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A B S T R A C T

The storage of renewable hydrogen in salt caverns requires fast injection and production rates to cope with the
imbalance between energy production and consumption. This raises concerns about the mechanical stability of
salt caverns under such operational conditions. The use of appropriate constitutive models for salt mechanics
is an important step in investigating this issue, therefore many constitutive models with several parameters
have been presented in the literature. However, a robust calibration strategy to reliably determine which
model and parameter set represents the given rock, based on stress–strain data sets, remains an unsolved
challenge. In this paper, for the first time in the community, we present a multi-step strategy to determine a
single parameter set based on many deformation data sets for salt rocks. Towards this end, we first develop
a comprehensive constitutive model able to capture all relevant nonlinear deformation physics of transient,
reverse, and steady-state creep. The determination of the single set of representative material parameters is then
achieved by framing the calibration process as an optimization problem, for which the global Particle Swarm
Optimization algorithm is employed. To allow for dynamic data integration, a multi-step calibration strategy is
developed for a situation where experiments are included one at a time, as they become available. Additionally,
due to the existing mild heterogeneity in the experimental rock samples, our optimization strategy is made
flexible to allow for this slight heterogeneity. The devised optimization strategy, based on the multi-physics
comprehensive constitutive modeling framework, results in a single set of representative material properties
of all the deformation data sets. As a rigorous mathematical analysis for the presented method and the lack
of relevant experimental data sets, we consider a wide range of synthetic experimental data sets, inspired
by the existing sparse relevant data in the literature. The results of our performance analyses show that the
proposed calibration strategy is robust. Moreover, the results become increasingly more accurate as more data
sets become available.
. Introduction

Solution-mined salt caverns have been used for storage of
ydrocarbons,1–4 compressed air,5 and even feed-stock hydrogen
ainly for chemical industry.6,7 More recently, salt caverns are being

onsidered as viable options for large-scale (e.g., in the orders of
Wh) storage of renewable hydrogen to support energy transition.8
owever, due to the intermittent nature of renewable sources and
ariable consumption rates, injection and production of renewable
ydrogen is expected to occur at much more unpredictable patterns
nd higher frequency than the current feed-stock-based storage sys-
ems. This can result in fast pressure fluctuations inside the caverns,
hich naturally increases the associated uncertainties related to the
echanical stability of the caverns. To perform stability analyses,

∗ Corresponding author.
E-mail address: H.TasinafoHonorio@tudelft.nl (H.T. Honório).

selecting an appropriate constitutive model is the first crucial step.
The constitutive model, used in the numerical simulation framework, is
expected to allow for accurate prediction of the mechanical behavior of
salt rock.9 However, if the model is not well calibrated, the simulation
results can compromise the stability analysis for the cavern, thus posing
threats to the storage operation. Therefore, model calibration is the
second crucial step for ensuring a reliable safety assessment. The
calibration process must be performed against experiments relevant
to the specific application. For this reason, instead of constant load
creep tests, experiments in salt samples under high-frequency cyclic
loading conditions are more representative of the situation expected for
renewable hydrogen storage. Under these conditions, transient creep is
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expected to be important, therefore, it is required to be included in the
constitutive model. As a result, the number of material parameters often
increases significantly, hence many laboratory experiments are neces-
sary for their proper calibration. Additionally, since these experiments
are performed on different salt samples, it is not possible to ensure
that they have exactly the same mechanical properties. In fact, even
samples taken from the same region and with similar appearance might
have slightly different properties due to mild heterogeneities in the salt
formation. Therefore, the model calibration should be able to provide
a set of material parameters that is representative of all experiments
considered. The main focus of this work is to propose a strategy that
allows for including new experiments in the calibration and provides
a representative set of material parameters that fits an ensemble of
experiments.

Salt rocks entail a complex mechanical behavior, with different yet
co-existing time-dependent deformation mechanisms.10 Capturing all
these complexities in a single constitutive model is not a trivial task. In
this category, the Hou/Lux11 and Composite Dilatancy Model (CDM)12

models are developed for both transient and steady-state creep. In addi-
tion, they are also developed for tertiary creep in the dilatancy zone and
damage healing in the compressibility zone. Conversely, other models
disregard the compressibility/dilatancy regions and focus on specific
deformation mechanisms, such as transient, steady-state, and tertiary
creep.13–19 However, as pointed out in the literature,20 full constitutive
models are not always necessary depending on the specific application
and the stress regimes. For instance, transient creep might be disre-
garded for disposal operations, since internal pressure is expected to
be fairly stable. However, this is not the case for hydrogen storage
operations, where fast cyclic injections and productions are expected
to take place. Although some researchers consider transient creep
as a viscoelastic process,13,14,17 others develop constitutive models
that assume time-dependent inelastic deformations.11,21–23 When rapid
pressure swings are expected to occur, some studies in the literature
also include reverse creep in their modeling framework.9,24

The complexity of salt rock mechanics is often reflected in the con-
stitutive models, which tend to depend on many material parameters.
As an example, the viscoplastic part of the Hou/Lux-ODS (Ohne Direkte
Schädigung) and Hou/Lux-MDS (Mit Direkter Schädigung)11,25 models
depend on 11 and 18 material parameters, respectively. This makes
the calibration strategy a very challenging task, which also requires
many experimental data sets to characterize the material behavior.
The viscoplastic model of Desai, for instance, requires a set of at least
six experiments to determine all material parameters.21 An additional
challenge appears by recognizing the potential inherent differences
between samples and difficulties in experimental controls.26 In other
words, different material parameters might be found for the same
batch of samples, thus requiring many sets of experiments for an ideal
calibration procedure. In this case, a set of material parameters that
is representative of all experiments should be pursued through the
calibration process. Moreover, it should be noted that performing creep
experiments in salt rocks is a time-consuming task,27–29 which means
that the size of the dataset increases at a low pace. Therefore, it would
be convenient to perform partial calibrations with the experimental
data currently available and include new experiments as they become
available. During this process, the quality of the model results should
increase as more experiments are used for calibration, and it should
stabilize when a sufficient number of experiments is reached.

There are different approaches for determining the material param-
eters of a constitutive model, some of which are complementary. As
pointed out in Ref. 30, some material parameters, such as Young’s
modulus and Poisson’s ratio, can be determined by well-defined proce-
dures, while others are obtained either by manual (trial and error) or
automated procedures, with the latter being preferred in face of a large
number of parameters. A common approach for automated calibration
consists of defining an appropriate objective function to be minimized

31
in an optimization process. This is called direct calibration. Although 1

2 
gradient-based algorithms have been used in the literature,30 meta-
heuristic optimization approaches26,32 seem to be more common as
hey are more likely to avoid local minima. The direct calibration ap-
roach treats the constitutive model as a black-box, so the optimization
rocess is agnostic to the field of application. Nevertheless, such an
pproach is not found in the literature for constitutive models related
o salt rocks. Furthermore, a procedure for incrementally including
ew experiments in the calibration process is also not reported in the
iterature.

In this context, the present work proposes a calibration strategy for a
alt rock constitutive model that includes deformation mechanisms rel-
vant to cyclic operations in salt caverns, such as transient, steady-state,
nd reverse creep. The calibration of the material parameters related
o each deformation mechanism is presented. A multi-step direct cali-
ration procedure is developed to include one experiment at a time by
roperly adjusting the objective (loss) function and solving it as a multi-
bjective function optimization problem. Moreover, a regularization
erm is added to the loss function to roughly favor the same fitting
uality for all experiments. The Particle Swarm Optimization (PSO)
lgorithm is employed for solving the optimization problems. More-
ver, we investigate a situation where each experiment is performed
n salt samples with slightly different material properties. As discussed
efore, the goal is to obtain a single set of representative material
arameters. For this purpose, synthetic experiments are employed, such
hat quality assessment of the proposed calibration strategy is possible.
inally, a sensibility analysis is carried out to investigate the influence
f some material parameters and to clarify the possible difficulties when
erforming the optimization process.

The remainder of this paper is organized as follows. Section 2
resents experimental results obtained from a triaxial test on a salt
ock. The experimental results serve as a guide for the choice of our
onstitutive model, which is presented in Section 3. Once the model
s defined, the calibration strategy adopted in this work is discussed in
ection 4. In Section 5, the model validation against an experimental re-
ult is presented, and the calibration strategy is tested and investigated
n different situations. Finally, Section 7 closes our presentation.

. Experimental methodology and results

To give additional insights into the mechanical behavior of salt rock
nd to provide a benchmark for the constitutive model employed in
his work, we briefly discuss in this section a triaxial test performed on
salt rock. The experiment was performed on the Z3 Leine rock salt

rovided by the Institut fur Gebrismechanik GMBH (IFG), Germany.
he Z3 Leine rock salt originated from the Bernburg mine in Germany,

t is very homogeneous (>98% NaCl), colorless, and no obvious layering
s visible. The grain size is less than 10 mm and the core sample
as prepared as a 1-in. diameter and 2-in. long cylindrical shape.
dditionally, the sample was stored inside an airtight bag and kept in
watertight container.

