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Abstract

Magnetic anomaly detection (MAD) is a widely used method for detecting ferromagnetic targets,
particularly hidden objects. A common way to localize a magnetic target is to look at the
maximum of the magnitude of the magneticfield gradient. In this thesis, we consider a three-
axis total field gradiometer which measures the gradient of the magnitude of the magnetic
field along three orthogonal axes. Based on the measured data from the three-axis total field
gradiometer, we decompose the inversion problem into two linear systems. By solving those
two systems, we get an approximation for the location and moment that we are looking for.
For the considered gradiometer, we can improve the parameters if the detailed geometry of the
gradiometer is taken into account.
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Chapter 1

Introduction

1.1 Motivation

As everyone knows, the Earth can be seen as a big magnet. The electron currents due to the
motion of molten iron and nickels in the Earth’s core, generates a magnetic field. All objects
on the Earth that are made of ferromagnetic materials, are magnetized by the Earth magnetic
field. After being magnetized, such a ferromagnetic object causes a perturbation to the local
Earth magnetic field which forms a magnetic anomaly. The detection, localization and
classification of magnetic objects based on the magnetic anomaly is called Magnetic Anomaly
Detection (MAD). This method has been used for decades and it is particularly suitable for
underwater detection of magnetic objects like sunken ships or containers.

There are two types of sensors that can be used for the localization and classification of a
ferromagnetic object:

1. magnetometers: There are two basic types for the magnetometer measurements. The
vector magnetometer measures all components of the magnetic field, while the total field
magnetometer measures the magnitude of the magnetic field. In this project, we call the
magnitude of the magnetic field as the total magnetic field.

2. gradiometers: the gradiometers are constructed by placing magnetometers along different
axes and taking the differences of the measured magnetic field. Just as for the magnetome-
ters, we also have two types of gradiometers: the total field gradiometers and the tensor
gradiometers. The total field gradiometer measures the gradient of the total magnetic field
while the tensor gradiometer measures the gradient of the magnetic vector field.

For this project we consider a gradiometer to localize and classify a magnetic object. A common
way to localize a magnetic target is to look at the maximum of the magnitude of the magnetic
field gradient. The research of Mersch et al [1] introduces a method of how to find the location
and the moment for a ferromagnetic object with a small moment in a strong uniformed field by
using a three-axis total field gradiometer. They have shown that for an ideal gradiometer, the
inversion problem can be separated into two linear systems. Their research has also shown that
this method gives accurate results for magnetic objects with moment of 5Am2, if the altitude
of the gradiometer is between 6m− 10m.

The aim of this thesis is to answer the question:

’Is this method also suitable for a ferromagnetic object with a larger moment,e.g. 103Am2?
If yes, what is the range of the optimal sensor altitude?’

1



2 CHAPTER 1. INTRODUCTION

1.2 Chapter Outlines

This section gives a description of how the remainder of this thesis is organised.

• Chapter 2 The magnetic field of a magnetic dipole In this chapter, we derive
an expression for the magnetic field of a magnetic point dipole by using the Maxwell’s
equations.

• Chapter 3 The forward problem In this chapter we first describe how the three-axis
total field gradiometer that we will use, is composed. Our model consists of two problems:
the forward and inverse problem. We first formulate the forward problem and then We
explain how we can solve the forward problem.

• Chapter 4 The inverse problem In this chapter we will use the definition and theorem
of the Euler’s homogeneous function to decompose the inverse problem into two linear
systems. By solving those two linear systems we get an approximation for the position
and moment of the magnetic object. To improve the accuracy of the estimated parameters
we also introduce the second step: the nonlinear refinement.

• Chapter 5 Numerical xperiment without noise In this chapter we will test our model
to see whether this model is accurate for localization and classification of a magnetic object
in absence of noise. We will also check whether the altitude of the gradiometer is important
for getting acceptable results without nonlinear refinement.

• Chapter 6 Model with noise In this chapter we introduce Gaussian noise in our model

• Chapter 7 Numerical experiment with noise In this chapter we test whether or not
the model with noise still gives acceptable results.

• Chapter 8 Conclusion and recommendations In this final chapter we will conclude
the results of all the chapters of this thesis. It also gives some idea about the further
research with the method we have used.



Chapter 2

The magnetic field of a magnetic
dipole

In this chapter, we derive an expression for the magnetic field of a magnetic point dipole by
using the Maxwell’s equations. This expression is essential for our further research due to the
fact that we can treat a magnetic object as a magnetic point dipole when the sensor is located
at distance at least three times the dimension of the object [2]. A magnetic point dipole is a
point that contains a north pole and a south pole.

Suppose a ferromagnetic object is located at position d in meters and we detect the magnetic
field around it with a sensor at position r also in meters, see Figure 2.1. Those two positions
can be written as vectors in R3:

d =
[
dx dy dz

]T
and r =

[
rx ry rz

]T
.

Furthermore, we define r̂ = r − d, which is the difference vector between d and r. We assume
that this magnetic object has a magnetic moment m with unit Ampere square meters [Am2]
and we define it as:

m =
[
mx my mz

]T
.

Figure 2.1: Location of sensor and ferromagnetic object.

There is a magnetic field around the magnetic object. We define the magnetic field strength
H in [A/m] and the magnetic induction field B in [T ] at location r as

H = H(r) and B = B(r).

3



4 CHAPTER 2. THE MAGNETIC FIELD OF A MAGNETIC DIPOLE

If H is known to us, then we can compute B with the following formula:

B = µ0H, (2.1)

with µ0 = 4π · 107H/m is the permeability of free space.
In this chapter, we will first demonstrate equation (2.1) by using the Maxwell’s equations

and then we will shrink a three-dimensional rod to a magnetic point dipole so that we can find
an expression for H while keeping the same magnetic moment. We will show that the magnetic
field of a magnetic point dipole at location d is given by

B =
µ0

4π

(
3(m · r̂)r̂

‖r̂‖5
− m

‖r̂‖3

)
, (2.2)

where ‖ · ‖ is the Euclidean norm.

2.1 Maxwell’s equations

Maxwell’s equations are four partial differential equations (PDE’s) for describing electric and
magnetic fields established by British physicist Maxwell in the 19th century. Those differential
equations are shown in (2.3). 

∇ ·D = ρ

∇ ·B = 0

∇×E = −∂B
∂t

∇×H = J + ∂D
∂t

(2.3)

This set of coupled differential equations come from the following four laws:

1. Gauss’ law: ∇ ·D = ρ
This law states that the electric flux through any closed surface is a measure of the total
charge enclosed within the surface. It means that electrical charges produce electric fields.
In the equation, D is the electric flux density measured in Coulombs per square meters
[C/m2], ρ stands for the electric charge density in Coulombs per cubic meters [C/m3].

2. Gauss’ law for magnetism: ∇ ·B = 0
This law states that magnetic monopoles do not exist. B is the magnetic induction field
just as mentioned before.

3. Faraday’s law: ∇×E = −∂B
∂t

This law states that changing magnetic fields induce electric fields. E in this equation
stands for the intensity of the electric field which is measured in volts per meter [V/m].

4. Ampère’s law: ∇×H = J + ∂D
∂t

This law states that currents across a surface and changing electric fields produce magnetic
fields. In this equation, J is the electric current density in ampere per squared meter
[A/m2] and H is the magnetic field strength just as mentioned before.

