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Abstract
The demand for accurate and efficient simulations in order to test the geomechanical effects is a reality
for the entire geoscience community. The motivation that arises from that need is the development and
the evolution of modelling methods to study these effects. Deep understanding of any problem in fine
scale is crucial, especially when it extends to much coarser scales. In this work the finite volumemethod
(FVM) is used for mechanical modelling of deformation in elastic media. The momentum balance
equation is solved as the governing equation for mechanics, assuming linear elasticity for the stress
tensor. Here, displacement is mapped onto a vertexcentred grid in three dimensions (3D). A set of
eight trilinear basis functions are used to locally interpolate the value of displacement within each grid
cube. In the finite volume method, the discretized form of the equations are obtained by integrating the
governing equation over control volume surfaces, since in 3D the control volume is a cube. Hence,
discretized forms are obtained by considering 24 surfaces, which form between a displacement node
and its neighbouring displacement cells. This required extensive derivation. The implementation of the
numerical model was carried out by writing a code in MATLAB.

Several numerical test cases are presented to demonstrate the capability of this model. In the first
place, the consistency of the model is checked through comparison with synthetic analytical solutions,
which are compared to the numerical solutions. Furthermore, the simple test case of uniaxial compres
sion, has been carried out with this model, but also compared to the results with a 2D FVM model and
a 3D finite element (3D FEM) one. In another test case, ground plain strain subsidence is studied in
a real hydrocarbon field with a heterogeneous map for elasticity parameters. It is shown that 3D FVM
is in close agreement with 3D FEM in predicting the subsidence due to field depletion. Last but not
least, displacement and stresses, in a faulted reservoir in which fluids are injected, are modelled and
the results are shown to coincide with a robust analytical solutions for the system.

Finally, the aim of this work is to shed some more light on the finite volume method for mechanics
and bring it closer to the audience of science.
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Γ𝐵 Bottom border in 3d domain Ω
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𝜎𝑥𝑥 Principal stress in x direction, [Pa]

𝜎𝑥𝑦 Shear stress in x direction caused by force in y direction, [Pa]

𝜎𝑥𝑧 Shear stress in x direction caused by force in z direction, [Pa]

𝜎𝑥 Total stress in x direction, [Pa]

𝜎𝑦𝑥 Shear stress in y direction caused by force in x direction, [Pa]

𝜎𝑦𝑦 Principal stress in y direction, [Pa]
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𝜎𝑧𝑧 Principal stress in z direction, [Pa]

𝜎𝑧 Total stress in z direction, [Pa]

𝑏 Biot’s constant, []

𝑓𝑥 Source term in force balance equation in x direction, [Pa]

𝑓𝑦 Source term in force balance equation in y direction, [Pa]

𝑓𝑧 Source term in force balance equation in z direction, [Pa]

𝐺𝑥 Scaled displacement in x direction, [m]

𝑔𝑥 Green function in x direction, [m]

𝐺𝑦 Scaled displacement in y direction, [m]

𝑔𝑦 Green function in y direction, [m]

𝐺𝑧 Scaled displacement in z direction, [m]

𝑔𝑧 Green function in z direction, [m]
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𝑢𝑥 Displacement in x direction, [m]

𝑢𝑦 Displacement in y direction, [m]

𝑢𝑧 Displacement in z direction, [m]

𝑣 Poisson’s ratio, []



1
Introduction

Geomechanical effects play crucial role in geoscience applications, especially when we want to qual
ify key parameters that may have impact on the geological section of interest. Subsurface geological
formations are often highly heterogeneous and heavily or partially fractured at multiple scales. Hetero
geneity of the deformation properties (e.g.elasticity coefficients) can be of several orders of magnitude,
which occurs at fine scale (cm) resolution, but has sometimes significant impact on the reservoirs,
which span in kms. For that reason numerical simulation of mechanical deformation for such complex
systems is necessary to optimise the geoengineering operations [1, 22], and assess their safety and
manage the associated risks (e.g. subsidence) [32].

Also many reservoirs that contain water or hydrocarbons around the world have multiple faults,
which affect the flow of the fluids inside the reservoir [2]. Injection of waste water or 𝐶𝑂2 in the deep
subsurface or production of natural gas can cause significant subsidence, especially when there are
faults that have been subjected to earlier movements [16]. The modelling of geomechanical properties
requires accurate simulations, especially when pore pressure is involved or the heterogeneity of the
elastic properties.

Finite element method (FEM) and FVM are two very famous discretization schemes with the former
one being dominant in the field of computational continuum mechanics (CCM), and the latter one in the
field of computational fluid dynamics (CFD) over the past years [17, 31]. Both methods can be easily
formulated to allow implementation on unstructured meshes [5, 23]. The major advantage of FEM,
especially in the field of mechanics, is its capability of increasing the order of elements by approximating
the physics fields with higher order polynomials [23]. Moreover, it provides the option to refine the mesh
locally, a technique known as ”adaptive mesh refinement”. These features of FEM are very important
for the modelling of stress in an accurate way [25]. However, the application of FEM is complex and
it requires mathematical expertise and that is one of the reasons why many scientists do not embrace
it sometimes. Another drawback is that there is no local conservation, since only the net flux over the
domain boundaries is guaranteed to be in balance [13].

On the other hand, in FVM there is local conservation of the numerical fluxes, which means that
numerical flux is conserved from one discretization cell to its neighbour. That feature makes FVM
dominant in the field of CFD in combination with the easier and appealing mathematical application
gains more audience in the field of CCM [7, 12, 28]. This also holds for nonlinear problems, which
makes it extra powerful for robust handling of (nonlinear) conservation laws [25]. ”Finite volume” refers
to the small volume surrounding each node point on a mesh [10, 20]. The discretized cell is often
referred as control volume in which the local conservation of the fluxes holds.

Theory of linear elasticity is a simplified version of the non linear elasticity theory [26] and describes
how solid media become deformed, due to prescribed loading conditions, which are called boundary
conditions, when solving partial differential equations. Boundary conditions are a set of additional
constraints imposed in the boundaries of the domain to ensure that there is unique solution in the
system.

FEM has been introduced in many literature books [5, 15, 24] and articles [3, 4, 11, 32] for the linear
elasticity method. FVM on the other hand, is more recent method in the CCM field and so far it has not
been implemented to model linear elasticity problem in three dimensions, using trilinear local shape
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2 1. Introduction

functions in order to interpolate the displacement in every node of the computational domain. A novel
model has been developed, extending the 2D FVM one developed by Irina Sokolova et al. [27] to 3D
FVM.

This thesis work is a research on the linear elasticity problem in three dimensions with finite volume
method (3D FVM) in which the elastic deformation is modelled in an accurate way. The displacement
is mapped onto a vertexcentred grid. The consistency of 3D FVM model has been tested with the
application of synthetic solutions (analytical solutions), which are provided as exact solutions in the
boundaries of the domain and they are compared to the numerical solutions for the entire domain,
through error analysis for elastic deformation [27]. The finite element method in three dimensions (3D
FEM) has been also studied for the linear elasticity problem. The model of 3D FEM [19] is used in this
research in order to benchmark the numerical results of 3D FVM with 2D FVM and 3D FEM in several
test cases that have been carried out, starting with uniaxial compression test case. Furthermore, the
incorporation of the pore pressure to study mechanical deformation is achieved by adding it to right
hand side (RHS) of the momentum balance equation as part of the force vector (source term) [27]. In
plain strain subsidence test case the effect of heterogeneity in a deformable domain in combination with
the pore pressure effect due to the depletion in a porous media (reservoir) is investigated [3, 27]. In the
last test case heterogeneity does not exist, but the geometry is more complex and concerns about a
reservoir with infinite boundaries and a displaced fault in its center [16]. These two test cases concern
the application in real field and have been carried out using 2D FVM, 3D FVM and 3D FEM.

This thesis is structured as follows: Chapter two includes the governing equations, the general con
stitutive relationships and the assumptions that have been taken into account. Chapter three introduces
the FVM and the numerical strategy that has been followed. In chapter four the FEM numerical strategy
is described. Chapter five includes all the numerical results of the test cases that have been carried
out. Finally, after the conclusions in chapter six, in the Appendix there is a simple flow chart of the 3D
FVM model that has been developed in Matlab, examples about the code implementation and all the
double integrals of the derivatives of the shape functions in 3D FVM, which have been calculated.



2
Governing equations

2.1. Problem formulation
A deformable and porous medium is considered, which is modelled under linear elastic behaviour [26].
According to the second law of Newton the momentum balance equation is stated as:

∇ ⋅ (�⃗� − 𝑏𝑝𝐼) = 𝑓, (2.1)

where �⃗�, 𝑏, 𝑝, 𝐼 and 𝑓 are the effective stress vector, the Biot’s constant, the pore pressure, the identity
matrix and the body forces vector respectively . The term (�⃗� − 𝑏𝑝𝐼) is called total stress [14]. If the
deformable medium has no pore pressure, the momentum balance equation takes the form:

∇ ⋅ (�⃗�) = 𝑓, (2.2)

The generic formulation that relates effective stress to strain is stated as:

�⃗� = 𝐶𝑑𝑟𝐶𝑑𝑟𝐶𝑑𝑟 ∶ ∇𝑠�⃗�, (2.3)

where 𝐶𝑑𝑟𝐶𝑑𝑟𝐶𝑑𝑟 is the drained elasticity tensor, �⃗� is the displacement vector and ∇𝑠 is the symmetric gradient
operator. In linear elastic theory 𝜎 is related linearly to ∇𝑠 ⋅ �⃗� . The drained elasticity tensor in three
dimensions is given as

𝐶𝑑𝑟𝐶𝑑𝑟𝐶𝑑𝑟 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤
⎥
⎥
⎥
⎥
⎦

, (2.4)

where 𝜆 and 𝜇 are the first and second Lamé parameters respectively. Let us derive the equations
that relate the displacement derivatives to the forces in three directions. Linear elasticity suggests that
⃗𝜎𝑥𝑦 = ⃗𝜎𝑦𝑥, ⃗𝜎𝑥𝑧 = ⃗𝜎𝑧𝑥 and ⃗𝜎𝑧𝑦 = ⃗𝜎𝑦𝑧. With the use of the Voigt notation [15, 29], the stress tensor is
expressed as:

3



4 2. Governing equations

�⃗� =

⎡
⎢
⎢
⎢
⎢
⎣

⃗𝜎𝑥𝑥
⃗𝜎𝑦𝑦
⃗𝜎𝑧𝑧
⃗𝜎𝑥𝑦
⃗𝜎𝑦𝑧
⃗𝜎𝑥𝑧

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜆 + 2𝜇 𝜆 𝜆 0 0 0
𝜆 𝜆 + 2𝜇 𝜆 0 0 0
𝜆 𝜆 𝜆 + 2𝜇 0 0 0
0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕𝑢𝑥
𝜕𝑥
𝜕𝑢𝑦
𝜕𝑦
𝜕𝑢𝑧
𝜕𝑧

𝜕𝑢𝑥
𝜕𝑦 +

𝜕𝑢𝑦
𝜕𝑥

𝜕𝑢𝑦
𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑦
𝜕𝑢𝑥
𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑥

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.5)

According to relationship 2.5 the formulas for the stresses are expressed as follows:

⃗𝜎𝑥𝑥 = (𝜆 + 2𝜇)
𝜕𝑢𝑥
𝜕𝑥 + 𝜆

𝜕𝑢𝑦
𝜕𝑦 + 𝜆𝜕𝑢𝑧𝜕𝑧 (2.6)

⃗𝜎𝑦𝑦 = 𝜆
𝜕𝑢𝑥
𝜕𝑥 + (𝜆 + 2𝜇)

𝜕𝑢𝑦
𝜕𝑦 + 𝜆𝜕𝑢𝑧𝜕𝑧 (2.7)

⃗𝜎𝑧𝑧 = 𝜆
𝜕𝑢𝑥
𝜕𝑥 + 𝜆

𝜕𝑢𝑦
𝜕𝑦 + (𝜆 + 2𝜇)𝜕𝑢𝑧𝜕𝑧 (2.8)

⃗𝜎𝑥𝑦 = 𝜇(
𝜕𝑢𝑥
𝜕𝑦 +

𝜕𝑢𝑦
𝜕𝑥 ) (2.9)

⃗𝜎𝑦𝑧 = 𝜇(
𝜕𝑢𝑦
𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑦 ) (2.10)

⃗𝜎𝑥𝑧 = 𝜇(
𝜕𝑢𝑥
𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑥 ) (2.11)

Figure 2.1: Stresses directions in 3D.

Stresses directions are presented in fig. 2.1. After the matrix multiplication in the right hand side
(RHS) of relationship 2.5 the final matrix that relates stress to displacement is stated as:



2.1. Problem formulation 5

�⃗� =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝜆 + 2𝜇)𝜕𝑢𝑥𝜕𝑥 + 𝜆
𝜕𝑢𝑦
𝜕𝑦 + 𝜆𝜕𝑢𝑧𝜕𝑧

𝜆𝜕𝑢𝑥𝜕𝑥 + (𝜆 + 2𝜇)
𝜕𝑢𝑦
𝜕𝑦 + 𝜆𝜕𝑢𝑧𝜕𝑧

𝜆𝜕𝑢𝑥𝜕𝑥 + 𝜆
𝜕𝑢𝑦
𝜕𝑦 + (𝜆 + 2𝜇)𝜕𝑢𝑧𝜕𝑧

𝜇(𝜕𝑢𝑥𝜕𝑦 +
𝜕𝑢𝑦
𝜕𝑥 )

𝜇(
𝜕𝑢𝑦
𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑦 )

𝜇(𝜕𝑢𝑥𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑥 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.12)

Finally in order to honour the problem formulation as stated in eq. 2.2 :

∇ ⋅ �⃗� =

⎡
⎢
⎢
⎢
⎢
⎣

𝑑
𝑑𝑥 0 0 𝑑

𝑑𝑦 0 𝑑
𝑑𝑧

0 𝑑
𝑑𝑦 0 𝑑

𝑑𝑥
𝑑
𝑑𝑧 0

0 0 𝑑
𝑑𝑧 0 𝑑

𝑑𝑦
𝑑
𝑑𝑥

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝜆 + 2𝜇)𝜕𝑢𝑥𝜕𝑥 + 𝜆
𝜕𝑢𝑦
𝜕𝑦 + 𝜆𝜕𝑢𝑧𝜕𝑧

𝜆𝜕𝑢𝑥𝜕𝑥 + (𝜆 + 2𝜇)
𝜕𝑢𝑦
𝜕𝑦 + 𝜆𝜕𝑢𝑧𝜕𝑧

𝜆𝜕𝑢𝑥𝜕𝑥 + 𝜆
𝜕𝑢𝑦
𝜕𝑦 + (𝜆 + 2𝜇)𝜕𝑢𝑧𝜕𝑧

𝜇(𝜕𝑢𝑥𝜕𝑦 +
𝜕𝑢𝑦
𝜕𝑥 )

𝜇(
𝜕𝑢𝑦
𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑦 )

𝜇(𝜕𝑢𝑥𝜕𝑧 + 𝜕𝑢𝑧𝜕𝑥 )

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝑓 (2.13)

After the matrix multiplication in relationship 2.13 the three force balance equations, which relate dis
placement to force in 3D are formed as follows:

𝜕((𝜆 + 2𝜇)𝜕𝑢𝑥𝜕𝑥 + 𝜆(
𝜕𝑢𝑦
𝜕𝑦 +

𝜕𝑢𝑧
𝜕𝑧 ))

𝜕𝑥 +
𝜕(𝜇(𝜕𝑢𝑥𝜕𝑦 +

𝜕𝑢𝑦
𝜕𝑥 ))

𝜕𝑦 +
𝜕(𝜇(𝜕𝑢𝑥𝜕𝑧 +

𝜕𝑢𝑧
𝜕𝑥 ))

𝜕𝑧 = 𝑓𝑥 (2.14)

𝜕(𝜇(𝜕𝑢𝑥𝜕𝑦 +
𝜕𝑢𝑦
𝜕𝑥 ))

𝜕𝑥 +
𝜕((𝜆 + 2𝜇)𝜕𝑢𝑦𝜕𝑦 + 𝜆(

𝜕𝑢𝑥
𝜕𝑥 +

𝜕𝑢𝑧
𝜕𝑧 ))

𝜕𝑦 +
𝜕(𝜇(𝜕𝑢𝑦𝜕𝑧 +

𝜕𝑢𝑧
𝜕𝑦 ))

𝜕𝑧 = 𝑓𝑦 (2.15)

𝜕(𝜇(𝜕𝑢𝑥𝜕𝑧 +
𝜕𝑢𝑧
𝜕𝑥 ))

𝜕𝑥 +
𝜕(𝜇(𝜕𝑢𝑦𝜕𝑧 +

𝜕𝑢𝑧
𝜕𝑦 ))

𝜕𝑦 +
𝜕((𝜆 + 2𝜇)𝜕𝑢𝑧𝜕𝑧 + 𝜆(

𝜕𝑢𝑥
𝜕𝑥 +

𝜕𝑢𝑦
𝜕𝑦 ))

𝜕𝑧 = 𝑓𝑧 (2.16)





3
Numerical modelling 2D FVM  3D FVM

3.1. Computational domain
In this chapter the discretization strategy for finite volume method in two and three dimensions in a
vertex centered gird is presented. The displacement is placed in the cell vertices. This type of grid
allows the easy application of boundary conditions. According to FVM theory stress/displacement
control volumes exist around each displacement node. The discretization takes place in the borders
of the stress control volume, which interacts with the volume of the interaction volume (IV), with four
displacement nodes in 2D and 8 displacement nodes in 3D (IV).

