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Abstract

Large chemical reaction databases often suffer from incompleteness, such as miss-
ing molecules or stoichiometric information. Concurrently, numerous computa-
tional models are being developed in predictive chemistry that rely on reaction
databases and would hugely benefit from complete reaction equations. Also, re-
search in sustainable chemistry often focuses on automated mass balance tasks,
which require a full reaction to properly evaluate. In this work, we present a
hybrid approach for computational completion of reaction equations. Specifically,
we combine a rule-based method and a machine learning (ML) model to complete
reactions. The rule-based approach constructs a balance of atoms and charge on
either side of the reaction in an attempt to find missing molecules. We tailor the
pre-trained transformer model on the chemical language domain to take partial re-
actions as inputs and predict missing molecules. Furthermore, we present a novel
approach to measure the correctness of our model, which is useful when we apply
it to the uncurated dataset and the ground-truth is unknown.

Introduction

Chemical reactions can be described as the trans-
formation of one set of of molecules (reactants) to
another set of molecules (products). The network
of organic chemistry is a graphical representation
of this system, where nodes (the molecules) are
connected to each other by edges (their relevant
chemical reactions) [1]. This network is funda-
mental for research and development in chemin-
formatics. As new molecules are synthesized and
new reactions are discovered, the size of this net-
work grows. Harnessing this continuous growth
of chemical information requires a proper store
of data. Traditionally, reactions were manually
recorded, which is a tedious process and a slow
solution to a growing problem. In recent years,
efforts have been made to automate this process
using data mining techniques on chemical patents
[2]. As a result, large amounts of chemical re-
action data have been made freely accessible, and
have been widely used by researchers and chemists
for a variety of tasks [3, 4].
A notable limitation to current chemical reac-

tion datasets is the high rate of incompleteness
among reactions stored in databases. A chemi-

cal reaction is considered complete when all re-
acting components of the reaction are included
with correct stoichiometry. In other words, a com-
plete reaction contains the correct amount of every
molecule which directly contributes to the atom
flow of the reaction. This definition of complete-
ness excludes chemical context molecules such as
solvents, catalysts or other types of non-atom-
contributing reagents. Completeness of a reac-
tion in this definition can be deduced by count-
ing the atoms as well as the charge of the reacting
and product molecules, respectively. If the same
amount of every involved atom type is observed
for reactants and products, and the cumulative
charge of reactant molecules equals the cumula-
tive charge of product molecules, the reaction is
considered complete. Figure 1 shows two exam-
ples of unaltered, incomplete reactions. The first
reaction is a typical example of a reaction missing
a small byproduct, in this case hydrogen chloride
(HCl). The second reaction is an example of er-
roneous stoichiometry, as synthesizing the prod-
uct molecule requires two bicyclic aromatic com-
pounds. An analysis on various subsets of the orig-
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Figure 1: Two typical examples of incomplete reactions found in chemical reaction databases. Reac-
tion 1 shows the synthesis of a compound by fusing two reactant molecules. The chlorine atom of
the sulfuric compound reacts with the hydroxyl (-OH) group of the other reactant, releasing both the
chlorine atom of the first reactant, and the hydrogen atom of the second reactant. Both the H atom
and Cl atom are missing and form a hydrogen chloride (HCl) molecule, which is not pictured. Re-
action 2 shows the synthesis of a compound by reacting the bicyclic aromatic compound to the long
carbon-chain molecule. It is obvious that two molecules of the first reactant are needed to synthesize
the product molecule, despite only one molecule being recorded in the data.

inal, patent-mined dataset known as the USPTO1

(United States Patent and Trade Office) dataset
showed that as few as 2%-3% of reactions are nat-
urally balanced. Consequentially, 97%-98% of re-
actions are imbalanced.
An earlier paper on reaction incompleteness the-

orized two possible reasons for this common ob-
servation [5]. Firstly, when chemists discover new
reactions, the synthesized product is usually the
main goal, while smaller side molecules such as co-
reactants and byproducts are omitted. The second
reason is that incompleteness can be the result of
a noisy, imperfect data-mining technique. Patents
might describe certain reacting molecules in other
parts of the document. Additionally, the varia-
tion in structure of patents makes it difficult to
correctly identify all contributing molecules [5].
Incomplete reactions pose a problem across var-

ious fields of cheminformatics. Predictive chem-
istry is a rapidly developing field of research which
includes, but is not limited to, forward reaction
prediction, retrosynthesis, reaction yield predic-
tion and reaction condition prediction [6, 7, 8, 9].
Most modern methods developed in these fields
are data-driven and directly rooted in the afore-

