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Abstract

This thesis presents a novel formulation to study the qubit-mapping problem (QMP). The presented for-
mulation redefines the problem in terms of density matrices which represent the quantum algorithm and the
underlying architecture—allowing the implementation of techniques from quantum information theory to es-
tablish a bounded metric space for comparing these density matrices. The main contribution of this thesis
is implementing this formulation in an algorithm to determine the minimal bound on the required number of
SWAP operations for a pairing of a quantum algorithm to an underlying device where the initial mapping has
been provided. Benchmarks have shown a clear dependence on the β-value. Emphasising the need for future
investigations of this dependence to enhance the algorithm’s effectiveness for more extensive algorithms and
architectures. While it is essential to acknowledge that the approach may not currently rival the state of the
art.
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1 Introduction
The promise of quantum computers has seen a surge of interest in recent years as it promises to solve many
problems intractable for any current classical computer. With quantum computing progress can be made in
improving simulations, optimizations, machine learning and cryptography [1].

The fundamental building block of a quantum computer is the qubit, the counterpart to the classical bit.
The encoding, storing and manipulation of the current generation of qubits is prone to errors. Moreover,
due to the limited number of qubits available in current quantum architectures, it is impossible to implement
quantum error correction (QEC) protocols. For these reasons, we are still far from realizing large-scale quantum
computers and the exponential speed-up they promise.

Currently, we are limited to architectures that control a few noisy qubits with limited two-qubit gate con-
nectivity. These architectures are called Noisy Intermediate-Scale Quantum (NISQ) devices and comprise of
tens of noisy qubits [2]. In addition to the limited two-qubit gate connectivity, NISQ devices have a restricted
gate set and shallow circuit depth due to noise [3]. Examples of these architectures are superconducting qubits
[4, 5, 6, 7, 8], trapped-ion qubits [9, 10, 11, 12], CMOS silicon spin qubits [13] and photonic qubits [14, 15].
Some of these architectures are accessible through a cloud interface such as IBM’s quantum experience [16] and
QuTech’s quantum inspire [17].

Quantum algorithms have been introduced to utilise these quantum computers. A quantum algorithm
describes a procedure that utilises the unique properties of quantum mechanics to solve specific problems more
efficiently than classical algorithms. A circuit often describes a quantum algorithm, indicating which operations
must be performed on specific qubits to execute the algorithm. The operations in a quantum circuit are often
referred to as gates. Since the introduction of quantum algorithms, which have a proven benefit over any
classical counterpart, there has been a keen interest in their potential [18]. Peter Shor presented an algorithm
that allows for the factorization of natural numbers and computation of discrete logarithms [19], promising
an exponential speed-up over the classical counterparts. However, quantum algorithms are hardware-agnostic.
They do not take the restriction of NISQ devices into account. Due to the varying limitations of different NISQ
devices, it is impossible to run complex quantum algorithms directly. These algorithms would allow us to deal
with computationally complex problems. To execute these algorithms, they must be modified to adhere to
the limitations of NISQ devices. Therefore, we would initially want to understand how we can modify these
algorithms to determine what is possible on the current generation of devices.

To this end, the problem requiring further investigation is that of quantum compilation. Quantum compi-
lation bridges the gap between quantum algorithms and their physical implementation. It transforms quantum
algorithms into a sequence of elementary quantum operations that can be executed on the physical quantum
computer (currently NISQ devices). The goal is to optimise the quantum circuit’s performance and efficiency.
The circuit is a description of the quantum algorithm. We must consider the underlying hardware’s limita-
tions and constraints during the compilation. Several factors are considered including but not limited to gate
restructuring, qubit mapping, reduction of the overall execution time, and mitigation of errors [20].

The specific part of quantum compilation which this thesis will focus on is the qubit-mapping problem
(QMP). The QMP refers to assigning the qubits of the quantum algorithm (logical qubits) to those present
in existing quantum architectures (physical qubits). This is referred to as the initial mapping process. If the
logical qubits have been assigned to the physical qubits such that not all operations specified by the algorithm
can be performed, it will be required to change the mapping of the logical qubits on the device. Often times
moving a logical qubit to a different physical qubit is done by performing a SWAP operation. Though there are
other options to move a qubit depending on the hardware this thesis will only consider SWAP operations. All
in all, it is necessary to determine in which way the qubits utilised by the algorithm can initially be mapped to
the underlying hardware and in what manner they could be exchanged to ensure that the underlying physical
architecture can perform the largest number of operations. This process will allow the quantum algorithms to
be executed as efficiently as possible under the constraints of the underlying physical architecture.

In recent years, extensive research has been conducted on the QMP. Initially, brute-force algorithms were
employed to address the problem, which proved effective for simple systems. However, quantum architectures
have grown and quantum algorithms have demanded more qubits and operations. Heuristic algorithms have
emerged as potential solutions to deal with the additional complexities. Another approach involves utilizing a
graphical representation, allowing the problem to be reframed using concepts from graph theory. This enables
the utilization of existing solutions or heuristics developed for graph-theoretic problems that are equivalent to
the QMP.

This thesis aims to go beyond just restating the problem in graph theory. Instead, a new perspective
redefining the graphical objects (CG and IG) as quantum mechanical objects represented by density matrices
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and using principles from quantum information theory to establish a bounded metric space for comparison of
these objects is introduced. This new formulation will allow for the exploration of new techniques to solve the
QMP. The main contribution of this thesis is implementing this formulation in an algorithm to determine the
minimal bound on the required number of SWAP operations for a CG/IG-pairing where the initial mapping
has been provided.

The thesis will appeal to individuals actively involved in the QMP and newcomers aspiring to understand
quantum computation better. Specifically, the intricate complexities that arise when executing quantum algo-
rithms on the current generation of devices.

The thesis is structured in the following manner. Initially, an introduction to quantum computation will be
presented in Sec. 2. This introduction starts with a comprehensive exploration of the fundamentals of quantum
computation. Discussing qubits, their representation, and associated limitations (Sec. 2.1.1). Followed by an
examination of quantum operations (Sec. 2.1.2). Lastly, the basics of quantum circuits will be presented (Sec.
2.1.3). Once the reader is familiar with the fundamentals of quantum computation, quantum algorithms will
be introduced in detail (Sec. 2.2). After which the implication of the NISQ era will be presented (Sec. 2.3). To
conclude Ch. 2 the QMP (Sec. 2.4) will be discussed.

After presenting the necessary foundational information in the previous chapter, Ch. 3 will comprehensively
analyse the existing literature on the QMP. This review aims to offer an understanding of the advances made
in this field, thereby providing context for the goals of this thesis.

Upon providing the required background to understand the goals of this thesis the methods which will be
utilised will be presented in Ch. 4. This chapter will discuss the mathematical prerequisites (Sec. 4.1), the tools
from quantum information theory (Sec. 4.2), the additional adaptations to construct the theoretical framework
for our contribution (Sec. 4.3) and finally the proposed algorithmic adaptation will be presented (Sec. 4.4).

Once the methods have been presented they will be evaluated in Ch. 5. This chapter contains several
worked-out ’toy-model’ examples to give an insight into how the proposed algorithm works (Sec. 5.1) and the
algorithm will be evaluated on several benchmarks 5.2. The results will then be discussed in Sec. 6. The
conclusion (Ch. 7) and future work (Sec. 8) will be the final chapters of the thesis. They will provide an
overview of what has been achieved and how it could continue in the future.
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2 Quantum Computation
This section will provide the required information on quantum computation relevant to this thesis’s scope. It
will first give an introduction to the fundamentals of quantum computation. Followed by examples of quantum
algorithms which are applications of quantum computation. Moreover, the NISQ-era will be discussed, which
refers to the current generation of quantum computer architectures. Lastly, the QMP is briefly introduced. If
the reader is already familiar with these topics they are referred to Sec. 3 which provides a literature review of
the QMP.

2.1 Fundamentals of quantum computation
In this section, the fundamentals of quantum computation will be discussed for readers who are not yet familiar
with the topic. If the fundamentals are known to the reader, they are referred to Sec.2.2, in which quantum
algorithms are discussed. For a detailed description of quantum computing the reader is referred to the textbook
by Nielsen and Chuang [21]. To start, the qubit forms the basic unit of information for quantum computing.
A qubit is a two-level quantum system we may utilise to encode and store quantum information. Combined
with quantum operations (quantum gates) that can manipulate the qubit’s state, they form the basis of quan-
tum computation and quantum information theory. The representation of the initialization, measurement and
manipulation of specific qubits is often denoted with a quantum circuit. Quantum circuits are a representa-
tion of quantum algorithms. They show the operations performed on a set of qubits to execute the algorithm
successfully. These concepts will be discussed in the remainder of this section.

2.1.1 Qubits, representation and limitations

The fundamental building block of a quantum computer is the qubit. A qubit represents a quantum state and
is the counterpart to the classical bit. These quantum states are simple two-level quantum systems that display
quantum mechanics’ eccentricity. In principle, a quantum system with multiple levels could also form a qubit
as long as the system can exist in any quantum superposition of two physically distinguishable quantum states.
Examples include the spin state of an electron or the polarization of a single photon. The most promising
candidate prototypes are constructed from superconducting qubits [4, 5, 6, 7, 8], trapped-ion qubits [9, 10,
11, 12], CMOS silicon spin qubits [13], photonic qubits [14, 15]. Considering these possibilities, it becomes
abundantly clear that as it currently stands, there is not yet a consensus on which technology could best be
used to create quantum computers with a larger number of qubits.

Moreover, a classical bit is limited to a value of 0 or 1. The qubit on the other hand can be in a coherent
superposition of two basis states typically denoted as |0⟩ and |1⟩. A superposition is a linear combination of the
two basis states and is denoted as α |0⟩ + β |1⟩, where α and β are normalised complex numbers. It is known
that |α|2 and |β|2 represent the probability amplitudes of the qubit being in the state |0⟩ or |1⟩ upon performing
a measurement operation. Moreover, the complex probability is normalised, meaning |α|2 + |β|2 = 1.

These complex probability amplitudes can be represented by state vectors which live in a two-dimensional
Hilbert space, as such a qubit state may also be represented as a vector with the states |0⟩ and |1⟩ as a basis,

|ψ⟩ = α |0⟩+ β |1⟩ = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
(1)

Here, |ψ⟩ is a two-dimensional, complex and unitary vector, a natural representation of the state of a qubit can
be given by displaying the state vector on the Bloch sphere. This representation arises when considering the
coefficients α and β in the form α = cos

(
θ
2

)
and β = eiϕ sin

(
θ
2

)
, here θ is the colatitude with respect to the

z-axis and ϕ is the longitude with respect to the x-axis, this can clearly be seen in Fig. 2a. As mentioned,
the state |ψ⟩ can be displayed by a vector on the Bloch sphere named after Felix Bloch [22]. Note that the
value in which a classical bit can be in is limited to 0 or 1, which is analogue to the poles of the Bloch sphere.
Furthermore, the qubit can be measured with respect to a predetermined basis on the Bloch sphere such as the
previously mentioned |0⟩ and |1⟩ basis and before measurement the qubit can be at any point on the surface of
the Bloch sphere.
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Figure 1: Bloch sphere representing the state vector of the state |ψ⟩ in an intuitive manner.

(a) Fig. obtained from: Wikipedia

Thus far the discussion of the qubit has been limited to the case in which only a single qubit is present.
It is however possible to have a combined state of multiple qubits also known as a quantum register. Qubits
in a quantum register can exhibit quantum entanglement, a nonlocal property of the set of qubits. It occurs
when it is not possible to describe the state of a particle independently of the states of the other particles. The
entanglement property is a cornerstone of the power of quantum computation and is exploited in the design of
quantum algorithms. The state of a n-qubit quantum register can be denoted as |ψ⟩ = α0 |0..0⟩ + α1 |0..1⟩ +
...+ αn−1 |1..1⟩. A state vector can represent this multi-qubit state in a 2n dimensional Hilbert space.

One of the current challenges in the development of qubits is the issue of decoherence. This refers to losing a
coherent quantum state or a coherent superposition in the computational basis. This occurs due to interactions
with the environment, such as thermal noise, magnetic field fluctuations and interactions with nearby atoms or
molecules. These interactions limit the time a qubit can be used to perform a quantum computation or store
a quantum state. The current generation of qubits is susceptible to decoherence, though the state-of-the-art
coherence time of 5500 seconds has been shown by Wang et al. [23] for a 171Y b+ ion-qubit, there is still much
work to be done. Working toward functional quantum computation and application of quantum memories it
will be of fundamental importance to ensure stable and coherent qubit registers.

Another challenge is scaling the number of qubits present in the register. The goal in creating quantum
computers is to have a quantum register with a large number of qubits so that it will be possible to use the
principles of quantum error correction [24]. The idea of quantum error correction is to create a highly entangled
state which can protect the quantum information as only parts of the entangled state will interact with the
environment at a particular time thus preserving the information present. However, creating such a highly
entangled state requires significant overhead in the number of qubits. Furthermore, as the number of qubits
is expanded the errors present in the system will propagate and will thus influence the result of a complex
computation on a large quantum register will be significant. The result is significantly influenced even when
individual operations have a low error rate. Scaling to a larger number of qubits is a complex engineering
task which has garnered much attention in recent year [25]. Still, there is yet to be a system which allows for
fault-tolerant quantum computation with the help of quantum error correction[26].

2.1.2 Quantum Operations

Qubits are building blocks of quantum computation, but to allow for information processing, additional tools
are required, namely quantum operations or quantum gates. These terms are equivalent and may be used inter-
changeably throughout this thesis. As mentioned in the previous section, an example of a quantum operation
is a measurement, which collapses the state of a qubit, |ψ⟩ = α |0⟩+ β |1⟩, to one of the basis states, |0⟩ or |1⟩,
with a probability equal to |α|2 or |β|2 respectively.

However, it is also possible to alter the qubit’s state by applying quantum operations which may act on a
single or multiple qubits. This may be done with unitary or non-unitary operations transforming the qubit’s
state. Non-unitary operations are not trace-preserving and thus do not preserve the inner product of the
quantum state. As such these operations are used to model noise and decoherence. Moreover, these operations
are not reversible and result in the loss of quantum information. For this reason in the remainder of this thesis,
we will be considering unitary operations which are trace-preserving and reversible.

Unitary matrices can represent unitary operations acting on the state vector introduced above. A different
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manner of interpreting these quantum operations is as a rotation of the qubit states on the Bloch sphere.
Furthermore, it is possible to utilise operations to change the perspective from which the observer is viewing
the qubit states on the Bloch sphere.

There are several examples of quantum operations which can be performed on current quantum architectures,
such as the Pauli gates (X, Y, Z, I), the Hadamard gate (H), the Controlled-Not (CNOT) gate and the SWAP
gate. For a better insight into how these gates manipulate a quantum state, examples of the Hadamard- and
the CNOT gate will be discussed in more detail. First, let us note that the Hadamard gate is a single qubit gate
and is thus represented by a 2× 2 matrix whereas the CNOT gate is a two-qubit gate represented by a 22 × 22

matrix. A quantum operation on n qubits may represent a 2n × 2n matrix. Below the matrix representation of
these operations is shown:

Hadamard (H) =
1√
2

(
1 1
1 −1

)
;CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2)

Considering the states |0⟩ and |1⟩ from the previous section we see that the Hadamard gate maps the basis state
|0⟩ to (|0⟩+ |1⟩)/

√
2 and |1⟩ to (|0⟩ − |1⟩)/

√
2. In the case of the CNOT gate, we see that it is applied on two

qubits, and the action of CNOTpq will operate on qubit q based on the state of qubit p. If qubit p is in state
|0⟩, it does not alter the state of qubit q. When p is in the state |1⟩, it will perform a NOT operation on qubit
q. This takes qubit q to the state |0⟩ if it was in the state |1⟩ and vice versa. Moreover, we notice that it works
on two qubits. As such we may consider the product state of two qubits to be the tensor product (⊗) of the
state vectors of the individual qubits. This may be represented as

|p⟩ ⊗ |q⟩ = |pq⟩ =
[
αp

βp

]
⊗
[
αq

βq

]
=


αpαq

αpβq
βpαq

βpβq

 (3)

Lastly, in the scope of this thesis, it will be important to discuss the SWAP operation briefly. The SWAP
operation allows for the exchange of the state of a certain qubit to another. The SWAP operation can be
decomposed into three consecutive CNOT operations where the middle operation is reversed. This can been
represented mathematically in the following manner SWAPpq = CNOTpq ·CNOTqp ·CNOTpq. Working out the
matrices of these operations we find,

SWAP =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ·

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (4)

2.1.3 Quantum Circuit

Quantum algorithms consist of qubits and unitary quantum operations performed on specified qubits or qubit
pairs. The representation of the operations in an algorithm is often shown as blocks rather than the mathematical
representation shown above. In Fig. 3 examples of the operations discussed above are shown.

Figure 3: Example of the block representation of the Hadamard (H) and the Controlled-Not (CNOT) gates.

Quantum algorithms are often represented through the visual abstraction of quantum circuits. An example
of a quantum circuit is shown in Fig. 4. In this representation each line represents one qubit and the blocks on
those lines represent the quantum operations performed on those qubits. One block represents a single qubit
operation whereas a line vertically connecting two qubits represents a two-qubit operation.
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Figure 4: Example of a quantum circuit containing four qubits and several H and CNOT gates.

Though the circuit representation offers a convenient way to visualise quantum algorithms, this is not
the preferred method in practical application. Instead, quantum algorithms are often written in plain-text
programming languages. Examples of such languages are Scaffold [27], Quipper [28], cQASM [29] and Open
QASM [30]. In both the case of the quantum circuits and the text-based programming languages, they are
merely representations of the operations which need to be performed by the underlying quantum architecture.

2.2 Quantum Algorithms
Quantum computation is a rapidly growing field that has promised to solve many problems intractable for cur-
rent and future classical systems. The implementation of quantum computation relies on previously discussed
building blocks and has been designed to outperform their classical counterparts. These algorithms have been
designed to take advantage of the unique properties of the underlying quantum architectures, such as entangle-
ment and interference. It is important to note that the practical application of these algorithms has not been
realised on the scale in which they systematically outperform their classical counterpart due to the limitation
of the current quantum architecture. This will be discussed further in Sec. 2.3. Nonetheless, it is relevant to
consider the quantum algorithms which have been presented to gain an understanding of the advances that
quantum computers could provide. In the following sections, two of these algorithms will be briefly discussed. If
the reader wants a more in-depth view of quantum algorithms, a discussion of additional algorithms is presented
in the appendix A.

Shor’s quantum factoring algorithm

A famous example of the promised power of quantum computing is Shor’s algorithm which can determine
the prime factors of an integer. Implementing ideas from quantum physics, signal processing, number theory
and computer science Peter Shor presented the algorithm in 1994 [19] and promises an exponential speed-up
compared to the current state-of-the-art factorisation algorithms. Moreover, it runs in polylogarithmic time,
which means that the time it takes to factor an integer N is polynomial in log(N).

The speed-up results from the fact that a quantum computer has an efficient Fourier transform method,
namely the Quantum Fourier Transform (QFT), which allows for efficient period finding and a quantum com-
puter can implement modular exponentiation to create a periodic state. The algorithm functions as follows:
first, a random number is generated. This is then used as the base number for modular exponentiation creating
a periodic state. At that point, QFT is performed on the periodic state resulting in a frequency sample, which
is processed further by classical means. This process may result in a prime factor of N . If this is not the case,
the process is repeated. The algorithm terminates when the correct prime factor of N has been determined.
For a more thorough explanation including pseudo-code to simulate the algorithm, the reader is referred to [31].

Grover’s quantum search algorithm

A different example is Grover’s quantum search algorithm which provides a quadratic speed-up for searching
through large unstructured databases. Where the classical counterpart to Grover’s requires O(N) evaluations
the algorithm proposed by Lov Grover in 1996 [32] only requires O(

√
N) evaluations, where N represents the

size of the function’s domain. The algorithm creates a uniform superposition over all present options, after
which repeated destructive interference reduces the probability amplitudes of the states that are not a solution.
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This is achieved by changing the amplitude of the solution and then amplifying the difference resulting in a large
amplitude for the desired state. Upon measuring the state will collapse and the solution to the desired query
will be found with a high probability [33]. The algorithm’s applications are not limited to the search of large
unstructured databases. It has been shown by Cerf et al. [34] that it can also provide a quadratic speed-up for
generic constrained optimisation problems such as the graph colouring problem.

2.3 NISQ-era
The quantum speed-up they promise will require large-scale fault-tolerant quantum computers to implement
most of the quantum algorithms discussed in Sec. 2.2. However, significant engineering advances will be required
before entering the fault-tolerant quantum computing era. As it currently stands we are limited to architectures
which allow for the control of a few noisy qubits, also known as ’Noisy Intermediate Scale Quantum’ (NISQ)
devices, a term coined by John Preskill [2]. Though there are some promising candidate architectures for the
implementation of quantum computing such as superconducting qubits [4, 5, 6, 7, 8], trapped-ion qubits [9,
10, 11, 12], CMOS silicon spin qubits [13], photonic qubits [14, 15]. As mentioned in Sec. 2.1.1 there is no
consensus on which architectures would be the best candidate for a scalable quantum computer. Apart from
the limited number of qubits, NISQ devices suffer from limited qubit lifetimes, noisy operations and limited
two-qubit connectivity.

The limitation of qubit lifetime refers to the fact that current qubits have short coherence times. Therefore,
the operations that must be performed to run a specific quantum algorithm must be implemented within the
qubit coherence time. This establishes an upper bound on the number of possible operations, limiting the circuit
depth of the algorithm which NISQ devices can run effectively [3].

A further limitation of NISQ devices is the fact that the operations which are performed introduce errors.
Thus the qubit state obtained after an operation has been performed will not be exactly the state which is
desired. The present error rates are reported to be approximately 10−3 for single qubit operations and 10−2 for
measurements and two-qubit operations [35, 36, 37]. For this reason, reducing the number of required operations
to perform a quantum algorithm is an important consideration.