Figure 3.1: Displacement grid for 2D FVM mechanical deformation.

Figure 3.2: Displacement grid for 3D FVM mechanical deformation.

In fig. 3.1 and 3.2 are presented the grids for 2D and 3D modelling of finite volume method and it
is shown that each stress/displacement control volume Ω𝑢𝑢𝑢𝑖 has in its point of symmetry a displacement
node.

7
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(a) IV in 2D (b) IV in 3D

Figure 3.3: Enumeration of displacement nodes of IV in 2D and 3D.

In fig. 3.3a, 3.3b are presented, two full IV of the general grids of fig. 3.1 and 3.2 for 2D and 3D
grids respectively.

After applying finite volume theory on equation 2.1 is derived that:

∫
Ω𝑢𝑢𝑢𝑖
∇ ⋅ (�⃗� − 𝑏𝑝𝐼)𝑑𝑉 = ∫

Ω𝑢𝑢𝑢𝑖
𝑓𝑑𝑉, (3.1)

where Ω𝑢𝑢𝑢𝑖 stands for the stress/displacement control volumes in which the linear momentum balance
(eq.3.3) is integrated (fig. 3.1, 3.2). With the use of the divergence theorem eq. 3.1 is stated as:

∫
𝜕Ω𝑢𝑢𝑢𝑖

(�⃗�) ⋅ �⃗�𝑑𝑆 = ∫
Ω𝑢𝑢𝑢𝑖
𝑓𝑑𝑉 + (𝑏∫

𝜕Ω𝑢𝑢𝑢𝑖
𝑝𝐼) ⋅ �⃗�𝑑𝑆 (3.2)

The porous part (𝑏 ∫𝜕Ω𝑢𝑢𝑢𝑖 𝑝𝐼) ⋅ �⃗�𝑑𝑆 is added to the RHS as part of the forces distributed in the boundaries
of the porous medium (reservoir). If there is no pore pressure in the medium then eq. 3.1 is written as
follows:

∫
Ω𝑢𝑢𝑢𝑖
∇ ⋅ (�⃗�)𝑑𝑉 = ∫

Ω𝑢𝑢𝑢𝑖
𝑓𝑑𝑉, (3.3)

With the use of the divergence theorem eq. 3.3 is stated as:

∫
𝜕Ω𝑢𝑢𝑢𝑖

(�⃗�) ⋅ �⃗�𝑑𝑆 = ∫
Ω𝑢𝑢𝑢𝑖
𝑓𝑑𝑉 (3.4)

3.2. Discretization 2D FVM
In 2D domain eq. 3.4 is discretized over the north, south, east, west borders of the 𝜕Ω𝑢𝑢𝑢𝑖 .

Border Value
Γ𝑁 (0, 1)
Γ𝑆 (0, −1)
Γ𝐸 (1, 0)
Γ𝑊 (−1, 0)

Table 3.1: Coordinate values of directional operator in 2D.

In a 2D domain according to the values of the directional operator in table 3.1, the left hand side
(LHS) of eq. 3.4 is stated in x direction as follows:

∫
𝜕Ω𝑢𝑢𝑢𝑖

(�⃗�𝑥) ⋅ �⃗�𝑑Γ = ∫
Γ𝑁
(�⃗�𝑥𝑦)𝑑𝑥 + ∫

Γ𝐸
(�⃗�𝑥𝑥)𝑑𝑦 − ∫

Γ𝑊
(�⃗�𝑥𝑥)𝑑𝑦 − ∫

Γ𝑆
(�⃗�𝑥𝑦)𝑑𝑥 (3.5)
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Similarly for the y direction holds:

∫
𝜕Ω𝑢𝑢𝑢𝑖

(�⃗�𝑦) ⋅ �⃗�𝑑Γ = ∫
Γ𝐸
(�⃗�𝑦𝑥)𝑑𝑦 + ∫

Γ𝑁
(�⃗�𝑦𝑦)𝑑𝑥 − ∫

Γ𝑊
(�⃗�𝑦𝑥)𝑑𝑦 − ∫

Γ𝑆
(�⃗�𝑦𝑦)𝑑𝑥 (3.6)

In eq. 3.5 and 3.6 the borders of the surface integrals are the Γ𝑁, Γ𝑆, Γ𝐸 and Γ𝑊 standing for north, south,
east, west boundary of any stress control volume. Eq. 3.5, 3.6 are discretized for all the stress/dis
placement control volumes and then the stress is related to the displacement as eq. 2.3 suggests.

3.2.1. Bilinear shape functions

In FVM the continuum displacement based on the nodal discrete values needs to be described [27].
The displacement is interpolated using the following formula:

�⃗� ≈
4

∑
𝑖=1
𝑢𝑖𝑁𝑖(𝑥, 𝑦) in Ω̄𝑢𝑢𝑢𝑖 , (3.7)

where 𝑢𝑖 is the nodal displacement and 𝑁𝑖 are the shape functions corresponding to each node of the
element Ω̄𝑢𝑢𝑢𝑖 , which consists an IV. The four shape functions are given as follows:

𝑁1 = (1 −
𝑥
𝑑𝑥 )(1 −

𝑦
𝑑𝑦) (3.8)

𝑁2 = (
𝑥
𝑑𝑥 )(1 −

𝑦
𝑑𝑦) (3.9)

𝑁3 = (
𝑥
𝑑𝑥 )(

𝑦
𝑑𝑦) (3.10)

𝑁4 = (1 −
𝑥
𝑑𝑥 )(

𝑦
𝑑𝑦) (3.11)

Here 𝑑𝑥 and 𝑑𝑦 are the length and the width of one control volume.
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(a) N1 shape function in 2D

(b) N2 shape function in 2D

(c) N3 shape function in 2D

(d) N4 shape function in 2D

Figure 3.4: Shape functions in 2D.

Eq.3.8  3.11 are represented in fig. 3.4a  3.4d and it is observed that each shape function is equal
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to 1 in the node that is used to interpolate the displacement and equal to 0 in all the other nodes.

3.2.2. Integration over derivative displacements in 2D
Shape functions as stated in eq. 3.8  3.11 are used to approximate the derivatives of the displacements
in relationship 2.3, so as to substitute stresses finally in eq. 3.5, 3.6. For instance for the derivative of
the displacement over x direction holds:

𝜕�⃗�
𝜕𝑥 ≈

4

∑
𝑖=1
𝑢𝑖
𝜕𝑁𝑖
𝜕𝑥 (3.12)

Figure 3.5: Integrals calculation in the stress/displacement control volume of 𝑢𝑖,𝑗.

In fig. 3.5 is depicted an IV of the general mesh presented in fig. 3.1. The contribution of 𝑢𝑖,𝑗 in the
x direction is calculated as:

∫
Γ𝐸

⃗𝜎𝑥𝑥𝑑𝑦 = ∫
𝛾𝑆

⃗𝜎𝑥𝑥𝑑𝑦 = (𝜆 + 2𝜇)∫
𝛾𝑆

𝜕𝑢𝑥
𝑑𝑥 𝑑𝑦 + 𝜆∫𝛾𝑆

𝜕𝑢𝑦
𝑑𝑦 𝑑𝑦, (3.13)

where the ∫𝛾𝑆 shows the surface (here is line) inside the IV, in which the term
𝜕𝑢𝑥
𝑑𝑥 is integrated. In

that case ∫𝛾𝑆 = ∫
𝑑𝑦
2

0 as shown in fig. 3.5, where 𝑑𝑦 is the full width of this IV if the 0 is placed in the
bottom left node 𝑢𝑖,𝑗.

∫
Γ𝑁

⃗𝜎𝑥𝑦𝑑𝑥 = ∫
𝛾𝑊

⃗𝜎𝑥𝑦𝑑𝑥 = 𝜇∫
𝛾𝑊

𝜕𝑢𝑥
𝑑𝑦 𝑑𝑥 + 𝜇∫𝛾𝑊

𝜕𝑢𝑦
𝑑𝑥 𝑑𝑥 (3.14)

The contribution of 𝑢𝑖,𝑗 in the y direction is calculated as:

∫
𝛾𝑊

⃗𝜎𝑦𝑦𝑑𝑥 = 𝜆∫
𝛾𝑊

𝜕𝑢𝑥
𝑑𝑥 𝑑𝑥 + (𝜆 + 2𝜇)∫𝛾𝑊

𝜕𝑢𝑦
𝑑𝑦 𝑑𝑥 (3.15)

∫
𝛾𝑆

⃗𝜎𝑦𝑥𝑑𝑦 = 𝜇∫
𝛾𝑆

𝜕𝑢𝑥
𝑑𝑦 𝑑𝑦 + 𝜇∫𝛾𝑆

𝜕𝑢𝑦
𝑑𝑥 𝑑𝑦 (3.16)

In eq. 3.13, 3.14, 3.15 and 3.16 the integrals 𝛾𝑆, and 𝛾𝑊 are inside the IV as shown in fig. 3.5.
Inside each IV along x direction, the area where 𝑥 ∈ [0, 𝑑𝑥2 ] is called West and the integral is the

𝛾𝑊. When 𝑥 ∈ [ 𝑑𝑥2 , 𝑑𝑥] the region is called East and the integral is the 𝛾
𝐸. Then in the y direction the

are where 𝑦 ∈ [0, 𝑑𝑦2 ] is called South with integral 𝛾
𝑆 and the area where 𝑦 ∈ [ 𝑑𝑦2 , 𝑑𝑦] is called North

with integral 𝛾𝑁.
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3.3. Discretization 3D FVM
For the x direction in three dimensions eq. 3.4 is expressed for the north, south, east, west, top, bottom
borders of the 𝜕Ω𝑢𝑢𝑢𝑖 as follows:

∫
𝜕Ω𝑢𝑢𝑢𝑖

(�⃗�𝑥)⋅�⃗�𝑑Γ = ∫
Γ𝑇
(�⃗�𝑥)⋅�⃗�𝑑Γ+∫

Γ𝑁
(�⃗�𝑥)⋅�⃗�𝑑Γ+∫

Γ𝐸
(�⃗�𝑥)⋅�⃗�𝑑Γ+∫

Γ𝐵
(�⃗�𝑥)⋅�⃗�𝑑Γ+∫

Γ𝑆
(�⃗�𝑥)⋅�⃗�𝑑Γ+∫

Γ𝑊
(�⃗�𝑥)⋅�⃗�𝑑Γ

(3.17)

Border Value
Γ𝑇 (0, 0, 1)
Γ𝐵 (0, 0, −1)
Γ𝑁 (0, 1, 0)
Γ𝑆 (0, −1, 0)
Γ𝐸 (1, 0, 0)
Γ𝑊 (−1, 0, 0)

Table 3.2: Coordinate values of directional operator in 3D.

In eq. 3.17 Γ𝑇, Γ𝑁, Γ𝐸, Γ𝐵, Γ𝑆 and Γ𝑊 are the boundaries of top, north, east, bottom, south and west
surface integrals in each stress/displacement control volume respectively.

For 𝜎𝑥 holds: 𝜎𝑥 = ( ⃗𝜎𝑥𝑥 , ⃗𝜎𝑥𝑦 , ⃗𝜎𝑥𝑧). Then for eq. 3.17 according to the value of the directional
operator �⃗� in table 3.2, holds:

∫
𝜕Ω𝑢𝑢𝑢𝑖

(�⃗�𝑥) ⋅ �⃗�𝑑Γ = ∫
Γ𝑇
(�⃗�𝑥𝑧)𝑑𝑥𝑑𝑦 + ∫

Γ𝑁
(�⃗�𝑥𝑦)𝑑𝑥𝑑𝑧 + ∫

Γ𝐸
(�⃗�𝑥𝑥)𝑑𝑦𝑑𝑧

− ∫
Γ𝐵
(�⃗�𝑥𝑧)𝑑𝑥𝑑𝑦 − ∫

Γ𝑆
(�⃗�𝑥𝑦)𝑑𝑥𝑑𝑧 − ∫

Γ𝑊
(�⃗�𝑥𝑥)𝑑𝑦𝑑𝑧 (3.18)

Similarly for the y direction:

∫
𝜕Ω𝑢𝑢𝑢𝑖

(�⃗�𝑦) ⋅ �⃗�𝑑Γ = ∫
Γ𝑇
(�⃗�𝑦𝑧)𝑑𝑥𝑑𝑦 + ∫

Γ𝑁
(�⃗�𝑦𝑦)𝑑𝑥𝑑𝑧 + ∫

Γ𝐸
(�⃗�𝑦𝑥)𝑑𝑦𝑑𝑧

− ∫
Γ𝐵
(�⃗�𝑦𝑥)𝑑𝑥𝑑𝑦 − ∫

Γ𝑆
(�⃗�𝑦𝑦)𝑑𝑥𝑑𝑧 − ∫

Γ𝑊
(�⃗�𝑦𝑥)𝑑𝑦𝑑𝑧 (3.19)

Finally for the z direction holds:

∫
𝜕Ω𝑢𝑢𝑢𝑖

(�⃗�𝑧) ⋅ �⃗�𝑑Γ = ∫
Γ𝑇
(�⃗�𝑧𝑧)𝑑𝑥𝑑𝑦 + ∫

Γ𝑁
(�⃗�𝑧𝑦)𝑑𝑥𝑑𝑧 + ∫

Γ𝐸
(�⃗�𝑧𝑥)𝑑𝑦𝑑𝑧

− ∫
Γ𝐵
(�⃗�𝑧𝑧)𝑑𝑥𝑑𝑦 − ∫

Γ𝑆
(�⃗�𝑧𝑦)𝑑𝑥𝑑𝑧 − ∫

Γ𝑊
(�⃗�𝑧𝑥)𝑑𝑦𝑑𝑧 (3.20)

The eq. 3.18, 3.19 and 3.20 can be expressed in terms of displacement.
In the x direction for �⃗�𝑥𝑥 holds:

∫
Γ𝐸
(�⃗�𝑥𝑥)𝑑𝑦𝑑𝑧 − ∫

Γ𝑊
(�⃗�𝑥𝑥)𝑑𝑦𝑑𝑧 = ∫

Γ𝐸
(𝜆 + 2𝜇)𝜕�⃗�𝑥𝜕𝑥 𝑑𝑦𝑑𝑧 + ∫Γ𝐸

𝜆
𝜕�⃗�𝑦
𝜕𝑦 𝑑𝑦𝑑𝑧

+ ∫
Γ𝐸
𝜆𝜕�⃗�𝑧𝜕𝑧 𝑑𝑦𝑑𝑧 − ∫Γ𝑊

(𝜆 + 2𝜇)𝜕�⃗�𝑥𝜕𝑥 𝑑𝑦𝑑𝑧 − ∫Γ𝑊
𝜆
𝜕�⃗�𝑦
𝜕𝑦 𝑑𝑦𝑑𝑧 − ∫Γ𝑊

𝜆𝜕�⃗�𝑧𝜕𝑧 𝑑𝑦𝑑𝑧 (3.21)

For �⃗�𝑥𝑦 holds:



3.3. Discretization 3D FVM 13

∫
Γ𝑁
(�⃗�𝑥𝑦)𝑑𝑥𝑑𝑧 − ∫

Γ𝑆
(�⃗�𝑥𝑦)𝑑𝑥𝑑𝑧 = ∫

Γ𝑁
𝜇𝜕�⃗�𝑥𝜕𝑦 𝑑𝑥𝑑𝑧 + ∫Γ𝑁

𝜇
𝜕�⃗�𝑦
𝜕𝑥 𝑑𝑥𝑑𝑧

− ∫
Γ𝑆
𝜇𝜕�⃗�𝑥𝜕𝑦 𝑑𝑥𝑑𝑧 − ∫Γ𝑆

𝜇
𝜕�⃗�𝑦
𝜕𝑥 𝑑𝑥𝑑𝑧 (3.22)

For �⃗�𝑥𝑧 holds:

∫
Γ𝑇
(�⃗�𝑥𝑧)𝑑𝑥𝑑𝑦 − ∫

Γ𝐵
(�⃗�𝑥𝑧)𝑑𝑥𝑑𝑦 = ∫

Γ𝑇
𝜇𝜕�⃗�𝑥𝜕𝑧 𝑑𝑥𝑑𝑦 + ∫Γ𝑇

𝜇𝜕�⃗�𝑧𝜕𝑥 𝑑𝑥𝑑𝑦

− ∫
Γ𝐵
𝜇𝜕�⃗�𝑥𝜕𝑧 𝑑𝑥𝑑𝑦 − ∫Γ𝐵

𝜇𝜕�⃗�𝑧𝜕𝑥 𝑑𝑥𝑑𝑦 (3.23)

In the y direction holds for �⃗�𝑦𝑥:

∫
Γ𝐸
(�⃗�𝑦𝑥)𝑑𝑦𝑑𝑧 − ∫

Γ𝑊
(�⃗�𝑦𝑥)𝑑𝑦𝑑𝑧 = ∫

Γ𝐸
𝜇𝜕�⃗�𝑥𝜕𝑦 𝑑𝑦𝑑𝑧 + ∫Γ𝐸

𝜇
𝜕�⃗�𝑦
𝜕𝑥 𝑑𝑦𝑑𝑧

− ∫
Γ𝑊
𝜇𝜕�⃗�𝑥𝜕𝑦 𝑑𝑦𝑑𝑧 − ∫Γ𝑊

𝜇
𝜕�⃗�𝑦
𝜕𝑥 𝑑𝑦𝑑𝑧 (3.24)

For �⃗�𝑦𝑦 holds:

∫
Γ𝑁
(�⃗�𝑦𝑦)𝑑𝑥𝑑𝑧 − ∫

Γ𝑆
(�⃗�𝑦𝑦)𝑑𝑥𝑑𝑧 = ∫

Γ𝑁
𝜆𝜕�⃗�𝑥𝜕𝑥 𝑑𝑥𝑑𝑧 + ∫Γ𝑁

(𝜆 + 2𝜇)
𝜕�⃗�𝑦
𝜕𝑦 𝑑𝑥𝑑𝑧 + ∫Γ𝑁

𝜆𝜕�⃗�𝑧𝜕𝑧 𝑑𝑥𝑑𝑧

− ∫
Γ𝑆
𝜆𝜕�⃗�𝑥𝜕𝑥 𝑑𝑥𝑑𝑧 − ∫Γ𝑆

(𝜆 + 2𝜇)
𝜕�⃗�𝑦
𝜕𝑦 𝑑𝑥𝑑𝑧 − ∫Γ𝑆

𝜆𝜕�⃗�𝑧𝜕𝑧 𝑑𝑥𝑑𝑧 (3.25)

Finally for �⃗�𝑦𝑧 holds:

∫
Γ𝑇
(�⃗�𝑦𝑧)𝑑𝑥𝑑𝑦 − ∫

Γ𝐵
(�⃗�𝑦𝑧)𝑑𝑥𝑑𝑦 = ∫

Γ𝑇
𝜇
𝜕�⃗�𝑦
𝜕𝑧 𝑑𝑥𝑑𝑦 + ∫Γ𝑇

𝜇𝜕�⃗�𝑧𝜕𝑦 𝑑𝑥𝑑𝑦

− ∫
Γ𝐵
𝜇
𝜕�⃗�𝑦
𝜕𝑧 𝑑𝑥𝑑𝑦 − ∫Γ𝐵

𝜇𝜕�⃗�𝑧𝜕𝑦 𝑑𝑥𝑑𝑦 (3.26)

In the z direction �⃗�𝑧𝑥 equals to:

∫
Γ𝐸
(�⃗�𝑧𝑥)𝑑𝑦𝑑𝑧 − ∫

Γ𝑊
(�⃗�𝑧𝑥)𝑑𝑦𝑑𝑧 = ∫

Γ𝐸
𝜇𝜕�⃗�𝑥𝜕𝑧 𝑑𝑦𝑑𝑧 + ∫Γ𝐸

𝜇𝜕�⃗�𝑧𝜕𝑥 𝑑𝑦𝑑𝑧

− ∫
Γ𝑊
𝜇𝜕�⃗�𝑥𝜕𝑧 𝑑𝑦𝑑𝑧 − ∫Γ𝑊

𝜇𝜕�⃗�𝑧𝜕𝑥 𝑑𝑦𝑑𝑧 (3.27)

For �⃗�𝑧𝑦 holds:

∫
Γ𝑁
(�⃗�𝑧𝑦)𝑑𝑥𝑑𝑧 − ∫

Γ𝑆
(�⃗�𝑧𝑦)𝑑𝑥𝑑𝑧 = ∫

Γ𝑁
𝜇
𝜕�⃗�𝑦
𝜕𝑧 𝑑𝑥𝑑𝑧 + ∫Γ𝑁

𝜇𝜕�⃗�𝑧𝜕𝑦 𝑑𝑥𝑑𝑧

− ∫
Γ𝑆
𝜇
𝜕�⃗�𝑦
𝜕𝑧 𝑑𝑥𝑑𝑧 − ∫Γ𝑆

𝜇𝜕�⃗�𝑧𝜕𝑦 𝑑𝑥𝑑𝑧 (3.28)

Finally for �⃗�𝑧𝑧 holds:

∫
Γ𝑇
(�⃗�𝑧𝑧)𝑑𝑥𝑑𝑦 − ∫

Γ𝐵
(�⃗�𝑧𝑧)𝑑𝑥𝑑𝑦 = ∫

Γ𝑇
𝜆𝜕�⃗�𝑥𝜕𝑥 𝑑𝑥𝑑𝑦 + ∫Γ𝑇

𝜆
𝜕�⃗�𝑦
𝜕𝑦 𝑑𝑥𝑑𝑦 + ∫Γ𝑇

(𝜆 + 2𝜇)𝜕�⃗�𝑧𝜕𝑧 𝑑𝑥𝑑𝑦

− ∫
Γ𝐵
𝜆𝜕�⃗�𝑥𝜕𝑥 𝑑𝑥𝑑𝑦 − ∫Γ𝐵

𝜆
𝜕�⃗�𝑦
𝜕𝑦 𝑑𝑥𝑑𝑦 − ∫Γ𝐵

(𝜆 + 2𝜇)𝜕�⃗�𝑧𝜕𝑧 𝑑𝑥𝑑𝑦 (3.29)
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3.3.1. Trilinear shape functions

In three dimensions there are 8 interpolation functions for displacement, compared to two dimension
where 4 are used. They are trilinear and they allow for convenient integration of the displacement and
its derivatives over any interface, especially over finite volume control volumes.

�⃗� ≈
8

∑
𝑖=1
𝑢𝑖𝑁𝑖(𝑥, 𝑦, 𝑧) in Ω̄𝑢𝑢𝑢𝑖 (3.30)

More analytically these 8 interpolators are expressed as follows:

𝑁1 = (1 −
𝑥
𝑑𝑥 )(1 −

𝑦
𝑑𝑦)(1 −

𝑧
𝑑𝑧) (3.31)

𝑁2 = (
𝑥
𝑑𝑥 )(1 −

𝑦
𝑑𝑦)(1 −

𝑧
𝑑𝑧) (3.32)

𝑁3 = (
𝑥
𝑑𝑥 )(

𝑦
𝑑𝑦)(1 −

𝑧
𝑑𝑧) (3.33)

𝑁4 = (1 −
𝑥
𝑑𝑥 )(

𝑦
𝑑𝑦)(1 −

𝑧
𝑑𝑧) (3.34)

𝑁5 = (1 −
𝑥
𝑑𝑥 )(1 −

𝑦
𝑑𝑦)(

𝑧
𝑑𝑧) (3.35)

𝑁6 = (
𝑥
𝑑𝑥 )(1 −

𝑦
𝑑𝑦)(

𝑧
𝑑𝑧) (3.36)

𝑁7 = (
𝑥
𝑑𝑥 )(

𝑦
𝑑𝑦)(

𝑧
𝑑𝑧 ) (3.37)

𝑁8 = (1 −
𝑥
𝑑𝑥 )(

𝑦
𝑑𝑦)(

𝑧
𝑑𝑧 ) (3.38)

Here 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧 are the length, the width and the height of the IV respectively and they are finite.



3.3. Discretization 3D FVM 15

(a) N1 shape function in 3D (b) N2 shape function in 3D

(c) N3 shape function in 3D (d) N4 shape function in 3D

(e) N5 shape function in 3D (f) N6 shape function in 3D

(g) N7 shape function in 3D (h) N8 shape function in 3D

Figure 3.6: Shape functions in 3D.
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Eq. 3.31  3.38 are represented in fig. 3.6a  3.6h. It is observed that each shape function is equal
to 1 in the node that is used to interpolate the displacement and equal to 0 in all the other nodes.

3.3.2. Integration over derivative displacements in 3D
Inside each IV e there are regions, which have to be defined.

In the x direction within an IV the area where 𝑥 ∈ [0, 𝑑𝑥2 ] is called West (W) and the area where
𝑥 ∈ [ 𝑑𝑥2 , 𝑑𝑥] is called East (E). Then in the y direction the area where 𝑦 ∈ [0,

𝑑𝑦
2 ] is called South (S)

and the area where 𝑦 ∈ [ 𝑑𝑦2 , 𝑑𝑦] is called North (N). Finally in the z direction the area where 𝑧 ∈ [0,
𝑑𝑧
2 ]

is called Bottom and the area where 𝑧 ∈ [ 𝑑𝑧2 , 𝑑𝑧] is called Top (T).

Figure 3.7: Stress control volume of 𝑢𝑖+1,𝑗,𝑘+1(cube with blue nodes) in the element control volume of 𝑢𝑖,𝑗,𝑘(cube with
red nodes).

Fig. 3.7 shows an IV cube in which the red nodes in the corners stand for displacement nodes and
it interacts with a stress control volume, presented as cube with blue nodes. Around each IV there are
8 stress control volumes. The area TS (Top  South) refers to the plane area, where 𝑧 ∈ [ 𝑑𝑧2 , 𝑑𝑧] and
𝑦 ∈ [0, 𝑑𝑦2 ], perpendicular to the x direction. There are in total 12 areas, each one of which represents
a surface, which is perpendicular to the third direction [8]. These areas play significant role in the
integration in each IV, since in these areas are calculated the integrals of the displacements and their
derivatives.

In fig. 3.7 are depicted three surfaces (one blue, one green and one purple), which represent three
calculated double integrals, which show the contribution of 𝑢𝑖+1,𝑗,𝑘+1 to the 𝑓𝑥, 𝑓𝑦 and to the 𝑓𝑧. The blue
surface is calculated from the integration of the stresses that act on the yz plane (𝜎𝑥𝑥, 𝜎𝑦𝑥, 𝜎𝑧𝑥), the
green from the ones that act on the xz plane (𝜎𝑥𝑦, 𝜎𝑦𝑦, 𝜎𝑧𝑦) and the purple one comes from the ones
that act on the xy plane (𝜎𝑥𝑧, 𝜎𝑦𝑧, 𝜎𝑧𝑧). The TE surface double integral refers to the surface integral
inside the IV (green surface in fig. 3.7). The cube with the red corner nodes is the IV 𝑖, 𝑗, 𝑘, which
is named after the lower left node. Eight displacement nodes are presented and each one of them
contributes in 𝑓𝑥, 𝑓𝑦 and in 𝑓𝑧.

Shape functions, as stated in eq. 3.31  3.38, are used to approximate the derivatives of the displace
ments in relationship 2.3 and to substitute stresses in eq. 3.21  3.29. For instance for the derivative
of the displacement over x direction holds:

𝜕�⃗�
𝜕𝑥 ≈

8

∑
𝑖=1
𝑢𝑖
𝜕𝑁𝑖
𝜕𝑥 (3.39)

The analysis for the stress/displacement control volume of 𝑢𝑖+1,𝑗,𝑘+1 in the x direction is stated as:
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∫
Γ𝑊

⃗𝜎𝑥𝑥 𝑑𝑦 𝑑𝑧 = ∫
𝛾𝑇
∫
𝛾𝑆

⃗𝜎𝑥𝑥 𝑑𝑦 𝑑𝑧 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

⃗𝜎𝑥𝑥 𝑑𝑦 𝑑𝑧 = −(𝜆 + 2𝜇)
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑥
𝜕𝑥 𝑑𝑦 𝑑𝑧 (3.40)

− 𝜆
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑦
𝜕𝑦 𝑑𝑦 𝑑𝑧 − 𝜆

𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑧
𝜕𝑧 𝑑𝑦 𝑑𝑧

∫
Γ𝑁

⃗𝜎𝑥𝑦 𝑑𝑥 𝑑𝑧 = ∫
𝛾𝑇
∫
𝛾𝐸

⃗𝜎𝑥𝑦 𝑑𝑥 𝑑𝑧 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

⃗𝜎𝑥𝑦 𝑑𝑥 𝑑𝑧 = 𝜇(
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥
𝜕𝑦 𝑑𝑥 𝑑𝑧 +

𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦
𝜕𝑥 𝑑𝑥 𝑑𝑧) (3.41)

∫
Γ𝐵

⃗𝜎𝑥𝑧 𝑑𝑥 𝑑𝑦 = ∫
𝛾𝑆
∫
𝛾𝐸

⃗𝜎𝑥𝑧 𝑑𝑥 𝑑𝑦 =

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

⃗𝜎𝑥𝑧 𝑑𝑥 𝑑𝑦 = −𝜇(

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥
𝜕𝑧 𝑑𝑥 𝑑𝑦 +

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑧
𝜕𝑥 𝑑𝑥 𝑑𝑦) (3.42)

The analysis for the stress/displacement control volume of 𝑢𝑖+1,𝑗,𝑘+1 in the y direction is stated as:

∫
Γ𝑊

⃗𝜎𝑦𝑥 𝑑𝑦 𝑑𝑧 = ∫
𝛾𝑇
∫
𝛾𝑆

⃗𝜎𝑦𝑥 𝑑𝑦 𝑑𝑧 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

⃗𝜎𝑦𝑥 𝑑𝑦 𝑑𝑧 = −𝜇(
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑥
𝜕𝑦 𝑑𝑦 𝑑𝑧 +

𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑦
𝜕𝑥 𝑑𝑦 𝑑𝑧) (3.43)

∫
Γ𝑁

⃗𝜎𝑦𝑦 𝑑𝑥 𝑑𝑧 = ∫
𝛾𝑇
∫
𝛾𝐸

⃗𝜎𝑦𝑦 𝑑𝑥 𝑑𝑧 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

⃗𝜎𝑦𝑦 𝑑𝑥 𝑑𝑧 = 𝜆
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥
𝜕𝑥 𝑑𝑥 𝑑𝑧 (3.44)

+ (𝜆 + 2𝜇)
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦
𝜕𝑦 𝑑𝑥 𝑑𝑧 + 𝜆

𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑧
𝜕𝑧 𝑑𝑥 𝑑𝑧

∫
Γ𝐵

⃗𝜎𝑦𝑧 𝑑𝑥 𝑑𝑦 = ∫
𝛾𝑆
∫
𝛾𝐸

⃗𝜎𝑦𝑧 𝑑𝑥 𝑑𝑦 =

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

⃗𝜎𝑦𝑧 𝑑𝑥 𝑑𝑦 = −𝜇(

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦
𝜕𝑧 𝑑𝑥 𝑑𝑦 +

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑦) (3.45)

The analysis for the stress/displacement control volume of 𝑢𝑖+1,𝑗,𝑘+1 in the z direction is stated as:
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∫
Γ𝑊

⃗𝜎𝑧𝑥 𝑑𝑦 𝑑𝑧 = ∫
𝛾𝑇
∫
𝛾𝑆

⃗𝜎𝑧𝑥 𝑑𝑦 𝑑𝑧 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

⃗𝜎𝑧𝑥 𝑑𝑦 𝑑𝑧 = −𝜇(
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑥
𝜕𝑧 𝑑𝑦 𝑑𝑧 +

𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑧
𝜕𝑥 𝑑𝑦 𝑑𝑧) (3.46)

∫
Γ𝑁

⃗𝜎𝑧𝑦 𝑑𝑥 𝑑𝑧 = ∫
𝛾𝑇
∫
𝛾𝐸

⃗𝜎𝑧𝑦 𝑑𝑥 𝑑𝑧 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

⃗𝜎𝑧𝑦 𝑑𝑥 𝑑𝑧 = 𝜇(
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦
𝜕𝑧 𝑑𝑥 𝑑𝑧 +

𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑧) (3.47)

∫
Γ𝐵

⃗𝜎𝑧𝑧 𝑑𝑥 𝑑𝑦 = ∫
𝛾𝑆
∫
𝛾𝐸

⃗𝜎𝑧𝑧 𝑑𝑥 𝑑𝑦 =

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

⃗𝜎𝑧𝑧 𝑑𝑥 𝑑𝑦 = −𝜆

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥
𝜕𝑥 𝑑𝑥 𝑑𝑦 − 𝜆

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦
𝜕𝑦 𝑑𝑥 𝑑𝑦 (3.48)

− (𝜆 + 2𝜇)

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑧
𝜕𝑧 𝑑𝑥 𝑑𝑦

The displacements are expressed with the linear interpolation (eq. 3.30) of the shape functions (eq.
3.31  3.38). For instance in eq. 3.40 the first term is calculated as follows:

∫
Γ𝑊

𝜕𝑢𝑥
𝜕𝑥 𝑑𝑦 𝑑𝑧 = ∫

𝛾𝑇
∫
𝛾𝑆

𝜕𝑢𝑥
𝜕𝑥 𝑑𝑦 𝑑𝑧 =

𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑥
𝜕𝑥 𝑑𝑦 𝑑𝑧 =

𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑥
𝜕𝑥 𝑑𝑦 𝑑𝑧 (3.49)

= 𝑑𝑦 𝑑𝑧
𝑑𝑥 [− 3

64 ,
3
64 ,

1
64 ,−

1
64 ,−

9
64 ,

9
64 ,

3
64 ,−

3
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

The rest of the coefficients, which are calculated and fill eq. 3.21  3.29 are presented in sec
tions A.3.1, A.3.2 and A.3.3. There are in total 36 double integrals to be calculated, since there are 3
planes, each one of which has 4 possible integrals and the derivatives of the shape functions and their
displacement are over x, y and z direction.

