were not considered off-line.

Stochasticity

As summarized by Mesbah [64], the main distinguishing factors for a stochastic MPC are the underlying

model (linear vs non-linear), the type of the uncertainties (time-varying vs time-invariant, additive vs

multiplicative), the propagation of the uncertainties (stochastic tubes vs simulation vs chaos/mixtures),

chance constraints, and so forth. Regardless of how it is constructed, the aim of the stochastic MPC is to

minimize an expected cost with respect to possible disturbances. By definition it has a high computational

cost, especially when the system is non-linear [65]. The complexity comes in the form of a high number of

control constraints due to parametrization of the input (when linear it is usually done as u = Kx+ v, where
K is chosen such that the state-space model is asymptotically stable, and v is the control input determined
online). Mayne [65] therefore suggests to rather use conventional MPCwith tightened constraints. Research

is still actively being done on the subject for its ability to deal with stochastic variables, and to resolve the

issues as mentioned in [64] and [65].

However, for completeness the subject will be quickly covered. In this case the system state can be

and usually is described by xt+1 = f(xt, ut, wt), where wt is a disturbance, usually a random process. At

this stage a full state-feedback is assumed for simplicity (see Figure 2.8), where the state x is measured
and fed back into the optimizer and model. The other choice is adding state estimation/reconstruction to

an already noise-influenced output signal. The input signal ut is modelled as a control policy πt, which

is based on the model type. Assuming a linear model (thus using u = Kx + v), either the nominal or

expected cost is found (using the probability distribution).

At this point both the uncertainty model and propagation are of interest as it defines the probability

distribution for the objective function. Modelling can be done using bounded additive or multiplicative

uncertainties. It can either be done using a stochastic tube (mostly linear systems, but recently progress

is being made for non-linear systems through constraint tightening [66], or unscented transform [67]),

sampling, or uncertainty evolution theories(polynomial chaos, Gaussian mixtures, or Fokker-Planck, used

mostly for non-linear systems) [64]. Once an approach for uncertainty propagation is chosen the only

remaining aspect is the definition of the constraints.

As the variables can be distributed over a range of values, the input constraints are either ’hard’,

leading to a conservative estimate and limiting feasibility, or ’soft’. Either the full bounds, expectations, or

probabilities can be used (for example P (uk ≤ umax |xk) > 0.95). Though the input constraints remained

largely the same, the state constraints are instead referred to as chance constraints. They can be joint,

individual, or expectation type. Essentially following P (gj(xk) ≤ 0) ≥ β, ∀j = 1, ..., s, k = 1, ..., Hp, for a

number of s different functions g, and a probability level β.

The knowledge for this section has mostly been taken from [65] and [64]. A suggested solution is in the

form of explicit (off-line) stochastic MPC. So far, the aim of this work is not to develop a fully new MPC

2.4. Model predictive controller 53

approach, but rather to design a controller using MPC for the mission as described in Part 2.2.3, and made

compatible the system design considerations in Chapter 2.3.

Multi-agency

Multi-agent systems can have indirect interaction through the environment or communicate directly, allowing

cooperative control techniques. A summary of different architectures for decentralized, distributed and

hierarchical MPC has been provided by Scattolini [68].

A decentralized system would have the different subsystems each with a separate controller interact

through their states, see Figure 2.10. This means no explicit communication is present. A distributed

system would have the controllers communicate with other controllers in communication range to find

an optimum that includes each others’ predicted states, see Figure 2.12. The centralized (also called

hierarchical, but it could lead to confusion with Figure 2.13) MPC has a top-down approach where

a coordinator gathers every local controller’s information, optimizes the problem, and gives the local

controllers set-points or costs, see Figure 2.11.

Figure 2.10: Decentralized MPC [68]. Figure 2.11: Centralized MPC [68].

Figure 2.12: Distributed MPC [68].

Figure 2.13: (De-)centralized hierarchical MPC for a single

agent [36].

The main benefit of a decentralized MPC is the lack of required communication, as the subsystems only

interact through the environment. The main demerit is its lack in global optimization: one single centralized

MPC can optimize the entire system’s future states, leading to better results compared to locally optimal

states from using multiple decentralized MPC. Even though the analysis has been done on a system and

2.4. Model predictive controller 54

its subsystems, the same conclusions can be made for a multi-agent system, where the agents are the

subsystems [68]. Scattolini referred to this as coordinated control.

Coordinated control can be online, by negotiating their final outcomes with their neighbours, requiring

the auctioning and task division. Stabilized MPC approaches have been reported in these aspects [68],

and there are many more successfully working designs without theoretical proofs on stability.

A distributed MPC is quicker than a centralized MPC [69], and does not rely as much on communication

compared to a centralized system (by definition). Distributed systems do have better global performance

compared to a decentralized architecture, due to their ability to coordinate. Camponogara et al. [40]

suggests a framework that decomposes the MPC problem into smaller problems, solved separately by

each agent. Zhihao et al. [42], and Rostami and Görges [41] employed distributed MPC with event-based

communication, reducing computational burden that way.

Lastly, it is also possible to use the hierarchical MPC to represent a system that has both fast and slow

dynamics (such as fast flight stabilization and slower victim of a UAV). In this sense, hierarchical means

combining a fast MPC design for fast responses where needed, and a more accurate MPC for the slower

dynamics, see Figure 2.13.

2.4.4. Tuning
Once the model has been decided on, the actual design of the MPC needs to be performed. This process

is called tuning, where the variables of the MPC get modified for purposes of stability, robustness, or other

optimization. There are two types of tuning, the first is for the model accuracy, the second is a trade-off

between performance and robustness. Knowledge regarding tuning strategies has been summarized from

Maciejowski’s book [70] (chapters 7 and 8) and the review paper of Garriga and Soroush [71].

Model parameter tuning

There are many adjustable parameters that would define the MPC: the horizons, weights, disturbance

models (covariance matrices), observer models (such as Kalman filter gains), reference trajectory parame-

ters, and constraint parameters. Usually tuning happens a priori, but autotuning (self-tuning) methods can

be of more interest in highly autonomous systems. There are some theoretical bounds or values, but most

tuning is performed based on experience and ”rules of thumb”. Regarding model tuning, most methods

suggest the use of state-space representations and performing stability analysis (looking at the root locus,

Nyquist, or Bode plots, or using Routh-Hurwitz), modifying various parameters and gains until the system

becomes stable.

