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Abstract
Counterfactual Explanations (CE) are essential
for understanding the predictions of black-box
models by suggesting minimal changes to input
features that would alter the output. Despite
their importance in Explainable AI (XAI), there
is a lack of standardized metrics to assess the
plausibility and faithfulness of these explanations.
This paper reviews evaluation procedures in
literature and proposes novel formal metrics
for evaluating the plausibility and faithfulness
of counterfactual explanations, addressing the
existing limitations. Plausibility is defined as
the coherence of explanations with the true data-
generating process, while faithfulness refers to
the accuracy of explanations in representing the
model’s reasoning. We discuss the shortcomings
of existing evaluation procedures and metrics
for measuring plausibility and faithfulness and
consequently compare our proposed metrics with
existing ones, highlighting their advantages and
disadvantages. The proposed metrics are then
empirically validated through experiments across
multiple models and datasets, demonstrating their
model-agnostic nature and reliability. Our findings
indicate that the proposed metrics provide a correct
and reliable means to quantify the plausibility
and faithfulness of counterfactual explanations,
thereby allowing one to gauge their feasibility and
trustworthiness consistently.

1 Introduction
Counterfactual Explanations (CEs) are ”what if” scenarios
that allow for better understanding of the behavior of black-
box models. These explanations suggest minimal changes to
input features that would alter the output. Within the ontology
of Explainable AI (XAI), CE is classified as a post-hoc, and
model-agnostic explainability method with local scoop under
example-based explanations [1].

A core focus of CEs is outcome explanation problem rather
than model explanation, model inspection, or transparent-box
design problems [2].

The importance of counterfactual explanations lies in
their ability to provide actionable insights to end-users,
allowing them to understand and potentially contest decisions
made by AI systems [3]. However, the challenge remains
in quantifying the plausibility and faithfulness of these
explanations.

Despite the growing body of research that produces
explainability methods, there have been few works (less
than 5% of studied papers in the cited survey [1]) on
evaluating these methods and quantifying their relevance.
There is a notable gap in standardized metrics and robust
evaluation frameworks that can universally assess the
plausibility and faithfulness of counterfactual explanations
across different domains. Therefore, the ”primary target
of future work should be developing formalized, rigorous

evaluation metrics”. [1] With that in mind, this paper
focuses on developing evaluation metrics to measure the
plausibility and faithfulness of counterfactual explanations
which are critical aspects that determine their feasibility and
trustworthiness respectively.

Colloquially, a counterfactual explanation is considered
plausible if it is coherent with human reasoning and
understanding [4]. Furthermore, it is considered faithful if it
accurately represents the reasoning of the underlying model.

The existing definition of plausibility does not specify
what constitutes coherence with human reasoning and
understanding. It can be argued that the plausibility of
an explanation must inherently reflect the faithfulness of
that explanation to the underlying model’s decision-making
process if it is to be considered trustworthy. Otherwise, a
plausible but unfaithful explanation would be no different
than a con-artist; persuasive, but its logic falls apart once
the facts and logical implications between them are examined
more closely.

An explanation is only necessary when an unexpected
outcome occurs. This indicates an inability to uncover
the causality relation that lead to the unexpected outcome.
Therefore, when talking about explanations, we inherently
are talking about hidden causality relations. Humans
instinctively evaluate explanations based on a hierarchical list
of criteria that prioritize certain attributes over others. These
criteria, listed in order of perceived importance, include [5]:

1. Coherence (Logical Consistency): The degree to which
an explanation adheres to logical principles and is free
from internal contradictions.

2. Simplicity: The simplicity or parsimony of an
explanation, where simpler explanations are often
preferred.

3. Generality: The applicability of the explanation across
different contexts or situations.

4. Truthfulness: The factual accuracy of the explanation,
reflecting its alignment with reality.

5. Probability: The likelihood of the explanation being true
based on antecedents.

In other words, a coherent and simple explanation might
be chosen over a truthful but not so coherent one by
humans when uncovering causality relations. As important as
simplicity is, the two most important factors when it comes
to uncovering causality relations are truthfulness and logical
consistency, with truthfulness taking precedence.

The aforementioned list of instinctual evaluation
mechanisms also support the claim that, as the plausibility of
explanations were prioritized in the CE generation process,
the faithfulness of these explanations to the underlying
model declined [4]. The term ”truthfulness” in this context
refers to the faithfulness of an explanation, which denotes its
accuracy in representing the model’s reasoning processes.
Similarly, the term ”coherence” refers to the plausibility
of an explanation. Given that truthfulness does not rank
highly on instinctual evaluations, it is fair to assume that the
more appealing an explanation is to the general public, the



higher the weight of coherence, simplicity and generality
over truthfulness.

To bridge the preceding discussion to the bulk of our
research, we introduce the concept of a data manifold. In
literature, a data manifold typically refers to the underlying
structure of a data distribution. In our work, we refine
this definition to address two separate distributions. For
plausibility evaluation, data manifold refers to the true
conditional distribution of samples that belong to a selected
target class. For faithfulness evaluation, it refers to
the learned conditional distribution of samples belonging
to that same target class. In essence, plausibility and
faithfulness evaluation is about quantifying the degree of
closeness of a counterfactual to the appropriate data manifold.
Accompanied by these definitions we present the objective of
our paper.