When we assume that the electric and magnetic fields do not change in time, then those fields are
static. It means that we can split this set of coupled equations in (2.3) into two sets of equations
that describe the magnetic field and the electric field separately. Moreover, we assume that
there are no currents across the surface which means that J ≡ 0. Then the static magnetic field
can be described as: {

∇ ·B = 0

∇×H = 0
.
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2.1.1 The magnetic scalar potential

In this subsection we derive an expression for the magnetic scalar potential that we will use
to obtain the magnetic induction field B. The magnetic induction field B is produced by some
magnetization M = [Mx My Mz]

T in a magnetic object, with Mx,My,Mz ∈ R. Magnetization
gives the density of the induced magnetic dipole moment in a magnetic object and its unit is
ampere per meter [A/m]. So by definition, if M is known to us, then we can easily calculate the
magnetic moment by integrate M over the volume of the magnetic object

m =

∫∫∫
M dV. (2.4)

Beside the magnetic moment, we can also use M to calculate B, since the relation between M,B
and H is given by

B = µ0(H + M), (2.5)

where µ0 = 4π · 10−7 H/m is the magnetic permeability of free space. Outside the magnetic
object, the magnetization M = 0. So equation (2.5) becomes B = µ0H, which shows equation
(2.1). We want to determine the magnetic induction field B that is caused by a distribution of
M, so we have to solve the following set of PDE’s:

∇ ·B = 0

∇×H = 0

B = µ0(H + M).

(2.6a)

(2.6b)

(2.6c)

If we substitute (2.6c) into (2.6a), we get ∇ · (µ0(H + M)) = 0 and we can rewrite it as
µ0(∇ ·H +∇ ·M) = 0. It gives us the following equation:

∇ ·H = −∇ ·M. (2.7)

Since∇×H = 0, there exists a magnetic scalar potential ϕ such that H = −∇ϕ. If we substitute
it into (2.7), we get

∇ · (−∇ϕ) = −∇2ϕ = −∆ϕ = −∇ ·M.

Or equivalently,

∆ϕ = ∇ ·M. (2.8)

We can interpret ∇ ·M as the source of B.

An equations of the form,

∆u = f

is called a Poisson equation. We can solve this equation by using Green’s function for the Laplace
equation in R3 and it is given by [3]:

u(r) =

∫
R3

−1

4π‖r− r′‖
f(r′) dr′,with r, r′ ∈ R3. (2.9)

Note that equation(2.8) is a Poisson equation with f = ∇ ·M. By using equation(2.9) we get
the magnetic scalar potential

ϕ(r) = − 1

4π

∫
R3

1

‖r− r′‖
∇′ ·M(r′) dr′, with ∇′ =

[
∂

∂r
′
1

∂

∂r
′
2

∂

∂r
′
3

]T
. (2.10)

We will use this expression of ϕ later to obtain B of a magnetic point dipole.
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2.2 Step-wise derivation of the magnetic induction field

In this section, we shrink a three-dimensional rod step-wise to a magnetic point dipole while
keeping the magnetic moment fixed that is caused by the magnetization of the rod. Then we
use equation (2.10) to obtain B.

2.2.1 A three-dimensional rod

Suppose we have a rod with length 2l and radius a and we use a cylindrical coordinate system
(x, ρ, φ) with the center point of the rod as origin, see Figure 2.2. In addition, we assume
that there exists magnetization M within the rod only in the x-direction, so M = Mxex with
ex = [1 0 0]T .

Figure 2.2: Rod with magnetization in x-direction.

As mentioned before, M = 0 outside the rod. So M = Mxex, for −l < x < l and ρ < a. By
using the Heaviside step function H, we can denote M as

M = Mxex[H(x+ l)−H(x− l)]H(a− ρ).

The magnetic moment m can now be calculated by using equation (2.4) and note φ ∈ [0, 2π], it
gives us that m is

m =

∫∫∫
M dV =

∫ 2π

0

∫ a

0

∫ l

−l
Mxex[H(x+ l)−H(x− l)]H(a− ρ) ρ dx dρ dφ

= Mxex

∫ l

−l
H(x+ l)−H(x− l) dx ·

∫ a

0
H(a− ρ)ρ dρ ·

∫ 2π

0
dφ

= Mxex · 2l ·
[

1

2
ρ2

]a
0

· 2π = 2πa2lMxex.

By letting m0 = 2πa2lMx, we get m = m0ex.

2.2.2 Shrink rod to a line

Now we want to shrink this rod to a line while keeping the same magnetic moment. We let the
radius a go to zero, so the magnetization M of this line is

M = c ex[H(x+ l)−H(x− l)]δ(y)δ(z),

where c is a constant that we have to compute such that the magnetic moment m remains the
same and δ the Dirac delta function with

∫∞
−∞ δ(x) dx = 1. Just as for the rod, m of the line
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can be determined as follows:

m =

∫∫∫
V∞

M dV =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

c · ex[H(x+ l)−H(x− l)]δ(y)δ(z) dx dy dz

= c · ex
∫ l

−l
H(x+ l)−H(x− l) dx

= c · ex · 2l.

We must find a constant c such that c·ex ·2l = m0ex which gives us that c = m0
2l . If we substitute

c in M, we get

M =
m0

2l
ex[H(x+ l)−H(x− l)]δ(y)δ(z). (2.11)

Recall the expression of the scalar potential function (2.10). We can use it to determine the
potential of the rod that we have shrunk to a line. We let r = [x y z]T and r′ = [x′ y′ z′]T ,
together with (2.11), we get

∇′ ·M(r′) =
∂

∂x′

[m0

2l
[H(x′ + l)−H(x′ − l)]δ(y′)δ(z′)

]
=
m0

2l
[δ(x′ + l)− δ(x′ − l)]δ(y′)δ(z′) (2.12)

and

‖r− r′‖ =
√

(x− x′)2 + (y − y′)2 + (z − z′)2. (2.13)

Then the scalar potential function is

ϕ(r) = − 1

4π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

m0
2l [δ(x′ + l)− δ(x′ − l)]δ(y′)δ(z′)√
(x− x′)2 + (y − y′)2 + (z − z′)2

dx′ dy′ dz′. (2.14)

The Dirac delta function has the following useful properties that we can use to simplify equation
(2.14):

1.
∫∞
−∞ g(x)δ(x) dx = g(0) 2.

∫∞
−∞ g(x)δ(x− t) dx = g(t) .

Let g(z′) = 1√
(x−x′)2+(y−y′)2+(z−z′)2

and use property 1, then equation (2.14) becomes

ϕ(r) = − 1

4π

∫ ∞
−∞

∫ ∞
−∞

m0

2l
[δ(x′ + l)− δ(x′ − l)]δ(y′)g(0) dx′ dy′

= − 1

4π

∫ ∞
−∞

∫ ∞
−∞

m0
2l [δ(x′ + l)− δ(x′ − l)]δ(y′)√

(x− x′)2 + (y − y′)2 + z2
dx′ dy′.

Repeating this step for y′, we get

ϕ(r) = − 1

4π

∫ ∞
−∞

m0
2l [δ(x′ + l)− δ(x′ − l)]√

(x− x′)2 + y2 + z2
dx′.

Now we can use the second property of the Dirac delta function to obtain the following simplified
expression for the scalar potential function for the shrunk rod:

ϕ(r) = − 1

4π
· m0

2l

[
1√

(x+ l)2 + y2 + z2
− 1√

(x− l)2 + y2 + z2

]
. (2.15)
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2.2.3 Shrink a line to a magnetic point dipole

If we let l −→ 0 in equation (2.15), we obtain the potential function for the magnetic point dipole.
Since H = −∇ϕ and B = µ0H, we can then derive an expression for the magnetic field with
the magnetic point dipole located at the origin. To do this, we use the definition of the central
difference of a function f(x):

f ′(x) = lim
l→0

f(x+ l)− f(x− l)
2l

.