We show here the methods and results of a cyclic loading test on
he Z3 Leine rock salt. The experimental data is generated as testing
ata to assess the ability of our constitutive computer model to describe
alt behavior under cyclic loading conditions. The experiment was
arried out in a standard triaxial cell operating at room temperature
21 ◦C). The choice for room temperature testing was made to keep
he experiment as simple as possible. The triaxial cell was built in-
ouse (Energy Transition Campus Amsterdam, ETCA) with an axial
nd radial stress limit of 95 MPa. The axial and radial displacements
ere measured during the test. We first loaded the cylindrical sample

sostatically to 12.9 MPa and let the samples consolidate until the
easured axial and radial strain equilibrated. After equilibrium, the

adial stress was kept at 12.9 MPa for the duration of the experiment,
hereas the axial stress was increased to 23.5 MPa (at 2.0 MPa∕h) and
ept at this stress for 4 days and thereafter, decreased back down to

2.9 MPa (at 2.0 MPa∕h) followed by a consolidation for another 2
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Fig. 1. Experimental results obtained from a triaxial test performed on the Z3 Leine salt rock sample. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
ays. The 4 days of high axial stress and 2 days of low axial stress
ere repeated for other four axial stress steps, namely, 26.0/12.9 MPa,
7.5/12.9 MPa, 31.0/12.9 MPa, 33.5/12.9 MPa (see Fig. 1). Fig. 1 also
hows axial and radial strains, both measured during the experiment,
nd volumetric strain (calculated) versus time. In this case, all five
ifferential stress steps show axial shortening and volumetric shrinkage,
hereas the radial strain shows dilation in all differential stress steps.

A closer look at this experiment can provide valuable insights into
he modeling of salt mechanics. For this purpose, the left graph of
ig. 2 shows a zoomed view of the last loading stage (i.e. from 12.9
o 33.5 MPa). Notice that the black dashed line indicates the previous
aximum stress of 31.0 MPa. When the axial stress goes from point
to point B, the corresponding strain goes from point A′ to B′, as

indicated by the dashed red curve. As can be seen, the strain increment
is relatively small along the stress path A-B. However, when the axial
stress exceeds the maximum stress ever applied to the sample during
the experiment, which at this point is 31.0 MPa, an abrupt increase in
strain is observed from point B′ to C′. This suggests that an additional
inelastic strain has been triggered during the stress path B-C. This
can be also concluded from the right graph of Fig. 2, which shows
the corresponding stress–strain relation during the loading path A-B-
C. To facilitate the visualization, notice that the light and dark gray
areas in the two graphs of Fig. 2 correspond. The right graph shows
that from point A′′ to B′′, the salt sample behaves as a (visco)elastic
material. However, from point B′′ to C′′ there is a large increase in
strain for a relatively small stress increment. This is a characteristic of
plastic (or viscoplastic) deformation, and it can be observed in every
unloading/reloading cycle during the experiment.

Finally, the right graph of Fig. 2 shows a hysteretic effect during the
unloading/reloading path. The unload path goes from point B′′ to point
A′′ and the load path goes from point A′′ back to B′′. The hysteresis
refers to the fact that these two paths are not the same, and this is a
manifestation of the well-known reverse transient creep.33

3. Model formulation

The constitutive model adopted in this work is specifically designed
to capture the deformation mechanisms observed in the experimental
results presented in Section 2. The main conclusions from the experi-
mental results are that (i) transient creep occurs when the stress exceeds
a certain threshold, which characterizes a viscoplastic behavior, (ii)
the material shows reverse transient creep deformation during unload-
ing/reloading steps, which is characteristic of viscoelastic materials.

Additionally, because the stress levels are much higher than 5 MPa,

3 
pressure solution creep effects can be neglected. Finally, the volumetric
strain curve shown in Fig. 1 is always positive, meaning that the stress
state lies in the compressibility region so tertiary creep is not present.
Based on this discussion, and assuming infinitesimal deformations,
the total strain can be decomposed into four independent contribu-
tions. The first one accounts for the instantaneous elastic response.
Reverse transient creep, which is observed after an unloading step, is
interpreted as a time-dependent recoverable strain (i.e. viscoelastic)
and is described by a Kelvin-Voigt element.24 Transient creep, on
the other hand, is regarded as a time-dependent inelastic deformation
(i.e., viscoplastic).23 Finally, steady-state dislocation creep is captured
by a dashpot element following a power-law function. In this manner,
the total strain can be written as

𝜺 = 𝜺𝑒 + 𝜺𝑣𝑒 + 𝜺𝑣𝑝 + 𝜺𝑐𝑟, (1)

where 𝜺𝑒, 𝜺𝑣𝑒, 𝜺𝑣𝑝 and 𝜺𝑐𝑟 denote the elastic, viscoelastic, viscoplastic
and steady-state creep strain tensors, respectively. Next, the specific
models for each of these contributions are described.

3.1. Elastic strain

For convenience, we define a function of Poisson’s ratio, 𝜈, as C =
C(𝜈), such that C ∶ R → R3×3×3×3 is a 4th-order tensor with elements
given by

C𝑖𝑗𝑘𝑙(𝜈) =
𝜈

(1 + 𝜈)(1 − 2𝜈)
𝛿𝑖𝑗𝛿𝑘𝑙 +

1
2(1 + 𝜈)

(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘). (2)

with 𝛿𝑖𝑗 denoting the Kronecker delta function.
The elastic strain tensor at any time 𝑡𝑖 can be calculated with the

linear elasticity, assuming isotropic properties, i.e.,

𝜺𝑒(𝑡𝑖) = C−1
1 ∶ 𝝈(𝑡𝑖), (3)

where C1 is the constitutive 4th-order tensor, defined as

C1 = 𝐸1C(𝜈1). (4)

Here, 𝐸1 and 𝜈1 denote the Young’s modulus and Poisson’s ratio asso-
ciated to the elastic deformation, respectively.

3.2. Viscoelastic strain

The solution for the time-dependent elastic (i.e. viscoelastic) strain,
represented by a Kelvin-Voigt element, for continuous stress functions,

34
has been studied in the literature. However, experimental data sets
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Fig. 2. Zoomed-in view of a reloading step of the experiment that allows for identification of both viscoplastic and viscoelastic deformations.
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re discrete, not continuous. Therefore, in this work, we present a solu-
ion strategy for discrete stress conditions. Towards this end, consider a
iscrete stress path represented as (𝝈0,𝝈1,… ,𝝈𝑖,… ,𝝈𝑛−1,𝝈𝑛) with cor-

responding times (𝑡0, 𝑡1,… , 𝑡𝑖,… , 𝑡𝑛−1, 𝑡𝑛). The viscoelastic strain (i.e.,
or the Kelvin-Voigt element) subjected to this discrete stress condition
eads

𝑣𝑒(𝑡𝑖) = C−1
2 (𝑡𝑖) ∶ 𝝈0 +

𝑖−1
∑

𝑗=0
C−1
2 (𝑡𝑖 − 𝑡𝑗 ) ∶ 𝛥𝝈𝑗+1, (5)

where 𝛥𝝈𝑗+1 = 𝝈𝑗+1 − 𝝈𝑗 ,

C−1
2 (𝑡) = 1

𝐸2

(

1 − 𝑒
− 𝐸2

𝜂2
𝑡
)

C−1(𝜈2), (6)

and C(𝜈2) is defined by Eq. (2). Moreover, 𝐸2 and 𝜈2 denote the Young’s
modulus and Poisson’s ratio of the spring in the Kelvin-Voigt element,
and 𝜂2 is the dashpot viscosity of the same element.

3.3. Viscoplastic strain

Following Perzyna’s theory,21,23 the viscoplastic strain rate is ex-
pressed as

�̇�𝑣𝑝 = 𝜇1

⟨𝐹𝑣𝑝

𝐹0

⟩𝑁1 𝜕𝑄𝑣𝑝

𝜕𝝈
, (7)

here 𝜇1 and 𝑁1 are material parameters, 𝐹0 is a reference value, and
he operator ⟨⋅⟩ denotes the ramp function. The yield function21 is given
y

𝑣𝑝(𝛼,𝝈) = 𝐽2 − (−𝛼𝐼𝑛11 + 𝛾𝐼21 )

⎡

⎢

⎢

⎢

⎣

exp (𝛽1𝐼1) + 𝛽

√

27𝐽3

2
√

𝐽 3
2

⎤

⎥

⎥

⎥

⎦

𝑚

(8)

in which 𝑛1, 𝛾, 𝛽1, 𝛽 and 𝑚 are material parameters. In addition, an
ssociative viscoplastic deformation mechanism is considered, implying
hat the potential function 𝑄𝑣𝑝 in Eq. (7) is equal to the yield function
𝑣𝑝 of Eq. (8).