The aim of this paper is to holistically analyse and
decide how to evaluate the plausibility and faithfulness of
counterfactual explanations. To that end, we answer three
sub-questions:

1. (SQ1) What are the shortcomings of methods to quantify
the data manifold?

2. (SQ2) Which metrics are used to quantify the degree of
closeness of a counterfactual to the data manifold?

3. (SQ3) What novel metrics could be used as proxies to
estimate the degree of closeness of a counterfactual to
the data manifold?

Evaluation of plausibility and faithfulness of a CE is
systematically analyzed through a three-step process in our
work:

1. Determination of boundary values for plausibility and
faithfulness by examining the generator of the CE

2. Quantification of the data manifold

3. Quantification of the degree of closeness to the data
manifold using metrics

The most important parts for evaluation lie primarily in
steps 2 and 3. Although our research touches upon the
possible effect of CE generators putting an inherent limit on
how plausible or faithful a CE can be, the primary focus of our
research questions is directed towards quantification methods
of the data manifold and metrics to quantify the degree of
closeness to that data manifold.

Our contribution to the current body of knowledge is
twofold. First, we conduct a critical literature review,
identifying shortcomings of existing methods to quantify
the data manifold and current metrics utilized to assess
plausibility and faithfulness. Second, we propose novel
metrics for evaluating the plausibility and faithfulness of
counterfactual explanations and empirically validate these
metrics through experiments across multiple datasets and
models, demonstrating their reliability in various scenarios.

Overall, our paper is structured as follows: Section 3
reviews the related work and theoretical background, setting
the stage for our contributions. Section 2 classifies the
methodology types employed in this paper, followed by
Section 4, where the process of development for the proposed

evaluation metrics is detailed. Section 5 presents the
experimental setup and results. Section 6 discusses the
implications of our findings. Section 8 touches upon the
methods utilized such that this research is replicable. Finally,
Section 9 concludes the paper, summarizing the key points
and contributions, and ultimately outlining potential future
research directions.

2 Methodology
This work employs an amalgamation of quantitative and
qualitative strategies to address the research questions.
The study design is approximately distributed as one half
quantitative strategies and one half qualitative strategies.
The methodology is divided into two parts: a critical
literature review [6] and a theoretical study focusing on the
development of proposed evaluation metrics with empirical
support. SQ1 and SQ2 are answered as part of Section 3,
whereas SQ3 is answered with Section 4.

This work follows standardized guidelines [7], and SALSA
[6] framework alongside the snowball sampling method to
filter out important papers. A critical review was conducted
to isolate the most significant papers that are relevant to our
research questions.

As per the definition of a critical literature review, we
searched for the most significant methods and metrics within
the field related to our work. For appraisal, we mainly
evaluated papers according to their contribution rather than a
comprehensive quality assessment. The synthesis is narrative
and conceptual and does not include tabular accompaniment
since it is not a systematic review [6]. Lastly, our analysis
involved indicating the consensus (or lack thereof) among
the surveyed papers, along with prevalent themes between
methods and metrics.

To get a comprehensive coverage, we initiated our search
from Google Scholar. Moving forward, we have utilized an
extensive list of databases including IEEE Xplore, Scopus,
Web of Science, DBLP, O’Reilly for Higher Education, and
arXiv. Furthermore, we consulted specific academic journals
and proceedings of conferences to ensure alignment with the
thematic focus of our study.

3 Related Work
Plausibility and faithfulness evaluation of a CE is related
to three main factors. The first of these factors is
the CE generation method as this may set an upper or
lower bound on the plausibility or faithfulness of a CE,
thereby possibly rendering further evaluation unnecessary.
The second, is the quantification of true and learned
conditional distributions, which are respectively utilized in
the assessment of plausibility and faithfulness. Lastly, the
third factor is the metric to compute the distance to the true or
learned distributions. In this section, we define the necessary
terms for our analysis and then present a critical literature
review on the influence of the first and second factors on
plausibility and faithfulness assessment along with existing
metrics that are currently in use for the third factor.



3.1 Preliminaries
Formal definitions necessary for our analysis are given below.
Definition 1 (Counterfactual explanation). Given a classifier
b that outputs the decision y = b(x) for an instance x, a
counterfactual explanation consists of an instance x′ such that
the decision for b on x′ is different from y, i.e., b(x′) ̸= y (we
take b(x′) = y+), and such that the difference between x and
x′ is minimal [8], i.e. a solution to the optimization Equation
1, where d is a distance function. Converting the objective
into a differentiable, unconstrained form yields two terms [9],
see Equation 2.

argmin
x′

d(x, x′) subject to b(x′) = y′ (1)

argmin
x′

max
λ

λ(b(x′)− y′)2 + d(x, x′) (2)

Counterfactual explanations are often plainly called
counterfactuals. CEs often serve a dual function: they
explain the outcomes of black-box models and provide an
algorithmic method of recourse for individuals seeking to
improve their attained outcomes.
Definition 2 (Counterfactual explainer). A counterfactual
explainer is a function fk that takes as input a classifier
b (often a black-box model), a set X of known instances,
and a given instance of interest x. With its application
C = fk(x, b,X), it returns a set C = {x′

1, . . . , x
′
h} of

h ≤ k valid counterfactual examples, where k is the number
of counterfactuals requested [8].

