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Abstract

Hypersonic boundary layer transition plays a significant role in the design of hypersonic vehicles as a turbu-
lent boundary layer has higher heat transfer compared to a laminar boundary layer. Transition is a complex
phenomenon and various parameters decide how a boundary layer undergoes transition to turbulence. For
a hypersonic cone boundary layer, the linear stability theory predicts the second mode waves to be the most
unstable instability wave. Hence studying the second mode wave development is crucial from the point of
view of hypersonic boundary layer transition control.

The second mode waves cause density fluctuations which enables these structures to be visualized in
a schlieren image. This thesis applies the wavelet analysis to schlieren images to study the growth of the
second mode waves in a hypersonic boundary layer. The wavelet analysis is a signal processing technique
which allows to study waves in frequency/wavelength spectrum without loss in temporal/spatial information
unlike conventional techniques like the Fourier analysis. High speed schlieren visualization experiments
were performed on a 7◦ half angle cone in the high enthalpy shock tunnel in Goettingen (HEG), and the
images which successfully captured the instability waves were used for the present study.

By applying the wavelet analysis to schlieren images the following is concluded 1) the second mode waves
amplifies structures towards the boundary layer edge, 2) A linear wave packet has higher amplitudes concen-
trated at the leading edge, which gets redistributed towards the center first and then later to a uniform distri-
bution over the whole length of the wave packet, 3) the first harmonic of the second mode wave develops in
regions of strong second mode growth, 4) analysis on the growth rates of the second mode fundamental and
its first harmonic showed that in regions of harmonic growth there was fundamental wave decay and vice
versa, implying a possible energy exchange between the two waves and 5) strong low frequency waves were
also detected in the schlieren images, these waves were more dominant during transition while the second
mode waves and its harmonics die.

The results from the study sheds more light into the instability development in a hypersonic boundary
layer in the following ways: 1) the property of the second mode waves to amplify structures near the bound-
ary layer edge explains why early researchers observed these waves close to the boundary layer edge, 2) lin-
ear wave packets with higher amplitudes concentrated at the leading edge of the wave packet, which was
predicted from DNS simulations has been experimentally verified, 3) interaction between the fundamental
wave and its first harmonic is shown by analysis on the spatial growth rates and 4) the strong presence of
low frequency structures during boundary layer transition shows the second mode instability is not the only
dominant instability for the hypersonic cone boundary layer under adiabatic wall conditions, as predicted by
the linear stability theory.

v





Nomenclature

Acronyms

Symbol Description Dimensions Units

CWT continuous wavelet trans-
form

- -

DNS direct numerical simula-
tion

- -

DWT discrete wavelet transform - -

Greek Symbols

Symbol Description Dimensions Units

α amplification factor L−1 m−1

δ boundary layer thickness L mm

Roman Symbols

Symbol Description Dimensions Units

A wave amplitude – –

a speed of sound L/T m· s−1

c wave speed L/T m · s−1

Ccr oss cross correlation coeffi-
cient

– –

CW T wavelet transform coeffi-
cient

- -

h enthalpy L2T−2 J/kg

M Mach number - -

Mc relative Mach number – –

Np number of wave peaks - -

p pressure ML−1T−2 Pa

q heat flux MT−3 W/m2

Rem unit Reynolds number L−1 m−1

Subscripts

Symbol Description Dimensions Units

0 total flow condition

∞ flow condition outside
boundary layer

e flow condition at boundary
layer edge
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1
Introduction

A major thrust in aerospace research has always been the desire to fly faster, [2]. Fig. 1.1 shows the flight
speeds over the years. The Wright flyer first achieved powered flight at a speed of 35 mph in the year 1903
and in a span of 60 years Yuri Gagarin became the first man to travel at hypersonic speeds in 1961. Vehicles
in the higher end of the spectrum fall under the hypersonic regime, which has its own unique aerodynamic
characteristics, Anderson [2]. A flow is generally termed hypersonic when its velocity is greater than five times
the speed of sound (Mach≥5) [2]. The Hypersonic International Flight Research Experimentation (HIFiRE)
is a recent research program which aims to explore the basic technologies required to achieve practical hy-
personic flight. Flying at hypersonic speeds will revolutionize long distance flight and provide cost effective
access to space. A recent experimental flight called HyShot V under the HIFiRE program took place in July,
2017. HyShot V is a free flying hypersonic glider which flies at Mach 8, with an aim to learn how to manoeuvre
and fly hypersonic vehicles at high altitude. Hypersonic vehicles will be an integral part of transportation in
the future and hence research in this area is crucial.

The biggest challenge in the design of hypersonic vehicles is the heat transfer to the vehicle caused by the
deceleration of the high speed flow within the boundary layer. The boundary layer is a thin layer surrounding
a body that moves through a fluid, where viscous effects are dominant and they cause the flow to decelerate
within the layer. The kinetic energy of the high speed flow is dissipated as heat due to friction. Due to the dis-
sipated heat, the temperature within the boundary layer reaches high magnitudes, in reentry cases sufficient
to ionize air. The high temperatures within the boundary layer consequently cause high heat transfer from
the hot boundary layer to the surface of the vehicle. The heat transfer can affect the structural integrity of the
vehicle, which is why the reentry phase of a spacecraft is prone to accidents, most notably the space shuttle
Discovery which had damaged heat shields and was destroyed during reentry into earths atmosphere.

The heat transfer rates depend primarily on the state of the boundary layer (laminar/turbulent). The pro-
cess by which the boundary layer shifts from laminar to turbulent state is called boundary layer transition.
In a turbulent boundary layer due to the chaotic motion of the flow there is more energy transfer from the
outer flow to the energy deficit regions close to the surface, which leads to larger gradients at the wall which
in turn causes higher aerodynamic heat transfer to the surface and can affect the structural integrity of the ve-
hicle. Hence boundary layer transition plays an important role in the design of hypersonic vehicles. Thermal
protection system (TPS) designers usually follow a conservative approach of assuming a completely turbu-
lent flow over the vehicle. This leads to increased structural weight as turbulent flow heat transfer is higher
than that of laminar flow, and more material is added to the external structure to protect the payload inside.
Studies on the National Aerospace Plane (NASP) showed that the payload-to-gross-weight ratio will double
if the boundary layer were fully laminar when compared to fully turbulent [4]. This motivates the study of
transition in a hypersonic boundary layer.

Hypersonic boundary layer transition depends on a number of flow parameters. The most important pa-
rameters are: 1) Mach number: based on stability theory it is shown that the stability of a laminar boundary
is enhanced at higher Mach numbers, 2) Environment: disturbances from the environment like free stream
turbulence and disturbances from the turbulent boundary layer on a wind tunnel wall can induce early transi-
tion. Surface roughness also affects transition and is known as roughness induced transition. For hypersonic
vehicles surface roughness can develop during flight due to friction between surface and high speed flow,
which can causes early transition. 3) Angle of attack: three dimensional flows can have a severe effect on
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2 1. Introduction

transition. For a cone as the angle of attack is increased, transition is delayed on the windward side and is
advanced on the leeward side. The delay in transition on the windward side is opposite to what is expected,
since the Mach number is reduced and the local Reynolds number increases, the effect of both should be to
cause early transition. But from experiments transition moves rearward on the windward side. This shows a
three dimensional effect and is called cross flow induced transition and 4) Wall temperature: moderate cool-
ing stabilizes a hypersonic boundary layer, just like in low speeds. For highly cooled walls there are cases
where a reversal happens and transition occurs earlier.

Figure 1.1: Flight speed over the years, Anderson [1].

All the parameters that affect transition make it a complex phenomenon to study and understand. For
a smooth wall, the boundary layer develops instability waves, which grow and eventually breakdown into
turbulence. The Tollmein-Schlitling (TS) waves is one type of instability wave which develop in subsonic
boundary layers. For two dimensional hypersonic boundary layers under adiabatic smooth wall condition
the dominant instability is the second mode waves [27]. This thesis aims to study the the growth of second
mode waves in a hypersonic boundary layer. In the following sections a brief review of the linear stability
theory is provided, since it is the theoretical model that initially predicted the dominance of second mode
wave, followed by a discussion on the second mode waves.

1.1. Linear stability theory: a brief review
In this section a brief review of the linear stability theory is presented, a detailed study of this theory is pro-
vided by Mack [27, 28]. The aim of the linear stability theory is to determine if a small sinusoidal disturbance
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introduced into a laminar boundary layer will amplify or damp. The stability theory cannot predict the lo-
cation of transition or the non linear process through which transition to turbulence occurs. The theory can
predict the range of unstable frequencies and unstable boundary layer profiles. The sinusoidal disturbance
introduced into the laminar boundary layer is small enough so that the linear theory can be used. The steps
performed in linear stability analysis can be summarized into the following points :

1. The flow parameters in the Navier stokes equation are divided into mean flow term and fluctuation
term, see equation 1.1, where q is any flow variable (velocity, pressure, temperature) Q is the mean flow
property and q ′ is the fluctuation term.

q =Q +q ′ (1.1)

2. The disturbances (q ′) are assumed to be small enough so that linear theory can be applied. The flow is
assumed to be locally parallel that is parallel to the surface.

3. Linearize the equations (neglect the higher order terms ) and subtract mean flow variables.

4. Normal Mode analysis : In this the disturbance is assumed to be a superposition of different modes
(physically it can be viewed as superposition of waves). In the normal mode analysis, no interaction
between the individual modes exist. In Eqn 1.2 αs ,βs are the wave numbers in the stream wise and
span wise direction and ωs is the circular frequency of the disturbance.

q ′ = q(y)exp[i (αs x +βs z −ωs t )] (1.2)

5. Substitute Eqn 1.2 for the disturbance variable of each flow property(u′, v ′, p ′...). The resulting equa-
tions will pose an eigenvalue problem. After solving the eigenvalue problem, it can be determined if a
disturbance amplifies, damps or is neutral by analyzing the exponent in Eqn. 1.2. For a spatial stability
analysis ωs is assumed to be real and αs is complex (αs =αr +αi ). For a disturbance that amplifies αi

should be negative.

1.1.1. Second mode instability
Mack [27] performed the linear stability analysis on a compressible boundary layer and found that for super-
sonic boundary layers besides the first mode instability there exists a higher mode which is more dominant
(see Fig. 1.2). If the Mach number is greater than 4, adiabatic wall and the boundary layer is two dimensional,
the second mode instability is the dominant instability in the boundary layer. The second mode is an acous-
tic wave which reflects back and forth from the wall and the relative sonic line [28] as shown in Fig. 1.3. In
Fig. 1.3 the compression waves are indicated by solid lines and expansion waves by dotted lines. The sonic
line is defined as the height at which the convective Mach number Mc , is equal to 1. The convective Mach
number is defined by equation 1.3, where c is the second mode wave speed, u(y) is the velocity at a particular
distance from the wall and a(y) is the speed of sound at that height.

Mc = c −u(y)

a(y)
(1.3)

Mack [29, 30] found the following properties for the second mode wave: 1) second mode exists when there
is a region of local supersonic flow relative to the phase speed of the second mode wave (Mc >1) embedded in
the boundary layer, as seen in the region between the wall and sonic line in Fig. 1.3, 2) The wave propagation
speed is close to free stream velocity, 3) the wavelength is approximately twice the boundary layer thickness,
4) the waves cause fluctuations in density primarily and 5) the second mode is most unstable for wave angle
of 0◦.

Since the second mode waves induce fluctuations in density, these flow structures can be visualized using
schlieren technique, which depends on density gradients for visualization, see Fig 1.4. As these flow struc-
tures are captured in a schlieren image, it motivated researchers to apply signal processing techniques on a
schlieren image to extract properties of the second mode wave. The second mode wave is also called Mack
mode or acoustic mode.
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Figure 1.2: Effect of Mach number on the amplification rate, White [52].

Figure 1.3: Figure shows the propagation of second mode as an acoustic wave, Wagner [50].

Figure 1.4: Second mode wave visualized on a cone, adapted from Casper et al. [6].
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Figure 1.5: Taking Fourier transform of a signal, Misiti et al. [31].

1.2. Signal processing techniques
Signal processing techniques are used on signals obtained from experiments. This section introduces the
basics of these techniques to help interpret the results discussed in chapter 2.

1.2.1. Fourier transform
The Fourier transform is a mathematical technique which decomposes a signal into sinusoids, given by equa-
tion 1.4. Where f (t ) is the signal measured in the time domain.

