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ABSTRACT

We introduce a Language-consistent multi-lingual Open Relation
Extraction Model (LOREM) for finding relation tuples of any type
between entities in unstructured texts. LOREM does not rely on
language-specific knowledge or external NLP tools such as transla-
tors or PoS-taggers, and exploits information and structures that are
consistent over different languages. This allows our model to be eas-
ily extended with only limited training efforts to new languages, but
also provides a boost to performance for a given single language. An
extensive evaluation performed on 5 languages shows that LOREM
outperforms state-of-the-art mono-lingual and cross-lingual open
relation extractors. Moreover, experiments on languages with no or
only little training data indicate that LOREM generalizes to other
languages than the languages that it is trained on.

CCS CONCEPTS

+ Computing methodologies — Information extraction; Ma-
chine learning approaches; « Information systems — Data ex-
traction and integration.
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1 INTRODUCTION

Extracting relationships between entities from text is a core building
block for (semi-)automatically creating structured knowledge bases.
Relation extractors focusing on lexical features and smaller sets of
relationship types have shown to be effective, especially in defined
domains like bio-medical [9, 18] or law. However, they struggle in
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less focused applications like general-purpose Web or Social Media
mining which are not restricted in relation type or language used.
In this paper, we target this use case with a novel open relation
extraction model which is also coping with multi-linguality.

Open Relation Extraction (ORE) is defined as the process of
discovering arbitrary semantic connections between entities in
unstructured texts [5]. Given an input sentence such as “Turing was
born in England in 1912" and two entities like < Turing, England>, an
ORE system should extract a sub-string which entails the semantic
relation between the two entities (i.e. “was born in").

Initially, ORE research focused on training sequence tagging
models by utilizing external NLP tools (such as POS taggers) and
manually defined lexical and syntactic features [1, 6, 7, 16]. The
dependency on external NLP tools results in error propagation.
Also, most of these tools are developed for English only hindering
the adoption of ORE algorithms to other languages. Although being
a rough estimate, various cross-over studies imply that around 70%
of the internet is written in languages other than English [20]. This
indicates a need for more generic, language-agnostic ORE models.
Recent approaches [4, 12, 19, 23] employed deep neural networks
to automatically learn relation patterns from large training sets
to tackle the problem of manually defining features and language
structures for multiple languages. However, they still require ad-
ditional NLP tools for pre-processing text such as translators or
dependency parsers, thus limiting easy extension to new languages.

Our goal is to exploit similarities and pattern consistencies which
exist between many natural languages to replace those language-
specific external tools. Recently, Relaxed Cross-domain Similarity
Local Scaling (RCSLS) [13] was presented, a word embedding align-
ment approach which exploits the inter-dependencies between
any two languages and maps all monolingual embeddings into a
shared multilingual embedding space. In a similar fashion, we lever-
age existing pre-trained multilingual word embeddings (which are
currently available for 44 languages'). The intuition behind these
efforts is that some languages share common ancestry, and thus ex-
hibit similarities in grammar and vocabulary. We therefore assume
that also their trained relation extractors can support each other,
which is especially valuable for use cases where a well-trained
model is available, but relation extraction is required for a resource-
scarce language. For example, we can show that a richly trained

Uhttps://fasttext.cc/
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English relation extraction model (for which many manually an-
notated training corpora are available) can significantly boost the
performance of a poorly trained Dutch model (for which only very
few training samples are available.)

Based on this intuition, we present LOREM, a model that harvests
information that is consistent over languages for Open Relation
Extraction. LOREM depends only on monolingual ORE training data
and multilingual word embeddings, it can thus be easily extended
to new languages.

We make the following contributions:

e We introduce a Language-consistent Open Relation Extrac-
tion Model (LOREM). To the best of our knowledge, LOREM
is the first open relation extractor that utilizes language-
consistent relation structures to improve open relation ex-
traction performance across multiple languages. In addition
LOREM does not depend on language-specific knowledge or
external NLP tools such as translators or dependency parsers,
thus allowing for easy expansion to new languages.

e To the best of our knowledge, we are the first to employ
multilingual, aligned word embeddings as the input of a mul-
tilingual relation extractor. Our experiments show that this
improves the performance over using conventional mono-
lingual word embeddings.

e We present experimental results on five high-resource lan-
guages showing that LOREM outperforms state-of-the-art
mono-lingual and cross-lingual open relation extractors. Ad-
ditionally we present experiments on no- and low-resource
languages which demonstrate the ease and effectiveness of
expanding LOREM to additional languages. This shows that
language consistency can not only boost extraction perfor-
mance for low-resource languages (like Dutch which can
benefit from English), but also high-resource languages (like
a well-trained English model which still benefits slightly
from e.g. a French one),

The source code of LOREM is made publicly available on https:
//github.com/tomharting/LOREM.