3.3.3. Linear system of equations in 3D FVM
The 3D mechanical deformation system is described as follows:

[
𝐴𝑥𝑥𝐴𝑥𝑥𝐴𝑥𝑥 𝐴𝑥𝑦𝐴𝑥𝑦𝐴𝑥𝑦 𝐴𝑥𝑦𝐴𝑥𝑦𝐴𝑥𝑦
𝐴𝑦𝑥𝐴𝑦𝑥𝐴𝑦𝑥 𝐴𝑦𝑦𝐴𝑦𝑦𝐴𝑦𝑦 𝐴𝑦𝑧𝐴𝑦𝑧𝐴𝑦𝑧
𝐴𝑧𝑥𝐴𝑧𝑥𝐴𝑧𝑥 𝐴𝑧𝑦𝐴𝑧𝑦𝐴𝑧𝑦 𝐴𝑧𝑧𝐴𝑧𝑧𝐴𝑧𝑧

]
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

𝐴𝐴𝐴

[
𝑢𝑥
𝑢𝑦
𝑢𝑧
]

⏟
�⃗�

= [
𝑓𝑥
𝑓𝑦
𝑓𝑧
]

⏟
𝑓

(3.50)

In the system the unknown is the displacement, the A matrix consists of the weight of the displace
ments, which are the calculated coefficients from the double integrals of the shape functions for each
corner of an IV. The right hand side is the source vector. After elastic deformation computation, stress
can be calculated from eq. 2.3.



4
Numerical modelling for 3D FEM

4.1. Discretization
The problem formulation starts with the same assumptions of linear elasticity theory in eq. 2.2.

After applying Gauss divergence theorem in eq. 2.2 and expressing effective stress in terms of
displacement according to eq. 2.3, the final discrete form for each element control volume [19] is:

∫
Ω𝑒
(𝐵𝐵𝐵𝑇𝐶𝑑𝑟𝐶𝑑𝑟𝐶𝑑𝑟𝐵𝐵𝐵�⃗�𝑒)𝑑𝑉 = ∫

Ω𝑒
𝑁𝑁𝑁𝑇𝑓𝑑𝑉, (4.1)

where �⃗� is the nodal in each element control volume dV, Ω𝑒 is the control volume of each element,
𝑓 are the volumetric forces and 𝐵𝐵𝐵 is the matrix that contains the derivatives of the shape functions.

Shape functions are expressed in terms of local coordinates as follows:

𝑁𝑁𝑁 ≈ 1
8(1 ± 𝜉)(1 ± 𝜂)(1 ± 𝜁) −1 ≤ 𝜉, 𝜂, 𝜁 ≤ 1 (4.2)

and the 𝐵𝐵𝐵 is given by

𝐵𝐵𝐵 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥 0 0

0 𝜕
𝜕𝑦 0

0 0 𝜕
𝜕𝑧

0 𝜕
𝜕𝑧

𝜕
𝜕𝑦

𝜕
𝜕𝑧 0 𝜕

𝜕𝑥𝜕
𝜕𝑦

𝜕
𝜕𝑥 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑁𝑁𝑁, (4.3)

where
From eq. 4.1 the element stiffness matrix is stated as:

𝐴𝐴𝐴𝑒 = ∫
Ω𝑒
𝐵𝐵𝐵𝑇𝐶𝑑𝑟𝐶𝑑𝑟𝐶𝑑𝑟𝐵𝐵𝐵𝑑𝑉 (4.4)

and the element load vector is stated as:

𝑓𝑒 = ∫
Ω𝑒
𝑓𝑑𝑉 (4.5)
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20 4. Numerical modelling for 3D FEM

4.1.1. Element integration

Figure 4.1: Hexaedron element with eight corner nodes in the local coordinate system(𝜉, 𝜂, 𝜁 [24]).

The element matrices 𝐴𝐴𝐴𝑒 and the element load vector 𝑓𝑒 the shape functions or their derivatives, which
are integrated over the volume represented by finite hexahedra. The integrals are computed numeri
cally with the use of GaussLegendre quadrature [24]. The rule in 3D is stated as:

∫
Ω𝑒
𝑓(𝜉, 𝜂, 𝜁)𝑑𝑉 = ∫

1

−1
∫
1

−1
∫
1

−1
𝑓(𝜉, 𝜂, 𝜁)𝑑𝜉𝑑𝜂𝑑𝜁 ≃

𝑛𝑖𝑝𝑥

∑
𝑖=1

𝑛𝑖𝑝𝑦

∑
𝑗=1

𝑛𝑖𝑝𝑧

∑
𝑚=1

𝑓(𝜉𝑖 , 𝜂𝑗 , 𝜁𝑚)𝑤𝑖𝑤𝑗𝑤𝑚 (4.6)

=
𝑛𝑖𝑝

∑
𝑘=1

𝑓(𝜉𝑘 , 𝜂𝑘 , 𝜁𝑘)𝑤𝑘 , (4.7)

where 𝜉, 𝜂 and 𝜁 are local coordinates on the normalized volume [−1, 1]3. The 𝑛𝑖𝑝𝑥, 𝑛𝑖𝑝𝑦 and 𝑛𝑖𝑝𝑧
are the integration points in x, y and z direction respectively and 𝑛𝑖𝑝 is the total number of integration
points. Also 𝑤𝑖, 𝑤𝑗 and 𝑤𝑚 are the weights in the positions 𝜉𝑖, 𝜂𝑗 and 𝜁𝑚 in each direction in local
coordinates and 𝑤𝑘 are the weights in the 𝜉𝑘, 𝜂𝑘 and 𝜁𝑘 of all the integrated points in local coordinates.
The shape functions (fig. 4.1 ) and their derivatives in local coordinate system have to be rescaled to
present element integrals in physical coordinates.

The derivatives of the shape functions with respect to local coordinates are given below:

𝜕𝑁1
𝜕𝜉 = −18(1 − 𝜂)(1 − 𝜁)

𝜕𝑁1
𝜕𝜂 = −18(1 − 𝜉)(1 − 𝜁)

𝜕𝑁1
𝜕𝜁 = −18(1 − 𝜉)(1 − 𝜂) (4.8)

𝜕𝑁2
𝜕𝜉 = −18(1 − 𝜂)(1 + 𝜁)

𝜕𝑁2
𝜕𝜂 = −18(1 − 𝜉)(1 + 𝜁)

𝜕𝑁2
𝜕𝜁 = 1

8(1 − 𝜉)(1 − 𝜂) (4.9)

𝜕𝑁3
𝜕𝜉 = 1

8(1 − 𝜂)(1 + 𝜁)
𝜕𝑁3
𝜕𝜂 = −18(1 + 𝜉)(1 + 𝜁)

𝜕𝑁3
𝜕𝜁 = 1

8(1 + 𝜉)(1 − 𝜂) (4.10)

𝜕𝑁4
𝜕𝜉 = 1

8(1 − 𝜂)(1 − 𝜁)
𝜕𝑁4
𝜕𝜂 = −18(1 + 𝜉)(1 − 𝜁)

𝜕𝑁4
𝜕𝜁 = −18(1 + 𝜉)(1 − 𝜂) (4.11)

𝜕𝑁5
𝜕𝜉 = −18(1 + 𝜂)(1 − 𝜁)

𝜕𝑁5
𝜕𝜂 = 1

8(1 − 𝜉)(1 − 𝜁)
𝜕𝑁5
𝜕𝜁 = −18(1 − 𝜉)(1 + 𝜂) (4.12)

𝜕𝑁6
𝜕𝜉 = −18(1 + 𝜂)(1 + 𝜁)

𝜕𝑁6
𝜕𝜂 = 1

8(1 − 𝜉)(1 + 𝜁)
𝜕𝑁6
𝜕𝜁 = 1

8(1 − 𝜉)(1 + 𝜂) (4.13)

𝜕𝑁7
𝜕𝜉 = 1

8(1 + 𝜂)(1 + 𝜁)
𝜕𝑁7
𝜕𝜂 = 1

8(1 + 𝜉)(1 + 𝜁)
𝜕𝑁7
𝜕𝜁 = 1

8(1 + 𝜉)(1 + 𝜂) (4.14)

𝜕𝑁8
𝜕𝜉 = 1

8(1 + 𝜂)(1 − 𝜁)
𝜕𝑁8
𝜕𝜂 = 1

8(1 + 𝜉)(1 − 𝜁)
𝜕𝑁8
𝜕𝜁 = −18(1 + 𝜉)(1 + 𝜂) (4.15)
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The transformation from the local (𝜉, 𝜂, 𝜁) to the physical coordinate system (x, y, z) is done with
the use of chain rule:

⎡
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝜉
𝜕
𝜕𝜂
𝜕
𝜕𝜁

⎤
⎥
⎥
⎥
⎥
⎦

𝑁𝑁𝑁 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑧
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

𝜕𝑧
𝜕𝜂

𝜕𝑥
𝜕𝜁

𝑦
𝜕𝜁

𝜕𝑧
𝜕𝜁

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥𝜕
𝜕𝑦
𝜕
𝜕𝑧

⎤
⎥
⎥
⎥
⎥
⎦

𝑁𝑁𝑁 = 𝐽𝐽𝐽

⎡
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥𝜕
𝜕𝑦
𝜕
𝜕𝑧

⎤
⎥
⎥
⎥
⎥
⎦

𝑁𝑁𝑁 (4.16)

The Jacobian matrix 𝐽𝐽𝐽 in eq. 4.16 can be found by differentiating the global coordinates with respect
to the local coordinates.

𝐽𝐽𝐽 =

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝑁1
𝜕𝜉

𝜕𝑁2
𝜕𝜉 … 𝜕𝑁8

𝜕𝜉
𝜕𝑁1
𝜕𝜂

𝜕𝑁2
𝜕𝜂 … 𝜕𝑁8

𝜕𝜂
𝜕𝑁1
𝜕𝜁

𝜕𝑁2
𝜕𝜁 … 𝜕𝑁8

𝜕𝜁

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
⋮ ⋮ ⋮
𝑥8 𝑦8 𝑧8

⎤
⎥
⎥
⎦
, (4.17)

where in the above equation 𝑥1, 𝑦1, 𝑧1 are the coordinates of node 1 and so on. The derivatives of
the shape functions in terms of physical coordinates are expressed as:

⎡
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝑥𝜕
𝜕𝑦
𝜕
𝜕𝑧

⎤
⎥
⎥
⎥
⎥
⎦

𝑁𝑁𝑁 = 𝐽𝐽𝐽−1

⎡
⎢
⎢
⎢
⎢
⎣

𝜕
𝜕𝜉
𝜕
𝜕𝜂
𝜕
𝜕𝜁

⎤
⎥
⎥
⎥
⎥
⎦

𝑁𝑁𝑁 (4.18)

Transformation of the limits of integration is carried out using the determinant of the Jacobian |𝐽𝐽𝐽|,
according to the following relationship:

∫
Ω
𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = ∫

1

−1
∫
1

−1
∫
1

−1
𝑓(𝜉, 𝜂, 𝜁)|𝐽𝐽𝐽|𝑑𝜉𝑑𝜂𝑑𝜁, (4.19)

which is written in terms of integration points as:

∫
Ω
𝑓(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 =

𝑛𝑖𝑝

∑
𝑘=1

𝑓𝑓𝑓(𝜉𝑘 , 𝜂𝑘 , 𝜁𝑘)|𝐽𝐽𝐽|𝑤𝑘 (4.20)

, where nip is the number of the integration points ,𝜉𝑘 , 𝜂𝑘 , 𝜁𝑘 are the local coordinates in terms of inte
gration points and 𝑤𝑘 is the weight in a specific integration point [24].

4.1.2. Linear system of equations in 3D FEM
After assembling the formulation for each element and integrating in the global coordinate system the
global stiffness matrix is given as:

𝐴𝐴𝐴 = ∫
Ω
𝐵𝐵𝐵𝑇𝐶𝑑𝑟𝐶𝑑𝑟𝐶𝑑𝑟∇𝐵𝐵𝐵𝑑𝑥𝑑𝑦𝑑𝑧 = ∫

Ω𝑒
𝐵𝐵𝐵𝑇𝐶𝑑𝑟𝐶𝑑𝑟𝐶𝑑𝑟∇𝐵𝐵𝐵|𝐽𝐽𝐽|𝑑𝜉𝑑𝜂𝑑𝜁 (4.21)

[
𝐴𝑥𝑥𝐴𝑥𝑥𝐴𝑥𝑥 𝐴𝑥𝑦𝐴𝑥𝑦𝐴𝑥𝑦 𝐴𝑥𝑦𝐴𝑥𝑦𝐴𝑥𝑦
𝐴𝑦𝑥𝐴𝑦𝑥𝐴𝑦𝑥 𝐴𝑦𝑦𝐴𝑦𝑦𝐴𝑦𝑦 𝐴𝑦𝑧𝐴𝑦𝑧𝐴𝑦𝑧
𝐴𝑧𝑥𝐴𝑧𝑥𝐴𝑧𝑥 𝐴𝑧𝑦𝐴𝑧𝑦𝐴𝑧𝑦 𝐴𝑧𝑧𝐴𝑧𝑧𝐴𝑧𝑧

]
⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

𝐴𝐴𝐴

[
𝑢𝑥
𝑢𝑦
𝑢𝑧
]

⏟
�⃗�

= [
𝑓𝑥
𝑓𝑦
𝑓𝑧
]

⏟
𝑓global

, (4.22)

where 𝑓𝑥, 𝑓𝑦 and 𝑓𝑧 are transformed to the global load vectors as suggested in eq. 4.20. After the
computation of the elastic deformation in 4.22, the stress can be evaluated as eq. 2.3 suggests.





5
Numerical results for 3D FVM

In this chapter are presented the numerical results that concern about the 3D FVM model and the com
parison with the results from 2D FVM and 3D FEM models. Firstly, results for mechanical equilibrium
test case are presented, so as to show the consistency of the 3D FVM model. Furthermore, uniaxial
compression test case is carried out for 2D FVM, 3D FVM, 3D FEM models in order to compare them.

The last two test cases that are presented in this chapter (Plain strain subsidence test case and
vertical fault in an infinite reservoir test case), are simulated with 2D FVM, 3D FVM and with 3D FEM.
The 3D models are used as 2D and this is achieved by reducing significantly the length of the domain
in the y direction. In the 3D models the matrices of displacements and of the stresses are 3D, but the
same along the y direction and we can plot them as 2D. For these two test cases, whenever a plot is
derived from a three dimensional simulator and is plotted as surface is because the property stays the
same along y direction. So the resolution of all the graphs is reported in 2D. This allows the immediate
comparison between the 2D and the 3D simulators.

5.1. Synthetic solution for mechanical equilibrium
The consistency of the 3D FVM method is checked with synthetic analytical solutions. The analytical
solutions are applied as exact solutions in the boundaries of the domain and the functionality of the
solver is tested by calculating the error between the analytical and the numerical solution. The analytical
solutions are given as follows:

𝑢𝑥 = 10−5 sin(𝜋
𝑥
𝐿 ) sin(𝜋

𝑦
𝑊) sin(𝜋

𝑧
𝐻) (5.1)

𝑢𝑦 = 10−5 cos(𝜋
𝐿 − 𝑥
𝐿 ) sin(𝜋 𝑦𝑊) sin(𝜋

𝑧
𝐻) (5.2)

𝑢𝑧 = 10−5 sin(𝜋
𝑥
𝐿 ) sin(𝜋

𝑦
𝑊) cos(𝜋

𝐻 − 𝑧
𝐻 ), (5.3)

where x, y and z are Cartesian coordinates and L, W and Z are domain’s length, width and height
respectively. A homogeneousmedium is considered with 𝐿 = 𝑊 = 𝐻 = 1mandwith elastic parameters
𝜆 = 3 × 108 Pa and 𝜇 = 1.5 × 108 Pa.

5.1.1. Boundary conditions for mechanical equilibrium
The governing equation that describes the boundary conditions is stated as:

Prescribed boundary displacement: 𝑢Γ = �⃗� on Γ𝐵 ∪ Γ𝑇 ∪ Γ𝑊 ∪ Γ𝐸 ∪ Γ𝑆 ∪ Γ𝑁 (5.4)
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5.1.2. Error analysis for mechanical equilibrium
The momentum balance equation expressed in terms of displacement is 2𝑛𝑑 order partial differential
equation with respect to space, so it is expected that the error analysis to give second order accuracy
[18, 21]. For the error analysis the second norm is used as follows:

𝜖 = √∫
Ω
(𝑢𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 − 𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙)2𝑑𝑉, (5.5)

where dV is the volume of each element in which the difference between the analytical and the nu
merical solution is calculated [19]. The error as shown in eq. 5.5 is calculated for grid resolutions
10 × 10 × 10, 20 × 20 × 20 and 40 × 40 × 40 number of elements in x y and z direction respectively.

Figure 5.1: Error refinement analysis for mechanical equilibrium for 10, 20, 40 elements in each direction. The
displacement solutions in x y and z directions are 2𝑛𝑑 order accurate in space.

The error analysis that is presented in fig. 5.1 shows that the displacement solutions in x, y and z
direction are 2𝑛𝑑 order accurate in space in the calculation of elastic deformation [18, 21].

Here is presented also another way of estimating the difference between numerical and analytical
solution with the use of scaled  𝐿∞ [27] as follows:

𝜖 =
‖𝑥𝑟𝑒𝑓 − 𝑥‖∞
‖𝑥𝑟𝑒𝑓‖∞

, (5.6)

where 𝑥𝑟𝑒𝑓 is the analytical solution, 𝑥 is the numerical solution .