Recall m = m0ex, so mx = m0. Let f(x) = 1√
x2+y2+z2

, then we can write equation (2.15) as

ϕ(r) = − 1

4π
·mx

f(x+ l)− f(x− l)
2l

. (2.16)

By letting l −→ 0 and using the central difference formula, we get the scalar potential function

ϕ(r) = − 1

4π
·mx · lim

l→0

f(x+ l)− f(x− l)
2l

= − 1

4π
·mx · f ′(x) = − 1

4π
·mx · −x(x2 + y2 + z2)−

3
2

=
1

4π
·mx ·

x

‖r‖3
. (2.17)

Note that we can interpret mx · x in equation (2.17) as m · r. So we can generalize this scalar
potential function for a magnetic point dipole with m = [mx my mz]

T as :

ϕ(r) =
1

4π
· m · r
‖r‖3

. (2.18)

With this equation, we can find

H = −∇ϕ = −∇
(

1

4π
· m · r
‖r‖3

)
= − 1

4π


∂
∂x

∂
∂y

∂
∂z

 mxx+myy +mzz

(x2 + y2 + z2)
3
2

. (2.19)

Let g(x, y, z) =
mxx+myy+mzz

(x2+y2+z2)
3
2

, then we can write equation (2.19) as

H = − 1

4π


∂g(x,y,z)

∂x

∂g(x,y,z)
∂y

∂g(x,y,z)
∂z


with

∂g(x, y, z)

∂x
=

mx

(x2 + y2 + z2)
3
2

− 3x(mxx+myy +mzz)

(x2 + y2 + z2)
5
2

=
mx

‖r‖3
− 3x(m · r)

‖r‖5

∂g(x, y, z)

∂y
=

my

‖r‖3
− 3y(m · r)

‖r‖5
,
∂g(x, y, z)

∂z
=

mz

‖r‖3
− 3z(m · r)

‖r‖5
.

Then we obtain

H =
1

4π

(
3(m · r)r

‖r‖5
− m

‖r‖3

)
. (2.20)
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With B = µ0H, we get an expression for the magnetic field of a magnetic point dipole which is
located at the origin,

B =
µ0

4π

(
3(m · r)r

‖r‖5
− m

‖r‖3

)
. (2.21)

If we generalize equation (2.21) for a magnetic dipole point at location d with r̂ = r− d, then
the magnetic field is given by:

B =
µ0

4π

(
3(m · r̂)r̂

‖r̂‖5
− m

‖r̂‖3

)
. (2.22)
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Chapter 3

The forward problem

In the previous section we have derived an expression for the magnetic field of a magnetic dipole
which is essential to achieve our goal: find the location and the moment of a magnetic object
based on the measured data of a gradiometer. In this chapter, we are going to construct the
prediction model to achieve our goal. This model consists of two parts: the forward problem
and the inverse problem. By solving the forward problem we obtain the data that we will use
to solve the inverse problem. Before we start with the formulation of the forward problem, we
first explain how the gradiometer that we use in this project, is composed.

3.1 Three-axis total field gradiometer

As mentioned in the introduction, in this project we consider a three-axes total field gradiometer
that measures all three components of the gradient of the total magnetic field. This gradiometer
is composed of four total-field magnetometers separated from each other along three orthogonal
axes., see Figure 3.1. We call the red point in Figure 3.1 as the center point of the gradiometer.
When we are talking about the position of the gradiometer, what we mean by this, is actually
the position of this center point.

Furthermore, we call the magnetometer that is located along the positive x-axis star and
the one which is located along the negative x-axis, port. The distance between those two
magnetometers is defined as Ltrans = 0.75 in meters. The other two magnetometers, aft and
down, are located along the negative y-axis and z-axis respectively. Moreover, we define Llong =
0.55 and Lvert = 0.25 in meters as the distance between aft and down with the center point of
our gradiometer, respectively.

Figure 3.1: Three-axis total field gradiometer.

11



12 CHAPTER 3. THE FORWARD PROBLEM

So if we know that the position of the gradiometer is r, then the position of the four mag-
netometers are defined as follow:

rstar = r +
1

2
Ltransex, rport = r +

−1

2
Ltransex, raft = r− Llongey, raft = r− Lvertez,

(3.1)

with ex, ey, ez the standard basis of R3. Keep in mind that the magnetometers do not just
measure the magnetic anomaly caused by the magnetic object, they measure the total field
which has two contributions: the Earth magnetic field Be and the magnetic field Bd due to the
magnetic dipole which can be computed with equation (2.22). For example, the data that we
receive from the magnetometer at location rstar is:

Bstar = ‖Bstar‖ = ‖Be + Bd(r̂star)‖, with r̂star = rstar − d. (3.2)

In addition, we denote Bport = ‖Bport‖, Baft = ‖Baft‖ and Bdown = ‖Bdown‖ as the total
field that we measure with the magnetometers port, aft, and down. If we combine all of the
measurements taken by the four magnetometers, we will get the the following approximation for
the gradient of the total magnetic field at location r:

G̃ =


Bstar−Bport

Ltrans
(Bstar+Bport)−2Baft

2Llong
(Bstar+Bport)−2Bdown

2Lvert

 . (3.3)

3.2 The forward problem

If we look at the gradiometer that we have constructed, we want to calculate the gradients of
the total magnetic field for the locations of the gradiometer during the measurement. From
equation (3.2) and (3.3) we can formulate the forward problem.

The forward problem. Given the Earth magnetic field Be and a magnetic dipole with moment
m which is located at d, calculate the gradient of the total magnetic field at each location rα
during the measurement. Suppose we have taken N measurements, we want to calculate G̃α

defined as in equation (3.3) with location of the gradiometer at rα, α = 1, 2, ..., N .

It is clear that for solving the forward problem we need to know what the Earth magnetic
field Be is. We assume that Be is uniform. Furthermore, the strength of the Earth’s magnetic
background field ranges between 25 and 65 µT. In this project, we assume that:

Be =

19
1
50

 , in µT (3.4)

is always known to us.

If we know the sensor location during the measurement and we also know the position and
moment of the magnetic dipole, then we can calculate G̃α in three steps:

Step 1. If we know the position of the gradiometer, then we can compute the positions of
the four magnetometers by using the equations in (3.1). We substitute the position of the
magnetometers, the position and the moment of the magnetic object in equation (2.22),
so that we can obtain Bd for each magnetometer.
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Step 2. We use the calculated Bd to compute the total fields that are measured by
magnetometers, like the example shown in equation (3.2).

Step 3. By substituting the computed total field from the magnetometers in equation(3.3),
we will get the gradient of the α-th measurement.

By repeating these three steps for each measurement, the forward problem is executed. The
solution of this problem will be used as input data for the inverse problem which we will explain
in the next chapter.
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Chapter 4

The inverse problem

The inverse problem is to find the location and the moment of the magnetic dipole based on the
measured data. In this chapter we will show how to solve this problem by decomposing it into
two linear systems. For this step we use the property of the Euler’s homogeneous equation. To
improve the accuracy of the solution, we also introduce second step with the solutions of the
two linear systems as the initial value.

4.1 Euler’s homogeneous equation

Definition. Euler’s homogeneous equation[4]. Let V ⊆ Rn and f: V −→ R is homoge-
neous of degree d if for all λ > 0 and r, λr ∈ V ,

f(λr) = λdf(r).

Recall equation (2.22) and let λ > 0,

B(λr̂) = µ0
4π

(
3(m·λr̂)λr̂
‖λr̂‖5 − m

‖λr̂‖3

)
= µ0

4π

(
3λ2(m·̂r)r̂
λ5‖r̂‖5 −

m
λ3‖r̂‖3

)
= λ−3 µ0

4π

(
3(m·̂r)r̂
‖r̂‖5 −

m
‖r̂‖3

)
= λ−3B(r̂).

So we can conclude that our function for the magnetic field is homogeneous of degree d = −3.
Such a positive homogeneous function has a very useful theorem that we will use in the next
section to find the position and the moment of our point dipole.

Euler’s homogeneous function theorem. Let V ⊆ Rn and f: V −→ R is homogeneous of
degree d with f ∈ C1, then r · ∇f(r) = d · f(r).

Proof. f is homogeneous of degree d, so we have f(λr) = λdf(r) for all λ > 0. If we differentiate

f(λr) and λdf(r) respect to λ using the chain rule, we get df(λr)
dλ = r · ∇f(λr) and λdf(r) =

d · λd−1f(r). It gives us that r · ∇f(λr) = d · λd−1f(r). Assume, without the lose of generality,
that λ = 1, we get r · ∇f(r) = d · f(r).