F (ω) =
∫ ∞

−∞
f (t )exp(−iωt )d t (1.4)

exp(iωt ) = cos(ωt )+ i sin(ωt ) (1.5)

The sine and cosine waves are called the basis functions. The Fourier transform assigns an amplitude to
sine/cosine waves of specific frequencies, which results in a set of scaled sine and cosine waves that can be
added to produce the original signal [44]. The effect of taking the Fourier transform is pictured in Fig. 1.5.
A physical signal (extreme left Fig. 1.5) like pressure/velocity/temperature is measured in the time domain
and performing the Fourier analysis gives the dominant frequency in the measured signal. The frequency
contained in the measured signal, corresponds to the frequency of the maximum amplitude in the amplitude-
frequency spectrum shown in the extreme right of Fig. 1.5. The Fourier transform can be thought of as a
technique that converts physical signals measured in the amplitude-time domain to an amplitude-frequency
domain.

The Fourier transform has one drawback. In converting the signal to a frequency domain, the time infor-
mation is lost. Based on the amplitude-frequency plot it is not possible to deduce when a wave moves over
the sensor. For signals that do not change much with time (stationary signals), this drawback does not affect
the analysis much. However most of the signals that are measured in a lab have non stationary characteristics
like abrupt changes or coherent structures in turbulence.

One way to overcome this drawback is to use the short time Fourier transform (STFT). In STFT the Fourier
transform is taken only for a portion of the signal and mapped to a frequency-time domain as shown in Fig.
1.6. While this technique is beneficial there are some disadvantages like the time window size is fixed and
taking a short time window will result in poor frequency resolution. The wavelet analysis discussed in the
next section is one technique which over comes these drawbacks and is well suited to study non stationary
signals.

Figure 1.6: Taking short time Fourier transform of a signal, Misiti et al. [31].
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1.2.2. Wavelet analysis

The Fourier transform decomposes a signal into sine and cosine (basis functions) components of different
frequencies. The wavelet analysis similar to Fourier transform, decomposes a given signal into scaled versions
of a mother wavelet, which serves as the basis function for a wavelet transform. The concepts of the wavelet
transform are explained by taking the wavelet transform of a row vector from a schlieren image, shown in Fig.
1.7 (top).

Figure 1.7: Difference between taking the Fourier and wavelet transform of a row vector from schlieren image. Figure demonstrates that
while taking the wavelet transform there is no loss in spatial information.

The first step to perform the wavelet transform, is to select a mother wavelet, a few wavelets are shown in
Fig. 1.8. The wavelet chosen for the analysis should be representative of the signal that has to be analyzed.
For example if the objective is to find out a sudden discontinuity in a signal then the haar wavelet is best
suited. For this study, the objective is to analyze the second mode waves which are sinusoidal fluctuations;
hence the Morlet wavelet (see Fig. 1.8) which is also sinusoidal in nature is selected for this analysis.



1.2. Signal processing techniques 7

Figure 1.8: Different types of mother wavelets.

An important property of the mother wavelet is its scale, which is the wavelet counterpart for frequency
of a basis function in FFT. The scale of a wavelet is an indication of the extent it is stretched or compressed,
represented by the variable a (see Fig. 1.9). It is understood directly that a small scale wavelet has high fre-
quency and a large scale wavelet has low frequency. The scale of a wavelet is related to its frequency through
Eqn. 1.6. The relation between scale and frequency is only approximate [32]. Fc is the center frequency of the
wavelet, which is the frequency of a periodic signal associated with the wavelet. Fs is the sampling frequency
of the signal under analysis.

Fa = Fc

a(1/Fs )
(1.6)

Figure 1.9: Morlet wavelet of different scales.

In the wavelet analysis the mother wavelet is shifted over the entire signal under analysis. For every shift
an inner product of the wavelet and the portion of the signal is taken, this is similar to taking a cross correla-
tion (see step1 and step 2 in Fig. 1.10). This generates wavelet coefficients, which give an indication of how
similar a portion of the signal is to the mother wavelet. Larger the coefficients more similar that section of
the signal is to the mother wavelet. This process is repeated for all scales of interest generating a matrix of
wavelet coefficients, see Fig. 1.7 bottom. Every horizontal row of Fig. 1.7 bottom is generated by taking the
cross correlation of the signal and a Morlet wavelet of fixed scale.

Fig. 1.7 shows the result of applying the wavelet transform to a row of a schlieren image. The advantage
of using the wavelet transform is clear from Fig. 1.7. Taking the Fourier transform of the signal (middle right)
the spatial information is lost, while when the wavelet transform is taken (bottom) the location of the second
mode is also known in addition to the frequency of the waves. From the large wavelet coefficients in Fig.
1.7 (bottom), the second mode waves are present between 650-680 and 700-740 mm. A visual comparison
between the schlieren image and the wavelet transform shows that the wavelet transform does indeed provide
the location of the second mode waves. In Fig. 1.7 the row vector from the schlieren image is band pass
filtered around the second mode frequency for illustration purposes, to apply the wavelet transform no noise
filtering is required. More details of the wavelet analysis are discussed in section 3.2.
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Figure 1.10: Cross correlation between wavelet and signal.

1.3. Thesis Objective and Outline
The objective of this thesis is to develop an algorithm, which applies the wavelet transform to schlieren im-
ages to study the following instability wave properties:

• the growth of harmonics of the fundamental instability wave

• the growth rate of the instability wave and

• the instability wave breakdown process.

The subject is introduced in this chapter. In chapter 2 a detailed review of the experimental and compu-
tational studies of second mode development is discussed. The literature review is divided into three sections
based on the tool used to study the second mode waves, section 2.1 discusses results from hot wire and sur-
face mounted sensors, section 2.2 presents results from visualization based literature and section 2.3 presents
the numerical results. In section 2.5 the research proposal and research questions are formulated based on
the literature review. The methodology is addressed in chapter 3. The schlieren experimental setup and the
test flow conditions are presented in section 3.1. In section 3.2 a further discussion on the wavelet analysis
and its application to schlieren images is discussed. The results are presented in chapter 4. The chapter is
subdivided into the following sections: 1) section 4.2 studies the second of mode waves, 2) section 4.3 studies
the first harmonic of the second mode fundamental waves and 3) section 4.4 discusses the low frequency
waves observed in schlieren images. The conclusions of the study is finally presented in in chapter 5.



2
Literature Review

Over the years the scientific community has used a number of techniques to study the second mode distur-
bances like hot wire anemometer, PicoCoulomB (PCB) transducers [12] and heat flux gages [37]. Recently,
optical and visualization based techniques have gained popularity to study the second mode waves. These
combine several benefits: they are non-intrusive, able to measure away from the model surface, and typically
have bandwidths that are limited only by the recording electronics. This chapter reviews the research per-
formed over the years to study the growth and breakdown of second mode waves. The sections are divided
by the technique used in the respective investigations. In section 2.1 investigations using surface mounted
techniques are reviewed followed by visualization based techniques and numerical simulations in sections
2.2 and 2.3. In all the experimental and computational investigations presented in this chapter the model
used was a cone with a cold wall under hypersonic conditions, hence the second mode wave is expected to
be the dominant instability.

2.1. Results from experiments using surface mounted and probe techniques
The study of Mack [28] indicated that natural transition for a two dimensional hypersonic boundary layer
with cold wall condition is dominated by the second mode waves. One of the earliest experimental investi-
gations to validate the presence of second mode disturbances in a hypersonic cone boundary layer was that
of Kendall [17]. He compared the experimentally measured amplification rates to the theoretical prediction
by Mack, see Fig. 2.1a. Although the growth rates did not agree, the most amplified frequencies did which led
Kendall [17] to conclude that the measured disturbances were the second mode waves. Further experiments
using hot wire anemometers proved the following: 1) wave speed to be 0.9U∞[18], 2) the wavelength to be
approximately twice the boundary layer thickness [10, 48] and 3) the waves cause larger density fluctuations
than velocity fluctuations [10, 48]. These properties were also experimentally observed by researchers using
PicoCoulomB (PCB) transducers and atomic layer thermopile (ALTP) sensors [7, 12, 37]. It is emphasized
once again that all the experiments reported here were performed on a cone under hypersonic and cold wall
conditions.

Fig. 2.1b, is the disturbance spectrum of a hot wire signal for varying Reynolds number at a fixed stream
wise location.The signal was measured at the location of energy peak in the boundary layer. Peaks that occur
in the frequency range around 70 kHz, correspond to the frequency of the fundamental second mode wave.
Secondary peaks are also observed at higher frequencies (140 kHz), these are the first harmonics. The har-
monics of the fundamental frequency were also observed in a hypersonic quiet wind tunnel [20], thus ruling
out the possibility that free stream disturbances cause the higher harmonics. The presence of harmonics
imply non-linear growth, as these frequencies were not predicted to be dominant by the linear theory. Har-
monics were also observed using PCB transducers by Berridge et al. [5], Casper et al. [9]. In Fig. 2.1b it also
seen that for thicker boundary layer (lower Reynolds number implies thicker boundary layer) the frequency
of the second mode waves is lower, this was dubbed as the tuning of the hypersonic boundary layer by Stetson
and Kimmel [46].

Kimmel et al. [18] cross correlated circumferentially separated probes to find the span wise extent of the
wave packet to be 4δ. It was also observed that as the second mode waves grew, their span wise extent re-
duced, implying the wave angles were non zero. Casper et al. [7] used span wise PCB transducers to generate

9
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(a) Comparision of amplification factor with Mack’s
theoretical results. ψ= 55◦ is for first mode wave and rest

are for second mode waves. F is non-dimensional frequency

(b) Energy spectrum at a fixed stream wise location for
varying Reynolds number. The signal was measured at the

location of energy peak in the boundary layer.

Figure 2.1: Results from Kendall [17].

a pressure contour (Fig. 2.2). The circumferential extent of the second mode structures were found to be 4δ,
agreeing with Kimmel et al. [18]. Kimmel also found the structure angle of the wave packet in the wall normal
direction (Fig. 2.3a). Second mode structure angle represents the inclination of the line of constant phase
and the wall (see drawing in Fig. 2.3a). The second mode structure angle was found to be low in the inner half
of the boundary layer, increase from 15◦ at y/δ= 0.7 to a maximum of 60◦ close the boundary layer edge.

Demetriades [10] observed that the second mode cause higher temperature fluctuations than velocity
fluctuations, as seen in the temperature fluctuations in Fig. 2.4a. Fluctuations in temperature affect the
density through the equation of state (p = ρRT ). The figure also shows that the second mode waves are
concentrated close to the boundary layer edge. Kimmel et al. [18] cross correlated vertically separated hot
wire signals for varying Reynolds number shown in Fig. 2.4b. From the figure it is seen that for the lower
Reynolds number the second mode waves are concentrated at the boundary layer edge and for the higher
Reynolds number the vertical extent of the waves increase.

The growth rate of the second mode wave is defined as given in equation 2.1, where A1, A2 is the wave
amplitude corresponding to second mode frequency measured upstream and downstream and ∆s is the dis-
tance between the sensors.

−α= ln(A1/A2)

∆s
(2.1)

Stetson and Kimmel [47] plotted the maximum second mode growth rates against the Reynolds number
(Fig. 2.3b) and observed that the second mode growth rates reduced at the Reynolds number larger than
1400, for which harmonics developed. Stetson and Kimmel [47] proposed that the decrease in the amplifica-
tion factor of the fundamental wave can be due to non-linear growth, which amplifies the harmonics during
breakdown. However, Roediger et al. [37] study on the growth rates of harmonics, showed no significant in-
crease in the growth rates of the harmonics during breakdown. Roediger et al. [37] found the second mode
wave and the first harmonic to have amplification factors of 25 m−1 and 27 m−1. In the experiments per-
formed by Estorf et al. [12] the maximum amplification factor obtained was 6 m−1. Casper et al. [8] studied
the breakdown using pressure sensors, and observed that breakdown is initiated in the center of the wave
packet where amplitudes are the largest.