Figure 5: a) This is a description of the Starmon 5 superconducting qubit architecture [38], the orange lines
indicate the connections between qubits that can perform two-qubit gates. b) Is the corresponding graphical
representation, coupling graph.

Furthermore, NISQ devices often do not have all-to-all connectivity. This means that two-qubit operations
can not be performed between arbitrary qubits. Often NISQ devices have a fixed topology which describes
between which physical qubits two-qubit operations can be performed. The specific topology of an architecture
is also referred to as the coupling graph of the architecture. An example of a physical quantum architecture and
its corresponding coupling graph is shown in Fig. 5. Limited two-qubit connectivity is a principal limitation
which leads to the consideration of the QMP. The QMP aims to efficiently determine how to implement quantum
algorithms on current NISQ devices. This problem will be introduced in Sec. 2.4 and a more detailed description
of this problem will be presented in Sec. 3.
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It is important to note that algorithms such as Shor’s and Grover will most likely not be able to outper-
form their classical counterparts using the current generation of NISQ devices. Some examples of algorithms
could outperform their classical counterparts on near future NISQ devices [39]. Moreover, the experimental
demonstrations of quantum key distribution based on the BB84 protocol have been realised [40].

Lastly, there are certain architectures in which two-qubit operations can only be performed in a directed
manner, which entails that the topology of the device also fixes the control and target qubit. Dealing with this
limitation is beyond the scope of the contribution presented in this thesis.

2.4 The Qubit-Mapping Problem
Quantum compilation is essential to execute a quantum algorithm on a NISQ device. As mentioned in the
introduction, quantum compilation considers several factors to allow the successful execution of an algorithm
on the underlying hardware. Some factors considered when compiling are gate restructuring, qubit mapping,
reduction of the overall execution time, and mitigation of errors [20]. In this thesis, qubit mapping will be
considered in detail. Though the other elements are also essential, they are beyond the scope of this thesis.

As mentioned in Sec. 2.3, currently available quantum architectures can not perform all the tasks required
to ensure the successful execution of a quantum algorithm. Quantum algorithms have been designed assuming
that required operations can be executed on an architecture where qubits can perform gates between arbitrary
qubits. However, the current generation of NISQ devices does not meet this requirement. Therefore, it is
essential to consider how they can optimally be used to perform the operations required to execute a quantum
algorithm.

To utilise the current generation of NISQ devices to their full potential, it is imperative to consider how
logical qubits specified by the algorithm should be mapped to the physical qubits of the underlying NISQ
architecture. Taking into account the limitations of the architecture for example limited connectivity between
physical qubits. This leads to the consideration of the qubit-mapping problem (QMP). The QMP was defined
by Li et al. [41] as follows: ‘Given an input quantum circuit and the coupling graph of the quantum device,
find the initial mapping and the intermediate qubit mapping transition (by inserting SWAP operations)
to satisfy all two-qubit constraints and try to minimise the number of additional gates and circuit depth in the
final hardware-compliant circuit.’

It is essential to consider how an algorithm would initially be mapped to an underlying architecture and
to determine the minimal number of SWAP operations required to execute it. In the scope of this thesis, we
will focus on determining the minimal number of required SWAP operations. This will be done by considering
theoretical methods and providing a new approach to this problem. Determining the ideal initial mapping will
be beyond the scope of this thesis. The number of SWAP operations will be determined for a given initial
mapping which has been provided. The initial mapping defines the assignment of logical qubits to the physical
qubits of the underlying architecture. The presented approach will offer an alternative perspective on how to
solve the problem compared to the heuristic and brute force searches that have been previously proposed.

It is essential to note that the QMP is NP-complete [42]. This means that a solution can be determined in
polynomial time. However, there is no efficient algorithm to solve NP-complete problems in general. Therefore,
it remains to be determined how the QMP could be solved in polynomial time. We hope to contribute to this
goal. In recent years there has been ample research on the QMP, the literature on this topic will be discussed
in depth in Sec. 3. Initially, attempts have been made to solve the problem using brute-force algorithms, which
are effective when dealing with simple systems. As the quantum architecture increases in size and the quantum
algorithm requires more qubits and operations, heuristic algorithms have been developed as potential solutions
to the problem.

A different approach which has been presented is to utilise a graphical representation. This allows us to
reframe the problem using concepts from graph theory. In turn, allowing the use of existing solutions or heuristics
studied for graph-theoretic problems, equivalent to the QMP. Lastly, the influence of the noisy characteristics
of NISQ devices has also been studied.

An example of the QMP will be discussed to give the reader a clear idea of what needs to be considered
when aiming to solve the QMP. It is important to note that we simplify the problem as we do not consider the
order in which the gates must be implemented in the circuit.

First, the aim is to establish the coupling and interaction graph of the NISQ architecture and the quantum
algorithm respectfully, shown in Fig. 6. In this example, the interaction graph is constructed based on the
circuit from Fig. 4. The construction of the coupling graph is the same as in Fig. 5.
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Figure 6: Example of how the coupling and interaction graphs are determined based on the NISQ architecture
and the quantum algorithm respectively.

Once the CG and IG have been constructed, it will be possible to map the logical qubits to the physical
qubits. The mapping for this example is depicted in Fig. 7 where the colours of the vertices indicate how logical
qubits are mapped to the physical qubits. The qubits in the example have been mapped as follows:

Q0,logical 7→ Q2,physical (5)
Q1,logical 7→ Q0,physical (6)
Q2,logical 7→ Q4,physical (7)
Q3,logical 7→ Q3,physical (8)

The example presented in Fig. 7 is simple and the initial mapping is not difficult to determine. We only need
to map a qubit from the IG with two edges to the central qubit (Q2,physical)to obtain the ideal initial mapping.
This can be confirmed by considering the number of operations we can execute based on the initial placement.
If we map a logical qubit with only one edge to Q2,physical, only one operation can be performed.

Figure 7: Example of an initial mapping and the SWAP operation, which is performed to allow all gates of the
algorithm to be executed.

Still, not all operations the algorithm specifies can be performed after the initial mapping. Therefore SWAP
operation will be required to modify the mapping. In Fig. 7 it can be seen that we still need to operate between
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the blue and red qubit in the interaction graph. For that reason, the mapping of logical qubits to physical
qubits is changed to:

Q0,logical 7→ Q0,physical (9)
Q1,logical 7→ Q2,physical (10)
Q2,logical 7→ Q4,physical (11)
Q3,logical 7→ Q3,physical (12)

In Fig. 7 the naming of the vertices in the CG and IG are not changed, but their initial mapping is. It would
also be possible to change the names of the vertices in the graph to represent the change in mapping, shown in
Fig. 8. In that case, the assignment of logical qubits to physical qubits still adheres to Eq. 5-8. Changing the
mapping or the naming of the qubits will not influence the required SWAP operations. Therefore, we are free
to choose and when introducing and evaluating the proposed approach we chose to change the naming of the
qubits.

Figure 8: Example showing the difference between changing the initial mapping and naming qubits.

This thesis aims to contribute by reformulating the QMP using tools from quantum information and complex
network theory. The primary objective is establishing a lower theoretical bound on the number of SWAP
operations required to execute a quantum algorithm for a specified initial mapping.

Having provided an example of how to solve the QMP in Sec. 3 overview of the relevant literature concerning
the QMP will be presented.
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3 Literature review: Qubit-Mapping Problem
This section will provide an overview of the current literature for the reader to gain insight into the current
standing of the Qubit-Mapping Problem (QMP). To get an overview of advances made in recent years, this
section will summarise relevant publications on the QMP to give the reader an insight into the history of the
problem and the proposed solutions.

3.1 The Qubit-Mapping Problem
The quantum mapping problem has been considered for systems with one-dimensional architectures, such as
the Linear Nearest Neighbour (LNN) architecture. In this physical architecture, the qubits are arranged in a
line. Examples of LNN architectures are trapped ions [43] and liquid NMR [44]. In the work of Shafaei et al.
[45] they aim to explore an efficient realisation of a quantum algorithm on a 1D physical architecture. They
focused on reducing the interaction distance of the qubit pairs involved in two-qubit operations, effectively
achieving nearest-neighbour compliance. The interaction distance is the distance between the qubits on the
line and equals zero when the qubits are nearest neighbours. The total interaction distance is the sum of the
interaction distances of all qubit pairs involved in two-qubit operations. The problem has been restated as the
Minimum Linear Arrangement (MinLA) problem in graph theory [46] to reduce total interaction distance. A
trivial mapping of logical qubits onto the underlying 1D physical architecture often does not yield the minimal
total interaction distance. Therefore, it is relevant to consider determining a mapping that reduces the total
interaction distance. Moreover, even after this mapping has been obtained, some two-qubit operations from
the quantum algorithm may still be impossible to execute since the qubits involved in these operations are
not nearest neighbours at that point. Additional SWAP operations are added to make these qubits nearest
neighbours.

The proposed approach considers the quantum algorithm an interaction graph (IG) in which the vertices
represent the qubits and edges in the graph refer to two-qubit operations. This approach is adopted because
minimising the interaction distance when mapping the interaction graph to the coupling graph (CG) of physical
architecture is equivalent to solving the MinLA problem. Though the MinLA problem is NP-hard in general
[46] there are polynomial time algorithms which can compute exact solutions for certain graphs. Furthermore,
approximation algorithms have been proposed to solve the MinLA [47]. Based on the maximum number of
two-qubit operations performed on a specific qubit in the quantum algorithm, it is possible to indicate the
required number of SWAP operations. If a logical qubit involves more than three two-qubit operations, at least
one SWAP operation will be required. Since in a 1D architecture, a qubit only has two nearest neighbours, a
SWAP will be required for the third gate to be performed.

The proposed method partitions the circuit into multiple subcircuits. Within each subcircuit, the MinLA
procedure is applied to determine the mapping that minimises the total interaction distance of that specific
subcircuit. Upon completing this step, SWAP operations are inserted to enable the execution of all two-qubit
operations within the subcircuit. Once all two-qubit operations within the subcircuit can be performed, addi-
tional SWAP operations are implemented to adjust the mapping and align it with the mapping requirements of
the subsequent subcircuit. A look-ahead scheme is introduced to optimise this process. This scheme determines
subcircuit boundaries and minimises the number of SWAP operations.

The proposed method has been evaluated by comparing the experimental results based on the benchmarks
from [47] to work conducted by Saaedi et al. [48]. The comparison shows that the proposed method achieved
an average reduction of 28% in the number of SWAP operations required.

The approach mentioned above was explicitly designed to realise quantum algorithms on 1D architectures.
Implementing SWAP operations allowed the mapping to be adjusted to comply with the quantum algorithm.
The introduction of SWAP operations significantly affects the overall cost of the resulting circuit. For that
reason, extensive research has been conducted to determine efficient mapping methods and SWAP operation
insertions for present physical architectures [45, 48, 49, 50, 51, 52].

The required SWAP operations in multidimensional architectures have been addressed as the field pro-
gressed. An example of a multidimensional architecture is a physical architecture with qubits arranged in a
two-dimensional structure. With the emergence of multidimensional quantum architectures [53, 54, 55, 56,
57, 58], it was crucial to develop methods to construct nearest-neighbour-compliant quantum circuits for these
architectures. These circuits will be referred to as multidimensional quantum circuits. Previous work on this
topic utilised a heuristic approach [59, 60], but an exact scheme for constructing multidimensional quantum
circuits still needed to be introduced. Lye et al. [61] were the first to propose an exact scheme for nearest
neighbour optimisation in multidimensional quantum circuits.
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The introduction of multidimensional quantum architectures gave rise to additional complexities in deter-
mining the minimum number of SWAP operations required compared to one-dimensional architectures. Lye et
al. observed that achieving nearest-neighbour compliance in multidimensional architectures involves tackling
complex sub-problems. Their proposed solution comprises three steps, each evaluating a complex sub-problem.
The proposed method can determine the exact result for circuits of up to six qubits. These exact results can,
in turn, be compared to the results of the heuristic approaches [59, 60]

The three complex sub-problems which are evaluated are the following. First, they determine the precise
configuration of the qubits of the underlying physical architecture. We refer to this configuration as the coupling
graph. Secondly, they provide a cost function for the minimal number of SWAP operations required to exchange
the position of any pair of qubits in the coupling graph, and lastly, they determine the minimal number of SWAP
insertions based on the configuration and the cost function. Having established the procedure, they turn to the
implementation in which they aim to determine the minimal number of SWAP operations while also keeping
the number of garbage (unused) qubit positions minimal.

To establish the required SWAP operations to exchange the position of any pair of qubits in the coupling
graph, they formulate the problem as an adjacent transposition graph [50]. An adjacent transposition graph
represents the various permutation of the qubits in a coupling graph which can be realised by implementing
SWAP operations between nearest neighbours. Each node represents a distinct mapping of logical qubits to the
coupling graph, while the edges indicate which mappings may be achieved by implementing nearest neighbour
SWAP operations. This graph provides a representation of possible mappings and indicates the transition
between the mappings. In doing so, the minimal SWAP operations can be considered by determining a minimal
path from the starting node to the node representing the desired mapping. Determining the minimal path can
be formulated as a Pseudo-Boolean Optimisation problem (PBO) by assigning Boolean variables to nodes and
edges, indicating whether they are part of the optimal path. This formulation is then passed to a state-of-the-art
PBO solver [62] to obtain the desired minimal path.

Lastly, they consider all possible permutations of qubit positions before each gate specified by the circuit
and the costs to create these particular permutations. To solve this, they again employ a PBO formulation
which is solved to determine the minimal number of SWAP operations required. Overall they have provided an
exact solution to the minimal number of SWAP operations to be inserted to make a generic quantum circuit
nearest neighbour-compliant.

While Lye et al. [61] only made the circuits nearest neighbour-compliant, quantum computing became
available to the broader public the following year when IBM launched the IBM Q project. The public availability
of quantum computing sparked the question of how to most efficiently utilise their architectures to provide the
desired functionality when a particular quantum circuit was to be executed. To that end, Zulehner et al. [63]
proposed an efficient and automatic mapper taking into account the constraints of the architecture while, in
addition, attempting to minimise the additional quantum gates. The work differs from that presented by Lye
et al. [61] since Zulehner et al. focus on mapping a quantum algorithm to a specific architecture, namely the
IBM QX architectures. Their work considers the limitations imposed by the underlying architecture’s physical
constraints. Furthermore, the quantum algorithm must be decomposed into elementary operations which can
be performed on the architecture. This decomposition is required because quantum operations outlined by the
algorithm often cannot be performed directly.

An initial mapping of logical qubits to the underlying IBM QX architecture will likely only meet some
physical constraints. Therefore, it will be necessary to perform a SWAP operation to move the logical qubit to
the desired location on the architecture to perform the next operation. It is relevant to minimise these SWAP
operations since they affect the reliability of the circuit and the execution time of the algorithm. Zulehner et
al. [63] have provided an approach based on depth-based partitioning, an A* search algorithm, a look-ahead
scheme and a dedicated mapping initialisation. Their proposed approach has been shown to outperform IBM’s
mapping solution and is fully integrated into IBM’s SDK.

They start by decomposing the quantum algorithm to a representation in terms of elementary gates, after
which they ensure that the CNOT-constraints of the architecture are satisfied. CNOT-constraints arise because
the IBM QX architecture does not have all to all connectivity. Thus, certain physical qubits can only perform
gates in a specific direction and with specific qubits. The decomposition of a quantum algorithm into elementary
gates has been intensely studied, and thus the tools to perform this operation are available [64, 65, 66, 67, 68,
69, 70]. To fulfil the necessary CNOT-constraints, it is often necessary to incorporate additional Hadamard (H)
and SWAP operations. As mentioned before, introducing additional gates reduces the overall reliability of the
performed operation.

Thus they propose a method to efficiently map a given quantum circuit (which has been decomposed into el-
ementary gates) to the IBM QX architectures, with the primary objective of adhering to the CNOT-constraints
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while minimising the overall number of additional gates introduced, making the circuit CNOT-compliant.
CNOT-compliance is similar to making the circuit nearest-neighbour-compliant, but CNOT-compliance also
considers the architecture’s limitations since not all nearest neighbours can interact. Two steps are taken to
make the circuit CNOT-compliant. They partition the circuit into layers consisting of operations that can be
applied concurrently and determine which SWAP operations are required to go from one layer to the next. The
layers consist of concurrent operations, making it possible to determine a mapping for a layer such that the
CNOT-constraints are satisfied. The second step is required because the mapping of logical qubits for different
layers will differ. Finding the minimal number of SWAP operations needed to transition from one layer to the
next is a problem with an exponential level of complexity regarding the number of physical and logical qubits.
An A* search algorithm is applied to deal with this complexity. Only using the A* algorithm based on the
previous layer would not ensure that the overall execution is optimal. A look-ahead scheme is proposed to
deal with this, incorporating information about the following layer to the cost function of the A* algorithm.
This approach, including a look-ahead scheme combined with an initial CNOT-compliant mapping for the first
layer, can efficiently map quantum algorithms to existing quantum hardware. The efficiency is validated by
experimental evaluations, which show that the proposed approach outperforms the solution provided by IBM
at the time.

The work which has previously been discussed does not take into account the error rates which are present
in NISQ devices. The introduction of Quantum Error Correction could mitigate the influence of these error
rates. However, implementing QEC requires significant overhead in the number of physical qubits needed to run
a quantum algorithm. Thus this will not be possible on NISQ devices where the number of qubits is limited.
Nonetheless, the NISQ devices could still be valuable without implementing QEC. Tannu et al. [71] have studied
the problem of Qubit-Allocation (initial qubit mapping) and Qubit-Movement (inserting SWAP operations) to
deal with the variation in the error rates of different single- and two-qubit operations possible on the quantum
architectures available at the time. To quantify variation in error rates, they analyse the error rates of the
IBM-Q20 architecture for both single- and two-qubit operations. The data they studied was obtained over
52 days. The errors which have been considered are retention errors and operational errors. Retention errors
occur due to relaxation of the qubit to the ground state or phase errors resulting from interaction with the
environment. Operational errors occur when performing operations, such as the SWAP operation, which can
affect the qubit’s state. Though the error rates of both single- and two-qubit operations have been considered,
the work focuses on the operational errors due to two-qubit gates since these significantly impact the device’s
reliability.

They define metrics to quantify the reliability of the NISQ device. The defined metrics are the ’Mean
Instructions Before Failure’ (MIBF), which indicates the number of instructions performed before the first error
occurs and the ’Probability of Successful Trial’ (PST), which indicates the probability of running a quantum
algorithm successfully without an error. The MIBF metric is helpful for quantum algorithms with a large circuit
depth, whereas the PST metric is valuable for quantum algorithms that can successfully run on current NISQ
devices. Having defined reliability metrics, they show that the device error rate significantly impacts the overall
device reliability.

Furthermore, they introduce the notion of Variation-Aware Qubit Movement (VQM) and Variation-Aware
Qubit Allocation (VQA), which consider the additional constraints of the error rates of the underlying architec-
ture. The VQM is similar to determining the required number of SWAP operations, and the VQA is similar to
mapping the logical qubits to the underlying physical architecture. The differentiating factor is that VQA and
VQM also consider the error rates. In practice, this evades the weaker single- and two-qubit operations. This
approach significantly improves efficiency when running quantum algorithms on the IBM-Q20 architecture. The
approach presented by Tannu et al. [71] can assist in gaining more understanding of problems such as resource
sharing and partition problems on NISQ devices. For example, the approach can give insight into whether it
would be better to run two copies of a quantum algorithm in parallel or to run one copy on the part of the
system which maximises the device’s reliability.

The examples discussed utilised a circuit-oriented gate-level description for quantum algorithms. Murali et
al. [72] have considered quantum algorithm interpretations expressed in logic operations and quantum functions
in a high-level programming environment. Their approach is introduced to allow the design of tool flows which
efficiently use the available hardware without sacrificing the high-level programming environment. They achieve
this by designing a compiler which takes as input the quantum algorithm represented in the Scaffold language,
which is an extension of C with quantum types [73, 27]. The output is a near-optimal spatiotemporal mapping
used to produce target code in the OpenQASM language. The output code can be executed directly on the
hardware, such as the 16-qubit architecture from the IBM Q project.
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They construct a constrained optimisation program considering both the algorithm characteristics and the
architecture constraints. When constructing the constrained optimisation, they consider the initial qubit map-
ping, the gate scheduling and the CNOT routing. The mapping of qubits from the algorithm to the underlying
architecture results in the constraint that no two logical qubits can be mapped to a physical qubit. When
considering the scheduling of gates, both the start time and the gate duration are considered. For single-qubit
operations, the duration depends solely on the execution time. The duration of CNOT gates includes the time
required for the SWAP sequence, which ensures the logical qubits involved in the CNOT gate are assigned to
physical qubits that can perform the CNOT operation. The scheduling of gates introduces the constraint that
a gate should only be executed once the gates it depends on have been completed. Lastly, they consider the
implementation of CNOT routing to prevent conflicts between SWAP- and CNOT gates. This results in the
constraint that if two CNOT gates overlap in time, the paths of their SWAP sequences on the architecture
should not overlap.

The optimisation is performed by introducing a dummy gate that depends on every gate in the quantum
algorithm. In addition, the optimisation objective is to minimise the start time of the dummy gate. The
optimisation of the objective function was initially attempted using the Optimisation Modulo Theory (OMT)
solver in Z3. OMT is an extension of SMT which enables the discovery of exact models optimised for the specific
objectives [74]. However, it is slow in practice, so the choice has been made to consider a near-optimal solution.
The near-optimal solution is at most a factor of 1.1 from the optimal solution. The procedure of determining
the near-optimal solution is referred to as the OPT algorithm.

The proposed compiler uses a Z3 Satisfiability Modulo Theory (SMT) solver to map the quantum algorithm
to the hardware while performing the optimisation considering the constraints and optimising the overall ex-
ecution time. Furthermore, SMT optimisation simultaneously considers the constraints and the dependencies
they have on each other. Simultaneously considering these constraints causes a bottleneck for the scalability
of the solver. It has been proposed to separate the compilation into two phases to deal with this issue. First,
the qubits are mapped, minimising the number of required SWAP operations, and then the gates are scheduled
and routed.