Tuning can also be done on a per-parameter basis. For instance, the prediction horizon, Hp, can either

be set to infinity for stability (see [47]), or finite, requiring tuning for closed-loop stability. The prediction

window in this case has an upper bound due to real-world dynamics (dynamic environment and obstacles),

sensor range and uncertainty, and the selected sampling time. Setting the value to 10 and tuning the

other parameters, or using values based on heuristics (such as including up to 80 to 90% of the process

steady-state) are suggested in [71]. For the control horizonHc setting it to a default value of 1 and tuning the

other parameters, or numbers based on certain criteria (e.g. the number of unstable poles), is suggested.

An extensive list of tuning guidelines for each parameter has been listed in [71].

Autotuning has the benefit of updating the parameters as the system process is being optimized, thus

always being set at an optimum value (based on some heuristic). The drawback is the extra computational

effort. Some authors suggest methods using evolutionary algorithms (such as genetic algorithms or particle

swarm optimization) [71]. The benefit of this method is that the tuning parameter optimization can run

separate from the system’s control optimization, and is thus easily implementable. The drawback is that

several instances of the same control problem are (potentially iteratively) solved with different values.

Other methods for autotuning include modifying the MPC (”a redefinition of the objective function to

include the optimization of weights”), using a sensitivity analysis (”a linear approximation of the relationship

between the process output and the MPC tuning parameters”), or by using subspace identification and

”minimizing the first N terms of the impulse response” [71].

Maciejowski [70] specifically addressed that tuning a feedback controller should be done including its

feedback properties when constraints are active. This is very hard to do theoretically, and only a few tools

can help, so simulation is suggested [70]. Much like Bemporad and Morari in [47], Maciejowski suggested

set-point pre-filtering for tuning the input signal (possibly through the form of a reference governor).

2.4. Model predictive controller 55

Robust tuning

Assuming a sufficiently accurate model, robustness tuning can be performed, as fast closed-loop perfor-

mance requires a high precision model [71]. Maciejowski suggests Lee and Yu’s tuning, loop transfer

recovery tuning, or using linear matrix inequalities.

Lee and Yu tuning is done offline. It requires an asymptotically stable system (the disturbance does

not excite the plant state) in the form of state-space with white noise, following a disturbance model shown

in Figure 2.14. State estimation and prediction is performed using Kalman filter theory.

Figure 2.14: The disturbance model used by Lee and Yu [70].

Once the model is established first it is tuned for nominal stability, setting the control horizon ”as large

as possible within computational limits” (setting a control penalty matrix R = 0). Then it is ’de-tuned’

for robustness by adjusting the disturbance and noise parameters (α, ρ the covariance of w, and σ the

covariance of v, in Figure 2.14). If the uncertainty is well defined the control penalty matrix (R) can be
increased to tune for input uncertainty robustness.

Loop transfer recovery can be done online, and it does not require a stable system. It also allows for

correlated disturbances. It is developed for a linear model with a quadratic penalty cost, and disturbance

and noise signals with a Gaussian probability distribution. The first step is to use a Kalman filter to find

the optimal estimate, the second step is to determine the feedback gain matrix, setting up the controller.

Subsequently, the disturbance and noise model (shown in Figure 2.15) is adjusted for a good return-ratio,

whereA, B, and C come from the state-space model for the system, Aw, Bw, Cw, andDw are a state-space

model of the disturbance process, v is the sensor noise, and Γw is the white noise input matrix of the

disturbance state space model (taken from Kalman theory, Equation 2.1b).

Figure 2.15: The disturbance model used for loop transfer recovery [70].

Tuning for robustness is done by first designing the disturbance model gains and adjusting the model

design (the state-space). Once the return-ratio is good (based on the gains in a frequency response curve,

2.4. Model predictive controller 56

such as high gains at frequencies where disturbances are high), there is only one scalar parameter ρ which
can be reduced.

Using a linear matrix inequality (LMI) approach increases the complexity of a typical quadratic

programming problem to a convex LMI problem. It is possible to use with online optimization. The benefit

is that it can address both robust constraint satisfaction and robust stability. There are drawbacks as the

LMI optimization reduces the upper bounds, and the bounds on the uncertainties may be too conservative.

For details the reader is referred to Maciejowski’s book [70], particularly chapter 8: Robust tuning.

2.4.5. Final design
Considering the final controller selection in Part 2.3.5, the decoupled design (see Figure 2.7) allows each

problem to be addressed separately. The multi-level MPC must account for global path-planning and goal

tracking, and local victim detection, obstacle avoidance, and position/attitude determination. A stochastic

MPC implementation is required for probabilistic non-linear dynamic obstacle avoidance. The position

controller can be done using a linear MPC with the objective to minimize energy use or simply using a PID

controller.

The position/attitude controller requires high speed, waypoint following, energy-minimizing control. This

can be done through a linear or explicit MPC, as is done in most cases. However, it was found there

are exceptions such as [61], where a non-linear model was used for state progression, keeping all other

constraints linear, leading to a computationally outperforming non-linear formulation. So at this point, the

design details of the position/attitude controller cannot be set.

The obstacle avoidance controller is dependent on the velocity. At high-velocity the controller must be

made more robust by expanding the obstacle radii, limiting the configuration space. At lower velocities, the

stopping distance lessens, so constraints can become less strict. Furthermore, in reality, there are stochastic

features due to imperfect sensors and obstacles with unknown reactive behaviour. Though at simple levels

(static obstacles) a linear or non-linear MPC are both sufficient, at highly complex levels (probabilistic

dynamic obstacles) a robust stochastic (likely non-linear) MPC is required. The main complexity regarding

the MPC design rests here.