Figure 5.2: Error refinement analysis for mechanical equilibrium for 10, 20, 40 elements in each direction. The
displacement solutions in x y and z directions are 2𝑛𝑑 order accurate in space.

The error analysis with eq. 5.6 confirms that displacement solutions in x, y and z direction are 2𝑛𝑑
order accurate in space.
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5.2. Uniaxial compression
In this section the simple uxiaxial compression is applied for testing the functionality of the 3D model.
The domain is subjected to rollers constrains at north, east, south, west boundaries, whereas in the top
boundary, which is tractionfree, is applied compressive force equal to 5×105 𝑁

𝑚2 . The bottom boundary
is set to have 0 displacement (”glued”).

For comparison the same boundary conditions are applied in a 3D FEM and in a 2D FVM model.
In the 2D FVM model east, west boundaries are subjected to roller boundary conditions, the north
boundary is tractionfree and south boundary is set to have displacement 0 (”glued”). The compressive
force in the vertical direction is equal to 5 × 105 𝑁

𝑚2 . In the 3D as well as in the 2D models the lengths
in each direction are 1 [m]. The compressive force is applied as Neumann boundary condition in the
north boundary in 2D and in top boundary in 3D, is called traction (𝑡).

5.2.1. Boundary conditions for uniaxial compression

The set of govening equations, which describe the boundary conditions for this test case In two dimen
sions they are given as follows:

Roller constraints �⃗� ⋅ �⃗� = 0 on Γ𝑊 ∪ Γ𝐸 (5.7)
Prescribed boundary displacement: 𝑢Γ = 0 on Γ𝑆 (5.8)

Prescribed boundary traction: �⃗� ⋅ �⃗� = 𝑡 on Γ𝑁 (5.9)

and in three dimensions as:

Roller constraints �⃗� ⋅ �⃗� = 0 on Γ𝑊 ∪ Γ𝐸 ∪ Γ𝑆 ∪ Γ𝑁 (5.10)
Prescribed boundary displacement: 𝑢Γ = 0 on Γ𝐵 (5.11)

Prescribed boundary traction: �⃗� ⋅ �⃗� = 𝑡 on Γ𝑇 (5.12)

Figure 5.3: Schematic in 2D and 3D uniaxial compression.

The boundary conditions presented in eq. 5.7  5.9 for 2D and in eq. 5.10  5.12 for 3D are shown
schematically in fig. 5.3.
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5.2.2. Numerical results for uniaxial compression

(a) FVM 3D, Displacement in z direction [m]

(b) FEM 3D, Displacement in z direction [m]
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Figure 5.4: Displacement in vertical direction in uniaxial compression. Resolution of 3D FEM: 10 × 10 × 10, 3D FVM:
10 × 10 × 10, 2D FVM: 10 × 10.

As it is observed from fig. 5.4a, 5.4b and 5.4c the three different methods give the same solution, which
is negative in the vertical direction (y for 2D, z for 3D). The domain is subjected to compression and
the maximum negative value is exactly 8.33 × 10−4 m.

5.2.3. Error analysis for uniaxial compression
In order to quantify the difference between the threemethods in the compression test case, we calculate
the difference of the displacement solutions in vertical direction between the 3D FVM and the 3D FEM
and also between the 3D FVM and the 2D FVM. Since compression is actually one dimensional test
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case the matrices of the vertical displacements are the same along x and y direction in 3D and along
x direction in 2D.

𝜖 = √(𝑢𝑧(3D FVM) − 𝑢𝑧(3D FEM))2 = 1.12 × 10−16 (5.13)

𝜖 = √(𝑢𝑧(3D FVM) − 𝑢𝑦(2D FVM))2 = 5.79 × 10−18 (5.14)

5.3. Plain strain subsidence test case
The injection or production from a porous medium can cause subsidence. In the following test case
the subsurface is considered as heterogeneous porous medium in which the elastic properties vary in
the z direction[27]. For that reason a 3D problem can be reduced to 2D under plain strain conditions.
The producing reservoir is 120 m thick and 1200 m wide. The modelled domain has dimensions 10
km is x direction and 3 km in y direction. The reservoir top is located at 1000 m depth. The distribution
of Young’s modulus in the subsurface is obtained based on a constitutive model for onedimensional
vertical compressibility, developed in [6] for the northern Adriatic sedimentary basin. The model that
this study concerns is the Adriatic sedimentary basin in which the vertical uniaxial compressibility is
related to the vertical effective stress 𝜎𝑦 as follows:

𝑐𝑀 = 0.01241|𝜎𝑦|−1.1342, (5.15)

where y is the vertical offset in [m] 𝑐𝑀 and 𝜎𝑦 are expressed in [bar−1] and bar respectively and the
vertical effective stress is obtained as superposition of total vertical stress 𝜎′𝑦 and hydrostatic pressure
p [3, 14] as follows:

𝜎𝑦 = 𝜎
′
𝑦 + 𝑝 = − 0.12218|𝑦|1.0766⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

𝜎′𝑦

+0.1|𝑦|⏝⎵⏟⎵⏝
𝑝

(5.16)

It needs to be mentioned here that for 2D FVMmodel, vertical direction is considered the y and accord
ing to that the literature eq. 5.15, 5.16 are expressed as in Nicola Castelletto et al. paper [3]. In the 3D
FVM and 3D FEM models the z is considered the vertical direction. The equations are not duplicated
here for the z direction, so as to avoid confusion.

The Poisson’s ratio is 𝜈 = 0.3 for the whole geological section. Thus the Young’s modulus E, is
expressed as a function of depth as:

(1 − 2𝜈)(1 + 𝜈)
(1 − 𝜈)𝑐𝑀

(5.17)

0 2000 4000 6000 8000 10000

Distance [m]

0

1000

2000

3000

D
e

p
th

 [
m

]

5

6

7

8

9

10

ln(E)

Figure 5.5: Plain strain subsidence test case: Young’s modulus (E) distribution. Resolution: 80 × 80.

As shown in fig. 5.5 the reservoir (green box) is located exactly in the middle of the domain. The
white spaces denote that E is assigned in the cell centers as all of the elastic parameters. Since uniaxial
compressibility is calculated in [bar−1], Young’s modulus is calculated in [bar]. The total pressure drop
is 100 bars in the reservoir, which is fully depleted.



28 5. Numerical results for 3D FVM

5.3.1. Boundary conditions for plain strain subsidence test case
The domain is subjected to roller constrains at all boundaries, except from the north boundary in 2D
and top boundary in 3D, where constant loading is applied [3, 27].

For two dimensions the set of governing equations that describe the boundary conditions [3] are
stated as:

Roller constraints �⃗� ⋅ �⃗� = 0 on Γ𝑆 ∪ Γ𝑊 ∪ Γ𝐸 (5.18)
Traction free �⃗� ⋅ �⃗� = 0 on Γ𝑁 (5.19)

For three dimensions the set of governing equations that describe the above boundary conditions are
stated as:

Roller constraints �⃗� ⋅ �⃗� = 0 on Γ𝐵 ∪ Γ𝑊 ∪ Γ𝐸 ∪ Γ𝑆 ∪ Γ𝑁 (5.20)
Traction free �⃗� ⋅ �⃗� = 0 on Γ𝑇 (5.21)

Figure 5.6: Schematic in 2D and 3D plain strain subsidence.

The boundary conditions presented in eq, 5.18, 5.19 for 2D and in eq. 5.20, 5.21 for 3D are shown
schematically in fig. 5.6.

5.3.2. Numerical results for plain strain subsidence
From equations 5.15,5.16 and 5.17 it is clear that Young’s modulus depends on the vertical offset y,
which changes with depth.
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Figure 5.7: Plain strain subsidence test case: Comparison FEM-FVM in fine scale. Resolution of 3D FEM: Resolution:
80 × 80, 3D FVM: 80 × 80, 2D FVM: 80 × 80.

In fig. 5.7 is shown the subsidence, which corresponds to the case when Young’s modulus dis
tribution is as depicted in fig. 5.5. The finite element and the finite volume method predict the same
subsidence.
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Proceeding, we change the location of the reservoir, which is shifted in such a way to stop in the
middle of the domain in x direction and still be in the same depth. This is the first of the three new
cases that we study in which the Young’s modulus distribution depends again on eq. 5.15, 5.16 and
5.17. Moreover we study two other test cases in which the vertical effective stress 𝜎𝑦 depends on the
following relationships:

𝜎𝑦 = 𝜎
′
𝑦 + 𝑝 = − 0.12218|100 − 𝑦|1.0766⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

𝜎′𝑦

+0.1|100 − 𝑦|⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝑝

(5.22)

𝜎𝑦 = 𝜎
′
𝑦 + 𝑝 = − 0.12218|100 + 𝑦|1.0766⏝⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏝

𝜎′𝑦

+0.1|100 + 𝑦|⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝑝

(5.23)

In eq. 5.22 the vertical offset is 100  initial vertical offset y and in eq. 5.23 the vertical offset is
100 + initial vertical offset y. This of course will have impact on the E distribution with depth as shown
in the following figures. The change in the vertical offset, which results in different Young’s modulus
distribution is a result of the presence of a vertical fault in the geological section.
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Figure 5.8: Plain strain subsidence test case: Young’s modulus (E) distribution in the geological section. Resolution:
80 × 80.

In fig. 5.8a, 5.8b, 5.8c is observed the variation of Young’s modulus E with depth in a logarithmic
scale. In fig. 5.8a Young’s Modulus changes as eq. 5.15,5.16 and 5.17 suggest. In fig. 5.8b we have
100  vertical offset in [m] [3]. Finally in fig. 5.8c we have 100 + vertical offset in meters [3]. These
changes in the Young’s modulus distribution result in greater heterogeneity.
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Figure 5.9: Plain strain subsidence test case: Comparison FEM-FVM in fine scale. Resolution of 3D FEM: 80 × 80, 3D
FVM: 80 × 80, 2D FVM: 80 × 80.

From fig. 5.7, 5.9a, 5.9b and 5.8c it is deduced that finite element and finite volume method predict
the subsidence.
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Method Subsidence maximum value [m]
FVM 2D −0.7000
FVM 3D −0.7000
FEM 3D −0.7003

Table 5.1: Maximum subsidence value for each method

For the cases presented in fig. 5.7 and in fig. 5.9a the maximum value of the subsidence for each
method is provided in table 5.1. In both cases the methods predict the same subsidence since only the
location of the reservoir changes.

Method Subsidence maximum value [m]
FVM 2D −0.7065
FVM 3D −0.7065
FEM 3D −0.7069

Table 5.2: Maximum subsidence value for each method

Method Subsidence maximum value [m]
FVM 2D −0.6964
FVM 3D −0.6964
FEM 3D −0.6969

Table 5.3: Maximum subsidence value for each method

Tables 5.2 and 5.3 show the maximum values for the subsidence for each method for the cases
presented in fig. 5.9b and 5.9c respectively.

The maximum subsidence is observed for the case in fig. 5.9b, as shown in table 5.2, since the
medium, in the right half of the domain has 100  vertical offset in [m]. The cases in fig. 5.7 and in fig.
5.9a have slightly lower subsidence, as shown also in table 5.1, since the vertical offset is the original
one.

Finally, the least subsidence is predicted in the case in fig. 5.9c, since the right half of the domain
has 100 + vertical offset in [m], which makes the medium stiffer than medium in the cases in fig. 5.7,
5.9a and 5.9b.

5.3.3. Stress calculation for plain strain subsidence test case
The stresses are calculated numerically with eq. 2.3 for all the above cases. Here the stresses are
presented for the case that Young’s modulus follows the distribution as depicted in fig. 5.8a and the
subsidence is as shown in fig. 5.9a, where the reservoir stops in the middle of the domain in x direction
and is located in 1000 m depth.
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(a) 3D FVM numerical stress solution in horizontal
direction (principal stress)

0 2000 4000 6000 8000 10000

Distance [m]

0

1000

2000

3000

D
e
p
th

 [
m

]

xx
 (3D FEM) 

-60

-40

-20

0

bars

(b) 3D FEM numerical stress solution in horizontal
direction (principal stress)

Figure 5.10: Plain strain subsidence test case: stresses calculated in fine scale with 3D FVM - 3D FEM with resolution :
80 × 80.
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(a) 3D FVM numerical stress solution in vertical
direction (principal stress)
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Figure 5.11: Plain strain subsidence test case: stresses calculated in fine scale with 3D FVM - 3D FEM with resolution :
80 × 80.
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(a) 3D FVM numerical shear stress solution
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(b) 3D FEM numerical shear stress solution

Figure 5.12: Plain strain subsidence test case: stresses calculated in fine scale with 3D FVM - 3D FEM with resolution :
80 × 80.

In fig. 5.10, 5.11 and 5.12 the results concern about the comparison between finite volume and finite
element method in three dimensions. It is observed that the stress values in x and z direction do not
exceed the initial pressure drop, which was 100 bars. The white spaces in fig. 5.10  5.12 exist because
the stresses in the numerical approach are assigned in cell centers, contrary to the displacement, which
are assigned in the cell vertices.

5.4. Vertical fault in an infinite reservoir test case

Consider a homogeneous porous and permeable inclusion Ω with boundary Γ undergoing an increase
of pore pressure p inside a homogeneous infinite 3D domain with the same elastic properties as the
inclusion. Flow to or from the outer domain is not possible, either because the outer domain is non
permeable or because there is an impermeable seal around the inclusion. An increase in pore pressure
in the inclusion causes a reduction in effective stress in its matrix and consequently an elastic expansion
of the inclusion [16]. The calculation of the computation of the displacements in and around the inclusion
has been proposed by Eshelby [9].

After Biot [30] the three dimensional (3D) poroelasticity equations have been reproduced many
times. Here it is considered an application of the theory in the form of 2D expressions for incremen
tal displacements under plain strain conditions resulting from injection or production of fluids inside a
reservoir. The inclusion Ω, which is formed from the fluid activity has the same elastic properties as the
nonpermeable infinite domain and they are uniform [16].

5.4.1. Reservoir geometry for vertical fault in an infinite reservoir test case

We deal with a reservoir with infinite boundaries and a vertical fault with the following geometry:
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(a) Faulted reservoir (b) Reservoir with a displaced normal fault [16]

Figure 5.13: Reservoir geometry and dimensions.

From the fig. 5.13a and 5.13b we deduce the distances 𝛼 = 100 m, 𝑏 = 200 m, while 𝑐 = 𝑑 = 𝑖𝑛𝑓
and that 𝜃 = 𝜋

2 . The distance 𝑏 = 200 m should not be confused with Biot’s coefficient 𝑏 = 0.9.

Property Symbol Property Value
Poisson’s ratio v 0.15 [-]

Biot’s coefficient b 0.9 [-]
Lame’s first parameter 𝜆 2, 78 × 109 [Pa]

Lame’s second parameter 𝜇 6, 5 × 109 [Pa]
Incremental reservoir pressure p 20 × 106 [Pa]

Table 5.4: Reservoir properties [16].

5.4.2. Pressure distribution in the boundaries of the reservoir for vertical fault
in an infinite reservoir test case

It is assumed that there is uniform pressure distribution in the boundaries of the inclusion Ω and there
is increase in the pore pressure, as a result of injection [16].

Figure 5.14: Distributed forces in the boundaries of the reservoir, due to the pressure increase.

The distributed pressure in the boundaries of the reservoir is added to the RHS and becomes part
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of the force as suggested in eq. 3.1 and it is presented in fig. 5.14. For the simulation the reservoir is
split in two boxes. When modelling the test case with 3D simulator, since the y direction is the reduced
direction the force in y direction will be force in z direction 𝑓𝑧 = ±

𝜕𝑝
𝜕𝑧 in fig. 5.14.

5.4.3. Analytical solutions for scaled displacements for vertical fault in an infi
nite reservoir test case

Linear elastic displacements, and stresses inside and outside a reservoir undergoing injection or pro
duction can be described with the ”theory of inclusions” as introduced by Eshelby [9]. For that reason
Green’s functions ̃𝑔𝑖𝑗(𝑥, 𝑦, 𝑧, 𝜁, 𝜉, 𝜓), that give the displacement at point (x,y,z) in direction 𝑖 ∈ {𝑥, 𝑦, 𝑧}
as a result of a unit force at point (𝜁, 𝜉, 𝜓) in direction 𝑗 ∈ {𝑥, 𝑦, 𝑧}. The x, y, z are Cartesian coordinates
and the (𝜁, 𝜉, 𝜓) are x, y, z coordinate values inside Ω.

The 2D plain strain version of the 3D Green’s functions ̃𝑔𝑖𝑗(𝑥, 𝑦, 𝑧, 𝜁, 𝜉, 𝜓) can be obtained by inte
grating out the third (z) dimension, while taking account of the singularity at (𝑥, 𝑦, 𝑧) = (𝜁, 𝜉, 𝜓) [16].

