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Estimating decadal variability in sea level from tide gauge
records: An application to the North Sea

Thomas Frederikse?, Riccardo Riva', Cornelis Slobbe’, Taco Broersel, and Martin Verlaan2-3

"Department of Civil Engineering and Geosciences, Delft University of Technology, Delft, Netherlands, 2Department of
Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, Netherlands, 3Deltares,
Delft, Netherlands

Abstract One of the primary observational data sets of sea level is represented by the tide gauge record.
We propose a new method to estimate variability on decadal time scales from tide gauge data by using a
state space formulation, which couples the direct observations to a predefined state space model by using a
Kalman filter. The model consists of a time-varying trend and seasonal cycle, and variability induced by several
physical processes, such as wind, atmospheric pressure changes and teleconnection patterns. This model has
two advantages over the classical least-squares method that uses regression to explain variations due to
known processes: a seasonal cycle with time-varying phase and amplitude can be estimated, and the trend is
allowed to vary over time. This time-varying trend consists of a secular trend and low-frequency variability
that is not explained by any other term in the model. As a test case, we have used tide gauge data from sta-
tions around the North Sea over the period 1980-2013. We compare a model that only estimates a trend with
two models that also remove intra-annual variability: one by means of time series of wind stress and sea level
pressure, and one by using a two-dimensional hydrodynamic model. The last two models explain a large part
of the variability, which significantly improves the accuracy of the estimated time-varying trend. The best
results are obtained with the hydrodynamic model. We find a consistent low-frequency sea level signal in the
North Sea, which can be linked to a steric signal over the northeastern part of the Atlantic.

1. Introduction

The tide gauge record represents the main source of information about sea level change during the last
two centuries [Gornitz et al., 1982; Douglas, 1991]. Available observations are generally accurate and charac-
terized by a dense (subdaily) temporal sampling. However, their local nature in combination with a sparse
and uneven spatial distribution largely limits the accuracy of global and regional sea level change estimates
[Woodworth et al., 2009].

In an effort to increase the achievable accuracy, many studies have focussed on estimating linear trends of
sea level change at secular scales [Douglas, 1991; Holgate, 2007; Church and White, 2011; Calafat and Cham-
bers, 2013; Wenzel and Schroter, 2014]. Nonetheless, the presence of (multi-)decadal variability can influence
estimates of long-term effects [Dangendorf et al., 2014a, 2015], especially if the record is of limited extent:
Jorda [2014] argued that, with the known properties of temporally correlated noise in sea level, at least 60
years of data are needed to detect a superposed long-term trend of 2 mm/yr. Moreover, the implicit
assumption that the long-term behavior of sea level can be parametrized as a linear or quadratic trend
might not be justified on time scales at which significant unexplained variability is present.

We propose a new parametrization of sea level change for individual tide gauge stations, based on a state
space formulation. This formulation partitions the signal between a set of processes defined by a prescribed
state space model. The processes in our state space model include a time-varying trend, cyclic terms, regres-
sors, and a residual.

The time-varying trend is not bound to a shape that is prescribed a priori, such as a linear or quadratic func-
tion: it rather represents the combined effect of secular changes and of variability at scales not captured by
other terms in the model. The smoothness of the time-varying trend can be controlled by letting the resid-
ual term absorb high-frequency signals. Cyclic terms allow variations in phase and amplitude over time.
These variations are mainly driven by variability in the heating and cooling of the ocean, meteorological
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forcing, and to a smaller extent by ice and land hydrology processes. Regressors describe the impact of
meteorological effects, such as wind and pressure, and of global teleconnection patterns, such as the North
Atlantic Oscillation and the Multivariate ENSO index.

State space formulations are widely used in econometrics [Harvey, 1990], and have been introduced
recently in the geoscience community by Davis et al. [2012] and Laine et al. [2014].

Because the time-varying trend captures both the long-term trend as well as variability on decadal
scales, the method provides insight in patterns of decadal variability of mean sea level in tide gauge records
after the linear effects associated with wind, pressure, and global teleconnection patterns have been filtered
out. The time-varying trend will therefore contain the effects of remote atmospheric forcing and large-scale
steric and ocean mass effects, which typically show variability on decadal and multidecadal time scales as
well as trends related to climate change.

To study the performance of the state space model, time series from tide gauge station around the North
Sea have been analyzed. The North Sea is a shallow sea, with an average depth of approximately 90 m,
located at the European continental shelf. It has been chosen because it shows variability over a wide range
of scales, high quality tide gauge data are available, and it has already been the object of extensive study
[Wahl et al., 2013]. The barotropic sea level response to wind and pressure changes in the North Sea is sig-
nificant, and accounts for a large part of the variability [Dangendorf et al., 2013, 2014b], although it does not
explain variability at decadal scales [Dangendorf et al., 2014a]. Calafat et al. [2012] have linked the decadal
variability along the Western European coast to the cumulative response of the ocean to longshore winds,
integrated from the equator to the European coast. This signal has also been observed further North along
the Norwegian coast [Calafat et al., 2013]. Dangendorf et al. [2014b] have shown that the Newlyn tide gauge
record, for which the decadal variability is to a large extent linked to the integrated longshore wind, can be
used as a proxy for this signal in the North Sea.