2 RELATED WORK

From the literature, we identify two paradigms; closed and open
relation extraction. For the closed paradigm, the goal is to classify a
sentence with respect to a pre-defined set of relation classes. Banko
et al. [2] argue that requiring pre-defined relation classes is too lim-
iting for many real-world applications. To alleviate this limitation,
they propose the open relation extraction (ORE) paradigm. The
vast majority of ORE research is presented for the English language.
Although multilingual methods were proposed, they either depend
on bilingual training data or solely work in the closed relation
extraction domain.

2.1 English Open Relation Extraction

EORE was first introduced by Banko et al. [2]. Conventional models
use lexical and syntactic features that rely on external NLP tools and
language-specific relation structures. To avoid error propagation by
these external tools and alleviate the burden of designing manual
features, multiple neural open relation extractors were proposed
[4, 12, 19]. Jia et al. [12] present one of the current state-of-the-art
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model called NST (Neural Sequence Tagger). They define a tagging
scheme and predict a tag for each word in the input sentence. For
this purpose, they jointly train a CNN and bi-LSTM. The output of
these models is fed into a final CRF layer to end up with the final
prediction. Their experiments show that CNNs and LSTMs provide
complementary information for the RE task.

Even though recent research efforts yield state-of-the-art results
for the ORE task by utilizing neural network based models, these
works are solely focused on the English language and will encounter
two weaknesses when applied in a multilingual setting. First, the
vast majority of these systems use external NLP tools such as PoS-
taggers and dependency parsers [1, 6, 7, 16] and need to be adapted
to use tools for the given language, which is a non-trivial process.
Second, EORE would fail to exploit information that is present
over multiple languages (language-consistent patterns). Both of
these weaknesses are addressed by two different multilingual RE
techniques; cross-lingual RE and language-consistent RE. Cross-
lingual systems try to extract relations from a source language by
exploiting information and systems from a target language, thereby
removing the need for a labelled training set or NLP tools in the
source language. On the other hand, language-consistent systems
exploit information that is present in multiple languages.

2.2 Cross-lingual Open Relation Extraction

Cross-lingual approaches can be used when we need to extract
relations from a source language for which we do not have a labelled
training set. We do however need to possess either a performant
translator [8] or a sufficiently large bi-text corpus between English
and the source language [24]. In recent years multiple cross-lingual
approaches are introduced [8, 23, 24]. Typically, a cross-lingual
system translates the source language into the target language (e.g.
English) and employs an existing relation extractor. In an effort
to relax the translator assumption and to tailor the translator to
the RE task at hand, Zhang et al. [23] present their joint Machine
Translation/Information Extraction (MT/IE) system. Instead of first
translating the source text and then applying a relation extractor,
they jointly train a machine translation and relation extraction
model. The translator assumption is replaced by the assumption
that a bi-text corpus (e.g. a corpus of Chinese sentences and their
aligned English translations) is available.

2.3 Language-consistent Relation Extraction

To remove the dependency on bi-text corpora or translators and to
introduce a mechanism for exploiting information that is consistent
over languages, language-consistent relation extraction was pro-
posed. Language-consistent RE literature [14] assumes that relation
patterns in sentences are substantially consistent between differ-
ent languages. This assumption can be exploited to train a single
model which gathers information from multiple languages. In the
previous section, we have seen that cross-lingual relation extractors
exist for the open RE domain. In contrast, language-consistent rela-
tion extractors are currently solely proposed for the closed domain
[14, 21].

Wang et al. [21] train a separate language-individual model for
every language and one language-consistent model on all languages
in the closed RE paradigm. By combining both models, they can
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utilize relation patterns that are specific to languages as well as
patterns that are consistent over languages. To ensure that the
representations of sentences are aligned over multiple languages,
they use an adverserial training approach. To obtain the same latent
consistency among languages in similar NLP tasks, multilingual
word embeddings were proposed [3, 13] which are trained with
the specific goal to align similar words over multiple languages.
Multilingual word embeddings use information from multiple high
resource languages to create a shared embedding space in which
also low-resource language can be represented.

Our work is inspired by Jia et al. [12] and Wang et al. [21]. In
contrast, LOREM utilizes language-consistent information within
the Open Relation Extraction domain and employs multilingual
embeddings [13] for multilingual relation extraction. Our approach
does not rely on any external NLP tools or additional bilingual
training data, ensuring low-cost extendibility to new languages.