Most of the counterfactual explainers (i.e. CE generators,
which is the term we prefer to use) in the literature
are designed as f1 functions to return a single valid
counterfactual. If C = ∅, i.e., h = 0, it means that the
explainer was not able to find any valid counterfactual [8].
Definition 3 (Plausibility). Plausibility is the degree to which
generated counterfactuals adhere to the true data-generating
process (DGP). Formally, let X | y+ = p(x | y+) denote the
true conditional distribution of x (samples) in the target class
y+. For x′ to be considered a plausible counterfactual, we
need x′ ∼ X | y+ [10].

Take note that the formal definition of plausibility
quantifies the colloquial definition, i.e. coherence
with human reasoning and understanding by measuring
compliance with the true data-generating process (DGP).

REVISE In Arnaud et. al.’s paper, ’realism’ has
an equal definition to ’plausibility’ and so ’realistic’
counterfactuals are synonymously used in place of ’plausible’
counterfactuals.

The FACE paper adopts the term ’feasible’ when talking
about counterfactuals that are ’realistic’ to achieve. Even
though no formal definition of ’feasible’ is given in the paper,
the synonymous use of ’coherence with the underlying data
distribution’ clearly indicates that the definition of ’feasible’
is the same as ’plausible’ and it is transitively the same as
’realistic’.

For instance, an example of a ’closest possible’ CE that
is not feasible would be a customer whose loan application
has been rejected would (probably) disregard a counterfactual
explanation conditioned on him being 10 years younger.

Definition 4 (Faithfulness). Faithfulness is the degree to
which counterfactuals are consistent with what the model has
learned about the data. Formally, let Xθ | y+ = pθ(x | y+)
denote the learned conditional distribution of x (samples) in
the target class y+, where θ denotes the parameters of model
Mθ. For x′ to be considered a faithful counterfactual, we
need x′ ∼ Xθ | y+ [10].

Necessary Conditions for Evaluation
Evaluation of plausibility and faithfulness of counterfactuals
both necessitate the quantification of some conditional
distribution of samples in the target class (Xs | y+,
s ∈ {θ, ϵ}, ϵ signifies the empty string). For plausible
counterfactuals, quantification of the true conditional
distribution p(x | y+) is required, whereas, for faithful
counterfactuals, quantification of the learned, posterior
conditional distribution pθ(x | y+) is required.

Once distributions are quantified, the objective is to
decide whether or not a counterfactual x′ is sampled
from that distribution. More importantly, it is imperative
that the proposed metric allows for comparison with
regards to the degree of plausibility or faithfulness of two
counterfactuals. In essence, a proxy for estimating the
distance of counterfactual x′ to the data manifold (X | y+

or Xθ | y+) is desired.

3.2 Methods to Quantify the Data Manifold &
Their Shortcomings

Estimation of the true or learned conditional distribution is
typically made as part of a CE generator. In this section,
we elaborate on the methods of quantification of the data
manifold that various CE generators utilize with the aim of
producing plausible or faithful counterfactuals.

Plausibility: Quantify the True Distribution
When it comes to quantifying the true conditional
distribution of samples and subsequently producing plausible
counterfactuals, the FACE paper [11] has significant
contributions. The method proposed in this paper constructs
a graph over data points with edge weights determined
by density-weighted metrics. To then find ’feasible’
counterfactuals, which are counterfactuals that come from
high-density regions in the underlying data distribution,
making them ’plausible’, it calculates the shortest path
distances which were defined based on one of three types of
density-weighted metrics: KDE, k-NN, or ϵ-graph [11].

Joshi et. al. (2019) propose using a Variational
Autoencoder (VAE) to traverse a latent embedding that
condenses the DGP instead of searching for CEs in feature
space [12]. Methods that rely on surrogate models to estimate
the input data distribution are able to generate plausible but
not necessarily faithful counterfactuals[10].

In contrast, Schut et al. (2021) propose minimizing
predictive uncertainty to generate plausible counterfactuals
without explicitly modeling the input distribution [13].
This method assumes that the black-box model provides
well-calibrated predictive uncertainty estimates. Unlike
surrogate model-based methods, black-box methods operate
directly on the true input distribution without attempting
to model or codify it. However, these methods



necessitate predictive uncertainty estimates, which can be
computationally expensive and impractical for most deep
learning models.

Faithfulness: Quantify the Learned Distribution
Quantification of the posterior conditional distribution
requires the utilization of the black-box model that learns
the dataset. In Altmeyer et al.’s work [10], a method
from energy-based modelling called Stochastic Gradient
Langevin Dynamics (SGLD) is used to quantify pθ(x | y+).
Energy-Constrained Conformal Counterfactuals (ECCCo)
is introduced in their work. By leveraging energy-
based modeling and conformal prediction, ECCCo generates
counterfactuals that are faithful to the model’s learned
behavior and plausible when appropriate. The paper shows
that for models with accessible gradients, ECCCo can achieve
state-of-the-art performance without relying on surrogate
models by leveraging properties defining the black-box
model itself [10].

3.3 Closeness to Data Manifold
Instead of a single objective optimization problem, if
we formulate the search for CEs as a multi-objective
optimization problem we can use metrics that represent
closeness to the data manifold and by minimizing these
metrics we can arrive at plausible or faithful counterfactuals.