Moreover, benchmarks have shown that generating near-optimal code for underlying architectures with a
small qubit count and limited coherence time is possible. In the case of architecture with a larger qubit count, a
heuristic SMT optimisation can generate a target code guaranteed to finish within the window of coherence of the
architecture. It is demonstrated that it is possible to determine near-optimal compilations using the proposed
method for current and near-term NISQ devices. In the case in which larger systems have been considered, the
heuristic method is demonstrated to be scaleable and can determine coherence compliant schedules.

Examples have also been presented which consider not only the constraints based on the connectivity of
the architecture and the available elementary gates but also the constraints resulting from the shared classical
control electronics. These constraints can be restrictive, especially when considering the scaling of the mapping
to suit larger architectures. The last constraint is that classical electronics are required to control and operate
qubits. The classical control electronics are shared among several qubits. An example is qubits measured
through the same feedline [75, 76]. The shared control limits the parallelism of quantum operations.

An example that considers the constraints due to shared classical control is the introduction of a mapper
called Qmap [77]. This mapper was developed to make a quantum algorithm executable on a scaleable supercon-
ducting quantum processor such as the Surface-17. The Surface-17 is a scaleable processor with a surface code
architecture [78, 79]. The surface code architecture is a scaleable system capable of performing fault-tolerant
quantum computation based on the surface code architecture [80]. Several parameters have been considered in
creating the mapper, namely the architecture’s elementary gate set, the qubit connectivity constraints and the
restrictions imposed by the shared classical control.

They aim to find an initial mapping based on minimising the number of qubit movements with the help
of the Integer Linear Programming (ILP) algorithm presented by [81]. The problem of determining an initial
mapping has been formulated as a quadratic assignment problem. In this formulation, the communication
overhead between qubits is represented by their distance minus 1. Moreover, since it is unlikely that all of the
architecture’s constraints are satisfied upon performing the initial mapping, they present a heuristic algorithm
to perform the routing by inserting SWAP operations. After implementing the initial mapping, this algorithm
finds all two-qubit gates where the logical qubits are not nearest neighbours. Then it inserts the required SWAP
operations to make these logical qubits adjacent. The optimisation objective is to achieve the shortest circuit
latency, which they claim leads to the highest instruction-level parallelism. The latency represents the execution
time of the algorithm when considering actual gate durations. The scheduling of gates is also performed with
the help of a resource constraint scheduler which reschedules the routed circuit based on the same latency
optimisation objective to minimise the required lifetime and the decoherence error of each qubit. Furthermore,
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decomposition is performed, decomposing the circuit into the architecture’s elementary gates, maintaining the
constraints discussed earlier. Lastly, optimisation is implemented to reduce the required operations, as gates
that cancel each other out are eliminated. Both the decomposition and optimisation modules can be performed
at any point during the mapping procedure. In the case of Qmap, these modules are performed before and after
the routing.

In their evaluation, they ran 56 benchmarks from both RevLib [82] and QLib [83] on both the Surface-17
processor [79] as well as the IBM Q Tokyo processor [16]. The parameter they considered in the evaluation is
circuit depth which represents the length of the circuit, and circuit latency, which again represents the execution
time considering real gate durations. Three routers have been evaluated, showing that the MinExtendRC
router [77] yielded the lowest overhead in both circuit latency/depth and number of gates. Compared to a
trivial router, this choice of a router shows that the resulting overhead of the number of gates is reduced by
80% Elements which stand out in the proposed mapper (Qmap) are the introduction of the MOVE operation,
which can be used instead of a SWAP operation on an uninitialised qubit, which is shown to reduce the resulting
overhead substantially. They have found that higher connectivity helps decrease the number of required inserted
operations. Rather than optimising to find either the minimal circuit depth or the least number of additional
gates [71, 72, 84, 85, 86, 87] proposed to consider the reliability as the optimisation metric, analysing the impact
which the mapping has on the success rate of the algorithm. Qmap has been embedded in the OpenQL compiler
[88] to support several quantum processors. The constraints of the processors are described in a configuration
file. Lastly, they note the importance of a flexible mapper for making quantum circuits executable on different
real quantum processors in the future.

As has become clear, it is rarely possible to directly execute quantum algorithms on NISQ-era devices
due to the present hardware constraints, such as the limited connections for two-qubit gates. The solutions
discussed thus far have some limitations. Namely, they have a high level of complexity, the quality of the initial
mappings is often poor, and they have limited flexibility. To address these limitations, Li et al. [41] propose a
SWAP-based BidiREctional heuristic search algorithm (SABRE), which applies to NISQ devices with arbitrary
connections between qubits. This extension is relevant since the work discussed so far can handle arbitrary
coupling graphs. However, their proposed method is limited due to significant runtime [63]. Moreover, the
presented mapping strategies lack the ability for global optimisation. Lastly, these strategies cannot optimise
for the varying characteristics of NISQ devices, limiting the possible uses of the proposed solutions.

SABRE has been proposed to tackle the limitation of previous solutions. The proposed algorithm consists
of an optimised SWAP-based heuristic search scheme and a reverse traversal search technique and introduces
a ’decay’ effect on the cost function. Noting that the mapping transition should start based on the qubits
involved in two-qubit interactions, the heuristic search scheme significantly reduces the search space. The
optimised SWAP-based heuristic search can reduce the complexity from O(exp(N)) to at most O(N2.5) where
N represents the number of physical qubits—providing an exponential speed-up. The reverse traversal search
technique generates a high-quality initial mapping and deals with the complex initial mapping problem, which
is done by considering the reverse traversal of the quantum algorithm. A random initial mapping is generated,
and based on this mapping, the SWAP-based heuristic search is performed on the original circuit. The mapping
obtained is used as the initial mapping to repeat the process on the reversed circuit. The reversed circuit is
created by reversing the sequence of gates in the original circuit. This method gives more weight to the gates
present at the start of the algorithm while still considering all the gates present in the rest of the algorithm.
Lastly, the introduced ’decay’ effect slightly increases the heuristic cost function by adding weight to recently
SWAPed qubits. Simulating the algorithm to choose SWAP operations involving different qubits increases the
parallelism of added SWAP operations. Moreover, it enables generating of different hardware-compliant circuits
with a trade-off between circuit depth and the number of gates. This trade-off can be tuned by modifying the
weight of the ’decay’ effect.

Furthermore, the algorithm can optimise for different objectives. The objectives are flexibility, fidelity,
parallelism and scalability. Flexibility ensures the algorithm can deal with irregular coupling designs and their
evolution over time. The fidelity objective deals with the fact that NISQ devices are prone to errors, and
as such, it is relevant to minimise the number of required operations, such as the two-qubit interactions. In
addition, parallelism aims at allowing SWAP operations to be performed in parallel such that the depth of the
circuit is limited. Lastly, scalability aims to keep the algorithm operational as the number of physical qubits
increases. The formulated optimisation objectives are evaluated using several benchmarks of different sizes
and compared to the existing algorithms in which Zulehner et al.[63] is considered the best algorithm at the
time. These benchmarks have been selected from previous works [42, 89] as well as programs from QISKit [90],
functions from RevLib [82] and algorithms compiled from both Quipper [28] and ScaffCC [73]. The underlying
architecture considered is the Q 20 Tokyo chip from IBM [35]. The metrics used in the evaluation are the
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total number of gates and the circuit depth of the final generated circuit, which complies with the underlying
architecture’s hardware constraints. The SABRE algorithm is shown to reduce the number of additional gates
by 91% in smaller circuits and 10% in the case when larger circuits are considered. Furthermore, the speed-up
in runtime is significant even though SABRE has been written in Python compared to Zulehner et al. [63],
who constructed their algorithm in C++. Lastly, it is shown that it is much more scaleable when compared to
Zulehner et al. [63].

SABRE is a promising step in the right direction as it allows studying larger quantum algorithms effectively.
Nonetheless, there are still certain limitations to consider. Namely, the implementation of single-qubit gates
has not been considered, and only the insertion of SWAP operations has been considered without adapting the
gates in the original circuit.

3.2 Graph theory approach to the Qubit-Mapping Problem
As hinted at the start of the previous section, using a graph-theoretic perspective can be relevant when addressing
the QMP. [45] achieved the reduction of total interaction distance by restating the problem as the Minimum
Linear Arrangement (MinLA) problem in graph theory [46]. Various structures can be represented as graphs,
and graph theory can be used to model and solve various problems. Due to the many applications, graph theory
has attracted considerable attention in various fields [91]. An example of a problem considered in graph theory
is determining the similarities between different graphs. The study of this problem is relevant to this thesis, as
it will be incorporated into the algorithm. This section will discuss works that invoke the use of graph theory
in proposing solutions for the QMP.

An example of a proposed solution which adopted graph theory to solve the QMP has been presented
by Siraichi et al. [92]. The model presented is a combination of finding subgraph isomorphism and token
swapping. The subgraph isomorphism problem involves comparing two graphs, G = (V,E) and H = (V,E),
where V represents the vertices and E represents the edges of the graph. The objective is to determine whether
G contains a subgraph that is isomorphic to H. An isomorphism is a bijection f : V (G)→ V (H) between the
vertex sets of G and H such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are
adjacent in H. The subgraph isomorphism problem is NP-complete [93], though some instances of the problem
can be solved in polynomial time [94, 95]. Subgraph isomorphism is identified as a potential metaphor for the
initial mapping problem. However, this analogy only holds if no additional SWAP operations are required after
the mapping since all required operations can be executed directly. Furthermore, the token swapping problem
[96] refers to placing tokens on vertices of a graph and finding the shortest sequence of swaps such that a token
is placed on a different vertex within the graph. In the case of the QMP, the token can be seen as one of the
qubits involved in a two-qubit operation. The goal is to find the shortest path such that this qubit is placed
on a vertex that shares an edge with the other qubit involved in the operation, which is the same problem as
finding the required SWAP operations to make the quantum algorithm CNOT-compliant. Single qubit gates
have not been considered. In this work, they rely on an approximate solution to the Token Swapping problem
[97]. Combining these two approaches offers a model that completely describes the QMP.

Therefore, Siraichi et al. [92] propose a parameterised polynomial-time algorithm which breaks down the
QMP into a combination of token swapping and subgraph isomorphism. Restating the problem simplifies
finding a solution since it is possible to use well-established heuristics and approximations developed for token
swapping and subgraph isomorphism [98, 99, 100], which requires developing an algorithmic approach based
on a combination of solutions developed for token swapping and subgraph isomorphism. First, the mapping
problem is split into multiple partial instances for which the subgraph isomorphism problem is solved. A greedy
search is implemented to determine solutions to individual instances. In the case of larger circuits, many partial
instances could be considered. To deal with this, the partial instances to be solved are bounded by parameters
which control the size of the solution space, which may not lead to the optimal solution but offers flexibility to
balance optimality and runtime. Once the partial instances have been solved, token swapping is implemented
to find the SWAP operations required to transition from one partial instance to the next. The approximation
presented by Miltzow et al. [97] is used to solve the token swapping problem.

The proposed algorithm has been compared to the works which have been discussed in the previous section
[63, 41, 101] as well as IBM’s Python SDK (QISKit) and Zulehner and Wille [102]. It is important to note
that none of these algorithms guarantee an optimal solution. Nonetheless, they have shown that the proposed
approach can generate more efficient solutions than those presented. The evaluation of the algorithm has been
performed on the benchmarks also used by Zulehner et al. [89]. The quality of the mapping has been evaluated
based on three parameters, namely, weighted cost, total number of gates and depth of the resulting circuit. Here
the weighted cost represents the combined cost of all the gates used in the resulting circuit. This differs from
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the total number of gates since the weight of single-qubit and two-qubit gates are 1 and 10, respectively. In
addition, the efficiency has been considered based on memory consumption and the required time for processing
a quantum algorithm. For an in-depth comparison of the algorithms, the reader is referred to Sec. 4 of Siraichi
et al. [92].

The subgraph isomorphism gained traction and led to a new search algorithm incorporating it alongside a
filtered depth-limited search. This algorithm was presented by Li et al. [103]. Similar to the work previously
discussed, the aim is to construct a graph based on the quantum algorithm, which is isomorphic to a subgraph of
a NISQ architecture. This isomorphism determines the initial mapping. All gates from the quantum algorithm
that can be executed based on the initial mapping are added to a ’physical’ circuit. The ’physical’ circuit
represents the circuit which can be implemented on the NISQ device. SWAP operations must adapt the mapping
to execute the remaining gates if there are still unexecuted gates. A good subsequent mapping could be found
by exhaustively searching all possible combinations of SWAP operations. To determine which combination
maximises the two-qubit gates that can be executed after the SWAP operations have been implemented. It is
proposed to set up a fixed limit k > 0, ensuring that only combinations of k SWAP operations are considered
to mitigate the high cost of an exhaustive source. Further speeding up the proposed algorithm, they introduce
filters. These filters selectively eliminate SWAP operations that do not decrease the distance between the qubits
involved in pending two-qubit operations. The filters improve the algorithm’s runtime but may filter out the
optimal solutions [103].

Therefore, this approach does not outperform previously discussed algorithms [41, 92] when considering a
small number of two-qubit operations. Nonetheless, their approach is relevant since it scales polynomially in the
number of two-qubit operations. The algorithm significantly reduces the required SWAP operations for many
two-qubit operations. In comparing their algorithm to the previously discussed SABRE algorithm [41], they
show that for quantum algorithms with over 200 CNOT gates, the improvement in the other required number
of SWAP operations is at least 50%. In further comparison, they note that the improvement of the proposed
algorithm is particularly true when dealing with quantum algorithms with more than 1000 CNOT gates.

Jiang et al. [104] have proposed an algorithm combining subgraph isomorphism and Tabu search-based
adjustments (TSA). Tabu search is implemented to adjust the mapping dynamically. It has the advantage of
circumventing local optima and avoiding SWAP operations on recently exchanged qubits. Which enhances the
parallelism of gates.

Their approach consists of three steps: preprocessing, isomorphism, completion, and adjustment. The
shortest distance between each pair of nodes is determined during preprocessing. In addition, they decompose
the circuit into layers containing the two-qubit operations that can be performed in parallel. In the isomorphism
and completion step, a subgraph isomorphism algorithm [105] is used to determine the initial mapping. Once
these steps have been completed, the adjustments are carried out, inserting SWAP operations to ensure that the
mapping of the logical qubits is CNOT-compliant for each layer. A Tabu search-based adjustment algorithm has
been introduced to deal with the complexity of finding the optimal SWAP operations. This heuristic algorithm
uses a tabu list to prevent redundant solution space exploration. This method aims to adjust large circuits and
should produce an output circuit close to the optimal solution.

Their experimental results have shown that the proposed method generates high-quality initial mapping and
reduces the number of inserted SWAP operations compared to the previous algorithms [63, 41, 103]. They show
a 27.14% reduction in the number of additional gates and a 10.74% reduction in the circuit depth compared to
Zulehner et al. [63]. Additionally, compared to Li et al. [103], the reduction amounts to 22.43% As mentioned
above, numerous algorithms have been proposed to address the QMP. However, there is still a need to assess the
problem while considering the noise characteristics of NISQ devices. A noise-aware heuristic mapping algorithm
has been introduced by Steinberg et al. [106] to address this concern. This algorithm considers the initial
mapping of a quantum algorithm. Compared to the previous work, this algorithm considers the error-rate
statistics of two-qubit, single-qubit and measurement operations of the underlying architecture. An upper and
lower bound has been established to evaluate the algorithm’s performance. These bounds are determined by
comparing the proposed algorithm with two reference algorithms, a brute force and a trivial mapping algorithm.
The brute force algorithm exhaustively searches all possible mappings to determine the optimal solution. On
the other hand, the trivial algorithm maps the logical qubits to the physical qubits based on their corresponding
indices. In this case, logical qubit 1 is mapped to the physical qubit 1, logical qubit 2 is mapped to physical qubit
2, and this goes on until all the logical qubits have been mapped. It has been shown that the proposed mapping
algorithm outperforms the trivial mapper and, in some instances, approaches the optimal results obtained by
the brute-force algorithm.

The impact of the number of edges of the interaction graph and their distribution are evaluated using the
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success rate metric. This metric is tied to the fidelity of the final state obtained by mapping and executing all
gates on a specific architecture. The success rate evaluation varies based on the characteristics of the interaction
graph mentioned above.

Lastly, the scaling behaviour of the heuristic mapping has been investigated to find that the greedy heuristic
scales well compared to the brute-force approach. Moreover, the algorithm works well compared to the trivial
mapper when 75% of the physical qubits are utilised. As the number of logical qubits increases, the effectiveness
of the proposed algorithm starts to decline.

To conclude this section, we briefly consider the work done to find a sub-graph isomorphism in larger
graphs. In the future, the mapping problem will have to scale with the growing number of qubits in quantum
architectures, such as IBM’s recent chip, which packs 433 qubits [107]. The coupling graphs also increase as the
functional number of qubits available increases. The problem of finding sub-graph similarities in large graphs
has been studied, and methods have been proposed to deal with the problem efficiently.

A proposed method uses graphlet kernels to determine the distance between graphs. A sub-graph similarity
matching algorithm takes the coupling graph as the large target graph and the interaction graph as a query
graph. The algorithm then determines an induced sub-graph of the coupling graph, which is most similar to the
interaction graph with respect to the graphlet kernel value. Graphlet kernels are known to perform better than
others for the specific task at hand [108]. The algorithm first computes vertex labels for the coupling and the
interaction graphs. These labels consider the local neighbourhood structure of vertices present in either graph.
This labelling opens the possibility to define notions of topological similarity of neighbourhoods corresponding
to particular vertices of the graph being considered. The computation of these labels for both graphs and
determining the nearest neighbour data structure is part of the preprocessing phase of the algorithm. The
vertices of both graphs, which are most similar, are determined using queries on this information.

The proposed algorithm has been tested on social media and search engine platform graphs. These are large
graphs with thousands of vertices and millions of edges. They are far more extensive than the coupling graphs
of near-future quantum devices. The algorithm finds highly similar matches when queried in these networks.
[109].
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4 Methods
Current research has utilised classical techniques to consider the mapping problem. This thesis will implement
tools from quantum information theory to introduce a new perspective on solving the problem. Previous
work has provided an interpretation of the mapping problem from the standpoint of fundamental physics and
mathematics [110]. Providing an interpretation which utilises prior work in Quantum Physics, Complex Network
Theory and Graph theory. To summarise, the physical architecture represented as the coupling graph and the
desired quantum algorithm represented as the interaction graph has been elevated to quantum objects, namely
density matrices. This formalism enables the utilisation of established techniques from quantum information
theory to quantify the information capacity of the interaction graph (IG) and the coupling graph (CG). The
information capacity is represented by the ‘von Neumann entropy’. Moreover, by representing the IG and CG
as density matrices, their difference can be quantified. This is achieved using the ‘quantum Jensen-Shannon
divergence’ metric, initially introduced by Biamonte et al. [111] 2016 to study complex networks.

As mentioned, the interaction and coupling graphs have been represented as density matrices, which are
used in quantum mechanics to encode probability distributions. This representation enables the utilisation of
the quantum operation formalism to map the coupling graph to the interaction graph. The mapping operation
can be represented as a superoperator, which describes a quantum channel between two quantum states. A
quantum channel is the most general description for transforming a quantum state. In the context of this
thesis, the quantum states correspond to the density matrices of the IG and CG, while the quantum channel
is introduced to represent the mapping between these states. A superoperator can be written down in the
Kraus operator representation. We will use this representation to study the mapping problem. Determining
the minimal number of required SWAP operations is possible by studying the Kraus operators, which map the
coupling graph to the interaction graph. The Kraus operators are related to the SWAP operations possible for
a given CG. This is achieved by introducing additional constraints for the Kraus operators. Calculations will
be provided for certain example graphs to explore the mathematical framework. Moreover, an algorithm will
be proposed to compute the Kraus operators for a CG/IG-pairing where the initial mapping is provided. The
algorithm will then be evaluated by considering toy-model examples and several CG/IG-pairings benchmarks.
The evaluation will be presented in Sec. 5.

4.1 Mathematical prerequisites
As has been discussed this thesis will aim to redefine the graphical representations of physical quantum archi-
tectures and quantum circuits to quantum objects, to address the problem of determining minimal number of
SWAP operations required to map the quantum circuits to physical quantum architectures. In this section,
the proposed mathematical formulation will be presented. This formulation represents the quantum algorithms
and the quantum architectures as graphical objects. Upon establishing these objects they will form the basis
which will allow us to elevate them as quantum theoretic objects, namely density matrices. By describing the
quantum algorithms and the quantum architectures as density matrices it will be possible to utilise tools from
quantum information theory, such as the quantum channel representation, Von-Neumann entropy and Quantum
Jensen-Shannon graph divergence.

4.1.1 Graph theory

We will commence with the introduction of the graph theoretic approach. First, the basic definition of a graph
will be presented. Several relevant concepts from graph theory which will be required will be discussed. Lastly,
it is explained how quantum algorithms and quantum architectures are represented as graphs.

A simple graph G = (V,E) is made up of a non-empty finite set V (G) of the element which we call
vertices, they are also referred to as nodes, in combination with a finite set E(G) which contains distinct
unordered pairs of distinct elements of V (G) which we call edges of the graph G. An edge {p, q} connects the
vertices p and q in the graph G. The example graph shown in Fig. 9 has vertex set V (G) = {1, 2, 3} and an
edge set E(G) = {{1, 2}, {2, 3}, {1, 3}} [112]. Moreover, a graph is said to be on n vertices in the case that
|V (G)| = n, in other words, the set V (G) contains n distinct nodes.

Additional concepts from graph theory are required namely the concept of the adjacency matrix A and the
degree matrix D. The adjacency matrix A is defined as:

A(G)i,j =

{
1, if {vi, vj} ∈ E(G);

0, if {vi, vj} /∈ E(G).
(13)

This definition shows that vertices vi and vj are adjacent in case an edge connects vi and vj . Furthermore, the

19



degree of a vertex d(vi) is the number of vertices which are adjacent to vi, which leads to the following definition
of the degree matrix D:

D(G)i,j =

{
d(vi), if i = j;

0, if i ̸= j.
(14)

Figure 9: Example graph with 3 vertices and 3 edges.