3 LOREM: LANGUAGE-CONSISTENT OPEN
RELATION EXTRACTION MODEL

In a nutshell, the idea behind our Language-consistent Open Rela-
tion Extraction Model is to start with several language-individual
models for each required language. This means that for each lan-
guage, at least some training data needs to be available (however,
as we can show in our experiments for the Dutch language, it can
be sufficient to have only a few hundred training samples available
which one of the authors could easily provide by himself.) In Figure
1, one language-individual model (to the left) is depicted, but to
take full advantage of LOREM, several of such models should be
available. We base these models on Neural Sequence Tagging (NST)
[12], a recent state-of-the-art approach for (mono-lingual) open
relation extraction.

To exploit consistencies between the languages available to the
system, we additionally train a language-consistent model using all
available languages. The techniques for combining the individual
models and the language-consistent model is inspired by AMNRE
[21] (a model for language-consistent relation extraction, which is
strictly limited to a closed domain of few relationship types. How-
ever, we changed the workflow of AMNRE considerably to work
with the NST models, e.g. by switching to multilingual embeddings).
In the current version of LOREM, only one language-consistent
model for any number of languages is used. But as discussed in
the conclusions, we see potential for having several of different
language-independent models which are trained on selected sub-
sets of the available languages (e.g., those languages which share
structural similarities / ancestry).

3.1 Input Embeddings

An input sentence is encoded using two different types of pre-
trained word embeddings, one for use with the language-consistent
model and one for use with the language-individual models. For
the language-individual models, we use conventional pre-trained
word embeddings. In Figure 1, these embeddings are represented in
blue on the left. The training sentences of the language-individual
model all come from the same language, and we expect that this
model finds relation structures that are specific to that individual
language.
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Figure 1: Architecture of our Language-consistent Open Re-
lation Extraction Model (LOREM).

In order to achieve latent consistency among languages, we pio-
neer the use of multilingual embeddings for the language-consistent
model [13]. By using embeddings that are aligned over languages,
we hypothesize that we can ease the burden of the CNN/BiLSTM
layer to extract language-consistent patterns. Here, the intuition is
that the multi-lingual embedding prevents language-specific clus-
ters in the embedding space (such clusters naturally happen when
using multiple mono-lingual embeddings). Thus, related or similar
words should be close no matter their original language which sup-
ports discovery of language-consistent patterns. Note that we use
pre-trained embeddings in our current version of LOREM. In sce-
narios where such dependencies are undesired, such embeddings
could also be custom-learned during system setup.

In Figure 1, these embeddings are represented in purple on the
right. For this model, the training sentences come from multiple
languages. Thus, we expect this model to extract relation patterns
consistent over these language.

In addition to word embeddings, entity tag vectors are added to
the input. These are simple one-hot encoded vectors which indicate
if the current word is part of the first, second or no relation entity.
Please note that in contrast to the NST model, we do not use Part-
of-Speech tags since these introduce a dependency on PoS-taggers.

The input sentence is represented as a k-dimensional embedding
sequence X = {wy, Wy, ..., W }, where w; is the representation of
the t*" word of an input sentence that has n words. Here, k = k;
+ k¢, ki and k. are the dimensonalities of the language-individual
and -consistent model input respectively. k; = kmono + ke and ke =
kmuiti + ke, where kpmono is the dimensionality of the monolingual
word embedding, ky,,;;; of the multilingual word embedding and
ke of the entity tag vector.
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3.2 NST Layers

The next four layers (CNN/BIiLSTM, concatenation, CRF, model
prediction) are identical to the NST model. We shortly reiterate the
NST model’s general architecture, a more detailed description can
be found in the original NST paper [12]. Relational words tend to
occur in the neighbourhoods of entities. Therefore, certain parts
of the input sentence might have a higher chance of containing
relation words than others. A CNN is used to capture this local
feature information from the input sentence. At the same time, a
bidirectional LSTM is used to capture the forward and backward
context of each word, including long-distance relations. By con-
catenating the outputs of the CNN and the forward and backward
pass of the LSTM, a continuous representation of each word in the
input sentence is formed. Next, these representations are used as
the input for a straightforward CRF layer, which tags a word using
the NST tagging scheme.

Tag | Meaning

R-S | Single word relation sub-string.

R-B | Beginning of relation sub-string.

R-I | Inside the relation sub-string.

R-E | Ending of relation sub-string.

o) Outside the relation sub-string.
Table 1: NST tagging as proposed by Jia et al. [12].

