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1
Introduction

Understanding the formation of quasicrystals is a complex task that requires the integra-

tion of computational tools and simulations to model the behavior of atomic clusters. This

thesis aims to contribute to the current understanding of quasicrystal formation by com-

bining global geometry optimization and atomic simulations using the Oscillating Pair Po-

tential (OPP). These methods, although widely used separately, have not yet been com-

bined to investigate the energetically stable structures that can form quasicrystalline ma-

terials and exhibit non-periodic long-range order.

Chapter 2 gives a foundation for the next chapters by introducing the topic of quasicrys-

tals. It starts by going into the role of symmetries and order in the atomic structure of ma-

terials. It provides a brief explanation of the traditional understanding of crystals, where

atoms are arranged in a periodic pattern governed by translational and rotational symme-

tries. Furthermore, it discusses the breakthrough discovery of icosahedral quasicrystals,

which challenged the diffused belief of the presence of periodic order in all ordered mate-

rials. The presence of forbidden rotational symmetries and aperiodic long-range order in

quasicrystals opened up new possibilities for unique material properties and applications.

Chapter 3 provides a detailed discussion of the computational tools necessary to set

up simulations to model atomic clusters. It introduces interatomic potential formulas and

their relationship with the position and potential energy of atoms. Two potential formu-

las are presented: the standard Lennard-Jones potential and the 3 wells Oscillating Pair

Potential, specifically designed to reproduce the interactions in materials prone to form

icosahedral quasicrystals. Additionally, the concept of Molecular Dynamics is introduced

as a tool to represent the movement of atoms over time.
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2 1. Introduction

Chapter 4 focuses on investigating the energetically-favorable configurations that a sys-

tem of particles governed by a certain potential can assume. It introduces the concept of

the Potential Energy Surface (PES) and its relationship to stable cluster configurations. The

chapter discusses different local optimization algorithms designed to find a stable equilib-

rium for a given initial configuration, and explains the use of local optimization within the

global optimization algorithm, which aims to find the global minimum of the system, that

is the most energetically-favourable configuration.

Chapter 5 presents diffraction patterns and Fourier Transforms, a mathematical tool

widely used in the analysis of atomic structures in crystallography.

In Chapter 6, the theory discussed in the previous chapters is implemented using the

HOOMD-blue Python package. The chapter presents the implementation of the methods,

including the global optimization algorithm, and describes the setup of simulations for

clusters with varying numbers of atoms using both the Lennard-Jones potential and the

Oscillating Pair Potential. The results obtained from the simulations are analyzed, compar-

ing the stable structures formed by the clusters governed by different potentials. Addition-

ally, the chapter explores the possibility of obtaining icosahedral quasicrystalline structures

starting from specific initial configurations.

Finally, Chapter 7 summarizes the findings of the project and provides recommenda-

tions to improve and expand the research. The combined use of global geometry optimiza-

tion and atomic simulations with the OPP demonstrated the ability to identify energetically

favorable configurations that exhibit a certain degree of order. However, the results need

further validation using diffraction patterns, which in this project was not fully feasible due

to the small size of the investigated clusters. The global optimization algorithm also re-

quires improvement, particularly in handling memory management issues and obtaining

a higher number of minima configurations for larger clusters. Recommendations for fu-

ture studies include solving these aforementioned issues and testing bigger clusters to see

if recognizable forbidden symmetries can be observed in diffraction patterns. Additionally,

exploring the possibility of arranging atoms in pre-built blocks favorable for settling into

long-range ordered structures could provide valuable insights.

By integrating these computational tools and geometry optimization techniques, this

thesis contributes to the understanding of icosahedral quasicrystal formation and provides

a foundation for further research in this field.



2
Why Icosahedral Quasicrystals?

Symmetries are abundant in the world and permeate reality up to its very core in the atomic

structure of matter. For many years, solid state matter was thought to be either amorphous,

that is completely disordered, or characterized by translational and specific rotational sym-

metries. This latter type of matter got the name of crystals. Crystals are a form of solid

matter where atoms are arranged in an ordered periodic pattern. As Janot explains in his

book about quasicrystals [1], in practice the atomic arrangement in matter is never per-

fect. But this aspect is neglected in crystallography and crystals are described by reference

to perfect infinite arrays of geometrical points, called lattices. In a lattice, every point has

identical surroundings; all lattice points are equivalent and the crystal lattice therefore ex-

hibits perfect translational symmetry. Relative to any arbitrarily chosen origin, any other

lattice point has the position vector:

r = n1a+n2b+n3c (2.1)

The volume associated with a single lattice point is unique, but there is a choice regarding

the vectors a, b, c. The volume unit depicting the lattice is called the unit cell. A group of

atoms can be associated with each lattice point. Then the position vector of an atom may

be written:

r j = n1a+n2b+n3c+R j , (2.2)

where R j is the position vector within the unit cell relative to the lattice point (n1, n2, n3).

The group of atoms which is associated with every lattice point is called a basis. A crystal

structure is therefore specified by its lattice and a basis. Geometrically, the introduction of

3



4 2. Why Icosahedral Quasicrystals?

the basis induces new symmetry elements such as rotations or reflections. Each symmetry

operation or combination of operations must turn the atomic arrangement of the crystal

into itself.

A symmetry operation is an operation that can be performed either physically or imag-

inatively that results in no change in the appearance of an object [2]. Looking in particular

at rotational symmetries, if an object can be rotated about an axis and repeats itself every

360/n degrees of rotation, it is said to have an axis of n-fold rotational symmetry. The pos-

sible types of rotational symmetry in crystals are 2-fold, 3-fold, 4-fold, and 6-fold rotation

(crystallographic restriction theorem [3]). On the other hand, geometries that exhibit sym-

metries such as 5-fold, 8-fold or 10-fold can’t possibly occur in crystals; in fact, they are not

periodic, i.e. it is not possible to arrange such geometries in a way that they completely fill

up the space without overlapping.

(a) (b)

Figure 2.1: Squares and equilateral triangles repeat themselves upon a rotation of respectively 90° and 120°.
They have a 4-fold and a 6-fold rotation axis, compatible with periodic order.

(a) (b)

Figure 2.2: Pentagons and octagons have a 5-fold and a 8-fold rotation axis. There is no way to combine them
such that the fill the space without leaving any gaps. They are incompatible with periodic order.

Therefore, up to the end of the 1970s, it was believed that any solid was composed of

microscopic building blocks with exclusively 2, 3, 4, or 6-fold symmetry. However, in those
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years, the physicist P. Steinhardt and the doctoral student D. Levine [4] began to investi-

gate the possibility of materials with 5-fold symmetry, in which the atoms would have an

ordered, though non-periodic, arrangement, by taking inspiration from the Penrose tilings

[5], a well-known type of tessellation in which two shapes combine forming highly ordered

but not periodic patterns; see an example in Figure 2.3.

(a) (b)

Figure 2.3: (a) illustrates the structure of the Penrose tiling P1, that consists of four shapes: a pentagon, a boat,
a star and a rhombus. (b) is the projection of a cluster of atoms; the shapes overlapped on the image highlight
that the particles are arranged into the P1 tiling. Taken from [6].

In 1984, the material scientist Dan Shechtman confirmed their claims and in a paper

published in the prestigious physical journal Physical Review Letters [7], he stated to have

found that the structure of a rapidly cooled alloy of aluminium and manganese had a 10-

fold symmetry, which was in fact the first discovered quasicrystal [8]. The distinctive and

surprising characteristic of quasicrystals, called quasiperiodicity, manifested in the lack of

a continuous translational periodicity and the presence of rotational symmetries forbid-

den from the crystallographic restriction theorem, which cause the structure to have a long

range aperiodic order.
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(a) (b)

Figure 2.4: Al6Mn alloy quasicrystal discovered by Dan Shechtman. (a) gives the first view of a crystal structure
with icosahedral symmetry, and (b) shows its electron diffraction pattern. It can be clearly distinguished a 10-
fold symmetry axis around the origin. Note the presence of equilateral pentagons in the structure. Taken from
[9].

Since their existence had finally been accepted by the scientific community, more and

more quasicrystal materials were created in the lab, and now hundreds of different qua-

sicrystals can be counted with structures that exhibit 5-fold, 8-fold and 10-fold symmetries

previously believed impossible. The findings are more than just conceptual. The first qua-

sicrystal materials discovered were alloys usually involving aluminium with one or more

other metals. The applications comprised first using them in non-stick frying pans for

their high hardness and low conductivity [10], and later for making anti-corrosive coat-

ings for surgical equipment and dental instruments [11] [12]. Quasicrystals have not been

found only in metals, but in other materials such as polymers and recently also in mate-

rials made from self-assembling nanoparticles [13]. A new exciting field of research deals

with the use of self-assembly processes to produce quasicrystals from different non-atom

building blocks, including DNA and organometallic molecules [14] [15]. While the vast ma-

jority of quasicrystal currently discovered are human-made, there are some that have been

found occurring in nature. After the physicist Steinhardt theorized the existence of qua-

sicrystals, his research brought him to look for naturally formed quasicrystals and in 2009

he identified a naturally occurring quasicrystal structure in a speck of a rare mineral (later

renamed icosahedrite after the geometry present in the atomic structure) from a meteorite

landed in Chukhotka, Russia [16]. A particularly note-worthy type of quasicrystals is Icosa-

hedral Quasicrystals (IQCs). Their importance comes from the abundance of icosahedral

symmetry in nature and from the fact that, unlike axially symmetric quasicrystals as those

based on decagonal symmetry which is periodic in one dimension, they are aperiodic in

all dimensions and thus do not rely on any of the properties connected to the periodicity
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of a material in its atomic structure [6]. This type of quasicrystals has been experimentally

observed only in intermetallic compounds, but the possibility of realizing IQCs patchy col-

loids using DNA particles has been hypothesized [17].

The wide application range for quasicrystal structures makes it very valuable to have a

model to theoretically study the behaviour of such materials. The difference between crys-

tal and quasicrystals at the atomic structure level causes the two materials to have differ-

ent physical and chemical properties such as unconventional magnetic and conductivity

behaviours. Thus, while we know how crystalline structures with a periodic arrangement

form and behave, and modeling them is relatively simple thanks to the fact that knowing

the unit cell we can describe the entirety of the crystal, quasicrystals are still relatively un-

known, and their aperiodicity makes it a challenge to accurately model and simulate their

assembly, without even talking about their growth. This is particularly true for IQCs: com-

putational models of these structures are often built over simplifying assumptions, such

as using short-range interactions or even hard sphere systems, where the potential en-

ergy vanishes unless the two spheres overlap, in which case it is infinite. These simplifying

assumptions take the model far from conditions actually occurring in intermetallic com-

pounds. A note-worthy breakthrough to this problem happened recently when Engel et

al. [6] demonstrated that it is possible to robustly obtain the assembly of IQCs in a sys-

tem consisting of identical particles interacting via an isotropic pair potential. While being

a relatively simple formula, this potential accurately reproduces the interactions of atoms

within alloys, materials where IQCs are formed.

In the next chapter the principles of atomic interactions will be explained and the ways

to simulate their behavior will be presented.





3
Interatomic Interactions

This chapter will discuss the computational tools necessary to set up a simulation to model

the behaviour of a cluster of atoms. In Section 3.1 the forces operating between atoms

will be introduced, as well as the relation between the potential energy and the position of

atoms in space; the discussion in this section will be largely based on the book Interatomic

Potentials [18] by I. Torrens. Then two formulas will be presented: the simplest and most

widely used potential formula, the Lennard-Jones potential (Section 3.1.1), and a specific

potential formula for materials prone to form icosahedral quasicrystals, the 3w-OPP (Sec-

tion 3.1.2). Finally, in Section 3.2 the concept of Molecular Dynamics will be presented, a

tool to represent the movement of the atoms through time.

3.1. Interaction Potential

The way clusters of atoms assemble together is defined by the interaction forces between

them. While atoms are usually considered and described as a unit ball, they have a com-

posite nature, thus the interaction force between them is in fact resulting from the distinct

interactions of their electrically charged components.

9



10 3. Interatomic Interactions

Figure 3.1: Illustration of the interatomic forces that occur between distinct subatomic components.

Consider two atoms made up of a nucleus and electrons orbiting around it. The pres-

ence of subnuclear components (protons and neutrons) is neglected since the forces acting

between them are so much bigger than the interatomic forces that the nucleus can be con-

sidered a indivisible entity. The nucleus of one atom, having positive charge, has a signifi-

cant influence on the cloud of outer electrons around the other atom resulting in attraction.

At the same time the outer electrons around the first atom act on the cloud of electrons

around the second, repelling it (van der Waals forces). The expression for the complete

interatomic forces between two atoms becomes then a considerable complex many-body

problem. Technically it is possible to formulate an accurate expression for these interac-

tion forces. However, this would yield extremely complicated equations, except for the sim-

plest systems. Although modern computing systems would be able to handle such heavy

computations, it has become usual to represent the interaction forces with approximative

formulas. These approximations are usually achieved by either simplifying theoretical for-

mulas, or fitting a parametric formula to experimental data by tuning the parameters [18].