The victim detection controller could set further waypoints which the obstacle avoidance controller aims

to fulfil. This is mostly dependent on the requirements from the perception subsystem. Depending on the

algorithm, the viewing angles could be optimized with respect to time in a newly discovered room. For that

case a simple robust linear MPC that optimizes said viewing angles is sufficient. The main complexity

stems from the perception subsystem’s victim identification, which will likely bring slower speeds. However,

neural networks such as YOLOv3 ([18], [25], and [17]) do manage to perform real-time.

Note that these controllers could all be merged into one larger MPC, but it is expected that this degree

of problem decoupling will lead to time-saving improvements. The main reason is due to separation of

computational choke points (victim perception, obstacle avoidance, and communicating goal changes), and

exploiting this using several computational threads. Secondly, this method allows for quicker development

and testing cycles, as each task’s performance can be addressed, tested, and improved separately. The

downside, however, is the lack of integrated multi-objective optimization as would be the case for a single

larger MPC.

The global controller creates a path through some mapped, or unmapped regions, with probabilistic

hotspots of victims, and possible information from a communication subsystem. A lot of conditional

information, including the sensed environment, battery levels, and agent state, are used to determine the

future course of action, and thereby the future path. It is a highly non-linear, hybrid problem (the model or

only the cost should change based on communication or other states such as fire).

Lastly, it should also be noted that doing all the proposed measures is unlikely within the duration of

the thesis. Therefore, the controllers are to be developed to different degrees, from a simple initial state,

steadily progressing to a level sufficient for a somewhat robust autonomous system. Using the papers

from Part 2.3.2 as a basis ([34], [36]), the following will be worked on (sorted by priority):

1. Path-planning: Initially the target is a static signal which the robot knows. The complexity increases

when it becomes a search problem as defined in Part 2.2.3.

2. Communication: Two types of communication can be compared. Fully decentralized (no communi-

cation), and distributed (using event-driven communication).

2.5. Conclusion 57

3. Obstacle avoidance: Varies from static, dynamic, probabilistic, up to possibly reactive. Initial

implementation will repeat the work of the two papers in Part 2.3.2, using static obstacle avoidance.

More complex obstacle avoidance will come from the obstacle model definitions in Part 2.3.2. Multi-

robot simulations can only follow after dynamic obstacle avoidance.

4. Stochasticity: Initially no randomness or sensor uncertainties are assumed. Once the basic model

is completed these problems get addressed. See Part 2.4.3 for a short summary from the MPC

perspective.

5. Hierarchical control: Way-point generation, path-following, victim detection, and dynamic obstacle

avoidance are initially decoupled. This is done to ensure a modular testing and development approach

can be taken. It does not mean they cannot be merged. Merging will be done to verify the time-saving

claim.

6. Dimensionality: The design will be performed in 2D (terrestrial robot) before moving to 3D (UAV). At

the 3D stage, all the previous steps are essentially repeated.

7. Hardware and simulations: The hierarchical controller will first be simulated using a model-in-the-loop

approach. Once developed, higher-order simulations can be done before it can be tested at the TU

Delft’s MAVlab.

8. Fault-tolerant control and adjustable autonomy are future developments that fall far beyond the scope

of the thesis. These topics will be worked on only if there is time.

2.5. Conclusion
Developing a multi-agent robotic search team for urban search and rescue (uSaR) operations is a multi-

disciplinary task. This literature survey serves as a foundation to develop a controller to improve victim

search efficiency. The controller must solve a victim search task alongside the local obstacle avoidance,

victim identification, and path-following. For this, a hierarchically decoupled planning and control model

predictive control (MPC) structure is used. Decoupling the global search problem from the local motion

planning controller is expected to lead to similar levels of global optimization while improving the real-time

performance required in an uSaR scenario.

First, the victim search mission was described using object detection taxonomy in Chapter 2.2. The

distinction between sensor-, motion-, and mission-related influences was made providing a guideline

for classifying uncertainties during simulation and testing. The indoor uSaR scenario is established to

generally occur in GNSS-denied environments. The global mission itself was found to be an optimization

problem, where the prior knowledge of the environment and possible victim distribution could specify it as

a probabilistic search or hunting problem, as full coverage is not necessarily required.

Designing the multi-agent search controller requires some knowledge on perception, motion planning,

and communication, which is performed in Chapter 2.3. The perception subsystem was selected minimizing

financial costs, power usage, and weight. For victim detection, a visual camera using a neural network

such as YOLOv3 is combined with a microphone and pyroelectric sensor. Navigation can be done by

sensor fusing the visual camera with a GNSS receiver and IMU. Proximity sensors were identified as

possible low-cost extensions for obstacle avoidance.

Motion planning algorithms were compared through various facets such as the robustness to uncer-

tainties, compatibility with differential constraints, completeness, and calculation speed. Hierarchically

decoupled planning and control, mathematical optimization (among which is the MPC), and reactive plan-

ning were identified as few of the better possible solutions. Dynamic obstacle avoidance was considered

separately, with a focus on how the obstacles can be modelled.

Multi-agent controllers imply inter-agent interaction. Both explicit and implicit communication was

compared to that end. For explicit, event-based communication stood out as a computationally cheap but

robust solution, fitting the victim search mission. Other aspects important to a multi-agent system, such as

fleet and robot design, failure tolerant design, and human-robot interaction were considered to the extent

of finding their effects on the controller.

Using this knowledge, a general controller architecture was set up, where the global controller for the

search mission is decoupled from the local controller which concerns itself with victim detection, obstacle

2.5. Conclusion 58

avoidance, and position/attitude control. The controller therefore has a modular design, and with event-

based communication is flexible to possible inputs from the communication subsystem. Lastly, the design

of the simulation was covered, where a model-in-the-loop approach was chosen for the development of

the controller, as is the case for initial designs and prototyping.

Chapter 2.4 concerned itself with MPC, reviewing the background theory, fundamental notions of

stability, feasibility, and robustness, and the many variations that can account for different problem and

model types. Stability could be achieved through either contraction constraints or Lyapunov stability theory,

while robustness is done using structured feedback or norm-minimization of the various possible model

states. The variations concerned themselves with the linearity, stochasticity, and effect of multi-agent

communication hierarchy on the MPC. Surprisingly, though a non-linear MPC is theoretically slower

than a linear MPC due to the non-linear programming requirement, the successive linearization and the

implementation can sometimes have a greater impact on the computational speed. Regarding stochastic

MPC, non-linear stochastic tube MPC approaches were found as alternatives to sampling- or evolution-

based approaches. The MPC still has many parameters, despite the form of the underlying problem.