The NST tagging scheme consists of five possible relation tags,
which can be found in Table 1. The sentence “Alan Turing was born
in England." should be tagged as follows; “Alanp Turingo wasg—g
borng_1 ing_g Englandp .0 "

The output of the NST layers are two prediction sequences
Vind = 11,12, ...ip} and y,,,, = {c1,¢2,...,cp}, where y; 4 con-
tains the predictions of the language-individual model and y,,,,
contains the predictions of the language-consistent model. i; and c;
are the 5-dimensional prediction vectors of the language-individual
and -consistent models respectively. For the original NST model,
these are binary vectors which contain a 1 for the predicted tag and
a 0 for all other tags. After our alteration, these vectors contain a
probability score for each of the possible relation tags. This allows
us to fittingly combine the predictions of the language-individual
and -consistent models in the next layer.

3.3 Combination Layer
In the last layer, we define the final probability sequence by y =
{P1- Py, - Py} With
pP; =i: O ¢y, (1)
for the t'" word in the input sentence?. The output tag sequence is
defined by z = {z1, z2, ..., zp } where
Zp = argmax; py; (2)

and where py; is the j’ h element of p:-
LOREM might (rarely) yield tag sequences which are invalid. This
is a common issue with sequence taggers, including also vanilla

2@ is used as the Hadamard product.
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NST. For example, the tag for a single word relation (R-S) can
not be followed by a tag for the end of a multi-word relation (R-
E). In this case, the first tag could be changed to R-B to form a
valid tag sequence. We create two different versions of LOREM,
LOREM_/, 4, Which alters invalid sequences to valid sequences and
LOREM which allows invalid sequences. To create LOREM ¢ qn,
we transfer the predicted tags to binary tags (R if the word is in the
relation, O if it is not). Next, we specify the R tags so that the first R
occurrence in a sentence will become R-B for a multi-word relation
and R-S for a single-word relation. Similarly, the last R occurrence
will become R-E and the middle R occurrences will become R-I for a
multi-word relation. Please note that this approach solely influences
the specific relation tag that is given to a word, it does not influence
whether a word is tagged as being part of the relation or not.

4 EXPERIMENTS

We present experimental results investigating the behaviour of
LOREM and its sub-models guided by the following hypotheses:

H1: For high-resource (i.e. 100k+ sentences with tagged open
relations) languages, LOREM outperforms state-of-the-art
monolingual open relation extractors (including NST) by ad-
ditionally harvesting language-consistent relation patterns
from multilingual texts.

H2: Multilingual word embeddings improve the performance of
the language-consistent sub-model, and thereby the perfor-
mance of LOREM by introducing a latent consistency among
languages.

H3: For low-resource (in our case ~750 tagged sentences) and
no-resource (i.e. no sentences with tagged open relations)
languages, our approach is able to outperform language-
individual models by harvesting language-consistent rela-
tion patterns from multilingual texts and by utilizing models
of languages that have a similar origin.

Our model uses the hyper-parameters that were proposed by Jia et
al. [12] for their NST model. We evaluate the performance of our
approach using precision, recall and F;-score.

4.1 Datasets

Information about the used training and test data is presented in
Table 2. We used data from the following datasets, covering English,
Spanish, French, Hindi, Russian, Italian, and Dutch.?

WMORC [8] WMORC contains manually annotated open relation
extraction data for 3 languages (WMORC},,1mqr) and auto-
matically tagged (and thus less reliable) relation data for 61
languages, created using a cross-lingual projection approach
(WMORC 4 ¢0)- The sentences are gathered from Wikipedia.

NeuralOIE [4] English dataset created by using only high-confidence
extractions of an existing relation extractor [15] from Wikipedia
sentences.

ClauslE [6] Three manually annotated English test sets from Wikipedia
and New York Times sentences. In line with existing litera-
ture, we present averaged results over these three test sets
for the English language.

3We selected these languages, since these are the only languages for which we could
find openly available test data.
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High No Low
English Spanish French ‘ Hindi Russian ITtalian Dutch
# Training sentences 576,462 429,413 468,625 280,815 550,720 0 750
# Test sentences 2,191 246 512 622 573 10,000 100
Origin training data | NeuralOIE | WMORCgayto | WMORCgayto WMORCg4yz0 WMORC,yz0 - WMORCgayz0
Origin test data ClauslE RWP WMORCuman | WMORChL,man | WMORChyman | WMORC gy 10 MC

Table 2: Description of the datasets used in our experiments for high-, no- and low-resource languages. Legend: RWP — Raw

Web/Parallel En-Sp; MC - Manually Created

Raw Web/Parallel En-Sp [25, 26] Two manually annotated Span-
ish test sets from school text book and web page sentences.