Three space state models are compared: the first model consists of a time-varying trend and a residual, the
second model also includes cyclic terms and makes use of regressors to reduce the unexplained signal var-
iance, while the third model reduces variance by means of a storm surge model. The storm surge model
explicitly solves the depth-integrated equations of motion over the North Sea basin, and provides a more
accurate estimate of the influence of the barotropic response of sea level to meteorological processes, com-
pared to a model that uses simple linear regression between wind stress, pressure and sea level.

In section 2, we briefly discuss the theory behind the state space formulation, which is to a great extent
based on Durbin and Koopman [2012]. In section 3, the three state space models are defined. Results for the
North Sea are presented in section 4. Discussion and conclusions can be found in section 5.

2. The State Space Formulation

The state space model uses series of observations to estimate trends, next to other components such as
cyclic (seasonal harmonic) signals or correlations with external time series (regression). In contrast to deter-
ministic least squares estimators, it allows trends and other components to vary in time. For the observa-
tions y=y1, ...y, (e.g., the sea level observed at a specific tide gauge station) we set up the general
structure of our model following Harvey [1990] and Durbin and Koopman [2012] as:

yi:,ui+zci‘j+zhi‘k+éi+€i fori=1...n (1
j k

This state space model consists of a trend ;, j cycle terms ¢; with periods Teycle, k regressors h; and a resid-
ual, which consists of two parts: a component {; that follows an autoregressive model and an irregular com-
ponent ¢;, which should be Gaussian distributed. The subscript i denotes the scalar value at time t;. In most
state space literature equations are provided for time series with equally spaced time steps, here we use
the so-called continuous time approach, which allows for arbitrarily spaced time steps. With this approach,
the sample rate does not have to be constant, so missing observations are automatically taken into account.
In state space models each component is defined recursively, such that the trend ;1 (where g is the level
of the trend at time t)) is an update of y; plus a slope times the normalized time step dt;= W with
mean(t;—ti_1) the mean time step size:
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M1 = vidt; )
Time variability is introduced by the update of the slope v; by an added random walk term &
Vigr =vi+&/dt & NN(OJE) (3)

This results in a trend model which is known in literature as the local trend model or integrated random walk.
When we set the variance of the random walk term &; to zero we arrive again at the common deterministic
trend model that can be solved in a least squares sense. The cycle term ¢; reads in deterministic form as:

¢;=1c0s (Atj+¢p)=ccos (At;)+csin (it;) 4)

where 7 is the amplitude, ¢ the phase offset and 1= ﬁ The cycle term can be written in a recursive form

using the cosine and sine addition theorems as [Harvey, 1990]:
Ci+1=6;C0s (7 - dt;)+c;'sin (A - dt;) +wi/dtiw; ~ N(0, 62)

¢y =—¢sin (4 - dtj)+c;cos (4 - dt;)+w}/dtw ~ N(0,a2.)

(5)

The random walk term ; adds time variability to the cycle terms. Phase offset ¢; and amplitude z; can be

calculated from ¢; and ¢ by:
=1/ +c? (6)

*

¢;=—tan"" iftii mod(27) 7)

1

The contribution h; of a regressor x; (the time series of an explanatory variable) with constant regression
coefficient f is defined as [Durbin and Koopman, 2012]:

hi=Bxi (8)
The autoregressive part of the residual is modeled as follows [Harvey, 1990]:
G=¢M G +dti gy ~ N(O, O'i) )
The generalized state space formulation can be written as:
yi=Zjo;te (10)

where Z; is the design matrix, state vector «; contains the unknowns and again ¢; is the residual or irregular
component. The updates of the state o4 are written as:

sir1=Toi+ 1 (an

with transition matrix T and a combined disturbance vector y; that contains all random walk terms of the
trend, cycle, and regressor components. In case we define a model including a trend, an annual cycle
(A=2m), and one regressor, the state space model has a design matrix Z; and state vector ;:

Z,':[] 01 0 Xi 1 ] (12)
w=[wvicic B¢l (13)

For this specific model, the transition matrix reads as:

1 dt 0 0 0 o0
0 1 0 0 0 0
0 0 cos(Adty) sin(Adt) O O
Ii= (14)
0 0 —sin(4dt;)) cos(Adt) O O
0 0 0 0 1 0
[0 0 0 0 0 ¢% |
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The disturbance vector reads:

n=[0¢ w; (U,-*Ol//i]/ (15)

2.1. Kalman Filter and Smoother
We use a Kalman filter to recursively estimate the state vector [1 x m] at each time step, using observations

Y=y1,...Vi

aj+1=E(e41]Y) (16)
and its error variance [m x m]:

Pi1=var(zi1|Y) (17)

The Kalman filter consists of the following equations for the prediction error v; with variance F. K; is the
Kalman gain. R; is commonly an identity matrix [e.g., Durbin and Koopman, 2012]:

vi=yi—Za; (18)
F,':Z,‘P,'Z;‘l’Hi (19)
Ki=T:P:Z[F" (20)

We initialize a; with 0 and P; with a large number (in our case P; =103). Here H; [1 x 1] contains the variance
of the irreqular component:

H,'=O'§dt,' (21)
Q [m x m] contains the disturbance variances
Q=lo; dt; (22)