Zhu et al. [53] experimental study using PCB transducers in the Mach 6 quiet wind tunnel at the Peking
university showed that low frequency structures had significant amplitude during the breakdown of hyper-
sonic boundary layer. Fig. 2.5 shows that the second mode initially grows in amplitude and then decays
downstream whereas the low frequency waves continues to grow, the transition onset location is x/L≈0.78
from optical measurements. This trend was also observed for varying Reynolds number as shown in the fluc-
tuating pressure amplitude plots in Fig. 2.6. Zhu et al. [53] then proceeded to analyze the PCB signals using
bispectral analysis, to determine the non-linear interactions that occur in a given signal. The bispectral anal-
ysis takes a signal and decomposes it in two frequency axes. The peaks that occur in a bispectrum indicate
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that the frequencies corresponding to a peak interact with each other and exchange energy. From Fig. 2.7 it is
seen that there are strong peaks that occur at the second mode fundamental frequency (240 kHz) and low fre-
quency wave ( <100 kHz) , indicating an interaction between these waves. The interaction is stronger at x/L=
0.69 compared to x/L=0.54, and eventually dies as the second mode waves decay at x/L=0.84. The velocity of
the low frequency waves were also found to be equal to the second mode propagation speed. The two results,
the bispectrum peaks and the equal velocities indicate a phase locked mechanism, in which waves with equal
velocities interact and exchange energies. Zhu et al. [53] concluded that the second mode wave initially grows
and interacts with the low frequency waves via a phase locked mechanism and transfers it’s energy and then
decays. After interaction the low frequency waves continue to grow in amplitude and the second mode waves
decay; hence concluding that the low frequency waves eventually drive the boundary layer to turbulence and
not the Mack modes.

The most common signal processing technique used to analyze the measured signals is the Fourier trans-
form, as discussed in the preceding paragraphs. In this thesis the wavelet analysis will be used to study the
development of the second mode waves. The wavelet transform has been used by Grossir et al. [14], Wagner
et al. [51] to analyze the signals from surface sensors. Fig. 2.8 shows the wavelet transform of a pressure signal
at two stream wise positions on a cone. If the Fourier transform of the signal was taken, a result similar to Fig.
2.1b would be generated. In doing so the information of when the second mode passes over the sensor is lost,
where as in Fig. 2.8b the second mode passes over the sensor at the time instant corresponding to appearance
of large wavelet coefficients around 200 kHz. As seen in Fig. 2.8a there is no large wavelet coefficient implying
no second mode waves pass over this sensor. For the downstream sensor Fig. 2.8b there are second mode
waves as well as its harmonics that develop.

Figure 2.2: Pressure contour of span wise PCB transducers, showing the circumferential extent of the wave packet to be 4δ [7]. x̃-stream
wise distance and y- span wise distance.

(a) second mode structure angle measured by Kimmel et al.
[18].

(b) Maximum second mode growth rate vs Reynolds
number, adapted from Stetson and Kimmel [47].

Figure 2.3: Hot wire results from Kimmel et al. [18] and Stetson and Kimmel [47].
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(a) Adapted from Demetriades [10], shows that the second
mode causes more variation in density than velocity.

(b) For low Reynolds number waves concentrated at y/δ=1
[18].

Figure 2.4: Results showing the second mode wave concentrated at the boundary layer edge.

Figure 2.5: Frequency spectrum at different stream wise positions[53].
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Figure 2.6: Fluctuating pressure amplitude for (left) low frequency waves and (right) second mode wave [53].

Figure 2.7: Fluctuating pressure amplitude for (left) low frequency waves and (right) second mode wave [53].

(a) PCB at x= 490 mm. (b) PCB at x= 710 mm.

Figure 2.8: Wavelet transform of PCB signals [14].
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2.2. Results from visualization based techniques

Visualization techniques have gained popularity recently to study the second mode instability. These tech-
niques are non-intrusive unlike hot wire anemometers and can also be used in high enthalpy conditions
where hot wires can be damaged. Visualization techniques can also take measurements in the wall normal
directions, where surface based techniques like PCB and heat flux sensors cannot. Potter and Whitfield [36]
were the first to observe rope-like structures in schlieren images of a hypersonic boundary layer which were
later identified as the second mode waves by Smith [43].

Three optical based techniques: schlieren, deflectometry and focused laser differential interferometry
(FLDI) have been used to study the Mack modes. In schlieren deflectometry the basic principles are the
same, the only difference being that in the image plane, photo detectors are placed at a specific position.
These detectors have a higher bandwidth in comparison to schlieren visualization [23]. Focused laser differ-
ential interferometry (FLDI), was implemented by Parziale et al. [33]. FLDI detects the change in phase due
to variation in density of two spatially separated points. This makes the interferometer sensitive to spatial
density differences in the stream wise direction [33].

Laurence et al. [22], demonstrated that image processing techniques can be applied to schlieren images,
to obtain the wavelength and velocity of the second mode waves. To find the wavelength, the power spectral
density of the pixel intensity of a row from the schlieren image is taken (see Fig. 2.12). Two dimensional
image cross correlation was applied to consecutive images (see Fig 2.9) to find the velocity of the waves [22–
24]. The velocity of the disturbances was found to be 0.8Ue , once again confirming the theoretical prediction
of Mack and the results of surface mounted sensors presented in sections 1.1.1 and 2.1. Grossir et al. [15] also
visualized the rope like structures in schlieren images of a hypersonic cone boundary layer, and his results
agree well with the theoretical results. The FLDI investigations of Parziale et al. [33, 34, 35] also found the
second mode wave propagation speed to be equal to the free stream velocity.

Laurence et al. [24, 25], studied the second mode wave growth and breakdown in a hypersonic cone
boundary layer using high speed schlieren visualization. Fig. 2.10a shows the frequency spectra develop-
ing over time, the Fourier transform of the maximum amplitude row was selected for the plots. In Fig 2.10a
second mode wave packets are not seen all through out the test time, evident from the peaks that occur at
300 kHz at various time instants. VanDercreek et al. [49], attributes this intermittent appearance of the Mack
mode to the vibration of the cone model which changes the free stream conditions. In Fig 2.10b, the spectra
is spread over a wide range of frequencies indicating a transitional or turbulent boundary layer for this con-
dition. The result of Fig 2.10b, is similar to Fig. 2.1b (Re=6.85,8.5 ·104 cm−1 ) which shows the energy being
distributed among all frequencies. Using the images it was also possible to generate a spatial mean power
spectra, Fig. 2.11a. Second mode peak is seen upstream between 725 -740 mm. Fig. 2.11a shows that as
the wave packet travels downstream the frequency decreases (due to boundary layer growth), this was also
reported by Stetson et al. [48] and discussed in section 2.1.

Figure 2.9: Consecutive schlieren images showing the second mode disturbance developing and breaking into turbulence[25].
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(a) Re = 2.6 ·106 m−1, beginning of visualization window. (b) Re = 4 ·106 m−1, ending of visualization window.

Figure 2.10: Time developing power spectra at a fixed stream wise location and height above the surface for consecutive images, for a
laminar and turbulent boundary layer [24].

Following Kimmel’s study of the structure angle [18], Laurence also studied the variation of structure angle
of the wave packets in the wall normal direction from schlieren images, by cross correlating vertically sepa-
rated image rows. Laurence found the structure angle to be 70-80◦ at y/δ=0 decreases to 12-13◦ at y/δ=0.7
and finally increases to 100◦ at the boundary layer edge (Fig. 2.11b). By band pass filtering the row signals
around the first harmonic frequency, the structure angle of the harmonic was also found in Ref [25]. Parziale
et al. [35] found the structure angle to be 11-15◦ using schlieren images, although the distribution along the
wall normal direction is not provided in the study.

Some unique features of the second mode disturbances could be investigated using schlieren images.
The distribution of the wall normal energy by taking fast Fourier transforms of each image row is shown in
Fig. 2.12. Laurence et al. [25] observed that, the distribution of the wall normal energy varied during the
development of wave packets. In particular it was noted that there were two peaks present, one close to
the boundary layer edge (as reported by hot wire measurements) and the other close to the cone surface
(Fig. 2.12a). Laurence et al. [25] noted that as the wave packet developed there was a development of a
third peak in the wall normal direction before breakdown occurs (Fig. 2.12b). By bandpass filtering an image
separately around the second mode fundamental frequency and the first harmonic frequency, and comparing
the images, Laurence et al. [25] found the harmonic energy to be concentrated at the center of a wave packet
(see Fig. 2.13). Casper et al. [8] observed that the wave packet breakdown is initiated at the center of the wave
packet. These two observations may be an indication of the role of harmonics play in the breakdown process.
By applying the wavelet transform to schlieren images, it will be possible to study point of initial breakdown
inside a wave package and the growth of harmonics; hence establishing a link between the observations of
Casper et al. [8] and Laurence et al. [25]. Hofferth et al. [16] performed bispectral analysis on focused schlieren
deflectometry signals from a hypersonic flared cone boundary layer, and found that there was interaction
between the fundamental second mode wave and it’s first harmonic.

The amplification factor of the second mode instability wave was computed using schlieren deflectometry
[23, 49] and FLDI [34]. Laurence et al. [23] used schlieren deflectometry to measure the growth rates shown in
Fig. 2.14, the figure provides only normalized values and not the absolute values. The highest amplification
rate occurs for the wave having a frequency of 400 kHz which corresponds to the fundamental second mode
frequency. There is also significant amplification for lower frequencies below 100 kHz, although the author
does not discuss the implications of this result, in light of the study conducted by Zhu et al. [53] (discussed in
section 2.1 ) these can be the amplified low frequency waves which drive the boundary layer to turbulence.
Parziale et al. [34] found the maximum growth rates of the waves to be 5.4 - 9.8 m−1, for Mach number 5 and
unit Reynolds number of 2·106 m−1 and enthalpy of 9.02 MJ/kg. The growth rates have not been computed
from schlieren images yet, and if successful it can shed more light into the waves which drive the boundary
layer to turbulence; hence it is one of the objectives of this work.

Shumway and Laurence [38] used methods like wavelet analysis and auto-correlation to identify the sec-
ond mode wave in a schlieren image. Casper et al. [6] used schlieren images to detect the intermittency of the
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boundary layer. Casper et al. [6] used an edge detection algorithm to determine intermittency, if the edges
detected were larger than laminar boundary layer height it was defined turbulent and given value 1, and if
less than it was defined laminar and given 0.

(a) Spatially developing mean power spectra, Laurence et al.
[25].

(b) Variation of structure angle in the wall normal direction,
Laurence et al. [25].

Figure 2.11: Different analysis performed on the schlieren images[25].

(a) Double peak distribution observed during early stages of
wave packet development.

(b) Three peak distribution observed during later stages of
wave packet development.

Figure 2.12: Variation in wall normal energy distribution [25].

Figure 2.13: (top) Schlieren image, (middle) schlieren image band pass filtered about the second mode fundamental frequency and
(bottom) band pass filtered about the first harmonic, Laurence et al. [25].
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Figure 2.14: Amplification factor obtained from deflectometry [23].

2.3. Investigations using numerical simulations
Numerical simulations of hypersonic boundary layer were also performed over the years to get a more de-
tailed picture of the instability growth. The results discussed in this section are direct numerical simulations
(DNS) results. DNS uses the exact Navier-Stokes equation and does not perform any turbulence modeling
either. However discretization errors can occur because the grid sizes have to be small enough to capture all
the small scale (Kolmogorov scale) structures of turbulence. Hence the results from these simulations have to
be validated through experimental investigations. In this section a review of the results from direct numerical
simulations (DNS) investigating second mode instability growth are presented.

The simulations conducted by researchers were performed on a hypersonic cone boundary layer, con-
ditions which are conducive to the growth of the second mode waves [29, 30]. Disturbances over a broad
spectrum of frequencies are introduced into the boundary layer close to the nose tip, and it was observed
that only the second mode waves were amplified after a certain distance from the disturbance source [39].

Sivasubramanian and Fasel [39, 40, 41] and Sivasubramanian et al. [42] found three breakdown mecha-
nisms to be relevant for a hypersonic cone boundary layer. The three mechanisms are 1) fundamental reso-
nance mechanism, 2) subharmonic resonance mechanism and 3) oblique wave breakdown mechanism. In
the fundamental resonance mechanism, there is an interaction between a primary wave and two oblique
waves with the same frequency. For the subharmonic resonance there is interaction between a primary wave
and two oblique secondary waves at half the frequency of the primary wave. Finally in the oblique break-
down mechanism two oblique waves of opposite angles interact with each other causing breakdown. The
primary and secondary waves interact via a phase locked resonance mechanism. In phase locked resonance
a planar wave and pair of oblique waves with any frequency but same phase velocity interact to generate
new oblique waves. Resonance among the planar, oblique and newly generated wave leads to rapid growth
of obliques waves and eventually transition to turbulence. In the paragraphs that follow a summary of the
numerical results supporting the above breakdown mechanisms are discussed. The frequency spectra for the
linear wave packet (Fig. 2.15a) shows that wave is two dimensional since most of the energy is concentrated
at the azimuthal mode number, k equal to zero. This is again in agreement with previous experimental and
theoretical investigations discussed in previous sections. There is also energy contained in oblique waves at
lower frequencies in Fig. 2.15a, this is the first mode wave which is also present in the wave packet, as the
theory predicts the amplification of the first mode wave is small in comparison with the second mode (Fig.
1.2). In contrast to the linear wave packet, the frequency distribution for the non-linear wave packet exhibits
strong three dimensional characteristics, from the energy concentrated in non-zero mode numbers in Fig.
2.15b.