Custom For Dutch, we created our own test set by having a native
speaker tag 100 random Dutch Wikipedia sentences (since
the Dutch sentences contained in WMORC ;0 seemed to
be of too low quality to be used for testing due to their
automatically generated nature).

The size of our high-resource training sets (En, Sp, Fr, Hi, Ru) is
comparable to the dataset used in the original NST paper [12]. More-
over, early tests did not show substantial benefits of adding more
data after this point. We approach Dutch from a low-resource sce-
nario, so we only sample 750 Dutch sentences from WMORC 4y, 10
for training. We don’t use any Italian training data, since Italian is
used as a no-resource language in our experiments (i.e. for Italian,
there is no language-individual NST model available during the
evaluations, only the language-consistent one). For training the
language-consistent model, we sample the high-resource datasets
presented in Table 2, so that the combined set of all five languages
contains 450,000 - 550,000 training sentences. The selected sam-
ples are balanced across these languages. This way, we can make a
fair comparison between the language-individual and -consistent
sub-models since they are trained on the same amount of training
data.

Given the very limited scope of existing multilingual open rela-
tion extraction literature, there are only very few results presented
for these datasets ('Origin test data’ in 2) . Moreover, these were the
only publicly available ORE test sets we could find for non-English
languages. The Italian test set is created by sampling 10,000 sen-
tences from WMORC 4. Since these sentences are automatically
tagged, we do expect a higher noise level than in the manually
tagged test sets.

For the language-individual model, we use FastText word em-
beddings [11] which are trained on Common Crawl and Wikipedia
dataset. For the language-consistent model, we use pre-trained mul-
tilingual embeddings which are released by FastText [13] for 44
languages. The vectors were trained on a Wikipedia dataset. The
dimensionality of both embeddings is 300.

4.2 Comparison Methods

During our experiments, we compare LOREM to a range of previ-
ously proposed methods. For English, we compare LOREM to the
same baseline systems that were used during the evaluation of the
NST model by Jia et al. [12]. These include:
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NST,o—pos [12] The NST model forms the underlying model of
LOREM, yet there are differences between the two. The orig-
inal NST model does not contain a language-consistent part.
We present the results for NST without PoS-tags for a fair
comparison.

Reverb [7] Reverb exploits syntactic and lexical constraints on
binary relations expressed by verbs.

OLLIE [16] This model designs complex patterns using syntactic
processing (e.g. dependency parsers).

ClauslE [6] ClauslE exploits linguistic knowledge about English
grammar to detect and identify clauses and their grammatical
function.

Open IE-4.x [15] This is a combination of a rule-based Open IE
system and a system which analyzes the hierarchical struc-
ture between semantic frames to construct multi-verb open
relation phrases.

For Spanish, we compare LOREM to;

ExtrHech [26] A system based on syntactic constraints over PoS-
tag sequences targeted at Spanish.

ArgOE [10] ArgOE uses dependency parsers to extract a set of
propositions for different argument structures.

Finally, we compare LOREM to a cross-lingual system presented
by Faruqui et al. [8] which utilizes a translator and an English ORE
system.

5 EXPERIMENTAL RESULTS

H1: LOREM for High-resource Languages

Table 3 contains the experimental results of LOREM and the com-
parison methods on five different high-resource test languages. We
find that both LOREM models outperform all English baseline sys-
tems in terms of recall and F;-scores. Focusing on the comparison
with the NST model, we find that LOREM outperforms NST on
precision, recall and therefore F;-score. The high F;-scores of our
LOREM models are mainly due to the higher recall scores, compared
to other systems. LOREM achieves the best presented F;-score on
the ClausIE datasets when PoS-tags are not used. We also find that
LOREM achieves comparable results to the NST baseline that does
include PoS-tags which obtains 0.869, 0.735 and 0.796 in terms of
precision, recall and F;-score [12]. However, LOREM does have
the advantage that it does not rely on external NLP tools and can
therefore be more easily extended to new languages.