These steps are followed by a prediction for the filtered state a;; and variance P, ; for the next time step:

a1 =Ta;+Kyv; (23)
Pi1=TiP;(Ti=KiZ;) +RIQiR; (24)
The estimate a; of the state o; improves progressively using information up toy;_;=y1,...,yi—1. To improve

the estimate for the full state, we use a state smoother that provides a smoothed estimate &; of the state «;
and error variance V; based on all available observations y=y;. .., y,:

a;=E(o;ly) (25)
and its error variance:
Vi=var(oly) (26)
The smoother computes smoothed estimates using the following steps [De Jong, 1989; Durbin and Koop-
man, 2012]:
Li=Ti—KiZ; (27)
v =ZF v+l (28)
Ni—1=ZiF ' Zi+LNiL; (29)
aj=a;+Pir_ (30)
Vi=Pi=PiN;—1P; €3]

with r,, and N, equal to 0. An alternative formulation of the smoother computes smoothed estimates of dis-
turbances ¢; and y;:
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¢=E(ely) n;=E(mly) (32)

These are calculated using the following recursion for i=n,..1 by [Koopman, 1993; Durbin and Koopman,
2012, chap. 4.5]:

ui=F"vi—K/r; (33)

D;=F "+K/N:K; 34
Ni-1=Z,DiZi+T'iN;=ZKN;T,—T/NiK;Zi (35)
ri-1=Zju+T/x; (36)

ei=Hiu; (37)

n;=QiRir; (38)

2.2, Estimation of State Variance, Process Variance, and the Autoregressive Coefficient

Because the variance of the residual o and the variance of the disturbances of each component a7, as well
as the AR parameter ¢, are unknowns we have to estimate them a priori. We statistically optimize these var-
iances by maximizing the likelihood L(y) of the data, given the variances of the process noise and disturb-

ance noise, defined as:
L(y)=pW1;---Ynlo?, o7, §) (39)

More specific, the log £ is maximized, which equals [Schweppe, 1965; Durbin and Koopman, 2012, chap. 7.2]:

n 1<
log L(y) =~ log (27) - 5;009 [Fel+ViFeve) (40)
For the variance parameters we maximize the log likelihood using the Estimation/Maximization (EM) algo-
rithm [Shumway and Stoffer, 1982; Watson and Engle, 1983], which iteratively updates the variances by maxi-
mizing the log likelihood of the data until convergence has been reached by [Koopman, 1993]:

n

1
2 _ 2 2 2 2
Tenew = Tcold T 0ol EZ (U7 =Dx) 07 oiq (41)
t=1

1 n
_ 2 2 / 2
Opnew™ O old T T} 0l n—1 E (Fi-1rie1 _Nif1)‘7mo|d (42)
t=1
This iterative procedure will result in a local maximum of the log likelihood for the process and noise varian-
ces, which requires a good initial guess, because more local maxima may be present. The iterations include

runs of the Kalman filter and the disturbance filter that provides values for D; and N..

The autoregressive coefficient ¢ is estimated by detecting the maximum of the loglikelihood for ¢ in the
domain (0 1).

2.3. Mean Trend and Confidence Intervals

When the integrated random walk term of the trend ¢ is nonzero (equation (3)), the estimated trend will
not have a constant slope. If we nevertheless want to estimate an average trend from the time-varying
trend, we can integrate the slope v over the complete time interval At. Following equation (2), we obtain

1
V=77 tn—hur) (43)

The standard deviations of the averaged slope can be derived using standard propagation of uncertainty
using the standard deviation of the time variable mean ¢, from the smoothed state variance V and auto-
covariances of the smoothed slope o,
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1
V= o} +oh —20,,, (44)
The auto-covariance matrix of the smoothed state (o, ) is defined as [De Jong, 1989; Durbin and Koopman,
2012, section 4.71:

COV((SC,'7 &j):P,'L,,-L;'+1 cee L},‘_1(/_Nj_1pj) j > (45)

3. Three State Space Models for Regional Sea Level Changes

The available sea level observations at a specific tide gauge location are coupled to the various processes
that cause variability by a state space model. The state space model defines the regressors and cycles that
are included in the analysis. We use three different state space models: model A estimates a time-varying
trend and noise. Model B also includes cycle and regressor terms. Model C is similar to model B, except that
model C uses the results from a storm surge model that calculates the barotropic sea level response to
wind, atmospheric pressure and tides as a regressor.

3.1. Model A: Time-Varying Trend Only
Model A parametrizes the sea level as a time-varying trend plus a residual:

yi=w+{ite (46)

In this equation, y; are the observations of the sea level at time steps t. y; is the time-varying trend, which
incorporates the time-mean of the series, the long-term trend and multiannual variability. The residual con-
sists of an autoregressive part {; and an irregular part ¢;, and contains variability that is not explained by the
other terms is the model.

3.2. Model B: Trend, Cycles, and Regressors

In model B we extend model A by adding cycle terms and regressors. The regressors account for variability
in the sea level caused by various known processes. We estimate the sea level as a linear combination of
the individual contributions.

Two cycle terms are used in this model: an annual and a semiannual cycle. The annual cycle found in tide
gauge records is caused by a sum of effects, including a seasonal cycle in sea water temperature, atmos-
pheric forcing [Plag and Tsimplis, 1999], freshwater fluxes from land hydrology, and the tidal constituent SA
(Solar Annual) [Pugh and Woodworth, 2014]. Since these processes, except for the tidal component, are only
approximately represented by a sinusoid, the phase offset and the amplitude of this cycle are treated as sto-
chastic. Therefore, the phase offset and amplitude are allowed to vary over time. The semiannual cycle is
caused by the tidal constituent SSA (Solar semiannual), and by a part of the seasonal signal. The amplitude
and the phase offset of the half-yearly cycle are also regarded as stochastic. Next to the annual and semian-
nual tidal cycle, the nodal cycle with a period of 18.6 years is present in the astronomical equilibrium tide,
and some authors suggest a significant influence on sea level variability [Baart et al., 2011]. To incorporate
the effect of the nodal cycle on sea level, it has been added to the list of regressors with a fixed phase offset
following the equilibrium law, as suggested by Proudman [1960] and Woodworth [2011]:

2m(ti—t,
Crodal =COS <%) (47)

where Coqal is the regressor, t; the time at each time step in years, and t, is 1922.7 years. This cycle should
produce a positive regression coefficient on latitudes smaller than 35°, and a negative regression coefficient
on higher latitudes, according to the equilibrium law.