4.2 Determining position and moment

4.2.1 Expression of magnetic anomaly

Since we will use a three-axes total field gradiometer, we can find a very useful expression for the
magnetic anomaly caused by our point dipole. Let BT = ‖BT ‖ be the total magnetic field that
we detect at location r, with BT = Bd + Be. Recall that Bd is magnetic induction field caused
by the magnetic dipole and Be is the Earth magnetic field. Moreover, we define the magnetic
anomaly T as T = ‖BT ‖ − ‖Be‖.

15
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Note that

BT = Be + Bd =⇒ ‖BT ‖2 = (Be + Bd) · (Be + Bd) = ‖Be‖2 + ‖Bd‖2 + 2Be ·Bd.

The magnetic field due to the magnetic point dipole is very small in comparison with the Earth
magnetic field, so ‖Bd‖ � ‖Be‖. It means

‖BT ‖2 ∼= ‖Be‖2 + 2Be ·Bd =⇒ ‖BT ‖ ∼=
√
‖Be‖2 + 2Be ·Bd = Be

√
1 + 2Be·Bd

‖Be‖2 .

Furthermore, β = Be·Bd
‖Be‖2 � 1 and by using the Taylor expansion we find

√
1 + 2β ∼= 1 + β for

β � 1. So if we denote Be = ‖Be‖, then we get

Be + T = ‖BT ‖ ∼= Be(1 + Be·Bd
B2
e

) = Be + Be·Bd
Be

.

It gives us

T ∼=
Be ·Bd

Be
= Bd · B̂e,with B̂e =

Be

Be
. (4.1)

4.2.2 First linear system for finding the position

Since B(r̂) is homogeneous of degree d = −3, it means that T = Bd · B̂e is also homogeneous
of degree d = −3. By using Euler’s homogeneous function theorem, we have r̂ · ∇T = −3T .
We have defined the magnetic anomaly as T = ‖BT ‖ − ‖Be‖, due to the fact that ‖Be‖ is not
dependent on r̂, we have ∇T = ∇‖BT ‖. So from Euler’s homogeneous function theorem we get
the following expression

r̂ · ∇‖BT ‖ = −3(‖BT ‖ − ‖Be‖), with ∇‖BT ‖ =


∂‖BT ‖
∂r̂1

∂‖BT ‖
∂r̂2

∂‖BT ‖
∂r̂3

 =


G1

G2

G3

 = G. (4.2)

By using a three-axes total-field gradiometer which measures the gradients of the total mag-
netic field, we can find the position of the magnetic point dipole. We denote the measured
gradients as G̃i, for i = 1, 2, 3. Since r̂ = r− d and we have a measured gradient that approxi-
mates the true gradient, we rewrite equation(4.2) as

(r− d) ·


G̃1

G̃2

G̃3


︸ ︷︷ ︸

G̃

= 3‖Be‖ − 3‖BT ‖.

The expression above is equivalent with r · G̃− d · G̃ = 3‖Be‖ − 3‖BT ‖. Since the location of
the gradiometer r, the measured gradient G̃ and the total magnetic field ‖BT ‖ at location r
and the Earth magnetic field Be are known to us, we can rewrite equation above as:

G̃
T
d = r · G̃ + 3‖BT ‖ − 3‖Be‖.
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The situation above describes when we just take one measurement. If we take N measurements
during the survey, then we will get a linear system that can be written in matrix form, Xd= Y,

G̃1,1 G̃2,1 G̃3,1

G̃1,2 G̃2,2 G̃3,2

G̃1,3 G̃2,3 G̃3,3
...

...
...

G̃1,N G̃2,N G̃3,N


︸ ︷︷ ︸

X


dx

dy

dz

 =


r1 · G̃ + 3‖BT,1‖ − 3‖Be‖
r2 · G̃ + 3‖BT,2‖ − 3‖Be‖
r3 · G̃ + 3‖BT,3‖ − 3‖Be‖

...

rN · G̃ + 3‖BT,N‖ − 3‖Be‖

 = Y. (4.3)

For α = 1, 2, ..., N , we denote rα as the location of the gradiometer and BT,α the total mag-
netic field measured at the α-th measurement and G̃i,α as the i-th component of the measured
gradient of the α-th measurement. A linear system is called overdetermined if there are more
equations than unknowns. In our case we have an overdetermined linear system when N > 4.
We solve this equation by using the method of least squares.

The method of least squares. Given a linear system Ax = b where A is an m × n matrix
with m > n, x is an n× 1 vector and b an m× 1 vector. In most cases this linear system does
not have a solution. However, we can find an approximation solution x̃ such that ‖Ax̃− b‖ is
minimized and x̃ is given by

x̃ = (ATA)−1ATb.

By using the method of least squares for equation (4.3), we get d = (XTX)−1XTY. Now
that we have found the position, we can use it to construct the second linear system to find the
moment of the point dipole.

4.2.3 Second linear system for finding the moment

Since we have found the position in the previous subsection, we can derive the second linear
system from G = G̃ which is only dependent on the moment m.
We have defined that Gi = ∂‖BT ‖

∂r̂i
, i = 1, 2, 3 in equation (4.2) . Furthermore, ‖BT ‖ = ‖Be‖+T ,

it means that Gi = ∂T
∂r̂i

since ‖Be‖ is not dependent on r. In the previous section we have derived

that T = Bd · B̂e. We know that Bd can be obtained by using equation(2.22), the we find

T = Bd · B̂e = µ0
4π

3[(m · r̂)r̂] · B̂e

‖r̂‖5︸ ︷︷ ︸
a

−m · B̂e

‖r̂‖3︸ ︷︷ ︸
b

, with r̂ =


x̂

ŷ

ẑ

 and B̂e =


B̂e,x

B̂e,y

B̂e,z

.

It gives us that Gi can be calculated as

Gi =
∂T

∂r̂i
=
µ0

4π

(
∂a

∂r̂i
− ∂b

∂r̂i

)
, (4.4)

with

∂a

∂r̂i
=

∂

∂r̂i

3[(m · r̂)r̂] · B̂e

‖r̂‖5
=

3B̂e,i(m · r̂) + 3mi(B̂e · r̂)

‖r̂‖5
− 15r̂i

m · [(B̂e · r̂)r̂]

‖r̂‖7

∂b

∂r̂i
=

∂

∂r̂i

m · B̂e

‖r̂‖3
= −3r̂i

m · B̂e

‖r̂‖5
.

(4.5a)

(4.5b)
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The detailed derivation of equation (4.5a) and equation (4.5b) can be found in Appendix A.

If we substitute equation (4.5a) and equation (4.5b) into equation (4.4), it gives us that

∂T

∂r̂i
=
µ0

4π

[
3B̂e,i(m · r̂) + 3mi(B̂e · r̂) + 3r̂i(m · B̂e)

‖r̂‖5
− 15r̂i

m · [(B̂e · r̂)r̂]

‖r̂‖7

]
(4.6)

So the derivative of T with respect to r̂1 = x̂ is

∂T

∂x̂
=
µ0

4π

[
3B̂e,x(m · r̂) + 3mx(B̂e · r̂) + 3x̂(m · B̂e)

‖r̂‖5
− 15x̂

m · [(B̂e · r̂)r̂]

‖r̂‖7

]
(4.7)

We know that

B̂e,x(m · r̂) = B̂e,x(mxx̂+myŷ +mz ẑ) and x̂(m · B̂e) = x̂(mxB̂e,x +myB̂e,y +mzB̂e,z).