Thus for the example shown in Fig. 9 we find the following adjacency and degree matrix:

A =

0 1 1
1 0 1
1 1 0

 ;D =

2 0 0
0 2 0
0 0 2

 (15)

Lastly we introduce the graph Laplacian L which is defined as:

L = D −A (16)

Here D and A are the degree and adjacency matrix of the graph. In the case that we again consider the graph
example in Fig. 9 we find the following graph Laplacian:

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 (17)

4.1.2 Graphical representation of quantum algorithms and architectures

In this thesis, the graph of the quantum algorithm will be referred to as the interaction graph (IG), in which
the qubits of the circuit which describe the algorithm, are represented as the vertices of the interaction graph
V (IG). two-qubit operations are represented as edges E(IG), which are unweighted and undirected indicating
that a two-qubit operation can be performed in either direction. Moreover, it is crucial that at this point there
is no interpretation provided by the formulation for single qubit operations performed on the qubits.

The physical architecture will be defined in an analogue manner and referred to as the coupling graph
(CG). The CG again consists of a vertex set V (CG) which consists of the qubits in the underlying physical
architecture. The edge represents the two-qubit interactions allowed based on the topology constraints of the
architecture set E(CG). Note that the description of the architecture does not take into account the errors which
may take place as two-qubit operations are performed on the underlying architecture. Lastly, it is essential to
note that there are no disconnected vertices or sets of vertices in the CG. The last assumption ensures we can
exchange all vertices by implementing SWAP operations.

We assume that both the edge sets E(IG) and E(CG) do not contain loops, which is an edge which connects
a vertex to itself {vi, vi}, for an arbitrary vertex from the set V (IG) or V (CG). In addition, it will be assumed
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that there is at most one edge connecting a pair of vertices, {vi, vj}.
Having established the graphical interpretation there are some additional mathematical tools are required

before it is possible to describe these graphs as quantum mechanical objects. These tools will be introduced in
Sec. 4.2.

4.2 Quantum information tools
In this section, the translation of the graphical objects representing quantum algorithms and the underlying
physical architectures to quantum mechanical objects will be presented. First, the description of the density
matrix based on these graphic objects will be introduced, followed by the Von Neumann entropy, the Quantum
Jensen-Shannon graph divergence and finally the quantum channel formulation.

4.2.1 Density Matrix

In quantum mechanics, the density matrix or density operator (ρ) is a n× n matrix which describes the state
of a quantum mechanical system that acts on a n-dimensional Hilbert space. A density matrix has several
properties which will be important in the scope of this thesis namely, the matrix of a density operator is
Hermitian, positive semidefinite and has a trace equal to one. A Hermitian matrix (H) is a complex square
matrix equal to its conjugate transpose, H = HT . A positive semidefinite matrix is a Hermitian matrix with
nonnegative eigenvalues. The trace of a matrix is the sum of its diagonal elements, tr(H) =

∑
hii = 1 where

hii is the matrix element of the ith row and ith column. A density matrix is a generalisation of the state
vector introduced in Sec. 2.1.1 to describe the state of a qubit. An advantage of describing a state as a density
matrix instead of using state vectors is the fact that a density matrix may represent a pure state as well as
mixed states while a state vector can only represent pure states. To understand the difference between pure
and mixed states we consider how they are represented on the Bloch sphere introduced in Sec. 2.1.1. A pure
state is represented by a point on the sphere’s surface whereas an interior point represents a mixed state. In an
analogue description, a pure state can be represented by a state vector |ϕ⟩ whereas a mixed state is a statistical
ensemble of different state vectors. An example of a mixed state is a system with a 50% probability that the
state vector is |ϕ1⟩ and a 50% probability that the state vector is |ϕ2⟩. In the case that Tr{ρ} = 1 a density
matrix is in a pure quantum state, whereas Tr{ρ} ≤ 1 represents a mixed state. Furthermore, the formulation
is useful for describing unknown ensembles of quantum states. The density matrix of a number of states |ψi⟩
with probabilities pi is defined as [21]:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| (18)

We will utilise the definition of the density matrix of a graph introduced by Biamonte et al. [111]. They note
that the evolution of the information within a network can be denoted by the vector p(β). At a time β = 0, the
evolution of the information of the network across time can then be described as p(β) = e−βLp(0), where e−βL

is the diffusion propagator at time β and L is the graph Laplacian. To use this propagator as a density matrix,
it will be necessary to normalise it to ensure that the definition of this density matrix adheres to the definitions
of a density matrix in the standard quantum mechanical formulation. To that end, the density matrix of the
graphical object will be defined as follows:

ρ(β) =
e(−βL)

Tr
(
e(−βL)

) (19)

The normalisation of the state is ensured by dividing by the trace of the diffusion propagator. This definition
of the density matrix can be compared to the Gibbs state or thermal state of a Hamiltonian H at inverse
temperature β which is denoted as [113]:

ρG(β) =
e−βH

Tr(e−βH)
(20)

This comparison makes it clear that the graph Laplacian can be interpreted as the Hamiltonian describing the
system’s dynamics. Whereas the β value represents a notion of inverse temperature, often denoted as β = 1

kBT
[114], here kB is the Boltzmann constant and T is the temperature. The implication of the β value will be
discussed further in Sec. 4.2.3.
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4.2.2 Von-Neumann entropy

In this section the Von-Neumann entropy will be introduced. We do so because this entropy measure is utilised
in the metric for comparing the density matrices of the IG and CG. Entropy quantifies the information or
uncertainty present in a system [21]. In the classical case when we learn the value of a random variable X the
Shannon entropy [21] tells us how much information was gained on average. If we do not know the value of X
the Shannon entropy is measured for the uncertainty. The entropy of a random variable is a function of the
probabilities of the different possible values of the random variable. The Shannon entropy may be associated
with a probability distribution (p1, ..., pn) in the following manner [21]:

H(X) ≡ H(p1, ..., pn) = −
n∑
pi log2 pi. (21)

Here pi denotes the probability of obtaining a specific value for the random variable. Note that if pi = 0 the
log2 pi will be undefined, to circumvent this issue the following convention is agreed upon, 0 log(0) ≡ 0.

The quantum mechanical counterpart to the Shannon entropy is the von Neumann entropy, where density
matrices have replaced the probability distributions. Once a formulation for the density matrix of a graphical
object has been established, it becomes possible to consider the IG and CG as quantum states. The von
Neumann entropy of a density matrix can then be defined as [21]:

S(ρ) = −Tr[ρ log2 ρ] = −
N∑
i=1

λi log2 λi. (22)

In which N is the dimension of the density matrix, λi are the eigenvalues and ρ represents the density matrix
of a graph as defined in Eq. 19 and we again adhere to the convention that 0 log(0) ≡ 0. The von Neumann
entropy may be used to characterize the entropy of entanglement. Relevant properties of the von Neumann
entropy are listed below [21]:

1. The entropy is non-negative. The entropy is zero if and only if the state is pure.

2. In a n-dimensional Hilbert space the entropy is at most log2(n). The entropy is equal to log2(n) if and
only if the system is in the completely mixed state I

n .

3. Suppose a composite system PQ is in a pure state. Then S(P ) = S(Q).

4. Suppose pi are probabilities, and the states ρi have support on orthogonal sub spaces. Then

S

(∑
i

piρi

)
= H(pi) +

∑
i

piS(ρi) (23)

5. Joint entropy theorem: Suppose pi are probabilities, |i⟩ are orthogonal states for a system A, and ρi is
any set of density operators for another system, B. Then

S

(∑
i

pi |i⟩ ⟨i| ⊗ ρi
)

= H(pi) +
∑
i

piS(ρi) (24)

In the case that two distinct quantum systems P and Q have the joint state ρPQ = ρP ⊗ ρQ the joint entropy is
defined as S(P,Q) ≡ −Tr

(
ρPQ log2(ρ

PQ)
)
. It can then be shown that the von Neumann entropy also adheres

to subadditivity and triangle inequality given below:

S(P,Q) ≤ S(P ) + S(Q) (25)

S(P,Q) ≥ |S(P )− S(Q)| (26)

These are the properties of the von Neumann entropy which are relevant in the scope of this thesis, for an
in-depth discussion including proof of the properties the reader is referred to chapter 11 of the textbook by
Nielson and Chuang [21].

4.2.3 β-value

In Fig. 10 the entropy as defined by Eq. 22 of all 4-vertex graphs is compared for β values between 1 − 10.
We study this figure to get a better understanding of how the beta value will influence our proposed method.
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Considering the figure it becomes clear that the entropy for β = 0 is the same for all graphs. Moreover, as
β 7→ 10 it becomes clear that the entropy of the different graphs cluster.

Figure 10: The figure compares the von Neumann entropy of all permutations of 4-vertex graph for several β
values. The x-axis runs as β ∈ [0, 10], the y-axis displays the von Neumann entropy of the different 4-vertex
graphs.

Upon further inspection of which graphs cluster, it becomes clear that clustering can be related to the
number of disjoint vertices of the graph. Disjoint vertices refer to those vertices or vertex pairs which do not
have an edge connecting them to the other vertices or vertex pairs. For the empty graph with 4-vertices (ρ0,
the top blue line) logically, the entropy will not be influenced by β, this is because the graph Laplacian of an
empty graph is the null matrix with rank corresponding to the number of vertices, thus the density matrix for
this graph is independent of β.

If there are disjoint vertices in the graph we see their entropy clusters toward a non-zero value. If there are
no disjoint vertices the entropy tends to 0 as β 7→ 10. Lastly, it can be seen that the entropy of a more connected
graph tends to 0 sooner, this can be seen when comparing ρ6 (pink line) and ρ7 (grey line). Considering the
graphs for 4 vertices it is possible to distinguish four classes, with no disjoint vertices (ρ10, ρ9, ρ8, ρ7, ρ6, ρ3),
with two disjoint vertices (ρ2, ρ4, ρ5), with three disjoint vertices (ρ1) and with four disjoint vertices (ρ1).

The physical interpretation of the β value has been studied [115]. The interpretation in relation to this work
has been a subject of discussion. In addition, the influence of the β value has been observed but it remains
unknown how to tune this value such that the minimal number of SWAP operations is guaranteed. The observed
influence of the β value will be presented in Sec. 5.1. The interpretation and precise impact of the beta values
are important aspects that require further investigation in future work.
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4.2.4 Quantum Jensen-Shannon divergence

A central goal of information theory is the quantifying of information present in a probability distribution.
Similarly, quantum information theory provides metrics which quantify the difference between quantum states.
Examples of such divergences which have been extended to the field of quantum information are the Kullback-
Leibler divergence [116, 117] and the Kolmogorov distance [118]. However, these divergences lack some relevant
properties such as being bounded and symmetric. For that reason, we will utilise a suitable manner to compare
density matrices of graphs namely the quantum Jensen-Shannon divergence (DQJS) [119] which is defined as:

DQJS(ϕ||σ) = S
(
ϕ+ σ

2

)
− 1

2

(
S(ϕ) + S(σ)

)
. (27)

Here ϕ and σ are density matrices and S(ρ) is the Von-Neumann entropy defined in Eq. 22. The advantages
of the DQJS are that it defines an accurate metric bounded between 0 ≤ DQJS < 2 [119, 120, 121] and may be
used to distinguish between quantum states [122, 123].

4.2.5 Quantum channel

Quantum operations have been introduced in Sec. 2.1.2, in this section the operations are unitary matrices
acting on the state vector. There is however a more elegant form to represent quantum operations known as the
operator-sum representation [21]. For a quantum operation ϕ acting on a density matrix ρ the operator-sum
representation may be written as:

ϕ(ρ) =
∑
i

EiρE
†
i (28)

In this equation, the operators Ei are referred to as the Kraus operators, which satisfy the following equation:∑
i

E†
iEi = I (29)

The operator-sum representation is analogous to the mathematical description of a completely positive map.
Moreover, due to the trace-preserving property that results from Eq. 29 the map is not only completely positive
but also trace-preserving. This completely positive trace-preserving (CPTP) map is referred to as a quantum
channel in quantum information theory which maps between spaces of operators. This is important because
CPTP-maps have many interesting properties, which will be utilised to express the Kraus operators such that
they represent SWAP operations possible on a certain architecture.

Lastly, to include the notion of mapping the CG to the IG. We propose that given two quantum states, in
our case the density matrices of the CG and IG, we define the quantum channel which maps one state to the
other as:

ϕ(ρCG) =
∑
i

EiρCGE
†
i = ρIG (30)

Where ϕ indicates the quantum channel from the CG to the IG, which adheres to all the aforementioned
properties. Since the Kraus operators correspond to the allowed SWAP operations for a specific CG, we chose
to map the CG to the IG. Allowing us to determine the minimal number of SWAP operations for a given
CG/IG-pairing where the initial mapping is provided. The proposed formulation is more elegant than previous
works since we do not require a heuristic or an exhaustive search. Determining the Kraus operators of the
quantum channel will provide the desired information. In the next section, we will explain how to reformulate
the Kraus operator to represent the allowed SWAP operations of a CG. Following this reformulation, the
algorithm determining the minimal number of SWAP operations for a given CG/IG-pairing where the initial
mapping is provided will be presented.
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4.3 Theoretical model
In this section, we will introduce the model which will be incorporated into the algorithm. The algorithm
aims to determine the quantum channel between the state ρCG and ρIG, the quantum channel will be found by
minimizing the DQJS. The objective function we would wish to use has the following form:

DQJS(ϕ(ρCG)||ρIG) = S
(
ϕ(ρCG) + ρIG

2

)
− 1

2

(
S(ϕ(ρCG)) + S(ρIG)

)
. (31)

The general operator-sum representation of a quantum channel does not relate the channel to the required SWAP
operations which would allow the execution of a quantum algorithm on a quantum architecture. Therefore, we
will need to make further adjustments to the proposed formulation. To determine a suitable objective function
for the optimisation we must first introduce the concept of a doubly stochastic channel, then the constraints
for the operator-sum representation will need to be reevaluated, leading to an adapted formulation of the
Kraus operators. The adapted formulation will construct the Kraus operators based on permutation matrices
representing the SWAP operations allowed based on the architecture.

4.3.1 Doubly stochastic channel

As discussed in Sec. 4.2.5 the mapping between the density matrices may be represented as a quantum channel
which is a completely positive trace preserving (CPTP) map. This mapping operation (ϕ) may also be seen as
a doubly stochastic channel since it adheres to the following properties [124]:

1. ϕ(I) = I, where I is the identity matrix

2. Tr(ϕ(ρ)) = Tr(ρ) for all ρ

The mixed-unitary channels are a subset of the doubly stochastic channels. Mixed-unitary channels are those
channels which can be described by a collection of unitary operators U1, ..., UN ∈ U(X,Y ) and a probability
distribution (ν1, ..., νN ). Here U(X,Y ) represents the set of unitary mappings from X to Y . The following
equation may represent them [125]:

ϕ(ρ) =

N∑
j=1

νjUjρU
†
j (32)

In this equation ϕ represents the channel, ρ is a density matrix, U1, ..., UN are again unitary operators and
(ν1, ..., νN ) represent a probability distribution. The expression in Eq. 32 is similar to the quantum channel in
Eq. 30. If we use the Kraus operator representation, it is important to note that the channel does not uniquely
determine the Kraus operators. A quantum operation can be represented by the Kraus operators up to a
unitary transformation, Ei =

∑
j νjiUj , where νji are the elements of a unitary transformation from Ei → Uj

which and ν2ji = νj . Thus it is possible to construct a description of the quantum channel equivalent to the
Kraus operator formalism which is based on permutation matrices (P1, ..., PÑ) and a corresponding probability
distribution (θ1, ..., θÑ) as follows:

ϕ(ρ) =

Ñ∑
i=1

θiPiρP
†
i (33)

Here Ñ is introduced to show that Eq. 32 and Eq. 33 are different. The reason the description provided above
is important will be discussed in Sec. 4.3.3

4.3.2 Adapted operator-sum representation

It can be checked that the representation presented in Eq. 33 adheres to the requirement of Eq. 29 as well as
the requirements for a doubly stochastic channel. Since (θ1, ..., θN ) represents a probability distribution we may
note that:

N∑
i=1

θi = 1 (34)

0 ≤ θi ≤ 1 (35)

reducing Eq. 33 to,

ϕ(ρ) =

N∑
i=1

PiρP
†
i (36)
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In the case that ρ = I we find:

ϕ(I) = I
N∑
i=1

PiP
†
i = I (37)

Where it is easy to check that PiP
†
i = P †

i Pi = I which means that we adhere to Eq. 29 and also meet the
requirements for a doubly stochastic channel, since in our case both ρCG and ρIG have trace equal to one
by definition. The rewriting of these equations leaves us with a quantum channel which may be described
by a finite set of permutation matrices Pi with corresponding probability distribution (θ1, ..., θN ). The set
of permutation matrices is obtained by permitting the rows of an n × n identity matrix according to some
permutation of the numbers 1 to n. Every row and column contains precisely a single 1 and is 0 everywhere
else. Every permutation of the identity matrix corresponds to a unique permutation matrix. This will limit the
computational requirements for optimisation with respect to the objective function proposed in Eq. 31 since it
is possible to determine the θi values. The θi values are a finite set of independent variables representing the
probability that a corresponding permutation matrix will reduce the DQJS. As it currently stands the number
of independent variables will be limited to n!, where n represents the number of vertices of the graph under
consideration. This limitation is because for a n×n identity matrix there are n! possible permutation matrices,
each with a corresponding θ value.

Nonetheless, further simplification may be done to ensure a connection between the SWAP operations which
can be performed on a coupling graph and the formulation of the quantum channel. This may further reduce
the computational requirements to allow for the optimisation of required SWAP operations for a given CG/IG-
pairing, where the initial placement has been provided. The additional requirements will be introduced in the
following section.

Figure 11: Example graph with 3 vertices and 2 edges.

4.3.3 Permutations based on allowed SWAP operations

As mentioned above the number of permutation matrices will grow as n! in which n represents the rank of the
density matrix. In our case, the rank of the density matrix is equivalent to the number of vertices in the original
graph representation of either the quantum algorithm or quantum architecture. The number of independent
variables we would like to optimise for will also scale as n!. Therefore, we will introduce an additional constraint
limiting the number of permutation matrices we consider.

To properly introduce this constraint we need to consider a simple coupling graph, which is displayed in Fig.
11. Next, we may consider all the possible permutation matrices for n = 3, these are the following:

P1 =

1 0 0
0 1 0
0 0 1

 ;P2 =

1 0 0
0 0 1
0 1 0

 ;P3 =

0 0 1
0 1 0
1 0 0

 ;P4 =

0 1 0
1 0 0
0 0 1

 ;P5 =

0 1 0
0 0 1
1 0 0

 ;P6 =

0 0 1
1 0 0
0 1 0


(38)

The action of two permutation matrices on the example graph is shown in Fig. 12.
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Figure 12: Action of permutation matrix P2 and P6 on the example graph.

We consider Fig. 11 and notice that the only SWAP operation which may be possible are those between
vertices which are connected by edges in the graph. In the case of the example graph of Fig. 11 these will be
E(G) = {{2, 3}, {1, 3}}. These edges show that it is only possible to SWAP qubits 2 and 3 or qubits 1 and
3, this corresponds to the action of permutation matrices P2 and P3. In Fig. 12 we can see that the action
of P6 does not represent a permutation corresponding to applying a SWAP operation. All other permutation
matrices also do not represent allowed SWAP operations. Now we may ask if our current formulation for the
quantum channel could be adapted to only represent SWAP operations allowed on the CG for a given initial
mapping. To gain a proper understanding we may consider how the graph Laplacian will change if a SWAP
operation is performed. Consider the following graph Laplacian of the graph in Fig. 11:

LCG,1 =

 1 0 −1
0 1 −1
−1 −1 2

 (39)

Now analyse the case in which the SWAP operation between qubit 2 and qubit 3 has been performed. The
resulting graph is shown in Fig. 13, where the red arrow indicates the qubits which have been exchanged.
Considering the graph Laplacian of the new graph we find:

LCG,2 =

 1 −1 0
−1 2 −1
0 −1 1

 (40)

The result given in Eq. 40 can also be obtained by considering Kraus operator Ei to be equal to the permutation
matrix P2, this results in the following:

Ei = E†
i = P2 =

1 0 0
0 0 1
0 1 0

 (41)

We may now consider the operation which these Kraus operators represent when applied to the graph Laplacian.
To that end the Kraus operators are applied to LCG,1 resulting in:

ϕ(LCG,1) = EiLCG,1E
†
i =

1 0 0
0 0 1
0 1 0

 1 0 −1
0 1 −1
−1 −1 2

1 0 0
0 0 1
0 1 0

 =

 1 −1 0
−1 2 −1
0 −1 1

 = LCG,2 (42)
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Figure 13: Example graph with 3 vertices and 2 edges, on which a SWAP has been performed.

This clearly shows that SWAP operations on a CG may be described as a quantum channel in which the
Kraus operators are the permutation matrices which perform allowed SWAP interactions. In the case of the
current example, the initial allowed SWAP operations are determined by considering the vertices in the graph,
which are connected by edges. This vertex pair must be in the edge set E(G). For the CG in Fig. 11, the
allowed SWAP operations are between the vertex pairs {{2, 3}, {1, 3}} and are represented by the following
permutation matrices:

P{2,3} =

1 0 0
0 0 1
0 1 0

 ;P{1,3} =

0 0 1
0 1 0
1 0 0

 (43)

In this case P{2,3} and P{1,3} are equivalent to P2 and P3 respectively. The change in notation is adopted to
highlight the relationship between permutation matrices and the SWAP operation they represent. The following
equation can generalise the permutation matrices which represent allowed SWAP:

P{i,j} =


p{i,j} = p{j,i} = 1

p{x,x} = 1 ∀x ̸= i, j

All other elements 0

(44)

Here P{i,j} represents the permutation matrix which performs the SWAP operation exchanging qubit i and j
and p{i,j} indicated the matrix elements of the permutation matrix.