Next to the nodal tide, regressors account for variability caused by wind stress, atmospheric pressure and
variability associated with global teleconnection patterns. For the regressors for wind stress and atmos-
pheric pressure, monthly mean time series have been obtained from ERA-interim, a global reanalysis prod-
uct [Dee et al., 2011]. By selecting the grid points that are within 1° of the station and at sea and taking their
average, a monthly time series is constructed. Note that, although the response to wind is not purely local,
taking a larger averaging area, for example 4°, does not lead to a significantly different fraction of variance
explained. The regressor of pressure represents the inverse barometer effect, so the spatial-mean pressure
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over the ocean is calculated for each month, and subtracted from the local pressure, following Wunsch and
Stammer [1997].

Following Calafat and Chambers [2013], we add monthly mean series of three global teleconnection pat-
terns to the list of regressors: the North Atlantic Oscillation (NAO), the Pacific Decadal Oscillation (PDO) and
the Multivariate El Nino-Southern Oscillation index (MEI). The NAO measures the differences in the anoma-
lies of the sea level pressure between subtropical and Arctic regions in the Atlantic Ocean [Hurrell et al.,
2003]. The PDO is defined by anomalies of ocean water temperatures in Pacific Ocean [Mantua et al., 1997].
The MEI represents the variability caused by El Nino events [Wolter and Timlin, 1993].

For each station, the significance of the correlation between each regressor and the observed sea level is
calculated. Only regressors with a significant correlation are used in the state space model for a specific sta-
tion, which is enforced by only accepting regressors with a p-value smaller than 0.01, which corresponds to
a significance at the 99% level.

We also require that each regressor solves a specific part of the variance that is independent from other
regressors. This requirement is tested by adding the regressors stepwise into a least-squares model with an
intercept, linear trend, and cycles without varying phase offset and amplitude, starting with the regressor
that has the highest correlation with the sea level. Each regressor is only allowed when the regression coef-
ficient is significant at the 95% level, which is determined using t-statistics. If all regressors are included, the
model reads:

Yi=w+a ;cos (2nfiti+ ¢y ;) +azcos (2nfrti+ ¢, ;)
+b1 - Uwind b2 - Vwind b3 - (P—po)
+¢; - NAO+¢, - MEl+c3 - PDO
+d - Cnodal +{j ¢

(48)

The annual cycle term is represented by a; jcos (2nfit;+ ¢, ;), with a,; the time-varying amplitude, fixed fre-
quency fi=1y ! and time-varying phase offset ¢, ;. The term ay,;cos (2nfat;+¢, ;) represents the semian-
nual cycle, also with a stochastic amplitude and phase offset. The cycle terms are implemented as in
equation (5). The terms Uyind, Vwind are time series of the local zonal and meridional wind stress. p is the
local pressure and pg is the monthly mean pressure over all oceans. The terms NAO, MEI, and PDO represent
time series of the teleconnection patterns mentioned before. The term C,oq4a represents the nodal cycle.
The time-varying unknowns that are estimated by the state space formulation are g, a;, ¢4, a, and ¢,. The
unknowns b, by, bs, ¢;, ¢5, ¢3, and d are also estimated by the state space formulation, but they are not
allowed to vary over time.

3.3. Model C: Corrections From a Storm Surge Model

In model C, the barotropic response of the sea level to atmospheric and tidal forces is modeled using the
Dutch Continental Shelf Model (DCSM) version 6. The modeled time series of the sea level height at the
grid point closest to the tide gauge is subsequently added as a regressor. When adding the modeled water
height as a regressor, rather than subtracting it from the observed water level, the uncertainty of the fitting
parameter is taken into account in the error analysis of the state space model. DCSM v6 [Zjjl et al., 2013] is a
two-dimensional hydrodynamic model that solves the depth-integrated shallow water equations over the
North Sea continental shelf, ranging from 15° W to 13° E and from 43° N to 64° N with a horizontal grid
spacing of about 1/40° in the east-west direction and 1/60° in the north-south-direction, which leads to a
grid cell length of about 1 nautical mile. The model has been developed to forecast storm surge heights
along the North Sea coast. The vertical boundaries are forced with wind stress at the top, and surface fric-
tion at the bottom. The horizontal boundaries are closed using a no-normal-flow condition at coastal boun-
daries. At the open boundaries, the sea surface height is prescribed, which is calculated from astronomical
tides, the inverse barometer effect and mean sea level. Next to the diurnal and semidiurnal tides, the long-
period tidal constituents SSA (period of 182.6 days), MM (27.6 days), MSF (14.8 days), MF (13.7 days) and
MTM (9.2 days) are prescribed. The inverse barometer correction is calculated from ERA-interim before
1993, and from MOG2D [Carrére and Lyard, 2003] afterward. The surface drag coefficient has also been
obtained from ERA-interim.
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The use of a hydrodynamic model has the advantage over the method with regressors for wind and pres-
sure, that nonlinear effects are taken into account, and that the interaction between tides and surges is
explicitly solved.

