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Abstract—In this paper, we address the limitations of tra-
ditional constant false alarm rate (CFAR) target detectors in
automotive radars, particularly in complex urban environments
with multiple objects that appear as extended targets.

We propose a data-driven radar target detector exploiting a
highly efficient 2D CNN backbone inspired by the computer
vision domain. Our approach is distinguished by a unique cross-
sensor supervision pipeline, enabling it to learn exclusively from
unlabeled synchronized radar and lidar data, thus eliminating
the need for costly manual object annotations.

Using a novel large-scale, real-life multi-sensor dataset
recorded in various driving scenarios, we demonstrate that
the proposed detector generates dense, lidar-like point clouds,
achieving a lower Chamfer distance to the reference lidar point
clouds than CFAR detectors. Overall, it significantly outperforms
CFAR baselines detection accuracy.

Index Terms—Automotive radar, radar target detection, deep
learning, point cloud generation.

I. INTRODUCTION

In recent years, the landscape of automotive technology
has witnessed a transformative shift, with the integration of
advanced sensor systems playing a pivotal role in enhancing
vehicle safety and autonomy. Among these sensors, radar has
emerged as a cornerstone technology, contributing significantly
to the evolution of intelligent transportation systems. Once
mostly confined to defence applications, radar is routinely
used for autonomous driving in collision avoidance, adaptive
cruise control, and overall vehicular awareness [1]. Unlike
sensing modalities such as cameras and lidar, radar can operate
effectively in adverse environmental and weather conditions
with low visibility. This adaptability positions radar as a robust
and reliable solution for real-time perception in the complex
and dynamic context of urban and highway driving [2], [3].

However, despite its merits, integrating radar into automo-
tive systems is challenging. One such challenge arises from
the use of Constant False Alarm Rate (CFAR) detectors to
generate the radar point cloud from the dense radar cube.
CFAR detectors are optimal in specific scenarios [4] but have
limitations in the context of automotive radar [5]. CFAR
algorithms, designed to maintain a constant false alarm rate in
the presence of varying clutter conditions, may not be well-
suited for the dynamic and rapidly changing environments
encountered on roadways. Issues such as non-homogeneous
clutter, target masking, and shadowing can compromise the

efficacy of CFAR in automotive radar applications. Moreover,
CFAR detectors have the inherent problem of a fixed, prede-
fined, expected target size, given how the guard and training
cells are defined. In the automotive context, the targets of
interest have very different sizes, from small targets such as
pedestrians, to large trucks. On top of that, the perceived size
in the angular dimension depends on the range, and objects
that occupy many cells in the near field may be point-like
targets in the farther area.

To overcome the limitations of CFAR detectors, a novel
data-driven detection approach based on deep learning has
been designed and tested in this work using real automo-
tive radar data. Data-driven detectors have been previously
explored in the open literature [6]–[8]; however, this work
introduces some new concepts that, to the best of the authors’
knowledge, are investigated for the first time, namely:

• The use of the full 4D range-azimuth-elevation-Doppler
space as input, ensuring that no weak targets are omitted
due to an initial coarse thresholding.

• The usage of pre-processed lidar data as ground truth to
enhance radar detection.

• The comparison against conventional CFAR detectors us-
ing grid-based probabilities of detection and false alarm,
as well as point-cloud level metrics that capture the
spatial similarities between lidar and radar data.

• The verification with a large-scale multi-sensor dataset,
including realistic automotive scenarios. This dataset,
containing lidar, radar, GPS, and camera data will be
published for the research community upon publication.

The rest of the paper is organized as follows. Section II de-
scribes the proposed data-driven detector. Section III presents
the data collected for the validation of the proposed approach,
with results presented in Section IV. Finally, Section V con-
cludes the paper.