Next, we compare LOREM to two Spanish open relation extrac-
tors. It is important to note that both existing models heavily rely on
semantic constraints and external NLP tools. For ArgOE the authors
only present a precision score. The results show that LOREM is
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English Spanish French Hindi Russian
Model P R F P R Fy P R F | P R F | P R F
Our work
LOREM 801 757 .782 | .615 522 564 783 715 .747 | 900 598 .719 | .762 .719 .740

LOREM,jeqn | 782 .765 774 | 585 547 564
Language-ind. | .796 747 771 | 595 498 541
Language-con. | .792 734 762 | .583 471 521

726 729 727 | 687 .618 .651 | .709 .726 .718
.781 .693 735 | 878 .540 .667 | .755 .741 .748
733 673 702 | 813 566 .667 | .712 .690 .701

English
NST,0-Pos 783 708 .744 - - - - - - - - - - _ _
Reverb 641 162 .259 - - - - - - - - - - - R
OLLIE 985 242 389 - - - - - - - - - - - _
ClauslE .801 .531  .638 - - - - - - - - - - , ;
Open IE-4.x 792 331 467 - - - - - - - - - - - -
Spanish
ExtrHech - - - 0.710 0.595 0.647 - - - - - - - - -
ArgOE - - - | 0500 - - - - . . - - - . _

Cross-lingual
Faruqui et al. -

Table 3: Results of LOREM, its sub-models and existin

outperformed by ExtrHech on the Spanish datasets. It does however
achieve a higher precision than ArgOE. Even though the evaluation
results are not quite as high as the current state-of-the-art model,
LOREM does have the big advantage that a user does not have to
manually define semantic constrains. The drop in performance is
a clear trade-off with the time and labor involved in building the
ExtrHech model.

We now turn our attention towards the three remaining test
languages. To the best of our knowledge, there exists only one
system for which results are published on the WMORC},, ;n1an test
set, being the cross-lingual model by Faruqui et al. [8]. For this
model, the source code is not available and only precision scores are
presented. We find that the cross-lingual model slightly outperforms
LOREM in terms of the French precision score. However, LOREM
clearly outperforms the cross-lingual model on both Hindi and
Russian. This might be caused by the fact that the cross-lingual
model is heavily dependent on a translator from English to the
target language and an existing English relation extractor. LOREM
eliminates this dependency by introducing a language-consistent
component. The results indicate that this improves the generalizing
capabilities over languages, providing prove for the validity of
hypothesis 1.

In order to investigate how well each submodel in LOREM per-
forms, we presented the results obtained by the sub-models in Table
3. LOREM generally outperforms both the language-individual and -
consistent model, showing the merit of combining these sub-models.
This falls in line with the conclusions presented by Wang et al. [21]
for the closed domain.

In addition to these findings, we also observe a returning pat-
tern between LOREM and LOREM_,4,,. For all languages, LOREM
achieves higher precision and F;-scores, indicating a better over-
all performance. However, cleaning the prediction results does
consistently improve the recall of the model. Thus, we conclude
that LOREM generally outperforms LOREM /.4, yet LOREM jeun
should be used when recall is crucial for the application domain.
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0.816 - -
g models. Bolds indicate the best values per language.

0.649 - - 0.635 - -

Another, somewhat surprising, observation from Table 3 is the
reasonably good performance of the language-consistent model,
given the fact that this sub-model is not trained on one specific
language. From these results, we wondered if relation structures
truly differ a lot between languages. It could be the case that a
language-individual model already performs reasonably well on
other languages, eliminating the need for a language-consistent
model. To test this hypothesis, we compare the average results of
the language-consistent model over all five languages to the average
results of the language-individual models on these languages. The
results are presented in Table 4. The results clearly counteract the
hypothesis, showing the merit of a language-consistent model over
simply using one language-individual model for every language.

Model | P R F

Language-consistent 727 627 .671
English language-individual | .393 317 .347
Spanish language-individual | .586 .390  .455
French language-individual | .679 464 .543
Hindi language-individual 266 .110 138
Russian language-individual | .632 483 .546

Table 4: The average prediction results of the language-
consistent model and language-individual models on all test
languages. The bolds indicate the best values.

H2: Multi VS Monolingual Embedding

Current multilingual relation extraction literature utilizes monolin-
gual word embeddings to encode sentences of different languages.
However, we expect the model to extract patterns that are con-
sistent over languages. Therefore, the model should ignore the
language in which an input word is written. Naturally, aligning
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these word embeddings of languages would ease the burden of the
language-consistent model to extract language-consistent relation
patterns.

To examine this hypothesis, we compare the results obtained by
using both non-aligned (monolingual) and aligned (multilingual)
word embeddings. All other variables, such as training sets, model
architectures and parameters, remain the same. In Figure 2, we
present the results of this experiment. Additionally, we provide the
impact of both approaches on the full LOREM model, showing that
improvements for the language-consistent sub-model indeed lead
to improvements of the full model. We observe that the aligned
word embeddings yield better performance on every language for
both the language-consistent sub-model and the full LOREM model
in terms of Fj-score. Given these test results, we can confirm the
validity of hypothesis 2.