Because the model is barotropic, height variations due to sea water temperature and salinity changes are
still present in the signal after removing the modeled sea level, including the part of the seasonal cycle that
is caused by steric effects. Furthermore, the long-term constituents SA and the nodal cycle are not forced at
the boundaries. Hence, a stochastic annual and semiannual cycle are added to the state space model,
together with the nodal cycle term.

The teleconnection patterns NAO, PDO and MEI are also added as a regressor. Each regressor is tested for
significance using stepwise addition. If all terms are significant, model C reads:

Yi=p+ay jcos (2nfiti+ ¢y ;) +ay,cos (2nhrti+ b, ;)
+b ‘yDCSM+C1 . NAO+C2 - ME|+C3 -PDO (49)
+d - Crodal T{it¢

where ypcsv is the modeled water height at the specific tide gauge station.

3.4. Linear Least Squares Models

In order to better evaluate the behavior of the state space models, we have also analyzed three models that
can be solved by linear least squares. In models AL, BL, and CL, the time-varying trend (; is replaced by a lin-
ear trend and a bias, and the cyclic terms (in BL and CL) are not stochastic. The regressors are the same as
in the corresponding state space models.

4, Results and Discussion for the North Sea

The three state space models have been applied to tide gauges surrounding the North Sea. 17 tide gauge
stations have been selected that meet the criterion for data availability of more than 75% during the inter-
val 1980-2013. The stations, with their identification number, are depicted in Figure 1. The time span has
been chosen to match the period for which ERA-interim reanalysis data are available, which is used as
source for the regressor time series of wind and pressure and serves as input for DCSM. Furthermore, the
series are long enough to capture at least one full nodal cycle. Monthly mean sea level data have been
obtained from the Permanent Service for Mean Sea Level [Holgate et al., 2012]. All heights are relative to
the PSMSL Revised Local Reference datum. For the Cuxhaven tide gauge, time series that are corrected for
the conversion between mean sea level and mean tide level are used, following the method of Wahl et al.
[2011].

4.1. Choice of the Variance Parameters

The choice of the disturbance variance parameters ¢? and a% in the state space formulation has an influ-
ence on the final result. The disturbance variance parameters of the cycle terms and the irregular compo-
nent are determined using the EM-algorithm, as described in section 2.2. The initial values for the
disturbance variance terms 6,21 are low, which ensures that when a local maximum of the loglikelihood is
found, the variance in the parameters will not be overestimated. An overestimation could lead to the
absorption of nonseasonal signals into the cycle terms. To make sure that the time-varying trend consists of
long-term variations and variability on scales longer than a few years, the slope disturbance variance param-
eter is fixed, and a constant value is used for all stations. The slope disturbance variance parameter has
been chosen in such a way that variability on decadal and longer scales is represented by the time-varying
trend, while variability on shorter time scales that is not explained by the cycle and regressor terms will be
captured by the residual term. The time-varying trends calculated using various values of the slope disturb-
ance variance parameter for stations Wick and Hoek van Holland are shown in Figure 2, together with the
Power Spectral Densities (PSD's) of the time-varying trends. The figure shows that for a higher slope disturb-
ance variance parameter, details at shorter time scales are revealed. Since for this study, we are interested
in variability on decadal and longer scales, and higher disturbance variance parameters cause larger confi-
dence intervals, we choose a slope variance parameter of 2 mm? /yr®> for model C. With this value the time-
varying trend shows almost no subdecadal variability, but still captures the decadal variability. The PSD’s
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Figure 1. Location of the 17 tide gauge stations around the North Sea.

(right panel of the same figure) quantitatively show that the signals on time scales of 10 years and longer
are preserved, while short-term variability on time scales of 7 years and lower is removed for the chosen
slope variance parameter. For model B, we use the same value for the slope disturbance variance parame-
ter, because the same range of signals are captured in the time-varying trend. For model A, a parameter of
20 mm? /yr? is used, for which u contains signals in the same frequency range as in model B and C.

To check whether the choice of the slope disturbance variance parameter influences the estimate of the
regression coefficients and the phase and amplitude of the cycle terms, we have calculated the relative
standard deviation of these numbers over the range of parameters in Figure 2. All relative standard devia-
tions are smaller than 1%, which shows that the influence of the slope disturbance variance parameter on
the estimation of the regression coefficients and cycle terms is low.

4.2. Model Comparison

The time-varying trends u(t), with the 68% confidence interval from model A, B, and C for the stations Hoek
van Holland, Cuxhaven, Wick and Lowestoft are shown in Figure 3. The picture also shows the 8 year mov-
ing average of the trend plus residual for models BL and CL. Moving average filters are commonly used to
analyze inter-annual and decadal variability in sea level. The filter width of 8 years is chosen to match the
frequency response of the state space filter, that has a cut-off frequency at about 8 years. For all stations,
the confidence interval of the time-varying trend for the three state space models overlap. Oscillating pat-
terns on decadal time scales are visible in all three models, and the found patterns are very similar between
the three models. The oscillatory pattern of model C does not differ significantly from the pattern of model
B and A, except for the first and last few months of the series, where the confidence intervals are large.
Models B and C have a much smaller confidence interval for all 4 stations than model A, and therefore, we
will focus on models B and C in the next sections.
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Figure 2. (left) Time-varying trend for different values for the slope disturbance variance parameter for the stations Terschelling and Wick
using model C. (right) Power Spectral Density (PSD) of the time-varying trend and the original time series. Welch’s method has been used
to estimate the PSD.