1https://figshare.com/articles/dataset/Chemical
reactions from US patents 1976-Sep2016 /5104873

mentioned, highly incomplete chemical datasets.
While state-of-the-art models have produced im-
pressive results, they are based on incomplete
data. Curated chemical datasets which contain
complete reactions for such models could produce
more reliable, correct results.

The problem of having incomplete reaction data
extends to the field of ’Green Chemistry’. This
area of study focuses on the development of sus-
tainable solutions in chemical engineering [10]. A
recent review regarding sustainable chemistry ad-
dresses certain issues faced and categorizes them
in three broad categories: data, assessment met-
rics, and decision-making [3]. The authors iden-
tify that, in particular, the data category causes
the most bottlenecks, where data completion is
mentioned specifically. This is due to most sus-
tainable chemistry research focusing on finding
an optimized reaction pathway based on a multi-
objective framework. Optimizing sustainability of
a chemical process looks at multiple factors, such
as the use of biological feedstock molecules, waste
streams and emission numbers. However, in order
to remain competitive in the industry, economic
factors must also be taken into account when de-
signing chemical reaction pathways [11]. Chemi-
cal process engineers employ automated mass bal-
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ance tasks using chemical reaction data to discover
an optimal reaction pathway. Early-stage evalua-
tion of such pathways use an evaluation function
based on a multi-objective framework [3]. Un-
fortunately, many of these objectives are difficult
to measure due to incompleteness in the avail-
able reaction data. For example, missing byprod-
uct molecules directly contribute to an erroneous
waste stream analysis, while missing co-reactants
potentially voids proposed reactions due to being
high-cost or environmentally unfriendly. Guaran-
teeing completeness of reaction data would propel
the efficiency of automated reaction pathway op-
timization.
Developments are being made to address the re-

action incompleteness problem. Reaction data ac-
cessibility has historically been attributed to pri-
vate institutions or companies, such as Reaxys™2

(henceforth referred to as Reaxys) and CASRE-
ACT3. Recently, an effort has been made to ag-
gregate chemical reaction data in an open source
database. The Open Reaction Database (ORD)
is a promising open-source initiative, supported
by multiple institutions [12]. This database pri-
oritizes a standardized data structure, including
reaction completeness. Its goal of providing a con-
sistent data representation for downstream use of
predictive chemistry tasks is emphasized. How-
ever, since only a fraction of the organic chemistry
data space is recorded in this manner, automated
reaction completion needs to be considered.
Automated reaction completion methods at-

tempt to balance incomplete chemical reactions
using code. Methods in this field of research can be
divided into two categories: rule-based and model-
based. Rule-based methods attempt to balance an
incomplete reaction by encoding rules into an al-
gorithm. The specific rules may vary in approach.
One such approach is by use of a condensed graph
of a reaction (CGR). The CGR is a superposi-
tion of the graph representation of the reactants
and products in a potentially incomplete reaction.
By analyzing bond changes and deducing missing
atoms, a CGR-based study partially curated reac-
tion databases [13]. A different rule-based tech-
nique is to formulate the problem as an atom-
balancing problem [5, 14]. Any missing atoms on
either side of the reaction can then be attributed,
through simple logical rules and limited chemical
deduction, to a known small molecule regarded as
’helper species’.
The second category of automated reaction

completion is based on machine learning. Graph

2https://supportcontent.elsevier.com/RightNow%20Next
%20Gen/Reaxys/New RX FactSheet Jul 2018.pdf