In general, the force between two atoms is expressed in terms of their potential energy

of interaction, or interatomic potential [18]. As it was said for the forces, if we were to de-

fine the interaction potential between two atoms in a rigorous way, a quite complex system

would take shape. Given two atoms with nuclear charges Z1e and Z2e, containing n elec-

trons and divided by a distance r12, the accurate definition of the potential energy is:

Φ(r12) = 1

2

n∑
i ̸= j=1

e2

ri j
−

n∑
i=1

(
Z1e2

ri 1
+ Z2e2

ri 2
)+ Z1Z2e2

r
[18] (3.1)
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The three terms in the equation respectively refer to the electron-electron repulsion, the

electron-nucleus attraction, and the nuclear repulsion. Clearly it is desirable to reduce the

problem. Generally the interaction potential is made depend exclusively on the distance

r between the atoms and numerical parameters; this approach yields accurate enough re-

sults and is thus preferred. The relation between the force and the interatomic potential

V (r ) is defined as follows:

F (r ) =−∂V (r )

∂r
(3.2)

Since the interatomic potential ultimately depends not only on the relative distance of

the particles but also on the nuclear charges and amount of electrons in the interacting

atoms, the interatomic potential cannot be limited to a universal formula valid for any ma-

terial. Therefore there is not a single one, but various potential formulas which have been

researched and studied, each fit for a particular type of material or combination of atoms.

Rather than deducing the potential using theoretical considerations, it is usually more

beneficial to derive it "empirically". So most of the potentials currently used are based on

relatively simple expressions, not necessarily justified by the theory, which contain param-

eters that can be adjusted to fit the formula to experimental data.

3.1.1. (12-6) Lennard-Jones Potential
The (12-6) Lennard-Jones potential is a formula that gained big popularity since it was first

proposed. It was first introduced to describe the interactions in inert gases, but it has been

adopted in the modeling of many other materials, such as metals. While it doesn’t provide

the most accurate representation of the interactions in most of them, it has been widely

used thanks to its simplicity. The Lennard-Jones potential is expressed as follows:

V (r ) =
 4ϵ

[(
σ
r

)12 − (
σ
r

)6
]

, if r ≤ rmax

0 if r > rmax

(3.3)

where

• ϵ is the pair well depth. It describes how strongly the two atoms attract each other;

• r is the distance between the particles measured center to center of the particles;

• σ is the distance between the two particles at which the interatomic potential is equal

to zero. This parameter indicates how much can the two particles get close;

• rmax is the maximum separation at which the particles still have an effect on each

other. For greater distances, the interaction is assumed to be zero. Realistically, there
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is always some interaction between two particles in space, but it is so small that this

approximation is acceptable.

Figure 3.2: The Lennard-Jones potential. The well depth ϵ and the distance parameterσ are represented. The
units used for the distance and the potential energy are respectively the Angstrom (1 Å = 1,0 ·10−10 m) and
the pair well depth (ϵ).

As it can be seen in Equation (3.3), the Lennard-Jones model consists of two parts: a

steep repulsive term
(
σ
r

)12 that dominates in short range distances and a smoother attrac-

tive term
(
σ
r

)6 that emerges as the distance increases. Figure 3.2 illustrates the behaviour

of the function. When the particles are at an infinite distance apart, their interaction is so

minimal that the potential energy is considered to be zero. As the distance decreases, the

strength of the interaction becomes bigger and the particles come closer until they reach

an equilibrium where the minimal potential energy is reached and the resulting force act-

ing on the particles is zero. At this point, the pair of atoms is at its most stable configuration

and it will remain in that position unless an external force is exerted on them. If the two

atoms are further pushed towards each other and their relative distance becomes smaller

that the optimal separation, the electrons orbitals of the two atoms start to interfere with

each other; this generates a repulsive force which grows greatly as the separation between

the atoms gets smaller.
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3.1.2. Oscillating Pair Potential

The problem with the LJ potential is its relatively limited applicability to real, complex sys-

tems. In this research, where the interest is mainly focused on how IQCs structures take

shape, accuracy is the first priority, and therefore it is important to use a potential for-

mula that accurately reproduces the interatomic interactions between particles in mate-

rials where IQCs often occur. Mihalkovič and Henley proposed for this purpose the family

of oscillating pair potentials (OPP), a "six parameters analytical form which gives a remark-

ably faithful account of many intermetallic compounds" [19]. These potentials have the

form:

V (r ) =C1r−η1 +C2r−η2 cos(kr −φ) (3.4)

The first term describes the short-range repulsion; the second captures the medium-range

behaviour (the first well’s position and depth) and the long-range damped oscillatory be-

haviour. The parameters η1 and η2 are the relative weights of the two terms, while k and φ

represent the frequency of the oscillation and the phase shift respectively.

Among the potentials in this family, the 3 wells oscillating pair potential (3w-OPP) has

been successfully adopted to robustly reproduce the self-assembly of IQCs by Engel et al.

[6]. This is expressed as follows:

V (r ) =
{

1
r 15 + 1

r 3 cos(k(r −1.25)−φ)−V (rcutoff), if r ≤ rcutoff

0 if r > rcutoff

(3.5)

This formula is obtained from the original family of equations 3.4 by setting the parameters

C1 = C2 = 1, η1 = 15 and η2 = 3, and by introducing two variations: the potential is first

truncated at the third maximum occurring in the function such that the potential consisted

of three wells, and then axially shifted to zero.
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Figure 3.3: Comparison of the original OPP family and the 3w-OPP of [6] using (k,φ) = (9,0.4). At the value for
r when the third maximum of the function is reached, the potential is truncated and it is latitudinally shifted
so that the value of V(r) settles on zero for r ≥ rcutoff.

The choice to truncate the potential after three wells was made after investigating the

robustness of the self-assembly of IQCs variating the potential range rcutoff. The range of

the potential was set at the nth maximum for different values of n. Performing different

simulations for various values of k andφ, the probabilities for forming an IQC were consid-

erably higher for n = 3 than for the other values of n tested. Because of the truncation of the

potential, for r ≥ rcutoff, V (r ) = 0 and F (r ) = 0. Then the second operation is required math-

ematically: in order for the force to be continuous at rcutoff, for r ≤ rcutoff V (r ) has to be de-

fined so that limx→r−
cutoff

V (r ) = limx→r+
cutoff

V (r ) = 0 and limx→r−
cutoff

∂V (r )
∂r = limx→r+

cutoff

∂V (r )
∂r =

0.

The parameters k and φ also influence the type of structure that forms. In [6], a param-

eter space for k = [0.38, 0.8] and φ = [5.5, 9.5] is considered, and the range for which IQC

structures assemble is investigated. Apart for intermediate values of k and high values ofφ,

in which only disordered configurations are found, the rest of the parameter space yields

particles to robustly and repeatedly self-assembled in either crystals or quasicrystals. An

illustration is given in Figure 3.4.
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Figure 3.4: Assembly map of the 3w-OPP. The red region highlights the parameter space where icosahedral
quasicrystals occur. Taken from [6].

The IQCs region in the assembly map is subdivided in three parts depending on the

density of the structure: low (LD), intermediate (ID), and high (HD) density. The LD area is

suggested to be the one where the IQCs formed are the most uniform and stable.

However, because of some problems with the optimization algorithm, it was opted to

use values of k andφ from the ID region, where the quasicrystal structures are less uniform,

but still stable. In particular, the parameters used in the simulations to obtain the results

presented in this report are (k, φ) = (8, 0.5).

3.2. Molecular Dynamics
If the potential formula represents the rule that dictates how atoms attract and repel, molec-

ular dynamics is the representation of the movement itself. First performed in the 1950s

[20], The idea behind Molecular Dynamics (MD) is that we can study the time evolution of

a N -particles system numerically by solving Newton’s equation of motion for all the parti-

cles at every time interval.

The motion of the atoms is computed by summing the forces exerted on all the atoms

at a certain time step due to the interaction potential between the particles. Integrating

the resultant force acting on each atom, the new positions and velocities are derived. Then

the procedure is repeated for the next time step, until the final time is reached. We look

more into details of what Molecular Dynamics comprises, based on the work of Frenkel
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and Smith in Understanding Molecular Simulations [21]. Consider a system of N atoms.

The procedure consists of four main steps:

Figure 3.5: Flow chart of Molecular Dynamics

1. Initialization. The algorithm starts by assigning all the atomistic properties to each

atom: position, mass, velocity, radius. In particular, the initial positions of the atoms

are chosen so that they don’t overlap, in order to avoid numerical problems due to

the extremely big values of the potential between particles at very short distances.

2. Forces calculation. This represents the most time-consuming part in the algorithm.

The current x, y, z distances between each pair on particles are computed, and then

used in the computation of the interactions using an interaction potential formula

that depends on the material being modeled. From the potential, the force is derived;

this has been thoroughly discussed in Section 3.1. The net force exerted on an atom is

then the vector sum of the individual forces arising from the interaction of that atom

with any other in the system. Performing this for all the N particles in the system, the

number of computations required becomes proportional to N (N+1)
2 =O (N 2).

3. Configuration update. The net force Fi acting on the i th atom (for i = 1, ..., N ) is

known; now the positions and the velocities of all the atoms after a certain time step

∆t can be derived. This is done by integrating the Newton’s laws of motion. Recall

that Newton’s second law states that F = m · a. The acceleration a is the second

derivative of the position r with respect to the time t . Then Newton’s law for each
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particle can be written as:

Fi = mi
∂2ri

∂t 2
(3.6)

Rearranging Equation (3.6),
∂2ri

∂t 2
= Fi (r )

mi
(3.7)

This system of equations cannot be solved analytically, therefore the solution has to

be obtained numerically using an integrator. This is a numerical algorithm that, given

the differential equation 3.7 and the approximate position r and velocity v at time t ,

calculates a good approximation for the integral of F (r ) at t +∆t assuming that over

the small increment ∆t , F is constant. There are many algorithms designed for this

purpose; the one used in the simulations in this research is the so-called Verlet algo-

rithm [22], a simple, explicit, 2nd order accurate method. The algorithm is derived

from Taylor expansions of the coordinate of a particle around time t:

r (t +∆t ) = r (t )+ r ′(t )∆t + r ′′(t )
∆t 2

2
+ r ′′′(t )

∆t 3

3!
+O (∆t )4

= r (t )+ v(t )∆t + F

2m
∆t 2 + r ′′′(t )

∆t 3

3!
+O (∆t )4

and

r (t −∆t ) = r (t )− r ′(t )∆t + r ′′(t )
∆t 2

2
− r ′′′(t )

∆t 3

3!
+O (∆t )4

= r (t )− v(t )∆t + F

2m
∆t 2 − r ′′′(t )

∆t 3

3!
+O (∆t )4

(3.8)

Summing the two equations in 3.8, it yields:

r (t +∆t )+ r (t −∆t ) = 2r (t )+ F

m
∆t 2 +O (∆t )4

that is equivalent to:

r (t +∆t ) ≈−r (t −∆t )2r (t )+ F

m
∆t 2. (3.9)

Note that the velocity is not employed in the computation of the new position. How-

ever, the velocity can be derived by subtracting the equations in 3.8 which yield:

r (t +∆t )− r (t −∆t ) = 2v(t )∆t +O (∆t 3)

or

v(t ) = r (t +∆t )− r (t −∆t )

2∆t
+O (∆t 2). (3.10)
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It is important to mention that for the approximation to be accurate, ∆t has to be

sufficiently small for the method to be numerically stable; this is not granted for any

value of ∆t , as the Verlet algorithm is an explicit method. Typically, the time steps

used are between 1 ·10−12s and 1 ·10−15s [23]. In this research, the time step used is

equal to ∆t = 0.5 ·10−14.

4. Repeat. The algorithm proceeds to the next time step and repeats the previous steps

listed. The loop will interrupt once the final time step is reached.

One more aspect of MD one can vary is the conditions under which one wants to sim-

ulate the system. These conditions are referred to as ensembles [23]. Normally, a stan-

dard MD simulation is set such that the total energy and the total momenta of the system

are conserved. Hence, the simulation is performed in a microcanonical ensemble (NV E),

where the number of particles (N ), the volume (V ), and the total energy (E) are constant.

This ensemble represents an isolated system which doesn’t exchange matter or heat with

the external environment. This however doesn’t represent the most appropriate or realis-

tic set-up for a simulation. Indeed, in real experiments it usually is very hard to maintain

the energy of the system constant. An alternative, that has also been used to perform the

simulations presented in this report, is provided by the canonical ensemble (NV T ). In this

ensemble, the particles (N ), volume (V ) and temperature (T ) are kept constant. In this case,

the system is allowed to exchange heat with the outer environment so that the temperature

stays constant.

Molecular Dynamics has some advantages over the existing experiment techniques:

first it provides access to detailed information of the quantities relative to each atom at

a very fine time resolution that could never be measured directly in reality, and it allows

to modify them to control the conditions of the system; thanks to this, it can be decided

to perturbate the system in different ways with a precision higher than any existing exper-

iment. In this project, it is extremely valuable to be able to perform Molecular Dynamics

as it allows to precisely know the position of each atom in the system, and to measure the

energies of intermediate configurations obtained during the simulations to find those for

which the potential energy is minimal, and that thus are the most stable.



4
Geometry Optimization

Once the interatomic potential and MD simulations are defined, it is possible to investigate

what are the most energetically favorable configurations that a given multi-particle system

can assume. Section 4.1 will introduce the Potential Energy Surface (PES) and explain how

the minima in this function relate to the stable configurations of the cluster. Then in Sec-

tion 4.2 different local optimization algorithms designed to find a stable equilibrium of

the cluster given an initial configuration will be presented. Finally, in Section 4.3 it will be

explained how the local optimization algorithm is utilized in the global optimization, an

algorithm that aims to find the global minimum of the system.