II. PROPOSED METHOD

The radar detection problem can be formulated as a binary
decision task per cell in the radar cube. Before the proposed
method is introduced, some definitions are needed to clarify
the terminology used in the rest of the paper:

• Radar cube refers to the spherical, voxelized represen-
tation of the radar data, meaning the range, azimuth,
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Fig. 1. Overview of the proposed method. The steps to generate the 3D lidar occupancy grid are on the top row, which will be used as ground truth
for training the neural network. The radar signal processing pipeline is shown at the bottom, and is needed to generate the input data. RDC stands for
range-Doppler-channel (no angle estimation), and RAED stands for range-azimuth-elevation-Doppler.

elevation, and Doppler estimation have already been per-
formed. Each voxel in the radar cube contains information
about the reflected power in that cell.

• 3D occupancy grid refers to a binary cube, also in
spherical coordinates, which contains ones in voxels
where there are targets and zeros otherwise. This can be
generated with lidar data serving as ground truth or with
radar data being the main task of this work.

• Point cloud refers to the Cartesian coordinates set of
points that results from selecting only those cells con-
taining ones in the 3D occupancy grid and converting
them to Cartesian coordinates.

The proposed method uses a neural network to produce the
3D occupancy grid only with radar data, using the lidar data
as ground truth, as shown in the block diagram in Fig. 1. As
can be seen, the data collected with both sensors must be pre-
processed before it can be used for the task. For the radar,
signal processing has to be applied to estimate the radar cube,
while for the lidar, the 3D occupancy grid has to be generated.
The next subsections explain in detail both processes.

A. Radar Signal Processing

Frequency-modulated continuous-wave (FMCW) radar with
multiple-input multiple-output (MIMO) arrays has been estab-
lished as the standard for automotive radars [2]. While several
strategies to ensure orthogonality between transmitted waves
are possible [10], the most extended one is time division
multiple access (TDMA) due to its ease of implementation.
However, this introduces two undesirable effects that need to
be compensated. First, the PRI (Pulse Repetition Interval) is
enlarged by a factor of the number of transmitters; therefore,
the maximum unambiguous Doppler is reduced, as can be seen
in equation (1),

vmax =
c

4fcPRI
, (1)

where c is the speed of light and fc is the carrier frequency.
This effect is especially problematic in the automotive

context, where targets can have high relative speeds. Moreover,
the phase difference between signals received from different

transmitters will depend on both the angle of arrival of the
signal and the velocity of the targets (due to the target’s move-
ment between transmission times) [11]. This phase migration
term is shown in equation (2),

ϕmig =
4π

λ
v∆t, (2)

where λ is the wavelength, v is the relative speed of the
target and ∆t is the time difference between transmitters. This
term must be compensated before performing angle estimation
to avoid significant estimation distortions. Both undesirable
effects of TDMA are solved using the overlapped virtual
antennas present in the radar system with the algorithms
provided in [12].

An overview of the radar signal processing pipeline is
shown in the bottom row of Fig. 1. As it can be seen,
apart from the TDMA compensation step, it is a standard
processing pipeline, with the peculiarity that only a single
value in elevation is saved per range-azimuth-Doppler cell.
This is done for two reasons. First, due to the sparse antenna
system in the vertical direction, there are grating lobes in the
elevation plane. Thus, the elevation dimension is cropped in
the ±20 degree region to avoid the grating lobes, and the
highest peak is selected as a single estimated elevation value.
Second, the output data size is significantly reduced this way,
from a full range-azimuth-elevation-Doppler (RAED) cube to
a range-azimuth-Doppler (RAD) cube with two channels, one
with the power and one with the elevation. This eases data
handling for later network training. This processing pipeline
can be summarized as follows:

1) 2D FFT with a Hamming window in the range and
Doppler dimensions.

2) Maximum unambiguous Doppler extensions and phase
migration compensation due to TDMA.

3) Zero filling for missing virtual elements, and 2D FFT in
azimuth and elevation.

4) Region of interest (RoI) cropping in elevation at ±20◦

and single peak selection.
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(a) (b) (c)
Fig. 2. In (a) the original lidar point cloud as provided by the sensor. In (b) the lidar point cloud after the RoI cropping to mimic the radar field of view
(i.e., ±70◦ in azimuth and ±20◦ in elevation). In (c), the point cloud after the road surface removal using PatchWork++ [9].

5) The output consists then of two range-azimuth-Doppler
3D cubes, one with the power values of each cell, and
one with the elevation estimation in each cell.