Offline and online tuning (manual vs auto-tuning) methods both exist, including robust tuning approaches

which take into account disturbances and uncertainties.

With all the knowledge obtained a clear design plan for the controller could be set up. The literature also

showed that the main contribution of the thesis is the hierarchical MPC with real-time dynamic obstacle

avoidance. The final result of the literature study comes from decoupling the problem, leading to a clear

development plan for a multi-agent motion-planning controller design.

References

[1] Shannon Doocy et al. “The human impact of earthquakes: a historical review of events 1980-2009

and systematic literature review”. In: PLoS currents 5 (2013).

[2] Anna Rom et al. “Search without rescue? Evaluating the international search and rescue response

to earthquake disasters”. In: BMJ global health 5.12 (2020), e002398.

[3] Robin R Murphy. Disaster robotics. MIT press, 2014.

[4] Juntong Qi et al. “Search and Rescue Rotary-Wing UAV and Its Application to the Lushan Ms 7.0

Earthquake”. In: Journal of Field Robotics 33.3 (2016), pp. 290–321. DOI: https://doi.org/10.
1002/rob.21615.

[5] David Lallemant et al. “Post-Disaster Damage Assessments as Catalysts for Recovery: A Look

at Assessments Conducted in the Wake of the 2015 Gorkha, Nepal, Earthquake”. In: Earthquake

Spectra 33.1_suppl (2017), pp. 435–451. DOI: 10.1193/120316eqs222m.

[6] Kevin S. Pratt et al. “CONOPS and autonomy recommendations for VTOL small unmanned aerial

system based on Hurricane Katrina operations”. In: Journal of Field Robotics 26.8 (2009), pp. 636–

650. DOI: https://doi.org/10.1002/rob.20304.

[7] Daniel Drew. “Multi-Agent Systems for Search and Rescue Applications”. In: Current Robotics

Reports 2 (June 2021). DOI: 10.1007/s43154-021-00048-3.

[8] SeanGrogan et al. “The use of unmanned aerial vehicles and drones in search and rescue operations–

a survey”. In: Proceedings of the PROLOG (2018).

[9] Yugang Liu et al. “Robotic Urban Search and Rescue: A Survey from the Control Perspective”. In:

J. Intell. Robotics Syst. 72.2 (Nov. 2013), pp. 147–165. DOI: 10.1007/s10846-013-9822-x. URL:
https://doi.org/10.1007/s10846-013-9822-x.

[10] Huihui Sun et al. “Motion Planning for Mobile Robots—Focusing on Deep Reinforcement Learning:

A Systematic Review”. In: IEEE Access 9 (2021), pp. 69061–69081. DOI: 10.1109/ACCESS.2021.
3076530.

[11] Xuesu Xiao et al. “UAV assisted USV visual navigation for marine mass casualty incident response”.

In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2017,

pp. 6105–6110. DOI: 10.1109/IROS.2017.8206510.

[12] Francisca Rosique et al. “A Systematic Review of Perception System and Simulators for Autonomous

Vehicles Research”. In: Sensors 19.3 (2019). DOI: 10.3390/s19030648. URL: https://www.mdpi.
com/1424-8220/19/3/648.

[13] Cyril Robin et al. “Multi-robot target detection and tracking: taxonomy and survey”. In: Autonomous

Robots 40 (Apr. 2016). DOI: https://doi.org/10.1007/s10514-015-9491-7.

[14] Steve Burion. “Human detection for robotic urban search and rescue”. PhD thesis. École Polytech-

nique Fédérale de Lausanne, 2004.

[15] P. Thanu Thavasi et al. “Sensors and Tracking Methods Used in Wireless Sensor Network Based

Unmanned Search and Rescue System -A Review”. In: Procedia Engineering 38 (2012). International

conference on modelling optimization and computing, pp. 1935–1945. DOI: https://doi.org/10.
1016/j.proeng.2012.06.236. URL: https://www.sciencedirect.com/science/article/pii/
S1877705812021492.

[16] Ekaterina R. Stepanova et al. “Gathering and Applying Guidelines for Mobile Robot Design for Urban

Search and Rescue Application”. In: Human-Computer Interaction. Interaction Contexts. Ed. by

Masaaki Kurosu. Cham: Springer International Publishing, 2017, pp. 562–581.

59

https://doi.org/https://doi.org/10.1002/rob.21615
https://doi.org/https://doi.org/10.1002/rob.21615
https://doi.org/10.1193/120316eqs222m
https://doi.org/https://doi.org/10.1002/rob.20304
https://doi.org/10.1007/s43154-021-00048-3
https://doi.org/10.1007/s10846-013-9822-x
https://doi.org/10.1007/s10846-013-9822-x
https://doi.org/10.1109/ACCESS.2021.3076530
https://doi.org/10.1109/ACCESS.2021.3076530
https://doi.org/10.1109/IROS.2017.8206510
https://doi.org/10.3390/s19030648
https://www.mdpi.com/1424-8220/19/3/648
https://www.mdpi.com/1424-8220/19/3/648
https://doi.org/https://doi.org/10.1007/s10514-015-9491-7
https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.236
https://doi.org/https://doi.org/10.1016/j.proeng.2012.06.236
https://www.sciencedirect.com/science/article/pii/S1877705812021492
https://www.sciencedirect.com/science/article/pii/S1877705812021492

References 60

[17] Ignacio Martinez-Alpiste et al. “Search and rescue operation using UAVs: A case study”. In: Expert

Systems with Applications 178 (2021), p. 114937. DOI: https://doi.org/10.1016/j.eswa.2021.
114937. URL: https://www.sciencedirect.com/science/article/pii/S095741742100378X.

[18] Jamil Fayyad et al. “Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localiza-

tion: A Review”. In: Sensors 20.15 (2020). URL: https://www.mdpi.com/1424-8220/20/15/4220.