The displacement is expressed as follows:

𝑢𝑖(𝑥, 𝑦) = 𝑏𝑝∫ ∫
Ωu𝑖

𝜕 ⃗̃𝑔𝑖𝑥
𝜕𝑥 +

𝜕 ⃗̃𝑔𝑖𝑦
𝜕𝑦 𝛿Ω = 𝐷∫ ∫

Ωu𝑖

�⃗�𝑖(𝑥, 𝑦, 𝜁, 𝜉)𝛿Ω, (5.24)

where �⃗�𝑖(𝑥, 𝑦, 𝜁, 𝜉) are the Green’s functions in x and y direction and b is the Biot’s coefficient. The
coefficient D is given by the formula:

𝐷(𝜁, 𝜉) = (1 − 2𝑣)𝑏𝑝
2𝜋(1 − 𝑣)𝜇 , (5.25)

where v is the Poisson’s ratio , 𝜇 is the shear modulus, b is the Biot’s coefficient and p is the incremental
pressure, which results from injection or production in the reservoir [16].

2D scaled analytical displacements relationships2D scaled analytical displacements relationships2D scaled analytical displacements relationships
For the case that we have an infinite reservoir with a vertical fault we have 𝑐 = 𝑑 = ∞, while−𝑐 < 𝑥 < 𝑑,
we find for the integral of 𝑔𝑥 [16] .

�⃗�𝑥(𝑥, 𝑦) =
0

∫
−∞

𝛼

∫
−𝑏
�⃗�𝑥(𝑥, 𝑦, 𝜁, 𝜉)𝛿𝜉𝛿𝜁 +

∞

∫
0

𝑏

∫
−𝛼
�⃗�𝑥(𝑥, 𝑦, 𝜁, 𝜉)𝛿𝜉𝛿𝜁

= ln [𝑥2 + (𝑦 − 𝛼)2] × 𝑦 − 𝛼4 − ln [𝑥2 + (𝑦 − 𝑏)2] × 𝑦 + 𝑏4
− arctan 2[ (𝛼 + 𝑏)𝑥

𝑥2 + (𝑦 − 𝛼)(𝑦 + 𝑏)] ×
𝑥
2

+ ln [𝑥2 + (𝑦 + 𝛼)2] × 𝑦 + 𝛼4 − ln [𝑥2 + (𝑦 − 𝑏)2] × 𝑦 − 𝑏4
+ arctan 2[ (𝛼 + 𝑏)𝑥

𝑥2 + (𝑦 − 𝑏)(𝑦 + 𝛼)] ×
𝑥
2 (5.26)

In a similar way the integral of 𝑔𝑦 for an infinite reservoir is obtained as

�⃗�𝑦(𝑥, 𝑦) = ln [𝑥
2 + (𝑦 − 𝛼)2
𝑥2 + (𝑦 − 𝑏)2 ] ×

𝑥
4

− arctan 2[(𝑦 − 𝛼)𝑥 ] × 𝑦 − 𝛼2 + arctan 2[(𝑦 + 𝑏)𝑥 ] × 𝑦 + 𝑏2

− ln [ 𝑥
2 + (𝑦 − 𝑏)2
𝑥2 + (𝑦 + 𝛼)2 ] ×

𝑥
4

+ arctan 2[(𝑦 + 𝛼)−𝑥 ] × 𝑦 + 𝛼2 − arctan 2[(𝑦 − 𝑏)−𝑥 ] × 𝑦 − 𝑏2 (5.27)
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If the inclusion is Ω then the first part of the eq. 5.26 gives the Ω𝑙𝑒𝑓𝑡 before the fault and the second
part gives the Ω𝑟𝑖𝑔ℎ𝑡 after the fault. The same holds for the eq. 5.27.

The parameters 𝛼 and b are constants as shown in the fig. 5.13b, but their value (5.4) affects the
scaled displacements in eq. 5.26, 5.27. Here again, the b distance should not be confused with Biot’s
coefficient.

A change in the sign of pressure affects the 𝑢𝑖 in the 5.24, but not the 𝐺𝑖 in the eq. 5.26 and 5.27.
Also the positive value of pressure p, which is used in the definition of D in eq. 5.25 corresponds to
injection in eq. 5.24 [16].

3D scaled analytical displacements relationships3D scaled analytical displacements relationships3D scaled analytical displacements relationships
In the three dimensional approach of the problem, the scaled displacement solutions are assumed as
extensions of the eq. 5.26, 5.27. The third dimension will be part of the integration and equation 5.24
will take the form

𝑢𝑖(𝑥, 𝑦, 𝑧) = 𝑏𝑝∫ ∫
Ωu𝑖

𝜕 ⃗̃𝑔𝑖𝑥
𝜕𝑥 +

𝜕 ⃗̃𝑔𝑖𝑦
𝜕𝑦 + 𝜕

⃗̃𝑔𝑖𝑧
𝜕𝑧 𝛿Ω = 𝐷∫ ∫

Ωu𝑖

�⃗�𝑖(𝑥, 𝑦, 𝑧, 𝜁, 𝜉, 𝜓)𝛿Ω, (5.28)

where 𝑔𝑖(𝑥, 𝑦, 𝑧, 𝜁, 𝜉, 𝜓) are the Green’s functions in x, y and z direction, b is the Biot’s coefficient and
D is the scaling factor in order to converts the scaled displacements 𝐺𝑖 into displacements 𝑢𝑖 and is
described in eq. 5.25. The integrals of the Green’s functions are expressed as:

𝐺𝑥(𝑥, 𝑦, 𝑧) =
0

∫
−∞

𝛼

∫
−𝑏
�⃗�𝑥(𝑥, 𝑦, 𝑧, 𝜁, 𝜉, 𝜓)𝛿𝜓𝛿𝜉𝛿𝜁 +

∞

∫
0

𝑏

∫
−𝛼
�⃗�𝑥(𝑥, 𝑦, 𝑧, 𝜁, 𝜉, 𝜓)𝛿𝜓𝛿𝜉𝛿𝜁

= ln [𝑥2 + (𝑧 − 𝛼)2] × 𝑧 − 𝛼4 − ln [𝑥2 + (𝑧 − 𝑏)2] × 𝑧 + 𝑏4
− arctan 2[ (𝛼 + 𝑏)𝑥

𝑥2 + (𝑧 − 𝛼)(𝑧 + 𝑏)] ×
𝑥
2

+ ln [𝑥2 + (𝑧 + 𝛼)2] × 𝑧 + 𝛼4 − ln [𝑥2 + (𝑧 − 𝑏)2] × 𝑧 − 𝑏4
+ arctan 2[ (𝛼 + 𝑏)𝑥

𝑥2 + (𝑧 − 𝑏)(𝑧 + 𝛼)] ×
𝑥
2 (5.29)

As can be observed from eq. 5.29, the three dimensional analytical solution is the same as the two
dimensional analytical solution for the scaled displacement in the x direction with the only difference
that the Cartesian coordinates y from equation 5.26 are substituted with Cartesian coordinates z. In a
similar way the integral of 𝑔𝑧 for an infinite reservoir can be obtained as:

𝐺𝑧(𝑥, 𝑦, 𝑧) = ln [𝑥
2 + (𝑧 − 𝛼)2
𝑥2 + (𝑧 − 𝑏)2 ] ×

𝑥
4

− arctan 2[(𝑧 − 𝛼)𝑥 ] × 𝑧 − 𝛼2 + arctan 2[(𝑧 + 𝑏)𝑥 ] × 𝑧 + 𝑏2

− ln [ 𝑥
2 + (𝑧 − 𝑏)2
𝑥2 + (𝑧 + 𝛼)2 ] ×

𝑥
4

+ arctan 2[(𝑧 + 𝛼)−𝑥 ] × 𝑧 + 𝛼2 − arctan 2[(𝑧 − 𝑏)−𝑥 ] × 𝑧 − 𝑏2 (5.30)

In eq. 5.29, 5.30 the Green’s functions depend only on x and z Cartesian coordinates, even if the
equation is in 3 dimensions. This means that scaled displacements 𝐺𝑥 and 𝐺𝑧 have values only in x
and z direction as result of the equations 5.29, 5.30. For the scaled displacement in y direction holds:

�⃗�𝑦(𝑥, 𝑦, 𝑧) = 0 (5.31)

In the 3D FVM and in the 3D FEM the problem is reduced in y direction, so as to be simulated as 2D.
As a result of that, the 𝐺𝑦 analytical solution will be zero.
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5.4.4. Analytical solutions for dimensionless stresses for vertical fault in an in
finite reservoir test case

The analytical solutions for dimensionless stresses, which concern the geometry of the reservoir as
presented in fig. 5.13a are given below [16]:

𝐺𝑥𝑥(𝑥, 𝑦) = arctan 2[ (𝛼 + 𝑏)𝑥
𝑥2 + (𝑦 − 𝑏)(𝑦 + 𝛼)]

− arctan 2[ (𝛼 + 𝑏)𝑥
𝑥2 + (𝑦 − 𝛼)(𝑦 + 𝑏)] (5.32)

𝐺𝑦𝑦(𝑥, 𝑦) = arctan 2[(𝑦 + 𝛼)−𝑥 ] − arctan 2[(𝑦 − 𝑏)−𝑥 ]

− arctan 2[(𝑦 − 𝛼)𝑥 ] + arctan 2[(𝑦 + 𝑏)𝑥 ] (5.33)

𝐺𝑥𝑦(𝑥, 𝑦) =
1
2 × ln

[𝑥2 + (𝑦 − 𝛼)2][𝑥2 + (𝑦 + 𝛼)2]
[𝑥2 + (𝑦 − 𝑏)2][𝑥2 + (𝑦 + 𝑏)2] (5.34)

After the numerical calculation of displacement the stresses are calculated with the eq. 2.3. The
dimensionless stresses are calculated from the following relationship:

𝐺𝑖𝑗(𝑥, 𝑦) − 2𝜋𝛿Ω =
𝜎𝑖𝑗
𝐶 , (5.35)

where the indexes i and j denote any direction of the stress, and C is a scaling parameter with magnitude
2.36 × 106𝑁/𝑚2 [16].

Relationship 5.35 allows the numerical evaluation of the dimensionless stresses 𝐺𝑖𝑗 and their com
parison with the analytical ones, given in equations 5.32, 5.33 and 5.34.

5.4.5. Boundary conditions for vertical fault in an infinite reservoir test case

For two dimensions the governing equation that describes the boundary conditions is stated as:

Prescribed boundary displacement: 𝑢Γ = �⃗� on Γ𝑆 ∪ Γ𝑁 ∪ Γ𝑊 ∪ Γ𝐸 (5.36)

For three dimensions the governing equation that describes the boundary conditions is stated as:

Prescribed boundary displacement: 𝑢Γ = �⃗� on Γ𝐵 ∪ Γ𝑇 ∪ Γ𝑊 ∪ Γ𝐸 ∪ Γ𝑆 ∪ Γ𝑁 (5.37)

5.4.6. Numerical results for scaled displacements in vertical fault in an infinite
reservoir test case

In this section the numerical results for the finite volume method in two and three directions and for the
finite element method in three dimensions are plotted next to the analytical solutions that have been
described in eq. 5.26, 5.27, 5.29, 5.30 and 5.31.
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(b) Numerical solution of scaled displacement in x
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(c) Numerical solution of scaled displacement in x
direction 𝑢𝑥

𝐷 in 3D FVM [m]
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(d) Numerical solution of scaled displacement in x
direction 𝑢𝑥

𝐷 in 3D FEM [m]

Figure 5.15: Comparison between analytical and numerical scaled displacements for FVM 2D, FVM 3D, FEM 3D with
resolution : 80 × 80.

From the numerical results it is observed that scaled numerical solutions in x direction, presented in
fig. 5.15b, 5.15c and 5.15d, agree with the analytical solution in x direction in fig. 5.15a. The horizontal
displacements, shown in fig. 5.15 are concentrated in the areas where the reservoir rock juxtaposes
the overburden and underburden [16].
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Figure 5.16: Comparison between analytical and numerical scaled displacements for FVM 3D, FEM 3D with resolution :
80 × 80

The numerical solution in y direction (3D FVM  3D FEM) in fig. 5.16b and 5.16c agree with the
analytical solution in fig. 5.16a. This shows that the assumed analytical solution in y direction in eq.
5.31 results in a numerical solution, which is zero as well. The solutions 𝐺𝑦 in fig. 5.16 concern only
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the 3D FVM and the 3D FEM method.
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(c) Numerical solution of scaled displacement in z
direction 𝑢𝑧

𝐷 in 3D FVM [m]
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(d) Numerical solution of scaled displacement in z
direction 𝑢𝑧

𝐷 in 3D FEM [m]

Figure 5.17: Comparison between analytical and numerical scaled displacements for FVM 2D, FVM 3D, FEM 3D with
resolution : 80 × 80

The numerical solutions in y (2D FVM) and z direction (3D FVM  3D FEM) presented in fig. 5.17b,
5.17c and 5.17d match as well with the analytical solution in fig. 5.17a. These vertical displacements,
shown in fig. 5.17, are relatively smoothly following the throw of the fault [16].

5.4.7. Numerical results for dimensionless stresses in vertical fault in an infinite
reservoir test case

In this section the numerical results for stresses for the finite volume in two and three dimensions as
well as for the finite element method in three dimensions are presented next to the analytical solutions
described in eq. 5.32, 5.33 and 5.34.
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(a) Analytical solution of dimensionless horizontal stress
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𝐶 [-]
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(b) Numerical solution of dimensionless horizontal stress
𝐺𝑥𝑥
𝐶 in 2D FVM [-]
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(c) Numerical solution of dimensionless horizontal stress
𝐺𝑥𝑥
𝐶 in 3D FVM [-]
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(d) Numerical solution of dimensionless horizontal stress
𝐺𝑥𝑥
𝐶 in 3D FEM [-]

Figure 5.18: Comparison between analytical and numerical dimensionless stresses for FVM 2D, FVM 3D, FEM 3D with
resolution : 80 × 80
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(a) Analytical solution of dimensionless vertical stress
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𝐶 in 2D and 𝐺𝑧𝑧

𝐶 in 3D [-]

-400 -300 -200 -100 0 100 200 300 400

Distance [m]

-300

-200

-100

0

100

200

300

D
e
p
th

 [
m

]

G
yy

 - 2  (2D FVM) 

0

2

4

6

8

[-]

(b) Numerical solution of dimensionless vertical stress
𝐺𝑦𝑦
𝐶 in 2D FVM [-]
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(c) Numerical solution of dimensionless vertical stress
𝐺𝑧𝑧
𝐶 in 3D FVM [-]
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(d) Numerical solution of dimensionless vertical stress
𝐺𝑧𝑧
𝐶 in 3D FEM [-]

Figure 5.19: Comparison between analytical and numerical dimensionless stresses for FVM 2D, FVM 3D, FEM 3D with
resolution : 80 × 80
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(a) Analytical solution of dimensionless shear stress
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(b) Numerical solution of dimensionless shear stress

𝐺𝑥𝑦
𝐶 in 2D FVM [-]
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(c) Numerical solution of dimensionless shear stress

𝐺𝑥𝑧
𝐶 in 3D FVM [-]
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(d) Numerical solution of dimensionless shear stress

𝐺𝑥𝑧
𝐶 in 3D FEM [-]

Figure 5.20: Comparison between analytical and numerical dimensionless stresses for FVM 2D, FVM 3D, FEM 3D with
resolution : 80 × 80

It is observed that fig. 5.18c, 5.19c and 5.20c of 3D FVM as well as the fig. 5.18d, 5.19d and
5.20d of the 3D FEM match to each other and to the analytical solutions in fig. 5.18a, 5.19a and 5.20a
respectively. On the other hand fig. 5.18b, 5.19b and 5.20b of the 2D FVM show some differences,
compared to the analytical solutions. The numerical calculation of the stresses, after the calculation
of the displacements shows more obvious differences compared to the calculation of the numerical
scaled displacements from the analytical scaled displacements.

The reason for this might be that we add another layer of approximation in our assumptions, as
we calculate numerical dimensionless stresses, after the calculation of the scaled numerical displace
ments.

The biggest deviation from the analytical solutions is observed in the calculation of numerical vertical
dimensionless stress 𝐺𝑦𝑦 in 2D and 𝐺𝑧𝑧 in 3D in fig. 5.19.

5.4.8. Error analysis in vertical fault in an infinite reservoir test case

In this section we refine the grid in order to observe the grid upon refinement. In order to check how
accurate the solutions are in space, error analysis is conducted. Taylor’s theorem [21] works accurately
if the length of the domain is lower than the number of the elements, which are used to model the
domain. For that cause we scale the dimensions of the domain making them 100 times lower. In eq.
5.26, 5.27, 5.29 and 5.30 it is clear that the scaled analytical solutions depend on the dimensions 𝛼
and b. So when we scale the length and the width of the domain, 𝛼 and b are also scaled and the
displacement analytical solutions are rescaled as well as the numerical ones. The rescaled solutions
are plotted below:
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(b) Numerical solution of re-scaled displacement in x
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(c) Numerical solution of re-scaled displacement in x
direction 𝑢𝑥

𝐷 in 3D FVM [m]
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(d) Numerical solution of re-scaled displacement in x
direction 𝑢𝑥

𝐷 in 3D FEM [m]

Figure 5.21: Comparison between analytical and numerical re-scaled displacements for FVM 2D, FVM 3D, FEM 3D
with resolution : 80 × 80
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(b) Numerical solution of re-scaled displacement in y
direction
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(c) Numerical solution of re-scaled displacement in z
direction 𝑢𝑧

𝐷 in 3D FVM [m]
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(d) Numerical solution of re-scaled displacement in z
direction 𝑢𝑧

𝐷 in 3D FEM [m]

Figure 5.22: Comparison between analytical and numerical re-scaled displacements for FVM 2D, FVM 3D, FEM 3D
with resolution : 80 × 80

As it is observed from fig. 5.21 and 5.22, upon dividing the distances 𝛼 and b by 100, the analytical
and the numerical solutions are also divided by 100.