Fig. 2.15b shows the disturbance spectrum for a non-linear wave packet. As mentioned previously, funda-
mental resonance is the interaction between a primary wave and two oblique waves with the same frequency.
Fig. 2.15b shows the disturbance spectrum for a non-linear wave packet, and the dominant frequencies in
the spectrum indicate the possible interactions that occur. The fundamental resonance is seen in Fig. 2.15b
(solid red circles), the oblique waves have a frequency of 210 KHz similar to the primary wave (black region)
and azimuthal mode number (kc ) of 150. The dotted blue circles in Fig. 2.15b indicate the subharmonic
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(a) Disturbance spectrum for a linear wave packet [39].
(b) Disturbance spectrum for a non-linear wave packet [41].

Figure 2.15: Disturbance spectrum for wave packets, Kc is the azimuthal mode number.

resonance, in which interaction occurs between the primary wave and secondary waves at frequencies half
of the primary wave. Sivasubramanian and Fasel [40] observed that the growth rate of the disturbances was
larger for fundamental resonance mechanism and concluded that the fundamental resonance mechanism
was stronger than subharmonic resonance for a hypersonic cone boundary layer. Experimental verification
of subharmonic resonance has been reported by Kimmel and Poggie [19], Lachowicz et al. [21]. Fundamen-
tal resonance has not yet been verified experimentally. Harmonics are also seen in Fig. 2.15b, similar to the
experimental observations discussed in sections 2.1 - 2.2.

Fig. 2.16 shows the pressure amplitude for a wave packet. From the figure it is seen that higher pressure
amplitudes occur in the leading edge of the wave packet. From Fig. 2.16, it is concluded that the maximum
amplitude of a linear wave packet is concentrated at the leading edge, contrary to the experimental observa-
tions of Casper et al. [8] who found the maximum amplitude to be at the center of the wave packet. Casper
et al. [8], observed the wave amplitudes to be at center close to breakdown, therefore it can be possible that
the waves were non-linear before breakdown occurred. The two results suggest that during the initial stages
wave packet development (linear) the energy is concentrated at the leading edge, after sufficient growth non-
linear process redistribute the energy to the center of the wave packet. Fig. 2.17 adapted from Casper et al. [7]
shows that there are wave packets that agree with the numerical observation of Sivasubramanian et al. [42].

Fig. 2.18a shows the spatial frequency distribution, here the decrease in second mode frequency due to
boundary layer growth is seen, this is similar to Fig. 2.11a obtained using schlieren visualization. In the up-
stream portion of Fig. 2.18b the waves are concentrated at the boundary layer edge and during breakdown
it spreads vertically. This characteristic is seen in Fig. 2.4b from the study performed by Kimmel et al. [18],
where for lower Reynolds number the waves are concentrated at the boundary layer edge and for higher
Reynolds number the waves are spread in the boundary layer. Sivasubramanian and Fasel [39] observed
that the wave packets stretch in the stream wise direction as it travels. Sivasubramanian and Fasel [39], at-
tributed the stretching to the differential velocity between the leading and trailing edges of the wave packet
(leading edge has higher velocity). This is also seen in schlieren images shown in Fig. 2.14. The differential
velocity between the leading and trailing edges can be measured by cross-correlating the separate sections
of the wave packet between images. It was also observed that as the wave packet travels downstream, it be-
comes more three dimensional (wave angle larger than 0◦) this was also observed using hot wire [18] and PCB
transducers[6], discussed in section 2.1.

The investigations of Li et al. [26] provide results which are in contrast to the simulations discussed in
the paragraphs above. Li et al. [26] observed low frequency waves to be prominent prior to breakdown of the
boundary layer. Li et al. [26] observed that the low frequency waves are amplified and rapidly distorted, which
indicated that they play a vital role to initiate transition. It was also concluded that the second mode waves
trigger the growth of these low frequency structures, these waves were also observed experimentally by Zhu
et al. [53] as discussed in section 2.1.
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Figure 2.16: Wall pressure contours for a linear wave packet, x∗ stream wise direction and z∗-span wise direction [42].

Figure 2.17: Pressure contour of span wise PCB transducers showing two wave packets, one with amplitude concentrated at the leading
edge and the other at the center, adapted from Casper et al. [7].
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(a) Stream wise frequency of second mode wave [42].

(b) Wall normal density contour from numerical simulation showing acoustic wave radiation and second mode
breakdown [41].

Figure 2.18: Results from numerical simulation of hypersonic cone boundary layer.

Author Mach Re(m−1) Enthalpy (J/kg) (αi )max (m−1)
Roediger et al. [37] 5.8 4.29·106 429·103 25
Estorf et al. [12] 5.8 9.17·106 417·103 36.7
Estorf et al. [12] 5.8 1.5·106 417·103 6
Parziale et al. [34] 5.8 2·106 9.02·106 5.4 - 9.8
Wagner [50] 7.3 1.5·106 3.25·106 11-13

Table 2.1: Maximum second mode growth rates reported in literature.

2.4. Summary
In this chapter a review of the experimental and numerical investigations undertaken to study the develop-
ment of second mode waves were presented. The discussion can be summarized into the following points:

1. The experimental studies on hypersonic boundary layers confirmed the following theoretical predic-
tions of Mack [27]:1) The second mode waves were the most dominant instability, and the most un-
stable wave angle was 0◦, 2) wave propagation speed is 0.9 U∞[18] and 3) wavelength is approximately
twice boundary layer thickness [10, 48].

2. The second mode waves cause density fluctuations primarily and are concentrated towards the bound-
ary layer edge. This was reported in hot wire measurements [10, 18], schlieren visualization [23, 25] and
direct numerical simulations [39]. The fluctuations in velocity are negligible in comparison to the den-
sity fluctuations (see Fig. 2.4a).

3. As the second mode propagates downstream, the frequency of the waves reduce due to increase in the
thickness of the boundary layer. This was termed as the "tuning effect" of the boundary layer by Stetson
et al. [48]. This is seen in Figures 2.1b, 2.11a and 2.18a.
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4. The second mode wave packet has limited span wise extent, which means it does not cover the entire
circumference of the cone. The circumferential extent was found to be 4δ by researcher using PCB
transducer and hot wire anemometer [7, 18]. In numerical studies of Sivasubramanian and Fasel [39] it
was found that as the wave packet travels it becomes less two dimensional (wave angle non zero), this
can affect the schlieren results as the technique averages across the line of sight.

5. Harmonics of the fundamental mode were observed in a significant number of studies (experimental
and numerical). The harmonics were not predicted by the linear theory and their presence indicated
that non-linear mechanisms are present in the boundary layer which generate these harmonic waves.

6. Stetson [48] observed that a property of transition is the decrease in the growth rates of the second
mode waves and an increase of the first mode growth rates [48]. Zhu et al. [53] also makes a similar
observation but does not identify the low frequency waves as first mode waves. The low frequency
structures observed by Zhu et al. [53] have not been reported in optical investigations although a closer
look into Fig. 2.12a shows energy contained at lower frequencies and Fig. 2.14 showed significant am-
plification in the low frequency ranges. These could be an indication of low frequency waves captured
in schlieren images. If these waves (second mode, harmonic and low frequency waves) are captured in
schlieren images computing their amplification factor can help verify the observations of Stetson et al.
[48] and Zhu et al. [53].

7. The investigations of Sivasubramanian and Fasel [41] concluded that the fundamental resonance mech-
anism is the strongest in a hypersonic cone boundary layer. Since the mechanism involves interaction
with oblique waves and schlieren visualization averages across the line of sight, experimental verifi-
cation of this breakdown mechanism is beyond the scope of this study. If waves cover the entire cir-
cumference of the cone, i.e. they do not have a limited circumferential extent; then it can be detected
by schlieren visualization. Span wise probes will have to be used to study and verify the breakdown
mechanisms.

8. Sivasubramanian et al. [42] observed the wave packet energy to be concentrated at the leading edge
of a wave packet, whereas Casper et al. [8] observed the energy to be concentrated at the center of the
wave packet before breakdown; indicating a redistribution of energy due to non linear processes. The
wavelet analysis can be used to study stream wise energy distribution of the wave packet at various
stages and confirm these observations. Laurence et al. [25] reported a variation in the distribution of
the wall normal energy, by applying the wavelet analysis to schlieren images this variation can also be
studied.

9. The growth rates of the second mode waves have been extracted using surface mounted sensors and
schlieren deflectometry. The maximum growth rates reported in literature are summarized in table 2.1.

2.5. Research proposal based on the literature reviewed
As stated in section 1.3, the objective of the thesis is to study the development of second mode waves by
applying wavelet transform to schlieren images. Based on the literature reviewed in this chapter a link is
established between the present study and published material through the following points:

• Can harmonics of the fundamental wave be detected?

Harmonic waves have been observed in schlieren images [23, 25]. Applying the wavelet transform
will allow to compare the spatial location of the harmonics with respect to the fundamental wave. The
amplitude distribution of the waves can also be compared.

• Can the amplification factor of the waves be determined?

Second mode growth rates have been extracted using surface mounted sensors primarily. Using
these sensors the temporal amplification factor can be determined. Using schlieren images in con-
junction with wavelet transform, the spatial growth rates can be determined. This will allow to study
the growth of different portions of the wave packet like the leading/trailing edge or the core of the wave
packet.

• How does the second mode wave breakdown process start?
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Stetson and Kimmel [47] predicts that during transition the harmonics of the fundamental second
mode wave should amplify. A recent study by Zhu et al. [53] proposes that it is low frequency waves
that cause transition after interaction with the second mode waves. These observations can be tested
by taking the wavelet transform of schlieren images capturing transition.

2.5.1. Research question
The research question has been formulated based on the objectives outlined in section 1.3 and literature re-
viewed in this chapter. The main research question is further divided into sub-questions, which will together
answer the principal research question. The research question and it’s sub-questions are:

What properties of the second mode wave can be studied by applying the wavelet transform to schlieren
images of a hypersonic boundary layer?

• Can the amplitude distribution of the second mode wave in the wall normal and stream wise direction
be studied?

• Can harmonics of the fundamental frequency be detected as the instability grows?

• Can the amplification rate of wave be determined?

• How does the second mode wave breakdown process start?
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Methodology

In this chapter the method followed to study the growth of the second mode waves is discussed. First the
experiments performed in HEG are explained in section 3.1 followed by a discussion on the wavelet transform
in section 3.2, which is the primary signal processing technique employed to study the waves captured in the
schlieren images.

3.1. Experiments
Experiments were performed in the high enthalpy shock tunnel in Goettingen (HEG). HEG is a reflected shock
tunnel which uses a free piston to compress the driver gas. HEG was designed to simulate hypervelocity flow
conditions at Mach 7, both the velocity and the high temperature effects. The facility is capable of generating
test gas of stagnation pressure of 200 MPa and stagnation enthalpies up to 25 MJ/kg [11]. A disadvantage of
impulse facilities like the HEG is the short test time. Typical test time in the HEG is about 3 ms.

The free piston compresses the driver gas in the compression tube adiabatically to high pressures which
causes the main diaphragm to rupture. Rupturing of the main diaphragm causes a primary shock to travel
through the driven section (shock tube in Fig. 3.1) compressing the test gas. The primary shock travels to the
end of the shock tube (upstream of the nozzle) where it is reflected from a secondary thin diaphragm. The
test gas which has now been compressed by the primary and reflected shock, is expanded through the nozzle
to hypersonic test conditions.

The experiments were performed on a 7◦ half angle cone with a length of 1.1 m and variable nose radii of
2.5 and 0.1 mm, see Fig. 3.3. The cone geometry develops an axi symmetric boundary layer with no pressure
gradient, conditions which are conducive to second mode development [27, 29]. The second mode waves
cause density fluctuations primarily. Density fluctuations also cause variations in the refractive index of the
medium, and hence these waves can be visualized by techniques which depend on the gradients of refractive
index like the schlieren visualization.

Figure 3.1: Different components of HEG [24].