3https://www.cas.org/support/documentation/reactions

model-based and language model-based meth-
ods (LM-based methods) have been explored in
various tasks in predictive chemistry [7, 15].
A transformer-based LM, the Molecular Trans-
former, has shown accuracy above 90% in the
forward synthesis prediction problem [6]. The
transformer is a state-of-the-art LM that uses an
encoder-decoder architecture with multi-head at-
tention layers and positional feed forward layers
[16]. The self-attention mechanism allows the
model to capture long-range dependencies in text-
based data. Language models have traditionally
been designed for natural language tasks, such
as neural machine translation or text interpre-
tation. However, their strength can be used in
other problem domains as well, such as chem-
istry. Reactions are represented in text format,
like sentences, where molecules can be considered
’words’, and atoms its ’letters’. Using the Molec-
ular Transformer as a base, a study taught the
LM to predict missing molecules in incomplete re-
actions, rather than predicting product molecules
[17]. This version of an autoregressive generative
transformer model is purely sequence-to-sequence,
wherein it inputs a chemical reaction in string
format, and outputs what it believes is the set
of missing molecules in string format. Another
approach of model-based reaction completion is
ChemBalancer, which uses the BERT architec-
ture: a modified transformer without a decoder
[5]. ChemBalancer was inspired by BERT’s suc-
cess at discovering the missing word in a natu-
ral language sentence. They shifted this problem
domain towards the language of chemistry, where
missing words in a sentence are akin to missing
molecules in a reaction. Notably, this paper in-
troduces the hybrid rule-based and model-based
approach to curating reaction datasets [5].

In this paper, we propose a unique hybrid
method to the reaction completion problem. We
present a method that is partially based on en-
coded, algorithmic rules, and partially based on
a trained transformer-based LM. By first apply-
ing a rule-based method on an incomplete reaction
dataset, we curate the dataset partially, generat-
ing a subset of reactions which are complete. This
generated subset is used as ground-truth to train
our LM. By feeding the model partialized reac-
tions, it learns the context of the reaction com-
pletion problem, and once fully trained, can be
applied to the uncurated subset.

In this paper, we explore and answer a number
of pressing questions regarding the reaction incom-
pleteness problem. We identify that a majority of
reaction data can be readily curated using only
rule-based algorithm. However, reactions that are
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Figure 2: Overview of the methods. Box 1 shows two example reactions which are incomplete. Box
2 shows the output of our rule-based method. Some reactions, like R1, are solved, while others, like
R2, are not. Box 3 shows the data preparation step for our model-based method. Reactions which are
successfully curated using the rule-based method are taken and modified in up to 10 different ways.
Molecules are randomly taken out of the complete reaction to create partial reactions, of which the
missing set of molecules is known. Box 4 shows how partialized reactions are used to train our LM.
By exposing the transformer to many examples of incomplete reactions, it learns to predict the set of
missing molecules. Box 5 shows how the trained language model is applied to reactions which were
previously not completed by the rule-based method.

not curated in this step are usually more com-
plex or are missing crucial components of its reac-
tion. We find that our model-based method per-
forms exceptionally well on our artificially partial-
ized subset of curated reactions, but struggles with
remaining uncurated reactions. We present find-
ings which elucidate the strengths and weaknesses
of the current approach, such as its effectiveness
with or without context molecules, or its accuracy
drop as more molecules are missing. Lastly, we
measure the correctness of our predictions using
a personalized evaluation metric. Our work pro-

vides insights and findings which directly affect
the quality of research and development on vari-
ous topics in predictive chemistry and sustainable
chemistry.

Methods

Two separate methods are presented in this work
that share the same goal of completing incom-
plete chemical reactions. The first method, the
rule-based method, uses a set of hard-coded math-
ematical and chemical rules to analyze incomplete
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Figure 3: Helper species sets. Set ’A’ shows the strict set of neutral helper species molecules. Set ’B’
shows the positively charged helper species. Set ’C’ shows the negatively charged helper species. Set
’D’ shows the lenient set of helper species.

reaction equations and identifies the likely set of
missing molecules necessary to output a balanced
reaction. The second method uses artificial in-
telligence, more specifically a transformer-based
LM, to learn the language and semantics of chem-
ical reactions. This method exploits the large
amounts of data available in the chemical reaction
space and attempts to predict the set of missing
molecules directly. This method will henceforth
be referred to as the LM-based method.
The two methods of our hybrid approach are

not fully independent. The output of the rule-
based method is, after data modification, the data
used to train the rule-based method. An overview
of our approach is illustrated in Figure 2.