Now if we let f1 =
3B̂e,x(m·̂r)+3mx(B̂e ·̂r)+3x̂(m·B̂e)

‖r̂‖5 , then we can rewrite f1 as

f1 =
3mx(B̂e,xx̂+ (B̂e · r̂) + B̂e,xx̂) + 3my(B̂e,xŷ + x̂B̂e,y) + 3mz(B̂e,xẑ + x̂B̂e,z)

‖r̂‖5
. (4.8)

Furthermore, let f2 = m·[(B̂e ·̂r)r̂]x̂
‖r̂‖7 then we can write f2 as:

f2 =
mx(B̂e · r̂)x̂2 +my(B̂e · r̂)x̂ŷ +mz(B̂e · r̂)x̂ẑ

‖r̂‖7
. (4.9)

Since in both equations (4.8) and (4.9) we have terms that are linear in mx,my or mz, we can
also rewrite ∂T

∂x̂ as the following summation:

∂T

∂x̂
=
µ0

4π
(f1 − 15f2) =

µ0

4π
(mx · t1 +my · t2 +mz · t3), (4.10)

where

t1 =
6B̂e,xx̂+ (B̂e · r̂)

‖r̂‖5
− 15

(B̂e · r̂)x̂2

‖r̂‖7
, t2 =

3B̂e,xŷ + 3x̂B̂e,y
‖r̂‖5

− 15
(B̂e · r̂)x̂ŷ

‖r̂‖7

and

t3 =
3B̂e,xẑ + 3x̂B̂e,z

‖r̂‖5
− 15

(B̂e · r̂)x̂ẑ

‖r̂‖7
.

If we repeat these steps for ∂T
∂ŷ and ∂T

∂ẑ (see Appendix B), then we can see that ∇T = G can be
written in the form of matrix vector multiplication Am, with A a 3× 3 matrix where

Ai,j =


6B̂e,ir̂i+3(B̂e ·̂r)

‖r̂‖5 − 15r̂i
r̂i(B̂e ·̂r)
‖r̂‖7 , for i = j and i, j = 1, 2, 3

3B̂e,ir̂j+3r̂iB̂e,j
‖r̂‖5 − 15r̂i

r̂j(B̂e ·̂r)
‖r̂‖7 , for i 6= j

. (4.11)

Since G̃ is an approximation of the true gradient G, so the gradient of T can be written as a
linear system Am = G̃. The system described above is just for one measurement. Now if we take
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N measurements and since the magnetic moment m must be the same for all N measurements,
we will get Ãm = Ĝ, where Ã is a 3N × 3 matrix and G̃ is a 3N × 1 vector that are given by:

Ã =


A1

A2
...
AN

 , Ĝ =


G̃1

G̃2
...

G̃N

 . (4.12)

where Aα is a 3×3 matrix defined as (4.4) and G̃α the gradient of the total fieldat the α-th mea-
surement.We can solve this system by using the method of least squares, so m = (ÃT Ã)−1ÃT G̃.

4.3 Nonlinear refinement

For the derivation of those two linear systems described in the previous section, we have assumed
that the measured gradient is equal to the true gradient. In practice it is not the case, the
measured gradient is just an approximation of the true gradient. It means that the solution that
we find by solving the two linear systems are not accurate. To increase the estimation accuracy,
we introduce a second step which describes a nonlinear problem. We will use equation(3.3) to
formulate this second step.

Nonlinear refinement. Suppose we have taken N measurements with our gradiometer, which
means we have a measured vector Ĝ defined as in equation (4.12). What we want to do is find
the moment m and position d that best satisfies the functional relation g = [g1 g2 · · · gN]T

with

gα(x) =


Bstar,α−Bport,α

Ltrans
(Bstar,α+Bport,α)−2Baft,α

2Llong
(Bstar,α+Bport,α)−2Bdown,α

2Lvert

 , with x =

[
d

m

]
.

We use the Levenberg–Marquardt algorithm to solve this problem. The position and the
moment that we have found by solving the two linear systems will be used as initial values for
solving this nonlinear refinement.

4.3.1 The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm (LMA) is an iterative method which is used to solve a
nonlinear least squares problem. Since LMA can be seen as a ”damped version” of the Gauss-
Newton method which is also a iterative solver for nonlinear least square problems, we will first
derive the Gauss-Newton method.

Nonlinear least squares problem [5]. Given a vector function f : Rn −→ Rm with m ≥ n.
For each fi(x), i = 1, 2, ...,m, is a nonlinear function defined over Rn. Our goal is to find

x∗ = argminx{F (x)} where F (x) = 1
2

∑m
i=1(fi(x))2 = 1

2‖f(x)‖2 = 1
2 f(x)T f(x).

Assume that f has continuous second partial derivatives, then the Taylor expansion yields:

f(x + h) = f(x) + J(x)h+O(‖h‖2), (4.13)

with J(x) the Jacobian matrix, Ji,j = ∂fi
∂xj

for i = 1, ...,m and j = 1, ..., n. The basis of the

Gauss-Newton method is the linear approximation of the components of f in the neighbourhood
of x, so for a small ‖h‖, equation (4.13) becomes:

f(x + h) ≈ f(x) + J(x)h. (4.14)
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So by definition and let f = f(x) and J = J(x) :

F (x + h) ≈ 1

2
(f + Jh)T (f + Jh) =

1

2
(fT + hTJT )(f + Jh)

=
1

2
fT f + hTJT f +

1

2
hTJTJh

= F (x) + hTJT f +
1

2
hTJTJh = L(h) (4.15)

Gauss-Newton is iterative, so given an initial value x0, this method produces a sequence of
vectors x1,x2, ... that converges to x∗. It means that for each step we need to find h that
minimizes L(h). Taking the gradient of L(h) respect to h we obtain the following expression:

∇L(h) = JT f + JTJh, and ∇Lh) = 0 =⇒ (JTJ)h = −JT f (4.16)

By solving equation (4.16) we will get a minimizer for L(h).
For the LMA we will get the following expression with damping:

(JTJ + µI)h = −JT f , (4.17)

I is the identity matrix and µ > 0 is the damping term. This damping term influences both the
direction and the size of the step h. Furthermore, the start value for µ has to be related to the
elements in J(x0)TJ(x0). If L(h) is a good approximation to F (x + h), with h calculated by
solving equation (4.17) and the updated vector x + h. Then the update is successful and we
will repeat this process with a decreased damping term. Otherwise, the damping term will be
increased and then iterates the process until we find a h such that L(h) is a good approximation
to F (x + h). More detailed explanation can be found in [7] .

Our nonlinear refinement is actually a data fitting problem, by letting f = G̃− g. We will
solve our problem with the function LMFnlsq in MATLAB, created by Miroslav Balda [8].

4.4 Acceptable results

Before we test our model, we first define what is an acceptable result for the location and the
moment.

Relative error for the position. Given the found position df by solving the first linear system
and the true position d, we define the relative error for the position as follow

rep = ‖d−df‖
h−dz ,

with h the z coordinate of the gradiometer in meters during the measurement and dz the z
component in meters where the magnetic object is located.

For the moment we will use the standard definition.

Relative error for the moment. Given the found moment mf by solving the first linear
system and the true moment m, we define the relative error for the moment as follow

rem = ‖m−mf‖
‖m‖ .

By multiplying the relative errors with 100%, we will have some insight about how much
the found solution differs from the true values. For the position, we say that a found solution
is acceptable if the relative error rep ≤ 0.1, or equivalently, rep ≤ 10%. For the moment, we
use the suggested maximum for the relative error in [1]. We have an acceptable solution for the
moment if rem ≤ 20%.



Chapter 5

Numerical experiment without noise

In this chapter, we will do a numerical experiment in the perfect scenario, i.e., without noise, to
see whether the model gives acceptable results. For this experiment we first solve the forward
problem and then use the simulated data from the forward problem to solve the inverse problem
using the method described in the previous chapter.

For this experiment, we assume that the gradiometer takes measurements along a horizontal
survey line at height h in meters, see Figure 5.1. We will first test our model at a fixed height
to see whether the model is accurate. After that, we vary the value of h to see whether the
altitude of the gradiometer affect the accuracy.

Figure 5.1: Setting for the experiment.

As mentioned before we assume that the Earth magnetic field Be is known to us with

Be =

19
1
50

 in µT .