B. Lidar Processing

In order to use the lidar data as ground truth, it has to
be converted into a 3D occupancy grid, as shown in Fig. 1.
The first step is to time synchronize the data using the
radar timestamps and perform an extrinsic calibration using
precomputed parameters obtained measuring reference targets.
Then, the lidar data is cropped to the same field of view
of the radar, i.e., ±70◦ in azimuth and ±20◦ in elevation,
with a maximum range of 50m. An example of this cropped
RoI is shown in Fig. 2b compared to the original in Fig. 2a.
Moreover, removing all the returns from the road surface is
essential since the road surface is hardly visible to the radars.
Thus, these points would provide noisy supervision for training
the network. The Patchwork++ algorithm is used to this end
[9]. The resulting lidar point cloud after removing the road
surface points can be seen in Fig. 2c. Finally, the lidar point
cloud has to be voxelized into a cube. The voxelization process
can be understood as generating a 3D occupancy grid, where
each voxel contains ‘one’ if at least one lidar point is inside
and ‘zero’ otherwise. However, it is important to note that the
radar cube grid is not uniform due to the Fourier Transform
processing and its relationship with the sin of the estimated
angle. This effect, which makes the cells thinner at boresight
and broader at the edge of the field of view, must be considered
to generate the same non-uniform lidar 3D occupancy grid.

C. Neural Network

The network’s inputs are two range-azimuth-Doppler radar
cubes with dimensions R × A × D, where in practice R =
500, A = 240 and D = 128. These values are higher than
the number of fast-time samples, the number of chirps, and
the number antenna elements due to zero padding before the
FFT processing. One radar cube contains information about
the power in each voxel while the other encodes the selected
elevation bin, as described in Subsection II-A. However, the
lidar ground truth does not include Doppler information, and

therefore, the Doppler dimension should be processed before
estimating the 3D occupancy grid. It is known that there is
a dependency between the Doppler and the angle for moving
targets (or moving platforms) [13], [14], and therefore, the
Doppler information can be used to enhance the angular
resolution. To this end, the first part of the network is designed
to extract all the Doppler information in each range-azimuth
cell and encode it into the channel dimension. This is achieved
by using two 3D convolutional layers followed by a 3D max
pool layer, transforming the 2 × R × A × D input tensor
into a 64 × R × A tensor, where the 64 channel dimension
contains the encoded information of Doppler and elevation.
Then, an off-the-shelf 2D CNN backbone is applied to estimate
the R × A × E (500 × 240 × 44) 3D occupancy grid. The
significant advantage of using such 2D CNN backbones is
their compatibility with hardware accelerators (e.g., GPUs and
TPUs) and major machine learning frameworks (e.g., Tensor-
Flow, PyTorch), leading to enhanced computational efficiency.
While our current implementation employs ResNet18 [15], our
modular design allows for different backbones, enabling the
system to be tailored to the specific memory and computa-
tional requirements of the intended platform. Fig. 3 shows a
schematic representation of the proposed network. Since the
data is highly imbalanced (mostly empty), the focal loss [16]
between the predicted 3D occupancy grid and the ground truth
lidar 3D occupancy grid is used, instead of using the standard
binary cross-entropy, setting the sparsity regularizer to 0.95.

III. DATA COLLECTION

To support our experiments, a new synchronized and cali-
brated multi-sensor dataset was recorded, similar to the View-
of-Delft dataset [17] and using the same demonstrator vehicle.
Specifically for this paper, a Texas Instrument MMWCAS-
RF-EVM [18] radar board has been installed on the roof next
to a RoboSense Ruby Plus Lidar (128 layer rotating lidar1).
The radar board is a Multiple-Input Multiple-Output (MIMO)
radar with four cascaded chips resulting in 16 receivers and 12

1https://www.robosense.ai/en/rslidar/RS-Ruby Plus
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Fig. 3. Block diagram of the proposed neural network. The first part is a
Doppler encoder network to reduce the Doppler dimension. Then, a Resnet18
segmentation backbone is used to estimate the 3D occupancy grid.