Moreover, denoting the deviatoric stress tensor as 𝐬, the stress
invariants in Eq. (8) can be written as

𝐼1 = tr(𝝈) + 𝜎𝑡, 𝐽2 =
1
2
𝐬 ∶ 𝐬, and 𝐽3 = det(𝝈), (9)

where 𝜎𝑡 is the tensile strength of the rock.
The hardening parameter in Eq. (8) characterizes the behavior of

the yield function. The hardening rule adopted in this work is

𝛼 =
𝑎1

⎡

⎢

⎢

(

𝑎1
𝛼0

)
1
𝜂
+ 𝜉

⎤

⎥

⎥

𝜂 , (10)
⎣ ⎦

4 
here 𝜂, 𝑎1, 𝛼0 are material parameters. In particular, 𝛼0 denotes
he initial configuration of the yield surface. Additionally, 𝜉 is the
ccumulated viscoplastic strain, which is given by

= ∫

𝑡

𝑡0

√

�̇�𝑣𝑝 ∶ �̇�𝑣𝑝d𝑡. (11)

Note that, before any viscoplastic deformation takes place, Eq. (11)
results in 𝜉 = 0 and Eq. (10) leads to 𝛼 = 𝛼0, as expected. Furthermore,
the yield surface (𝐹𝑣𝑝(𝛼,𝝈) = 0) expands as 𝛼 increases. In the limiting
case, if 𝜉 → ∞, then 𝛼 → 0 and the yield surface coincides with the
short-term failure boundary.

Once the viscoplastic strain rate is obtained, the viscoplastic strain
at time 𝑡𝑖 is obtained by performing a time integration and using
backward Euler scheme, i.e.,

𝜺𝑣𝑝(𝑡𝑖) = 𝜺𝑣𝑝(𝑡𝑖−1) + 𝛥𝑡�̇�𝑣𝑝(𝑡𝑖), (12)

in which 𝛥𝑡 = 𝑡𝑖 − 𝑡𝑖−1. Note that the viscoplastic strain rate is also
computed at 𝑡𝑖 due to the implicit formulation.

3.4. Dislocation creep strain

In this study, we neglect pressure solution creep and consider
dislocation creep only, as most of the available data in the literature
are conducted under deviatoric stresses exceeding 5 MPa.35 Dislocation
creep is often modeled as using a power law,36 which reads

�̇�𝑐𝑟 = 𝐴 exp
(

− 𝑄
𝑅𝑇

)

𝑞𝑛−1𝐬, (13)

where 𝐴 and 𝑛 are material parameters, 𝑄 is the activation energy, 𝑇 is
emperature and 𝑅 is the universal gas constant (𝑅 = 8.32 J K−1 mol−1).
imilar to the viscoplastic strain, the creep strain at time 𝑡𝑖 is obtained
y

𝑐𝑟(𝑡𝑖) = 𝜺𝑐𝑟(𝑡𝑖−1) + 𝛥𝑡�̇�𝑐𝑟(𝑡𝑖), (14)

here implicit time integration is also employed.

. The model calibration strategy based on ensemble of data sets

In this section, we present the developed calibration strategy
dopted to determine the material parameters of the multi-physics
onstitutive model. As summarized in Table 1, the multi-physics model
ntails 19 material parametersc in total. Any manual strategy to fit them
ould be certainly inapplicable. Moreover, performing optimization in

c The variable 𝛼0 defines the initial position of the yield surface. There-
fore, it is not strictly a material parameter but rather an initial condition.
Nevertheless, for the purposes of this work, 𝛼0 is also regarded as a material
parameter.
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Fig. 3. (a) Steady-state creep rates (slopes) represented by the magenta lines, and (b) features (𝜙, 𝛹 and 𝐷) observed when adjusting the elastic and viscoelastic parameters.
a

able 1
aterial parameters to be calibrated.
Group Model Parameters

1 Dislocation creep 𝐴, 𝑛

2 Elastic 𝐸1, 𝜈1
Viscoelastic 𝐸2, 𝜈2, 𝜂2

3 Viscoplastic 𝜇1, 𝜂, 𝑁1, 𝑛1, 𝛽, 𝑚
𝑎1, 𝛽1, 𝛾, 𝛼0, 𝑘, 𝜎𝑡

Table 2
Material parameters for Group 1.

Parameter Value Unit

𝑛 3.0 –
𝐴 1.1 × 10−21 Pa−𝑛 s−1

a 19th-dimensional space is cumbersome and prone to suffer from the
local optimum traps or too many possibilities to match the given data
set. As a remedy to this significant challenge, in this study, we propose
a strategy to adjust the material parameters separately in three different
groups as follows. The first group, i.e., group 1, comprises the param-
eters associated with the dislocation creep model. The second group,
i.e., group 2, is the union of the material parameters representing both
elastic and viscoelastic models. Finally, the parameters related to the
viscoplastic model are considered in the third group, i.e., group 3. The
sequence of calibration goes from group 1 to 3. A brief discussion of
the calibration steps of each group is provided below.

4.1. Group 1: Dislocation creep model

As expressed in Eq. (13), the creep model depends on 2 material
parameters: 𝐴 and 𝑛. Typical values of 𝑛 for dislocation creep range
etween 3 to 7.37 Based on this information, we adjust parameters

and 𝑛 such that the slopes of the creep strain curve match those
rom the experimental data. For example, Fig. 3-a shows the axial
train measured from the experimental results and the target slopes
stationary creep strain rates) represented by the magenta lines. For this
tep, only the solution provided by Eq. (14) is necessary, since only the
lopes of the curves are required.

The material parameters found for the dislocation creep model are
ummarized in Table 2.

.2. Group 2: Elastic and viscoelastic models

For the elastic model, the material parameters are the Young mod-
lus and Poisson’s ratio. The latter can be determined by the ra-
io between radial and axial strains. Additionally, is it assumed that
he Poisson’s ratio for elastic and viscoelastic elements are the same,
5 
Table 3
Material parameters for Group 2.

Parameter Value Unit

𝐸1 102 GPa
𝜈1 0.32 –
𝐸2 42 GPa
𝜈2 0.32 –
𝜂2 2.5 × 105 GPa s

i.e., 𝜈1 = 𝜈2. The Young’s modulus, 𝐸1, can be obtained by the slope 𝛹
of the unloading/reloading path, as illustrated in Fig. 3-b. Finally, the
values of 𝐸2 and 𝜂2 are adjusted all together to match the distance 𝐷
nd the angle 𝜙 of the average unloading/loading slope.

For the elastic and viscoelastic contributions of the constitutive
model, the material parameters obtained based on the above-described
procedure are shown in Table 3.

4.3. Group 3: Viscoplastic model

As summarized in Table 1, the viscoplastic model requires the
definition of 12 parameters. Although different types of salt rocks
and the presence of impurities may produce different values for these
material properties, typical values for salt rocks can be found in the
literature.21,23 The parameter 𝛾 is associated with the short-term failure
boundary, whereas 𝛽, 𝛽1 and 𝑚 account for the influence of Lode’s
angle. The position of the dilatancy boundary can be adjusted mainly
through parameters 𝛽1 and 𝑛1. Also, 𝐹0 is a reference value and 𝑘 is
regarded as zero, meaning that an associative flow rule is adopted in
this work. These parameters are summarized in Table 4.

The remaining parameters 𝜇1 and 𝑁1 relate to the rate-dependent
behavior of the salt rock and should be calibrated for specific samples.
Similarly, the hardening rule described by Eq. (10) depends on 𝑎1 and
𝜂, which should also be calibrated. Additionally, the initial position of
the yield surface is defined by the parameter 𝛼0, which depends on the
stress history of the rock sample. The definition of 𝛼0 is very important
for the accuracy of the predictions, in the presence of viscoplasticity.

Based on the above discussion, from the 12 material parameters
associated with the viscoplastic model, only 𝜇1, 𝑁1, 𝑎1, 𝜂 and 𝛼0 are to
be determined. The remaining parameters are taken from typical values
found in the literature. Next, the strategy developed in this work for
obtaining these sets of parameters is described.

4.4. Optimization strategy

As shown in the previous subsections, the constitutive model de-
pends on 19 material parameters. Let us denote the entire set of
material parameters as 𝐦 ∈ R𝑑×1, where 𝑑 = 19. Furthermore, for the
purpose of the optimization procedure, let us split 𝐦 in two subsets: 𝐰 ∈
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Table 4
Fixed material parameters for the viscoplastic element.