[19] Da Hu et al. “Detecting, locating, and characterizing voids in disaster rubble for search and rescue”.

In: Advanced Engineering Informatics 42 (2019), p. 100974.

[20] Danijel Šipoš et al. “A lightweight and low-power UAV-borne ground penetrating radar design for

landmine detection”. In: Sensors 20.8 (2020), p. 2234.

[21] Ian Sharp et al. “Signal Strength Positioning”. In: Wireless Positioning: Principles and Practice.

Singapore: Springer Singapore, 2019, pp. 475–504. DOI: 10.1007/978-981-10-8791-2_15. URL:
https://doi.org/10.1007/978-981-10-8791-2_15.

[22] Julia Breßler et al. “GNSS positioning in non-line-of-sight context—A survey”. In: 2016 IEEE 19th

international conference on intelligent transportation systems (ITSC). IEEE. 2016, pp. 1147–1154.

[23] Federico Castanedo. “A review of data fusion techniques”. In: The scientific world journal 2013

(2013).

[24] Ren C. Luo et al. “Multisensor Fusion and Integration: A Review on Approaches and Its Applications

in Mechatronics”. In: IEEE Transactions on Industrial Informatics 8.1 (2012), pp. 49–60. DOI: 10.
1109/TII.2011.2173942.

[25] Jorge Pena Queralta et al. “Collaborative multi-robot search and rescue: Planning, coordination,

perception, and active vision”. In: IEEE Access 8 (2020), pp. 191617–191643.

[26] M.G. Mohanan et al. “A survey of robotic motion planning in dynamic environments”. In: Robotics and

Autonomous Systems 100 (2018), pp. 171–185. DOI: https://doi.org/10.1016/j.robot.2017.
10.011. URL: https://www.sciencedirect.com/science/article/pii/S0921889017300313.

[27] Christos Katrakazas et al. “Real-time motion planning methods for autonomous on-road driving:

State-of-the-art and future research directions”. In: Transportation Research Part C: Emerging

Technologies 60 (2015), pp. 416–442. DOI: https://doi.org/10.1016/j.trc.2015.09.011. URL:
https://www.sciencedirect.com/science/article/pii/S0968090X15003447.

[28] Chad Goerzen et al. “A survey of motion planning algorithms from the perspective of autonomous

UAV guidance”. In: Journal of Intelligent and Robotic Systems 57.1 (2010), pp. 65–100.

[29] Peter Tsenkov et al. “A system for 3d autonomous rotorcraft navigation in urban environments”. In:

AIAA Guidance, Navigation and Control Conference and Exhibit. 2008, p. 7412.

[30] Sebastian Scherer et al. “Flying fast and low among obstacles: Methodology and experiments”. In:

The International Journal of Robotics Research 27.5 (2008), pp. 549–574.

[31] Sertac Karaman et al. “Sampling-based algorithms for optimal motion planning”. In: The international

journal of robotics research 30.7 (2011), pp. 846–894.

[32] David González et al. “A Review of Motion Planning Techniques for Automated Vehicles”. In: IEEE

Transactions on Intelligent Transportation Systems 17.4 (2016), pp. 1135–1145. DOI: 10.1109/
TITS.2015.2498841.

[33] Zvi Shiller et al. “The Nonlinear Velocity Obstacle Revisited: the Optimal Time Horizon”. In: Guaran-

teeing Safe Navigation in Dynamic Environments Workshop. Anchorage, United States, May 2010.

URL: https://hal.inria.fr/inria-00562249.

[34] Anahita Jamshidnejad et al. “Adaptive Optimal Receding-Horizon Robot Navigation via Short-Term

Policy Development”. In: 15th International Conference on Control, Automation, Robotics and Vision,

ICARCV 2018, Singapore, November 18-21, 2018. IEEE, 2018, pp. 21–28. DOI: 10.1109/ICARCV.
2018.8581157. URL: https://doi.org/10.1109/ICARCV.2018.8581157.

https://doi.org/https://doi.org/10.1016/j.eswa.2021.114937
https://doi.org/https://doi.org/10.1016/j.eswa.2021.114937
https://www.sciencedirect.com/science/article/pii/S095741742100378X
https://www.mdpi.com/1424-8220/20/15/4220
https://doi.org/10.1007/978-981-10-8791-2_15
https://doi.org/10.1007/978-981-10-8791-2_15
https://doi.org/10.1109/TII.2011.2173942
https://doi.org/10.1109/TII.2011.2173942
https://doi.org/https://doi.org/10.1016/j.robot.2017.10.011
https://doi.org/https://doi.org/10.1016/j.robot.2017.10.011
https://www.sciencedirect.com/science/article/pii/S0921889017300313
https://doi.org/https://doi.org/10.1016/j.trc.2015.09.011
https://www.sciencedirect.com/science/article/pii/S0968090X15003447
https://doi.org/10.1109/TITS.2015.2498841
https://doi.org/10.1109/TITS.2015.2498841
https://hal.inria.fr/inria-00562249
https://doi.org/10.1109/ICARCV.2018.8581157
https://doi.org/10.1109/ICARCV.2018.8581157
https://doi.org/10.1109/ICARCV.2018.8581157

References 61

[35] Alberto Bemporad et al. “Hierarchical and hybrid model predictive control of quadcopter air vehicles”.

In: IFAC Proceedings Volumes 42.17 (2009), pp. 14–19.

[36] Alberto Bemporad et al. “Decentralized hybrid model predictive control of a formation of unmanned

aerial vehicles”. In: IFAC Proceedings Volumes 44.1 (2011), pp. 11900–11906.

[37] Federico Rossi et al. “Review of multi-agent algorithms for collective behavior: a structural taxonomy”.

In: IFAC-PapersOnLine 51.12 (2018), pp. 112–117.

[38] Alaa Khamis et al. “Multi-robot Task Allocation: A Review of the State-of-the-Art”. In: vol. 604. Springer

International Publishing, May 2015, pp. 31–51. DOI: 10.1007/978-3-319-18299-5_2.

[39] Yara Rizk et al. “Cooperative heterogeneous multi-robot systems: A survey”. In: ACM Computing

Surveys (CSUR) 52.2 (2019), pp. 1–31.