Rule-based Reaction Completion

The rule-based method curates imbalanced reac-
tions using a set of coded rules. Small, commonly
found molecules are often identified as missing
components in a reaction. Furthermore, missing
stoichiometric information is identified too. Usu-
ally, a combination of missing molecules and stoi-
chiometry is necessary to balance a reaction.
Definition of balanced reactions. In order

to curate a reaction, the definition of a reaction
being ’balanced’ needs to be properly defined. In
this paper, two core rules are considered. First,

reactions must have similar amounts of atoms of
each type on either side of the reactions. Second,
the cumulative charge of molecules on each side of
the reaction must be of similar value. When both
rules are followed, a reaction is both atomically-
and charge-balanced.

Solvent-identification. In order to make a
correct atom- or charge-balance of a chemical re-
action, solvent molecules (including other non-
reacting reagents like catalysts) should not be in-
cluded in the count. These molecules should either
appear on both the left- and right-hand-side (LHS
& RHS) of a reaction, or not at all. In this paper,
solvents are not taken into account when processed
in the rule-based method. Some datasets have re-
acting and non-reacting molecules mixed on the
LHS of the reaction, making identification of a
proper atom balance considerably harder. There-
fore, only datasets with readily-identified solvents
are used.

Helper Species set. The reaction comple-
tion algorithm attempts to curate the imbalanced
reaction by adding small, frequently-appearing
molecules to either side, known in this context as
helper species. Helper species are a set of molecules
that are often missing in the original reaction.
Specific combinations of atoms that are missing on
one side of the reaction observed significantly more
often than others, pointing to a pattern that spe-
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Figure 4: 1. The original reaction, as found in the dataset. 2. The identified imbalance: a surplus
of one chlorine atom, two hydrogen atoms, and one oxygen atom on the LHS, as well as a charge-
imbalance, namely one more positive on the RHS. 3. Single-helper species balancing attempt. Fails
due to no molecule in set C having similar atom types to the atom type-set missing. 4. Pair-helper
species balancing attempt. Looser requirements allows molecules to continue to the next step if its
unique atom type-set is a subset of the missing atom type-set, hits first for the chlorine ion. 5. Using
the chlorine ion as a base, pair with molecules in set A to find pairs whose combined unique atom
set equals missing atom type-set. Since H and O are missing, H2O is first to hit. 6. Balancing
algorithm finds coefficients for each helper species. For this charge-based example, the charge-based
helper species is ’fixed’ at one, due to needing only one to balance the charge imbalance. For charge-
balanced examples, a helper species with a unique atom type is ’fixed’. The other molecule’s coefficient
is easily calculated if it is a correct match. 7. Curated solution.

cific molecules (which make up the combination of
atoms) are missing. The size and content of the
helper species set is arbitrary. No consensus exists
on what molecules should be manually included to
reactions. Previous studies have approached this
problem similarly, but with different levels of le-
niency for the set of helper species [5, 14]. Be-
ing strict or lenient on which molecules you al-
low in the helper species set affects both the rate
and accuracy of curation. The wider the range of
molecules considered when completing incomplete
reactions, the greater the number of reactions will
be balanced. However, it also increases the chance
of accidentally matching a molecule, increasing the
rate of false-positives.
This paper divides the available molecules that