H3: LOREM for Low/No-resource Languages

The evaluation results for low- and no-resource languages are
shown in Table 5 and 6. If no open relation extraction training
data is available for a certain language, our model can still be uti-
lized in three possible ways: 1) we can use the language-consistent
sub-model trained on other languages, 2) we can use a language-
individual model of a language that has a similar origin to the
current language 3) or we can combine both into a full LOREM
model. If we also have a very small training set of around 750 sen-
tences (for the low-resource scenario), we can additionally train a
language-individual model using it.

Dutch Italian

Model P R Fi | P R Fy

Language-con. | .705 .633 .667 | .506 .342 .408
English 655 582 616 | .293 232 .259
Spanish 441 306 361 | 435 203 277
French 685 510 585 | 352 217 .268
Hindi 000 .000 .000 | 362 .029 .054
Russian 703 265 385 | 393 164 .232
LOREM 744 622 678 | .554 246 341
LOREM,jeqn | 663 622 642 | 383 287 .328

Table 5: (no-resource) Results of the language-consistent
model, language-individual models and LOREM on the
Dutch and Italian test sets.

Model | P R F
Language-individual | .786 .444 .568
LOREM 753  .646 .696

Table 6: (low-resource) Results of low-resource models on
the Dutch test set.

For the no-resource scenario, Table 5 provides the results for
Dutch and Italian test sets. We hypothesize that language-individual
models of languages that have a similar origin as the test language
will yield better results than those of languages with a different
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origin. If we focus on the Fj-scores, we find a general pattern
that adheres to this intuition. For the Dutch test set, the English
model yields the highest Fj-score. This is to be expected since
English and Dutch are the only two West-Germanic languages
in this experiment. The French model also performs reasonably
well, this can be explained by the fact that French and Dutch are
both of European origin. Given that French and Spanish are both
Romance languages, we would expect similar results on the Dutch
test set. Yet, the Spanish model performs significantly worse and
does therefore not follow our intuition. The Russian model also
yields worse results than the French and English models. This can
be explained by the fact that Russian has a Slavic origin. The Hindi
model on the other hand is not able to find any valid relations.
Given that all other languages have a European nature and Hindi
has an Indo-Iranian nature, this behaviour falls in line with our
intuition. A similar pattern can be observed for the Italian test set,
albeit less distinct.

For both Dutch and Italian, the language-consistent model out-
performs all language-individual models. This shows the merit
of combining languages to find language-consistent relation pat-
terns. In this no-resource scenario, LOREM is a combination of
the language-consistent model and the best-performing language-
independent model. For the Dutch test set, LOREM even further
improves the Fj-score. This is not the case for the Italian test set.
These experiments show the first application of an open relation
extractor on a different language than it was trained on without
the need for a translator. More experiments on different test sets
are needed to derive solid conclusions on the matter. Yet, our ex-
periments provide a first indication of the validity of H3.

For the low-resource scenario, if we compare the results shown
in the top entry of Table 6 to the evaluation results presented in
Table 5, we find that the low-resource Dutch language-individual
model is outperformed by the English language-individual model.
This indicates that a high-resource model in a similar language out-
performs a low-resource model in the test language. However, since
we now have a Dutch language-individual model, we can combine
it with the language-consistent model to form a full LOREM model.
Comparing these results to Table 5, we see that the LOREM model
that employs the Dutch language-individual model outperforms
all models from the no-resource scenario. This is another indica-
tion of the validity of hypothesis 3 for the Dutch test set. Again,
more experiments need to be conducted to derive more general
conclusions.

Until now, we trained a full language-individual model for the
low-resource language, ignoring the fact that we might need to
treat a low-resource scenario differently than a high-resource sce-
nario. It is a well-known phenomenon that more complex models
generally require more training data, since more parameters need
to be optimized. We have examined the possibility of only using a
CNN or Bi-LSTM instead of both, to reduce the number of parame-
ters. Results show that although LOREMy s7) and LOREMcen N
achieve a higher precision scores than LOREM (0.802 and 0.836 to
0.753), this comes at the expense of a lower recall scores (0.616 and
0.566 to 0.646). As a result, the Fj-scores of are lower than or equal
to those of LOREM (0.696 and 0.675 to 0.696). Therefore, we did not
find a clear advantage of simplifying the model in this low-resource
scenario. Please note that results presented by Jia et al. [12] clearly
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Figure 2: Aligned and non-aligned word embeddings for the language-consistent model and LOREM.

show that combining a CNN and LSTM outperforms both separate
models for the high-resource ORE task.