4.1. PES
As mentioned previously, every atomic cluster has an energy associated to it. The lower

the energy of the cluster is, the more favorable. The process used to find these particular

structures is called geometry optimization. It is based on changing the system’s geometry

(the coordinates of the atoms) to minimize the total energy of the system. Given a cluster

formed by N atoms, each pair of particles has a potential energy associated to it. Summing

the potential energies of all the possible pairs, the total potential energy of the system is

obtained. This energy is described by the potential energy surface (PES), a function de-

pending on the positions of the atoms relative to each other. The position of each atom has

three degrees of freedom, the coordinates x, y , and z. However, the PES doesn’t depend on

the absolute position of the atoms but on the position relative to each other, which causes

the system to be invariant under translation and rotation, operations that have each 3 de-

19



20 4. Geometry Optimization

grees of freedom. Hence, the PES has

3N −5 (4.1)

degrees of freedom for a linear system. For a system of two atoms, the PES is a 2-dimensional

function depending on the distance between the two atoms. Indeed, for such a system the

Potential Energy Surface corresponds to the potential energy as a function of the distance

between the two particles. Figure 4.1 shows the PES along with the configurations of the

cluster corresponding to the minima.

Figure 4.1: Minima corresponding to the minima of the potential energy surface (PES) of the 3w-OPP using
(k, φ) = (8, 0.5) for a cluster with two atoms.

For a cluster with three or more atoms, it is not possible to give a visual representation

of the potential surface as it would have to be represented in a 4+ dimensional space.

Investigating the minima of the potential energy surface will yield the structures where

the atoms settle on a mechanically stable equilibrium.
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4.2. Local Optimization

Figure 4.2: Local optimization.

In computational chemistry, geometry optimization has mostly been employed to find the

local minima, i.e. observe the energetically stable configuration that a cluster of atoms

tends to assume, given an initial configuration (see Figure 4.2). This has for example been

applied in [6] where it has been demonstrated that, using the 3w-OPP, a cluster in a random

arrangement can settle on a quasicrystalline structure.

There is a number of optimization methods designed to tackle the problem of finding

the local minima of a multivariable function. Most of them are based on the determination

of some approximation of the Hessian matrix:

H f (x) =



∂2 f
∂x2

1
(x) ∂2 f

∂x1∂x2
(x) . . . ∂2 f

∂x1∂xn
(x)

∂2 f
∂x2∂x1

(x) ∂2 f
∂x2

2
(x) . . . ∂2 f

∂x2∂xn
(x)

...
...

. . .
...

∂2 f
∂xn∂x1

(x) ∂2 f
∂xn∂x2

(x) . . . ∂2 f
∂x2

n
(x)

 (4.2)

This is then employed to compute a search direction for the minimum. One approach

widely used is the Steepest Descent, which iteratively updates the values of the indepen-

dent variables by moving in the direction opposite to the gradient ∇ f , which makes the

algorithm gradually converge to the local minimum; another popular method is the Conju-
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gate Gradient (CG), which uses, additionally to the gradient, orthogonal directions to con-

verge faster and thus optimizes efficiency. There are further many other methods like all the

Newton methods, et cetera. A more detailed description of the most popular line-search

optimization methods can be found in [24].

An alternative is provided by the algorithm proposed by Bitzek et al. [25], a simple and

powerful method based on a Molecular Dynamics scheme for structural relaxation, the so-

called Fast Inertial Relaxation Engine, or FIRE algorithm. Previously, there already existed

optimization methods obtained by modifying MD simulations: some for example mini-

mized the total energy by systematically removing kinetic energy from the system. How-

ever, they were not comparable performance-wise with the other methods previously men-

tioned and were thus not used as primary tools in research. FIRE instead has proven to

compete with popular methods for large systems such as CG and L-BFGS [24], and in the

case of CG to even overtake it [25]. The method is based on a MD simulation, with no lim-

itations on the integrator used for updating the positions. The trajectories of the particles

are continuously updated applying two readjustments on the velocities:

• velocities update:

v = (1−α)v+αF̂|v| (4.3)

where F̂ is a unit vector, and

• stop to the motion as soon as F(t ) ·v(t ) < 0, to prevent uphill motion.

4.3. Global Optimization
Knowing a local minimum is not very useful per se for the prediction of a cluster’s structure.

The number of minima on the potential energy surface of a cluster of atoms grows expo-

nentially with the number of particles, and therefore a local minimum may not be even

close to the most stable configurations that the cluster can assume. Instead, the global

minimum represents a much more insightful information, not only because it represents

the most stable configuration, but also because its energy can be used to evaluate the im-

portance of the known minima based on their energy difference.

The basic idea behind a global optimization algorithm is to start with an initial configu-

ration of particles and iteratively explore the solution space by making random changes to

the configuration. These changes can include modifying some particles’ positions, letting

the particles move under the influence of a certain temperature, or any other relevant op-

eration. There are several methods that have been designed for such purpose. Many global

optimization algorithms are based on thermodynamic principles: one example is the sim-
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ulated annealing [26], where the parameter space is explored by mimicking the annealing

process, where a material is heated and then slowly cooled to reduce defects and reach a

more ordered state. Another example is the basin hopping method [27], where the con-

figurations are perturbed by applying random changes to the system’s coordinates. These

methods come however with some limitations: first, the acceptance condition has an ex-

ponential decay for big values of ∆E which make the crossing of high barriers in the PES

extremely difficult and thus restricts the search of minima. Another problem is that many

configurations are visited repeatedly, and this may lead the algorithm to get stuck between

two configurations.

Then there is the genetics algorithm [28], inspired by the natural process of the survival

of the fittest. This algorithm looks simultaneously for different local minima starting from

various initial configurations; then parts of two or more found configurations are merged

together to create "mutated" configurations that will be then locally optimized, starting the

cycle again.

Figure 4.3: Flowchart of the Minima Hopping algorithm. Taken from [29].

For this project, the method chosen is Minima Hopping, first proposed by Stefan Goedecker

in 2004 [30]. In this method, the new configurations to be locally optimized are obtained

by running a short Molecular Dynamics simulation on the previous minimum found; this



24 4. Geometry Optimization

offers an advantage over those methods where the new initial configurations are chosen

without a physical basis. Moreover, the parameters involved in this method are relatively

few, avoiding the problem of optimizing the parameters.

Figure 4.3 offers a schematic view of the steps of the algorithm. The algorithm is formed

by two nested loops. The inner loop performs escape attempts until a new configura-

tion not previously stored as minimum is found. The outer loop then either accepts or

rejects this potential new minimum depending on the energy difference between the op-

timized configuration’s and the initial configuration’s energies. When the new minimum

is accepted, the initial configuration is updated equal to the new minimum found. An es-

cape attempt consists on running a short MD simulation (in this case of 250 time steps

∆t = 0.005 fs), then the resulting configuration is optimized locally; the local optimization

stops when it converges on a local minimum. To determine whether the minimum found

in the current local optimization is new, it is compared to the previously found minima,

stored in a database. There are multiple options for the form that the minima are stored

in: in fact, equal configurations should be recognized regardless of rotation, translation or

permutation of equivalent particles. Therefore, the configurations have to be represented

in a form that is invariant under these operations. Such an abstract representation is called

a descriptor. The database can then store and compare descriptors instead of the coordi-

nates. For sake of simplicity, in this project it was chosen to use the total potential energy

of the system: it can serve as a descriptor, because it can be determined with sufficient

accuracy to be considered as unique.

When an escape attempt fails, the temperature is increased by a factor ofβ= 1.1, Tnew =
βTold. By gradually increasing the temperature, the MD will eventually make the cluster

escape the current well and discover a new minimum. If the escape attempt is successful,

the temperature is decreased by a factor of β, i.e. Tnew = 1
β

Told, and the energy of the new

minimum is considered. A new minimum with a lower energy than the energy of the initial

configuration is always accepted and stored in the database; on the other hand, if the new

minimum has a higher energy, it is accepted only if the energy increase is below a certain

threshold Eaccept. In either case, the value of Eaccept is adjusted: if the minimum is accepted,

new Eaccept = 1
α

Eaccept and if it is rejected, new Eaccept =αEaccept, where α= 1.1.
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Diffraction Patterns

One of the fundamental tools in crystallography that has a crucial role in the analysis of

atomic structures is diffraction patterns. Diffraction occurs when a wave encounters an

obstacle or a diffracting object, leading to bending and spreading of the wave. In crystal-

lography, a structure is illuminated with a beam of X-rays; the crystal lattice diffracts the

waves that get scattered and interfere with each other, creating a pattern. These pattern are

employed to extract information about the crystal lattice illuminated. However, if struc-

tures are obtained from simulations and not real-life structures, the data available are usu-

ally only projections of the structure, images that require processing and analysis to extract

meaningful information. Fourier Transform (FT) algorithms have proven to be a powerful

tool in image processing for crystallography.

Fourier proved that any periodic function can be written without loss of information

as a weighted sum of infinite sinusoids of different frequencies . The Fourier Transform is

the mathematical technique that allows to decompose a function into its frequency com-

ponents. The Continuous Fourier Transform of a function f (x) is expressed as follows:

F (u) =
∫ ∞

−∞
f (x)e−2iπux d x (5.1)

where x is the space and u is the spatial frequency; note that the Fourier transform is a

complex number. The plot then shows the magnitude of the Fourier Transform, that is:

A(u) =
√

(Re(F (u))2 + (Im(F (u))2 (5.2)

usually represented on a logarithmic scale, for visualization purposes.
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In the context of image processing, the Fourier Transform can be used to analyze the

spatial frequencies present in an image. Practically, an image is discrete, therefore the con-

cept of a Discrete Fourier Transform (DFT) has to be introduced. The DFT equation is

defined as:

F (uk ) =
N−1∑
n=0

f (xn)e
−2πi kn

N ,

k = 0, ..., N −1.

(5.3)

Here f {xn} represents the discrete sequence of N function values, and F {uk } is the trans-

formed sequence. The DFT equation calculates the frequency components of the discrete

function and represents them as complex numbers.

Since images are two-dimensional, the Fourier Transform (FT) has to be extended to

two dimensions, both the continuous (5.4) and the discrete (5.5) form:

F (u, v) =
Ï ∞

−∞
f (x, y)e−2iπ(ux+v y) d x d y (5.4)

F (uk , v j ) =
N−1∑
n=0

M−1∑
m=0

f (xn , ym)e
−2πi kn

N e
−2πi j m

M ,

k = 0, ..., N −1,

j = 0, ..., M −1.

(5.5)

The idea is still the same, x and y are the spatial coordinates and u and v are the frequencies

along x and y respectively. With these expressions, we can find the FT of the discrete image.

(a) (b)

Figure 5.1: (a) shows the Fourier Transform of two sine waves A and B. The corresponding frequency is the
distance of the spots in the FT to the center, while the amplitude is given by the brightness of the spots. (b)
shows the sum of the two waves A and B, and its Fourier Transform. Taken from [31].

For simple sine waves with frequency k as seen in Figure 5.1a, the two-dimensional FT
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displays a peak at the center and at the two frequencies ±k . More complex images (see

Figure 5.1b) get decomposed in a more complex sum of waves with multiple directions and

different amplitudes, and their relative FT becomes less trivial. This can potentially be done

for any image.

In the context of crystallography and study of ordered structures in matter, FT are in-

teresting as they exhibit peaks at spatial frequencies of repeated texture. The FT in fact is

able to reflect the symmetries and extract the order in a given structure that might not be

directly clear to the naked eye.

Figure 5.2: Examples of diffraction patterns of clusters with different structures: a disordered cluster, a crystal
and an icosahedral quasicrystal.

Figure 5.2 depicts the differences occurring in diffraction patterns depending on the

structure considered. The pattern resulting from a disordered structure only exhibits noise;

on the other hand, the peaks in the two other patterns reveal that the analyzed structures

retain some degree of repeating order. In particular, note that in the diffraction of a crys-

tal structure it’s possible to distinguish a 4-fold axis of symmetry, while in the one of the

icosahedral quasicrystal the presence of the forbidden 5-fold axis of symmetry is evident.

In this research, the intention was to take diffraction patterns of the obtained structure

as a tool to further illustrate and analyze the results. However, it has come up that the

clusters considered weren’t big enough for the diffraction to highlight some sort of order;

therefore, this is kept as a tool that can be employed once this research is expanded.





6
Results

Now that the theory lying behind the tools utilized in this research has been thoroughly

discussed, the implementation of such methods can be addressed and the results obtained

from the simulations can be shown and discussed. The objective is to run global optimiza-

tion for clusters with different amount of atoms using both the LJ and the OPP potentials to

find for each multiple stable structures that the clusters tend to assume and compare the

differences that occur using the two different potentials.

The methods previously discussed have been implemented using the HOOMD-blue

Python package. Most of the functionalities needed were already present in this library;

an exception was the global optimization algorithm, that had to be built from scratch. The

implementations using HOOMD and the global optimization algorithm will be presented

in Section 6.1. Then the machinery needed for running the simulations was set up. How-

ever, before analyzing the results obtained from the simulations, it was necessary to make

sure that the implementations were working as intended. Thus the resulting structures

from local optimization simulations using the LJ potential were benchmarked against a

database of known LJ global minima structures; this is explained in detail in Section 6.2. Fi-

nally, simulations could be run for clusters with few atoms (Section 6.3.1) and then a higher

amount of atoms (Section 6.3.2). The latter section will also discuss the memory-managing

problems encountered when simulations were run for bigger clusters. At the end, in Sec-

tion 6.4 it is explored if and how it would be possible to obtain icosahedral quasicrystalline

structures starting from a cluster arranged in a specific initial configuration.
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6.1. Implementation

First of all, in order to put together all the methods introduced in the previous chapters and

translate them into an observable simulation of the arrangement of atoms in a system, a

software machinery was needed. For this purpose the package HOOMD-blue was used.