For optimization-based CE generation, there are two ways
to ensure closeness of a generated CE to the data manifold
which follow as a corollary from the definitions of a CE and
the data manifold:

1. The optimization function used to generate CEs
(Equation 2) is updated with an addition of a loss
function such that it prefers counterfactuals within the
data manifold. We update Equation 3 with the addition
of l(x′;Xy+) = l(x′;X|y+) to represent the loss
function.

argmin
x′

max
λ

λ(b(x′)−y′)2+d(x, x′)+l(x′;Xy+) (3)

2. The optimization function is not altered but generated
counterfactuals are filtered with a metric that quantifies
their closeness to the data manifold.

The loss function from the first item is the same as the metric
from the second item. This metric represents a function that
calculates the distance of a counterfactual to a data manifold.

Metrics to Quantify Closeness to Data Manifold
IM1 and IM2 metrics [14] were introduced by Arnaud et.
al. to measure the realism of a counterfactual, which has
the same formal definition as plausibility. IM1 is preferred
over IM2 because IM2 scores are not significantly different
for ”out-of-distribution” data than in-distribution data [13].
IM1 is calculated as the ratio of reconstruction errors of two
autoencoders.

IM1 =
∥x′ − AEy′(x′)∥22

∥x′ − AEy(x′)∥22 + ϵ
(4)

Where x′ is the counterfactual instance, AEy′ is an
autoencoder trained only on instances of the counterfactual

class y′, and AEy is an autoencoder trained only on instances
of the original class y. A lower value for IM1 signifies that
x′ can be better reconstructed by the autoencoder which is
trained on the counterfactual class y′ than by the autoencoder
that has only seen instances of the original class y [14].
This implies that x′ resides closer to the data manifold of
counterfactual class y′ compared to y, hence a lower value
is considered more realistic/plausible.

The overarching name for the criteria used to measure
faithfulness are commonly called erasure-based criteria.
These criteria systematically remove or ’erase’ parts of
the input data until the model’s output is changed. The
process of removing parts of the input unfortunately
increases the likelihood of input data to fall out of the
distribution that the model was trained on, and may result
in inaccurate faithfulness evaluation. The comprehensiveness
and sufficiency scores are introduced [15] as formal
generalizations of erasure-based criteria.

Comp. =
1

N

N∑
i=1

(p(yi | xi)− p(yi | xi \ ei)) (5)

Suff. =
1

N

N∑
i=1

(p(yi | xi)− p(yi | ei)) (6)

Where ei are selected features of xi and xi \ ei is the
remaining features in xi after features in ei are deleted.

One of the metrics provided in literature to measure
plausibility is the inverse of the implausibility metric given in
Equation 7. Faithfulness is similarly measured by the inverse
of the unfaithfulness metric given in Equation 8. Distance
function in both of these metrics is L2-norm (Euclidean
distance).

impl(x′,Xy+) =
1

|Xy+|
∑

x∈Xy+

dist(x′,x) (7)

unfaith(x′, X̂θ,y+) =
1

|X̂θ,y+|

∑
x∈X̂θ,y+

dist(x′,x) (8)

Where Xy+ represents the true conditional distribution of
samples that are in target class y+ and X̂θ,y+ represents
the estimated posterior distribution using Stochastic Gradient
Langevin Dynamics (SGLD) in Altmeyer et al.’s work. [10]
The novel metrics we introduce aim to measure plausibility
and faithfulness of a CE based on Definitions 3 and 4 and not
approximations of Equations 7 and 8.

Diffusion Distance is derived from diffusion maps, which
are commonly used for dimensionality reduction and feature
extraction. [16]. It measures the connectivity between points
in a dataset. It is robust to noise, and can handle non-
linear manifolds. However, quite recently, diffusion distance
has been applied as a loss function to generate plausible
counterfactuals [17]. Therefore, we have decided to conduct
our experiments with an unexplored method.



4 Metrics to Ascertain the Plausibility and
Faithfulness of Counterfactuals

We propose two approaches to measuring plausibility
and faithfulness that follow logically from their formal
definitions. The first one is a direct corollary from the
formal definitions. It is to use a Goodness-of-Fit test which
verifies whether a counterfactual instance is sampled from a
distribution. The second option is to define proxy metrics
to estimate the distance of a counterfactual to the data
manifold. The most appropriate of these metrics, which
was determined to be the Local Outlier Factor, is evaluated
(following the steps described below) on selected datasets
and counterfactuals produced by the referred CE generators
in Section 5.

4.1 Goodness-of-Fit Test
By applying a Goodness-of-Fit test, we can assess if a
counterfactual is likely to have been sampled from the true
or learned conditional distribution, thus providing a measure
of its plausibility or faithfulness.

Among the Goodness-of-Fit tests, the Kolmogorov-
Smirnov (K-S) test is particularly advantageous for our work
because it does not rely on parametric assumptions about the
underlying distribution of the data, if it were, this would have
lead to issues such as the inability to conclude the correctness
of a model if the null hypothesis is not rejected. Specifically,
for parametric tests, ”if we reject the null hypothesis, we
conclude that the model [in our case, the distribution being
tested for goodness-of-fit] should not be used [in other words,
the counterfactual does not come from the distribution].
However, if we do not reject the null hypothesis, we cannot
definitively conclude that the model is correct” [18]; it could
simply be that the test did not have enough power to detect
a difference. Additionally, the K-S test is less biased for
moderate sample sizes and light-tailed distributions, more
sensitive to deviations from the center of a distribution [19],
and its critical values are distribution-free [20] as opposed to
the Anderson-Darling (AD) test.