Parameter Value Unit

𝑛1 3 –
𝛽1 4.8 × 10−3 MPa−1

𝛽 0.995 –
𝑚 −0.5 –
𝛾 0.095 –
𝐹0 1.0 MPa2
𝑘 0.0 −

R𝑤×1, denoting the material parameters to be optimized; and 𝐤 ∈ R𝑘×1

comprising the material parameters that are fixed. Mathematically, 𝐦 =
𝐰 ∪ 𝐤, which implies that 𝑤 + 𝑘 = 𝑑. As discussed before, the material
arameters to be optimized are

=
[

𝜇1 𝑁1 𝑎1 𝜂 𝛼0
]𝑇 , (15)

hereas 𝐤 comprises all the remaining material parameters, which
re fixed (Table 4). Note that the set of material parameters to be
ptimized (𝐰) belong exclusively to the viscoplastic contribution of the
onstitutive model.

The strain tensor for a certain experiment 𝑖 is then obtained by

𝑖(𝐰, 𝑡) = 𝑓 (𝐰,𝐤,𝝈𝑖(𝑡)) for 𝑖 ∈ [1,… , 𝑁], (16)

here 𝑁 is the number of experiments and 𝝈𝑖(𝑡) is the specific stress
ondition applied to experiment number 𝑖.

For each experiment 𝑖, we define a loss function 𝐹𝑖(𝐰) by taking the
Mean Absolute Percentage Error (MAPE) of the axial (𝜀𝑎) and radial
(𝜀𝑟) strains, i.e.,

𝐹𝑖(𝐰) =
1
𝑁𝑡

𝑁𝑡
∑

𝑗=1

(

‖

‖

‖

‖

‖

𝜀𝑎,𝑖(𝐰, 𝑡𝑗 ) − 𝜀∗𝑎(𝑡𝑗 )
𝜀∗𝑎(𝑡𝑗 )

‖

‖

‖

‖

‖

+
‖

‖

‖

‖

‖

𝜀𝑟,𝑖(𝐰, 𝑡𝑗 ) − 𝜀∗𝑟 (𝑡𝑗 )
𝜀∗𝑟 (𝑡𝑗 )

‖

‖

‖

‖

‖

)

, (17)

where ‖⋅‖ represents the absolute value, 𝑁𝑡 is the number of time steps
n experiment 𝑖, and 𝜺∗(𝑡𝑗 ) is the true deformation measured at time 𝑡𝑗 .

The MAPE metric represents an average of the percentage error at each
time 𝑡𝑖. By considering the percentage error, the same importance is
given to the errors in both the beginning and the end of the experiment.

When more than one experiment is considered, say 𝑖 experiments,
he loss functions associated with each experiment are combined by
aking the Mean Squared Error (MSE) plus a regularization term, i.e.,

𝑖(𝐰) =
1
𝑖

𝑖
∑

𝑗=1
𝐹 2
𝑗 (𝐰) + 𝜙𝜎2, (18)

n which 𝜙 is the regularization factor and 𝜎2 is the variance of the
rrors in all 𝑖 experiments. The incorporation of a regularization term
s designed to mitigate the risk of the optimization process becom-
ng overly specialized to a single experiment, thereby compromising
ts generalizability to other experiments. This is further discussed in
ection 4.4.2.

Every time a new experiment is added, an optimization problem is
olved to obtain the best set of material properties for that particular ex-
eriment only. For a given experiment #𝑖, for example, this is achieved
y minimizing the corresponding loss function 𝐹𝑖. In other words, the
et of material parameters resulting from this process is defined as
𝐹
𝑖 ≈ argmin𝐹𝑖(𝐰) ∀ 𝐰 ∈ P, (19)

here P ⊂ R𝑤×𝑛 is the initial population distribution, with 𝑛 denoting
he initial population (swarm) size. The approximate sign ‘‘≈’’ is used
n Eq. (19) to admit the possibility of obtaining sub-optimal or, at least,
pproximate solutions.

Once the single experiment optimization has been performed for
xperiment #𝑖, the set of parameters 𝐰𝐹

𝑖 is added to the population of
he next full optimization, which considers all experiments from 1 to 𝑖,
.e.,
𝐿 ≈ argmin𝐿 (𝐰) ∀ 𝐰 ∈ P ∪ F ∪ L . (20)
𝑖 𝑖 𝑖 𝑖

6 
ere, F𝑖 and L𝑖 represent the union of the solutions obtained from
ptimizing Eqs. (19) and (20), respectively. In other words,

𝑖 =
𝑖

⋃

𝑗=1
𝐰𝐹
𝑗 and L𝑖 =

𝑖−1
⋃

𝑗=1
𝐰𝐿
𝑗 . (21)

otice that the full optimization (Eq. (20)) is performed with the initial
opulation plus the individuals contained in sets F𝑖 and L𝑖. This means
hat the set of parameters obtained from the previous full optimizations
s also considered for the current full optimization. In this manner, the
alibrations of subsequent experiments do not start from scratch, as
hey consider the results from previous calibrations.

The complete procedure is described in Algorithm 1. Notice that F
nd L are initially empty sets. Moreover, when only one experiment
s available (𝑖 = 1), there is no full optimization, so L remains
mpty. After the second experiment has been added, full optimizations
re performed and �̄�𝐿

𝑖 are added to L. The algorithm loops over 𝑁
xperiments, including them one by one to the calibration process.

Algorithm 1 Strategy for simultaneous calibration of a set of
experiments.

F = ∅
L = ∅
for 𝑖 ← 1⋯𝑁 do

w𝐹
𝑖 ≈ argmin𝐹𝑖(w) ∀ w ∈ P

F ← F ∪w𝐹
𝑖

if 𝑖 > 1 then
w̄𝐿

𝑖 ≈ argmin𝐿𝑖(w) ∀ w ∈ P ∪ F ∪ L
L ← L ∪w𝐿

𝑖
end if

end for

The procedure described above has been specifically designed for
experimental sets performed on samples with mild heterogeneous prop-
erties. In real situations, each experiment is performed on a different
salt sample. Even if the samples present a similar appearance and are
taken from the same region, they are likely to have slightly different
mechanical properties. In this case, it is impossible to find a single set
of material parameters that produces a perfect fit for all experiments
(even in the hypothetical case of no model uncertainty). In other
words, there is no ground-truth (exact) solution. Instead, there is a
range of solutions (parameter sets) that will produce acceptable errors.
Therefore, the goal of the presented strategy is to find one of those
acceptable solutions. The way this is ensured is by performing single
optimizations in each new experiment (i.e., optimization of 𝐹𝑖) before
including it in the full optimization problems (i.e., minimization of 𝐿𝑖).
When 𝐹𝑖 is minimized, a locally optimal solution is obtained, which
is added to the initial population for minimizing the full problem 𝐿𝑖.
Additionally, a regularization term 𝐿𝑖 is added to prevent the solution
from specializing in one single experiment (see Section 4.4.2). The
importance of the regularization term and an example showing how the
proposed strategy handles this heterogeneity is shown in Section 6.4. It
should be stressed that, if the material heterogeneity is severe among
the samples, they shall be considered different materials for which
different optimum parameter sets shall be found. Only in the presence
of minor heterogeneity, we can argue the samples share comparable
parameter sets.

4.4.1. Optimization algorithm
The optimization problems faced in this work present two important

characteristics that drive the choice of the optimization algorithm. First,
the loss functions 𝐹𝑖(𝐰) and 𝐿𝑖(𝐰), respectively defined in Eqs. (17)
nd (18), are non-convex functions with many local minima, since the
iscoplastic model admits different combinations of material parame-
ers that produce similar results. Second, the computation of gradients,
specially for 𝐿 (𝐰), is expensive. In this context, population-based
𝑖
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Fig. 4. (a) Multi-objective optimization and Pareto front (experiments #1 and #2 in this figure are only meant for illustration purposes), and (b) high and (c) low variance of 𝐹𝑖.
t
(

𝐿

lgorithms appear to be more attractive over gradient-based methods as
hey are less likely to be trapped in local minima and are independent
f gradients. For this reason, we adopt the Particle Swarm Optimization
PSO) algorithm38,39 for solving the optimization problems of Eqs. (19)
nd (20). In this method, an initial population is created within the
earch space, and each member of the population represents a possible
olution. Each individual is assigned an initial velocity so they can
ove through the search space. For each time step (iteration), the

elocity of a certain particle 𝑖 is computed as
𝑡+1
𝑖 = 𝜔𝐯𝑡𝑖 + 𝑐1𝐫1

(

𝐩𝑡𝑖 − 𝐱𝑡𝑖
)

+ 𝑐2𝐫2
(

𝐠𝑡𝑖 − 𝐱𝑡𝑖
)

, (22)

here 𝜔, 𝑐1 and 𝑐2 are weights given to the previous velocity (inertia),
article’s best position (𝐩𝑡𝑖) and swarm’s best position (𝐠𝑡𝑖), respectively.
he choice of these hyperparameters allows for balancing between ex-
loration and exploitation. Appropriate values can be manually defined
y performing initial tests, and they do not need to be redefined when
ew experiments are included in the calibration. In this study, the
alues used are 𝜔 = 0.7, 𝑐1 = 0.7 and 𝑐2 = 0.5. Moreover, 𝐫1 and 𝐫2 are
andom vectors between 0 and 1. With this new velocity, the position
f particle 𝑖 is updated by
𝑡+1
𝑖 = 𝐱𝑡𝑖 + 𝐯𝑡+1𝑖 . (23)

Once all particles have their positions updated, the algorithm pro-
eeds to the next iteration. This process is repeated until a stop criterion
s reached.