HOOMD-blue is a Python package 1 that performs hard particle Monte Carlo simula-

tions and Molecular Dynamics simulations of particle systems using different types of po-

tentials [32]. Among its features, its main strengths are flexibility, that allows one to control

simulation parameters, and its ability to read and write files specifically designed to store

the information relative to a cluster, that can easily and interactively be visualized and stud-

ied with the support of other software packages.

A simulation is configured by initiating a Simulation object. This object consists of a

state and of operations that are applied on that state during the simulation run.

1 cpu = hoomd.device.CPU()

2 sim = hoomd.Simulation(device=cpu , seed =1)

The state contains the particles’ properties such as box (i.e. the space where the particles

are allowed to move), positions, velocities, et cetera; operations is a set of functions aimed

to examine or modify the state. Once the simulation has just been initialized, it has no

state; this can be imported from a General Simulation Data (GSD) file:

1 sim.create_state_from_gsd(filename)

GSD is a file format specifically created for this python package. This file format stores

trajectories of the complete system state in a binary file. Moreover, a GSD file can contain

multiple frames, and thus a single file can account for the time evolution of the system. The

behavior of the simulation stored in a GSD file can be explored using the visualisation tool

OVITO (Open Visualization Tool) [33]. An ulterior tool to illustrate the structures is provided

by the diffraction patterns, presented in Chapter 5. HOOMD-blue provides a method that

can extract the diffraction pattern of a cluster’s structure stored in a GSD file by taking the

FT of the projection of such structure along the required axis. The code to create and store

such plots, given a file path and an orientation, is saved in Appendix A.5.

1Note that this project was started using the v3.10.0 version of the package, which has now advanced to the
4.0.1 version; thus in the code there might be some deprecated methods
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Figure 6.1: Interface of OVITO, when visualizing a cluster of 52 particles.

Molecular Dynamics is implemented in HOOMD-blue by appending to the operations

of the state an integrator object. This integrator must be given a time step as a parameter,

and a method (which corresponds to the ensembles mentioned in Section 3.2) and forces

(e.g. LJ, OPP) must be appended.

1 integrator = hoomd.md.Integrator(dt =0.005)

2 integrator.forces.append(pot)

3 nvt = hoomd.md.methods.NVT(kT=kT, filter=hoomd.filter.All(), tau=tau)

4 integrator.methods.append(nvt)

5 sim.operations.integrator = integrator

When a simulation of n time steps is instantiated, the integrator computes the net force

acting on each particle of the system, and based on that it updates the simulation state

on the next time step; as said before, the state includes information regarding the location

and velocities of the particles, but also for example the thermodynamic properties of the

system.

The forces are derived from one of the several different pair potential energies provided

by HOOMD-blue. While pair potentials are nominally defined between all pairs of parti-

cles, MD simulations evaluate short ranged pair potentials only for r < rcutoff to make the

computation fast through the use of a neighbor list. Both LJ and OPP potentials are already

provided by HOOMD-blue and the relative pair forces can be instantiated by using:

1 opp = hoomd.md.pair.OPP(nlist=cell , default_r_cut=range)
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2 lj = hoomd.md.pair.LJ(nlist=cell)

However, if one wants to use a less known pair potential, there is the possibility to imple-

ment the desired potential and the relative forces manually using the base class of the pair

forces [34]:

1 my_pot = hoomd.md.pair.Pair(nlist , default_r_cut=None , default_r_on

=0.0, mode='none')

The local optimization is set up in a very similar way to a normal MD simulation; how-

ever, instead of assigning to the integrator of the simulation a standard Integrator object, it

uses the energy minimizer FIRE, the local optimization algorithm presented in Section 4.2.

1 fire = hoomd.md.minimize.FIRE(dt=dt , force_tol =1e-2, angmom_tol =1e-1,

energy_tol =1e-2, min_steps_conv =1)

2 fire.forces.append(pot)

3 fire.methods.append(hoomd.md.methods.NVE(hoomd.filter.All()))

4 sim.operations.integrator = fire

Then the simulation doesn’t run for a fixed amount of time steps, but it stops only once the

method has converged:

1 while not(fire.converged):

2 sim.run (1)

The functions created to run Molecular Dynamics and local optimization can be found

in Appendix A.3, along with an explanation of their functioning. These functions are used

as building blocks for the global optimization algorithm, that is not pre-implemented in

HOOMD-blue. The algorithm chosen is Minima Hopping. The full code can be found in

Appendix A.4. The way this algorithm works has thoroughly been explained in Section 4.3.

It is important to note that when checking if a minimum is already present in the history,

the energies cannot be compared absolutely; that means, we cannot say that two minima

are the same if and only if E1 = E2. This comes from the fact that, given a cluster of a

certain size, the value of the energy obtained from the simulation could be slightly different

from the one given by the database, due to rounding corrections the computer has to do

when computing the energy of the configuration. Therefore instead of using an equality,

we consider two minima the same if the difference ∆E = |E1 −E2| is small enough to be

neglectable, i.e. ∆E < hi st_check. The parameter hi st_check has a very small value that

depends on the size of the cluster: for a bigger cluster, there are more particles that can

have small neglectable differences, thus a bigger buffer is needed. The final choice was to

set hi st_check equal to 0.5 for clusters of size N ≤ 50, 1 for 50 < N ≤ 500 and 5 for N > 500.

There is one aspect of the algorithm that has not been covered yet: when does the al-

gorithm stop looking for new minima? Ideally, one would want to find all or most of the
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minima of the given cluster of particles. In practice, this gets increasingly difficult, since the

number of minima grows exponentially with number of atoms in the cluster [28]. Moreover,

our interest lies not quite in the knowledge of the most stable configuration (i.e. the global

minimum), but rather in studying multiple stable configurations that the clusters can as-

sume (i.e. different local minima). After these considerations, it was decided to stop the

search of new local minima once a certain quota of different minima was met; this quota

depends on the size of the cluster being studied. The algorithm is interrupted for small

clusters (N ≤ 500) after 15 different are found, and for bigger clusters (N > 500) after 20.

Therefore this algorithm, rather than being used for its original purpose to find the global

minimum, is employed to find different stable configurations, so different local minima.

It does not guarantee to find the global minimum, but from the structures found it can

be asserted with a certain degree of confidence how stable is a certain configuration: for

example, if the cluster keeps going back to structures very similar to each other, it can be

concluded that these structure are located in a deep well and represent thus a quite stable

configuration.

Consequently, it becomes very relevant to the results obtained, the configuration that

we start the optimization from. The first batch of simulations, those discussed in Sec-

tion 6.3, have been run starting from configurations where the atoms are arranged in a

sort of single "cloud"; these were taken from the Cambridge Energy Landscape Database

[35], presented in Section 6.2. Afterwards, in Section 6.4, the simulations are started from

different configurations formed instead by multiple building blocks.

6.2. Benchmark: Cambridge Database

The Cambridge Energy Landscape is a database that contains the results of global opti-

mizations for a variety of systems in a downloadable form. In particular, it contains the

coordinates of the global minima obtained using the Basin Hopping algorithm and the cor-

responding total energy of Lennard-Jones clusters with sizes N = 3-150, 561-1000. The work

done on the clusters of size N < 110 has been published in [27]. It has been shown in previ-

ous studies that the dominant structural pattern in LJ clusters is represented by the Mackay

icosahedron [36]. Complete icosahedral structures are possible, for example, for N = 13, 55,

135, 147; for the intermediate sizes, the clusters tend to form an icosahedral core covered

by an incomplete layer. This is clearly visualized in Figure 6.2 and Figure 6.3.
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Figure 6.2: Icosahedral global minima for sizes N = 13, 19, 31 formed by growth of a layer over the 13-atom
Mackay icosahedron and for sizes N = 55, 69, 75 formed by growth of a layer over the 55-atom Mackay icosa-
hedron. The images of the structures are taken from [35] and from [37].

Figure 6.3: Perspective of the global minima of two clusters with a perfect icosahedral shape, 55 and 147, and
two intermediate clusters, 75 and 90. In the clusters with 75 and 90 particles it is clear that the "exceeding"
particles are forming a layer around the 55 Mackay icosahedron to tend to the 147 Mackay icosahedron.

Note that in Figure 6.3 we can also see the tight correlation between the shape that the

LJ clusters get arranged into and the plot of the potential formula: the LJ potential has one

and only one minimum in its function, thus only one distance ropti where the particles tend

to stabilize on; therefore, it only feels logical that the particles arrange themselves radially

around a center in circles that are separated by the same distance ropti.

Being these structures in the Cambridge Landscape Database well-recognized global

minima, they can be used to study whether the methods implemented work as they should.

for the sake of brevity, these clusters will be referred to as "Cambridge Clusters" from now

on. The validation has been performed for a sample of clusters of different sizes out the

839 available. First of all, the Cambridge Clusters have been downloaded and converted

into GSD files, using the code in Appendix A.1. After that, for each of the sizes considered
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for the validation, the relative cambridge file has been opened and the coordinates of one

or more random particles have been disturbed, making sure that the disturbed particles do

not overlap with other particles and that they are still in the range of action of the potential;

the code to perform this is shown in Appendix A.2. Therefore, the structure of the cluster

becomes different from the original one, but close enough that it is expected to be mapped

back to the Cambridge Cluster’s structure once local optimization is performed on it.

Figure 6.4: Cambridge Cluster of 13 atoms, and the resulting configurations after disturbing the positions of
1, 3, and 5 particles.

The configuration is locally optimized, and the result is compared to the Cambridge

Cluster’s configuration. A visual comparison already suggests that the found structure is

the same as the cambridge one; however, a proper validation is performed by using the

energies of the two structures. The two energies are subtracted and the difference ∆E is

studied, adopting the same approach used when checking if a structure is already present

in the history in the global optimization algorithm: if ∆E < hi st_check, then the two con-

figurations are considered equal. For all the sizes considered, it yielded that the Cambridge

Clusters and those obtained by running the simulations were indeed the same.
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Potential energy of the minima configurations (ϵ)

Cluster size Cambridge Cluster Global optimization

algorithm

∆E

13 -44.3268 -44.3268 0.0000

26 -108.3156 -107.9741 0.3415

38 -173.9284 -173.8492 0.0792

52 -258.2300 -258.0132 0.2168

75 -397.4923 -396.5559 0.9364

110 -621.7882 -620.8543 0.9339

135 -790.2781 -789.4523 0.8258

Furthermore, running global optimization on these clusters, it always resulted that the

other minima configurations found had all a total energy higher than that of the cambridge

configuration, as it should be since that represents the global minimum of the system while

the newly found configurations are only local minima. These results are enough to con-

clude that the methods implement provide the expected results.

6.3. Optimization of Cambridge Clusters

6.3.1. Small Clusters

In this section the results obtained running the global optimization using both the Lennard-

Jones and the Oscillating Pair Potentials on the Cambridge Clusters of sizes N ≤ 500 are

presented.
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Figure 6.5: Structures of some minima found when globally optimizing the 13 atoms Cambridge Cluster.

For the simulations run using the Lennard-Jones potential, as it was expected, the lowest-

energy minimum found corresponded to the configuration stored in the Cambridge database,

and the rest of the minima had a total energy higher than that given in the Cambridge Land-

scape Database. The total energy of the configurations corresponding to the minima found

exhibited an increasing trend as the global optimization went on. Figure 6.5 shows the plot

of energies of the 15 minima of the cluster with 13 atoms found during global optimization,

along with some structures.

Initially, the short Molecular Dynamics simulations disturbed the structure such that

most of the particles went back to their position in the global minimum configuration,

while few of them instead created some bonds with neighboring particles and stabilized

on the shell of the global minimum configuration. When the global optimization algorithm

kept seeking more configurations, the local minima found became progressively more dis-

ordered, see Figure 6.6, and some particles started to have no interactions with the rest;

these structure represent the least energetically-favourable stable configurations.
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Figure 6.6: Structure and diffraction patterns of the 1st found and last found minima of a cluster of 135 par-
ticles. For sufficiently big clusters, the symmetries in the structure can be seen from the diffraction patterns.
In the fist minimum (which is the global minimum) it is clearly distinguishable a 10-fold symmetry, typical of
icosahedral order. The diffraction of the last minimum on the other hand is much more confused.

Using the Oscillating Pair Potential, already from small clusters it is clear that the ob-

tained results are quite different. The cluster is not very stable on the configuration stored

in the Cambridge Landscape Database. Initially it swells, imputable to the fact that, in

the PES of the OPP, the Cambridge Cluster’s configuration is located in the well that corre-

sponds to a slightly bigger distance (r = 1.621) than the ropti = 6
p

2 = 1.122 of the Lennard-

Jones potential; after that, in the minima configurations found, the particles don’t tend

to form an unique cloud as LJ clusters did, but instead arrange themselves into multiple

circular configurations(see Figure 6.7b). This tendency can be explained considering the

formula of the oscillating pair potential: as seen in Section 3.1.2, the OPP has three wells,

i.e. three optimal distances where the potential energy exhibits a minimum. Therefore,

when moved around by the Molecular Dynamics simulations, it is more energy-favourable

for the particles not to strive to go back to the global minima configuration where there

is one predominant distance between the particles that is ropti, instead there are more in-

termediate stable configurations where different distances appear. Consider for example a

cluster of 26 particles, shown in Figure 6.7a.
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(a)

(b)

Figure 6.7: (a) shows a cluster of 26 particles and the locally optimized structures using LJ and OPP. (b) shows
clusters of different sizes optimized using OPP, highlighting the tendency of the particles to arrange in multi-
ple circles.