Proposal: Kolmogorov-Smirnov (K-S) Test
The K-S test assesses whether a sample comes from a
specified distribution or whether two samples come from the
same distribution. It can be utilized to evaluate the similarities
of the distribution of individual features of a counterfactual
with the rest of the data points in the manifold. The procedure
for applying the K-S test is given below:

One-Sample K-S Test: The one-sample K-S test
compares the empirical distribution function (EDF) of
a sample (often a set of counterfactual instances) with
the cumulative distribution function (CDF) of a reference
distribution (often the true distribution). Implemented as
follows: Define Null Hypothesis H0 and Alternative
Hypothesis H1. For instance, to test for plausibility:
H0 = The counterfactual comes from the true conditional
distribution (X|y+). H1 = ¬H0.

The K-S statistic D is defined as the least upper bound
(supremum) between the EDF Fn(x) and the CDF F (x):

D = sup
x

|Fn(x)− F (x)|

where Fn(x) is the EDF of the sample and F (x) is the CDF
of the reference distribution.

Two-Sample K-S Test: The only difference between the
one-sample and two-sample is instead of the CDF F (x),
a second EDF is used which is calculated with the second
sample, called Gm(x):

Dn,m = sup
x

|Fn(x)−Gm(x)|

Determine the P-value Once the type of test is
determined, the test statistic D is compared with the critical
value from the K-S distribution table or the p-value is
calculated. If the p-value is less than the significance level
(e.g., 0.05), reject the null hypothesis.

While this process may appear to be a multi-step evaluation
procedure, it is fundamentally a single metric. The detailed
description of the calculation steps serves to enhance clarity
and facilitate practical implementation.

Case Specific Modifications As our data is composed
of multivariate vectors, instead of checking each of
the counterfactual vector’s features against a univariate
distribution, the correct way to calculate this test statistic
is to check the vector as a whole against a multivariate
distribution because we are interested in the joint distribution
of all features rather than the marginal distribution of each
feature independently.

4.2 Proxy Metrics
Proxy metrics are alternative methods used to estimate the
closeness of a counterfactual to the data manifold. The
Local Outlier Factor (LOF) is chosen as the proposed proxy
metrics due to several key reasons: LOF considers the local
density around each point, making it suitable for datasets with
varying densities. By using reachability distances (RDs),
LOF reduces the impact of statistical fluctuations for points
that are close together. The statistical fluctuations refer to
the small variations in distance in dense regions of a dataset,
possibly resulting in noisy results when trying to identify
outliers. By setting RD to the actual distance for sparse areas
and defaulting RD to the k-distance for dense areas, LOF
smooths out these small variations. It takes into account
only k other instances, which brings about computational
efficiency and robustness to outliers, as only 2k distances
need to be calculated instead of distances to the entire dataset
as done in Equations 7 and 8, and instances farther away do
not unduly influence the average distance. Most crucially,
LOF provides an outlier score rather than a binary label,
allowing for quantification of distance to the data manifold.

Proposal: Modified Local Outlier Factor
We propose a new loss function based on Gower Distance
(GD) and Local Outlier Factor (LOF) to quantify the
closeness of a counterfactual to the data manifold. LOF is
a commonly used outlier score that measures how unusual a
given instance is by using k-nearest neighbour (k-NN) and
our modification to LOF is detailed in the next subsection.

LOF is an anomaly detection algorithm that identifies
outliers by comparing the local density of a data point to
the local densities of its neighbors [21], which makes it
particularly effective for identifying anomalies in datasets



with varying densities. The LOF algorithm operates in
several key steps:

First, the Reachability Distance (RD) of a point p with
respect to another point o is calculated as follows:

RD(p, o) = max(k-distance(o), d(p, o))

where d(p, o) is the actual distance between p and o. Often,
Euclidean distance is utilized here as the distance metric. The
k-distance(o), is the distance between o and its k-th nearest
neighbor. This distance provides an estimate of the density
around o. The Reachability Distance is used to mitigate
the effects of statistical fluctuations for points that are close
together.

The Local Reachability Density (LRD) of a point p is then
calculated as the inverse of the average Reachability Distance
from the k-nearest neighbors of p:

LRD(p) =
|Nk(p)|∑

o∈Nk(p)
RD(p, o)

where Nk(p) is the set of k-nearest neighbors of p. The
|Nk(p)| is always greater than or equal to k. For |Nk(p)| to
be greater than k, two points must be exactly as far from the
point p. In practice, for datasets with more than 3 features,
this is rarely the case. Therefore, it is also acceptable to
assume |Nk(p)| = k. A higher LRD value indicates a denser
region.

Finally, the Local Outlier Factor (LOF) of a point p is
computed as the ratio of the average Local Reachability
Density of the k-nearest neighbors of p to the Local
Reachability Density of p:

LOF(p) =

∑
o∈Nk(p)

LRD(o)

|Nk(p)| LRD(p)

A LOF value around 1 indicates that the point p is in a region
of similar density to its neighbors. A LOF value greater than 1
indicates that p has a lower density than its neighbors, making
it an outlier candidate. The higher the LOF value, the more
abnormal the point is considered to be. In our case, the point
p is the counterfactual x′.