.4.2. Multi-objective function optimization
Solving an optimization problem for multiple experiments simul-

aneously (Eq. (20)) consists of multi-objective function optimization,
ince the goal is to minimize the loss functions 𝐹𝑖 for all experiments.
his type of problem admits an infinite number of solutions that are not
ominated by other feasible solutions, which means that they are all
cceptable solutions to the minimization problem. This set of solutions
s called the Pareto optimal front and is illustrated in Fig. 4 for a
ituation where only two experiments are considered.

Although all solutions along the Pareto front are admissible, we
otice that the solution at point A provides a good fit for experiment
1 and a sub-optimal solution for experiment #2. Similarly, point C
rovides a better fit for experiment #2 than for #1. On the other hand,
oint B provides a solution that is equally good for both experiments,
ince 𝐹1 ≈ 𝐹2, and therefore should be preferred.

To ‘‘encourage’’ the solution to stay along the dashed line of Fig. 4
e penalize the loss function 𝐿𝑖 when 𝐹1 ⋯ 𝐹𝑁 are too different from

ach other, that is, high variance (see Fig. 4-c). The loss function is

7 
hen composed of a mean squared error (MSE) part and a regularization
Reg.) part. Mathematically, this can be written as

𝑖(𝐰) =
1
𝑖

𝑖
∑

𝑗=1
𝐹 2
𝑗 (𝐰) + 𝜙 1

𝑖

𝑖
∑

𝑗=1

[

𝐹𝑗 (𝐰) − 𝐹 (𝐰)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜎2

= 1
𝑖

𝑖
∑

𝑗=1
𝐹 2
𝑗 (𝐰)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
MSE

+ 𝜙𝜎2
⏟⏟⏟

Reg.

,

(24)

where 𝐹 (𝐰) is the average error of all experiments, as indicated in
Fig. 4, and 𝜙 is an arbitrary regularization factor. When variance is
high (Fig. 4-b), the regularization term is large, thus penalizing the loss
function 𝐿𝑖. When variance is close to zero (Fig. 4-c), which means that
the fit quality for all experiments is about the same, the regularization
term tends to vanish from Eq. (24).

5. Results

In the first part of this section, we investigate the capabilities of the
proposed constitutive model in describing the mechanical behavior of
salt rocks observed in the laboratory. In the sequence, the optimization
procedure proposed for the model calibration is explored. We first start
by presenting the synthetic data employed throughout our analysis.
Sensitivity analysis is performed to identify the impact of each material
parameter on the model behavior. The PSO algorithm is first employed
to calibrate each synthetic experiment individually. Then, the calibra-
tion strategy is tested for fitting the entire set of experiments as they
become available, as described in Algorithm 1.

5.1. Model validation

The primary purpose of this subsection is to show that the consti-
tutive model presented in Section 3 is able to accurately capture the
time-dependent behavior of salt rocks operating in the compressibility
zone (i.e., no tertiary creep) and under cyclic loading conditions.
Additionally, we intend to highlight the importance of each term
considered in the proposed constitutive model. Of particular interest is
the description of transient creep, as it is permanently present during
cyclic operations. For this purpose, we use three different models to
describe the experimental results discussed in Section 2. These models
are summarized in Table 5, and they differ from each other by how the
transient creep is described. In Model 1, the transient creep is described
by the Kelvin-Voigt element presented in Section 3.2, thus assuming
that transient creep deformations are fully recoverable (elastic). On
the other extreme, the hypothesis that all the deformation observed
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Fig. 5. Total strain curves obtained with three different models.
able 5
odels with different assumptions regarding the transient creep.
Model Total strain Transient creep

1 𝜀𝜀𝜀 = 𝜀𝜀𝜀𝑒 + 𝜀𝜀𝜀𝑐𝑟 + 𝜀𝜀𝜀𝑣𝑒 Fully elastic (𝜀𝜀𝜀𝑣𝑒)
2 𝜀𝜀𝜀 = 𝜀𝜀𝜀𝑒 + 𝜀𝜀𝜀𝑐𝑟 + 𝜀𝜀𝜀𝑣𝑒 + 𝜀𝜀𝜀𝑣𝑝 Hybrid (𝜀𝜀𝜀𝑣𝑒 + 𝜀𝜀𝜀𝑣𝑝)
3 𝜀𝜀𝜀 = 𝜀𝜀𝜀𝑒 + 𝜀𝜀𝜀𝑐𝑟 + 𝜀𝜀𝜀𝑣𝑝 Fully inelastic (𝜀𝜀𝜀𝑣𝑝)

during the primary stage of creep is fully inelastic is assumed by Model
3, in which the viscoplastic model presented in Section 3.3 is em-
ployed. Finally, a combination of both hypotheses is assumed by Model
2, where the viscoelastic (Kelvin-Voigt) element is combined with
the viscoplastic element. It should be stressed that the terminologies
‘‘fully-elastic’’, ‘‘hybrid’’ and ‘‘fully-inelastic’’, employed in Table 5 to
designate these models, refer exclusively to the underlying assumption
of each model regarding the transient creep stage. For instance, Model
1 is not fully elastic as a whole, because of steady-state creep (𝜺𝑐𝑟), but
the transient creep stage is regarded as such.

The models presented in Table 5 are now used to fit laboratory
experimental data. The experimental setup and salt rock details are
presented in Section 2. It can be verified from Fig. 5 that Model 1 can
be calibrated to properly describe the transient creep during the first
step load. However, the assumption that transient creep strains are fully
recoverable implies that most of the deformation should be reversed
when the load is removed. This is precisely what we observe in the
zoomed-in graph on the left of Fig. 5, where the unloading takes place
at around 100 h. As expected, the total strain obtained with Model 1 is
almost fully recovered after unloading, but this is not observed in the
experimental results. In fact, only a small strain decrease is observed
when the load is removed. Furthermore, the stress–strain graph in
Fig. 6 shows that Model 1 provides a completely wrong behavior. This
shows that transient creep is not fully elastic, and therefore cannot be
described by a simple Kelvin-Voigt element.

It can be verified in Fig. 6 that Models 2 and 3 provide almost
identical results, and both of them are able to describe the experimental
data. Despite that, the zoomed-in graph in Fig. 6 clearly shows that
Model 3 is unable to capture the reverse creep (hysteretic effect)
observed during the unloading/reloading step. By contrast, the Kelvin-
Voigt element of Model 2 can be tuned to properly describe reverse
creep. These results reveal that transient creep (including reverse tran-
sient creep) can only be described by a combination of viscoplastic and
viscoelastic models.

6. Calibration procedure

In this section, we investigate the calibration procedure described
in Section 4. A set of synthetic experiments is designed to test the
proposed strategy. The idea is to simulate a situation in which the
8 
experiments are provided one at a time, and the number of experiments
available is not sufficient for a proper model calibration. In this context
of high uncertainty, the goal is to perform a model calibration as good
as possible with the experiments available and also to quantify the
associated uncertainties.

6.1. Synthetic experiments

When a constitutive model is chosen to represent the mechanical
behavior of a certain material, there are two sources of uncertainties.
The first one is related to the uncertainties associated with measuring
the material properties of that specific model. The second source of
uncertainties is that the model itself is not perfect, in the sense that
it is only a representation of reality, thus inaccurate. In addition to
overcoming the lack of available laboratory experimental data, by
using synthetic data generated from the same model we intend to
calibrate, model uncertainty is also eliminated. In this manner, the
effects of parameter uncertainties are isolated, allowing to better study
the properties of the proposed calibration strategy. Moreover, it should
be emphasized that synthetic data do not substitute real experimental
data by any means. If the constitutive model is intended to be used in a
real application, the calibration must be performed against laboratory
(real) experimental data. Nevertheless, to ensure the synthetic data is
as close as possible to a real situation, cyclic loading conditions are
chosen such that they are similar to those used in the experimental
results presented in Section 2.