23
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3.1.1. Basics of schlieren visualization
There are various density gradients that are encountered in a flow, like flow past a shock wave or within the
boundary layer. In the boundary layer density gradients are created by the friction between shear layers which
generate heat and hence reduce the density (ρ = (p/RT ), pressure remains the same in the boundary layer).
The second mode waves as introduced in the previous chapters travel through reflection of compression and
expansion waves (see section 1.1.1 and Fig. 1.3), which also cause density fluctuations. Density fluctuations
cause variations in the refractive index of the media, given by equation 3.1, where n is the refractive index and
K is the Gladstone-Dale coefficient.

n −1 = Kρ (3.1)

The variations in the refractive index causes the light to bend as it passes through the regions of density
gradients. The light bends towards a region of higher refractive index or in this case higher density. These
bent rays are either blocked or passed by a knife edge resulting in either a dark or bright region in the image
corresponding to the location of the density gradient. This is explained better with an example. Consider an
experiment to visualize the boundary layer that develops on a cone. The schlieren setup uses a horizontal
knife edge and, the density within the boundary layer will be lower than the free stream density. As the light
passes through the boundary layer on the upper surface of the cone, it is bent upwards due to density gradient
and passes through the horizontal knife edge resulting in a brighter region. The opposite happens on the
lower surface, the light is bent downwards, towards the knife edge and gets blocked by it resulting in a dark
region on the schlieren image, see Fig. 3.2. As discussed in section 1.1.1 the second mode travels by reflecting
compression and expansion waves which cause density gradients. Hence the second mode waves appear as
alternate dark and bright regions.

(a) Figure demonstrates the knife edge blocking and passing
bent light rays.

(b) Boundary layer on the top and bottom surface of a cone,
adapted from Wagner [50].

Figure 3.2: Schlieren visualization.

3.1.2. Schlieren experimental setup
A conventional Z-fold schlieren setup was employed in the experiments, shown in Fig. 3.4a . Two spherical
mirrors with 1.5 m focal length was used to focus the light beam to the test section and to refocus it to the
camera. A horizontal knife edge was used in the setup which implies density gradients in the wall normal
direction are measured. A Phantom v1210 camera was employed at a frequency of 175 kHz, exposure time of
4µs and a resolution of 1280 × 45 pixels. Cavilux smart visualization laser was used to provide a monochro-
matic and incoherent source of light with a wavelength of 640 nm. The pulse length of the laser was set to
20 ns in order to avoid motion blur as the exposure time of the camera was too high to freeze the instability
wave.



3.1. Experiments 25

HEG Run number Nose radius (mm) M∞ Rem (·106 m−1) h0 (MJ/kg) U∞ (m/s) Window (mm)
1443 2.5 7.29 2.23 3.48 2500 572.47-737.59
1440 2.5 7.3 2.23 3.48 2486 576.97-766.05
1447 2.5 7.36 4.09 3.26 2432 519.23-659.35
1308 2.5 7.3 2.41 3.48 2480 697-812
1438 0.1 7.3 2.24 3.4 2481 619.51-757.55
1439 0.1 7.3 2.24 3.37 2480 572.47-737.59

Table 3.1: Flow conditions of the schlieren images to be analyzed. M∞-Mach number, Re-Reynolds number, h0-total enthalpy and
U∞-free stream velocity

In the experiments a pulsed light source was used instead of a continuous light source. When a continu-
ous light source is employed, the frequency is limited by the camera frame rate and the exposure time of the
camera may not be sufficient to freeze the motion of the wave. To overcome these limitations a short dura-
tion pulsed light source is used. The two pulses are fired such that each pulse catches a different exposure
window, similar to the setting shown in Fig. 3.4b. The exposure time is now reduced to the pulse length of the
light source which is 20 ns, sufficient to freeze the motion of the second mode waves.

Figure 3.3: Cone model with visualization window. All dimensions are in mm, not to scale.

(a) Schlieren setup.

(b) Camera and laser setting used in the experiment is
similar to the figure shown used in Laurence et al. [23].

Figure 3.4: Schlieren visualization setup.
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(a) Velocity profile. (b) Density profile.

Figure 3.5: Boundary layer profile for run 1438, extracted at the beginning, center and end of visualization window.

3.1.3. Test conditions

The flow conditions are given in Table 3.1. The free stream Mach number is approximately 7, high enough for
the second mode to be the most dominant instability in the boundary layer [27]. The enthalpy is kept rather
constant for all the cases, and the unit Reynolds number is increased so that the visualized boundary layer
is at different states of transition(early/late transition). Two nose radii (0.1 and 2.5 mm) are tested because a
sharp nose radius initiates transition earlier than a blunt nose at a given Reynolds number [45], allowing to
study a more mature boundary layer for lower Reynolds numbers.

Fig. 3.6 shows the surface heat flux sensor measurements. The theoretical laminar and turbulent heat
transfer distributions are calculated using the reference temperature method [52]. The theoretical laminar
and turbulent heat flux reduces in the stream wise direction as the temperature gradients decrease owing to a
growing boundary layer. The boundary layer is considered transitional when the measured heat flux starts to
deviate from the theoretical laminar heat flux distribution. Once transitional the heat flux continues to rise
till a fully turbulent boundary layer is formed and then reduces and matches with the theoretical turbulent
heat flux. As shown in Fig. 3.6 the test cases analyzed all capture a transitional boundary layer. The test cases
are labeled as least/modestly/highly transitional based on the local Reynolds number and the state of the
boundary layer from Fig. 3.6, given in table 3.3.

CFD simulations were performed using the DLR-TAU code to determine the boundary layer edge values of
the flow variables, see table 3.2. The boundary layer edge conditions are used to compute the theoretical heat
transfer distribution in Fig. 3.6. For each run three boundary layer profiles were extracted at the beginning,
middle and end of the visualization window (see Fig. 3.5). The ratio of the density at the experimental bound-
ary layer edge (determined from the schlieren images) and the free stream density (ρδexp /ρ∞) is marked in
Fig. 3.5b. Since schlieren measures density gradients, the boundary layer captured in the images is a density
boundary layer whose edge is defined as 0.99ρ∞. The proximity of the ratio ρδexp /ρ∞ to the theoretical value
(ρe /ρ∞ = 0.99), shows the precision of the experiments performed in the HEG.
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HEG Run number Me Te (K) pe (kPa) Ree (·106 m−1) δu99 (mm) δ (mm) δ/δu99

1443 6.29 351.62 3.18 3.5 2.04 2.73 1.33
1440 6.29 351.66 3.18 3.5 2.06 2.93 1.42
1447 6.32 346.66 5.28 6.05 1.52 2.27 1.49
1308 6.29 351.66 3.18 3.5 2.1 2.33 1.10
1438 6.28 370.21 3.4 3.5 2.06 2.90 1.40
1439 6.28 370.21 3.4 3.5 2.04 3.1 1.51

Table 3.2: Boundary layer edge conditions from CFD solutions. δu99 - velocity boundary layer thickness and δ - density boundary layer
thickness. δu99 ,δ reported in table is the average from the three profiles extracted.

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Surface heat flux measurements for the runs analyzed, figures show the state (laminar/transitional/turbulent) of the
visualized boundary layer.
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HEG Run number local Re (·106) Nomenclature
1443 1.57 Least transitional
1440 1.61 Least transitional
1308 1.81 Modestly transitional
1447 2.12 Modestly transitional
1439 1.61 Highly transitional
1439 1.65 Highly transitional

Table 3.3: Test case nomenclature based on the local Reynold’s number and visulation window from Fig. 3.6. Local Reynold’s number is
the product of unit Reynold’s number and mid point of visualization window.

3.2. Wavelet Analysis
An introduction to the wavelet transform was provided in section 1.2.2. This section continues with the theory
of wavelet analysis based on the discussion presented in Bentley and McDonnell [3], Farge [13].

There are two types of wavelet transforms, the continuous wavelet transform (CWT) and the discrete
wavelet transform (DWT). The CWT is computed for all scales that are set by the user and the wavelet is shifted
over the signal under analysis in a continuous fashion. Whereas in the DWT the transform is computed at
specific scales and positions. It is important to note that in both the cases the signal under analysis is discrete
in time (or space). In the study here the continuous wavelet transform is used since the entire schlieren image
should be analyzed and not just a portion of it.

The continuous wavelet transform is defined by equation 3.2, where a is the wavelet scale, b is the shift
parameter which represents the wavelet shift, s(x) is the signal under analysis and h(x) is the wavelet function
which varies depending on the mother wavelet selected. The Morlet wavelet is defined by equation 3.3 is an
example of the function h(x).

CW T (b, a) = 1p
a

∫
h∗

(
x −b

a

)
s(x)d x (3.2)

h(x) = exp(−x2/2)cos(5x) (3.3)

To be considered as a mother wavelet, the integral of the function h(x) must be zero, this is known as the
admissibility condition. Scaling of the wavelet causes wavelets of high frequency (small scale) to have better
spatial/temporal resolution and wavelets of lower frequency (large scale) to have more duration and have
lower spatial/temporal resolution as shown in Fig. 3.7b. A higher scale wavelet has more duration/support,
which means a larger portion of the wavelet is non zero, which leads to coefficients being generated while
taking the inner product. This is known as the cone of influence and is shown in Fig. 3.8. Fig. 3.8 is the
wavelet transform of shifted impulse with impulse occurring at point 500. In the wavelet transform it is also
possible to reconstruct the original signal from the wavelet coefficients computed, this is called invertibility.

Wavelet analysis was initially applied in fluid mechanics to study coherent structures occurring in tur-
bulent flows. Fourier transform cannot be used to study coherent structures that occur in turbulent flows
because of its nonlocal nature. The wavelet analysis is performed locally and is best suited to analyze coher-
ent structures within a signal. The continuous wavelet transform allows to track the dynamics of coherent
structures and measure their contributions to the energy spectrum.

(a) Short time Fourier transform (STFT). (b) Wavelet transform.

Figure 3.7: Time-frequency plane coverage. Dimensions of the square represent the frequency time resolution.
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(a) Wavelet transform of an impulse signal, with impulse at
t=500.

(b) Cone of influence due to the impulse.

Figure 3.8: Cone of influence generated while taking the wavelet transform.

3.2.1. Applying the wavelet analysis to schlieren images
As discussed in the previous section taking the wavelet transform of a signal allows to decompose a signal
into different frequency components without loss of spatial content within the signal. Applying the wavelet
analysis to schlieren images will allow to study the spatial distribution of the second mode waves and its
harmonics and also compute the spatial amplification factors.

Each shock tunnel test generates approximately 470 images, which do not have the same brightness level.
Hence first the raw images are taken and the brightness level of the images are normalized. A reference image
is created by averaging all the images in a run and it’s brightness is computed by averaging over all pixels. The
brightness of each image is also computed and the image brightness is linearzed.

After the brightness of images are normalized, the reference image is subtracted from each image to re-
move background noise and improve the signal quality. The first step to consider while applying the wavelet
analysis is the selection of an appropriate mother wavelet. From Fig. 3.9 it is seen that the response of the
Mexican hat is lower than the Morlet wavelet in magnitude and does not reconstruct the original signal. The
Haar wavelet also has a lower response and shifts the signal peak forward close to where a valley occurs in
the original signal (phase shift). Hence the Morlet wavelet was selected for the analysis, as it gives a higher
magnitude and is better at reconstructing a given sinusoidal signal. In order to perform the wavelet analysis,
the frequency range of the second mode waves must be known to select appropriate scales for the mother
wavelet. The fundamental frequency of the second mode waves is known from Fourier analysis, in which
a schlieren image is taken, divided into six sections and a Fourier analysis is performed in each section to
obtain the frequency of the second mode. From the Fourier analysis it was found that the second mode fre-
quency reduction from the beginning to the end of the visualization window is around 20 kHz. The wavelet
transform is done over a range of frequencies to account for the reduction in fundamental frequency as the
wave packet develops (see section 4.1 for more details). The following steps are implemented in applying the
wavelet transform to the images:

1. The wavelet analysis is applied on a single row for a range of frequencies, this generates a wavelet co-
efficient matrix. Fig 3.10 (middle left) shows the contour plot of this matrix. The range of frequencies
set for each run is fbeg -30 kHz and fend +30 kHz, where fbeg is second mode frequency at the beginning
of visualization window and fend is the second mode frequency at the end of the visualization window
(see table 4.2 and section 4.1).

2. The maximum wavelet coefficient for each column in the coefficient matrix is found and stored (Fig
3.10 middle right). This vector now has wavelet coefficients over a range of frequencies, which would
have been neglected had a fixed scale approach been followed.