Implementing the constraints discussed above to minimise the DQJS as stated in Eq. 31. The additional
constraints lead to the following representation of the quantum channel from the CG to the IG:

ϕ(ρCG) =
∑
k

EkρCGE
†
k =

M∑
k

θkPkρCGPk (45)

Where M is the number of SWAP operations allowed by the coupling graph, moreover, Pk are part of the
set P{i,j} which consists of the permutation matrices which represent allowed SWAP operations. Notice that
Pi is not the same set as Pk, the first indicates the set of all permutation matrices and the latter only those
permutations representing allowed SWAP operations. This set of permutation matrices is determined by the
edge set E(G) of the coupling graph. The number of independent variables in the objective function is now
limited to the number of allowed SWAP operations. In the case of the example CG in Fig. 11 there will be two
independent variables, θ{1,3} and θ{2,3}. These variables indicate the influence of an allowed SWAP operation
on the value of the DQJS metric. Minimising this metric with respect to the independent variables will give us
an insight into which SWAP operations will reduce the difference between CG and IG for a specific mapping.
To determine all SWAP operations required for a given CG/IG-pairing, which SWAP will be required based on
the provided initial mapping is first determined. This SWAP operation will then be performed and the resulting
graphs will again be compared. This process is repeated until all the required operations described by the IG
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can be performed on the CG. This iterative approach will be discussed further in Sec. 4.4.3.

4.4 Algorithmic adaptation
All the required preliminaries and constraints for the algorithm have been discussed in sections 4.1, 4.2 and 4.3.
Thus, we can now describe the algorithm that will determine the minimal bound on the number of required
SWAP operations based on an initial mapping for a given CG/IG-pairing. The algorithm utilises the SciPy
SLSQP-optimiser from the SciPy optimisation package [126]. The following section will provide an outline for
the proposed algorithm. The optimiser choice will be discussed briefly and lastly, the iterative approach will be
introduced for which an example will be given.

4.4.1 Outline Algorithm

As input the algorithm requires the adjacency matrix of the CG and IG. The adjacency matrices are then
converted to their corresponding graph Laplacian. The adjacency matrix of the CG graph is also utilised to de-
termine the permutation matrices representing the SWAP operations allowed for a given mapping. Considering
the adjacency matrix of the graph in Fig. 11, we see that the adjacency matrix is:

ACG =

0 0 1
0 0 1
1 1 0

 (46)

Since the elements in the adjacency matrix are symmetric when mirrored in the diagonal, it is only necessary
to consider those elements above the diagonal. The index of the non-zero entries is added to the set of allowed
SWAP operations utilised for constructing the corresponding permutation matrices. In the example, the indices
which would be added are {1, 3} and {2, 3}

Furthermore, the functions have been implemented to execute the equations discussed in Sec. 4.2. This
enables us to represent the CG and IG as density matrices. Moreover, the relevant tools from quantum infor-
mation theory can be implemented to compare the density matrices of the CG and IG. As such the objective
function can now be defined:

ϕ∗ = argmin
ϕ

[
DQJS(ϕ(ρCG)||ρIG)

]
= argmin

ϕ

[
DQJS

( M∑
k

θkPkρCGPk||ρIG
)]
. (47)

Here ρCG and ρIG are the density matrices of CG and IG. Pk represent the permutation matrices constructed
according to the procedure discussed in Sec. 4.3.3. Moreover, θk represents the independent variables which
should minimise the argument in Eq. 47. M is the number of allow SWAP operations and lastly DQJS represents
the quantum Jensen-Shannon divergence.

The CG is altered based on the highest θi value after the optimisation. The SWAP operation corresponding
to the highest θi value will be performed on the CG. If equal θ values are encountered a random SWAP operation
corresponding to these θ values is performed. The IG is also altered. All possible operations based on the initial
mapping provided for the CG are removed from the edge set E(IG) of the IG. The optimisation is repeated
until |E(IG)| = 0, note that by definition. Since in the case that the IG does not have any remaining edges,
there are no more operations which need to be performed on the underlying architecture and the algorithm is
terminated. The number of iterations the algorithm requires before terminating represents the minimal bound
on the required number of SWAP operations for a given CG/IG-pairing with specified initial mapping. This
is because the algorithm determines the SWAP operations, reducing the difference between the CG and IG in
every iteration. Resulting in those SWAP operations which allow the remaining operations specified by the IG
to be performed. Once all these operations are possible the algorithm terminates.

4.4.2 Optimisation method

For the optimisation of the objective function the scipy.optimize.minimize package has been used. The Sequential
Least Squares Programming (SLSQP)optimisation method has been chosen due to its ability to deal with
constraints effectively [126]. The constraints provided to the optimiser are that all independent variables should
sum to one,

∑M
i θi = 1, and that all θi are bounded between 0 and 1, 0 ≤ θi ≤ 1.

The starting values for optimising the independent variables in the objective function have been randomly
generated. This has been done to ensure that the optimisation results are independent of the initial values of
the independent variables.
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4.4.3 Example iterative approach

To conclude this section an example of the iterative approach will be presented. Further details for this example
will be provided in Sec. 5.1. We consider the example graph from Fig. 9 to be the IG and the example graph
from 11 to be the CG. We define the mapping as presented in Fig. 14:

Figure 14: A 3-Vertex Toy-Model, which provides the initial CG/IG-pairing.

Considering this figure, the operations between the pairs {2, 3} and {1, 3} can be performed directly for
the presented initial mapping. As such they may be removed from the IG. It is also quickly verified that the
operation between the qubit pair {1, 2} will require a SWAP operation. It does not matter which qubit pairs
in the CG are exchanged. Both SWAP operations will result in an adapted CG allowing the final operation
of the IG between qubit pair {1, 2} to be executed. Thus the SWAP operation presented in Fig. ?? will be
implemented. This results in a new input IG and CG for the algorithm this process is illustrated in Fig. ??.

Figure 15: 3-Vertex Toy-Model, in which the first iteration of the algorithm has been performed.

It can be seen in Fig. 19 that the last remaining operation in the IG between qubit pair {1, 2} can now be
performed on the CG. Thus the last edge of the IG may be removed, and the algorithm will terminate. The
iteration that results in the termination of the algorithm is illustrated in Fig. 16. We will call the iteration
which results in an empty IG the termination iteration. Since only a single iteration of the algorithm was
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required to get to the termination iteration, the minimal number of SWAP operations equals 1 for the given
CG/IG-pairing with specified initial mapping.

Figure 16: 3-Vertex Toy-Model, in which the termination iteration is obtained.

Algorithm 1 Calculate Number of Required SWAP Operations

Require: Adjacency matrix interaction graph (AIG), adjacency matrix coupling graph (ACG), Initial Place-
ment

Ensure: Determine the number of required SWAP Operations
LCG ← ACG ▷ Compute graph Laplacian of CG
LIG ← AIG ▷ Compute graph Laplacian of IG
ρCG ← LCG ▷ Compute density matrix ρCG

ρIG ← LIG ▷ Compute density matrix ρIG
SWAP#← 0
while E(IG) ̸= ∅ do

DQJS ← Pk, ρCG and ρIG ▷ Determines objective function
Pk ← ACG ▷ Determine permutation matrices
minθi(DQJS) ▷ Minimises DQJS with respect to θi
E(IG) ← E(IG)− E(CG) ▷ Removes edges that can be executed
AIG ← E(IG) ▷ Determines the new AIG

LIG ← A(IG) ▷ Determines the new LIG

ρIG ← L(IG) ▷ Determines the new ρIG
ρCG ← PiρCGPi ▷ Performs SWAP on ρCG

SWAP#← SWAP#+ 1
end while
Output: SWAP#

To give an insight into the structure of the code, pseudo-code is presented above. In this pseudo code,
Pk are the permutation matrices corresponding to the SWAP operations the coupling graph allows, and Pi is
the permutation matrix corresponding to θi, which is determined by the optimisation. SWAP# indicates the
number of required SWAP operations. E(IG) ̸= ∅ indicates that the edge set of the interaction graph must be
empty.
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5 Evaluation
The upcoming section will evaluate the algorithm, which has been implemented in Python. To test the algorithm,
several ’toy models’ have been evaluated. A ’toy model’ is an example of a simple CG/IG-pairing where the
minimum bound of the number of SWAP operations can be determined manually. Studying these CG/IG-
pairing is relevant to ensure the algorithm performs as expected. After confirming that the algorithm works as
expected, a benchmark dataset of numerous CG/IG-pairings will be utilised to evaluate its potential limitations.

5.1 Toy Models
In this section, several ‘toy models’ will be evaluated. The initial 2- and 3-vertex toy models are trivial since
the operation is either not possible or it is easily seen what the required number of SWAP operations should
be. Nonetheless, they provide a proof of concept for the algorithm’s performance since the expected behaviour
can easily be determined, thus it is possible to verify the algorithm’s results. The toy model of a 4-vertex graph
has been provided to complement the discussion of the β value since it is possible to compare the results of the
algorithm for different β values with the plot provided in Fig. 10. The 6-vertex toy model has been provided
to illustrate that the β value influences the result of the algorithm.

2-Vertex Model

It can be seen that the 2-vertex model in Fig. 17 is a trivial example since the CG does not have an edge
connecting the qubits. For that reason, the operation described by the IG can never be performed. The
example is of interest because it is possible to find an analytic solution to both the mapping as well as the
inverse mapping (IG 7→ CG). This analytic solution is provided to illustrate the mathematical steps which the
algorithm will implement.

Figure 17: 2 Vertex Toy-Model, not possible to map CG to IG.

Considering these graphs we can determine the graph Laplacian for the IG and CG according to Eq. 16 and
we find:

LIG =

[
1 −1
−1 1

]
;LCG =

[
0 0
0 0

]
(48)

Next, we want to determine the density matrix as described in Eq. 19. First, we consider the ρCG by plugging
LCG into Eq. 19 this results in the following:

ρCG =
e(−βLCG)

tr(e(−βLCG))
=

e(−β0̄)

tr(e(−β0̄))
=

(−βI)
tr(−βI)

=
βI
2β

=
I
2

(49)

Here 0̄ indicated the null matrix, which only contains zeros. Considering ρIG the solution is not as straightfor-
ward as the previous example. Plugging LIG into Eq. 19 we find:

ρIG =
e(−βLIG)

tr(e(−βLIG))
(50)

In the previous case finding the exponential of the matrix was rather straightforward since e0 = I to determine
the exponential e−βLIG we will use the Taylor series of the exponential:

eA =

∞∑
n=0

An

n!
(51)
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This gives us the following expression:

e−βLIG =

∞∑
n=0

(−βLIG)
n

n!
(52)

We will derive the expression up to the fourth order. This order has been selected to limit the required
calculations, while still offering an understanding of the procedure. The initial calculations are determining the
matrix powers we will need. Thus the aim is to gain the expression for (−βLIG)

4

(−βLIG) =

[
−β β
β −β

]
(53)

(−βLIG)
2 =

[
−β β
β −β

] [
−β β
β −β

]
=

[
2β2 −2β2

−2β2 2β2

]
(54)

(−βLIG)
3 =

[
2β2 −2β2

−2β2 2β2

] [
−β β
β −β

]
=

[
−4β3 4β3

4β3 −4β3

]
(55)

(−βLIG)
4 =

[
−4β3 4β3

4β3 −4β3

] [
−β β
β −β

]
=

[
8β4 −8β4

−8β4 8β4

]
(56)

putting this all together we find:

e−βLIG = I+
[
−β β
β −β

]
+

1

2

[
2β2 −2β2

−2β2 2β2

]
+

1

6

[
−4β3 4β3

4β3 −4β3

]
+

1
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[
8β4 −8β4

−8β4 8β4

]
=

[
1− β + β2 − 2

3β
3 + 1

3β
4 1 + β − β2 + 2

3β
3 − 1

3β
4

1 + β − β2 + 2
3β

3 − 1
3β

4 1− β + β2 − 2
3β

3 + 1
3β

4

] (57)

The expression has not been normalised. To normalise, we will need to divide it by the trace. First, we need to
determine the straightforward trace.

tr(e−βLIG) = 2− 2β + 2β2 − 4

3
β3 +

2

3
β4 (58)

The final expression for ρIG is then

ρIG =
e−βLIG

tr(e−β(LIG)
= (2−2β+2β2− 4

3
β3+

2

3
β4)−1

[
1− β + β2 − 2

3β
3 + 1

3β
4 1 + β − β2 + 2

3β
3 − 1

3β
4

1 + β − β2 + 2
3β

3 − 1
3β

4 1− β + β2 − 2
3β

3 + 1
3β

4

]
(59)

This is not a clear expression, and for that reason, we chose to write it as:

ρIG =
1

2

[
1 δ
δ 1

]
(60)

where

δ =
1 + β − β2 + 2

3β
3 − 1

3β
4

1− β + β2 − 2
3β

3 + 1
3β

4
(61)

Considering this expression we recognise that the terms are similar to the Taylor expansion of the exponential
function:

ex =

∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+ ... (62)

However in the case of the expression in Eq. 61, we notice that the sign switches and we have different
coefficients. Thus the term in the exponential must contain a constant and a minus sign. It can easily be shown
that the expression in Eq. 61 may be written as:

ρIG =
1

2

[
1+e−2β

1+e−2β
1−e−2β

1+e−2β

1−e−2β

1+e−2β
1+e−2β

1+e−2β

]
=

1

2

[
1 −1+e2β

(1+e2β)
−1+e2β

(1+e2β)
1

]
=

1

2

[
1 α
α 1

]
(63)

In the second to last step, the numerator and the denominator are multiplied by e2β . In the last step we
introduce α = −1+e2β

(1+e2β)
to make the notation more compact. Now we have all the information to consider the
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channel between the CG and IG as defined in Eq. 30, this gives us the following equation:

ϕ(ρCG) =
1

2

∑
i

EiIE†
i =

1

2

[
1 α
α 1

]
(64)

Which reduces to: ∑
i

EiE
†
i =

[
1 α
α 1

]
(65)

Notice that we have an additional requirement from Eq. 29, in order to compare we need to note that
(
∑

iEiE
†
i )

† =
∑

iE
†
iEi, ρ

†
IG = ρIG and I† = I. Thus combining the equations we find:[

1 α
α 1

]
=

∑
i

EiE
†
i =

∑
i

E†
iEi = I =

[
1 0
0 1

]
(66)

From this equation it becomes apparent that α = 0, considering the expression for α from Eq. 63 we obtain the
following:

α =
−1 + e2β

(1 + e2β)
= 0 (67)

− 1 + e2β = 0 (68)

e2β = 1 (69)

2β = 0 (70)

β = 0 (71)

The solution β = 0 is a trivial result since for this value of β all density matrices will have the same entropy by
definition. This has been mentioned in Sec. 4.2.3. Because we are dealing with a system in which E(CG) = {∅}
whereas E(IG) = {{1, 2}}. The algorithm requires that the edges are removed from the set E(IG) based on the
edges present in E(CG). Since in this case, the edge set E(CG) is empty, it will not be possible to perform the
algorithm to remove edges from the set E(IG). In addition, it is also impossible to adapt the CG since there are
no connected vertices, which means that it is impossible to perform a SWAP operation. The algorithm cannot
be executed because it is not possible to remove the edge from the IG and it is also not possible to modify the
CG. As a result, the termination iteration can never be obtained. However, this is not a problem as this was a
trivial example to illustrate the math.

3-Vertex Model

The example shown in Fig. 18 has already been described in Sec. 4.4.3, here, we will provide a more detailed
solution for this model.

Figure 18: 3 Vertex Toy-Model, which provides the initial mapping of the CG/IG-pairing.

In the 3 vertex model, we find that the Graph Laplacian, L of the interaction graph and the coupling graph
to be:

LIG =

 2 −1 −1
−1 2 −1
−1 −1 2

 ;LCG =

 1 0 −1
0 1 −1
−1 −1 2

 (72)
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Next, we use Eq. 19 to determine the density matrices of both the IG and the CG. These are found to be:

LIG =

0.333333 0.330867 0.330867
0.330867 0.333333 0.330867
0.330867 0.330867 0.333333

 ;LCG =

0.35279412 0.23385088 0.29223324
0.23385088 0.35279412 0.29223324
0.29223324 0.29223324 0.29441176

 (73)

Note that in the case of the 3-vertex model, the beta value has been set to 2. Moreover, the choice has been
made to denote the numerical values because the exact analytic expressions, which were used in the 2-vertex
model, would be too long.

Figure 19: 3-Vertex Toy-Model, in which the first iteration of the algorithm has been performed.

Figure 20: 3-Vertex Toy-Model, in which the termination iteration is obtained.

Using the algorithm to determine the required number of SWAP operations it has been found that for the
CG/IG-pairing from Fig. 18, 1 SWAP operation will be required to allow all operations from the IG to be
performed. This can be concluded since only one iteration is needed to get to the termination iteration.
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4-Vertex Model

The toy model for 4-vertex graphs has been depicted in Fig. 21. These graphs are ρ6 and ρ8 from Fig. 10,
where the entropy dependence on β has been plotted. We have again chosen β = 2. This gives the following
density matrices:

ρIG =


0.25 0.2410069 0.23233729 0.2410069

0.2410069 0.25 0.2410069 0.23233729
0.23233729 0.2410069 0.25 0.2410069
0.2410069 0.23233729 0.2410069 0.25

 (74)

LCG =


0.29106595 0.09196759 0.1435615 0.2256934
0.09196759 0.29106595 0.2256934 0.1435615
0.1435615 0.2256934 0.20893405 0.1740995
0.2256934 0.1435615 0.1740995 0.20893405

 (75)

Using the algorithm to determine the required number of SWAP operations it has been found that for the
CG/IG-pairing from Fig. 21, 2 SWAP operations will be required to allow all operations from the IG to be
performed. The SWAP operations and the resulting IG for all iterations are shown in Fig. 22, Fig. 23 and
Fig. 24. Notice that the iteration has been depicted for one combination of SWAP operations which meets the
minimal bound. In the case of this example, the routing is not unique. The SWAP operations do not have to be
performed in a specific order. Interchanging them would not alter the result. Moreover, in the last step instead
of performing a SWAP operation on the vertex pair {{2, 3}} it is also possible to SWAP the pair {{1, 3}} since
both would result in the qubit 1 and 2 being connected in the final CG.

Figure 21: 4 Vertex Toy-Model, which provides the initial mapping of the CG/IG-pairing.

Figure 22: 4 Vertex Toy-Model, in which the first iteration of the algorithm has been performed.
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Figure 23: 4 Vertex Toy-Model, in which the second iteration of the algorithm has been performed.

Figure 24: 4-Vertex Toy-Model, in which the termination iteration is obtained.

6-Vertex Model

The toy model for 6-vertex graphs has been depicted in Fig. 25. In Sec. 4.2.3 we noted that the influence of
the β value has been observed. This is the first case in which our initial choice for the value of β = 2 did not
provide a minimal number of SWAP operations. Nonetheless, it was possible to obtain the correct result by
tweaking the value of β. Since the minimal number of SWAP operations can manually be determined for this
example. Different β values were tested until the minimal number of SWAP operations was obtained. For this
specific example, β = 0.1 was used. The other toy models have also been tested for this β value, confirming
that they still resulted in minimal SWAP operations. This gives the following density matrices:

LIG =


0.25 0.2410069 0.23233729 0.2410069

0.2410069 0.25 0.2410069 0.23233729
0.23233729 0.2410069 0.25 0.2410069
0.2410069 0.23233729 0.2410069 0.25

 (76)
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LCG =


0.29106595 0.09196759 0.1435615 0.2256934
0.09196759 0.29106595 0.2256934 0.1435615
0.1435615 0.2256934 0.20893405 0.1740995
0.2256934 0.1435615 0.1740995 0.20893405

 (77)

Using the algorithm to determine the required number of SWAP operations it has been found that for the
CG/IG-pairing from Fig. 25, 2 SWAP operations will be required to allow all operations from the IG to be
performed. The SWAP operations and the resulting IG for all iterations are shown in Fig. 26, Fig. 27 and Fig.
28. Notice that in this example the choice for which SWAP operation to perform is also not unique. In the
iteration shown in Fig. 27 it would also be possible to perform a SWAP operation on the vertex pair {{3, 4}}
instead of {{1, 3}} as this would also connect qubit 1 and 4.

Figure 25: 6 Vertex Toy-Model, which provides the initial mapping of the CG/IG-pairing.

Figure 26: 6 Vertex Toy-Model, in which the first iteration of the algorithm has been performed.
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Figure 27: 6 Vertex Toy-Model, in which the second iteration of the algorithm has been performed.

Figure 28: 6-Vertex Toy-Model, in which the termination iteration is obtained.

39



5.2 Benchmarks
This section will present the benchmarks which have been used to assess the effectiveness of the proposed
algorithm. The algorithm is evaluated with CG/IG-pairings, constructed based on the benchmark quantum
algorithms and NISQ devices. The quantum algorithms and NISQ devices which are used as benchmarks are
presented in the tables below. Appendix B provides the number of SWAP operations achieved for each pairing.
Additionally, it is essential to note that the beta value has been modified for all pairings. The β-value was
adjusted to gain insight into the β-dependence on the number of SWAP operations. As mentioned in the
previous section, the minimal number of SWAP operators obtained depends on the β-value. The β-dependence
is discussed further in Sec. 6.2.

The benchmarks have been run on a MacBook Pro (2017) with a 2.3 GHz Dual-Core Intel Core i5, with 8
GB of 2133 MHz LPDDR3 ram. The initial mapping have been provided.