In this work we consider 6 synthetic experiments in which the
correct model parameters are known, thus providing the possibility of
quantifying the calibration accuracy. The idea is to simulate a situation,
where the experiments are made available one at a time, and the
calibration takes place with the available data. This means that the
calibration is first performed on Exp. #1. Then, Exp. #2 is made
available and calibration is performed considering experiments #1 and
#2. This is repeated until all six synthetic experiments are available.

The synthetic experiments are shown in Fig. 7. The stress conditions
were chosen as shown in the left column of the figure. The graphs in the
middle column show the stress path of each experiment with the colors
representing the time. The stresses on the left and middle columns
correspond to each other. To make the association easier to visualize,
we marked specific points on the graphs of the left and middle columns
that correspond to each other. In these same graphs, the initial yield
surface of the viscoplastic model is also plotted for reference, according
to Eq. (8). Finally, the corresponding strain responses are shown in the
right column of Fig. 7. In all stress conditions shown in Fig. 7, the axial
load is larger than the confining pressure, which means that the same
Lode angle (𝜃 = 60◦) was considered in all experiments.

All experiments shown in Fig. 7 use the same set of material

properties. The dislocation creep (Group 1) and viscoelastic (Group
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Fig. 6. Stress–strain curves showing the unloading/loading step (reverse creep).
Table 6
Material properties for the synthetic experiments.

Parameter Value Unit

𝜇1 6.898 × 10−12 s−1

𝑁1 3 –
𝑎1 1.8 × 10−5 MPa2−𝑛
𝜂 0.82 –
𝛼0 0.002 −

Table 7
Ranges of variation of each material property for the uniform distributions.

Parameter log𝜇1 𝑁1 log 𝑎1 𝜂 log 𝛼0
Max. −10 4 −4 1.5 −1.9
Min. −12 2 −6 0.6 −2.8

2) parameters are shown in Tables 2 and 3, respectively. For the
viscoplastic element, the material parameters that are fixed (i.e., not
obtained by calibration) are shown in Table 4. Finally, Table 6 presents
the material parameters meant to be obtained through the calibration
process. Even though these values are known, they are regarded as
unknown so that we can test the optimization procedure.

6.2. Global sensitivity analysis (GSA)

Before proceeding with the model calibration, we investigate how
the material parameters presented in Table 6 affect the model results.
For this purpose, we perform global sensitivity analysis (GSA), where
all parameters are varied at the same time so that we can identify not
just how each parameter affects the results individually, but also the
interactions between them.40

The strategy consists of generating a large population (∼40 thou-
sand) of material parameter sets. We build random uniform distribu-
tions for each material parameter within specified ranges, as shown in
Table 7. For each set of parameters, we compute a loss function by
comparing the resulting strains with a base solution. The loss function
is computed as in Eq. (17), with the set of parameters summarized
in Table 6 regarded as the base solution. In this manner, we can
analyze how the changes in the material parameters affect the values
of the loss function. It is important to emphasize that Table 7 presents
very wide variations with the exclusive purpose of better capturing
the correlations between all material parameters. Samples with such
large variations should be grouped in different batches according to
their similarity, and each batch be calibrated separately. Fig. 12 (from
the revised manuscript) shows much narrower ranges of variation and
the corresponding effect on the mechanical response, illustrating what
could be expected from similar (yet heterogeneous) samples.

There are many ways GSA can be performed. One of them is com-
puting statistical correlations between the material parameters and the
9 
Table 8
Table of correlation of each material parameter with the loss function.

𝜇1 𝑁1 𝑎1 𝜂 𝛼0
Spearman 0.1 0.1 0.5 0.4 0.6
Pearson 0.02 0.03 0.3 0.2 0.2
Mutual Info. 0.03 0.03 0.7 0.4 1.0
F-test 0.04 0.03 1.0 0.5 0.9

loss function.d The Pearson and Spearman correlations are commonly
applied to identify linear and non-linear relationships, respectively,
between variables.41 Additionally, univariate F-test is also able to
capture linear relations, whereas mutual information can capture any
type of dependency. It is important to stress that both Pearson’s corre-
lation and F-test assume normal distributions, which is not the case
here. Nevertheless, the four methodologies are employed to identify
relationships between the material parameters and the loss function.
According to these methodologies, Table 8 reveals a strong relationship
between the loss function and parameters 𝑎1, 𝜂 and 𝛼0, the first two
related to the hardening rule, and the last one defining the initial yield
surface. All four methodologies point to a weak dependency on the rate-
dependent parameters 𝜇1 and 𝑁1. These results are also confirmed by
analyzing feature importance through a machine learning model and
column permutation, as presented in Appendix.

The dataset is created by choosing random values within the ranges
specified in Table 7. As a consequence, the correlation between the ma-
terial parameters is strictly zero. When the simulations are performed
on the dataset, the resulting probability distribution of loss function
values is shown in the left graph of Fig. 8. We can see that there is
a high probability of loss function values between 0.1 and 1.0, which
suggests the existence of local minima. To further investigate this issue,
we filter the loss function values larger than 0.1 out of our dataset and
compute Spearman’s correlations between all material parameters. In
this manner, we only consider parameter sets that produce reasonably
good results (loss function values smaller than 0.1). These correlations
are shown in the right graph of Fig. 8, where a strong relationship
between 𝑎1 and 𝜂 is identified. Weaker dependencies are also revealed
between 𝜇1, 𝑁1 and 𝛼0. This shows that certain combinations between
these variables can produce relatively good results.

A better way to visualize this effect is by computing Spearman’s
coefficient as we continuously filter out the loss function values from
105 down to 10−2. This is shown in Fig. 9, which clearly shows a
significant increment of dependency between 𝑎1 and 𝜂 for loss function
values smaller than 1.0. To a lesser degree, similar behavior can be
verified for the pairs 𝜇1−𝑁1 and 𝜇1−𝛼0, as already revealed by the right

d We actually use the logarithm of the loss function as it spans many
different orders of magnitude.



H.T. Honório et al. International Journal of Rock Mechanics and Mining Sciences 183 (2024) 105922 
Fig. 7. Synthetic experiments. Graphs on the left show the axial and radial stresses for each experiment. The middle column shows the corresponding stress path in the 𝐼1 −
√

𝐽2
plane, and the initial yield surface is also indicated according to Eq. (8) for 𝛼 = 𝛼0. The right column presents the resulting deformations of the synthetic sample. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
graph of Fig. 8. It is important to emphasize that all combinations of
material parameters were obtained by random sampling, thus ensuring
zero correlation between them. What the results of Figs. 8 and 9 reveal
is that all sets of parameters that produce a relatively good solution
present a certain (still unknown) correlation between 𝑎1 and 𝜂. The
sets of material parameters that do not present this correlation do not
produce good results compared to the base case.

To understand the origin of the correlation between 𝑎1 and 𝜂, the
hardening rule expressed by Eq. (10) is used. In this equation, 𝛼0 =
0.02, 𝜂∗ = 0.82 and 𝑎∗1 = 1.8 × 10−5 hold, where the values 𝜂∗ and
𝑎∗1 denote a pair 𝑃 ∗. By varying the accumulated viscoplastic strain
(𝜉) from 0 to 0.0075, which are typical values, the curve 𝑆∗ can be
plotted, shown in black in the left graph of Fig. 10. This curve is
regarded as a base case. Then different pairs 𝑃𝑖 = (𝜂𝑖, 𝑎1,𝑖) are chosen to
generate different curves 𝑆 , which are compared with 𝑆∗ using the
𝑖

10 
mean absolute percentage error (MAPE). The colormap in the right
graph of Fig. 10 shows the MAPE values for each pair 𝑃𝑖. It is possible
to identify a very low error region, denoted in blueish colors, meaning
that all points (i.e., combinations of 𝜂 and 𝑎1) produce curves similar to
𝑆∗. The point 𝑃 ∗ is naturally in this region. For illustration, six points
are picked along this region and the corresponding 𝑆𝑖 curves are plotted
on the left graph of Fig. 10, showing that they indeed approximate the
original curve 𝑆∗ quite well. The existence of this blue region explains
the correlation between 𝑎1 and 𝜂 in the right graph of Figs. 8 and 9.
More importantly, they exemplify the presence of local minima in loss
functions.

The results obtained from the global sensitivity analysis, partic-
ularly the ones in Fig. 10, give an idea about the behavior of the
loss functions for the optimization procedure. These results show the
presence of many local minima in which the optimization algorithm
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Fig. 8. (Left) Loss function distribution. (Right) Spearman correlations for loss function values lesser than 0.1.
Fig. 9. Spearman’s correlation with filter out loss values.

might be trapped, which allows the possibility of obtaining sub-optimal
solutions.