The structure on the left comes from an intermediate step of the global optimization

performed using OPP, it is the configuration resulting from a short MD simulation per-

formed on a minimum structure; the two images on the right depict the structures it settles

onto when locally optimized using LJ and using OPP. In the LJ structure, it can be clearly

recognized a core that is being covered by an overlayer, while in the structure found us-

ing OPP, the particle tend to arrange themselves not in a unique cloud but in more circular

structures attached to each other. This kind of arrangement becomes more evident as the

size of the cluster increases, as it can be seen in Figure 6.7b.
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6.3.2. Big Clusters

When it was tried to perform the same global optimization for bigger clusters (N > 500),

the program encountered memory-managing issues. In fact, the bigger the cluster’s size,

the more memory needed to store all the trajectories of the MD simulations and the mini-

mization processes. For clusters of size N > 500, this caused the process to be killed as the

memory request exceeded 8 Gigabytes (that is the size of the RAM in the local machine)

before the number of requested minima was reached. This is partially caused by the use

of a high-level language like Python, that has a lot of overhead time, but also by the fact

that the routines implemented require a lot of memory. The problem was partially solved

by moving the simulations on the HPC DelftBlue [38]; in this way the resources that could

be allocated for the simulations were significantly increased. It was created a submission

script (which can be found in Appendix A.6) that called the global optimization routine for

a given cluster size and potential, and allocated for the job 16 Gigabytes of memory:

1 #SBATCH --cpus -per -task=4 # number of cores

2 #SBATCH --mem -per -cpu=4G # number of GB per core

Using DelftBlue, the problem of running out of memory was solved and the global opti-

mization could successfully conclude to find 20 minima for all the sizes tested, that went

up to 1000 particles. Furthermore, it was investigated how advantageous could be the use

of the HPC over the local machine. Figure 6.8 shows the wall-clock time for running global

optimization with OPP for different cluster sizes on the local machine and on the HPC using

a varying amount of cores.
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Figure 6.8: Histogram of the wall-clock time taken for the global optimization runs on clusters of sizes N = 13,
52, 135, 310, 500.

For small sizes, the use of the HPC is not beneficial; the wall-clock time of the runs on

the local machine has an average of 58 seconds, while on DelftBlue the average is more than

doubled, at least 202 seconds (average using 8 cores). For clusters over 500 particles, it is not

possible to make a comparison as the RAM requirements are too large for a local machine.

It is speculated that by the time that the parallelization possible in DelftBlue would actually

have an impact on the wall-clock time, the RAM of the local machine goes out of memory,

thus that is the reason why it is not possible to see any improvement. Moreover, note that

there isn’t a significant improvement in the wall-clock time when the number of cores used

is increased, i.e. it doesn’t matter how many cores are allocated; this is one more proof

that this is not a computation-bound program, but primarily a memory-bound program.

To conclude, the routines implemented are found to be quite memory-inefficient; if one

wants to conduct further studies using this code, this has to be fixed.

Analyzing the results obtained for the big clusters, it was noticed the same tendency

described in Section 6.3.1, in which the LJ minima stay arranged in one big cloud, and the

OPP minima tend to form multiple circles; as the cluster gets bigger, though, the circular

structures do not involve the full configuration but are spread, see Figure 6.9.
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Figure 6.9: LJ global minimum and two OPP minima found during global optimization of a cluster of 550
particles, performed on DelftBlue.

However, for clusters of size N ≥ 650, another problem arose: the configurations of

minima found didn’t deviate substantially from the Cambridge Clusters. This meant that

the portion of the Potential Energy Surface investigated was but a really limited fraction of

the total surface. Three possibles fixes have been identified: first of all, in order to have a

more complete representation of the PES, the minima requested in the global optimization

should be many more. Moreover, in order to have significantly different structures, the

threshold energy difference hi st_check to consider two minima configurations different

should have been set higher. Finally, the particles can be allowed to deviate more from the

initial configuration by increasing the temperature used in the MD simulations.
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6.4. Growth of IQCs Structures
When running global optimization on the Cambridge Clusters, it has been seen that the two

potential formula considered deliver different stable configurations: the clusters optimized

with LJ tend to form a single cloud while the OPP makes the particles arrange themselves

into multiple circular structures. However, there haven’t been found structure that clearly

represent an icosahedral quasicrystal; there could be multiple reasons for that: for small

clusters, there aren’t enough particles to actually reproduce some long range order, while

for bigger clusters the global optimization algorithm implemented doesn’t explore a wide

enough portion of the Potential Energy Surface of the cluster. Therefore alternative testing

options had to be explored. As mentioned in Section 6.1, it is very relevant for the results

obtained the structure that we start the global optimization from. Therefore it was inves-

tigated what would happen if, instead of taking as starting configuration the Cambridge

Clusters, in which the atoms form a single cloud, we construct ourselves the initial config-

uration by arranging the system into multiple blocks with icosahedral symmetry put next

to each other. One would expect that employing the Lennard-Jones potential will still make

the particle tend to coalesce back together into one single cloud; however, it will be inter-

esting to see if using the Oscillating Pair Potential would instead make the particles keep

the icosahedral symmetry.

Figure 6.10: Types of multiple blocks configurations used as starting point for the global optimization, com-
posed by seven blocks of the Cambridge Cluster of 13 atoms. The highlighted particles represent the starting
unit block.

First of all, these configurations had to be constructed; for this, a number of different ar-

rangements of the building blocks has been explored. It was created a function (which can

be found in Appendix A.7) that would create and store in a GSD file a new configuration,

given the size of the Cambridge Cluster taken as building block N _or i g i nal , the number

of blocks desired cluster s, and a certain type of arrangement t y pe_con f i ; the possibil-
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ities considered for the type of arrangements were to create a line, a double line, a plane,

or a three-dimensional configuration. These different arrangements can be visualized in

Figure 6.10. For the simulations, it was decided to use as building block the Cambridge

Cluster of 13 atoms, which is known to have a perfect icosahedral shape, as explained in

Section 6.2. Then it was created a submission script, shown in Appendix A.8 that called a

global optimization routine, similar to the one presented before but adapted to first initial-

ize the multiple clusters’ configurations; this routine executed the optimization given the

desired initial configuration and the potential wanted. The results obtained met our ex-

pectations. Figure 6.11 displays an example of LJ and OPP minima and the corresponding

starting configuration. The differences will be discussed below. Note that the results shown

here will be only those yielded by a cluster of 91 atoms, formed by seven blocks of 13 atoms

each; other clusters with a different size (i.e. built with a different amount of blocks of 13

atoms) had very similar behavior.

Figure 6.11: Structures of selected minima when optimizing different configuration of 7 blocks of 13 atoms
(in total 91 atoms) using LJ versus using OPP.

Using the Lennard-Jones potential, the clusters consistently tended to form a single

cloud, independently from the configuration the global optimization started from; this held

even when the blocks were arranged in a line, as it can be seen in Figure 6.12.
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Figure 6.12: Structures of selected minima when the line configuration of 7 blocks of 13 atoms (in total 91
atoms) was globally optimized using LJ.

(a) (b)

Figure 6.13: Different configurations assumed by a cluster of 91 particles. (a) reproduces the LJ global min-
imum stored in the Cambridge Energy Landscape Database, and (b) shows one of the minima structures
found using OPP; the multiple circular structures can be clearly distinguished.

At first the blocks kept their shape but the line folded onto itself; once the blocks got

agglomerated into a single cloud, they started to merged with each other until the borders

of the single blocks were pretty much indistinguishable and the particles got arranged in

a cluster actually quite similar to the Cambridge Cluster of 91 atoms (see Figure 6.13a),

very close both in shape and energy (with a difference of ≈ 20 ϵ). The only significant
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difference noticed changing the disposition of the blocks when using LJ was the trend of

the total energy of the minima found by the global optimization algorithm, but this can

be easily explained: a cluster where the blocks are already agglomerated (3-dimensional

configuration) will have a much more favourable energy than the cluster where the blocks

are arranged in a line, therefore the first one will not have significant change of energies

between the minima while the latter will exhibit a significant drop. The resulting stable

configurations are however the same.

On the other hand, when using the Oscillating Pair Potential, the starting configuration

played a major role for the results. In general, the most energetically-favourable structures

were given by the starting configurations that were built with the icosahedral clusters of 13

atoms; in particular, the lowest energy was found to belong to the cluster with the blocks

arrange in a plane. As the MD simulations disturbed the configurations more and more, the

particles didn’t spread out, but roughly maintained the type of configuration (in Figure 6.14

the line) initially given, and the blocks in the structure merged together and formed the

circular arrangements that were already seen previously.

Figure 6.14: Structures of some minima when the line configuration of 7 blocks of 13 atoms (in total 91 atoms)
was globally optimized using OPP.

It is therefore quite interesting to note how a system governed by the OPP potential

tends to keep the general shape given initially to the cluster, but still forms circular sub-

structures attached to each other.
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Conclusions and Outlook

In this chapter the findings of this project are summarized, and some recommendations

are provided to improve and expand the results of this research.

The purpose of this project was to improve the current understanding of the forma-

tion of quasicrystals. To this end, two methods were used: global geometry optimization

and atomic simulations with the Oscillating Pair Potential. These methods had already

been widely employed separately; global geometry optimization to identify the multiple

minima configurations of a cluster of atoms and eventually its global minimum, and the

Oscillating Pair Potential to model consistently the formation of IQCs structures in atomic

clusters. However, they hadn’t been yet combined together to investigate what are the en-

ergetically stable structures that can take shape into quasicrystalline materials and lead to

the formation of non-periodic long-range order, proper of quasicrystals. Global geometry

optimization allowed us to see different stable stages of the assembly of the atoms, and to

distinguish among them the most energetically favourable configurations. The Oscillating

Pair Potential proved to indeed be able to make clusters that tend to arrange into structures

that exhibit some kind of order of multiple substructures, especially compared to the re-

sults yielded by a standard potential formula like the Lennard-Jones potential: while using

LJ the particles always tried to keep the same distance between each other and to group

around the same center, with OPP, no matter the starting configuration, the atoms always

tended to settle on circular substructures attached to each other. Moreover, it was explored

how engineering the structure of the cluster at the start would impact the results obtained.

It was found that if a system governed by the OPP potential is manually built by arranging

clusters of atoms in a certain shape, this tends to keep its general shape unaltered while

47
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still forming the circular substructures attached to each other. This could have important

implications: if it is known that arranging groups of atoms with an icosahedral symmetry

in certain shapes, the structure doesn’t deviate significantly, this could potentially be used

to make clusters self-assemble into quasicrystals.

There is however room for improvement. The results could not be validated using

diffraction patterns, a widely known and used tool in the study of crystallography: the clus-

ters investigated were too small to show a significant order when taking the FT of one pro-

jection of their structure. Another aspect to improve is the global optimization algorithm.

First of all, for bigger clusters a much higher number of minima has to be obtained; the

20 now provided represents but a small fraction of all the minima configurations possible,

and they don’t deviate much from the initial configuration, from which then the results are

very dependent. This can be done only once the memory-managing issue of the routine

is solved; for now, this poses a hard limit on the amount of minima structures that can be

investigated for one cluster.

For continuations after this study, it is recommended to first fix the aforementioned

problems. Once the global optimization algorithm works efficiently, it would be useful to

test for bigger clusters with sizes ranging 1000 < N < 5000 and investigate whether recog-

nizable symmetries would appear on the diffraction patterns of such structures. It would

also be interesting to expand on the possibility to arrange atoms in pre-built blocks that are

favourable to easily settle on a long-range ordered structure.
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A
Code

A.1. Create Configurations in GSD Files from Cambridge Database

1 import hoomd

2 import gsd.hoomd

3 import matplotlib

4 import numpy as np

5 import os

6 import sys

7 import glob

8 import matplotlib.pyplot as plt

9

10 for path in glob.glob(os.path.join(os.getcwd ()+'/cambridge/txt -files/',

'*new.TXT')):

11 print(path)

12 os.remove(path)

13 for path in glob.glob(os.path.join(os.getcwd ()+'/cambridge/txt -files/',

'*_old.TXT')):

14 print(path)

15 os.remove(path)

16 for path in glob.glob(os.path.join(os.getcwd ()+'/cambridge/txt -files/',

'*txt')):

17 print(path)

18 os.remove(path)

19

20 # load N_particles and trajectories to list position from text files

21 def load_traj(filename , start_dir):
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22 fd = open(start_dir+filename , "r")

23 position = list()

24 # for traj >150, the first line is empty so exclude it

25 empty_line=False

26 file = fd.readlines ()

27 N=len(file)

28 if N>150:

29 empty_line=True

30 for line in file:

31 if not empty_line:

32 coord = [float(i) for i in line.split()]

33 position.append(coord)

34 empty_line=False

35 return position

36

37 # function to create gsd files from txt files ,

38 # giving parent directory and target directory

39 def create_gsd(start_dir , end_dir):

40 if not os.path.isdir(end_dir):

41 os.makedirs(end_dir)

42 for filename in os.listdir(start_dir):

43 # create snapshot

44 traj = load_traj(filename , start_dir)

45 N_particles = len(traj)

46 snapshot = gsd.hoomd.Snapshot ()

47 snapshot.particles.N = N_particles

48 snapshot.particles.position = traj [0: N_particles]

49 dia = 1.9

50 snapshot.particles.diameter = np.repeat(dia ,N_particles)

51 pos = snapshot.particles.position

52 snapshot.particles.typeid = [0] * N_particles

53 if N_particles <=50:

54 L = 10

55 else:

56 L=N_particles /5

57 snapshot.configuration.box = [L, L, L, 0, 0, 0] # box=10 too

small for big numbers

58 # write snapshot to cambridge -N=N_particles.gsd in folder

cambgridge -gsd

59 with gsd.hoomd.open(name=end_dir+str(filename)+'.gsd', mode='wb

') as f:

60 f.append(snapshot)

61 return
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62 # create directory to store cambridge gsd files

63 create_gsd(os.getcwd ()+"/cambridge/txt -files/", os.getcwd ()+"/cambridge

/initial -configurations/")

A.2. Disturb Particles

1 import matplotlib

2 import numpy

3 import random

4

5 # check if particles overlap

6 def is_overlapping(elt , pos , dia):

7 dia = 1.9 # if particles closer than 0.95 to each other , lj and opp

have numerical problems

8 crash = False

9 for i in range(len(pos)):

10 dist = numpy.sqrt((elt[0]-pos[i][0]) **2+( elt[1]-pos[i][1]) **2+(

elt[2]-pos[i][2]) **2)

11 if dist <=0.5* dia: # radius particles

12 crash = True

13 break

14 i=0

15 return crash , i, dist

16

17 # move arbitrarily 1 particle given a snapshot of a simulation

18 def disturb_1particle(snapshot , dia):

19 pos = snapshot.particles.position

20 index1 = random.randint(0, pos.shape [0] -1)

21 elt1 = pos[index1]

22 pos = numpy.delete(pos , index1 , 0)

23 snapshot.particles.position[index1] += numpy.array ([0.5 ,0.5 ,0.5]) #

add 0.5 to each coordinate

24 j=0

25 overlaps , crash_i , dist = is_overlapping(snapshot.particles.

position[index1], pos , dia)

26 while overlaps: #enters if particle at index1 overlaps with some

other

27 snapshot.particles.position[index1 ][j%3] += 0.1 # add 0.1 to

ONLY ONE coordinate

28 j+=1

29 overlaps , crash_i , dist = is_overlapping(snapshot.particles.

position[index1], pos , dia)
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30 return snapshot

31

32 # function that opens the file fn in the cambridge folder , disturbs it

k times , and saves the new comfiguration in the disturbed -cambridge

folder

33 def disturb_cambridge(fn , k):

34 if not os.path.isdir(os.getcwd ()+"/disturbed -cambridge/"):

35 os.makedirs(os.getcwd ()+"/disturbed -cambridge/")

36 if not os.path.isdir(os.getcwd ()+"/disturbed -cambridge/initial -

configurations/"):

37 os.makedirs(os.getcwd ()+"/disturbed -cambridge/initial -

configurations/")

38 cpu = hoomd.device.CPU()

39 sim = hoomd.Simulation(device=cpu , seed =1)

40 sim.create_state_from_gsd(filename=os.getcwd ()+"/cambridge/initial -

configurations/"+str(fn)+".gsd")

41 snapshot = sim.state.get_snapshot ()

42 for j in range(k): # move randomly k particles

43 snapshot = disturb_1particle(snapshot , dia) # object of type

hoomd.snapshot.Snapshot

44 disturbed_snapshot = gsd.hoomd.Snapshot ()

45 disturbed_snapshot.particles.position = snapshot.particles.position

46 disturbed_snapshot.particles.N = snapshot.particles.N

47 disturbed_snapshot.particles.diameter = snapshot.particles.diameter

48 disturbed_snapshot.particles.typeid = snapshot.particles.typeid

49 disturbed_snapshot.configuration.box = [50,50,50,0,0,0]

50 with gsd.hoomd.open(name=os.getcwd ()+"/disturbed -cambridge/initial -

configurations/"+str(fn)+'-dist -'+str(k)+'-times.gsd', mode='wb')

as f:

51 f.append(disturbed_snapshot)

52 return

A.3. MD and Local Optimization Functions

1 import itertools

2 import math

3 import gsd.hoomd

4 import hoomd

5 import matplotlib.pyplot as plt

6 import numpy

7 import os

8 import fresnel
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9 import warnings

10 warnings.filterwarnings('ignore ')

11

12 ##############

13 # POTENTIALS #

14 ##############

15 def opp_pot(range , k, phi):

16 cell = hoomd.md.nlist.Cell(buffer =0)

17 opp = hoomd.md.pair.OPP(nlist=cell , default_r_cut=range)

18 opp.params [('A', 'A')] = {'C1': 1., 'C2': 1., 'eta1': 15,

19 'eta2': 3, 'k': k, 'phi': phi}

20 opp.r_cut [('A', 'A')] = range

21 return opp

22

23 # compute range OPP

24 def OPP_range(r, rmin , rmax , k, phi):

25 cos = numpy.cos(k * (r - 1.25) - phi)

26 sin = numpy.sin(k * (r - 1.25) - phi)

27 V = numpy.power(r, -15) + cos * numpy.power(r, -3)

28 F = 15.0 * numpy.power(r, -16) + 3.0 * cos * numpy.power(r, -4) + k

* sin * numpy.power(r, -3)

29 return (V, F)

30 # Determine the potential range by searching for extrema

31 def determineRange(k, phi):

32 r = 0.5

33 extremaNum = 0

34 force1 = OPP_range(r, 0, 0, k, phi)[1]

35 while (extremaNum < 6 and r < 5.0):

36 r += 1e-5

37 force2 = OPP_range(r, 0, 0, k, phi)[1]

38 if (force1 * force2 < 0.0):

39 extremaNum += 1

40 force1 = force2

41 return r

42

43 def lj_pot ():

44 cell = hoomd.md.nlist.Cell(buffer =0)

45 lj = hoomd.md.pair.LJ(nlist=cell)

46 lj.params [('A', 'A')] = dict(epsilon=1, sigma =1)

47 lj.r_cut [('A', 'A')] = 2.5

48 return lj

49

50 ######################
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51 # MOLECULAR DYNAMICS #

52 ######################

53 def setup_nvt(sim , pot , kT, tau):

54 integrator = hoomd.md.Integrator(dt =0.005)

55 #integrator.forces.append(lj_pot ())

56 integrator.forces.append(pot)

57 nvt = hoomd.md.methods.NVT(kT=kT, filter=hoomd.filter.All(), tau=

tau)

58 integrator.methods.append(nvt)

59 sim.operations.integrator = integrator

60 return integrator

61

62 def setup_fire(sim ,pot ,dt):

63 fire = hoomd.md.minimize.FIRE(dt=dt , force_tol =1e-2, angmom_tol =1e

-1, energy_tol =1e-2, min_steps_conv =1)

64 fire.forces.append(pot)

65 fire.methods.append(hoomd.md.methods.NVE(hoomd.filter.All()))

66 sim.operations.integrator = fire

67 return fire

68

69 def run_MD(fn, pot , k, phi , range , kT, tau , nsteps , j):

70 cpu = hoomd.device.CPU()

71 sim = hoomd.Simulation(device=cpu , seed =1)

72 sim.create_state_from_gsd(filename=fn)

73 snapshot=sim.state.get_snapshot ()

74 N=snapshot.particles.N

75 md_dir=os.getcwd ()+'/global -opti/'+pot+'/'+str(N)+'/md/'

76 if not os.path.isdir(md_dir):

77 os.makedirs(md_dir)

78 if pot=='opp -ld' or pot=='opp -id':

79 pot_energy=opp_pot(range , k, phi)

80 elif pot=='lj':

81 pot_energy=lj_pot ()

82 setup_nvt(sim , pot_energy , kT, tau)

83 sim.state.thermalize_particle_momenta(filter=hoomd.filter.All(), kT

=1.5)

84 thermodynamic_properties = hoomd.md.compute.ThermodynamicQuantities

(filter=hoomd.filter.All())

85 sim.operations.computes.append(thermodynamic_properties)

86 sim.run (0)

87

88 logger = hoomd.logging.Logger ()

89 logger.add(sim)
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90 logger.add(thermodynamic_properties)

91 logger.add(pot_energy , quantities =['energies ', 'forces '])

92 gsd_writer = hoomd.write.GSD(filename=md_dir+'md -on -minimum -'+str(j

)+'.gsd', trigger=hoomd.trigger.Periodic (1), mode='wb', filter=

hoomd.filter.All(), log=logger)

93 sim.operations.writers.append(gsd_writer)

94 gsd_writer.log=logger

95 sim.run(nsteps +1)

96 del sim , gsd_writer , logger , thermodynamic_properties

97

98 # plot energy during molecular dynamics

99 #traj = gsd.hoomd.open(md_dir+'md -on -minimum -'+str(j)+'.gsd ', 'rb ')

100 #timestep =[]

101 #potential_energy =[]

102 #for frame in traj:

103 # timestep.append(frame.configuration.step)

104 # potential_energy.append(

105 # frame.log['md/compute/ThermodynamicQuantities/

potential_energy '][0])

106

107

108 #fig , ax = plt.subplots ()

109 #ax.plot(timestep , potential_energy)

110 #ax.set_title('potential energy during molecular dynamics using '+

pot+' for '+str(N)+' particles ')

111 #ax.set_xlabel('timestep ')

112 #ax.set_ylabel('potential energy ')

113 #fig.savefig(md_dir +"potential -energy -md-on-minimum -"+ str(j))

114 #del timestep , walltime , potential_energy , traj

115 return

116

117 ###########################

118 # OPTIMIZE LOCAL GEOMETRY #

119 ###########################

120 def optimize_local(filename , start_dir , pot , k, phi , range , j):

121 cpu = hoomd.device.CPU()

122 sim = hoomd.Simulation(device=cpu , seed =1)

123 sim.create_state_from_gsd(start_dir+filename)

124 init_snapshot = sim.state.get_snapshot ()

125 N=init_snapshot.particles.N

126 minima_dir=os.getcwd ()+"/global -opti/"+pot+'/'+str(N)+"/minima/"

127 if not os.path.isdir(minima_dir):

128 os.makedirs(minima_dir)



60 A. Code

129 if pot=='opp -ld' or pot=='opp -id':

130 pot_energy=opp_pot(range , k, phi)

131 dt=0.05

132 elif pot=='lj':

133 pot_energy=lj_pot ()

134 if N>150:

135 dt=0.04

136 else:

137 dt=0.05

138 fire = setup_fire(sim , pot_energy , dt) # set up fire as integrator

of sim using potential 'pot'

139 thermodynamic_properties=hoomd.md.compute.ThermodynamicQuantities(

filter=hoomd.filter.All())

140 sim.operations.computes.append(thermodynamic_properties)

141 logger = hoomd.logging.Logger ()

142 logger.add(sim)

143 logger.add(thermodynamic_properties)

144 logger.add(pot_energy , quantities =['energies ', 'forces '])

145 gsd_writer = hoomd.write.GSD(filename=minima_dir+'unsorted -minimum -

'+str(j), trigger=hoomd.trigger.Periodic (1), mode='wb', filter=

hoomd.filter.All(), log=logger)

146 sim.operations.writers.append(gsd_writer)

147 gsd_writer.log=logger

148 i=0

149 while not(fire.converged):

150 i+=1

151 sim.run (1)

152 #print(N, "particles converged in ", i, "steps .")

153 del sim , gsd_writer , logger , thermodynamic_properties

154 traj = gsd.hoomd.open(minima_dir+'unsorted -minimum -'+str(j), 'rb')

155 timestep =[]

156 potential_energy =[]

157 for frame in traj:

158 timestep.append(frame.configuration.step)

159 potential_energy.append(frame.log['md/compute/

ThermodynamicQuantities/potential_energy '][0])

160 fig , ax = plt.subplots ()

161 ax.plot(timestep , potential_energy)

162 ax.set_title('potential energy during local optimization using '+

pot+' for '+str(N)+' particles ')

163 ax.set_xlabel('timestep ')

164 ax.set_ylabel('potential energy ')

165 fig.savefig(minima_dir+"potential -energy -uns -minimum -"+str(j))
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166 del timestep , walltime

167 del traj

168 return potential_energy [-1]

• OPP_range and determineRange are compute the distance rcutoff given certain val-

ues of k and φ.

• opp_pot and lj_pot create the pair forces of LJ and OPP and assign them to a given

simulation.

• setup_nvt initializes and appends the integrator with the canonical ensemble NV T

to the Simulation object in run_MD.

• run_MD runs and saves in a GSD file the trajectories of a Molecular Dynamics sim-

ulation starting from a configuration stored in a GSD file, given the file name, the

potential with its parameters, and the parameters of MD: the temperature kT , the

coupling τ and the number of steps nsteps.

• setup_fire initializes and appends the minimizer fire to the Simulation object in op-

timize_local. In this case the ensemble used is the microcanonical ensemble NV E .

• optimize_local returns the potential energy of the locally optimized geometry and

in the process stores the trajectories of the particles in GSD files called unsorted-

minimum-n, where n is the nth minimum found. The function takes as arguments

the name of the file and the potential with its parameters.

A.4. Minima Hopping Algorithm

1 from md_and_opti_functions import *

2 from helper_functions import *

3 import sys

4 import time

5 import matplotlib.pyplot as plt

6 import numpy

7 import os

8 import warnings

9 warnings.filterwarnings('ignore ')

10 # opp id parameters

11 k = 8.

12 phi = 0.5

13 # n particles and potential
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14 N = int(float(sys.argv [1]))

15 pot = sys.argv [2]

16 start = time.time()

17 if pot == 'opp':

18 range = determineRange(k, phi)

19 print("range opp: ", range)

20 if k == 6.25:

21 pot = 'opp -ld'

22 elif k == 8.:

23 pot = 'opp -id'

24 kT = 1.