[40] Eduardo Camponogara et al. “Distributed model predictive control”. In: IEEE control systems maga-

zine 22.1 (2002), pp. 44–52.

[41] Ramin Rostami et al. “Distributed model predictive control with event-based optimization”. In: IFAC-

PapersOnLine 50.1 (2017), pp. 8933–8938.

[42] Cai Zhihao et al. “Virtual target guidance-based distributed model predictive control for formation

control of multiple UAVs”. In: Chinese Journal of Aeronautics 33.3 (2020), pp. 1037–1056.

[43] Bara J Emran et al. “A review of quadrotor: An underactuated mechanical system”. In: Annual

Reviews in Control 46 (2018), pp. 165–180.

[44] Alireza Abbaspour et al. “A survey on active fault-tolerant control systems”. In: Electronics 9.9 (2020),

p. 1513.

[45] Cunjia Liu et al. “Hierarchical path planning and flight control of small autonomous helicopters using

MPC techniques”. In: 2013 IEEE Intelligent Vehicles Symposium (IV). 2013, pp. 417–422. DOI:

10.1109/IVS.2013.6629504.

[46] Yazan Mualla et al. “Agent-based simulation of unmanned aerial vehicles in civilian applications:

A systematic literature review and research directions”. In: Future Generation Computer Systems

100 (2019), pp. 344–364. DOI: https://doi.org/10.1016/j.future.2019.04.051. URL:
https://www.sciencedirect.com/science/article/pii/S0167739X18328462.

[47] Alberto Bemporad et al. “Robust model predictive control: A survey”. In: Robustness in identification

and control. Springer, 1999, pp. 207–226.

[48] L. Magni et al. “Stabilizing model predictive control of nonlinear continuous time systems”. In: Annual

Reviews in Control 28.1 (2004), pp. 1–11. DOI: https://doi.org/10.1016/j.arcontrol.2004.01.
001. URL: https://www.sciencedirect.com/science/article/pii/S1367578804000021.

[49] Max Schwenzer et al. “Review on model predictive control: an engineering perspective”. In: The

International Journal of Advanced Manufacturing Technology (2021), pp. 1–23.

[50] Daniel Simon et al. “Reference tracking MPC using terminal set scaling”. In: 2012 IEEE 51st IEEE

Conference on Decision and Control (CDC). IEEE. 2012, pp. 4543–4548.

[51] Max Basescu et al. “Direct NMPC for Post-Stall Motion Planning with Fixed-Wing UAVs”. In: CoRR

abs/2001.11478 (2020). arXiv: 2001.11478. URL: https://arxiv.org/abs/2001.11478.

[52] Gianluca Serale et al. “Model predictive control (MPC) for enhancing building and HVAC system

energy efficiency: Problem formulation, applications and opportunities”. In: Energies 11.3 (2018),

p. 631.

[53] Yang Wang et al. “Fast Model Predictive Control Using Online Optimization”. In: IFAC Proceedings

Volumes 41.2 (2008). 17th IFAC World Congress, pp. 6974–6979. DOI: https://doi.org/10.
3182/20080706-5-KR-1001.01182. URL: https://www.sciencedirect.com/science/article/
pii/S1474667016400662.

[54] Julian Berberich et al. “Linear tracking MPC for nonlinear systems Part I: The model-based case”. In:

arXiv preprint arXiv:2105.08560 (2021).

https://doi.org/10.1007/978-3-319-18299-5_2
https://doi.org/10.1109/IVS.2013.6629504
https://doi.org/https://doi.org/10.1016/j.future.2019.04.051
https://www.sciencedirect.com/science/article/pii/S0167739X18328462
https://doi.org/https://doi.org/10.1016/j.arcontrol.2004.01.001
https://doi.org/https://doi.org/10.1016/j.arcontrol.2004.01.001
https://www.sciencedirect.com/science/article/pii/S1367578804000021
https://arxiv.org/abs/2001.11478
https://arxiv.org/abs/2001.11478
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01182
https://doi.org/https://doi.org/10.3182/20080706-5-KR-1001.01182
https://www.sciencedirect.com/science/article/pii/S1474667016400662
https://www.sciencedirect.com/science/article/pii/S1474667016400662

[55] Yusuke Igarashi et al. “Mpc performances for nonlinear systems using several linearization models”.

In: 2020 American Control Conference (ACC). IEEE. 2020, pp. 2426–2431.

[56] Terrence Skibik et al. “An Architecture for Analog VLSI Implementation of EmbeddedModel Predictive

Control”. In: 2018 Annual American Control Conference (ACC). 2018, pp. 4676–4681. DOI: 10.
23919/ACC.2018.8431320.

[57] Sergey Vichik et al. “Solving Linear and Quadratic Programs with an Analog Circuit”. In: Computers

& Chemical Engineering 70 (Nov. 2014). DOI: 10.1016/j.compchemeng.2014.01.011.

[58] Richard Oberdieck et al. “Explicit hybrid model-predictive control: The exact solution”. In: Automatica

58 (2015), pp. 152–159. DOI: https://doi.org/10.1016/j.automatica.2015.05.021. URL:
https://www.sciencedirect.com/science/article/pii/S0005109815002277.

[59] Alberto Bemporad et al. “The explicit linear quadratic regulator for constrained systems”. In: Auto-

matica 38.1 (2002), pp. 3–20. DOI: https://doi.org/10.1016/S0005-1098(01)00174-1. URL:
https://www.sciencedirect.com/science/article/pii/S0005109801001741.

[60] Thomas Besselmann et al. “Explicit MPC for LPV Systems: Stability and Optimality”. In: IEEE

Transactions on Automatic Control 57.9 (2012), pp. 2322–2332. DOI: 10.1109/TAC.2012.2187400.

[61] Mina Kamel et al. “Linear vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro

Aerial Vehicles”. In: IFAC-PapersOnLine 50.1 (2017). 20th IFAC World Congress, pp. 3463–3469.

DOI: https://doi.org/10.1016/j.ifacol.2017.08.849. URL: https://www.sciencedirect.
com/science/article/pii/S2405896317313083.