The moving averages from models BL and CL show a similar pattern of variability, although some high-
frequency signals remain visible. There are however differences visible between the patterns of BL and CL,
especially for Cuxhaven and Wick. Models B and C show a similar pattern at these stations. Moreover, mod-
els B and C do not require data interpolation, and the confidence intervals, computed using the full
variance-covariance structure, provide insight into the significance of the oscillations.

To ensure the correct functioning of the state space method, two additional requirements have to be ful-
filled: the irregular part of the residuals has to follow a Gaussian distribution, and should not exhibit serial
correlation. The first requirement is tested using a Kolmogorov-Smirnov test. On the 95%-level, none of the
stations fail the test for model B, three for model C, but eight for model A. Therefore, the estimates of the
formal errors for model A might be inaccurate. The second requirement is tested by calculating the lag-n-
autocorrelation, with n=1..120, which covers the variability at time scales that are not captured by the
time-varying trend. The resulting autocorrelation functions for the four mentioned stations are shown in
Figure 4. From the plot it can be seen that the irregular component does not show a statistically significant
autocorrelation over the tested period.

The individual terms contributing to the signal of models B and C for Hoek van Holland are depicted in Fig-
ure 5. The residual of model C is clearly smaller than the residual of model B, which is due to the fact that
DCSM is able to simulate the barotropic response to wind more accurately than the regressor model. Also
note that at Hoek van Holland, the phase and amplitude of the seasonal cycle do not show large variations
with time.

4.3. Patterns of Decadal Variability in the North Sea

With the state space method we can show decadal sea level variability at each tide gauge station. Hence,
analyzing the time-varying trend obtained from the state space models allows to look for common patterns
of decadal variability. The time-varying trends from model B and C for all stations are shown in Figure 6.
Almost all stations show similar behavior: the highest rates of sea level rise are found between 1995 and
2005, while after 2005 rates are much lower and for some stations even negative.

The inflection point around 2005 corresponds to a peak in the nodal cycle [Woodworth, 2011; Pugh and
Woodworth, 2014]. In both state space models, the nodal cycle is present as possible regressor, which allows
us to test whether the nodal cycle is responsible for the 2005 inflection point. We find for all stations a
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Figure 3. Trends and 68%-level confidence intervals for state space models A, B, and C. The dashed line denotes the 8 year moving average
of the trend and residual of models BL and CL.

slightly negative correlation between the sea level height and the nodal cycle. The negative correlation is
expected, since all stations lie outside the 35°-zone, for which the astronomical amplitude of the nodal cycle
given in equation (47) should be negative. However, on average the correlation coefficient between sea
level and the regressor of the nodal tide is very low (—0.07). For all stations, except Aberdeen, for which a
cycle with an amplitude of 25 mm was found, the correlation is not significant, according to p-statistics on a
95% level. This means that the deceleration after 2005 cannot be linked to the nodal cycle. Furthermore,
according to the tidal equilibrium law, the nodal cycle in the North Sea has an amplitude of about 6 mm,
considerably lower than the typical amplitude of the found variability, which is in the order of 20 mm. It is
unlikely that the phase and amplitude of the nodal cycle would depart significantly from the equilibrium
tide [Woodworth, 2011]. The significant cycle in Aberdeen has an amplitude four times as large as the equi-
librium value. Hence, the correlation is likely not caused by the nodal tide, but to a process with variability
at a comparable temporal scale. Therefore, the nodal cycle is not used as a regressor.
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Figure 4. Lag autocorrelation of the irregular component for model A, B, and C. The black line represents the threshold for a significant
correlation on the 95%-level.
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Figure 5. Individual components of the state space model (left) B and(right) C for Hoek van Holland.

The correlation of monthly and yearly tide gauge data between different North Sea stations is well-known
[Wahl et al., 2013]. In order to explicitly show similarities in the decadal variability over the whole North Sea,
the correlation coefficient between the time-varying trends of all stations is calculated and shown in Figure 7.
To prevent correlations due to long-term sea level rise, the correlation coefficient has been calculated after
removing the integrated trend. We also show the correlation coefficients of the original sea level data, after
removing a linear trend and seasonal cycle. The correlations are shown in Figure 7. To determine the thresh-
old for significance, the number of degrees of freedom is reduced to 5. The latter is based on an 8 year low-
pass filter. This number of degrees of freedom leads to a threshold for significance of 0.76 on the 95% level.
The figure shows that most stations show a significant positive correlation of the time-varying trend with all
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Figure 6. The time-varying trend calculated for model B (blue) and C (yellow) for all stations. The shaded area is the confidence interval for
the time-varying trend at the 68% level. The dashed lines depict the linear trend from models BL and CL. The station numbers are accord-
ing to Figure 1.
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Figure 7. Correlation coefficient between de-trended time-varying
trends from different stations for (top) model B, (middle) model C,
and (bottom) deseasonalized original data. Correlations that

are lower than 0 or insignificant on the 95% level are blank. The
stations are numbered according to Figure 1.

other stations. The stations in the southern corner
show a very high correlation, both on the Dutch
and Belgian coast (stations 1-5) as well as the sta-
tions on the English coast (stations 15, 16, 17). The
stations at the Wadden Sea (6,7) and in the German
Bight (7,8,9) are not as strongly correlated with the
southern stations.