Proposal Modification: Gower Distance
Normally, LOF utilizes Euclidean distance (L2-Norm) as
its distance function when calculating reachability distance
and existing metrics from literature such as Equation 7 and
8 likewise use Euclidean distance to quantify plausibility
and faithfulness of a counterfactual. There are a couple of
important issues with this. First of all, Euclidean distance is
highly sensitive to features with large values. This requires
the data to be scaled appropriately to ensure that variables
with larger rangers do not dominate the distance calculation,
leading to biases. Unfortunately, the scaling process is
sometimes overlooked when Euclidean distance is disguised
as part of other metrics.

Secondly, Euclidean distance is designed for numerical
data and cannot handle categorical or binary data types.
This limitation necessitates the use of one-hot encoding for
categorical data, increasing the dimensionality and sparsity
of the dataset, which in turn exacerbates the Curse of

Dimensionality [22]. The inflated space caused by one-
hot encoding often makes the distance calculation less
meaningful and more computationally intensive.

Thirdly, Euclidean distance does not handle missing values
well. Missing values often require pre-processing steps
to exclude the incomplete records, however, this is not as
significant of an issue in practice as datasets are usually
cleaned before conducting any experiments.

Lastly, Euclidean distance is meaningful only ’locally’
[23]. As the dimensions of the data increase, the concept
of proximity or nearest neighbour becomes less meaningful
[24]. The distances between the nearest and farthest points
tend to converge, making it difficult to differentiate between
close and distant points. Data points that were close together
in lower-dimensions become more separated as number of
dimensions increase. Higher dimensions cause the volume
of the space to grow exponentially, making the data points
appear more isolated.

These are the main reasons why we propose utilizing
Gower distance with the most significant one being the last.
When combined with Local Outlier Factor algorithm, Gower
distance addresses all of the aforementioned issues. Gower
distance automatically normalizes the contribution of each
variable to the overall distance calculation, ensuring that
features with different scales do not dominate the calculation.
By definition, it is able to handle mixed data types and it
automatically excludes missing value pairs and scales the
distance accordingly. That being said, the formal definition
of Gower distance is as follows:

Gower distance dG between two samples i and j is defined
as:

dG(i, j) = 1− sG(i, j)

where sG(i, j) is the Gower similarity coefficient, calculated
as:

sG(i, j) =

∑n
k=1 wijksijk∑n

k=1 wijk

Here:
• n is the number of features.
• sijk is the similarity between the i-th and j-th samples

for the k-th feature.
• wijk is a weight assigned to the k-th feature, which can

be 0 or 1 depending on whether the feature is considered
in the calculation.

The similarity sijk for each type of feature is calculated as
follows. For numerical features:

sijk = 1− |xik − xjk|
Rk

where Rk is the range of the k-th feature. For categorical
features, the similarity is binary. If the categories match, the
score is 1, otherwise 0. The scoring for binary features is the
same as categorical features.

5 Experimental Setup
In this section, we detail the experimental procedures, the
datasets utilized, the architecture of the deep learning models,
the software packages employed for training, and the metrics
applied for evaluation.



5.1 Hardware Setup
The experiments were conducted on a MacBook Pro with
M2 Max Chip and 96GB of memory and several Kaggle
Notebooks. It took the entire experimental loop per base
model 35 ± 10 minutes to calculate implausibility scores and
K-S test p-values. The loop took 55 ± 10 minutes for the
LOF score calculation.

5.2 Datasets & Models
We have opted to use simpler deep models due to
performance and time constraints. As our work is a
combination of critical literature review and theoretical
proposal with experimental validation as merely a part of the
theoretical proposal, we did not have enough time to conduct
experiments with more complex models. Consequently, state-
of-the-art architectures such as SAINT or DeepFM [25] are
not considered. The foundational models for all datasets in
this study are composed of a single hidden layer consisting
of fully connected perceptrons. For the hidden layer, the
Rectified Linear Unit (ReLU) activation function is used,
while the output layer utilizes the softmax function. Cross-
entropy serves as the loss function for these models. This
architecture was selected to align with the classification focus
of our research, as per the requirements of a counterfactual
explanation. Table 1 offers comprehensive details regarding
the training procedures and architectural specifics of the
Artificial Neural Networks (ANN).

For implementation, we use FLUX.JL for the ANNs.
Our experiments were conducted on three datasets,each
from a different real-life situation where the evaluation of
plausibility and faithfulness of counterfactuals are crucial
for algorithmic recourse: German Credit [26], California
Housing [27], and Adult Census Income [28]. They are all
part of the TAIJADATA.JL repository. The German Credit
dataset provides 1000 samples with 700 samples with class
1, 300 with class 0. As this is not balanced we tried
undersampling the majority class to mitigate biases of models
(600 samples after undersampling). However, the average
loss increased dramatically (from 0.45 on average for 10
models to 0.75) and as there are only 1000 samples in total,
we decided not to undersample.

We concentrated on black-box models, as explainability is
less of an issue for most other machine learning models as
they tend to be quite transparent. The models utilized in our
experiments include fully connected artificial neural networks
(ANNs), and dropout neural networks.

For every dataset and every basis model, we have trained
10 different models for 10 epochs on the given number of
samples.

5.3 Counterfactual Generators
We employed four counterfactual generators for our
experiments: Generic, DiCE with λ2 = 0.5 (denoted as ddp
diversity penalty), DiCE with λ2 = 1, and ClaPROAR.

DiCE (Diverse Counterfactual Explanations) generator is
designed to produce diverse counterfactuals, which is crucial
for evaluating the reliability of our metrics across different
scenarios. The diversity-proximity trade-off in DiCE is
managed by the parameter λ, where a higher λ accentuates

diversity over proximity. Proximity in DiCE, defined as
the closeness of a counterfactual to the original instance, is
closely related to plausibility, as plausible counterfactuals
should be close to the data manifold of instances belonging
to the target class.