Benchmark name Number of logical qubits
fredkin_n3, grover_n3 3
basis_change_n3, teleportation_n3 3
adder_n4 4
variational_n4, bell_n4 4
cuccaro adder 1b 4
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 4
vbe_adder_1b 4
4gt10-v1_81, q=5_s=2995_2qbf=09_1 5
4gt13_92 5
4gt5_75 5
alu-v1_28 5
alu-v2_31 5
decod24-v1_41 5
error_correctiond3_n5 5
qec_en_n5, qec_sm_n5 5
quantum_volume_n5 5
simon_n6 5
alu-v2_30,q=6_s=2994_2qbf=08_1 6
4gt12-v0_87 6
4gt4-v0_72 6
qaoa 6 6
ex3_229 6
graycode6_47 6
mod5adder_127 6
q=6_s=54_2qbf=022_1 6
sf_274 6
xor5_254 6
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 7

Table 1: This table presents the quantum algorithms used as a benchmark to evaluate the proposed approach.
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NISQ device Number of physical qubits
IBM Athens 5
Starmon-5 5
IBM Yorktown 5
IBM Ourense 5
Surface-7 7
IBM Casablanca 7
Rigetti Agave 8
IBM Melbourne 15
Rigetti Aspen-1 16
Surface-17 17
IBM Singapore 20
IBM Johannesburg 20
IBM Tokyo 20
IBM Paris 27
IBM Rochester 53
Google Bristlecone 72

Table 2: This table presents the NISQ device used as a benchmark to evaluate the proposed approach.

6 Discussion

6.1 Toy Models
The evaluation of the toy models has yielded successful results, demonstrating the algorithm’s ability to de-
termine the minimum number of SWAP operations for a given CG/IG-pairing. However, as the size of these
pairings increased, it became apparent that the algorithm’s results depended on the β-value. For this reason, a
more detailed study was conducted by evaluating the algorithm with several benchmarks.

The toy models are specific examples which could have been solved manually. While these examples may not
contribute to advancing the state of the art, they illustrate how the proposed approach determines the number
of SWAP operations for a given pairing. The evaluation of the toy models underscores the proposed approach’s
potential to determine the minimal number of SWAP operations.

It is worth noting that the algorithm’s limitations became evident when considering the 6-vertex model.
In that case, the algorithm failed to determine the minimal bound unless the β-value was set correctly. This
realisation prompted a more thorough investigation into the impact of the β-value during the benchmark
evaluation.

The evaluation of the toy models showed the algorithm’s capabilities while eluding to the role of the β-value.
This evaluation shows that the algorithm has the potential to determine the minimal bound on the number of
SWAP operations.

6.2 Benchmark evaluation
When considering the benchmarks, it becomes apparent that the algorithm depends on the β-value. Inspecting
the benchmarks it becomes clear that the algorithm has a limited dependence on the β-value for graphs consisting
of 4 or less vertices. The β-dependence can be observed as the number of vertices in the graph of the CG/IG-
pairing increases. Considering a graph with more vertices means that more possible SWAP operations, increasing
the complexity of determining the correct combination.

In this section, several benchmarks will be discussed in more detail to show the peculiar β-dependencies.
We expect to determine the β-value for a given pairing which determines the minimal bound. When deviating
from this value is expected that the number of SWAP operations will increase or stay the same for larger and
smaller β-values. However, as we will see later, this is not always the case. The expected result can be seen in
the examples in Fig. 29a, Fig. 29b and Fig. 29c.

41



(a) quantum_volume_n5 benchmark algorithm on IBM Rochester.

(b) qaoa 6 benchmark algorithm on the Rigetti Agave.

(c) q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 benchmark algorithm on IBM
Johannesburg.

Figure 29: Evaluation results of algorithm benchmarks on NISQ devices which exhibit the expected β-
dependence.

42



The example in Fig. 30 has some red points in the plot. These indicate the β-values for which the algorithm
could not determine a solution. This example adheres to the expectation that there is a β-value which determines
the minimal number of SWAP operations. As the β-value is increase it is clear that the algorithm fails to
determine a solution.

Figure 30: Evaluation results plotted for the q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 benchmark
algorithm on the IBM Casablanca.

There are also benchmark examples where a different β-dependence is observed. In these examples, we
can observe ’double’-dips, which refers to evaluating the benchmark for a specific β-value that gives a low
SWAP count, then the SWAP count increase as the β-value increases or decreases. However, in these examples,
the SWAP count again decreases for an increased/decreased β-value. Example benchmarks that exhibit this
β-dependence are shown in Fig. 31 and Fig. 32.

Figure 31: Evaluation results plotted for the q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 benchmark
algorithm on the Surface-17.
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Figure 32: Evaluation results plotted for the q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 benchmark
algorithm on the Rigetti Agave.

Notice that Fig. 32 again contains the red points indicating the algorithm could not determine a solution.
Oddly, increasing the β-value allows the algorithm to determine a result lower than the SWAP count, which was
obtained for β = 10−4. The peculiar β-dependence can not be explained and will require further investigation.

The evaluation of the benchmarks has given an insight into the complexity of the β-dependence. The
expected β-dependence was observed for most of the benchmarks considered. Nonetheless, several examples
have been discussed where the β-dependence deviates from what is expected. This deviation occurs more often
as the graph’s vertices increase. Determining a systematic approach to establish the correct β-value for a
given CG/IG-pairing will be essential. Using the correct β-value will ensure that the algorithm determines the
minimal SWAP count.
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7 Conclusion
This master thesis aimed to introduce a new perspective to address the Qubit-Mapping Problem (QMP). Using
quantum information theoretic descriptions of complex networks to study the relation between graphical objects.
The graphical objects studied are based on quantum algorithms (IG) and their underlying physical architectures
(CG). Considering the SWAP operations required to perform a quantum algorithm on a NISQ device. The goal
is to determine if a minimal bound can be established on the number of SWAP operations for a given CG/IG-
pairing. The main contribution of this thesis is the algorithmic implementation. This implementation introduced
additional constraints that directly relate free variables in the optimisation to SWAP operations. The algorithm
additionally considers SWAP operations which can be performed on the NISQ device based on the constraints
of the device.

The introduced perspective redefines architecture’s coupling graph (CG) and a quantum algorithm’s in-
teraction graph (IG) as density matrices. Elevating these graphical objects to quantum mechanical objects
enables the use of processing techniques from quantum information theory. These can then be implemented to
determine a bounded metric space for comparing the CG and the IG. This metric space is utilised to determine
the objective function for an optimisation algorithm. The techniques that will be implemented to establish the
objective function are forming a quantum channel between the CG and IG, establishing an entropic measure
(the Von-Neumann entropy) and combining these in the quantum Jensen-Shannon divergence to define the
metric space.

A density matrix is a matrix which describes the state of a quantum mechanical system. The quantum
channel determines a map from one quantum state (density matrix) to another. In our case, we utilise the
quantum channel description based on the Kraus operator formalism. The use of the Kraus operator formalism
provides some constraints which are required by definition. However, the algorithmic implementation based only
on these constraints is demanding in terms of computational resources. For that reason, additional constraints
have been formulated based. These constraints further bound the problem while maintaining the principles of
the proposed formulation. The Von-Neumann entropy quantifies the information or uncertainty in the system
and is required to define the quantum Jensen-Shannon divergence. The quantum Jensen-Shannon divergence
determines the metric space because it is bounded and symmetric. Thus it can quantitatively compare density
matrices of graphs on a bounded metric space.

The evaluation of the proposed algorithm starts with evaluating basic toy models, which are trivial when
considering the QMP. They are essential in the scope of this thesis since they contribute to understanding the
proposed theory. Establishing that the proposed algorithm functions as expected based on the evaluation of the
toy models. The evaluation is extended by running benchmarks based on more extensive algorithms and NISQ
devices. These benchmarks indicate a clear dependence on the β-value chosen before running the algorithm.
To establish the actual minimal bound, it will be required to tune the β-value based on the CG/IG-pairing.
Further study of the β-value dependence of the quantum Jensen-Shannon divergence could allow the correct
β-value to be determined before the execution of the proposed algorithm. Establishing the correct β-value for
a given pairing will minimise the required SWAP operations.

In conclusion, this thesis presents a novel approach that allows further exploration of the QMP. The bench-
marks have shown a clear dependence on the β-value. Emphasising the need for future investigations of this
dependence to enhance the algorithm’s effectiveness for more extensive algorithms and architectures. While it
is essential to acknowledge that the approach may not currently rival the state of the art, it does offer a novel
framework to study the QMP.
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8 Future Work
This section will outline future research directions that can build upon the findings presented in this thesis.
The future work can be categorised into two different parts. As mentioned in Sec. 5.1 and Sec. 6 it has become
clear that the algorithm depends on the β-value. As it stands, we do not clearly understand why we have seen
particular β-dependencies. As mentioned in this algorithm, the initial placement of the logical qubits on the
architecture has been provided. It would be relevant to also include the determination of the initial mapping in
the algorithm. In addition, the model we used to construct this method is oversimplified. They do not consider
the fidelity of the architecture’s gates, the number of gates a qubit is involved in and the order in which these
gates should be applied. These are elements which should be taken into account to extend the functionality of
the algorithm. Enabling a comparison with the state-of-the-art algorithms discussed in Sec. 3. The remainder
of this section will discuss the proposed methods for this future work.

β-dependence
The β-dependence can be studied with several different methods. The proposed method would be to investigate
the Von-Neumann entropy with respect to the β-value. Extending the work presented in Sec. 4.2.3. Considering
the dependence of β on an inverse log scale allows the investigation of this dependence over a larger domain.
Plotting the Von-Neumann entropy for β-values over a larger domain may give an insight into what is causing
the dependence. The advantage is that we know which graphs are relevant to the study from the benchmarks
presented in Sec. 6.2. To gain a detailed understanding, it will be necessary to analyse the Von-Neumann entropy
vs. β-value plots for all algorithm iterations. This analysis will help identify the specific points at which the
influence of the β-dependence comes into play. Examining these plots will hopefully allow us to establish the
relationship between the algorithm’s performance and the variation in the β-value. The examination will provide
valuable insights into the behaviour of the algorithm.

Extension of the algorithm
Once the β-dependence has been analysed and understood it will be possible to extend the algorithm to include
the initial mapping process and deal with additional constraints.

Including the initial mapping of the logical qubits in the algorithm guarantees that it can operate based on
an input of the coupling and interaction graphs. Eliminating the need for any process to be required before
that algorithm can determine the minimal bound on the number of SWAP operations. Moreover, including the
initial mapping will ensure that the algorithm’s performance can be compared to other methods proposed to
deal with the QMP.

The additional constraints we would like to consider will be the fidelity of the architecture’s gates, the
number of gates a qubit is involved in and the order in which these gates should be applied. We proposed to
add these additions in this order. An overview of the proposed additions is presented in Fig. 33.

Figure 33: This figure gives an outline of the proposed approach to extend the algorithm’s capabilities by
considering additional constraints, allowing it to deal with more realistic examples.

The current implementation of the algorithm is depicted in the left example of Fig. 33. This situation is
where we do not consider any of the aforementioned constraints. The automorphic symmetry refers to the fact
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that the edges of our graphs do not have weights. This indicated that the fidelity of every operation is unity.
In other words, there is no error when preforming a SWAP operation. Adding weights to the coupling graph
to indicate the fidelity of gates is the first element we proposed adding to the current implementation. The
example in the middle of Fig 33 shows a situation where we would like the algorithm to map correctly. This
means that the initial mapping would map the logical qubits to the bottom left triangle of the coupling graph,
where the weight of the edges is unity. Once this has been implemented, we propose to extend the algorithm
further taking into account the number of operations between the logical qubits in the interaction graph, shown
in the right example in Fig. 33. In this case, we want the algorithm to map the logical qubit pair with the most
interactions to the physical qubit pair with the highest fidelity. In the case of the presented example, the logical
qubit pair with three interactions should be mapped to the physical qubit pair connected by an edge with a
weight equal to unity. the logical qubit pair with two interactions should be mapped to the physical qubit pair
connected by an edge with a weight equal to .9. The last qubit pair will then be mapped to the physical qubit
pair connected by an edge with a weight equal to .8.

The constraint we propose to implement is the addition of the order in which these gates should be applied.
However, this is difficult, as seen in Sec. 3. It will require the algorithm to be implemented on certain sections
of the quantum circuit. As it currently stands, we would recommend considering the techniques which have
been presented in Sec. 3 to establish which would be best suited to complement our approach.
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Appendices
A Additional quantum algorithms
This appendix is added to provide the reader with additional material in case they are interested in the potential
applications of quantum computation.

Quantum cryptography

Possibly the fastest-growing field within quantum information sciences is quantum cryptography. It aims to
exploit the principles of quantum mechanics to allow for secure communication [127]. Since it is a vast field,
we will only discuss the example of BB84 in this section. There are several more examples and protocols. For
a more in-depth review of quantum cryptography, the reader is referred to [127, 128]

BB84 is a quantum key distribution scheme Gilles Brassard and Charles Bennett proposed in 1984 [129]. In
this work, they note that when elementary quantum systems can transmit digital information, the uncertainty
principle gives rise to novel cryptographic phenomena that can not be achieved with classical devices. The
protocol has been proven to be secure based on the no-cloning theorem [130, 131], and the existence of an
authenticated public classical channel [132]. An authenticated public channel means an eavesdropper may
listen to the information propagated in the channel but can not alter it. The BB84 protocol requires four states
and two separate measurement bases, which are required to be maximally conjugate, which means that any pair
of states, one from each basis, have the same overlap. Once this has been established, Alice will send individual
qubits to Bob, randomly chosen to be in one of the four basis states of the chosen measurement bases. In this
step, it is required that they can establish a one-to-one correspondence between the sent and received states.
Upon receiving the qubits, Bob will measure them randomly in one of the measurement bases. The measurement
may then result in either a perfectly correlated result, in the case that his measurement basis corresponds to the
basis chosen by Alice, or an uncorrelated result, in the case that he measures in a different basis. This results
in a raw key, a bit string with 25% errors and an error rate too large for standard error correction protocols. At
this point in the protocol, the authenticated channel will be necessary. Bob uses this channel to announce his
choice of measurement basis to Alice without disclosing the obtained result. In turn, Alice uses the channel to
tell Bob whether or not the states he has obtained are correlated or uncorrelated. Those qubits for which the
results are uncorrelated are discarded. On average, this results in Bob obtaining 50% of the original bit string,
referred to as the sifted key [133]. Alice and Bob can not obtain a specific key with this protocol due to their
random choices of measurement basis. However, they can determine the statistics of the key.

The protocol’s safety can be explained in the following manner: if an eavesdropper, Eve, intercepts a qubit,
Bob will know and can communicate this to Alice, disregarding said qubit. Due to the no-cloning theorem,
it is impossible to clone the state Alice has prepared and sent to Bob. Thus, if Eve measures the intercepted
qubit, its state will collapse, resulting in Bob receiving one qubit less. Lowering the bit rate between Alice and
Bob. However, Eve will not gain any useful information. The protocol clearly shows that the unique principles
described by quantum mechanics can be exploited for cryptographic applications.

Quantum chemistry

Another field in which quantum computation shows promise is solving chemistry problems intractable for
classical computers and contributing to the understanding of chemical phenomena such as high-temperature
superconductivity, solid-state physics, transition metal catalysis and particular biochemical reactions [134].
Increased understanding of such phenomena could lead to developing new materials for both scientific and
industrial applications [134]. As mentioned in the introduction to this section, the implementation of such
progress is bounded by the limitation of the current quantum architecture. Nonetheless, developments have
attempted to tackle the problems stated above with fewer resources available sooner than the desired large
fault-tolerant quantum computers. Due to the vast field size, only the variational quantum eigensolver (VQE)
example will be discussed. For a more in-depth review of quantum chemistry, the reader is referred to [134].

The variational quantum eigensolver (VQE) first introduced by Peruzzo et al. [135] uses a heuristic approach
based on the variational method in quantum mechanics to compute the ground state energy of a Hamiltonian,
a central problem to both the field of quantum chemistry as well as condensed matter physics. VQE is a hybrid
algorithm using classical and quantum computers to obtain the ground state of a physical system. Quantum
computation is utilised for state preparation and measurement subroutine, and classical computation processes
the measurement result and updates the quantum computer accordingly.
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The approximation done by the VQE performed on a small circuit could be better than classical methods.
However, proving if the obtained approximation is a reasonable estimate of the ground state is complex. In
principle, a larger circuit would result in a better approximation. Still, the size of the circuits which may be
utilised is limited by the error rates present in current devices. Nonetheless, it has been shown that using a
variational approach is far less demanding when considering the Hubbard model, a standard model from solid-
state physics describing the transition between conducting and insulating systems. This approach may even
be practical on small-scale quantum computers, limited by noise [136]. Moreover, the effect of gate errors on
the performance of this approach has been considered [137, 138]. Showing promising results to determine the
ground state as well as dynamics simulation.

Quantum machine learning

The last mention of applying quantum algorithms will be their implementation to realise a meaningful contri-
bution to machine learning. Quantum systems can produce computationally too complex patterns for classical
computers to recreate [139]. It may also be possible to use quantum computation to recognise complex pat-
terns. The realisation of this idea hinges on finding efficient quantum algorithms to perform these tasks. For
an in-depth review of the field of quantum machine learning, the reader is referred to [140, 139].

Several algorithms have been proposed to achieve the desired performance. Examples are a quantum prin-
cipal component analysis algorithm [141], a quantum support vector machine algorithm [142], an algorithm for
solving semi-definite programs [143] and a quantum version of Newton’s optimisation method [144]. In addition,
the example of VQE discussed above is also an implementation of quantum machine learning, underpinning that
the field may provide relevant contributions for several applications.

Moreover, it is relevant to consider the reciprocal impact of quantum machine learning and classical machine
learning. Exploring the interplay between the two disciplines may offer promising new possibilities [139].
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B Benchmark results

Benchmark name Device name β=100 β=10−1 β=10−2

fredkin_n3, grover_n3 IBM Athens 1 1 1
fredkin_n3, grover_n3 Starmon-5 1 1 1
fredkin_n3, grover_n3 IBM Yorktown 0 0 0
fredkin_n3, grover_n3 IBM Ourense 1 1 1
fredkin_n3, grover_n3 Surface-7 1 1 1
fredkin_n3, grover_n3 IBM Casablanca 1 1 1
fredkin_n3, grover_n3 Rigetti Agave 1 1 1
fredkin_n3, grover_n3 IBM Melbourne 1 1 1
fredkin_n3, grover_n3 Rigetti Aspen-1 1 1 1
fredkin_n3, grover_n3 Surface-17 1 1 1
fredkin_n3, grover_n3 IBM Singapore 1 1 1
fredkin_n3, grover_n3 IBM Johannesburg 1 1 1
fredkin_n3, grover_n3 IBM Tokyo 0 0 0
fredkin_n3, grover_n3 IBM Paris 1 1 1
fredkin_n3, grover_n3 IBM Rochester 1 1 1
fredkin_n3, grover_n3 Google Bristlecone 1 1 1

Benchmark name Device name β=10−3 β=10−4 β=10−5

fredkin_n3, grover_n3 IBM Athens 1 1 1
fredkin_n3, grover_n3 Starmon-5 1 1 1
fredkin_n3, grover_n3 IBM Yorktown 0 0 0
fredkin_n3, grover_n3 IBM Ourense 1 1 1
fredkin_n3, grover_n3 Surface-7 1 1 1
fredkin_n3, grover_n3 IBM Casablanca 1 1 1
fredkin_n3, grover_n3 Rigetti Agave 1 1 1
fredkin_n3, grover_n3 IBM Melbourne 1 1 1
fredkin_n3, grover_n3 Rigetti Aspen-1 1 1 1
fredkin_n3, grover_n3 Surface-17 1 1 1
fredkin_n3, grover_n3 IBM Singapore 1 1 1
fredkin_n3, grover_n3 IBM Johannesburg 1 1 1
fredkin_n3, grover_n3 IBM Tokyo 0 0 0
fredkin_n3, grover_n3 IBM Paris 1 1 1
fredkin_n3, grover_n3 IBM Rochester 1 1 1
fredkin_n3, grover_n3 Google Bristlecone 1 1 1
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Benchmark name Device name β=100 β=10−1 β=10−2

basis_change_n3, teleportation_n3 IBM Athens 0 0 0
basis_change_n3, teleportation_n3 Starmon-5 0 0 0
basis_change_n3, teleportation_n3 IBM Yorktown 0 0 0
basis_change_n3, teleportation_n3 IBM Ourense 0 0 0
basis_change_n3, teleportation_n3 Surface-7 0 0 0
basis_change_n3, teleportation_n3 IBM Casablanca 0 0 0
basis_change_n3, teleportation_n3 Rigetti Agave 0 0 0
basis_change_n3, teleportation_n3 IBM Melbourne 0 0 0
basis_change_n3, teleportation_n3 Rigetti Aspen-1 0 0 0
basis_change_n3, teleportation_n3 Surface-17 0 0 0
basis_change_n3, teleportation_n3 IBM Singapore 0 0 0
basis_change_n3, teleportation_n3 IBM Johannesburg 0 0 0
basis_change_n3, teleportation_n3 IBM Tokyo 0 0 0
basis_change_n3, teleportation_n3 IBM Paris 0 0 0
basis_change_n3, teleportation_n3 IBM Rochester 0 0 0
basis_change_n3, teleportation_n3 Google Bristlecone 0 0 0

Benchmark name Device name β=10−3 β=10−4 β=10−5

basis_change_n3, teleportation_n3 IBM Athens 0 0 0
basis_change_n3, teleportation_n3 Starmon-5 0 0 0
basis_change_n3, teleportation_n3 IBM Yorktown 0 0 0
basis_change_n3, teleportation_n3 IBM Ourense 0 0 0
basis_change_n3, teleportation_n3 Surface-7 0 0 0
basis_change_n3, teleportation_n3 IBM Casablanca 0 0 0
basis_change_n3, teleportation_n3 Rigetti Agave 0 0 0
basis_change_n3, teleportation_n3 IBM Melbourne 0 0 0
basis_change_n3, teleportation_n3 Rigetti Aspen-1 0 0 0
basis_change_n3, teleportation_n3 Surface-17 0 0 0
basis_change_n3, teleportation_n3 IBM Singapore 0 0 0
basis_change_n3, teleportation_n3 IBM Johannesburg 0 0 0
basis_change_n3, teleportation_n3 IBM Tokyo 0 0 0
basis_change_n3, teleportation_n3 IBM Paris 0 0 0
basis_change_n3, teleportation_n3 IBM Rochester 0 0 0
basis_change_n3, teleportation_n3 Google Bristlecone 0 0 0