Suppose the we have a survey with range of 400m and we take a total of 400 measurements.
Furthermore, for this experiment we first solve the forward problem when we have a magnetic
object located at

d =

 0
0
−4

 in meters with m =

1000
2000
3000

 in [Am2].
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Recall that Ltrans = 0.75m, Laft = 0.55m and Ldown = 0.25m. If we use those values to
simulate measured data in MATLAB and then solve the inverse problem. We see that the found
position and moment by solving the two linear systems, gives the following result:

df =

−0.2464
0.1655
−3.1271

 with mf =

 923.85
1744.94
2692.97

.

If we compute the relative error for the position and moment, we see that for the position we
have an relative error of 3.84% and for moment we have 10.86%. We conclude that for this
numerical experiment the nonlinear refinement is not even needed to obtain an acceptable result
for the position and the moment. To see whether the nonlinear refinement truly improves the
result, we use the found values as initial values for the refinement and the found position and
moment after refinement become:

df =

0.000382
0.000123
−3.998

 with mf =

 999.346
1998.954
2998.945

.

After the refinement, the relative errors for the position and moment are rep = 0.009192% and
rem = 0.0434%. To see whether we obtain acceptable values without the nonlinear refinement,
we vary the altitude of the gradiometer between 5m − 50m while the other values remain the
same as above.

Figure 5.2: Relative errors of position and moment.

In Figure 5.2 we have plotted the relative errors for the situation described above. We observe
that for the position we get an acceptable solution when the gradiometer is at a height above
5m. However, for this altitude, the result for the moment is not acceptable. We must have an
altitude at least 9m if we want to get acceptable values for both the moment and the position
without a nonlinear refinement. Since we have defined the z coordinate of the magnetic dipole is
−4m, so we get acceptable values if the altitude is at least 13m. From the figure above we also
observe that the nonlinear refinement always improves our results regardless of the altitude.



Chapter 6

Model with Noise

The gradiometer that we use in this project, is composed of four magnetometers. In practise,
there is always an intrinsic noise within each magnetometer. It means that the measured data
always contains noise. We use the measured data in both linear systems that we have to solve
in our inverse problem. In this chapter, we will see how the noise might affect our solutions.

6.1 Gaussian Noise

Suppose the intrinsic noise of the magnetometers are modeled as a uncorrelated Gaussian noise.
For each magnetometer, we define the measured total magnetic field that contains noise as
Bm = Btrue + e = ‖Btrue + δ‖, where δ ∼ N (µ, σ2I3). The Gaussian distribution has density
function:

p(x) =
1√

2πσ2
e−

1
2σ2

(x−µ)2R3 (6.1)

As suggested in [1], the Gaussian noise has zero mean and a standard deviation of 0.01nT . So
we have µ = 0 and σ = 0.01 · 10−9T . With the defined noise in the magnetometers, we get the
following expression for our gradiometer for each measurement:

G̃ =


(Btrue,star+e1)−(Btrue,port+e2)

Ltrans
(Btrue,star+e1)+(Btrue,port+e2)−2(Btrue,aft+e3)

2Llong
(Btrue,star+e1)+(Btrue,port+e2)−2(Btrue,down+e4)

2Lvert

 = G̃true + e, (6.2)

with G̃true the gradient without noise.

6.2 Revised model with noise

In our inverse problem, both linear systems use the measured data that contains noise. Recall
equation(4.3). We observe that both side of the equation are dependent on the measured data.
It means that for this linear system with Gaussian noise, we have to solve the following least
squares problem:

(Xtrue + E)d = Y + F, (6.3)

with E an N × 3 matrix and F an N × 1 vector for the measurement error. We call such a least
squares problem, the total least squares(TLS). For the second linear system, see equation
(4.12), we only use the measured data at the right side so this system becomes:

Ãm = Ĝtrue + e. (6.4)

23
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The situation of equation (6.4) is more familiar for us. So we will first analysis this problem
next section to see why some linear systems in this form might be unstable and how we can
solve this problem.

6.3 The second linear system with noise

Consider this linear system Ax = b, with A ∈ Rm×n,x ∈ Rn,b ∈ Rm and m ≥ n. We know
that for every matrix A, we can find the singular value decomposition of the form A = UΣV T ,
where U ∈ Rm×m and V ∈ Cn×n are orthogonal matrices. When the rank(A) = r < n, we have
Σ ∈ Rm×n of the following form:

Σ =

[
Σ1 0
0 0

]
,where Σ1 := diag(σ1, ..., σr) ∈ Rr×r. (6.5)

For i ∈ {1, 2, ..., r}, σi is the singular values of matrix A with σ1 ≥ σ2 ≥ ... ≥ σr > 0. As
mentioned before, an overdetermined system does not have an solution in most cases. When
we have a matrix A defined as above, we can use the pseudo-inverse of A to find the best-
approximation solution x†.

Definition (The pseudo-inverse)[6]. The matrix A† = V Σ†UT with

Σ† =

[
Σ−1

1 0
0 0

]
and Σ−1

1 := diag

(
1

σ1
, ...,

1

σr

)
, (6.6)

is called the pseudo-inverse of A.

If we know the pseudo-inverse, we can compute x† = A†b = V Σ†UTb. We denote V =
[v1 v2 · · · vn] and U = [u1 u2 · · · um]. Furthermore we know Σ† from equation(6.6). Then
we can write x† as:

x† = V Σ†UTb = V



1
σ1

uT
1 b

1
σ2

uT
2 b

...

1
σr

uT
r b

 =

r∑
i=1

uT
i b

σi
vi. (6.7)

Now we have derived an expression to find the best approximation solution, we will analysis the
stability of linear systems in the form of equation (6.4), i.e., Ax = btrue + e.

Definition Condition number [6]. Given the singular values with σ1 ≥ σ2 ≥ ... ≥ σr of matrix
A, then the condition number is defined as:

K(A) =
σ1

σr
. (6.8)

Theorem Condition number . Suppose that A ∈ Rm×n is a rectangular matrix. Let b, e ∈ Rm
some nonzero vectors and assume that Axe = b and Ax = b + e holds. Then

‖xe−x‖
‖xe‖ ≤ K(A) ‖e‖‖b‖ .

According to this theorem, the condition number of a matrix gives how sensitive the system is
for a small perturbation. So if σr � σ1, then we have a large condition number that might tends
to infinity. We call a system with a large condition number (when K(A) ≥ 106), ill-conditioned.
If a matrix is ill-conditioned, we can conclude from the theorem that the obtained solution can
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be far away from the true solution. When solving the system Ax = btrue + e using the pseudo-
inverse, we get the following by letting b = btrue + e in equation (6.7):

x† = A†(btrue + e) =
r∑
i=1

uT
i (btrue + e)

σi
vi =

r∑
i=1

uT
i btrue

σi
vi +

r∑
i=1

uT
i e

σi
vi (6.9)

We can conclude from equation above that the solution of an ill-condition problem with presence
of noise is not reliable for us.

6.3.1 Regularization

For an ill-conditioned system, regularization is needed. The idea behind the regularization
methods is to reduce the influence of noise on the best-approximate solution. One of the reg-
ularization methods is Tikhonov regularization. For the Tikhonov approach, we need to solve
the following problem

argmin
x
‖Ax− b‖2 + λ2‖Lx‖2, (6.10)

with λ > 0 is the regularization parameter and L is some matrix that consists of a-priori
information about the solution(s) of the system of equations Ax = b. When we take L as the
identity matrix I, then the we get the Tikhonov regularization with the following form:

argmin
x
‖Ax− b‖2 + λ2‖x‖2. (6.11)

It follows that the solution of equation (6.11) is

xλ = (ATA+ λI)−1ATb.

It is essential to find the correct value for λ such that the solution xλ is most optimal. One
way of finding the best λ is by using the “L-curve” method. A detailed explanation of this
method can be found in [9]. In this project, if regularization is needed, then we will use the
Regularization Tools in MATLAB which is created by Per Christian Hansen [10].