TABLE I
RADAR WAVEFORM PARAMETERS USED IN THE DATA COLLECTION

Parameter Value

Start Frequency (GHz) 76
Effective Bandwidth (MHz) 750
Chirp Slope (MHz/µs) 35
Chirps Length (µs) 28
Number ADC Samples per Chirp 256
Number of Chirps per Frame 128
Sampling Frequency (Msps) 12

transmitters. The resulting virtual array is an 86-element half-
wavelength spaced array in the x-direction (used for azimuth
estimation) and a 4 Minimum Redundancy Array in the z-
direction (elevation estimation).

The data collection took place in various real-life scenar-
ios with different object characteristics, such as suburban,
campus, and Delft old-town locations. The recordings have
been organized into seven independent scenes of 5 minutes,
yielding around 3000 radar frames per scene (with a frame rate
of 10Hz) with their associated lidar point cloud with a total
of 21000 frames. Both sensors have been time-synchronized
using the provided timestamps and spatial calibrated using
reference targets. The dataset has been split into training,
validation, and test sets by assigning five scenes to the training
and validation and two to the test. For the train validation
split within the five scenes, 10% of the frames are used for
validation.

IV. RESULTS

After training, the proposed neural network can be used to
estimate the 3D occupancy grid for each frame. The results
presented in this section have been obtained using only the
test set, which contains unseen data for the proposed method.

The results are compared against different types of CFAR
detectors with different parameters, trying always to tune
them to achieve the best performance. However, optimizing
CFAR parameters in every realistic driving situation is hardly
possible due to the wide variety of conditions and targets.
Theoretically, the order statistics (OS)-CFAR yields better
results in multi-target situations [19]. However, the OSCA-
CFAR algorithm proposed in [20] has also been tested since
the computational complexity is lower while keeping good
performance. Moreover, to avoid expensive 3D detectors, in all
cases, a 2D CFAR in either range-Doppler or range-azimuth
matrices has been applied, followed by a 1D CFAR or a peak
detector in the remaining dimension of the radar data. For
each CFAR implementation, different combinations of their
hyperparameters have been tested for a fair evaluation, but
only the top five best are reported in this paper.

Qualitative results of the ground truth and generated point
cloud of the baseline and our proposed method are shown in
Fig. 4. All the point clouds have been projected into the camera
image to give a sense of the 3D scene (top), but the bird’s
eye view projection is also shown (bottom). For simplicity,
the point clouds have been cropped to a maximum range of
30 meters. Moreover, as a visual aid in the top view, cyclists
are highlighted with a blue hexagon, and cars are highlighted
with a red ellipsoid. In Fig. 4a, the original lidar point cloud is
presented, where many details of the scene can be appreciated.
Fig. 4b shows the detections generated using the proposed
neural network, and as can be seen, most of the details are
preserved. Objects are slightly overestimated in size, but the
overall scene is clear. Finally, Fig. 4c shows the output of
the quantitatively best CFAR (i.e., a 2D OS-CFAR in range-
azimuth followed by a 1D OS-CFAR in Doppler). In the top-
down view, it is possible to appreciate how points for the main
targets are detected, but the overall structure of the point cloud
is much sparser and noisier. For further evaluation, a different
frame is shown in Fig. 5 with the same approach, highlighting
again the cars and cyclists.

For quantitative evaluation, two different metrics are pre-
sented. First, an analysis of the probability of detection and
probability of false alarms has been performed, where the lidar
3D occupancy grid is used as the ground truth. However, these
metrics do not capture any spatial relationship, i.e., a slight
shift due to sensor misalignment in one of the dimensions
would make the values of these two probabilities rather poor,
even if the overall spatial estimation may be reasonable. For
this reason, a point-cloud level metric has been included
using the Chamfer distance between the lidar point cloud and
the generated radar point clouds. The Chamfer distance is a
common metric used to evaluate how similar two point clouds
are [21]–[23]. For each point in each set (the sets do not need
to have the same number of points), the nearest neighbor is
found, and the distances are squared and summed up. The
formal definition can be seen in (3),

d(S1, S2) =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈S2

min
x∈S1

||x− y||22. (3)

Authorized licensed use limited to: TU Delft Library. Downloaded on July 16,2024 at 07:17:33 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c)
Fig. 4. Data frame example #1. In (a), the original lidar point cloud projected into the camera as well as a top-down view. In (b), the radar point cloud
generated with the proposed method. In (c) the radar point cloud generated with the best implemented CFAR (2D OS-CFAR in range-azimuth followed by
an OS-CFAR in Doppler).