25 tau = 1.

26 nsteps = 250

27 md_dir = os.getcwd ()+'/global -opti/'+pot+'/'+str(N)+'/md/'

28

29 if N > 50 and N <= 500:# the value of E_accept should increase

30 n_min = 15 # with the increase of particles;

31 E_accept = 1. # for small clusters , =0.1

32 hist_check = 1.

33 elif N > 500: # hist_check is to check if the same minimum

34 n_min = 20 # is already in history.

35 E_accept = 5. # minima have same energy <=> they are the same

36 hist_check = 5. # the value of hist_check should increase

37 else: # with n particles

38 n_min = 15

39 E_accept = 0.1

40 hist_check = 0.5

41

42 # define initial configuration

43 file_cambridge = os.getcwd ()+'/cambridge/initial -configurations/'+str(N

)+'.gsd'

44 fn = file_cambridge

45

46 def get_dir_minimum(min):

47 dir = os.getcwd ()+'/global -opti/'+pot+'/'+str(N) + '/minima/

unsorted -minimum -'+str(min)

48 return dir

49

50 print("\n###########################################################")

51 print(" Executing GLOBAL OPTIMIZATION on a cluster of", N,

52 "particles using the", pot , "potential.")

53 print("###########################################################\n")

54 a = 0
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55 pot_arr = numpy.array ([])

56 count = 0

57 while a < n_min:

58 if a == 0:

59 min_dir = os.getcwd ()+"/global -opti/"+pot+'/'+str(N)+"/minima/"

60 if pot == 'lj':

61 run_MD(fn, pot , k, phi , range , kT , tau , 100, a)

62 final_energy = optimize_local( 'md -on -minimum -'+str(a)+'.

gsd', md_dir , pot , k, phi , range , a+1)

63 else:

64 final_energy = optimize_local(str(

65 N)+'.gsd', os.getcwd ()+'/cambridge/initial -

configurations/', pot , k, phi , range , a+1)

66

67 new_gsd = gsd.hoomd.open(

68 os.getcwd ()+"/global -opti/"+pot+'/'+str(N)+'/unsorted -all -

minima ', mode='wb')

69 else:

70 run_MD(get_dir_minimum(a), pot , k, phi , range , kT , tau , nsteps ,

a)

71 fn = 'md-on -minimum -'+str(a)+'.gsd'

72 final_energy = optimize_local(fn , md_dir , pot , k, phi , range , a

+1)

73

74 if a > 0 and numpy.amin(numpy.abs(pot_arr -final_energy)) <

hist_check:

75 kT = kT*1.1

76 else:

77 kT = kT/1.1

78 if a == 0 or final_energy -pot_arr [-1] < E_accept:

79 pot_arr = numpy.append(pot_arr , final_energy)

80 E_accept = E_accept /1.1

81 print("NEW MINIMUM FOUND! Amount minima found:", a+1)

82 # append traj minimum found

83 min_traj = gsd.hoomd.open(

84 min_dir+'unsorted -minimum -'+str(a+1), mode='rb')[-1]

85 new_gsd.append(min_traj)

86 del min_traj

87 a += 1

88 else:

89 E_accept = E_accept *1.1

90 count += 1

91 print(count)
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92 end = time.time()

93 dir = os.getcwd ()+"/global -opti/"+pot+'/'+str(N)+"/minima/"

94

95 # sort minima from lowest to highest energy

96 sort = pot_arr.argsort ()

97 for i in sort:

98 os.rename(dir+'unsorted -minimum -'+str(sort[i]+1), dir+'minimum -'+

str(i+1))

99 os.rename(dir+'potential -energy -uns -minimum -' + str(sort[i]+1)+'.

png', dir+'potential -energy -minimum -'+str(i+1)+'.png')

100

101 # create gsd files with snapshots all minima sorted

102 sorted_gsd = gsd.hoomd.open(

103 os.getcwd ()+"/global -opti/"+pot+'/'+str(N)+'/all -minima ', mode='wb'

)

104 lst = numpy.arange(0, n_min , 1)

105 for h in lst:

106 min_traj = gsd.hoomd.open(dir+'minimum -'+str(h+1), mode='rb')[-1]

107 sorted_gsd.append(min_traj)

108 del min_traj

109

110 # plot and save energies unsorted minima

111 x = numpy.arange(1, a+1, 1)

112 print(pot_arr)

113 fig , ax = plt.subplots ()

114 ax.plot(x, pot_arr)

115 ax.set_title('potential energy during global optimization ')

116 ax.set_xlabel('number of minimum ')

117 ax.set_ylabel('final potential energy ')

118 x1 = numpy.zeros(int(len(x)/2))

119 r = 0

120 while r < len(x1):

121 x1[r] = 2*r

122 r += 1

123 del r

124 ax.set_xticks(x1)

125 fig.savefig(os.getcwd ()+"/global -opti/"+pot+'/' + str(N)+'/unsorted -

potential -energy ')

126

127 # plot and save energies sorted minima

128 sorted_pot = numpy.sort(pot_arr)

129 print(sorted_pot)

130 fig , ax = plt.subplots ()



A.5. Diffraction Patterns 65

131 ax.plot(x, sorted_pot)

132 ax.set_title('potential energy during global optimization ')

133 ax.set_xlabel('number of minimum ')

134 ax.set_ylabel('final potential energy ')

135 x1 = numpy.zeros(int(len(x)/2))

136 r = 0

137 while r < len(x1):

138 x1[r] = 2*r

139 r += 1

140 del r

141 ax.set_xticks(x1)

142 fig.savefig(os.getcwd ()+"/global -opti/"+pot + '/'+str(N)+'/sorted -

potential -energy ')

143

144 # save energies to output file

145 numpy.savetxt(os.getcwd ()+"/global -opti/"+pot+'/'+str(N) + '/energies.

out', sorted_pot , delimiter=',')

A.5. Diffraction Patterns

1 import freud

2 import matplotlib.pyplot as plt

3 import rowan

4 import gsd.hoomd

5 import os

6 import sys

7

8 N = int(float(sys.argv [1]))

9 direction = str(sys.argv [2])

10 k = int(float(sys.argv [3])) # defines which minimum we take the

diffraction pattern of

11 pot='opp -id'

12 if direction == 'x':

13 arr = [1, 0, 0]

14 elif direction == 'y':

15 arr = [0, 1, 0]

16 elif direction == 'z':

17 arr = [0, 0, 1]

18 fn=os.getcwd ()+'/global -opti/'+pot+'/'+str(N)+'/all -minima '

19 min_traj=gsd.hoomd.open(fn, mode='rb')[k]

20 diff_dir=os.getcwd ()+'/global -opti/'+pot+'/'+str(N)+'/diffraction/'

21 if not os.path.isdir(diff_dir):



66 A. Code

22 os.makedirs(diff_dir)

23 dp = freud.diffraction.DiffractionPattern(grid_size =2048, output_size

=2048)

24 fig , ax = plt.subplots(figsize =(4, 4), dpi =300)

25 view_orientation=rowan.vector_vector_rotation ([0, 0, 1], arr)

26 dp.compute(min_traj , view_orientation=view_orientation)

27 dp.plot(ax, cmap='viridis ') # bone

28 axis=rowan.rotate(view_orientation , [0, 0, 1])

29 print(axis)

30 title="Looking down the axis: ["+str(int(axis [0]))+', '+str(int(axis

[1]))+', '+str(int(axis [2]))+']'

31 ax.set_title(title)

32 plt.savefig(diff_dir+str(N)+'-min -'+str(k)+'-'+direction+'.png')

A.6. Submission Script DelftBlue

1 #!/bin/bash

2 #SBATCH --job -name="global -opti"

3 #SBATCH --time =01:00:00

4 #SBATCH --ntasks =1

5 #SBATCH --cpus -per -task=4

6 #SBATCH --mem -per -cpu=4G

7 #SBATCH --partition=compute

8 #SBATCH --account=Research -EEMCS -DIAM

9

10 # Load modules:

11 module load 2022r2

12 module load openmpi

13 module load miniconda3

14

15 # Activate conda , run job , deactivate conda

16 conda activate hoomd

17 srun python new -global -opti.py $1 $2 # 1: cluster size

18 conda deactivate # 2: potential

A.7. Create Multiple Clusters Configurations

1 import gsd.hoomd

2 import hoomd

3 import numpy

4 import numpy.linalg
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5 import os

6 import sys

7 import warnings

8 warnings.filterwarnings('ignore ')

9

10 def max_value(list , i):

11 return max([ sublist[i] for sublist in list])

12

13 def min_value(list , i):

14 return min([ sublist[i] for sublist in list])

15

16 def shift(list , sign , i):

17 if sign=='pos':

18 return max_value(list , i)-min_value(list , i)+1.

19 elif sign=='neg':

20 return -(max_value(list , i)-min_value(list , i)+1.) # 1. is

distance set between two clusters

21

22 def add_cluster(snapshot , sign , i, n, w, type_confi , save=False):

23 # i = 0, 1, 2 to decide where to add cluster (0=x, 1=y, 2=z axis)

24 # n = 1, 2, ... number of cluster to add

25 N=snapshot.particles.N

26 L=snapshot.configuration.box[0]

27 dia=snapshot.particles.diameter [0]

28 pos = snapshot.particles.position

29 N_toadd = int(N/n)

30 pos_copy=numpy.copy(pos[w*N_toadd :(w+1)*N_toadd ])

31 pos_toadd = numpy.reshape(pos_copy , (N_toadd *3))

32 gap = shift(pos_copy , sign , i)

33 for p in range(len(pos_toadd)):

34 if i==p%3:

35 pos_toadd[p]+= gap

36 pos_toadd = numpy.append(pos , pos_toadd)

37 pos_toadd = numpy.reshape(pos_toadd , (N+N_toadd , 3))

38

39 new_snapshot = gsd.hoomd.Snapshot ()

40 new_snapshot.particles.position = pos_toadd

41 new_snapshot.particles.N = N+N_toadd

42 new_snapshot.particles.diameter = numpy.repeat(dia , N+N_toadd)

43 new_typeid = numpy.append(snapshot.particles.typeid , numpy.ones(

N_toadd))

44 new_snapshot.particles.typeid = new_typeid

45 new_snapshot.particles.types = ['B', 'A']



68 A. Code

46 new_dim =[L,L,L,0,0,0]

47 # make box bigger in all directions - has to be square for

diffraction patterns

48 new_dim [:3]+= numpy.repeat(max(abs(max_value(pos_toadd , i)), abs(

min_value(pos_toadd , i))), 3)

49 new_snapshot.configuration.box = new_dim

50 dir=os.getcwd ()+'/multiple -clusters/'+str(N_toadd)+'/initial -

configurations/'

51 if not os.path.isdir(dir):

52 os.makedirs(dir)

53 if save==True:

54 with gsd.hoomd.open(name=dir+str(n+1)+'-clusters -'+str(

type_confi)+'.gsd', mode='wb') as f:

55 f.append(new_snapshot)

56 return new_snapshot

57

58 def create_multiple_clusters_confi(N_original , clusters , type_confi):

59 cpu = hoomd.device.CPU()

60 sim = hoomd.Simulation(device=cpu , seed =1)

61 sim.create_state_from_gsd(filename=os.getcwd ()+"/cambridge/initial -

configurations/"+str(N_original)+".gsd")

62 snapshot = sim.state.get_snapshot ()

63 sign='pos'

64 r=0

65 if type_confi =='line':

66 while r<(clusters -1):

67 save=False

68 n=r+1

69 if r<4 or r==clusters -2:

70 save=True

71 new_snapshot = add_cluster(snapshot , sign , 0, n, r,

type_confi , save)

72 snapshot = new_snapshot

73 del new_snapshot

74 r+=1

75 elif type_confi =='2lines':

76 while r<(clusters -1):

77 save=False

78 n=r+1

79 i=int(r%2)

80 w=2*int(r/2)

81 if r<4 or r==clusters -2:

82 save=True
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83 new_snapshot = add_cluster(snapshot , sign , i, n, w,

type_confi , save)

84 snapshot = new_snapshot

85 del new_snapshot

86 r+=1

87 elif type_confi =='plane':

88 l=int(numpy.sqrt(clusters)+0.5)

89 while r<(clusters -1):

90 save=False

91 n=r+1

92 if n%l==0:

93 w=n-l

94 i=1

95 else:

96 w=r

97 i=0

98 if r<4 or r==clusters -2:

99 save=True

100 new_snapshot = add_cluster(snapshot , sign , i, n, w,

type_confi , save)

101 snapshot = new_snapshot

102 del new_snapshot

103 r+=1

104 elif type_confi =='3d':

105 while r<(clusters -1):

106 save=False

107 if r>2:

108 sign='neg'

109 i=r%3

110 n=r+1

111 if r<4 or r==clusters -2:

112 save=True

113 new_snapshot = add_cluster(snapshot , sign , i, n, 0,

type_confi , save)

114 snapshot = new_snapshot

115 del new_snapshot

116 r+=1

117 del cpu , sim

118 print('Created ', type_confi , 'of', N_original , 'x 1 to', clusters ,

'atoms.')