6.4 The first linear system with noise

Definition The Total Least Squares(TLS)[11]. Given an overdetermined linear system
Ax = b, if both sides of this linear system are perturbed, then we will get a total least squares of
the form

(A+ ∆A)x = (b + ∆b). (6.12)

This problem seeks to

min
∆A∈Cm×n, ∆b∈Cm

‖[∆A ∆b]‖F , subject to (b + ∆b) ∈ R(A+ ∆A). (6.13)

||A||F is the Frobenius norm of an arbitrary matrix A, which is defined as
√
trace(A∗A), where

A∗ stands for the conjugate transpose of A and trace(A∗A) is the sum of the elements on the
diagonal of A∗A. R(A) denotes the column space of matrix A. Once a minimizing ∆A and ∆b
are found, then any x satisfying (A+ ∆A)x = (b + ∆b) is called a TLS solution.
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The TLS problem can be analysed by using the singular value decomposition.
First, we rewrite Ax = b in the following form

[A b]

[
x
−1

]
= 0 (6.14)

Let the singular value decomposition of C = [A b] = UΣV T , with Σ := diag(σ1, ..., σn+1). If
σn+1 6= 0, then C is of rank n+1. It implies that b is not in the column space of A, so no solution
exists. To obtain a solution, the rank of C must be reduced to n. We can do this by using the
Eckart-Young-Mirsky theorem [11]. This theorem states that the best rank n approximation
of C which satisfies the TLS problem, can be found by using the n largest singular values and
their corresponding singular vectors. Therefore, the best rank n approximation of C, denote it
as [Â b̂], is given by

∑n
i=1 σiuiv

T
i . Then according to [11], the solution of TLS xTLS is given by

xTLS = − 1
vn+1,n+1


v1,n+1

v2,n+1
...

vn+1,n+1

,

if vn+1,n+1 6= 0. For finding the solution of TLS, we will use the function tls in MATLAB which
is created by Ivo Houtzager [13].



Chapter 7

Numerical experiment with noise

Recall the experiment that we have done in Chapter 5. We used a horizontal survey with a range
of 400 m and we took a total of 400 measurements. In this chapter, we repeat this experiment
with the same set up, but this time the measured data contains Gaussian noise defined in the
previous chapter. Recall the location and the moment of the magnetic object that we have used:

d =

 0
0
−4

 in m with m =

1000
2000
3000

 in Am2.

If we use those values to simulate data which contains noise and then solve the inverse problem.
The found position and moment are:

df =

 0.146
0.158
−2.866

 in m with mf =

 724.43
1693.85
2620.31

 in Am2.

The relative errors of the found values are rep = 4.81% and rem = 14, 97%. We see that just as
the situation without noise, both results are acceptable for us. To find out whether the altitude
of the gradiometer influences the accuracy of the found results, we vary the value of h from
5m− 50m, see Figure 7.1.

Figure 7.1: Relative errors of position and moment.
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The curves presented in the figure above, are the mean errors of the relative errors calculated
on 200 runs. We see for the position we must have an altitude between a range of 5m − 24m
while for the moment we must have a range between 8m − 22m. We can conclude that there
exists an optimal altitude range for this experiment. Since in this situation we have the dipole
at depth of −4m, so we might suggest that the true optimal altitude of the gradiometer must
be 12m − 27m. To check whether this intuition is correct, we repeat this experiment with d
located at the origin.

Figure 7.2: Relative errors of position and moment

From Figure 7.2 we can conclude that the optimal range of the gradiometer altitude must
between 12m and 27m. So even without the nonlinear refinement, we can find acceptable results
if the altitude of the gradiometer is between 12 m and 27 m. However, this method is limited.
Since we do not know the depth of the magnetic object in practise, it is hard to choose the correct
height of the gradiometer to receive acceptable results. For more experiments with different d
and m, see Appendix C.



Chapter 8

Conclusion and recommendations

8.1 Conclusion

The magnetic fields produced by a ferromagnetic object causes a magnetic anomaly to the local
Earth magnetic field. A method for localization and classification of a magnetic object with a
small magnetic moment, is shown in [1] by using a three-axis total field gradiometer. In this
project, we want to answer the following questions:

1. Is the method in [1] also useful for magnetic objects like sunken ships or containers with
the moment of 103Am2?

2. Does the altitude of the gradiometer influence the result? If the answer is yes, what is
then the optimal range for the gradiometer altitude?

A magnetic object can be seen as a magnetic point dipole, when the distance between the
magnetic target and the sensor is large. To answering those two questions, we have first derived
an expression for the magnetic field of a magnetic point dipole. After that we have constructed
a three-axis total field gradiometer that is composed of four magnetometers, see Figure 3.1. By
combining the measurements taken by the magnetometers, an approximation of the gradient is
obtained, see equation(3.3)). Afterwards, we have formulated the forward problem where we
calculate the gradients of the magnetic field during N measurements along a flown path. We
can solve this forward problem in three steps:

1. calculate the magnetic field caused by the target at the position of each magnetometer.

2. use results of step 1 to calculate the total field that we will measure with the four magne-
tometers.

3. calculate the gradient using equation(3.3).

The solution of the forward problem is used as the input data for the inverse problem. The
inverse problem consists of two steps. In the first step, we used the definition and theorem of the
Euler’s homogeneous functions to get two linear systems. By solving those two linear systems,
we get position and moment of the magnetic object that we are looking for. To improve the
accuracy of the obtained results from the first step, we have introduced the second step where
the gradiometer geometry is taken into account. For this step we used the found position and
moment of the first step as the initial values. We say that the results are acceptable, when the
relative error of the position is smaller or equal to 10% and the relative error of the moment
is smaller or equal to 20%. In the experiment without noise that we have set up in Chapter 5,
we found that the altitude of the gradiometer must be at least 23m to get acceptable values for

29



30 CHAPTER 8. CONCLUSION AND RECOMMENDATIONS

both the position and moment without refinement. Furthermore, we saw that the second step
significantly improves the results, see Figure 5.2.

To analyse the situation in practice, we have added an uncorrelated Gaussian noise with
zero mean and 0.01nT standard deviation to the magnetometers. Due to the fact that both
sides of the first linear system are dependent on the measured data, we get instead of a linear
least squares problem, a total least squares problem. For solving this problem, we can use the
singular value decomposition. For the second linear system, we only have the right side that
is perturbed by noise. We have analysed that the solution of the system is very sensitive for
noise, when the matrix is ill-conditioned. To make the calculation less sensitive to noise, we can
use a regularization method. The regularization parameters can be found by using the L-curve
method. We have set up an experiment with the same situation described as in Chapter 5,
but this time the measured data contains noise. We have found that the optimal range of the
altitude of the gradiometer without refinement, is 12m− 27m.

In conclusion, the method used in [1] is also useful for a magnetic object with a larger
moment and the optimal range for the altitude of the gradiometer is 12m − 27m for all three
considered experiments. Nevertheless, this method is limited since we do not know the depth of
the magnetic object. Therefore, it is hard to choose the correct altitude of the gradiometer.

8.2 Recommendations

Even though the goal for this project was achieved, there is more to further investigate. This
section explains only a few short ideas that could be considered as further research.

1. In this project we have simulated the total field at the position of the gradiometer. For
further research, one could assume that the total field at the position of the gradiometer
is the weighted average of the total field measured by the four magnetometers.

2. In this project, we have assumed that the earth magnetic field is known to us. For further
research, one could assume that the earth magnetic field is unknown and then check
whether the method of Euler deconvolution still works for finding the position and the
moment by using the three-axis total field gradiometer.

3. In this project, we consider a three-axis total field gradiometer, one can use for example
a tensor gradiometer to see whether similar algorithms exist for finding the location and
the moment.
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Appendix A

Derivation of ∂Tα
∂r̂i,α

Tα = Bs,α · B̂e =
µ0

4π

3[(m · r̂α)r̂α] · B̂e

‖r̂α‖5︸ ︷︷ ︸
a

−m · B̂e

‖r̂α‖3︸ ︷︷ ︸
b

 =⇒ ∂Tα
∂r̂i,α

=
µ0

4π
(
∂a

∂r̂i,α
− ∂b

∂r̂i,α
) (A.1)

a = 3[B̂e,x(mxxα +myyα +mzzα)xα + B̂e,y(mxxα +myyα +mzzα)yα + B̂e,z(mxxα +myyα +

mzzα)zα](x2
α + y2

α + z2
α)−

5
2

∂a
∂xα

= [B̂e,x(m · r̂α)+B̂e,xmxxα+B̂e,ymxyα+B̂e,zmxzα](x2
α+y2

α+z2
α)−

5
2−3·5·xα 3[(m·̂rα)r̂α]·B̂e

‖r̂α‖7

=
3B̂e,x(m·̂rα)+3mx(B̂e ·̂rα)

‖r̂α‖5 − 15xα
m·[(B̂e ·̂rα)r̂α]
‖r̂α‖7 .