ClaPROAR generator uses a model loss penalty that
calculates the loss between the model’s prediction for the
counterfactual instance and the target value. This penalty
allows ClaPROAR to produce more faithful counterfactuals.
In contrast, the proximity penalty in DiCE helps generate
more plausible counterfactuals by increasing the likelihood
that they are close to the data manifold.

1. Generic: A baseline generator

2. DiCE with λ2 = 0.5. Balances diversity and proximity,
enhancing the plausibility of counterfactuals.

3. DiCE with λ2 = 1 Prioritizes diversity, potentially at the
cost of proximity. However, allows us to test our metrics
on counterfactual instances that embody a wide range of
values for their features.

4. ClaPROAR (Classifier Preserving ROAR): Focuses on
faithfulness by incorporating a model loss penalty,
which makes it more likely that the generated
counterfactuals are consistent with the model’s learned
behavior.

6 Results & Discussion
In this section the results from the experiments conducted
with baseline and proposed metrics are presented and
discussed. For our baseline metric we have opted to use
Equation 7 to measure the plausibility values.

For the communication of scores, we have opted to round
all reported scores to four significant figures. This level of
precision was deemed appropriate given the relatively small
differences observed between scores across experimental
conditions.

The average LOF scores (representing plausibility or
faithfulness, depending on which conditional distribution is
used) are reported similar to implausibility scores.

Table 2 shows average implausibility scores, where
lower values indicate more plausible counterfactuals.
ClaPROAR achieves the lowest implausibility scores
relatively frequently, suggesting it generates the most
plausible counterfactuals. The Tables 3 and 4 report
Local Outlier Factor (LOF) scores using Euclidean and
Gower distances, respectively, where lower scores denote
greater closeness to the data manifold. ClaPROAR shows
the lowest LOF scores, reinforcing its effectiveness in
generating plausible and faithful counterfactuals. The use
of Gower distance, which handles mixed data types better
than Euclidean distance, provides a more robust assessment
of counterfactuals’ adherence to the data manifold. Overall,
ClaPROAR emerges as the most reliable method for
generating plausible and faithful counterfactuals, while DiCE
with λ2 = 0.5 offers a good balance between diversity and
proximity.



Dataset Input Hidden Output Activations Epochs Train Batch Samples

German Credit 20 40 2 ReLU, Softmax 10 16 200
California Housing 8 12 2 ReLU, Softmax 10 16 200
Adult Income 14 28 2 ReLU, Softmax 10 16 300

Table 1: Structure and training parameters of the fully connected ANNs used for different datasets

Model Generator German California Adult
Credit Housing Income

Neural Generic 6.185 ± 0.290 3.274 ± 0.017 5.054 ± 0.025
Network DiCE (λ2 = 0.5) 6.181 ± 0.268 3.268 ± 0.024 5.059 ± 0.287

DiCE (λ2 = 1) 6.210 ± 0.038 3.264 ± 0.018 5.018 ± 0.035
ClaPROAR 6.117 ± 0.017 3.274 ± 0.038 4.945 ± 0.044

Dropout Generic 6.181 ± 0.442 3.278 ± 0.288 4.933 ± 0.184
DiCE (λ2 = 0.5) 6.181 ± 0.413 3.270 ± 0.237 4.921 ± 0.316
DiCE (λ2 = 1) 6.179 ± 0.042 3.248 ± 0.016 5.053 ± 0.017
ClaPROAR 6.103 ± 0.015 3.177 ± 0.047 5.020 ± 0.057

Table 2: Average implausibility score per model and dataset for different generators. Dash (–) means computation was prohibited by
circumstances

Model Generator German California Adult
Credit Housing Income

Neural Generic 0.972 ± 0.010 0.465 ± 0.010 0.702 ± 0.024
Network DiCE (λ2 = 0.5) 0.971 ± 0.010 0.462 ± 0.010 0.701 ± 0.027

DiCE (λ2 = 1) 0.971 ± 0.010 0.548 ± 0.023 0.722 ± 0.015
ClaPROAR 0.991 ± 0.002 0.461 ± 0.107 0.796 ± 0.144

Dropout Generic 0.975 ± 0.010 0.484 ± 0.019 0.694 ± 0.009
DiCE (λ2 = 0.5) 0.975 ± 0.010 0.480 ± 0.017 0.694 ± 0.010
DiCE (λ2 = 1) 0.974 ± 0.010 0.486 ± 0.166 0.714 ± 0.008
ClaPROAR 0.992 ± 0.002 0.639 ± 0.194 0.783 ± 0.223

Table 3: Average LOF score (using L2 Norm as distance) per model and dataset for various generators. Dash (–) means computation was
prohibited by circumstances

Model Generator German California Adult
Credit Housing Income

Neural Generic 0.972 ± 0.010 0.465 ± 0.009 0.709 ± 0.018
Network DiCE (λ2 = 0.5) 0.972 ± 0.010 0.464 ± 0.011 0.710 ± 0.017

DiCE (λ2 = 1) 0.972 ± 0.010 0.480 ± 0.009 0.702 ± 0.019
ClaPROAR 0.991 ± 0.002 0.546 ± 0.022 0.770 ± 0.018