3. These steps are done for all rows in the image above the cone surface. A contour plot is generated for
analysis, see Fig. 3.10 (bottom). Fig. 3.11 shows a schlieren image superposed with maximum wavelet
coefficients in a frequency range of 305-323 kHz. From the figure it is seen that the wavelet transform
does capture the second mode structures in a schlieren image.
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Figure 3.9: Studying the responses of different mother wavelets to a sinusoidal signal. Sinusoidal signal selected for this study since the
density fluctuations are also sinusoidal in nature.
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Figure 3.10: Applying the wavelet transform to schlieren image with a frequency range of ≈±40 kHz of the fundamental frequency.

Figure 3.11: Schlieren image superposed with contour of maximum wavelet coefficients over a frequency range of 305-323 kHz.
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Figure 3.12: Figure demonstrates the linear nature of the wavelet analysis and also shows that the noise generated during analysis is
equal to 50% of the maximum wavelet coefficient.

3.2.2. Important properties of wavelet transform
There are some properties of wavelet analysis which are important to the analysis performed in this study.
Fig. 3.12 shows the response of the wavelet analysis to two signals which have different amplitudes. The
coefficients of wavelet transform also double when the signal amplitude is doubled, which shows that the
wavelet transform is a linear technique. The linear property is significant to study the growth rate of the
waves because, if a wave is amplified it gives a higher amplitude and the wavelet analysis in turn generates a
higher coefficient (since it is linear). The linear property of the wavelet transform is also important to study
the energy distribution.

The wavelet analysis has a short coming as well. In Fig. 3.12 close to the start and end of the wave in the
signal, there is an extra period generated even though there is no actual wave present at that location. This is
the noise that is generated through the wavelet analysis. There is noise of significant amplitude close to the
position of the actual waves, 50% of the maximum wavelet coefficient. For the results presented in chapter 4,
coefficients greater than 60% of the maximum wavelet coefficient are taken; hence it is above the noise level.

3.3. Growth rate determination
To compute the growth rate of second mode waves two consecutive schlieren images shown in Fig. 3.13 are
taken and Eqn. 3.4 is applied. Where A1, A2 are the wavelet transform coefficients from two schlieren images
and ∆s is the distance traveled by the wave packet between the images.

−α= ln(A1/A2)

∆s
(3.4)

First the wavelet transform of two consecutive images is computed. The wavelet coefficients of a row at a
fixed height above the wall is taken from each image and cross correlated to find the displacement of the
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waves. The displacement corresponding to the maximum cross correlation coefficient gives the wave packet
displacement (∆s).

In order to calculate the term A1/A2 in Eqn. 3.4, the vectors of wavelet coefficients have to be divided.
If the coefficients shown in Fig. 3.15a are divided, large amplification factors are generated in the vicinity of
local coefficient peaks (where local coefficient becomes zero) see Fig. 3.15b. To avoid this error the growth
rates are computed only at the position of the peaks. Fig. 3.16 shows growth rates computed for the partic-
ular row. Since the amplification factor is not computed at all locations and only at the peak locations, it is
interpolated for the distance between the peaks as shown in Fig. 3.16.

In the given example, the extent of the wave packet from Fig. 3.13(bottom) in the stream wise direction is
600 - 1200 pixel; hence this region is significant to the analysis while values close to 500 in the upstream por-
tion of Fig. 3.16 can be ignored. These steps are performed for all the rows in the images to obtain the growth
rate of the entire wave packet. The growth rates for the harmonics can also be found by simply changing the
frequency range analyzed while performing the wavelet transform.

Figure 3.13: Computing the displacement from the cross correlation coefficients, ∆s = 2.06mm.
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Figure 3.14: Computing the displacement from the cross correlation coefficients, ∆s = 2.06mm.

(a) Wavelet coefficients of a row from two consecutive images. Coefficients of image at t1+∆t is shifted to the right by the
number of pixels determined from cross correlation.

(b) Amplification factor computed from signals shown in Fig. 3.15a.

Figure 3.15: Computing growth rates for a row vector from schlieren image.
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Figure 3.16: Amplification factor computed for one row of images from Run 1308.

3.4. Summary
The topics discussed in this chapter can be summarized into the following points:

1. The HEG is an impulse facility capable of simulating flight conditions at Mach 7. The flow conditions
used in the experiments performed (cone model and hypersonic) are sufficient for the growth of the
second mode waves.

2. Since the second mode waves cause density fluctuations, they can be visualized using schlieren visu-
alization technique. A conventional Z-fold schlieren setup is used. A pulsed light source is used in the
experimental setup to achieve a higher frequency and freeze the motion of the waves.

3. While using the Fourier transform to study the waves, there is a loss in spatial information. The wavelet
analysis can be used to overcome this short coming of the Fourier transform.

4. The wavelet transform is a linear technique, and can be used to study the energy distribution and
growth rate of instability waves. The wavelet transform also generates noise equal to 45% of the max-
imum amplitude. This is overcome by considering the coefficients which are above the noise level for
the analysis.

From the discussion presented in this chapter the wavelet analysis will be used in the following ways to meet
the research objectives:

• The wavelet analysis successfully captures the second mode waves in a schlieren image (see Fig. 3.11)
and can be used to study the spatial development of instability waves captured in a schlieren image.
Applying the wavelet analysis to schlieren images (as outlined in section 3.2.1) generates a matrix of
coefficients, which can now be studied for different properties of the waves like the amplitude distri-
bution in the stream wise or wall normal direction.
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• By varying the scales of the wavelet the presence of harmonics can also be investigated and their growth
(concentration of harmonic amplitudes) with respect to the fundamental wave can also be looked into.
The wavelet analysis will also be used to extract the spatial growth rates of the fundamental wave and
it’s harmonic, using the procedure discussed in section 3.3.

• A sequence of schlieren images capturing instability growth and boundary layer transition can be de-
composed into different wavelength (or frequency) spectra using the wavelet analysis. By decomposing
into different spectra the most dominant instability waves can be identified.
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Results and Discussion

The results of taking the wavelet transform of schlieren images are discussed in this chapter. The wavelet
transform is applied: 1) to study the energy distribution of the second mode wave and its growth rates, 2) to
identify harmonics of the fundamental wave and extract its location with respect to the fundamental wave.
In the course of the study strong low frequency waves were observed, their effects and properties are also
discussed. The test conditions are provided in Table 3.1 and the nomenclature assigned to the test cases are
given in Table 3.3.

4.1. Determining the wavelength and velocity of the second mode waves
Before applying the wavelet transform the frequency range of the second mode waves have to be determined
in order to select the scale of the mother wavelet accordingly, which can save computational time. In this
section the Fourier analysis and cross correlation is used to determine the frequency and speed of the waves.

The wavelength of the Mack mode was determined by taking a Fourier transform of the schlieren image.
The analysis was performed by taking a schlieren image and dividing the image into six sections in the span
wise direction, and taking the Fourier transform for every row in the section and averaging it over all images in
a run. Fig. 4.1 shows the Fourier transform for each of the six sections of a schlieren image. The velocity was
determined by cross correlating consecutive images. Using the wave velocity and wavelength, the frequency
of the waves are calculated and reported in table 4.1. According to linear stability theory the second mode
waves must have velocity approximately equal to free stream velocity and a wavelength approximately twice
the boundary layer thickness [27, 30]. From table 4.1 it is seen that the experimental results agree well with the
theoretical predictions of Mack [27, 30]; hence it is verified that the waves captured in the schlieren images
are second mode waves.

As the wave develops second mode wavelength increases (or frequency reduces) due to the growth in
boundary layer, this is seen in table 4.2 which shows the second mode frequency at the beginning and end
of the visualization window. This was also observed in previous hot wire [48] and PCB [8] investigations
(discussed in chapter 2). Fig. 4.1 shows that the waves are concentrated close to the boundary layer edge,
agreeing with the observations of Kimmel et al. [18]. The growth of first harmonics is also observed by the
increase in amplitude for λ/δ≈1.25 from Fig. 4.1a to 4.1f as the wave travels from the beginning of the visu-
alization window towards the end of it. Fig. 4.2 shows the Fourier transform for the other test cases. The first

HEG Run number δ (mm) λ/δ vSM (m/s) fSM (kHz) V∞ (m/s) vSM /V∞
1443 2.34 2.55±0.41 2148±1 326±50 2500 0.85
1440 2.52 2.27±0.34 2102±1 318±47 2486 0.85
1308 2.33 2.63±0.44 2022±5 275±46 2405 0.84
1447 2.09 2.23±0.32 2109±2 424±59 2432 0.86
1438 2.39 2.25±0.47 2106±1 309±64 2481 0.85
1439 2.23 2.20±0.55 2114±2 305±57 2480 0.85

Table 4.1: Wavelength, frequency and velocity of the second mode waves. The values show that the experimental results agree with the
theoretical predictions.

37
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Fourier transform of schlieren image divided into 6 sections. Run 1438.

harmonic is present in Run 1439, as observed by the amplitude present for λ/δ≈1.25 in Fig. 4.2d.

HEG Run number fbw (kHz) few (kHz)
1443 343 308
1440 323 310
1308 285 260
1447 441 405
1438 323 305
1439 310 302

Table 4.2: Second mode fundamental frequency at the beginning ( fbw ) and end of visualization window ( few ).
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(a) (b)

(c) (d)

Figure 4.2: Fourier transform of schlieren image.

4.2. Second mode fundamental wave amplitude distribution and growth
rates

The wavelet analysis is applied to schlieren images following the procedure outlined in section 3.2.1. Table
4.2 gives the frequency of the second mode waves at the beginning and end of the visualization window,
obtained by taking the Fourier transform of different sections of a schlieren image. For the wavelet analysis
the frequency range considered is fbw -30 kHz and few +30 kHz. In this section the wavelet analysis is applied
to schlieren images to study the second mode amplitude distribution and growth rates.

4.2.1. Discussion on wall normal amplitude distribution

A number of studies have shown the second mode waves to be concentrated close to the boundary layer edge
(discussed in section 2.1 and 2.2). Fig. 4.3, shows the wavelet transform for a sequence of images. The crosses
indicate the location of the maximum amplitude for individual compression/expansion wave, referred to as
the wave peaks (see Fig. 4.4). The wave peaks are concentrated at the outer half of the boundary layer and
also show a movement within the boundary layer. Fig. 4.5 shows the wave peak locations for a sequence of
images, it can be seen that there is a movement in the wave peak locations. An analysis was performed for
the entire run and the number of wave peaksNp , were converted into a contour plot, shown in Fig. 4.6. In Fig.
4.6 the wave peak vertical locations are plotted against the normalized wave packet length, where 0 indicates
wave packet trailing edge and 1 indicates leading edge. In this section a study of the wall normal amplitude
distribution of the wave packet is discussed.
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Figure 4.3: Sequence from run 1443, the crosses indicate location of maximum amplitude for each wave. Figure shows the movement of
the maximum wave amplitude (wave peaks).

Figure 4.4: Wave packet length and location of the individual wave peaks.
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Figure 4.5: Variation in wave peak locations for a sequence of images.

Figure 4.6: Distribution of wave peak positions along wave packet length for run 1443.
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Figure 4.7: Distribution of wave peak positions along wave packet length for run 1447.

From Fig. 4.6 it is observed that in run 1443 the wave peaks are concentrated near the boundary layer edge
throughout the length of the wave packet. The early hot wire measurements of Demetriades [10], Kimmel
et al. [18] and Stetson et al. [48] showed that the second mode waves were concentrated at the boundary layer
edge. Further Laurence et al. [25] performed Fourier analysis on schlieren images, which revealed that in
the early stages of second mode development the energy was concentrated close to the boundary layer edge.
The observed concentration of the wave peaks in the outer half of the boundary layer edge in Fig. 4.6 is in
agreement with these published results and indicates that the wave packets in run 1443 are its early stages of
development.

The results for run 1440 (shown in Fig. A.1) are different compared to run 1443, although both runs cap-
ture the least transitional boundary layer (see table 3.3 for run nomenclature). There are peaks concentrated
close to the wall, which have been reported by Laurence et al. [25] (shown in Fig. 2.12). The position of the
wave peaks in the boundary layer do not shift vertically (this occurs for highly transitional boundary layers
discussed next), but remains fixed approximately at the same height similar to run 1443. Run 1440 visual-
ization window is further downstream compared to run 1443, see table 3.1 and could be a reason for the
development of peaks close to the wall.