The derivative of a respect to yα and zα are given by :

∂a
∂yα

=
3B̂e,y(m·̂rα)+3my(B̂e ·̂rα)

‖r̂α‖5 − 15yα
m·[(B̂e ·̂rα)r̂α]
‖r̂α‖7

∂a
∂zα

=
3B̂e,z(m·̂rα)+3mz(B̂e ·̂rα)

‖r̂α‖5 − 15zα
m·[(B̂e ·̂rα)r̂α]
‖r̂α‖7

We can generalize the derivative of a respect to r̂i,α with i = 1, 2, 3 as:

∂a

∂r̂i,α
=

3B̂e,i(m · r̂α) + 3mi(B̂e · r̂α)

‖r̂α‖5
− 15r̂i,α

m · [(B̂e · r̂α)r̂α]

‖r̂α‖7
(A.2)

b = m·B̂e
‖r̂α‖3 , since m · B̂e is not dependent on r̂α, we can write b = (m · B̂e) · (x2

α + y2
α + z2

α)−
3
2 .

The derivative of b respect to r̂i,α with i = 1, 2, 3 is :

∂b

∂r̂i,α
= −3r̂i,α

m · B̂e

‖r̂α‖5
(A.3)
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Appendix B

Derivation from equation(4.3)

We have derived that for all i the derivative of the magnetic anomaly T respect to r̂i is:

∂T

∂r̂i
=
µ0

4π

[
3B̂e,i(m · r̂) + 3mi(B̂e · r̂) + 3r̂i(m · B̂e)

‖r̂‖5
− 15r̂i

m · [(B̂e · r̂)r̂]

‖r̂‖7

]
, r̂ =


x̂

ŷ

ẑ

 (B.1)

So the derivative of T respect to r̂x = x̂ is

∂T

∂x̂
=
µ0

4π

[
3B̂e,x(m · r̂) + 3mx(B̂e · r̂) + 3x̂(m · B̂e)

‖r̂‖5
− 15x̂

m · [(B̂e · r̂)r̂]

‖r̂‖7

]
(B.2)

We know that

B̂e,x(m · r̂) = B̂e,x(mxx̂+myŷ +mz ẑ) and x̂(m · B̂e) = x̂(mxB̂e,x +myB̂e,y +mzB̂e,z).

Now if we let f1 =
3B̂e,x(m·̂r)+3mx(B̂e ·̂r)+3x̂(m·B̂e)

‖r̂‖5 , then we can rewrite f1 as following:

f1 =
3mx(B̂e,xx̂+ (B̂e · r̂) + B̂e,xx̂) + 3my(B̂e,xŷ + x̂B̂e,y) + 3mz(B̂e,xẑ + x̂B̂e,z)

‖r̂‖5
. (B.3)

Furthermore, let f2 = m·[(B̂e ·̂r)r̂]x̂
‖r̂‖7 then we can write f2 as:

f2 =
mx(B̂e · r̂)x̂2 +my(B̂e · r̂)x̂ŷ +mz(B̂e · r̂)x̂ẑ

‖r̂‖7
. (B.4)

Since in both equations (B.3) and (B.4) we have terms that are only dependent on mx,myor mz,
so we can also rewrite ∂T

∂x̂ as the following summation:

∂T

∂x̂
=
µ0

4π
(f1 − 15f2) =

µ0

4π
(mx · t1 +my · t2 +mz · t3), (B.5)

where

t1 =
6B̂e,xx̂+ (B̂e · r̂)

‖r̂‖5
− 15

(B̂e · r̂)x̂2

‖r̂‖7
, t2 =

3B̂e,xx̂+ 3x̂B̂e,y
‖r̂‖5

− 15
(B̂e · r̂)x̂ŷ

‖r̂‖7
and

t3 =
3B̂e,xx̂+ 3x̂B̂e,z

‖r̂‖5
− 15

(B̂e · r̂)x̂ẑ

‖r̂‖7
.
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If derive the derivative of T respect to r̂y and r̂z at the same way, we will get the following
expressions for ∂T

∂ŷ and ∂T
∂ẑ :

∂T

∂ŷ
=
µ0

4π
(mx · t4 +my · t5 +mz · t6) (B.6)

t4 =
3B̂e,yx̂+ 3ŷB̂e,x

‖r̂‖5
− 15

(B̂e · r̂)x̂ŷ

‖r̂‖7
, t5 =

6B̂e,yŷ + (B̂e · r̂)

‖r̂‖5
− 15

(B̂e · r̂)ŷ2

‖r̂‖7
and

t6 =
3B̂e,y ẑ + 3ŷB̂e,z

‖r̂‖5
− 15

(B̂e · r̂)ŷẑ

‖r̂‖7
.

∂T

∂ẑ
=
µ0

4π
(mx · t7 +my · t8 +mz · t9) (B.7)

t7 =
3B̂e,xx̂+ 3x̂B̂e,x

‖r̂‖5
− 15

(B̂e · r̂)x̂ẑ

‖r̂‖7
, t8 =

3B̂e,y ẑ + 3ŷB̂e,z
‖r̂‖5

− 15
(B̂e · r̂)ŷẑ

‖r̂‖7
.

t9 =
6B̂e,z ẑ + (B̂e · r̂)

‖r̂‖5
− 15

(B̂e · r̂)ẑ2

‖r̂‖7
.

So we can write ∇T in the form of matrix vector multiplication:

∇T =


t1 t2 t3

t4 t5 t6

t7 t8 t9]


︸ ︷︷ ︸

A


mx

my

mz

 (B.8)

For matrix A, the elements of the diagonal are:

6B̂e,ir̂i + 3(B̂e · r̂)

‖r̂‖5
− 15r̂i

r̂i(B̂e · r̂)

‖r̂‖7
, for i = 1, 2, 3

and the elements off diagonal:

3B̂e,ir̂j + 3r̂iB̂e,j
‖r̂‖5

− 15r̂i
r̂j(B̂e · r̂)

‖r̂‖7

for i = 1, 2, 3 for the rows and j = 1, 2, 3 for the columns.



Appendix C

Numerical experiments

C.1 Experiment 1

If we have magnetic object with:

d =

 1
5
−6

 in meters with m =

3000
2000
1000

 in [Am2].

The found results are by solving the two linear systems:

df =

[
1.244

5.371− 4.576

]
in meters with mf =

2440.900
1657.727
907.552

 in [Am2].

The relative errors are rep = 5.735% and 17.694%. For both we have acceptable results. If we
vary the altitude from 5m − 50m, we see that the optimal range of the altitude is 5m − 21m.
By adding the depth of the magnetic dipole to the range, the optimal range is 11m− 27m.

Figure C.1: Relative errors of position and moment
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C.2 Experiment 2

If we have magnetic object with:

d =

 5
0
−1

 in meters with m =

3000
1000
5000

 in [Am2].

The found results are by solving the two linear systems:

df =

 5.497
−0.100
−4.591

 in meters with mf =

2089.672
935.464
4335.310

 in [Am2].

And the relative errors are rep = 5.760% and rem = 19.084%. So for this experiment we get
acceptable results. If we vary the altitude from 5m− 50m, we see that the optimal range of the
altitude is 11m − 26m. Since we have the dipole at depth −1m, we can conclude the optimal
range must be 12m− 27m.

Figure C.2: Relative errors of position and moment
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