For the error analysis eq. 5.5 is used. For 2D FVM the error is calculated for grid resolutions
20 × 20, 40 × 40, 80 × 80 and 160 × 160 number of elements in x and y direction respectively. For 3D
FVM and for 3D FEM the error is calculated for grid resolutions 20 × 2 × 20, 40 × 2 × 40, 80 × 2 × 80
and 160 × 2 × 160 number of elements in x y and z direction respectively.
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Figure 5.23: Error plots of re-scaled displacement solutions in x and z direction for 3D FEM - 3D FVM and in x and y
direction for 2D FVM

In fig. 5.23a the error analysis for the displacement solution in y direction is smoother than the one
for the solution in the x direction. In fig. 5.23b and 5.23c the analysis for the horizontal and the vertical
displacement solutions 𝑢𝑥 and 𝑢𝑧 respectively have oscillations.

The error analysis shows that the solutions are not second order accurate in space, probably due
to the fact that the solutions are not smooth and continuous in order for the Taylor theorem to be valid.





6
Conclusions

A 3D FVM model is developed for computing deformation and stress for mechanics. The consistency
check in the mechanical equilibrium test case has shown that the model is 2𝑛𝑑 order accurate in de
formation calculation. Moreover, in uniaxial compression test case the deformation is estimated to be
the same for 2D FVM, 3D FVM and 3D FEM models and the error analysis verifies those estimations.
In the plain strain subsidence test case the subsidence is evaluated to be the same for in 2D FVM,
3D FVM and 3D FEM. Last but not least in the test or the vertical fault in an infinite reservoir assump
tions have been made, so as to reproduce the scaled displacements in Jan Dirk Jansen’s et al. paper
[16]. The boundary conditions have been assumed to be Dirichlet in all the boundaries. The numerical
scaled displacement solutions seem to be identical to the analytical but the error analysis shows that
this is not the case and the numerical dimensionless stress calculation shows that there are deviations
from the analytical ones solutions, especially in the 2D FVM. The scaled displacement solutions are
not 2𝑛𝑑 order accurate in space, probably because the analytical solutions are not smooth functions in
space. In conclusion, the 3D FVM simulator is created for modelling linear elasticity problems with and
without pore pressure in the system. We hope that this thesis may inspire new researchers to extend
this work in order implement it to non linear elastic problems and to study the geomechanical problems
in coarser scales, improving in this way that model.
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A
Finite volume in three dimensions

A.1. Flow chart

A simple flow chart of the 3D FVM code that has been developed in Matlab is provided below:
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Start

Material parameters initialization, geometry

Type of B.C decision (Dirichlet, Neumann)

Construct A matrix of coefficients for displacement

Boundary condition application

Solve for displacement

Stress calculation

Stop

Figure A.1: Flow chart of 3D FVM simulator.

Fig. A.1 provides the general structure of the code. Examples about the construction of the A matrix
and for the boundary conditions application in the code are provided below.

A.2. Code implementation
The code is solved for the displacement, so the A matrix consists of the integrated unknowns of the
shape functions. The system is formulated as shown in eq. 3.50.The 𝐴𝑥𝑦 matrix for instance shows
the contribution of the displacement in the y direction 𝑢𝑦 in the x direction. For the integration inside
the element control volume 𝑖, 𝑗, 𝑘, when it interacts with the stress control volume of 𝑢𝑖+1,𝑗,𝑘+1 , which is
presented in fig. 3.7 and described in eq. 3.40  3.48, we provide the code lines, which show the build
of A matrices for the system A.1.

1 %=========================================
2 % add NWB corner (N − wi th ’+ ’ , W − wi th ” − ” , B −wi th ” − ” ) to

−−> SET s t ress CV ( i +1 , j , k+1)
3 %=========================================
4

5 % (NWB corner o f the CV; CV i s to the SET from the IV )
6
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7 ISET = Index3D_mine (Nx+1 ,Ny+1 ,Nz+1 , i +1 , j , k+1) ; % index of the
neighbour ing SET s t ress CV

8

9 % A_xx − con t r i b u t i o n o f Ux to Fx
10 A_xx ( ISET , I_u1 ) = A_xx ( ISET , I_u1 ) +G( Index_Lame ) *ddY_x2z2

(1 ) − ( L ( Index_Lame ) +2*G( Index_Lame ) ) *ddX_y1z2 (1 ) −G(
Index_Lame ) *ddZ_x2y1 (1 ) ;

11 A_xx ( ISET , I_u2 ) = A_xx ( ISET , I_u2 ) +G( Index_Lame ) *ddY_x2z2
(2 ) − ( L ( Index_Lame ) +2*G( Index_Lame ) ) *ddX_y1z2 (2 ) −G(
Index_Lame ) *ddZ_x2y1 (2 ) ;

12 A_xx ( ISET , I_u3 ) = A_xx ( ISET , I_u3 ) +G( Index_Lame ) *ddY_x2z2
(3 ) − ( L ( Index_Lame ) +2*G( Index_Lame ) ) *ddX_y1z2 (3 ) −G(
Index_Lame ) *ddZ_x2y1 (3 ) ;

13 A_xx ( ISET , I_u4 ) = A_xx ( ISET , I_u4 ) +G( Index_Lame ) *ddY_x2z2
(4 ) − ( L ( Index_Lame ) +2*G( Index_Lame ) ) *ddX_y1z2 (4 ) −G(
Index_Lame ) *ddZ_x2y1 (4 ) ;

14 A_xx ( ISET , I_u5 ) = A_xx ( ISET , I_u5 ) +G( Index_Lame ) *ddY_x2z2
(5 ) − ( L ( Index_Lame ) +2*G( Index_Lame ) ) *ddX_y1z2 (5 ) −G(
Index_Lame ) *ddZ_x2y1 (5 ) ;

15 A_xx ( ISET , I_u6 ) = A_xx ( ISET , I_u6 ) +G( Index_Lame ) *ddY_x2z2
(6 ) − ( L ( Index_Lame ) +2*G( Index_Lame ) ) *ddX_y1z2 (6 ) −G(
Index_Lame ) *ddZ_x2y1 (6 ) ;

16 A_xx ( ISET , I_u7 ) = A_xx ( ISET , I_u7 ) +G( Index_Lame ) *ddY_x2z2
(7 ) − ( L ( Index_Lame ) +2*G( Index_Lame ) ) *ddX_y1z2 (7 ) −G(
Index_Lame ) *ddZ_x2y1 (7 ) ;

17 A_xx ( ISET , I_u8 ) = A_xx ( ISET , I_u8 ) +G( Index_Lame ) *ddY_x2z2
(8 ) − ( L ( Index_Lame ) +2*G( Index_Lame ) ) *ddX_y1z2 (8 ) −G(
Index_Lame ) *ddZ_x2y1 (8 ) ;

18

19

20 % A_yy − con t r i b u t i o n o f Uy to Fy
21 A_yy ( ISET , I_u1 ) = A_yy ( ISET , I_u1 ) + ( L ( Index_Lame ) +2*G(

Index_Lame ) ) *ddY_x2z2 (1 ) −G( Index_Lame ) *ddX_y1z2 (1 ) −G(
Index_Lame ) *ddZ_x2y1 (1 ) ;

22 A_yy ( ISET , I_u2 ) = A_yy ( ISET , I_u2 ) + ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddY_x2z2 (2 ) −G( Index_Lame ) *ddX_y1z2 (2 ) −G(
Index_Lame ) *ddZ_x2y1 (2 ) ;

23 A_yy ( ISET , I_u3 ) = A_yy ( ISET , I_u3 ) + ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddY_x2z2 (3 ) −G( Index_Lame ) *ddX_y1z2 (3 ) −G(
Index_Lame ) *ddZ_x2y1 (3 ) ;

24 A_yy ( ISET , I_u4 ) = A_yy ( ISET , I_u4 ) + ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddY_x2z2 (4 ) −G( Index_Lame ) *ddX_y1z2 (4 ) −G(
Index_Lame ) *ddZ_x2y1 (4 ) ;

25 A_yy ( ISET , I_u5 ) = A_yy ( ISET , I_u5 ) + ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddY_x2z2 (5 ) −G( Index_Lame ) *ddX_y1z2 (5 ) −G(
Index_Lame ) *ddZ_x2y1 (5 ) ;

26 A_yy ( ISET , I_u6 ) = A_yy ( ISET , I_u6 ) + ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddY_x2z2 (6 ) −G( Index_Lame ) *ddX_y1z2 (6 ) −G(
Index_Lame ) *ddZ_x2y1 (6 ) ;

27 A_yy ( ISET , I_u7 ) = A_yy ( ISET , I_u7 ) + ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddY_x2z2 (7 ) −G( Index_Lame ) *ddX_y1z2 (7 ) −G(
Index_Lame ) *ddZ_x2y1 (7 ) ;

28 A_yy ( ISET , I_u8 ) = A_yy ( ISET , I_u8 ) + ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddY_x2z2 (8 ) −G( Index_Lame ) *ddX_y1z2 (8 ) −G(
Index_Lame ) *ddZ_x2y1 (8 ) ;

29
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30 % A_zz − con t r i b u t i o n o f Uz to Fz
31 A_zz ( ISET , I_u1 ) = A_zz ( ISET , I_u1 ) − ( L ( Index_Lame ) +2*G(

Index_Lame ) ) *ddZ_x2y1 (1 ) −G( Index_Lame ) *ddX_y1z2 (1 ) +G(
Index_Lame ) *ddY_x2z2 (1 ) ;

32 A_zz ( ISET , I_u2 ) = A_zz ( ISET , I_u2 ) − ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddZ_x2y1 (2 ) −G( Index_Lame ) *ddX_y1z2 (2 ) +G(
Index_Lame ) *ddY_x2z2 (2 ) ;

33 A_zz ( ISET , I_u3 ) = A_zz ( ISET , I_u3 ) − ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddZ_x2y1 (3 ) −G( Index_Lame ) *ddX_y1z2 (3 ) +G(
Index_Lame ) *ddY_x2z2 (3 ) ;

34 A_zz ( ISET , I_u4 ) = A_zz ( ISET , I_u4 ) − ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddZ_x2y1 (4 ) −G( Index_Lame ) *ddX_y1z2 (4 ) +G(
Index_Lame ) *ddY_x2z2 (4 ) ;

35 A_zz ( ISET , I_u5 ) = A_zz ( ISET , I_u5 ) − ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddZ_x2y1 (5 ) −G( Index_Lame ) *ddX_y1z2 (5 ) +G(
Index_Lame ) *ddY_x2z2 (5 ) ;

36 A_zz ( ISET , I_u6 ) = A_zz ( ISET , I_u6 ) − ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddZ_x2y1 (6 ) −G( Index_Lame ) *ddX_y1z2 (6 ) +G(
Index_Lame ) *ddY_x2z2 (6 ) ;

37 A_zz ( ISET , I_u7 ) = A_zz ( ISET , I_u7 ) − ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddZ_x2y1 (7 ) −G( Index_Lame ) *ddX_y1z2 (7 ) +G(
Index_Lame ) *ddY_x2z2 (7 ) ;

38 A_zz ( ISET , I_u8 ) = A_zz ( ISET , I_u8 ) − ( L ( Index_Lame ) +2*G(
Index_Lame ) ) *ddZ_x2y1 (8 ) −G( Index_Lame ) *ddX_y1z2 (8 ) +G(
Index_Lame ) *ddY_x2z2 (8 ) ;

39

40 % A_yx − con t r i b u t i o n o f Ux to Fy
41 A_yx ( ISET , I_u1 ) = A_yx ( ISET , I_u1 ) − G( Index_Lame ) *ddY_y1z2

(1 ) +L ( Index_Lame ) *ddX_x2z2 (1 ) ;
42 A_yx ( ISET , I_u2 ) = A_yx ( ISET , I_u2 ) − G( Index_Lame ) *ddY_y1z2

(2 ) +L ( Index_Lame ) *ddX_x2z2 (2 ) ;
43 A_yx ( ISET , I_u3 ) = A_yx ( ISET , I_u3 ) − G( Index_Lame ) *ddY_y1z2

(3 ) +L ( Index_Lame ) *ddX_x2z2 (3 ) ;
44 A_yx ( ISET , I_u4 ) = A_yx ( ISET , I_u4 ) − G( Index_Lame ) *ddY_y1z2

(4 ) +L ( Index_Lame ) *ddX_x2z2 (4 ) ;
45 A_yx ( ISET , I_u5 ) = A_yx ( ISET , I_u5 ) − G( Index_Lame ) *ddY_y1z2

(5 ) +L ( Index_Lame ) *ddX_x2z2 (5 ) ;
46 A_yx ( ISET , I_u6 ) = A_yx ( ISET , I_u6 ) − G( Index_Lame ) *ddY_y1z2

(6 ) +L ( Index_Lame ) *ddX_x2z2 (6 ) ;
47 A_yx ( ISET , I_u7 ) = A_yx ( ISET , I_u7 ) − G( Index_Lame ) *ddY_y1z2

(7 ) +L ( Index_Lame ) *ddX_x2z2 (7 ) ;
48 A_yx ( ISET , I_u8 ) = A_yx ( ISET , I_u8 ) − G( Index_Lame ) *ddY_y1z2

(8 ) +L ( Index_Lame ) *ddX_x2z2 (8 ) ;
49

50 % A_zx − con t r i b u t i o n o f Ux to Fz
51

52 A_zx ( ISET , I_u1 ) = A_zx ( ISET , I_u1 ) − G( Index_Lame ) *ddZ_y1z2
(1 ) −L ( Index_Lame ) *ddX_x2y1 (1 ) ;

53 A_zx ( ISET , I_u2 ) = A_zx ( ISET , I_u2 ) − G( Index_Lame ) *ddZ_y1z2
(2 ) −L ( Index_Lame ) *ddX_x2y1 (2 ) ;

54 A_zx ( ISET , I_u3 ) = A_zx ( ISET , I_u3 ) − G( Index_Lame ) *ddZ_y1z2
(3 ) −L ( Index_Lame ) *ddX_x2y1 (3 ) ;

55 A_zx ( ISET , I_u4 ) = A_zx ( ISET , I_u4 ) − G( Index_Lame ) *ddZ_y1z2
(4 ) −L ( Index_Lame ) *ddX_x2y1 (4 ) ;

56 A_zx ( ISET , I_u5 ) = A_zx ( ISET , I_u5 ) − G( Index_Lame ) *ddZ_y1z2
(5 ) −L ( Index_Lame ) *ddX_x2y1 (5 ) ;
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57 A_zx ( ISET , I_u6 ) = A_zx ( ISET , I_u6 ) − G( Index_Lame ) *ddZ_y1z2
(6 ) −L ( Index_Lame ) *ddX_x2y1 (6 ) ;

58 A_zx ( ISET , I_u7 ) = A_zx ( ISET , I_u7 ) − G( Index_Lame ) *ddZ_y1z2
(7 ) −L ( Index_Lame ) *ddX_x2y1 (7 ) ;

59 A_zx ( ISET , I_u8 ) = A_zx ( ISET , I_u8 ) − G( Index_Lame ) *ddZ_y1z2
(8 ) −L ( Index_Lame ) *ddX_x2y1 (8 ) ;

60

61

62

63 % A_xy − con t r i b u t i o n o f Uy to Fx
64 A_xy ( ISET , I_u1 ) = A_xy ( ISET , I_u1 ) −L ( Index_Lame ) *ddY_y1z2 (1 )

+ G( Index_Lame ) *ddX_x2z2 (1 ) ;
65 A_xy ( ISET , I_u2 ) = A_xy ( ISET , I_u2 ) −L ( Index_Lame ) *ddY_y1z2 (2 )

+ G( Index_Lame ) *ddX_x2z2 (2 ) ;
66 A_xy ( ISET , I_u3 ) = A_xy ( ISET , I_u3 ) −L ( Index_Lame ) *ddY_y1z2 (3 )

+ G( Index_Lame ) *ddX_x2z2 (3 ) ;
67 A_xy ( ISET , I_u4 ) = A_xy ( ISET , I_u4 ) −L ( Index_Lame ) *ddY_y1z2 (4 )

+ G( Index_Lame ) *ddX_x2z2 (4 ) ;
68 A_xy ( ISET , I_u5 ) = A_xy ( ISET , I_u5 ) −L ( Index_Lame ) *ddY_y1z2 (5 )

+ G( Index_Lame ) *ddX_x2z2 (5 ) ;
69 A_xy ( ISET , I_u6 ) = A_xy ( ISET , I_u6 ) −L ( Index_Lame ) *ddY_y1z2 (6 )

+ G( Index_Lame ) *ddX_x2z2 (6 ) ;
70 A_xy ( ISET , I_u7 ) = A_xy ( ISET , I_u7 ) −L ( Index_Lame ) *ddY_y1z2 (7 )

+ G( Index_Lame ) *ddX_x2z2 (7 ) ;
71 A_xy ( ISET , I_u8 ) = A_xy ( ISET , I_u8 ) −L ( Index_Lame ) *ddY_y1z2 (8 )