6.3. Single calibrations

The goal of this subsection is to test the Particle Swarm Optimiza-
tion (PSO) algorithm for finding the true material parameters of the
synthetic experiments presented in Section 6.1 (Fig. 7). The idea is to
run individual optimizations for each synthetic experiment and check
whether the calibration process can indeed find the global solution,
which is shown in Table 6. The hyperparameters used in the PSO
algorithm (Eq. (22)) are 𝜔 = 0.8, 𝑐1 = 0.8 and 𝑐2 = 0.4, the algorithm
is set to perform 100 iterations, and the population size is 1280. To
maximize coverage of the search domain, Latin Hypercube Sampling
(LHS) is adopted and the ranges of each material property are those
presented in Table 7.

The calibration outcomes obtained for each synthetic experiment
are shown in Fig. 11. The left column of this figure shows a cobweb
representation of the material properties. The gray lines represent the
initial population, the red line denotes the set of properties obtained
from the optimization process, and the true values are plotted in blue
for comparison. The rightmost vertical bar in the cobwebs represents
the loss function 𝐹𝑖 (MAPE), according to Eq. (17), and its correspond-
ing values for the best solution are also indicated. The right column
shows the total strains obtained with the calibrated properties for
each experiment, and they all agree very well with the (synthetic)
experimental results. For experiments #3 and #5 the values of 𝑎1 and
𝑁1 obtained from optimization differ from the true values. However,
as revealed by the GSA, these two parameters have a secondary impor-
tance compared to the others, so these disparities do not have much
impact on the behavior of the constitutive model. The values obtained
from the calibrations of each experiment are summarized in Table 9,
along with the corresponding errors.
11 
Table 9
Material parameters obtained from the calibration process.

log𝜇1 𝑁1 log 𝑎1 𝜂 log 𝛼0 Loss (𝐹𝑖)

Reference −11.1613 3.0000 −4.7447 0.8200 −2.6990 0.0
Exp. #1 −11.1414 2.9815 −4.7450 0.8201 −2.6991 6.02 × 10−8

Exp. #2 −11.3425 3.1648 −4.8521 0.8772 −2.6993 1.47 × 10−5

Exp. #3 −11.9118 3.9593 −4.7436 0.8202 −2.6951 2.39 × 10−4

Exp. #4 −11.1942 2.9800 −4.7543 0.8256 −2.6987 7.13 × 10−6

Exp. #5 −11.6245 3.4175 −4.8789 0.8925 −2.6972 7.54 × 10−5

Exp. #6 −11.2350 3.0760 −4.6827 0.7875 −2.6978 1.33 × 10−6

6.4. Full calibrations

In this test case, we aim to test the proposed calibration strategy
in a more realistic scenario. In laboratory conditions, even if the rock
samples are taken from the same region with a similar appearance, it is
not possible to guarantee they will present exactly the same mechanical
properties. Additionally, in general, the experiments are performed
sequentially, meaning that they are not all available simultaneously.
Considering that each creep experiment takes at least 20 to 30 days,
approximately, it would be convenient to have partially calibrated
models with the experiments at hand and include new experiments to
the calibration as they become available.

To reproduce such a scenario, we take the reference values pre-
sented in Table 6 and randomly disturb the material properties of each
rock sample. In this manner, all experiments are performed with rock
samples with slightly different material properties. The levels of pertur-
bations are ±5% for log𝜇1 and 𝑁1, ±2% for log 𝑎1 and 𝜂, and ±1% for
log 𝛼0. The material properties for the rock samples of each experiment
are presented in Fig. 12. The graphs in this same figure show the total
strains obtained with the reference properties (i.e. those of Table 6) and
the modified properties. It can be verified by visual comparison that
the strain curves do not differ much from the reference case, but those
small property variations do cause noticeable differences. Since the
material properties of each experiment are different from each other,
it is impossible to perfectly fit all experiments. Nevertheless, the goal
of the calibration is to find a single set of material properties that fits
the experiments as good as possible. Additionally, the calibration is
performed in steps, including one new experiment at a time, according
to Algorithm 1.

The result of the calibration procedure is presented in Fig. 13. The
first line of this figure represents step 1, in which only experiment
#1 is available for calibration. Once the model is calibrated against
experiment #1, the model is used to predict the behaviors of the other
experiments.e Above each graph is indicated the 𝐹𝑖 error, as in Eq. (17),

e Even though this would never be possible in real life, we use the
remaining experiments for prediction in order to check predictability.



H.T. Honório et al.

v

T
P

o
s
i
a
#
T
𝐰
s
f

f
e
t
d
n
e
w
r
c
t
p
a
e
t

f
w
h
t
f
e
t

International Journal of Rock Mechanics and Mining Sciences 183 (2024) 105922 
Fig. 10. The left graph presents the behavior of 𝛼 as a function of 𝜉 for different values of 𝜂 and 𝑎1. The right graph shows the MAPE for each pair 𝜂 − 𝑎1 compared to the true
alue 𝑃 ∗. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(
s
𝜙

able 10
opulation sets P, F and L during the calibration steps.
Step Initial population F L Output

#1 P ∅ ∅ 𝐰𝐹
1

#2 P 𝐰𝐹
1 ∅ 𝐰𝐹

2 , 𝐰𝐿
2

#3 P 𝐰𝐹
1 , 𝐰𝐹

2 𝐰𝐿
2 𝐰𝐹

3 , 𝐰𝐿
3

#4 P 𝐰𝐹
1 , 𝐰𝐹

2 , 𝐰𝐹
3 𝐰𝐿

2 , 𝐰𝐿
3 𝐰𝐹

4 , 𝐰𝐿
4

#5 P 𝐰𝐹
1 , 𝐰𝐹

2 , 𝐰𝐹
3 , 𝐰𝐹

4 𝐰𝐿
2 , 𝐰𝐿

3 , 𝐰𝐿
4 𝐰𝐹

5 , 𝐰𝐿
5

#6 P 𝐰𝐹
1 , 𝐰𝐹

2 , 𝐰𝐹
3 , 𝐰𝐹

4 , 𝐰𝐹
5 𝐰𝐿

2 , 𝐰𝐿
3 , 𝐰𝐿

4 , 𝐰𝐿
5 𝐰𝐹

6 , 𝐰𝐿
6

for each experiment. The loss function values 𝐿𝑖, given by Eq. (18), are
presented on the left for the calibrated (blue) and predicted (red) ex-
periments. In the first step, only experiment #1 is available, so a single
optimization (Eq. (19)) is performed using the initial population P to
btain 𝐰𝐹

1 . When experiment #2 is available in the second step, another
ingle optimization, with P as the initial population, is performed on
t, which provides the set of parameters 𝐰𝐹

2 . Still on the second step,
combined optimization (Eq. (20)) is performed upon experiments
1 and #2 including 𝐰𝐹

1 and 𝐰𝐹
2 among the initial population P.

he combined optimization between experiments #1 and #2 provides
𝐿
2 , which should be included in the combined optimization of the

ubsequent steps as well. This whole process is summarized in Table 10
or all calibration steps.

It can be verified from Fig. 13 that the combined loss function
or the calibrated experiments, 𝐿𝑐𝑎𝑙, substantially increases as more
xperiments are included in the calibration procedure. At the same
ime, the 𝐿𝑝𝑟𝑒𝑑 is observed to decrease, which suggests that the pre-
ictability of the calibrated constitutive model improves by adding
ew experiments. Fig. 14 plots these two quantities by the number of
xperiments available for calibration. On the left graph of this figure,
e see that the loss function indeed increases in the beginning but it

emains more or less constant as more experiments are added to the
alibration. The reason for this is, as mentioned before, it is impossible
o simultaneously fit all experiments since they have different material
roperties, so after a certain point the error is expected to stabilize
t a constant level. On the left graph, however, we see that the more
xperiments we consider for calibration, the better the predictions of
he constitutive model.

Eq. (18) includes the parameter 𝜙 as a regularization in the loss
unction for the combined optimization. The results presented in Fig. 13
ere obtained with a regularization factor of 𝜙 = 10. To investigate
ow the regularization term affects the calibration process, the same
est case is run considering 𝜙 = 0, 𝜙 = 10 and 𝜙 = 100. The loss
unction values 𝐿𝑖 are shown in Fig. 14 as a function of the number of
xperiments considered for calibration. The graph of Fig. 14-a shows

he results of the calibration experiments, where the loss function

12 
Eq. (24)) increases until the inclusion of the third experiment and
tabilizes at approximately constant values. As expected, the larger the

the larger the 𝐿𝑖, since the regularization term becomes larger. The
graph in Fig. 14-b shows the loss function values for the experiments
left for prediction. It can be seen that the loss function values decrease
as more experiments are considered for calibration. In other words, it
shows that the constitutive model can make better predictions when
more experiments are considered during calibration. Additionally, it
can be verified that for 5 experiments considered during calibration, the
prediction of the 6th experiment is better when 𝜙 = 10. Since it might
be difficult to compare the loss function values with different values of
𝜙, the graphs in Fig. 14-c and -d show the same results, but without the
regularization term in the loss function. In other words, the graphs in
Fig. 14-c and -d only show the mean squared errors (MSE) part of the
loss function. In this case, the comparisons are unambiguously and we
can see from the right graph that indeed better predictions are obtained
with 𝜙 = 10.