Benchmark name Device name β=100 β=10−1 β=10−2

adder_n4 IBM Athens 2 2 2
adder_n4 Starmon-5 1 1 1
adder_n4 IBM Yorktown 1 1 1
adder_n4 IBM Ourense 2 2 2
adder_n4 Surface-7 0 0 0
adder_n4 IBM Casablanca 2 2 2
adder_n4 Rigetti Agave 2 2 2
adder_n4 IBM Melbourne 0 0 0
adder_n4 Rigetti Aspen-1 0 0 0
adder_n4 Surface-17 0 0 0
adder_n4 IBM Singapore 2 2 2
adder_n4 IBM Johannesburg 2 2 2
adder_n4 IBM Tokyo 0 0 0
adder_n4 IBM Paris 1 4 4
adder_n4 IBM Rochester 2 2 2
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Benchmark name Device name β=10−3 β=10−4 β=10−5

adder_n4 IBM Athens 2 2 10
adder_n4 Starmon-5 1 1 2
adder_n4 IBM Yorktown 1 1 1
adder_n4 IBM Ourense 2 2 2
adder_n4 Surface-7 0 0 0
adder_n4 IBM Casablanca 2 2 4
adder_n4 Rigetti Agave 2 2 2
adder_n4 IBM Melbourne 0 0 0
adder_n4 Rigetti Aspen-1 0 0 0
adder_n4 Surface-17 0 0 0
adder_n4 IBM Singapore 2 2 7
adder_n4 IBM Johannesburg 2 2 4
adder_n4 IBM Tokyo 0 0 0
adder_n4 IBM Paris 4 4 3
adder_n4 IBM Rochester 2 2 2
adder_n4 Google Bristlecone 0 0 0

Benchmark name Device name β=100 β=10−1 β=10−2

variational_n4, bell_n4 IBM Athens 0 0 0
variational_n4, bell_n4 Starmon-5 2 1 2
variational_n4, bell_n4 IBM Yorktown 0 0 0
variational_n4, bell_n4 IBM Ourense 0 0 0
variational_n4, bell_n4 Surface-7 0 0 0
variational_n4, bell_n4 IBM Casablanca 0 0 0
variational_n4, bell_n4 Rigetti Agave 0 0 0
variational_n4, bell_n4 IBM Melbourne 0 0 0
variational_n4, bell_n4 Rigetti Aspen-1 0 0 0
variational_n4, bell_n4 Surface-17 0 0 0
variational_n4, bell_n4 IBM Singapore 0 0 0
variational_n4, bell_n4 IBM Johannesburg 0 0 0
variational_n4, bell_n4 IBM Tokyo 0 0 0
variational_n4, bell_n4 IBM Paris 0 0 0
variational_n4, bell_n4 IBM Rochester 0 0 0
variational_n4, bell_n4 Google Bristlecone 0 0 0

Benchmark name Device name β=10−3 β=10−4 β=10−5

variational_n4, bell_n4 IBM Athens 0 0 0
variational_n4, bell_n4 Starmon-5 2 2 1
variational_n4, bell_n4 IBM Yorktown 0 0 0
variational_n4, bell_n4 IBM Ourense 0 0 0
variational_n4, bell_n4 Surface-7 0 0 0
variational_n4, bell_n4 IBM Casablanca 0 0 0
variational_n4, bell_n4 Rigetti Agave 0 0 0
variational_n4, bell_n4 IBM Melbourne 0 0 0
variational_n4, bell_n4 Rigetti Aspen-1 0 0 0
variational_n4, bell_n4 Surface-17 0 0 0
variational_n4, bell_n4 IBM Singapore 0 0 0
variational_n4, bell_n4 IBM Johannesburg 0 0 0
variational_n4, bell_n4 IBM Tokyo 0 0 0
variational_n4, bell_n4 IBM Paris 0 0 0
variational_n4, bell_n4 IBM Rochester 0 0 0
variational_n4, bell_n4 Google Bristlecone 0 0 0
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Benchmark name Device name β=100 β=10−1 β=10−2

cuccaro adder 1b IBM Athens 1 1 1
cuccaro adder 1b Starmon-5 1 1 1
cuccaro adder 1b IBM Yorktown 0 0 0
cuccaro adder 1b IBM Ourense 1 1 1
cuccaro adder 1b Surface-7 1 1 1
cuccaro adder 1b IBM Casablanca 1 1 1
cuccaro adder 1b Rigetti Agave 1 1 1
cuccaro adder 1b IBM Melbourne 1 1 1
cuccaro adder 1b Rigetti Aspen-1 1 1 1
cuccaro adder 1b Surface-17 1 1 1
cuccaro adder 1b IBM Singapore 1 1 1
cuccaro adder 1b IBM Johannesburg 1 1 1
cuccaro adder 1b IBM Tokyo 0 0 0
cuccaro adder 1b IBM Paris 1 1 1
cuccaro adder 1b IBM Rochester 1 1 1
cuccaro adder 1b Google Bristlecone 1 1 1

Benchmark name Device name β=10−3 β=10−4 β=10−5

cuccaro adder 1b IBM Athens 1 1 1
cuccaro adder 1b Starmon-5 1 1 2
cuccaro adder 1b IBM Yorktown 0 0 0
cuccaro adder 1b IBM Ourense 1 1 3
cuccaro adder 1b Surface-7 1 1 1
cuccaro adder 1b IBM Casablanca 1 1 1
cuccaro adder 1b Rigetti Agave 1 1 4
cuccaro adder 1b IBM Melbourne 1 1 2
cuccaro adder 1b Rigetti Aspen-1 1 1 1
cuccaro adder 1b Surface-17 1 1 3
cuccaro adder 1b IBM Singapore 1 1 1
cuccaro adder 1b IBM Johannesburg 1 1 2
cuccaro adder 1b IBM Tokyo 0 0 0
cuccaro adder 1b IBM Paris 1 1 3
cuccaro adder 1b IBM Rochester 1 1 1
cuccaro adder 1b Google Bristlecone 1 1 2

Benchmark name Device name β=100 β=10−1 β=10−2

q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Athens 3 3 3
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Starmon-5 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Yorktown 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Ourense 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Surface-7 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Casablanca 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Rigetti Agave 3 3 3
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Melbourne 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Rigetti Aspen-1 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Surface-17 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Singapore 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Johannesburg 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Tokyo 0 0 0
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Paris 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Rochester 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Google Bristlecone 1 1 1
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Benchmark name Device name β=10−3 β=10−4 β=10−5

q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Athens 3 4 3
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Starmon-5 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Yorktown 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Ourense 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Surface-7 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Casablanca 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Rigetti Agave 3 3 4
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Melbourne 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Rigetti Aspen-1 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Surface-17 1 1 1
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Singapore 2 2 3
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Johannesburg 2 2 3
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Tokyo 0 0 0
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Paris 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 IBM Rochester 2 2 2
q=4_s=19996_2qbf=02_1, q=4_s=2996_2qbf=08_1 Google Bristlecone 1 1 1

Benchmark name Device name β=100 β=10−1 β=10−2

vbe_adder_1b IBM Athens 1 1 1
vbe_adder_1b Starmon-5 2 2 2
vbe_adder_1b IBM Yorktown 1 2 2
vbe_adder_1b IBM Ourense 1 1 1
vbe_adder_1b Surface-7 1 1 1
vbe_adder_1b IBM Casablanca 1 1 1
vbe_adder_1b Rigetti Agave 1 1 1
vbe_adder_1b IBM Melbourne 1 1 1
vbe_adder_1b Rigetti Aspen-1 1 1 1
vbe_adder_1b Surface-17 1 1 1
vbe_adder_1b IBM Singapore 1 1 1
vbe_adder_1b IBM Johannesburg 1 1 1
vbe_adder_1b IBM Tokyo 0 0 0
vbe_adder_1b IBM Paris 1 1 1
vbe_adder_1b IBM Rochester 1 1 1
vbe_adder_1b Google Bristlecone 1 1 1

Benchmark name Device name β=10−3 β=10−4 β=10−5

vbe_adder_1b IBM Athens 1 1 10
vbe_adder_1b Starmon-5 2 2 2
vbe_adder_1b IBM Yorktown 2 2 1
vbe_adder_1b IBM Ourense 1 1 3
vbe_adder_1b Surface-7 1 1 1
vbe_adder_1b IBM Casablanca 1 1 2
vbe_adder_1b Rigetti Agave 1 1 5
vbe_adder_1b IBM Melbourne 1 1 1
vbe_adder_1b Rigetti Aspen-1 1 1 1
vbe_adder_1b Surface-17 1 1 1
vbe_adder_1b IBM Singapore 1 1 3
vbe_adder_1b IBM Johannesburg 1 1 2
vbe_adder_1b IBM Tokyo 0 0 0
vbe_adder_1b IBM Paris 1 1 4
vbe_adder_1b IBM Rochester 1 1 1
vbe_adder_1b Google Bristlecone 1 1 1
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Benchmark name Device name β=100 β=10−1 β=10−2

4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Athens 6 6 7
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Starmon-5 3 3 3
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Yorktown 2 2 2
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Ourense 5 4 4
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Surface-7 3 3 3
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Casablanca 5 4 5
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Rigetti Agave 6 6 6
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Melbourne 3 3 3
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Rigetti Aspen-1 3 3 3
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Surface-17 3 3 3
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Singapore 5 4 4
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Johannesburg 5 4 4
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Tokyo 1 1 1
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Paris 5 4 4
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Rochester 5 4 4
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Google Bristlecone 3 3 3

Benchmark name Device name β=10−3 β=10−4 β=10−5

4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Athens 7 6 46
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Starmon-5 3 3 3
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Yorktown 2 2 2
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Ourense 4 4 8
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Surface-7 3 3 9
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Casablanca 5 5 31
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Rigetti Agave 6 7 9
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Melbourne 3 3 5
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Rigetti Aspen-1 3 3 11
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Surface-17 3 3 3
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Singapore 4 5 8
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Johannesburg 4 5 7
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Tokyo 1 1 5
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Paris 4 5 8
4gt10-v1_81, q=5_s=2995_2qbf=09_1 IBM Rochester 4 4 6
4gt10-v1_81, q=5_s=2995_2qbf=09_1 Google Bristlecone 3 3 23

Benchmark name Device name β=100 β=10−1 β=10−2

4gt13_92 IBM Athens 2 2 2
4gt13_92 Starmon-5 2 2 2
4gt13_92 IBM Yorktown 2 2 2
4gt13_92 IBM Ourense 2 2 2
4gt13_92 Surface-7 2 2 2
4gt13_92 IBM Casablanca 2 2 2
4gt13_92 Rigetti Agave 2 2 2
4gt13_92 IBM Melbourne 3 3 3
4gt13_92 Rigetti Aspen-1 3 3 3
4gt13_92 Surface-17 2 2 2
4gt13_92 IBM Singapore 3 3 3
4gt13_92 IBM Johannesburg 3 3 3
4gt13_92 IBM Tokyo 0 0 0
4gt13_92 IBM Paris 4 4 4
4gt13_92 IBM Rochester 3 3 3
4gt13_92 Google Bristlecone 2 2 2
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Benchmark name Device name β=10−3 β=10−4 β=10−5

4gt13_92 IBM Athens 2 2 5
4gt13_92 Starmon-5 2 2 6
4gt13_92 IBM Yorktown 2 2 1
4gt13_92 IBM Ourense 2 2 33
4gt13_92 Surface-7 2 2 4
4gt13_92 IBM Casablanca 2 2 11
4gt13_92 Rigetti Agave 2 2 7
4gt13_92 IBM Melbourne 3 3 5
4gt13_92 Rigetti Aspen-1 3 3 2
4gt13_92 Surface-17 2 2 3
4gt13_92 IBM Singapore 3 3 3
4gt13_92 IBM Johannesburg 3 3 3
4gt13_92 IBM Tokyo 0 0 0
4gt13_92 IBM Paris 4 4 8
4gt13_92 IBM Rochester 3 3 2
4gt13_92 Google Bristlecone 2 2 5

Benchmark name Device name β=100 β=10−1 β=10−2

4gt5_75 IBM Athens 4 4 6
4gt5_75 Starmon-5 3 3 3
4gt5_75 IBM Yorktown 2 3 3
4gt5_75 IBM Ourense 3 3 3
4gt5_75 Surface-7 2 2 2
4gt5_75 IBM Casablanca 3 3 3
4gt5_75 Rigetti Agave 4 4 6
4gt5_75 IBM Melbourne 2 2 2
4gt5_75 Rigetti Aspen-1 2 2 2
4gt5_75 Surface-17 2 2 2
4gt5_75 IBM Singapore 3 3 3
4gt5_75 IBM Johannesburg 3 4 4
4gt5_75 IBM Tokyo 2 3 1
4gt5_75 IBM Paris 3 3 3
4gt5_75 IBM Rochester 3 3 3
4gt5_75 Google Bristlecone 2 2 2

Benchmark name Device name β=10−3 β=10−4 β=10−5

4gt5_75 IBM Athens 6 6 13
4gt5_75 Starmon-5 3 3 4
4gt5_75 IBM Yorktown 3 3 4
4gt5_75 IBM Ourense 3 3 11
4gt5_75 Surface-7 2 3 6
4gt5_75 IBM Casablanca 3 4 10
4gt5_75 Rigetti Agave 6 4 12
4gt5_75 IBM Melbourne 2 3 8
4gt5_75 Rigetti Aspen-1 2 2 2
4gt5_75 Surface-17 2 2 2
4gt5_75 IBM Singapore 3 3 6
4gt5_75 IBM Johannesburg 4 4 9
4gt5_75 IBM Tokyo 1 3 5
4gt5_75 IBM Paris 3 4 6
4gt5_75 IBM Rochester 3 4 5
4gt5_75 Google Bristlecone 2 2 2
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Benchmark name Device name β=10−3 β=10−4 β=10−5

4gt5_75 IBM Athens 6 6 13
4gt5_75 Starmon-5 3 3 4
4gt5_75 IBM Yorktown 3 3 4
4gt5_75 IBM Ourense 3 3 11
4gt5_75 Surface-7 2 3 6
4gt5_75 IBM Casablanca 3 4 10
4gt5_75 Rigetti Agave 6 4 12
4gt5_75 IBM Melbourne 2 3 8
4gt5_75 Rigetti Aspen-1 2 2 2
4gt5_75 Surface-17 2 2 2
4gt5_75 IBM Singapore 3 3 6
4gt5_75 IBM Johannesburg 4 4 9
4gt5_75 IBM Tokyo 1 3 5
4gt5_75 IBM Paris 3 4 6
4gt5_75 IBM Rochester 3 4 5
4gt5_75 Google Bristlecone 2 2 2
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Benchmark name Device name β=100 β=10−1 β=10−2

alu-v1_28 IBM Athens 3 3 3
alu-v1_28 Starmon-5 2 2 2
alu-v1_28 IBM Yorktown 3 3 3
alu-v1_28 IBM Ourense 2 2 2
alu-v1_28 Surface-7 2 2 2
alu-v1_28 IBM Casablanca 2 2 2
alu-v1_28 Rigetti Agave 3 3 3
alu-v1_28 IBM Melbourne 1 3 3
alu-v1_28 Rigetti Aspen-1 1 3 3
alu-v1_28 Surface-17 2 2 2
alu-v1_28 IBM Singapore 4 4 4
alu-v1_28 IBM Johannesburg 4 4 4
alu-v1_28 IBM Tokyo 1 1 1
alu-v1_28 IBM Paris 4 4 4
alu-v1_28 IBM Rochester 3 3 3
alu-v1_28 Google Bristlecone 1 3 4

Benchmark name Device name β=10−3 β=10−4 β=10−5

alu-v1_28 IBM Athens 3 7 14
alu-v1_28 Starmon-5 2 2 5
alu-v1_28 IBM Yorktown 3 2 3
alu-v1_28 IBM Ourense 2 2 16
alu-v1_28 Surface-7 2 2 3
alu-v1_28 IBM Casablanca 2 2 6
alu-v1_28 Rigetti Agave 3 3 3
alu-v1_28 IBM Melbourne 3 1 1
alu-v1_28 Rigetti Aspen-1 3 3 2
alu-v1_28 Surface-17 2 2 3
alu-v1_28 IBM Singapore 4 4 6
alu-v1_28 IBM Johannesburg 4 4 6
alu-v1_28 IBM Tokyo 1 1 34
alu-v1_28 IBM Paris 4 4 16
alu-v1_28 IBM Rochester 3 3 4
alu-v1_28 Google Bristlecone 4 3 3

Benchmark name Device name β=100 β=10−1 β=10−2

alu-v2_31 IBM Athens 6 6 6
alu-v2_31 Starmon-5 2 2 2
alu-v2_31 IBM Yorktown 3 4 4
alu-v2_31 IBM Ourense 5 4 4
alu-v2_31 Surface-7 3 3 3
alu-v2_31 IBM Casablanca 5 4 4
alu-v2_31 Rigetti Agave 6 6 6
alu-v2_31 IBM Melbourne 3 3 3
alu-v2_31 Rigetti Aspen-1 3 3 3
alu-v2_31 Surface-17 3 3 3
alu-v2_31 IBM Singapore 3 3 3
alu-v2_31 IBM Johannesburg 3 3 3
alu-v2_31 IBM Tokyo 1 1 1
alu-v2_31 IBM Paris 3 4 4
alu-v2_31 IBM Rochester 3 3 3
alu-v2_31 Google Bristlecone 3 3 3
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Benchmark name Device name β=10−3 β=10−4 β=10−5

alu-v2_31 IBM Athens 6 7 17
alu-v2_31 Starmon-5 2 2 4
alu-v2_31 IBM Yorktown 4 3 9
alu-v2_31 IBM Ourense 4 4 7
alu-v2_31 Surface-7 3 3 15
alu-v2_31 IBM Casablanca 4 4 5
alu-v2_31 Rigetti Agave 6 6 14
alu-v2_31 IBM Melbourne 3 3 15
alu-v2_31 Rigetti Aspen-1 3 3 5
alu-v2_31 Surface-17 3 3 7
alu-v2_31 IBM Singapore 3 4 5
alu-v2_31 IBM Johannesburg 3 4 8
alu-v2_31 IBM Tokyo 1 1 3
alu-v2_31 IBM Paris 4 4 12
alu-v2_31 IBM Rochester 3 3 7
alu-v2_31 Google Bristlecone 3 3 6

Benchmark name Device name β=100 β=10−1 β=10−2

decod24-v1_41 IBM Athens 4 4 4
decod24-v1_41 Starmon-5 3 3 3
decod24-v1_41 IBM Yorktown 3 3 3
decod24-v1_41 IBM Ourense 3 3 3
decod24-v1_41 Surface-7 2 2 2
decod24-v1_41 IBM Casablanca 3 3 3
decod24-v1_41 Rigetti Agave 4 4 4
decod24-v1_41 IBM Melbourne 1 1 1
decod24-v1_41 Rigetti Aspen-1 1 1 1
decod24-v1_41 Surface-17 2 2 2
decod24-v1_41 IBM Singapore 3 3 3
decod24-v1_41 IBM Johannesburg 4 4 4
decod24-v1_41 IBM Tokyo 1 1 1
decod24-v1_41 IBM Paris 4 4 4
decod24-v1_41 IBM Rochester 3 3 3
decod24-v1_41 Google Bristlecone 1 1 1

Benchmark name Device name β=10−3 β=10−4 β=10−5

decod24-v1_41 IBM Athens 4 3 8
decod24-v1_41 Starmon-5 3 3 4
decod24-v1_41 IBM Yorktown 3 3 9
decod24-v1_41 IBM Ourense 3 3 8
decod24-v1_41 Surface-7 2 2 3
decod24-v1_41 IBM Casablanca 3 3 5
decod24-v1_41 Rigetti Agave 4 6 16
decod24-v1_41 IBM Melbourne 1 3 6
decod24-v1_41 Rigetti Aspen-1 1 2 3
decod24-v1_41 Surface-17 2 2 3
decod24-v1_41 IBM Singapore 3 3 8
decod24-v1_41 IBM Johannesburg 4 3 11
decod24-v1_41 IBM Tokyo 1 1 2
decod24-v1_41 IBM Paris 4 4 7
decod24-v1_41 IBM Rochester 3 2 9
decod24-v1_41 Google Bristlecone 1 3 1
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Benchmark name Device name β=100 β=10−1 β=10−2

error_correctiond3_n5 IBM Athens 3 2 2
error_correctiond3_n5 Starmon-5 1 1 1
error_correctiond3_n5 IBM Yorktown 0 0 0
error_correctiond3_n5 IBM Ourense 2 2 2
error_correctiond3_n5 Surface-7 1 1 1
error_correctiond3_n5 IBM Casablanca 2 2 2
error_correctiond3_n5 Rigetti Agave 3 2 2
error_correctiond3_n5 IBM Melbourne 1 1 1
error_correctiond3_n5 Rigetti Aspen-1 1 1 1
error_correctiond3_n5 Surface-17 1 1 1
error_correctiond3_n5 IBM Singapore 2 1 1
error_correctiond3_n5 IBM Johannesburg 1 1 1
error_correctiond3_n5 IBM Tokyo 0 0 0
error_correctiond3_n5 IBM Paris 2 2 2
error_correctiond3_n5 IBM Rochester 1 1 1
error_correctiond3_n5 Google Bristlecone 1 1 1

Benchmark name Device name β=10−3 β=10−4 β=10−5

error_correctiond3_n5 IBM Athens 2 2 3
error_correctiond3_n5 Starmon-5 1 1 1
error_correctiond3_n5 IBM Yorktown 0 0 0
error_correctiond3_n5 IBM Ourense 2 2 3
error_correctiond3_n5 Surface-7 1 1 2
error_correctiond3_n5 IBM Casablanca 2 2 5
error_correctiond3_n5 Rigetti Agave 2 2 2
error_correctiond3_n5 IBM Melbourne 1 1 1
error_correctiond3_n5 Rigetti Aspen-1 1 1 7
error_correctiond3_n5 Surface-17 1 1 5
error_correctiond3_n5 IBM Singapore 1 1 10
error_correctiond3_n5 IBM Johannesburg 1 1 3
error_correctiond3_n5 IBM Tokyo 0 0 0
error_correctiond3_n5 IBM Paris 2 2 2
error_correctiond3_n5 IBM Rochester 1 1 1
error_correctiond3_n5 Google Bristlecone 1 1 1