(a) (b) (c)
Fig. 5. Data frame example #2. In (a), the original lidar point cloud projected into the camera as well as a top-down view. In (b), the radar point cloud
generated with the proposed method. In (c) the radar point cloud generated with the best implemented CFAR (2D OS-CFAR in range-azimuth followed by
an OS-CFAR in Doppler).

Table II shows the results for the top 5 best CFAR detectors
and the proposed method. The CFAR guard cells in each
dimension have been set to 10 in range and 16 in Doppler
and azimuth. For the OS-CFAR, the rank has been set to 0.75
times the number of training cells and no guard cells have
been used as recommended in [19]. Only those peaks with
a minimum height of 10dB below the maximum have been

selected for peak detection. An important remark is needed
regarding the results in Table II. As mentioned before, the
computation of the Pfa and Pd is highly dependent on a good
alignment of the radar cubes. A shift on a single resolution
cell may be enough to reduce the Pd drastically. Therefore,
it is possible that a calibration misalignment exists between
the lidar and the radar that the neural network is learning

Authorized licensed use limited to: TU Delft Library. Downloaded on July 16,2024 at 07:17:33 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
PERFORMANCE RESULTS. RAD STANDS FOR RANGE, AZIMUTH, AND

DOPPLER, MEANING IT IS THE DIMENSION WHERE EACH DETECTOR IS
APPLIED.

Method Pd (%) Pfa (%) Chamfer distance (m2)
Proposed Method 65.32 1.99 1.60

2D OS(RA) +
1D OS(D) 1.72 0.09 4.98

2D OS(RD) +
1D OS(A) 1.51 0.08 5.24

2D CAOS(RA) +
1D OS(D) 0.22 0.07 6.98

2D CAOS(RA) +
Peak Detector(D) 0.15 0.03 6.40

2D CAOS(RD) +
Peak Detector(A) 0.63 0.02 4.85

to resolve, significantly boosting the Pd compared to the
conventional CFAR approaches. Moreover, CFAR results are
much more sparse than lidar data; thus, the Pd is dropping.
Even with this in mind, the proposed method has an excellent
performance of ∼65% Pd compared with lidar. On the other
hand, the relatively high Pfa (∼2%) can be explained by
the overestimation of most targets to the neighboring cells,
which, while not desirable, may not be critical for most
automotive situations. In terms of the Chamfer distance, where
the possible misalignment does not play a significant role, the
proposed method still outperforms all the CFAR approaches.

V. CONCLUSIONS

In this paper, a novel approach to radar target detection
leveraging the capabilities of neural networks is presented. A
comprehensive dataset comprising over 30 minutes of real-
world driving scenarios has been collected using a vehicle
equipped with both lidar and radar sensors, resulting in 21000
radar frames with their corresponding lidar ground truth. The
dataset contains a variety of scenes such as suburban and
crowded city center environments.

The work thoroughly compares the proposed neural
network-based radar detector against various Constant False
Alarm Rate (CFAR) methods. The results reveal that the
proposed method consistently outperforms conventional CFAR
techniques across various challenging scenarios. Two different
types of metrics have been used: the classical probability
of detection and probability of false alarm and the Chamfer
distance, a point cloud level metric used to capture the spatial
relationships and similarity between point clouds. The pro-
posed neural network-based detector achieves enhanced per-
formance in both metrics, especially in dynamic and cluttered
environments.

The success of this approach opens avenues for future
research, encouraging the exploration of innovative machine-
learning techniques for radar signal processing; therefore, after
suitable organization, the dataset used here will be publicly
released in the near future, containing the raw radar data.
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