+ G( Index_Lame ) *ddX_x2z2 (8 ) ;
72

73 % A_zy − con t r i b u t i o n o f Uy to Fz
74 A_zy ( ISET , I_u1 ) = A_zy ( ISET , I_u1 ) −L ( Index_Lame ) *ddY_x2y1

(1 ) + G( Index_Lame ) *ddZ_x2z2 (1 ) ;
75 A_zy ( ISET , I_u2 ) = A_zy ( ISET , I_u2 ) −L ( Index_Lame ) *ddY_x2y1

(2 ) + G( Index_Lame ) *ddZ_x2z2 (2 ) ;
76 A_zy ( ISET , I_u3 ) = A_zy ( ISET , I_u3 ) −L ( Index_Lame ) *ddY_x2y1

(3 ) + G( Index_Lame ) *ddZ_x2z2 (3 ) ;
77 A_zy ( ISET , I_u4 ) = A_zy ( ISET , I_u4 ) −L ( Index_Lame ) *ddY_x2y1

(4 ) + G( Index_Lame ) *ddZ_x2z2 (4 ) ;
78 A_zy ( ISET , I_u5 ) = A_zy ( ISET , I_u5 ) −L ( Index_Lame ) *ddY_x2y1

(5 ) + G( Index_Lame ) *ddZ_x2z2 (5 ) ;
79 A_zy ( ISET , I_u6 ) = A_zy ( ISET , I_u6 ) −L ( Index_Lame ) *ddY_x2y1

(6 ) + G( Index_Lame ) *ddZ_x2z2 (6 ) ;
80 A_zy ( ISET , I_u7 ) = A_zy ( ISET , I_u7 ) −L ( Index_Lame ) *ddY_x2y1

(7 ) + G( Index_Lame ) *ddZ_x2z2 (7 ) ;
81 A_zy ( ISET , I_u8 ) = A_zy ( ISET , I_u8 ) −L ( Index_Lame ) *ddY_x2y1

(8 ) + G( Index_Lame ) *ddZ_x2z2 (8 ) ;
82

83 % A_xz − con t r i b u t i o n o f Uz to Fx
84 A_xz ( ISET , I_u1 ) = A_xz ( ISET , I_u1 ) −L ( Index_Lame ) *ddZ_y1z2

(1 ) − G( Index_Lame ) *ddX_x2y1 (1 ) ;
85 A_xz ( ISET , I_u2 ) = A_xz ( ISET , I_u2 ) −L ( Index_Lame ) *ddZ_y1z2

(2 ) − G( Index_Lame ) *ddX_x2y1 (2 ) ;
86 A_xz ( ISET , I_u3 ) = A_xz ( ISET , I_u3 ) −L ( Index_Lame ) *ddZ_y1z2

(3 ) − G( Index_Lame ) *ddX_x2y1 (3 ) ;
87 A_xz ( ISET , I_u4 ) = A_xz ( ISET , I_u4 ) −L ( Index_Lame ) *ddZ_y1z2

(4 ) − G( Index_Lame ) *ddX_x2y1 (4 ) ;
88 A_xz ( ISET , I_u5 ) = A_xz ( ISET , I_u5 ) −L ( Index_Lame ) *ddZ_y1z2

(5 ) − G( Index_Lame ) *ddX_x2y1 (5 ) ;



52 A. Finite volume in three dimensions

89 A_xz ( ISET , I_u6 ) = A_xz ( ISET , I_u6 ) −L ( Index_Lame ) *ddZ_y1z2
(6 ) − G( Index_Lame ) *ddX_x2y1 (6 ) ;

90 A_xz ( ISET , I_u7 ) = A_xz ( ISET , I_u7 ) −L ( Index_Lame ) *ddZ_y1z2
(7 ) − G( Index_Lame ) *ddX_x2y1 (7 ) ;

91 A_xz ( ISET , I_u8 ) = A_xz ( ISET , I_u8 ) −L ( Index_Lame ) *ddZ_y1z2
(8 ) − G( Index_Lame ) *ddX_x2y1 (8 ) ;

92

93 % A_yz − con t r i b u t i o n o f Uz to Fy
94 A_yz ( ISET , I_u1 ) = A_yz ( ISET , I_u1 ) +L ( Index_Lame ) *ddZ_x2z2

(1 ) − G( Index_Lame ) *ddY_x2y1 (1 ) ;
95 A_yz ( ISET , I_u2 ) = A_yz ( ISET , I_u2 ) +L ( Index_Lame ) *ddZ_x2z2

(2 ) − G( Index_Lame ) *ddY_x2y1 (2 ) ;
96 A_yz ( ISET , I_u3 ) = A_yz ( ISET , I_u3 ) +L ( Index_Lame ) *ddZ_x2z2

(3 ) − G( Index_Lame ) *ddY_x2y1 (3 ) ;
97 A_yz ( ISET , I_u4 ) = A_yz ( ISET , I_u4 ) +L ( Index_Lame ) *ddZ_x2z2

(4 ) − G( Index_Lame ) *ddY_x2y1 (4 ) ;
98 A_yz ( ISET , I_u5 ) = A_yz ( ISET , I_u5 ) +L ( Index_Lame ) *ddZ_x2z2

(5 ) − G( Index_Lame ) *ddY_x2y1 (5 ) ;
99 A_yz ( ISET , I_u6 ) = A_yz ( ISET , I_u6 ) +L ( Index_Lame ) *ddZ_x2z2

(6 ) − G( Index_Lame ) *ddY_x2y1 (6 ) ;
100 A_yz ( ISET , I_u7 ) = A_yz ( ISET , I_u7 ) +L ( Index_Lame ) *ddZ_x2z2

(7 ) − G( Index_Lame ) *ddY_x2y1 (7 ) ;
101 A_yz ( ISET , I_u8 ) = A_yz ( ISET , I_u8 ) +L ( Index_Lame ) *ddZ_x2z2

(8 ) − G( Index_Lame ) *ddY_x2y1 (8 ) ;

A.3. Integrals calculation

The coefficients, which are derived from the integration of the derivatives, with respect to one direction
x,y or z of the shape functions are the same when we have displacement for x y or z direction. This
means that the double integral
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𝜕𝑥 𝑑𝑥 𝑑𝑧 (A.1)

In eq. A.1 the 𝑢𝑖 can be displacement in x direction, so 𝑢𝑥 or displacement in y direction, so 𝑢𝑦. The
term 𝜕𝑁𝑖(𝑥,𝑦,𝑧)

𝜕𝑥 will not change because the shape functions are the same, so the coefficients or weights
in other words will be the same.

A.3.1. Derivatives over x direction

The coefficients that multiply the displacement in each stress control volume depend on the stress
control volume and of course on the formulas of the stresses themselves.The possible integrals of the
shape function derivatives are given below:
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1
32 ,

1
32 ,−

1
32 ,−

3
32 ,

3
32 ,

3
32 ,−

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝐸𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥,𝑦
𝜕𝑥 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑥 [− 1
32 ,

1
32 ,

1
32 ,−

1
32 ,−

3
32 ,

3
32 ,

3
32 ,−

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝐸𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥,𝑦
𝜕𝑥 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑥 [− 3
32 ,

3
32 ,

3
32 ,−

3
32 ,−

�1
32 ,

1
32 ,

1
32 ,−

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝑆𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑦
2

∫
0

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑥 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑥 [− 9
64 ,

9
64 ,

3
64 ,−

3
64 ,−

3
64 ,

3
64 ,

1
64 ,−

1
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝑆𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑥 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑥 [− 3
64 ,

3
64 ,

1
64 ,−

1
64 ,−

9
64 ,

9
64 ,

3
64 ,−

3
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝑁𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦

∫
𝑑𝑦
2

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑥 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑥 [− 1
64 ,

1
64 ,

3
64 ,−

3
64 ,−

3
64 ,

3
64 ,

9
64 ,−

9
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝑁𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑦

∫
𝑑𝑦
2

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑥 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑥 [− 3
64 ,

3
64 ,

9
64 ,−

9
64 ,−

1
64 ,

1
64 ,

3
64 ,−

3
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝑊𝑆 =

𝑑𝑦
2

∫
0

𝑑𝑥
2

∫
0

𝜕𝑢𝑥,𝑧
𝜕𝑥 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑥 [− 3
32 ,

3
32 ,

1
32 ,−

1
32 ,−

3
32 ,

3
32 ,

1
32 ,−

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝑊𝑁 =
𝑑𝑦

∫
𝑑𝑦
2

𝑑𝑥
2

∫
0

𝜕𝑢𝑥,𝑧
𝜕𝑥 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑥 [− 1
32 ,

1
32 ,

3
32 ,−

3
32 ,−

1
32 ,

1
32 ,

3
32 ,−

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝐸𝑁 =
𝑑𝑦

∫
𝑑𝑦
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥,𝑧
𝜕𝑥 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑥 [− 1
32 ,

1
32 ,

3
32 ,−

3
32 ,−

1
32 ,

1
32 ,

3
32 ,−

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑥𝐸𝑆 =

𝑑𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥,𝑧
𝜕𝑥 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑥 [− 3
32 ,

3
32 ,

1
32 ,−

1
32 ,−

3
32 ,

3
32 ,

1
32 ,−

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T
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𝐷𝑦𝑊𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑥
2

∫
0

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑦 [− 9
64 ,−

3
64 ,

3
64 ,

9
64 ,−

3
64 ,−

1
64 ,

1
64 ,

3
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝑊𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥
2

∫
0

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑦 [− 3
64 ,−

1
64 ,

1
64 ,

3
64 ,−

9
64 ,−

3
64 ,

3
64 ,

9
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝐸𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑦 [− 1
64 ,−

3
64 ,

3
64 ,

1
64 ,−

3
64 ,−

9
64 ,

9
64 ,

3
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝐸𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑦 [− 3
64 ,−

9
64 ,

9
64 ,

3
64 ,−

1
64 ,−

3
64 ,

3
64 ,

1
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝑆𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑦
2

∫
0

𝜕𝑢𝑥,𝑦
𝜕𝑦 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑦 [− 3
32 ,−

3
32 ,

3
32 ,

3
32 ,−

1
32 ,−

1
32 ,

1
32 ,

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝑆𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑥,𝑦
𝜕𝑦 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑦 [− 1
32 ,−

1
32 ,

1
32 ,

1
32 ,−

3
32 ,−

3
32 ,

3
32 ,

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝑁𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦

∫
𝑑𝑦
2

𝜕𝑢𝑥,𝑦
𝜕𝑦 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑦 [− 1
32 ,−

1
32 ,

1
32 ,

1
32 ,−

3
32 ,−

3
32 ,

3
32 ,

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝑁𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑦

∫
𝑑𝑦
2

𝜕𝑢𝑥,𝑦
𝜕𝑦 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑦 [− 3
32 ,−

3
32 ,

3
32 ,

3
32 ,−

1
32 ,−

1
32 ,

1
32 ,

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝑊𝑆 =

𝑑𝑦
2

∫
0

𝑑𝑥
2

∫
0

𝜕𝑢𝑦,𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑦 [− 3
32 ,−

1
32 ,

1
32 ,

3
32 ,−

3
32 ,−

1
32 ,

1
32 ,

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝑊𝑁 =
𝑑𝑦

∫
𝑑𝑦
2

𝑑𝑥
2

∫
0

𝜕𝑢𝑦,𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑦 [− 3
32 ,−

1
32 ,

1
32 ,

3
32 ,−

3
32 ,−

1
32 ,

1
32 ,

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝐸𝑁 =
𝑑𝑦

∫
𝑑𝑦
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦,𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑦 [− 1
32 ,−

3
32 ,

3
32 ,

1
32 ,−

1
32 ,−

3
32 ,

3
32 ,

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑦𝐸𝑆 =

𝑦
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦,𝑧
𝜕𝑦 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑦 [− 1
32 ,−

3
32 ,

3
32 ,

1
32 ,−

1
32 ,−

3
32 ,

3
32 ,

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T
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𝐷𝑧𝑊𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑥
2

∫
0

𝜕𝑢𝑦,𝑧
𝜕𝑧 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑧 [− 3
32 ,−

1
32 ,−

1
32 ,−

3
32 ,

3
32 ,

1
32 ,

1
32 ,

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝑊𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥
2

∫
0

𝜕𝑢𝑦,𝑧
𝜕𝑧 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑧 [− 3
32 ,−

1
32 ,−

1
32 ,−

3
32 ,

3
32 ,

1
32 ,

1
32 ,

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝐸𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦,𝑧
𝜕𝑧 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑧 [− 1
32 ,−

3
32 ,−

3
32 ,−

1
32 ,

1
32 ,

3
32 ,

3
32 ,

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝐸𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑥

∫
𝑑𝑥
2

𝜕𝑢𝑦,𝑧
𝜕𝑧 𝑑𝑥 𝑑𝑧 = 𝑑𝑥 𝑑𝑧

𝑑𝑧 [− 1
32 ,−

3
32 ,−

3
32 ,−

1
32 ,

1
32 ,

3
32 ,

3
32 ,

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝑆𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑦
2

∫
0

𝜕𝑢𝑥,𝑧
𝜕𝑧 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑧 [− 3
32 ,−

3
32 ,−

1
32 ,−

1
32 ,

3
32 ,

3
32 ,

1
32 ,

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝑆𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦
2

∫
0

𝜕𝑢𝑥,𝑧
𝜕𝑧 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑧 [− 3
32 ,−

3
32 ,−

1
32 ,−

1
32 ,

3
32 ,

3
32 ,

1
32 ,

1
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝑁𝑇 =
𝑑𝑧

∫
𝑑𝑧
2

𝑑𝑦

∫
𝑑𝑦
2

𝜕𝑢𝑥,𝑧
𝜕𝑧 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑧 [− 1
32 ,−

1
32 ,−

3
32 ,−

3
32 ,

1
32 ,

1
32 ,

3
32 ,

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝑁𝐵 =

𝑑𝑧
2

∫
0

𝑑𝑦

∫
𝑑𝑦
2

𝜕𝑢𝑥,𝑧
𝜕𝑧 𝑑𝑦 𝑑𝑧 = 𝑑𝑦 𝑑𝑧

𝑑𝑧 [− 1
32 ,−

1
32 ,−

3
32 ,−

3
32 ,

1
32 ,

1
32 ,

3
32 ,

3
32][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝑊𝑆 =

𝑑𝑦
2

∫
0

𝑑𝑥
2

∫
0

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑧 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑧 [− 9
64 ,−

3
64 ,−

1
64 ,−

3
64 ,

9
64 ,

3
64 ,

1
64 ,

3
64][𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6, 𝑢7, 𝑢8]

T

𝐷𝑧𝑊𝑁 =
𝑑𝑦

∫
𝑑𝑦
2

𝑑𝑥
2

∫
0

𝜕𝑢𝑥,𝑦,𝑧
𝜕𝑧 𝑑𝑥 𝑑𝑦 = 𝑑𝑥 𝑑𝑦

𝑑𝑧 [− 3
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A.4. Boundary conditions implementation
The boundary conditions are applied to all the nodes that exist in the boundaries or border of the
depicted mesh in fig. 3.2. Below is provided the code implementation for the boundary condition in 3D
FVM.

1 f o r i = 1 :Nx+1
2 f o r j = 1 :Ny+1
3 f o r k = 1 :Nz+1
4 I = Index3D_mine (Nx+1 ,Ny+1 ,Nz+1 , i , j , k ) ;
5

6 % Set a l l the values assigned to BC con t r o l volumes to 0
7 % Set c o e f f i c i e n t 1 f o r the known U
8

9 i f BC_flag ( I ) == 1
10 A_xx ( I , : ) =0;
11 A_xy ( I , : ) =0;
12 A_xz ( I , : ) =0;
13 A_xx ( I , I ) =1;
14 % Force the RHS values to the known U : A*U_known =

U_known
15 F( I ) = U_vect ( I ) ;
16 end
17

18 i f BC_flag ( I + (Nx+1) * (Ny+1) * (Nz+1) ) == 1
19 A_yy ( I , : ) =0;
20 A_yx ( I , : ) =0;
21 A_yz ( I , : ) =0;
22 A_yy ( I , I ) =1;
23 % Force the RHS values to the known U : A*U_known =

U_known
24 F( I +(Nx+1) * (Ny+1) * (Nz+1) ) = U_vect ( I +(Nx+1) * (Ny+1) * (Nz+1)

) ;
25 end
26

27 i f BC_flag ( I +2*(Nx+1) * (Ny+1) * (Nz+1) ) == 1
28 A_zz ( I , : ) =0;
29 A_zy ( I , : ) =0;
30 A_zx ( I , : ) =0;
31 A_zz ( I , I ) =1;
32 % Force the RHS values to the known U : A*U_known =

U_known
33 F( I +2*(Nx+1) * (Ny+1) * (Nz+1) ) = U_vect ( I +2*(Nx+1) * (Ny+1) * (

Nz+1) ) ;
34 end
35

36 end
37 end
38 end
39 A = [ A_xx A_xy A_xz ; A_yx A_yy A_yz ; A_zx A_zy A_zz ] ;

As shown in the above code the points, which correspond to the boundaries, which are subjected
to Dirichlet boundary conditions are given with the indexing: ”I” in the A matrices.The rows of the A
matrices for these points become 0 and only the diagonal is one. In this way the desired displacement
is assigned directly to the solution and this is the definition of the Dirichlet boundary condition. The
”marking” of the points, which correspond to the boundaries is achieved with the vector BC_flag, which
reaches to the full length of the A matrix.
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