While the main focus of the paper was on high-resource languages,
we consider our work to be an initial yet important step towards
open relation extraction in no or low-resource languages.

QUALITATIVE ANALYSIS

Next to the quantitative analysis, we also conducted a qualitative
analysis on the English test sets. We only performed an English
error analysis since it was the only language in which all the authors
were fluent.

True positives: We found that LOREM is better at extracting re-
lations that follow abnormal patterns than the language-individual
sub-model. For example, given the sentence “The market wants to
do better, said Gregory Bundy, head of equity trading." and entity
tuple <Gregory Bundy, The market wants to do better>, the
language-individual model does not find a relation, while LOREM
extracts said as being the relation. Here, we find that the language-
consistent component provides additional information which al-
lows relations to be extracted, even if the entities appear in reverse
order. It is likely that such patterns occur in multiple languages
from which LOREM learned them, even if they were not present
in the English training set. Such examples illustrate the benefits of
LOREM over a language-individual approach.

False Positives and Negatives: Upon manual inspection, we
find that the majority of errors arise from relations that contain
multiple words. In these cases, LOREM extracts either too many
or too few words compared to the ground truth relations. Typi-
cal examples include “BIC is being sued by people who say their
lighters exploded." and “The region is still far from rebuilt.", from
which LOREM extracts is being sued and is still, while the
ground truth values are is being sued by and is respectively.
These examples show that although the extraction is not completely
correct, the relation is still captured to a certain extent in many
cases. The test set also contains sentences from which LOREM can
not extract any relations. A typical error occurs when we want to
extract relations that occur between more than two entities. Given
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a sentence like “28 Square miles of antennae and computers that
message smart fridges, robot lawn mowers and smart doorbells vac-
uum up satellite and radio communications.” with entity tuple <28
Square miles of antennae, radio communications>, LOREM
finds no relations even though the relation vacuum up is present
between multiple entities in this sentence.

6 CONCLUSIONS AND FUTURE WORK

In this work, we have presented a Language-consistent Open Re-
lation Extraction Model; LOREM. The core idea is to augment in-
dividual open relation extraction mono-lingual models with an
additional language-consistent model representing relation pat-
terns shared between languages. Our quantitative and qualitative
experiments indicate that harvesting and including such language-
consistent patterns improves extraction performances considerably
while not relying on any manually-created language-specific ex-
ternal knowledge or NLP tools. Initial experiments show that this
effect is particularly valuable when extending to new languages
for which no or only little training data is available. In these cases,
LOREM and its sub-models can still be used to extract valid rela-
tionships by exploiting language consistent relation patterns. As
a result, it is relatively easy to extend LOREM to new languages
as providing only some training data can be sufficient. However,
evaluating with additional languages would be required to better
understand or quantify this effect.

Additionally, we conclude that multilingual word embeddings
provide an effective approach to introduce latent consistency among
input languages, which proved to be beneficial to the performance.

We see many opportunities for future research within this promis-
ing domain. More improvements could be made to the CNN and
RNN by including more techniques proposed in the closed RE para-
digm, such as piecewise max-pooling [22] or varying CNN window
sizes [17]. An in-depth analysis of the different layers of these mod-
els could shine a better light on which relation patterns are actually
learned by the model.

Beyond tuning the architecture of the individual models, en-
hancements can be made with respect to the language consistent
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model. In our current prototype, a single language-consistent model
is trained and used in concert with the mono-lingual models we
had available. However, natural languages developed historically
as language families which can be organized along a language
tree (for example, Dutch shares many similarities with both Eng-
lish and German, but of course is more distant to Japanese). Thus,
an improved version of LOREM should have multiple language-
consistent models for subsets of available languages which indeed
posses consistency between them. As a starting point, these could be
implemented mirroring the language families identified in linguistic
literature, but a more promising approach would be to learn which
languages can be effectively combined for boosting extraction per-
formance. Unfortunately, such research is severely hampered by
the lack of comparable and reliable publicly available training and
especially test datasets for a larger number of languages (note that
while the WMORC_auto corpus which we also use covers many
languages, it is not sufficiently reliable for this task as it has been
automatically generated). This lack of available training and test
data also cut short the evaluations of our current variant of LOREM
presented in this work. Lastly, given the general set-up of LOREM
as a sequence tagging model, we wonder if the model could also be
applied to similar language sequence tagging tasks, such as named
entity recognition. Thus, the applicability of LOREM to related
sequence tasks could be an interesting direction for future work.
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