[62] Jun Yang et al. “Design of a prediction-accuracy-enhanced continuous-time MPC for disturbed

systems via a disturbance observer”. In: IEEE Transactions on Industrial Electronics 62.9 (2015),

pp. 5807–5816.

[63] Sina Sharif Mansouri et al. “Subterranean MAV navigation based on nonlinear MPC with collision

avoidance constraints”. In: arXiv preprint arXiv:2006.04227 (2020).

[64] Ali Mesbah. “Stochastic model predictive control: An overview and perspectives for future research”.

In: IEEE Control Systems Magazine 36.6 (2016), pp. 30–44.

[65] David Mayne. “Robust and stochastic model predictive control: Are we going in the right direction?”

In: Annual Reviews in Control 41 (2016), pp. 184–192.

[66] Angelo D Bonzanini et al. “Tube-based stochastic nonlinear model predictive control: A comparative

study on constraint tightening”. In: IFAC-PapersOnLine 52.1 (2019), pp. 598–603.

[67] Naoya Ozaki et al. “Tube Stochastic Optimal Control for Nonlinear Constrained Trajectory Optimiza-

tion Problems”. In: Journal of Guidance, Control, and Dynamics 43.4 (2020), pp. 645–655.

[68] Riccardo Scattolini. “Architectures for distributed and hierarchical Model Predictive Control - A review”.

In: Journal of Process Control 19 (2009), pp. 723–731.

[69] Sina Sharif Mansouri et al. “Distributed model predictive control for unmanned aerial vehicles”. In:

2015Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS).

2015, pp. 152–161. DOI: 10.1109/RED-UAS.2015.7441002.

[70] Jan Marian Maciejowski. Predictive control: with constraints. Pearson education, 2002.

[71] Jorge L Garriga et al. “Model predictive control tuning methods: A review”. In: Industrial & Engineering

Chemistry Research 49.8 (2010), pp. 3505–3515.

62

https://doi.org/10.23919/ACC.2018.8431320
https://doi.org/10.23919/ACC.2018.8431320
https://doi.org/10.1016/j.compchemeng.2014.01.011
https://doi.org/https://doi.org/10.1016/j.automatica.2015.05.021
https://www.sciencedirect.com/science/article/pii/S0005109815002277
https://doi.org/https://doi.org/10.1016/S0005-1098(01)00174-1
https://www.sciencedirect.com/science/article/pii/S0005109801001741
https://doi.org/10.1109/TAC.2012.2187400
https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.849
https://www.sciencedirect.com/science/article/pii/S2405896317313083
https://www.sciencedirect.com/science/article/pii/S2405896317313083
https://doi.org/10.1109/RED-UAS.2015.7441002

Part III
Appendices for the scientific article

63

A
Initial obstacle conditions for simulations

This appendix contains the initial conditions of the static and dynamic obstacles, where PoA stands for