119 return

120

121 # uncomment the following lines if you want to create the multiple
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clusters ' configurations for a given building block and amount of

blocks

122

123 #init_N = int(float(sys.argv [1]))

124 #clusters = int(float(sys.argv [2]))

125 #create_multiple_clusters_confi(init_N , clusters , 'line ')

126 #create_multiple_clusters_confi(init_N , clusters , '2lines ')

127 #create_multiple_clusters_confi(init_N , clusters , 'plane ')

128 #create_multiple_clusters_confi(init_N , clusters , '3d')

A.8. Minima Hopping for Multiple Clusters Configurations

1 import gsd.hoomd

2 import hoomd

3 import matplotlib.pyplot as plt

4 import numpy

5 import os

6 import warnings

7 warnings.filterwarnings('ignore ')

8 from helper_functions import *

9 from add_clusters import *

10 import sys

11

12 # parameters

13 init_N = int(float(sys.argv [1]))

14 clusters = int(float(sys.argv [2]))

15 type_confi=sys.argv [3]

16 pot = sys.argv [4]

17

18 print('arguments:',init_N , clusters , type_confi , pot)

19

20 # pot parameters

21 k=8.

22 phi =0.5

23 if pot=='opp':

24 range=determineRange(k, phi)

25

26 def opp_pot(range , k, phi):

27 cell = hoomd.md.nlist.Cell(buffer =0)

28 opp = hoomd.md.pair.OPP(nlist=cell , default_r_cut=range)

29 opp.params [('A', 'B')] = {'C1': 1., 'C2': 1., 'eta1': 15,

30 'eta2': 3, 'k': k, 'phi': phi}
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31 opp.r_cut [('A', 'B')] = range

32 opp.params [('A', 'A')] = {'C1': 1., 'C2': 1., 'eta1': 15,

33 'eta2': 3, 'k': k, 'phi': phi}

34 opp.r_cut [('A', 'A')] = range

35 opp.params [('B', 'B')] = {'C1': 1., 'C2': 1., 'eta1': 15,

36 'eta2': 3, 'k': k, 'phi': phi}

37 opp.r_cut [('B', 'B')] = range

38 return opp

39

40 def lj_pot ():

41 cell = hoomd.md.nlist.Cell(buffer =0)

42 lj = hoomd.md.pair.LJ(nlist=cell)

43 lj.params [('A', 'B')] = dict(epsilon=1, sigma =1)

44 lj.r_cut [('A', 'B')] = 2.5

45 lj.params [('A', 'A')] = dict(epsilon=1, sigma =1)

46 lj.r_cut [('A', 'A')] = 2.5

47 lj.params [('B', 'B')] = dict(epsilon=1, sigma =1)

48 lj.r_cut [('B', 'B')] = 2.5

49 return lj

50

51 def setup_nvt(sim , pot , kT, tau):

52 integrator = hoomd.md.Integrator(dt =0.005)

53 integrator.forces.append(pot)

54 nvt = hoomd.md.methods.NVT(kT=kT, filter=hoomd.filter.All(), tau=

tau)

55 integrator.methods.append(nvt)

56 sim.operations.integrator = integrator

57 return integrator

58

59 def setup_fire(sim ,pot ,dt):

60 fire = hoomd.md.minimize.FIRE(dt=dt , force_tol =1e-3, angmom_tol =1e

-2, energy_tol =1e-3, min_steps_conv =1)

61 fire.forces.append(pot)

62 fire.methods.append(hoomd.md.methods.NVE(hoomd.filter.All()))

63 sim.operations.integrator = fire

64 return fire

65

66 def run_md(original_N , clusters , pot , k, phi , range , kT , tau , nsteps , i

, type_confi):

67 cpu = hoomd.device.CPU()

68 sim = hoomd.Simulation(device=cpu , seed =1)

69 md_dir=os.getcwd ()+'/multiple -clusters/'+str(original_N)+'/'+str(

clusters)+'-clusters -'+str(type_confi)+'/'+pot+'/md/'
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70 if i==0:

71 nsteps =50

72 fn=os.getcwd ()+'/multiple -clusters/'+str(original_N)+'/initial -

configurations/'+str(clusters)+'-clusters -'+str(type_confi)+'.gsd'

73 else:

74 fn=os.getcwd ()+'/multiple -clusters/'+str(original_N)+'/'+str(

clusters)+'-clusters -'+str(type_confi)+'/'+pot+'/minima/uns -min -'+

str(i)+'.gsd'

75 sim.create_state_from_gsd(filename=fn)

76 if pot=='lj':

77 pot_energy=lj_pot ()

78 elif pot=='opp -ld' or pot=='opp -id' or pot=='opp':

79 pot_energy=opp_pot(range , k, phi)

80 setup_nvt(sim , pot_energy , kT, tau)

81 sim.state.thermalize_particle_momenta(filter=hoomd.filter.All(), kT

=kT)

82 thermodynamic_properties = hoomd.md.compute.ThermodynamicQuantities

(filter=hoomd.filter.All())

83 sim.operations.computes.append(thermodynamic_properties)

84 sim.run (0)

85 logger = hoomd.logging.Logger ()

86 logger.add(sim)

87 logger.add(thermodynamic_properties)

88 logger.add(pot_energy , quantities =['energies ', 'forces '])

89 gsd_writer = hoomd.write.GSD(filename=md_dir+'md -on -min -'+str(i)+'.

gsd',

90 trigger=hoomd.trigger.Periodic (1),

91 mode='wb',

92 filter=hoomd.filter.All(),

93 log=logger)

94

95 sim.operations.writers.append(gsd_writer)

96 gsd_writer.log=logger

97 sim.run(nsteps +1)

98 del sim , gsd_writer , logger , thermodynamic_properties

99 return

100

101 def optimize_local(original_N , clusters , pot , k, phi , range , j,

type_confi):

102 cpu = hoomd.device.CPU()

103 sim = hoomd.Simulation(device=cpu , seed =1)

104 md_dir=os.getcwd ()+'/multiple -clusters/'+str(original_N)+'/'+str(

clusters)+'-clusters -'+str(type_confi)+'/'+pot+'/md/'



A.8. Minima Hopping for Multiple Clusters Configurations 73

105 fn='md-on -min -'+str(j)+'.gsd'

106 sim.create_state_from_gsd(md_dir+fn)

107 minima_dir=os.getcwd ()+'/multiple -clusters/'+str(original_N)+'/'+

str(clusters)+'-clusters -'+str(type_confi)+'/'+pot+'/minima/'

108 if not os.path.isdir(minima_dir):

109 os.makedirs(minima_dir)

110 if pot=='opp -ld' or pot=='opp -id' or pot=='opp':

111 pot_energy=opp_pot(range , k, phi)

112 dt=0.05

113 elif pot=='lj':

114 pot_energy=lj_pot ()

115 if original_N >150:

116 dt=0.04

117 else:

118 dt=0.05

119 fire = setup_fire(sim , pot_energy , dt) # set up fire as integrator

of sim using potential 'pot'

120 thermodynamic_properties=hoomd.md.compute.ThermodynamicQuantities(

filter=hoomd.filter.All())

121 sim.operations.computes.append(thermodynamic_properties)

122 logger = hoomd.logging.Logger ()

123 logger.add(sim)

124 logger.add(thermodynamic_properties)

125 logger.add(pot_energy , quantities =['energies ', 'forces '])

126 gsd_writer = hoomd.write.GSD(filename=minima_dir+'uns -min -'+str(j

+1)+'.gsd', # not sorted yet by energy

127 trigger=hoomd.trigger.Periodic (1),

128 mode='wb',

129 filter=hoomd.filter.All(),

130 log=logger)

131 sim.operations.writers.append(gsd_writer)

132 gsd_writer.log=logger

133 i=0

134 while not(fire.converged):

135 i+=1

136 sim.run (1)

137 del sim , gsd_writer , logger , thermodynamic_properties

138 traj = gsd.hoomd.open(minima_dir+'uns -min -'+str(j+1)+'.gsd', 'rb')

139 timestep =[]

140 potential_energy =[]

141 for frame in traj:

142 timestep.append(frame.configuration.step)

143 potential_energy.append(
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144 frame.log['md/compute/ThermodynamicQuantities/

potential_energy '][0])

145 fig , ax = plt.subplots ()

146 ax.plot(timestep , potential_energy)

147 ax.set_title('potential energy during local optimization using '+

pot+' for '+str(original_N)+'x'+str(clusters)+' particles ')

148 ax.set_xlabel('timestep ')

149 ax.set_ylabel('potential energy ')

150 fig.savefig(minima_dir+"potential -energy -uns -minimum -"+str(j))

151 del timestep

152 del traj

153 return potential_energy [-1]

154

155 #################################

156 # CREATE INITIAL CONFIGURATIONS #

157 #################################

158 # dirs

159 init_dir=os.getcwd ()+'/multiple -clusters/'+str(init_N)+'/initial -

configurations/'

160 md_dir=os.getcwd ()+'/multiple -clusters/'+str(init_N)+'/'+str(clusters)+

'-clusters -'+str(type_confi)+'/'+pot+'/md/'

161 minima_dir=os.getcwd ()+'/multiple -clusters/'+str(init_N)+'/'+str(

clusters)+'-clusters -'+str(type_confi)+'/'+pot+'/minima/'

162 if not os.path.isdir(md_dir):

163 os.makedirs(md_dir)

164 if not os.path.isdir(minima_dir):

165 os.makedirs(minima_dir)

166 create_multiple_clusters_confi(init_N , clusters , type_confi)

167 tc=type_confi

168

169 ######################

170 # MOLECULAR DYNAMICS #

171 ######################

172 # md parameters

173 nsteps =250

174 tau =1.5

175 kT=1.

176 # on confi with #clusters clusters each of #init_N particles

177 print('run md')

178 run_md(init_N , clusters , pot , k, phi , range , kT , tau , nsteps , 0, tc)

179

180 #######################

181 # GLOBAL OPTIMIZATION #
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182 #######################

183 N = init_N*clusters

184 print('n particles:', N)

185 if N>50 and N <=500:

186 n_min =15

187 E_accept =1.

188 hist_check =1.

189 elif N>500:

190 n_min =20

191 E_accept =5.

192 hist_check =5.

193 else:

194 n_min =15

195 E_accept =1.

196 hist_check =0.5

197 print('global parameters established.')

198

199 a=0

200 pot_arr=numpy.array ([])

201 count=0

202 print("\n############################################################")

203 print(" Executing GLOBAL OPTIMIZATION on a cluster of", clusters , "x",

init_N , "particles in", type_confi ,"using the", pot , "potential.")

204 print("############################################################\n")

205 end_dir=os.getcwd ()+'/multiple -clusters/'+str(init_N)+'/'+str(clusters)

+'-clusters -'+str(type_confi)+'/'+pot

206 while a<n_min:

207 if a==0:

208 new_gsd=gsd.hoomd.open(end_dir+'/unsorted -all -minima ', mode='wb

')

209 run_md(init_N , clusters , pot , k, phi , range , kT , tau , nsteps , a, tc

)

210 final_energy=optimize_local(init_N , clusters , pot , k, phi , range , a

, tc)

211 if a>0 and numpy.amin(numpy.abs(pot_arr -final_energy))<hist_check:

212 kT=kT*1.1

213 print('minimum already in history ')

214 print('kT*1.1')

215 else:

216 kT=kT/1.1

217 print('kT/1.1')

218 if a==0 or final_energy -pot_arr [-1]< E_accept:

219 pot_arr=numpy.append(pot_arr , final_energy)
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220 E_accept=E_accept /1.1

221 print("NEW MINIMUM FOUND! Amount minima found:", a+1)

222

223 # append traj minimum found

224 min_traj=gsd.hoomd.open(minima_dir+'uns -min -'+str(a+1)+'.

gsd', mode='rb')[-1]

225 new_gsd.append(min_traj)

226 del min_traj

227 a+=1

228 else:

229 print('energy too high , diff =', final_energy -pot_arr [-1])

230 E_accept=E_accept *1.1

231 print('E_accept *1.1')

232 count +=1

233 print(count)

234 # sort minima from lowest to highest energy

235 sort = pot_arr.argsort ()

236 for i in sort:

237 os.rename(minima_dir+'uns -min -'+str(sort[i]+1)+'.gsd', minima_dir+'

min -'+str(i+1)+'.gsd')

238 # create gsd files with snapshots all minima sorted

239 sorted_gsd=gsd.hoomd.open(end_dir+'/all -minima ', mode='wb')

240 lst=numpy.arange(0, n_min , 1)

241 for h in lst:

242 min_traj=gsd.hoomd.open(minima_dir+'min -'+str(h+1)+'.gsd', mode='rb

')[-1]

243 sorted_gsd.append(min_traj)

244 del min_traj

245 # plot energy minima

246 x=numpy.arange(1, a+1, 1)

247 print('unsorted energies :\n', pot_arr)

248 fig , ax = plt.subplots ()

249 ax.plot(x, pot_arr)

250 ax.set_title('potential energy during global optimization ')

251 ax.set_xlabel('number of minimum ')

252 ax.set_ylabel('final potential energy ')

253 x1=numpy.zeros(int(len(x)/2))

254 r=0

255 while r<len(x1):

256 x1[r] = 2*r

257 r+=1

258 del r

259 fig.savefig(end_dir+'/unsorted -potential -energy.png')
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260 sorted_pot=numpy.sort(pot_arr)

261 print('sorted energies :\n', sorted_pot)

262 fig , ax = plt.subplots ()

263 ax.plot(x, sorted_pot)

264 ax.set_title('potential energy during global optimization ')

265 ax.set_xlabel('number of minimum ')

266 ax.set_ylabel('final potential energy ')

267 x1=numpy.zeros(int(len(x)/2))

268 r=0

269 while r<len(x1):

270 x1[r] = 2*r

271 r+=1

272 del r

273 fig.savefig(end_dir+'/sorted -potential -energy.png')

274 numpy.savetxt(end_dir+'/energies.out', sorted_pot , delimiter=',')
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