Comparing Fig. 4.6 with 4.7 which visualizes a more transitional boundary layer, it is observed that the
wave peaks while still concentrated in the outer half of the boundary layer have a larger vertical spread within
the boundary layer. The leading edge of the wave packet (normalized wave packet length=1) especially has
peaks that are spread throughout the boundary layer. This observation agrees with the result of Kimmel et al.
[18] shown in Fig. 2.4b, where for the higher Reynold’s number tests the vertical extent of the second mode
waves increased. A close look at Fig. 2.18b also shows that second mode waves are initially concentrated near
the boundary layer edge (extreme left in Fig. 2.18b) and as it develops the vertical extent within the boundary
layer increases. The results from run 1438 which also captures a highly transitional boundary layer, are similar
to run 1447 (see Fig. A.2). It is also important to keep in mind that the movement of the wave peaks towards
the wall as it develops can also indicate that the wave packet is becoming three dimensional (wave angle non
zero). However in the absence of span wise sensor measurements, it is not possible to verify this.

Another interesting observation is the breaking up of the waves into a double peak distribution (see image
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at t0+4∆t from Fig. 4.3 ). Laurence et al. [25] performed Fourier analysis in the wall normal direction on
schlieren images and observed a shift from a two peak distribution to three peaks within the boundary layer
(see Fig. 2.12, section 2.2). For the sequences analyzed in this study a three peak distribution was not found.

To conclude this discussion, the major observations are reiterated:

1. In the early stages of second mode development the wave peaks are concentrated in the outer half of
the boundary layer. This is observed for the least transitional cases (run 1443 and 1440).

2. As the second mode develops the wave peaks tend to shift towards the wall and there is an increase in
the vertical extent of the wave packet. This is observed for modestly transitional and highly transitional
cases (run 1447 and 1438).

4.2.2. Discussion on stream wise amplitude distribution
Sivasubramanian and Fasel [39] observed that for a linear wave packet higher amplitudes were concentrated
towards the leading edge of the wave packet, see Fig. 2.16. In experiments performed by Casper et al. [8],
wave packets were observed with energy concentrated at the leading and at the center of the wave packet
(see Fig. 2.17). Taking the wavelet transform of schlieren images with second mode waves allows to study
the amplitude distribution along the length of the wave packet. To study the amplitude distribution along
the length of the wave packet, the wavelet coefficients and the stream wise distance were averaged for each
wave as shown in Fig. 4.8). The individual wave amplitude is normalized by the maximum amplitude of
the strongest wave. The normalized amplitude is plotted against the normalized wave packet length for a
sequence of images from a run as shown in Fig. 4.9, where normalized wave packet length of 0 indicates the
trailing edge and 1 is the leading edge of the wave packet.

Figure 4.8: Averaging the coefficients and stream wise location of each wave, to compute the energy distribution in the stream wise
direction.

From Fig. 4.2a and 4.2b it is seen that harmonics do not develop for Runs 1440 and 1443 (discussed in
section 4.1); Hence the wave packets that develop in these cases are expected to be linear. Fig. 4.9 shows the
evolution of stream wise amplitude distribution over a sequence of schlieren images for run 1440. In Fig. 4.9
(a)-(d) the maximum wave packet amplitudes are concentrated towards the leading edge, agreeing with the
DNS results of Sivasubramanian and Fasel [39]. As the wave packet develops the amplitudes shifts towards
the center of the wave packet see Fig. 4.9(e)-(f), similar to the result of Casper et al. [7] (see Fig. 2.17). This
redistribution of amplitudes from the leading edge to the center of the wave packet is also observed in run
1443, see Fig. A.3a. For run 1443 the amplitudes eventually are distributed equally over the length of the wave
packet Fig. A.3a(d). The wavelet transform of the schlieren images were performed in the first harmonic
range to study if harmonics were responsible for the redistribution of amplitudes. The redistribution of am-
plitudes was not accompanied by the appearance of harmonics, indicating that non linear mechanisms do
not cause this redistribution. For runs 1438 and 1447 that capture a more mature boundary layer amplitudes
are redistributed from the leading edge to the entire length of the wave packet without any concentration to
the center, see Fig. 4.10 and A.3b. Harmonics did not develop in this case as well, hence ruling out non-linear
mechanisms causing them. The major observations based on the analysis on stream wise energy distribution
are as follows:

1. Linear wave packets exist in the boundary layer which have the maximum amplitudes concentrated
toward the leading edge of the wave packet. This agrees with the computational result of Sivasubrama-
nian and Fasel [39]. For the test cases which are least transitional (run 1443 and 1440), the amplitudes
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are redistributed from the leading edge to the center of the wave packet and eventually reach a uniform
distribution.

2. For a wave packet in the modestly transitional and most transitional boundary layer(run 1447 and
1438), the energy is redistributed from the leading edge to the full length of the wave packet.

Figure 4.9: Stream wise energy distribution for a wave packet, run 1440. Figure shows the redistribution of energy from the leading edge
toward the center of the wave packet.
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Figure 4.10: Stream wise energy distribution for a wave packet, run 1438. Figure shows the redistribution of energy from the leading
edge to the full length of the wave packet.

4.2.3. Discussion on growth rates of second mode waves from schlieren images
The method followed to compute the growth rate was outlined in section 3.3. Fig. 4.11, shows the growth
rates computed for a sequence of images of run 1438. Certain regions of the wave packet grow in amplitude
while others decay in this sequence of images (Fig. 4.11b), especially at the edges of the wave packet. The
regions of strong growth and decay in the wave packet are indicated by white ellipses in Fig. 4.11b. These
large values arise due to the sudden appearance/disappearance of structures as the wave packet changes it’s
structure during development inside the boundary layer. Ignoring the extreme values that occur at the edges
of the wave packet, the maximum amplification factor in the core of the wave packet is 45 m−1 which is higher
than the values reported in literature presented in Table 2.1.

Also observed in Fig. 4.11b is the growth of the structures towards the boundary layer edge (indicated by
red ellipses in Fig. 4.11b). This is also seen in sequences from other test cases shown in appendix A.3. The
growth of waves towards the boundary layer edge agrees with the previous discussion on the wall normal
energy distribution (see section 4.2.1), in which it was concluded that the second mode wave concentrates
high amplitudes close to the boundary layer edge. From the observations of this section and section 4.2.1
it is concluded that the second mode waves tend to amplify the structures toward the boundary layer edge,
which explains the observations of Kimmel et al. [18] and Laurence et al. [25] who observed that the waves
are concentrated at the boundary layer edge.

4.3. Applying wavelet analysis to study harmonic waves
Fig. 4.12 shows a schlieren image (top), wavelet transform of the image with frequency range correspond-
ing to second mode fundamental wave (Fig. 4.12 middle) and wavelet transform of the schlieren image with
a frequency range corresponding to the first harmonic of the fundamental wave (Fig. 4.12 bottom). These
high frequency waves have been reported in hot wire measurements[10, 48], PCB sensors [5, 9], heat flux
measurements [37] and schlieren images [23, 25]. The frequency band in which the high frequency waves
occur is predicted to be stable according to the linear theory, the frequency is too low to be the third mode
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(a) Wavelet transform of images 50-53 of run 1438, used to compute the growth rates in Fig. 4.11b.

(b) Amplification factor computed from images shown in Fig. 4.11a. The white ellipses indicate regions of strong growth
and decay showing the rapid change in wave packet structure. Red ellipses show amplification of wave close to

boundary layer edge.

Figure 4.11: Growth rates for a sequence of images from run 1438.



4.3. Applying wavelet analysis to study harmonic waves 47

instability [47] and the high frequencies are multiples of the fundamental frequency. Based on these rea-
sons researchers concluded that this high frequency wave is a harmonic of the second mode fundamental
wave, generated due to non-linear mechanisms in the boundary layer [47]. Fig. 4.12 shows that the wavelet
transform can successfully identify the harmonic waves in a schlieren image.

Figure 4.12: Wavelet analysis applied to a schlieren image (top) to capture the second mode waves (middle) and the first harmonic
(bottom). Figure shows absolute wavelet coefficients.

4.3.1. Discussion on first harmonic wave
As stated earlier the appearance of harmonics indicate that non linear mechanisms are present in the bound-
ary layer. Harmonics are expected to develop in a boundary layer that is in the late stages of transition. From
the Fourier transform of schlieren images (Fig. 4.1 and 4.2 ), runs 1438 and 1439 are the ones with strong
harmonics present. Fig. 4.12 shows the first harmonic for Run 1438. On performing the wavelet analysis on
the schlieren images with frequency range corresponding to the first harmonic, it was found that the har-
monics were present for run 1438 and not present for run 1439, contrary to the result from Fourier analysis.
On inspection of run 1439 it was found that there were too many diaphragm particles in the images which
contributed to high frequency content and not harmonic waves. In this way the wavelet analysis can even
correct the results of the Fourier analysis.

It was also observed that the harmonics developed at the center of the wave packet. In Fig. 4.12 (middle)
the stream wise extent of the fundamental wave is from 660 -720 mm and the harmonics are present from
690 -700 mm, approximately at the center of the wave packet. This result agrees with the observations of
Laurence et al. [25], who also concluded that harmonics were concentrated at the center of the wave packet
(see Fig. 2.13). Fig. 4.13 compares the stream wise amplitude distribution of the second mode fundamental
wave and its harmonic. Fig. 4.13 shows that the harmonic amplitude is stronger where the fundamental wave
amplitude is strong. This was also observed in other test cases shown in appendix A.8. This indicates that the
harmonics develop where the fundamental wave amplitudes are high. Comparing the stream wise amplitude
distribution of the fundamental and harmonic waves (Fig. 4.13 and A.8), it is concluded that the harmonic
waves develop in regions where the amplitude of the fundamental second mode wave are high.
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Figure 4.13: Comparing stream wise amplitude distribution of the second mode fundamental wave and its harmonic.

4.3.2. Discussion on growth rates of first harmonic waves from schlieren images
As discussed in the previous section the presence of harmonics of the fundamental wave were strong in run
1438. Fig. 4.14 shows the growth rates of the fundamental and it’s first harmonic for a sequence of images
from run 1438. From Fig. 4.14 it is observed that the growth rate of the fundamental wave and the harmonic
have an inverse relation i.e. where the fundamental wave grows, the harmonic decays and vice versa. For ex-
ample compare the regions marked in the fundamental and harmonic growth rates at t1+0.136 - t1+0.142 ms.
The regions of harmonic amplification are marked by white ellipses and those of harmonic decay by red el-
lipses in Fig. 4.14. The negative cross correlation coefficients at zero displacement given in the figure also
support this observation.

From the regions marked in Fig. 4.14, it can be concluded that the growth rate of the second mode funda-
mental wave and it’s harmonic has an inverse relation. Stetson and Kimmel [47], observed that in the initial
stages of second mode development the maximum amplification factor obtained experimentally agreed with
the theoretical value. At a later stage, the experimental maximum amplification factor is less than the the-
oretical calculation (see Fig. 2.3b, section 2.1). Stetson and Kimmel [47] postulated that the reduction in
second mode growth rate to be due to the growth of harmonics, which interact and exchange energy with
the fundamental wave. The bispectral analysis of Hofferth et al. [16] also revealed that second mode waves
interact with its first harmonic. Fig. 3.6e shows that the visualization window for run 1438 is downstream of
the point at which transition is initiated, indicating that the boundary layer is transitional. Following the rea-
soning of Stetson and Kimmel [47] and taking into account the results of Hofferth et al. [16], the observations
of Fig. 4.14 show that the amplification of harmonics cause the fundamental wave to decay during transition,
indicating a transfer of energy from the fundamental to its harmonic.

4.4. Analysing low frequency waves in schlieren images
While performing the wavelet analysis on schlieren images, it was observed that there was significant am-
plitude present in lower δ/λ ranges, see Fig. 4.15. Grossir et al. [15] discarded these waves as low frequency
noise, but it will be shown that these waves are present within the boundary layer and not scattered through-
out the schlieren image and hence cannot be noise. Recently Zhu et al. [53] measured low frequency waves in
a hypersonic boundary layer using PCB transducers. In the study of Zhu et al. [53], it was concluded that the
second mode waves trigger the growth of low frequency waves through a phase resonance mechanism, and
these low frequency waves eventually drives the boundary layer to turbulence while the second mode waves
die. In a phase resonance mechanism two waves with equal phase speeds interact with each other to ex-
change energy. In this section the wavelet analysis is applied to a sequence of schlieren images to investigate
the role these low frequency waves play.