Dropout Generic 0.975 ± 0.010 0.482 ± 0.020 0.703 ± 0.01
DiCE (λ2 = 0.5) 0.974 ± 0.010 0.483 ± 0.022 0.701 ± 0.009
DiCE (λ2 = 1) 0.974 ± 0.010 0.492 ± 0.021 0.700 ± 0.010
ClaPROAR 0.992 ± 0.001 0.638 ± 0.016 0.765 ± 0.023

Table 4: Average LOF score (using Gower distance) per model and dataset for various generators. Dash (–) means computation was prohibited
by circumstances



7 Limitations and Future Work

Initially, we intended to incorporate ensemble neural
networks into our study. However, due to performance
constraints and subsequent time limitations, we were unable
to implement this approach. Our survey of over 20 packages
in both Julia and Python revealed a lack of multivariate
Kolmogorov-Smirnov (K-S) test implementations. This
prompted us to develop our own. However, once again time
constraints resulted in a rudimentary implementation, and we
have reservations about the accuracy of the data gathered
from this metric.

Additionally, we had considered using Euclidean distance
for calculating the k-distance, given its local nature.
However, we ultimately decided against this approach as
the Euclidean distance is highly sensitive to large values in
any given feature, which could potentially skew the results
when taking the maximum value of two measurements (as
is done when calculating Reachability Distance). It’s worth
noting that using Euclidean distance for k-distance within
the Local Outlier Factor (LOF) algorithm may have lead to
inaccuracies, particularly for features with large ranges. We
strongly urge the reader to conduct further studies on how
to implement a multivariate K-S test and further probe into
utilizing IM1 scores to calculate faithfulness.

8 Responsible Research

A key ethical aspect in need of discussion is the use of
real-world datasets. This approach ensures that our findings
are relevant and applicable to real-world scenarios, but
it also necessitates strict adherence to ethical guidelines
regarding data privacy and consent. All datasets used in our
experiments have MIT free licences and were anonymized to
protect the privacy of individuals, and we ensured compliance
with all relevant data protection regulations. The results of
preprocessing and exploratory data analysis of the datasets
were stored in folders which were excluded from version
tracking.

To address potential biases and ensure fairness, we
carefully curated our datasets to be representative and free
from underlying prejudices. Undersampling was performed
for the majority class for all datasets in order to balance the
dataset and mitigate biases of the trained models.

The source code for generating counterfactual explanations
and running the experiments is made publicly available on
GitHub to ensure full reproducibility of our research. We
also include detailed documentation of all parameter settings
and experimental procedures in Section 5, allowing other
researchers to replicate our study accurately and precisely.
By averaging existing and proxy metric scores over multiple
experimental runs we have further mitigated outliers and
ensured that our results are reproducible by providing our
serialized models.

We make sure to detail the computing process of each
of our proposals with case specific modifications such that
reproducibility is trivial. This methodical approach allows
for precise quantification and reproducibility.

9 Conclusion
This study aimed to explore ways of evaluating the
plausibility and faithfulness of counterfactual explanations
(CEs) in machine learning models. The primary research
questions addressed were: (1) identifying the shortcomings
of existing methods to quantify the conditional distribution
of a sample in the target class, (2) reviewing which existing
metrics are used to quantify the degree of closeness of a
counterfactual to the data manifold, and (3) proposing novel
metrics as proxies to estimate the distance of a counterfactual
to the data manifold.

Our research led to several key conclusions. First, we
found that many existing methods of quantifying conditional
distributions rely on surrogate models, which can produce
plausible but not necessarily faithful explanations. This
highlights a significant gap in ensuring that CEs accurately
represent the underlying model’s reasoning. Second, we
proposed the use of the Kolmogorov-Smirnov (K-S) test and
Local Outlier Factor (LOF) with Gower Distance as effective
metrics for evaluating the plausibility and faithfulness of CEs.
These metrics combined provide a good starting point for
assessing how closely a counterfactual aligns with the true
data distribution.

In order to address the limitations mentioned in the field of
evaluation methods, we developed formal metrics to ascertain
the plausibility and faithfulness of CEs, addressing a critical
gap in the literature. The proposed LOF with Gower distance
metric has addressed significant shortcomings as mentioned
in Section 4.

Our work described a first step in proposing formal metrics
and methods to evaluate the plausibility and faithfulness
of CEs. Despite the contributions, several open issues
and areas for improvement remain. Future research should
explore methods to reduce dependency on surrogate models
to quantify closeness to the data manifold, ensuring that CEs
remain faithful to the original model. The computational
cost of some proposed metrics, particularly those involving
autoencoders, can be high. Optimizing these methods for
efficiency without compromising accuracy is a crucial area
for future work. While our metrics were validated on
specific datasets, further research is needed to test their
applicability across a wider range of datasets and model
types. Incorporating user feedback also represents a critical
area for further research. This approach can provide valuable
insights into the practical utility and trustworthiness of CEs,
ensuring that the evaluations of CEs are not only theoretically
sound but also align with user evaluations and expectations.

In conclusion, this study proposes a new method
and formal metrics for evaluating the plausibility and
faithfulness of counterfactual explanations, contributing
to the development of more feasible, transparent and
trustworthy AI systems. Future research should continue to
propose novel metrics, refine the formerly proposed metrics
and explore new approaches to enhance the reliability and
applicability of CEs in diverse real-world scenarios.
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