As explained before, the sets of properties chosen for each experi-
ment were obtained by randomly disturbing the reference properties of
Table 6. Therefore, it would be reasonable to expect that the reference
properties themselves would also provide good performance in fitting
all six experiments as well. In Fig. 15 we compare the total strains
for all experiments considering the calibrated (red curves) and the
reference (blue curves) set of material properties. The curves in black
represent the true values of the synthetic experiments. It can be verified
that experiments #2, #3 and #4 are better fitted by the calibrated
parameters, whereas the reference properties perform slightly better for
experiments #1, #5 and #6. However, the mean squared errors (MSE)
shown at the bottom of this figure reveal that the calibrated material
parameters present an overall better fit.

The calibrated results presented in Fig. 15 are obtained with a
regularization parameter of 𝜙 = 100. Different regularization param-
eters, however, may lead to different calibrated material properties.
The obtained values for 𝜙 equals to 0, 10 and 100 are summarized
in Table 11, along with the reference properties for comparison. As
shown in this table, the MSE values of the calibrated properties are
always smaller than the reference properties. Interestingly, the material
properties obtained through the calibration process are significantly
different from each other and the reference values. Apart from 𝛼0, the
other material properties even lie outside the limits of the perturbed
properties, as it can be verified in Fig. 12. This can be attributed to the
non-linearity of the viscoplastic model.

The fact that Table 11 presents different material parameter sets for
each choice of the regularization term, 𝜙, might raise the question of
which set is the ‘‘correct’’ one. Or even if the obtained parameter sets
would be the same if the order in which the experiments are added
was shuffled. In this context, it is important to note that each synthetic
experiment was obtained with a different set of material parameters,
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Fig. 11. Synthetic experiments. (Left) Cobweb representation of the material parameters. (Right) Comparison between the true synthetic experiments and the calibrated model.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 11
Calibrated material properties obtained with different values of 𝜙, and the reference
properties from Table 6 for comparison. The last line shows the mean squared error
(MSE) for each set of properties.

𝜙 = 0 𝜙 = 10 𝜙 = 100 Reference

𝜇1 4.51 × 10−12 1.83 × 10−12 9.77 × 10−12 6.89 × 10−12

𝑁1 2.98 3.99 3.47 3.00
𝑎1 4.33 × 10−5 3.12 × 10−6 2.19 × 10−5 1.80 × 10−5

𝜂 0.60 1.19 0.74 0.82
𝛼0 0.00207 0.00205 0.00202 0.0020
MSE 0.0615 0.0635 0.0609 0.5167
13 
which has a few implications. First, the minimum error cannot be
zero, since the calibrated model can never perfectly fit all experiments.
Second, it is not possible to ensure the existence of a global minimum
error. In other words, there might be many sets of material parameters
that produce the minimum error, or very close to it. Therefore, in
the absence of a ground truth, any set of material parameters that
minimizes the fitting error should be accepted. Moreover, shuffling the
order in which the experiments are included can indeed change the
final results, but they should be equally acceptable, as discussed above.

A discussion regarding the acceptable ranges of material property
variations is also worthy to be carried out. Considering the extreme case
where all samples present the same material properties, the optimiza-
tion problem has a global minimum, and the error is zero at a single set
of material parameters. Nevertheless, the problem is still non-convex,
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Fig. 12. The black curves (Ref.) are obtained with the reference properties of Table 6, whereas the blue curves (Mod.) are created by perturbing (modifying) the reference
properties. The modified material parameters are indicated below each graph. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 13. Calibration process including one experiment at a time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 14. Loss function comparison for calibrations and predictions.

Fig. 15. Constitutive model results obtained with the material properties obtained from calibration and the reference values from Table 6. The overbar refers to the quantities
related to the reference parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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meaning that the cost function has (possibly lots of) local minima. Al-
though challenging, the PSO should be able to find the global minimum
by calibrating the model against one single experiment, provided that
a large enough population is employed to avoid all local minima. If the
material properties are slightly different for each sample, the presence
of a global minimum is not guaranteed anymore. In this case, there
is a narrow set of possible material parameters that produce the best
results. In other words, instead of one single solution, a narrow range of
solutions should be acceptable. Further proceeding to the other extreme
case, when the variance among the material properties is high, a wide
range of material parameters could produce the best results. From this
perspective, the higher the variance of properties, the wider the range
of acceptable solutions, and the easier for the PSO to find one of the
possible solutions. However, the best results in this case would certainly
not be good, thus compromising the validity of calibrating one single
model for a set of samples with such different mechanical behaviors.

7. Conclusion

Geomechanics of salt caverns for safe cyclic hydrogen storage re-
quires a detailed investigation of the associated creep mechanisms. For
this purpose, we assemble a constitutive model able to capture transient
creep, reverse creep and steady-state dislocation creep. This is achieved
by including elastic, viscoelastic, viscoplastic, and power-law contribu-
tions to the constitutive model. The viscoelastic contribution can cap-
ture the hysteretic effect that appears during the unloading/reloading
stages, also known as reverse creep. Moreover, it is shown that the
viscoelastic element alone is not able to appropriately describe tran-
sient creep, for which a viscoplastic model is indispensable. With this
constitutive model, the experimental results presented in this paper can
be successfully described.

An important step in devising and deploying a constitutive model
relates to model calibration. Due to the time scales involved in creep
deformations, laboratory experiments in salt rocks are usually very
time-consuming (approximately one month long or even more). Addi-
tionally, it takes a lot of experiments to properly calibrate a constitutive
model. There is also the possibility that mechanical properties might
vary from sample to sample, making the calibration process more
challenging. In this context, the main contribution of this paper is to
devise a multi-step calibration strategy that takes place on the fly, in
the sense that the constitutive model is calibrated against experiments
as they are made available. Determination of the material parameters
corresponding to the elastic, viscoelastic, and dislocation creep can be
done independently because the presented procedure is general and
flexible. Another significant contribution of the present study is on the
calibration of the viscoplastic material parameters, which have to be all
tuned simultaneously. Moreover, the choice of the material parameters
to be calibrated is discussed, and a systematic analysis for the impact of
these parameters on the constitutive model behavior is also presented.
The calibration strategy consists of sequentially solving multi-objective
optimization problems as new experiments are included.

It is shown that the proposed strategy provides increasingly bet-
ter results as more experiments are incorporated into the calibration
process. In this manner, calibrated constitutive models are provided
much more efficiently and reliably than the existing procedures in
the literature. Additionally, it is shown that including a regularization
term into the loss function is beneficial to promote equal quality
fit of the constitutive model against all experimental data sets. The
proposed methodology can be applied to any constitutive model, and it
provides representative material parameters for salt rocks. As such, this
work contributes to improving the accuracy of constructing a suitable
constitutive model with reliable material parameter sets to study the
mechanics of salt caverns under cyclic operations. Future studies will
incorporate this characterization procedure in field-scale 3D cavern

simulations.
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Table A.12
Feature importance according to the column permutation method.

Feature name 𝜇1 𝑁1 𝑎1 𝜂 𝛼0
Importance 0.050916 0.054642 0.814813 0.543760 0.872997
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Appendix. Feature importance for sensitivity analysis

Another interesting strategy to measure the influence of each ma-
terial parameter on the model behavior is through feature importance,
as usually performed in machine learning (ML) applications. Some ML
models, such as linear regression and decision trees, naturally provide
feature importance rankings. A more general approach can be achieved
by column permutation. This strategy consists of training a ML model
to predict the target variable (in our case, the loss function). After
the training step, the model performance is evaluated according to a
certain metric (e.g. MSE). This establishes a base metric for the ML
model. Then, we shuffle the values of a certain feature (i.e., material
parameter), rerun the model without retraining, and check the new
metric. Based on how much the new metric is reduced compared
to the base metric we can infer the importance of that feature. A
great reduction means the ML model heavily relies on that feature.
Conversely, if the metric barely changes, it means the ML model does
not find that feature very useful. This procedure is performed using the
Random Forest algorithm and the results are shown in Table A.12. We
can see that parameters 𝜇1 and 𝑁1 are of less importance compared to
𝑎1, 𝜂 and 𝛼0. This is in complete agreement with the correlations found
in Table 8.
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