Point of Attraction, see Figure 1.3. These were generated using

Table A.1: Obstacle initial conditions: simple simulation 1

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 6.50 11.34 - - - - - -

2 3.01 0.18 - - - - - -

3 4.42 0.95 - - - - - -

4 10.20 9.05 - - - - - -

5 10.38 4.47 - - - - - -

6 0.89 2.51 - - - - - -

7 8.22 9.93 -6.08 4.48 4.01 3.70 7.51 10.69

8 6.25 7.73 2.68 -8.06 3.83 5.29 6.21 7.64

9 7.36 2.59 -4.87 6.60 2.22 3.49 6.85 3.02

10 3.28 2.53 -6.90 3.77 2.25 2.21 3.24 1.57

11 4.46 4.72 -3.39 1.76 3.49 2.45 5.19 5.54

64

65

Table A.2: Obstacle initial conditions: simple simulation 2

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 3.71 11.17 - - - - - -

2 7.05 11.54 - - - - - -

3 4.30 3.09 - - - - - -

4 2.76 3.47 - - - - - -

5 7.71 7.25 - - - - - -

6 9.87 8.22 - - - - - -

7 7.75 8.05 -7.96 4.38 3.91 1.68 8.04 8.99

8 6.23 1.85 -1.12 2.70 4.99 4.15 6.03 2.70

9 3.35 3.23 -0.32 2.38 5.70 2.83 3.24 4.29

10 6.12 8.54 -6.01 3.50 1.82 3.10 5.04 7.91

11 4.20 9.71 -3.74 6.47 3.68 4.40 4.48 10.47

Table A.3: Obstacle initial conditions: simple simulation 3

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 8.22 7.58 - - - - - -

2 5.22 2.74 - - - - - -

3 2.74 3.60 - - - - - -

4 10.25 5.73 - - - - - -

5 9.67 5.02 - - - - - -

6 2.62 2.41 - - - - - -

7 5.06 10.90 9.72 -3.38 3.52 5.00 4.97 10.70

8 1.02 3.77 -2.29 -0.77 4.39 3.31 1.33 3.53

9 10.98 5.96 6.23 -9.11 3.81 2.52 11.60 5.99

10 8.59 8.97 -8.07 -6.45 4.85 1.18 8.97 8.13

11 10.75 3.42 -2.98 6.49 2.31 5.80 11.80 3.82

66

Table A.4: Obstacle initial conditions: simple simulation 4

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 10.00 7.26 - - - - - -

2 9.31 1.19 - - - - - -

3 1.81 7.97 - - - - - -

4 11.74 4.41 - - - - - -

5 6.82 8.65 - - - - - -

6 1.99 5.02 - - - - - -

7 1.27 4.77 8.14 3.04 5.47 5.85 1.01 4.46

8 9.51 8.73 1.91 3.80 2.12 2.11 9.05 9.05

9 11.09 5.00 0.54 10.83 4.82 6.38 11.00 5.04

10 4.50 3.05 1.04 8.27 4.02 3.51 4.58 3.91

11 10.55 3.63 7.29 2.74 3.57 2.24 11.20 3.23

Table A.5: Obstacle initial conditions: simple simulation 5

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 8.33 3.83 - - - - - -

2 7.82 7.93 - - - - - -

3 10.80 11.15 - - - - - -

4 5.30 1.94 - - - - - -

5 9.98 8.94 - - - - - -

6 1.18 8.74 - - - - - -

7 5.16 8.94 -5.86 -0.23 3.77 2.14 4.11 9.70

8 8.37 6.42 -1.80 -1.43 2.74 1.39 8.79 5.49

9 9.34 2.70 -1.36 -1.80 4.99 1.99 9.03 3.50

10 7.30 3.60 0.67 -4.16 5.22 5.38 7.22 3.99

11 1.17 3.86 -4.05 -0.73 4.46 4.59 1.01 4.51

67

Table A.6: Obstacle initial conditions: simple simulation 6

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 2.82 6.89 - - - - - -

2 9.34 3.83 - - - - - -

3 5.10 11.25 - - - - - -

4 0.32 5.94 - - - - - -

5 5.68 0.94 - - - - - -

6 10.10 3.25 - - - - - -

7 4.27 9.07 4.26 -3.23 2.56 2.14 3.81 8.49

8 9.92 5.42 2.07 -1.23 3.47 1.00 9.50 4.02

9 8.30 3.04 -0.63 1.80 0.96 1.09 9.13 3.61

10 6.17 2.64 -2.30 -3.16 2.85 6.11 6.72 1.98

11 4.01 9.59 0.67 4.06 1.16 3.40 5.22 10.26

Table A.7: Obstacle initial conditions: simple simulation 7

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 4.18 10.00 - - - - - -

2 2.51 4.70 - - - - - -

3 8.16 8.81 - - - - - -

4 4.27 3.49 - - - - - -

5 5.26 3.51 - - - - - -

6 10.91 3.56 - - - - - -

7 5.68 1.15 -9.39 0.23 10.05 7.29 5.55 1.13

8 10.52 1.32 -6.17 1.43 0.32 5.52 10.69 1.87

9 3.68 10.59 4.24 1.80 1.95 1.96 3.85 10.28

10 8.93 11.09 4.36 4.16 3.56 1.25 8.86 10.11

11 6.20 10.03 -0.56 0.73 7.89 4.35 5.68 9.06

68

Table A.8: Obstacle initial conditions: simple simulation 8

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 3.75 0.65 - - - - - -

2 1.29 4.50 - - - - - -

3 8.34 4.40 - - - - - -

4 8.90 3.41 - - - - - -

5 4.76 10.97 - - - - - -

6 4.16 7.92 - - - - - -

7 2.73 3.06 -5.46 -0.75 3.09 2.55 2.62 2.49

8 9.12 6.20 2.09 5.46 1.88 1.79 9.23 6.74

9 6.02 9.10 4.11 4.78 3.22 4.21 5.45 9.84

10 4.96 3.54 10.09 2.39 1.76 4.03 5.63 3.79

11 1.18 7.68 -7.30 -8.81 5.57 4.43 1.16 6.88

Table A.9: Obstacle initial conditions: simple simulation 9

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 4.44 5.65 - - - - - -

2 9.13 11.27 - - - - - -

3 5.12 4.53 - - - - - -

4 1.56 10.41 - - - - - -

5 10.22 10.47 - - - - - -

6 0.26 10.49 - - - - - -

7 2.78 1.16 2.94 1.54 3.53 3.32 2.62 1.01

8 10.54 8.90 5.94 4.09 3.80 4.17 11.59 9.87

9 1.61 2.57 -0.09 -3.83 5.49 7.21 1.01 2.32

10 9.36 1.80 1.69 7.09 2.37 2.60 8.83 1.62

11 5.78 3.48 -9.84 2.69 3.23 4.20 5.47 4.56

69

Table A.10: Obstacle initial conditions: simple simulation 10

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 6.90 8.48 - - - - - -

2 11.36 10.66 - - - - - -

3 8.66 11.28 - - - - - -

4 7.62 7.50 - - - - - -

5 2.38 3.78 - - - - - -

6 6.73 1.03 - - - - - -

7 7.24 9.51 5.97 0.07 2.52 3.50 6.61 10.55

8 5.08 5.25 2.64 -1.22 6.05 1.59 4.70 4.71

9 10.52 10.20 0.72 -5.97 5.81 4.96 11.09 9.48

10 7.62 1.24 7.00 4.43 1.87 3.17 7.71 1.69

11 7.30 4.70 5.46 -1.41 4.89 4.52 7.97 5.64

Table A.11: Obstacle initial conditions: cluttered scenario

Position Velocity Acceleration PoA

Multiplier 1 10−2 10−1 1

ID x y x y x y x y

1 6.00 2.85 - - - - - -

2 1.64 2.42 - - - - - -

3 6.80 8.42 - - - - - -

4 4.41 9.59 - - - - - -

5 10.98 0.89 - - - - - -

6 1.83 8.56 - - - - - -

7 0.72 1.90 - - - - - -

8 7.15 3.15 - - - - - -

9 7.71 9.57 -3.59 -1.09 3.38 2.65 8.54 10.28

10 2.96 11.94 1.78 -3.77 3.61 6.34 2.05 11.99

11 5.06 10.57 -2.40 10.95 4.72 6.06 6.05 10.85

12 6.27 9.30 -6.92 8.20 2.12 3.97 7.19 9.79

13 8.62 6.71 -8.49 -1.93 3.19 2.93 9.37 6.95

14 10.15 6.58 -7.70 -7.05 5.60 3.32 10.30 5.68

15 11.61 5.75 -4.77 -9.62 3.53 3.18 11.98 4.83

16 8.89 8.26 9.39 -8.80 4.71 5.40 8.34 7.58

	List of Figures
	List of Tables
	Introduction
	I Scientific Article
	Development of a model predictive controller for motion planning in a dynamic urban search and rescue environment
	Introduction
	Background theory
	Problem definition
	Comparison algorithms
	Case study setup
	Simulation results
	Discussion
	Conclusion
	References

	II Preliminary Analysis
	Literature Review
	Introduction
	Search and rescue
	System design
	Model predictive controller
	Conclusion

	References

	III Appendices for the scientific article
	Initial obstacle conditions for simulations