Some stations show no significant correlation with
any other station: station 14 (Aberdeen) does not
show any significant correlation with other, even
adjacent, stations. Also station 6 (Terschelling) has
generally low correlations with almost all other sta-
tions. The German Bight consist of many shallow
seas that are subject to rapid changes in bathyme-
try and current patterns, which could explain the
regional differences and the relatively low mutual
correlation of decadal sea level variability.

When we compare between the correlations of the
time-varying trend and the original data, a differ-
ent pattern can be seen. For example, the correla-
tion between original data from stations along the
Dutch coast show low correlation with stations in
northern Great Britain (stations 12-15), while for
the time-varying trend this correlation is higher.
This difference shows the presence of a basin-wide
signal of variability on decadal scales, which can-
not be found without removing variability from
known processes.

4.4. Sources of Variability

Model B and C explain a large part of the vari-
ability in tide gauge observations, which leads
to an improved estimate of the sea level vari-
ability on decadal time scales that is unex-
plained by the regressors. The portion of the
variability that is solved for each regressor is
not equal for all stations. Figure 8 shows the
root mean square of the individual variance
terms for both models at each tide gauge sta-
tion. Note that the total explained variance and
the variance of the residual do not add up to
the total observed variance, because the
regressors and cycle terms are not mutually
uncorrelated. A table with all regression coeffi-
cients is included in the supporting informa-
tion. For model B, a clear division can be seen
between the stations along the south-eastern
coast (1-9) and the stations at the British Isles
(12-17): the stations along the south-eastern
coast show a high total variance, with a peak
at the stations in the German Bight (stations
7,8,9). The barotropic response to wind is one
of the main contributors to this high variance,
and model B and C explain a major part of this
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Figure 8. Total and explained variance per individual component: the black bar shows the variance of the observed sea level for each sta-
tion, and the bar shows the variance of the individual components. For each station, the left bar represents model B, and the right bar
model C.

variability. Along the British Isles, the total variance is lower, and the influence of wind is small. For
all stations, the regressors for the teleconnection patterns only explain a small fraction of the var-
iance, because the influence of the teleconnection patterns on sea level is driven to a great extent
by wind and pressure [Dangendorf et al., 2013].

For all stations, the root mean square error (RMSE) of the residual from model C is smaller than the residual
from model B. On average, the RMSE is 45% smaller for model C, compared to model B. Due to the larger
fraction of the variance that can be explained, the confidence interval for the time-varying trend is smaller
for model C than for model B. Although the typical time scale of the explained variance, which is largely
atmosphere-forced, lies below 10 years [Dangendorf et al., 2014b], models B and C show a smaller confi-
dence interval for the time-varying trend than model A.

Calafat et al. [2012, 2013] showed the existence of a consistent pattern of decadal variability along the
European and Norwegian coast and linked the pattern to the integrated longshore wind. Dangendorf et al.
[2014b] argue that the longshore wind signal propagates into the North Sea. They use Newlyn as a proxy
for this effect and show that the combination of the Newlyn tide gauge record and remote steric forcing
can explain a large part of the decadal variability in the North Sea. However, the coherent time-varying
trend signal found here shows variability at longer time scales than the aforementioned studies, so the
source of this variability may be different. Since the North Sea is located on a shallow continental shelf, no
large local steric effect is expected. Nonetheless, remote steric changes over the much deeper North Atlan-
tic will induce a flow of water over the shelf, affecting local sea level [Landerer et al., 2007]. To determine
whether the found pattern in the time-varying trend can be linked to remote steric forcing, the correlation
between the time-varying trend of the sea level at the tide gauge stations and steric height over the North
Atlantic is calculated. We use the yearly mean steric height from the Ishii & Kimoto data set [I/shii and
Kimoto, 2009] to calculate a time-varying trend in the steric signal using state space model A. Figure 9
shows that a large region covering the northeast Atlantic has a clear and positive correlation with the time
varying trend at the North Sea stations. This finding supports the hypothesis that the observed low-
frequency sea level variability in the North Sea can be linked to a large-scale steric signal in the North
Atlantic.

4.5. Average Trends
By using equation (43) we can calculate average trends from the state space model, and compare them
with the results from the traditional least squares approach. The average time-varying trend contains the
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Figure 9. Correlation between time-varying trend in steric sea level and the time-varying sea level trend from model C for four North Sea
stations. The 250 and 1000 m isobaths are shown in grey. No correlation is shown for grid points at a depth smaller than 250 m. The aver-

aged time-varying trend for each station and each grid point has been removed using equation (43).

long-term secular trend as well as decadal variability, and does not rely on the assumption that the trend
follows a linear path. Table 1 shows the mean trends calculated by the three state space models, as well as
the accompanying least squares solutions for all stations. The confidence intervals for the state space mod-
els are calculated according to equation (44). For the least-squares fit, the confidence interval has been

Table 1. Mean Trends and Confidence Intervals (at 68% Level) Estimated for All North Sea Stations for All Least Squares Models (AL, BL,
CL) and State Space Models (A, B, C)*