Benchmark name Device name β=100 β=10−1 β=10−2

qec_en_n5, qec_sm_n5 IBM Athens 2 3 2
qec_en_n5, qec_sm_n5 Starmon-5 0 0 0
qec_en_n5, qec_sm_n5 IBM Yorktown 1 1 1
qec_en_n5, qec_sm_n5 IBM Ourense 1 1 1
qec_en_n5, qec_sm_n5 Surface-7 0 0 0
qec_en_n5, qec_sm_n5 IBM Casablanca 1 1 1
qec_en_n5, qec_sm_n5 Rigetti Agave 2 3 3
qec_en_n5, qec_sm_n5 IBM Melbourne 1 1 1
qec_en_n5, qec_sm_n5 Rigetti Aspen-1 1 1 1
qec_en_n5, qec_sm_n5 Surface-17 0 0 0
qec_en_n5, qec_sm_n5 IBM Singapore 1 1 1
qec_en_n5, qec_sm_n5 IBM Johannesburg 2 2 2
qec_en_n5, qec_sm_n5 IBM Tokyo 1 1 1
qec_en_n5, qec_sm_n5 IBM Paris 1 1 1
qec_en_n5, qec_sm_n5 IBM Rochester 1 1 1
qec_en_n5, qec_sm_n5 Google Bristlecone 0 0 0

67



Benchmark name Device name β=10−3 β=10−4 β=10−5

qec_en_n5, qec_sm_n5 IBM Athens 2 2 14
qec_en_n5, qec_sm_n5 Starmon-5 0 0 0
qec_en_n5, qec_sm_n5 IBM Yorktown 1 1 4
qec_en_n5, qec_sm_n5 IBM Ourense 1 1 1
qec_en_n5, qec_sm_n5 Surface-7 0 0 0
qec_en_n5, qec_sm_n5 IBM Casablanca 1 1 8
qec_en_n5, qec_sm_n5 Rigetti Agave 3 3 2
qec_en_n5, qec_sm_n5 IBM Melbourne 1 1 1
qec_en_n5, qec_sm_n5 Rigetti Aspen-1 1 1 1
qec_en_n5, qec_sm_n5 Surface-17 0 0 0
qec_en_n5, qec_sm_n5 IBM Singapore 1 1 3
qec_en_n5, qec_sm_n5 IBM Johannesburg 2 2 4
qec_en_n5, qec_sm_n5 IBM Tokyo 1 1 2
qec_en_n5, qec_sm_n5 IBM Paris 1 1 1
qec_en_n5, qec_sm_n5 IBM Rochester 1 1 9
qec_en_n5, qec_sm_n5 Google Bristlecone 0 0 0

Benchmark name Device name β=100 β=10−1 β=10−2

quantum_volume_n5 IBM Athens 6 6 6
quantum_volume_n5 Starmon-5 2 2 2
quantum_volume_n5 IBM Yorktown 2 2 2
quantum_volume_n5 IBM Ourense 3 4 4
quantum_volume_n5 Surface-7 3 4 4
quantum_volume_n5 IBM Casablanca 3 4 4
quantum_volume_n5 Rigetti Agave 6 6 6
quantum_volume_n5 IBM Melbourne 3 3 3
quantum_volume_n5 Rigetti Aspen-1 3 3 3
quantum_volume_n5 Surface-17 3 4 4
quantum_volume_n5 IBM Singapore 5 4 5
quantum_volume_n5 IBM Johannesburg 4 4 4
quantum_volume_n5 IBM Tokyo 1 1 1
quantum_volume_n5 IBM Paris 2 2 2
quantum_volume_n5 IBM Rochester 5 4 4
quantum_volume_n5 Google Bristlecone 3 3 3

Benchmark name Device name β=10−3 β=10−4 β=10−5

quantum_volume_n5 IBM Athens 6 6 12
quantum_volume_n5 Starmon-5 2 2 2
quantum_volume_n5 IBM Yorktown 2 2 5
quantum_volume_n5 IBM Ourense 4 4 7
quantum_volume_n5 Surface-7 4 2 3
quantum_volume_n5 IBM Casablanca 4 4 5
quantum_volume_n5 Rigetti Agave 6 6 29
quantum_volume_n5 IBM Melbourne 3 3 3
quantum_volume_n5 Rigetti Aspen-1 3 4 4
quantum_volume_n5 Surface-17 4 3 3
quantum_volume_n5 IBM Singapore 5 5 5
quantum_volume_n5 IBM Johannesburg 4 4 11
quantum_volume_n5 IBM Tokyo 1 1 6
quantum_volume_n5 IBM Paris 2 2 5
quantum_volume_n5 IBM Rochester 4 4 7
quantum_volume_n5 Google Bristlecone 3 3 5
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Benchmark name Device name β=100 β=10−1 β=10−2

simon_n6 IBM Athens 1 1 1
simon_n6 Starmon-5 2 2 2
simon_n6 IBM Yorktown 2 2 2
simon_n6 IBM Ourense 1 1 1
simon_n6 Surface-7 3 3 3
simon_n6 IBM Casablanca 1 1 1
simon_n6 Rigetti Agave 1 1 1
simon_n6 IBM Melbourne 3 3 3
simon_n6 Rigetti Aspen-1 3 3 3
simon_n6 Surface-17 3 3 3
simon_n6 IBM Singapore 3 3 3
simon_n6 IBM Johannesburg 3 3 3
simon_n6 IBM Tokyo 0 0 0
simon_n6 IBM Paris 3 4 4
simon_n6 IBM Rochester 3 3 3
simon_n6 Google Bristlecone 3 3 3
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Benchmark name Device name β=10−3 β=10−4 β=10−5

simon_n6 IBM Athens 1 1 20
simon_n6 Starmon-5 2 2 2
simon_n6 IBM Yorktown 2 2 4
simon_n6 IBM Ourense 1 1 1
simon_n6 Surface-7 3 3 5
simon_n6 IBM Casablanca 1 1 2
simon_n6 Rigetti Agave 1 1 1
simon_n6 IBM Melbourne 3 2 4
simon_n6 Rigetti Aspen-1 3 3 2
simon_n6 Surface-17 3 3 3
simon_n6 IBM Singapore 3 3 6
simon_n6 IBM Johannesburg 3 2 2
simon_n6 IBM Tokyo 0 0 0
simon_n6 IBM Paris 4 4 6
simon_n6 IBM Rochester 3 3 10
simon_n6 Google Bristlecone 3 3 5

Benchmark name Device name β=100 β=10−1 β=10−2

alu-v2_30,q=6_s=2994_2qbf=08_1 Surface-7 4 4 4
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Casablanca 9 9 9
alu-v2_30,q=6_s=2994_2qbf=08_1 Rigetti Agave 11 11 11
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Melbourne 4 4 4
alu-v2_30,q=6_s=2994_2qbf=08_1 Rigetti Aspen-1 6 6 6
alu-v2_30,q=6_s=2994_2qbf=08_1 Surface-17 4 4 5
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Singapore 5 5 5
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Johannesburg 5 5 5
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Tokyo 4 2 2
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Paris 7 7 7
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Rochester 6 7 7
alu-v2_30,q=6_s=2994_2qbf=08_1 Google Bristlecone 4 5 6

Benchmark name Device name β=10−3 β=10−4 β=10−5

alu-v2_30,q=6_s=2994_2qbf=08_1 Surface-7 4 12 13
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Casablanca 9 9 46
alu-v2_30,q=6_s=2994_2qbf=08_1 Rigetti Agave 11 11 35
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Melbourne 4 6 11
alu-v2_30,q=6_s=2994_2qbf=08_1 Rigetti Aspen-1 6 6 14
alu-v2_30,q=6_s=2994_2qbf=08_1 Surface-17 5 4 14
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Singapore 5 11 12
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Johannesburg 5 7 12
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Tokyo 2 5 7
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Paris 7 7 22
alu-v2_30,q=6_s=2994_2qbf=08_1 IBM Rochester 7 7 25
alu-v2_30,q=6_s=2994_2qbf=08_1 Google Bristlecone 6 6 8
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Benchmark name Device name β=100 β=10−1 β=10−2

4gt12-v0_87 Surface-7 3 3 3
4gt12-v0_87 IBM Casablanca 5 5 7
4gt12-v0_87 Rigetti Agave 7 10 10
4gt12-v0_87 IBM Melbourne 2 2 2
4gt12-v0_87 Rigetti Aspen-1 3 3 3
4gt12-v0_87 Surface-17 3 3 3
4gt12-v0_87 IBM Singapore 5 5 5
4gt12-v0_87 IBM Johannesburg 5 5 5
4gt12-v0_87 IBM Tokyo 2 3 3
4gt12-v0_87 IBM Paris 7 6 6
4gt12-v0_87 IBM Rochester 6 6 6
4gt12-v0_87 Google Bristlecone 3 4 4

Benchmark name Device name β=10−3 β=10−4 β=10−5

4gt12-v0_87 Surface-7 3 3 7
4gt12-v0_87 IBM Casablanca 7 5 18
4gt12-v0_87 Rigetti Agave 10 10 21
4gt12-v0_87 IBM Melbourne 2 5 16
4gt12-v0_87 Rigetti Aspen-1 3 7 9
4gt12-v0_87 Surface-17 3 7 5
4gt12-v0_87 IBM Singapore 5 5 13
4gt12-v0_87 IBM Johannesburg 5 7 4
4gt12-v0_87 IBM Tokyo 3 2 21
4gt12-v0_87 IBM Paris 6 7 27
4gt12-v0_87 IBM Rochester 6 6 18
4gt12-v0_87 Google Bristlecone 4 6 14

Benchmark name Device name β=100 β=10−1 β=10−2

4gt4-v0_72 Surface-7 4 6 6
4gt4-v0_72 IBM Casablanca 7 8 9
4gt4-v0_72 Rigetti Agave 8 10 10
4gt4-v0_72 IBM Melbourne 4 4 4
4gt4-v0_72 Rigetti Aspen-1 6 7 7
4gt4-v0_72 Surface-17 3 3 4
4gt4-v0_72 IBM Singapore 5 5 5
4gt4-v0_72 IBM Johannesburg 5 5 5
4gt4-v0_72 IBM Tokyo 4 2 2
4gt4-v0_72 IBM Paris 7 7 7
4gt4-v0_72 IBM Rochester 8 7 7
4gt4-v0_72 Google Bristlecone 2 2 2

Benchmark name Device name β=10−3 β=10−4 β=10−5

4gt4-v0_72 Surface-7 6 5 5
4gt4-v0_72 IBM Casablanca 9 7 52
4gt4-v0_72 Rigetti Agave 10 16 10
4gt4-v0_72 IBM Melbourne 4 4 10
4gt4-v0_72 Rigetti Aspen-1 7 6 12
4gt4-v0_72 Surface-17 4 3 4
4gt4-v0_72 IBM Singapore 5 5 10
4gt4-v0_72 IBM Johannesburg 5 5 29
4gt4-v0_72 IBM Tokyo 2 2 12
4gt4-v0_72 IBM Paris 7 7 10
4gt4-v0_72 IBM Rochester 7 7 20
4gt4-v0_72 Google Bristlecone 2 2 10
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Benchmark name Device name β=100 β=10−1 β=10−2

qaoa 6 Surface-7 4 7 7
qaoa 6 IBM Casablanca 7 8 8
qaoa 6 Rigetti Agave 10 7 7
qaoa 6 IBM Melbourne 3 4 5
qaoa 6 Rigetti Aspen-1 4 5 5
qaoa 6 Surface-17 2 3 3
qaoa 6 IBM Singapore 5 4 4
qaoa 6 IBM Johannesburg 5 4 4
qaoa 6 IBM Tokyo 3 4 4
qaoa 6 IBM Paris 6 7 7
qaoa 6 IBM Rochester 6 7 7
qaoa 6 Google Bristlecone 3 4 5

Benchmark name Device name β=10−3 β=10−4 β=10−5

qaoa 6 Surface-7 7 6 10
qaoa 6 IBM Casablanca 8 8 14
qaoa 6 Rigetti Agave 7 7 49
qaoa 6 IBM Melbourne 5 5 13
qaoa 6 Rigetti Aspen-1 5 5 33
qaoa 6 Surface-17 3 5 4
qaoa 6 IBM Singapore 4 4 7
qaoa 6 IBM Johannesburg 4 5 6
qaoa 6 IBM Tokyo 4 4 10
qaoa 6 IBM Paris 7 7 8
qaoa 6 IBM Rochester 7 7 35
qaoa 6 Google Bristlecone 5 5 6

Benchmark name Device name β=100 β=10−1 β=10−2

ex3_229 Surface-7 4 4 4
ex3_229 IBM Casablanca 7 8 8
ex3_229 Rigetti Agave 9 11 11
ex3_229 IBM Melbourne 2 2 2
ex3_229 Rigetti Aspen-1 5 5 5
ex3_229 Surface-17 2 5 6
ex3_229 IBM Singapore 3 3 3
ex3_229 IBM Johannesburg 3 3 3
ex3_229 IBM Tokyo 2 2 2
ex3_229 IBM Paris 4 4 4
ex3_229 IBM Rochester 6 6 6
ex3_229 Google Bristlecone 2 2 2

Benchmark name Device name β=10−3 β=10−4 β=10−5

ex3_229 Surface-7 4 4 7
ex3_229 IBM Casablanca 8 6 23
ex3_229 Rigetti Agave 11 11 37
ex3_229 IBM Melbourne 2 2 3
ex3_229 Rigetti Aspen-1 5 5 10
ex3_229 Surface-17 6 4 3
ex3_229 IBM Singapore 3 3 17
ex3_229 IBM Johannesburg 3 3 25
ex3_229 IBM Tokyo 2 2 2
ex3_229 IBM Paris 4 4 10
ex3_229 IBM Rochester 6 6 16
ex3_229 Google Bristlecone 2 2 7
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Benchmark name Device name β=100 β=10−1 β=10−2

graycode6_47 Surface-7 1 1 1
graycode6_47 IBM Casablanca 1 1 1
graycode6_47 Rigetti Agave 0 0 0
graycode6_47 IBM Melbourne 0 0 0
graycode6_47 Rigetti Aspen-1 0 0 0
graycode6_47 Surface-17 0 0 0
graycode6_47 IBM Singapore 0 0 0
graycode6_47 IBM Johannesburg 0 0 0
graycode6_47 IBM Tokyo 0 0 0
graycode6_47 IBM Paris 0 0 0
graycode6_47 IBM Rochester 0 0 0
graycode6_47 Google Bristlecone 0 0 0

Benchmark name Device name β=10−3 β=10−4 β=10−5

graycode6_47 Surface-7 1 1 3
graycode6_47 IBM Casablanca 1 1 3
graycode6_47 Rigetti Agave 0 0 0
graycode6_47 IBM Melbourne 0 0 0
graycode6_47 Rigetti Aspen-1 0 0 0
graycode6_47 Surface-17 0 0 0
graycode6_47 IBM Singapore 0 0 0
graycode6_47 IBM Johannesburg 0 0 0
graycode6_47 IBM Tokyo 0 0 0
graycode6_47 IBM Paris 0 0 0
graycode6_47 IBM Rochester 0 0 0
graycode6_47 Google Bristlecone 0 0 0

Benchmark name Device name β=100 β=10−1 β=10−2

mod5adder_127 Surface-7 4 6 6
mod5adder_127 IBM Casablanca 7 8 8
mod5adder_127 Rigetti Agave 8 13 14
mod5adder_127 IBM Melbourne 4 5 5
mod5adder_127 Rigetti Aspen-1 5 7 7
mod5adder_127 Surface-17 4 5 6
mod5adder_127 IBM Singapore 5 5 5
mod5adder_127 IBM Johannesburg 5 5 5
mod5adder_127 IBM Tokyo 4 2 2
mod5adder_127 IBM Paris 7 8 8
mod5adder_127 IBM Rochester 8 7 7
mod5adder_127 Google Bristlecone 3 3 4

Benchmark name Device name β=10−3 β=10−4 β=10−5

mod5adder_127 Surface-7 6 4 16
mod5adder_127 IBM Casablanca 8 9 43
mod5adder_127 Rigetti Agave 14 13 44
mod5adder_127 IBM Melbourne 5 6 9
mod5adder_127 Rigetti Aspen-1 7 6 14
mod5adder_127 Surface-17 6 4 13
mod5adder_127 IBM Singapore 5 5 11
mod5adder_127 IBM Johannesburg 5 7 11
mod5adder_127 IBM Tokyo 2 3 19
mod5adder_127 IBM Paris 8 8 20
mod5adder_127 IBM Rochester 7 7 26
mod5adder_127 Google Bristlecone 4 4 11
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Benchmark name Device name β=100 β=10−1 β=10−2

q=6_s=54_2qbf=022_1 Surface-7 4 4 4
q=6_s=54_2qbf=022_1 IBM Casablanca 7 7 8
q=6_s=54_2qbf=022_1 Rigetti Agave 5 9 9
q=6_s=54_2qbf=022_1 IBM Melbourne 2 2 2
q=6_s=54_2qbf=022_1 Rigetti Aspen-1 3 5 5
q=6_s=54_2qbf=022_1 Surface-17 3 3 3
q=6_s=54_2qbf=022_1 IBM Singapore 3 3 4
q=6_s=54_2qbf=022_1 IBM Johannesburg 3 3 3
q=6_s=54_2qbf=022_1 IBM Tokyo 4 4 4
q=6_s=54_2qbf=022_1 IBM Paris 4 8 7
q=6_s=54_2qbf=022_1 IBM Rochester 5 5 6
q=6_s=54_2qbf=022_1 Google Bristlecone 2 2 2

Benchmark name Device name β=10−3 β=10−4 β=10−5

q=6_s=54_2qbf=022_1 Surface-7 4 6 20
q=6_s=54_2qbf=022_1 IBM Casablanca 8 7 17
q=6_s=54_2qbf=022_1 Rigetti Agave 9 9 12
q=6_s=54_2qbf=022_1 IBM Melbourne 2 2 7
q=6_s=54_2qbf=022_1 Rigetti Aspen-1 5 5 6
q=6_s=54_2qbf=022_1 Surface-17 3 4 7
q=6_s=54_2qbf=022_1 IBM Singapore 4 3 9
q=6_s=54_2qbf=022_1 IBM Johannesburg 3 3 3
q=6_s=54_2qbf=022_1 IBM Tokyo 4 4 16
q=6_s=54_2qbf=022_1 IBM Paris 7 8 42
q=6_s=54_2qbf=022_1 IBM Rochester 6 5 16
q=6_s=54_2qbf=022_1 Google Bristlecone 2 2 3

Benchmark name Device name β=100 β=10−1 β=10−2

sf_274 Surface-7 4 4 4
sf_274 IBM Casablanca 6 6 6
sf_274 Rigetti Agave 4 4 4
sf_274 IBM Melbourne 3 3 3
sf_274 Rigetti Aspen-1 2 3 3
sf_274 Surface-17 3 3 3
sf_274 IBM Singapore 5 5 5
sf_274 IBM Johannesburg 5 5 5
sf_274 IBM Tokyo 3 3 3
sf_274 IBM Paris 7 12 8

Benchmark name Device name β=10−3 β=10−4 β=10−5

sf_274 Surface-7 4 4 4
sf_274 IBM Casablanca 6 6 12
sf_274 Rigetti Agave 4 4 12
sf_274 IBM Melbourne 3 3 6
sf_274 Rigetti Aspen-1 3 3 2
sf_274 Surface-17 3 3 6
sf_274 IBM Singapore 5 6 9
sf_274 IBM Johannesburg 5 5 31
sf_274 IBM Tokyo 3 3 42
sf_274 IBM Paris 8 8 14
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Benchmark name Device name β=100 β=10−1 β=10−2

xor5_254 Surface-7 3 - 25
xor5_254 IBM Casablanca 3 4 4
xor5_254 Rigetti Agave 4 4 4
xor5_254 IBM Melbourne 3 3 3
xor5_254 Rigetti Aspen-1 3 3 3
xor5_254 Surface-17 2 2 2
xor5_254 IBM Singapore 2 2 2
xor5_254 IBM Johannesburg 2 2 2
xor5_254 IBM Tokyo 1 1 1
xor5_254 IBM Paris 4 3 3
xor5_254 IBM Rochester 3 3 3
xor5_254 Google Bristlecone 2 2 2

Benchmark name Device name β=10−3 β=10−4 β=10−5

xor5_254 Surface-7 25 7 7
xor5_254 IBM Casablanca 4 4 22
xor5_254 Rigetti Agave 4 4 15
xor5_254 IBM Melbourne 3 3 6
xor5_254 Rigetti Aspen-1 3 3 14
xor5_254 Surface-17 2 2 23
xor5_254 IBM Singapore 2 2 7
xor5_254 IBM Johannesburg 2 2 4
xor5_254 IBM Tokyo 1 1 15
xor5_254 IBM Paris 3 3 11
xor5_254 IBM Rochester 3 3 7
xor5_254 Google Bristlecone 2 2 3

Benchmark name Device name β=100 β=10−1 β=10−2

q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 Surface-7 - - 8
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Casablanca - - -
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 Rigetti Agave 16 - -
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Melbourne - 7 7
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 Rigetti Aspen-1 11 10 10
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 Surface-17 7 9 9
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Singapore 12 11 13
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Johannesburg 12 11 12
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Tokyo 7 6 5
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Rochester 17 - 14

Benchmark name Device name β=10−3 β=10−4 β=10−5

q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 Surface-7 8 54 22
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Casablanca - 40 48
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 Rigetti Agave - 18 65
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Melbourne 7 7 18
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 Rigetti Aspen-1 10 9 25
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 Surface-17 9 7 18
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Singapore 13 10 34
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Johannesburg 12 12 17
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Tokyo 5 4 10
q=7_s=29993_2qbf=08_1, q=7_s=2993_2qbf=08_1 IBM Rochester 14 16 38
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