Fig. 4.16 shows a sequence of schlieren images capturing second mode waves and a turbulent boundary
layer developing at the end of the visualization window. These sequence of events (second mode develop-
ment to boundary layer transition) can now be studied in different frequency (or wavelength) spaces by ap-
plying the wavelet transform. The wavelet transform is applied in two wavelength ranges corresponding to
the second mode waves and that of the low frequency waves obtained from Fig. 4.15.

Fig. 4.17 and 4.18 shows the result of applying the wavelet transform to the image sequence. The low
frequency waves have considerable amplitude in the sequence analyzed. Unlike the second mode waves the
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Figure 4.14: Comparing growth rates of second mode fundamental and the first harmonic for a sequence of images from run 1438. Red
ellipses indicate region where fundamental wave grows ( or harmonic decay) and white ellipses indicate region of fundamental decay

(or harmonic growth). Cross correlation coefficients at zero displacement are shown as well.
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low frequency waves are concentrated only at the boundary layer edge (Fig. 4.18, Image at t0+∆t - t0+3∆t ). It is
also observed that the second mode waves die as time progresses and is absent at t0+8∆t when the boundary
layer is becoming turbulent, where as the low frequency waves are still present. The absence of second mode
in a schlieren image could also mean that the wave angle is no longer zero, and the waves have traveled off
the plane of view. In the absence of span wise sensors this cannot be verified. The growth of harmonics
were weak in this sequence. The results support the observation of Zhu et al. [53] mentioned earlier, that
the second mode waves die and the low frequency waves are responsible for boundary layer transition. The
wavelength, velocity and frequency of the low frequency waves are shown in table 4.4.

In order to verify that the low frequency waves interact with the second mode waves through a phase res-
onance mechanism, the speed of the low frequency waves are computed by cross correlating wavelet trans-
forms of schlieren images in the low frequency range (Fig. 4.18). The results of the cross correlation are shown
in table 4.3. From table 4.3, it is seen that the second mode waves are faster than the low frequency waves.
Since the two waves have different velocities it is seems that the second mode waves and the low frequency
waves do not interact with each other through phase resonance mechanism.

There is also a possibility that these low frequency waves are three dimensional waves (non zero wave
angle), which will explain why location of the wave is not fixed i.e. at some instances it is at the boundary
layer edge and at another it is within the boundary layer, see Image at t0+3∆t and t0+4∆t in Fig. 4.18. The
vertical shift of the low frequency waves show its oblique nature. From the linear stability theory results it is
known that the first mode wave has a wave angle of 55◦, see Fig. 1.2. If the true velocity of the first mode wave
is assumed to be equal to free stream velocity. The projection of this velocity on a schlieren image will be
U∞ cos55◦ which is approximately 0.5U∞, similar to the low frequency waves observed in this section. This
cannot be verified without span wise sensors, and such sensors must be employed in the future to obtain a
complete picture of the processes occurring.

Images Cross-correlated vSM /v∞ vLF S /v∞
Image at t0×t0+∆t 0.85 0.57
Image at t0+∆t×t0+2∆t 0.86 0.53
Image at t0+2∆t×t0+3∆t 0.85 0.62
Image at t0+3∆t×t0+4∆t 0.86 0.53

Table 4.3: Velocity of second mode waves and low frequency structures computed by cross correlating wavelet transform of schlieren
images.

Instability λ/δ vSM (m/s) fLF S (kHz)
Low frequency 15.3±0.53 1388.63±57 40±3
Second mode 2.25±0.47 2106±1 309±64

Table 4.4: Wavelength, velocity and frequency of the low frequency waves.
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Figure 4.15: Wavelet transform of a row vector from one image, showing δ/λ ranges for the second mode and low frequency waves.

Figure 4.16: Sequence of images from run 1438, with the boundary layer breaking down at the end of visualization window at t0+8∆t.



52 4. Results and Discussion

Figure 4.17: Wavelet transform of sequence shown in Fig. 4.16 with λ/δ range corresponding to second mode fundamental wave.
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Figure 4.18: Wavelet transform of sequence shown in Fig. 4.16 with λ/δ range corresponding to low frequency waves.
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4.5. Summary
In this chapter the wavelet transform was applied to schlieren images to study the properties of the second
mode wave. The results can be summarized as follows:

Second mode wavelength and velocity
The wavelength of the second mode instability was found to be 2.2-2.5 times the boundary layer thickness,
by taking the Fourier transform of the schlieren images. Schlieren images were cross correlated to find that
the velocity of the second mode wave was 0.8V∞. These results are in good agreement with theoretical and
previous experimental studies. Using the wavelength and velocity the frequency of the waves are computed,
shown in Table 4.1.

Second mode amplitude distribution and growth rates
The wavelet analysis is applied to the schlieren images to study the growth rates and amplitude distribution.
Using the frequency of the second mode waves determined using the Fourier analysis, the range of scales of
the mother wavelet is selected.

An algorithm was developed to identify the location of the maximum for each individual compression
and expansion wave. Plotting the position of the maxima for an entire test case, it is observed that the waves
peaks are concentrated towards the boundary layer edge (see Fig. 4.5). This is also supported by study on
second mode growth rates which revealed a positive growth rate for structures close to the boundary layer
edge, see Fig. 4.11b. The results from this analysis shows that second mode waves amplify structures close to
the boundary layer edge.

Numerical[42] and experimental[8] results on the stream wise amplitude distribution of the wave packet
prompted a similar study in this thesis. Studying the stream wise amplitude distribution for a sequence of
images in section 4.2.2 we see that in the initial stages the amplitude is concentrated in the leading edge of
the wave packet agreeing with the DNS results of Sivasubramanian et al. [42]. As the second mode travels
energy is first redistributed towards the center of the wave packet for the least transitional boundary layers
(agreeing with the experimental observations of Casper et al. [8]). For the modestly transitional and highly
transitional boundary layers there is a redistribution from the leading edge to the entire length of the wave
packet.

First harmonic development and growth rates
By selecting wavelet scales corresponding to the first harmonic frequency range, the harmonics of the funda-
mental wave can also be detected by the wavelet analysis (see Fig. 4.12). The first harmonic was observed to
be concentrated towards the center of the wave packet similar to the observation of Laurence et al. [25] (see
Fig. 2.13). Comparing the stream wise distribution of harmonic and fundamental wave it is concluded that,
harmonics develop where the fundamental wave are high (see Fig. 4.13).

Comparing the growth rates of the fundamental and harmonic wave, it is observed that the regions of
harmonic amplification correspond to regions of fundamental decay (see Fig. 4.14). Interpreting this in light
of the study of Stetson and Kimmel [47], it is concluded that the harmonic grows by extracting energy from
the fundamental wave leading to fundamental wave decay.

Low frequency structures
Low frequency structures were observed while analyzing the images, see Fig. 4.15. A sequence of schlieren
images capturing second mode waves and boundary layer transition was analyzed in the second mode and
low frequency wavelength spectra. It was found that the second mode waves die with time, and the low
frequency waves were still present during boundary layer transition. Similar waves were also reported by Zhu
et al. [53] in their investigations. Based on the experimental results available for this study (schlieren images),
it is concluded that these low frequency waves play a more dominant role during boundary layer transition
than the second mode waves which eventually die during the process.



5
Conclusion

The wavelet analysis was successfully applied to schlieren images to identify and study the development of
the second mode wave and its first harmonic. Taking the wavelet transform allowed to extract the growth rates
of the instability wave and the amplitude distribution in the stream wise and wall normal directions. From
the study on the amplification factor and wall normal amplitude distribution of the second mode wave it is
concluded that the second mode waves amplifies structures close to the boundary layer edge and shifts the
maximum wave amplitude towards the boundary layer edge. These two results explain why previous studies
on hypersonic cone boundary layers observed the presence second mode instability to be strong close to the
boundary layer edge.

Analysis on the stream wise amplitude distribution of the second mode wave verified the numerical ob-
servation that linear wave packets have the maximum amplitude concentrated in the leading edge of the wave
packet. The study also showed that as the wave packet develops high amplitudes are redistributed towards
the center of the wave packet first, before being uniformly distributed over the length of the wave packet. No
harmonic development was observed while the redistribution occurred; hence ruling out the possibility that
non linear mechanisms to be the cause for this redistribution. Earlier studies using PCB sensors also showed
that the high wave amplitudes were concentrated at the center of the wave packet close to breakdown.

Studies on the first harmonic wave showed that the harmonics develop towards the center of the wave
packet where the fundamental wave amplitudes are high, indicating that second mode waves have to grow
sufficiently for harmonics to develop. This observation is in line with previous schlieren studies that showed
harmonics develop in the center of the wave packet. Comparing the fundamental and harmonic growth rates,
it is concluded that the harmonics grow by interacting and extracting energy from the second mode waves.
This was hypothesized in early hot wire measurements.

The wavelet analysis also identified the presence of strong low frequency waves in the schlieren images.
The waves were observed to have high amplitudes during transition while the second mode waves decayed.
The results were in line with the recent studies which propose, that second mode waves grow and interact
with low frequency waves, and it is these waves which eventually cause transition. The waves show an oblique
nature and there is a possibility of these waves being the first mode wave. A deeper study using surface
sensors is crucial to determine the role of these waves during transition.

Numerical results show that the wave packet shows a tendency to become three dimensional as it trav-
els downstream. In the future experiments must be performed using surface mounted sensors in the stream
wise and span wise directions, to investigate the three dimensional characteristics of the wave packet. Results
circumferential sensors will validate if the wave packet becomes three dimensional during its development
which will explain the decay of second mode waves observed in this study. The wave angle of the low fre-
quency waves observed in the schlieren images can be determined using span wise sensors. A comparison
with the first mode wave angle from numerical results can verify that these low frequency waves are the first
mode waves. Future studies should explore the role these waves play during transition.

The results from this study show that there are two possible interactions the second mode wave can un-
dergo with either its first harmonic or the low frequency waves. Bispectral analysis should be performed on
surface sensor signals to understand which of these interactions is stronger and affects transition the most.
The possibility to apply bispectral techniques to schlieren images can also be explored. Interactions with
oblique second mode waves can also be studied.
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A.1. Wall normal amplitude distribution

Figure A.1: Movement of the maximum wave amplitude (wave peaks), from run 1440.
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Figure A.2: Movement of the maximum wave amplitude (wave peaks) towards the boundary layer edge first, and then a shift towards
the wall for a sequence from run 1438.
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A.2. Stream wise energy distribution

(a) Variation in stream wise energy distribution for a sequence from run 1443. Figure shows the shift of energy
concentration from leading edge, to the center of the wave packet and finally to the entire length of the wave packet.

(b) Variation in stream wise energy distribution for a sequence from run 1447. Figure shows the shift of energy
concentration from leading edge to the length of the entire wave packet.

Figure A.3: Variation in stream wise energy distribution.
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A.3. Growth rate computed from schlieren images

(a) Wavelet transform of images 117-122 of run 1440, used to compute the growth rates in Fig. A.4b.

(b) Amplification factor computed from images shown in Fig. A.4a.

Figure A.4: Growth rates for a sequence of images from run 1440. The white ellipses indicate regions of strong growth and decay
showing the rapid change in wave packet structure. Red ellipses show amplification of wave close to boundary layer edge.
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(a) Wavelet transform of images 21-25 of run 1443, used to compute the growth rates in Fig. A.5b.

(b) Amplification factor computed from images shown in Fig. A.5a. The white ellipses indicate regions of strong growth
and decay showing the rapid change in wave packet structure. Red ellipses show amplification of wave close to

boundary layer edge.

Figure A.5: Growth rates for a sequence of images from run 1443.
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(a) Wavelet transform of images 329-334 of run 1447, used to compute the growth rates in Fig. A.6b.

(b) Amplification factor computed from images shown in Fig. A.6a. The white ellipses indicate regions of strong growth
and decay showing the rapid change in wave packet structure. Red ellipses show amplification of wave close to

boundary layer edge.

Figure A.6: Growth rates for a sequence of images from run 1447.
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(a) Wavelet transform of images 250-252 of run 1439, used to compute the growth rates in Fig. A.7b.

(b) Amplification factor computed from images shown in Fig. A.7a. The white ellipses indicate regions of strong growth
and decay showing the rapid change in wave packet structure. Red ellipses show amplification of wave close to

boundary layer edge.

Figure A.7: Growth rates for a sequence of images from run 1439.
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A.4. Analyzing harmonics

(a) Run 1438.

(b) Run 1308.

(c) Run 1308.

Figure A.8: Comparing stream wise energy distribution of the fundamental wave with its harmonics.
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