Station AL BL CL Model A Model B Model C
Oostende 23+04 24+02 22+02 14%1.1 1.3+05 1.3+0.5
Vlissingen 24+05 27*02 25*0.1 15+1.0 1.7+04 1.5+0.4
Hoek van Holland 19*05 23*+0.2 2.0*0.1 1.5+x1.1 1.7 x£05 1.6 £05
IUmuiden 1.9+06 23*02 2.1+0.1 12+13 1.3+05 1.3+0.5
Den Helder 1106 1.6 £0.2 14 *0.1 1.3£14 1205 1.2+05
Terschelling 1.5+07 20*02 1.7+0.1 22*15 1.8+0.5 1.7+05
Delfzijl 1607 22*+03 20*+0.2 1514 15*06 15*£06
Cuxhaven 30+1.0 3.1*+04 3.1+£0.2 32*1.8 2.1*08 24+08
Esbjerg 1.9+1.1 1.9+04 22+02 28*19 1.8+ 06 20+04
Hirtshals -0.1+0.8 -0.2+0.3 —0.3+0.2 07*1.6 —0.7+0.8 -1.0+0.5
Tregde 0.8+ 0.5 0.8*+0.2 0.7 +0.2 0.7*+13 03*0.7 0.1 0.5
Lerwick 13206 1.0+0.2 1.0+0.2 20*14 09=*04 0.7 =04
Wick 1.0+06 0.8*+0.2 0.8+0.2 0.1x15 -0.3+0.6 —0.7+0.4
Aberdeen 21+05 22*02 23+02 21*13 22*07 23*05
North Shields 22*+04 23*+0.2 25*+0.2 1.7x12 1.1+0.3 19*06
Lowestoft 34+04 35*02 37+02 33*1.0 3.0*+04 33*04
Dover 1.5*+04 1.7 £0.2 1.5*=0.1 06+1.0 1206 1.1*£06

?Bold values denote trends for which the confidence interval of the state space model and the accompanying linear model do not

overlap.
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corrected for serial correlation by reducing the number of degrees of freedom, according to the procedure
described in Nerem and Mitchum [2002]. All the confidence intervals are calculated at the 68% confidence
level.

At a number of stations, the average time-varying trend is statistically different (at the 68% level)
from the least squares trend. Variability on decadal scales is responsible for this difference, by leak-
ing into the estimate of a long-term linear trend. In Figure 3 it can be seen that the variability has a
low phase roughly between 1985 and 1995, and a high phase between 1995 and 2010, which causes
a positive bias on the estimate of a linear trend. Therefore, linear trends estimated from 30 to 40
years of tide gauge data do not only represent a long-term trend, but also a bias due to decadal
variability.

The averaged trends for the three state space models show that the trends found by model B and C lie
within the confidence interval of the trend from model A for all stations. The average trends of model B and
C are also very similar: there are no stations for which the confidence intervals do not overlap. Of the three
state space models, model C shows the smallest confidence interval, averaged over all stations. The expla-
nation of variability caused by the various meteorological components of models B and C, leads to a signifi-
cant improvement of the accuracy of the estimated trend, compared to the estimation without explaining
the various variance terms (model A).

5. Conclusions

We have introduced a new parametrization for time series of observed sea level that takes the pres-
ence of unexplained variability on decadal and multidecadal scales into account, which does not rely
on the assumption that the underlying long-term trend is linear or quadratic. The time-varying trend
captures long-term trends in sea level, as well as variability on decadal and multidecadal scales. Three
state space models have been compared using tide gauge data from stations around the North Sea
over the period 1980-2013. It is shown that the removal of variance caused by known processes,
including the barotropic response to wind and atmospheric pressure changes, contributes to the dis-
closure of unexplained variability: the state space models that explain parts of the variability perform
significantly better than a model that only estimates a long-term trend and a residual. Explaining variance
does not only reduce the confidence interval for the estimated time-varying trend, but also reveals an oscillat-
ing pattern in sea level on decadal scales. Two models have been compared that remove the variance: one
uses regressors from global reanalysis databases, and one uses DCSM, a two-dimensional shallow-water
model that calculates sea level changes due to wind, atmospheric pressure and tides. The model that uses
DCSM is able to explain a larger part of the variance and estimates a time-varying trend with a smaller confi-
dence interval, compared to the model that uses regressors. The advantage of the model that uses regressors
from global reanalysis products, is that it can be used globally, opposed to the DCSM model, which only pro-
vides data for the North Sea.

The time-varying trends in sea level for the stations around the North Sea show oscillations, that are consist-
ent over the full basin, although the variability patterns caused by wind and pressure differ between sta-
tions. The sea level shows a steep rise between 1995 and 2005, followed by a slowdown between 2005 and
2013. The removal of atmospheric effects either by a simple linear regression or by a barotropic storm surge
model reduces the uncertainty in the time-varying trend to an extent that the amplitude of the resulting
decadal pattern is larger than the confidence interval of the time-varying trend. It is found that the pattern
is not caused by the nodal cycle, but can be linked to a large-scale steric signal that covers the North-
eastern part of the Atlantic ocean.

The presence of low-frequency variability influences the estimation of linear trends over short intervals,
even after removing the barotropic response to wind and pressure. Variability on decadal (and multideca-
dal) scales that can not be linked to individual processes leaks into the estimate of a long term linear trend
when the length of the analyzed sea level record has a length of the same order as the typical time scale of
unexplained variance. Furthermore, there is no reason to expect that on (multi-)Jdecadal time scales, sea
level is rising along a linear or quadratic path. In order to find the long-term behavior of sea level, the proc-
esses that cause the variability and long-term trend have to be understood.
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