comprise the helper species set into four cate-
gories, illustrated in Figure 3. Set A is consid-
ered the base set of helper species molecules that
are frequently observed and have a very low level
of ambiguity when encountered in example reac-
tions. Water, gases and hydrogen-acids (such as
HF) represent most of this set. Set B and C are
helper species meant to balance electronically im-
balanced reactions, by including common ions or
charged molecules. Lastly, set D is the helper
species set referred to as lenient. This set contains
a greater variety of molecules, ranging from aro-
matic compounds to alcohols, among others. This
set is strongly influenced by the choice of helper
species in a different reaction completion paper
[14].
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Curation using helper species. Determining
the correct types and amount of helper molecules
is the core of our rule-based algorithm. Previous
papers have explored different workflows. Arun
et al. attempts to find the correct helper species
by iteratively adding candidate molecules which
are the closest match to the missing combination
[14]. Zhang et al. takes a similar approach which
includes a linear solver that identifies solutions re-
quiring stoichiometric changes [5]. This paper ap-
proaches helper-species based curation similarly to
the aforementioned methods. Helper species are
considered most promising additions when their
atom types coincide with the imbalanced atom
types of the original reaction. When reactions
have an atom surplus on the LHS of the equa-
tion, molecules are added on the product side.
Likewise, reactions with an atom surplus on the
RHS are curated by including new molecules on
the reactant side. Some reactions contain a sur-
plus of different atom types on either side, requir-
ing additional helper species on both sides. For a
step-by-step overview, see Figure 4. In this exam-
ple, multiple helper species are required to curate
the reaction using the rule-based method. Note
that this specific example has two valid solutions,
namely adding byproducts H2O and Cl−, as well
as adding byproducts HCl and OH−, showcasing
common occurrences of ambiguous solutions.
Single helper species are first added to the

deficit side. For ’strict’ curation, molecules con-
tained in set A from Figure 3 are considered. If
the reaction is charge-imbalanced, molecules from
set B or C are considered. Solutions are found
when the addition of one or more of that helper
species balances the reaction. When unsuccess-
ful, the algorithm explores solutions requiring two
different kinds of helper species. Pairs between
molecules of set A are considered, as well as A+B
and A+C in case of charge-imbalance. For cu-
ration on the ’lenient’ helper set, pairs between
two molecules of set D are not considered. This
decision was based on three reasons. First, the al-
gorithmic complexity encountered when also con-
sidering variance in stoichiometry for the helper
species increases enormously. Second, a previ-
ous paper noted that the wider availability of
helper species only marginally improves the cu-
ration rates [5]. Third, this increases the rate of
ambiguous outputs, which arises from employing a
too wide range of possible outcomes, as discussed
earlier.
Erroneous reactants. In some rare cases,

molecules are erroneously labeled as reactants in
the original dataset. This is likely an artifact of
the imperfect data-mining software used to gen-

erate the large patent-based datasets. To circum-
vent this problem, the atom balance of an uncu-
rated reaction is compared to the atom balance
of each individual reactant. If a perfect match is
found, i.e., the types and numbers of atoms miss-
ing on the RHS of the equation are exactly equal
to the atom type and count of one of the reac-
tants, this reaction likely accidentally labeled a
non-reacting molecule as a reactant. The reaction
is curated by moving these reactants to the solvent
set.

Model-based Reaction Completion

The language model presented in this paper is
based on the Molecular Transformer [6], which in
turn is based on the original transformer model
[16]. As discussed previously, this deep learning
model has shown to excel in the field of natural
language processing (NLP) and translation tasks.
Furthermore, the transformer model has shown
to be remarkably successful in the chemical do-
main. Molecules are presented as string-formatted
’words’ using SMILES (simplified molecular input
line entry system) notation [18], and reactions as a
sequence of words, akin to a sentence. The Molec-
ular Transformer utilizes this strength to achieve
incredible results in the field of reaction outcome
prediction [6].

Pre-trained and fine-tuned. The Molecular
Transformer is an LM fully trained on the chemi-
cal ’language’ for its forward reaction prediction
task [6]. Its non-proprietary accessibility is an op-
portune privilege for our research, as it skips the
need to train a transformer model from scratch.
Fine-tuning of the model is necessary in order to
shift its problem domain to that of reaction com-
pletion. The version of the Molecular Transformer
used was one that was trained on augmented
data from the USPTO STEREO set with reac-
tants and solvents separated from each other,
averaged over the last 20 checkpoints, named
STEREO separated augm model average 20.pt4.
Fine-tuning was achieved by training the pre-
trained model on our partialized reaction data,
until no more improvement was observed on the
validation set.

Tokenization scheme. The LM receives a set
of tokens as input, and produces a set of tokens
as output. The type of tokenization scheme em-
ployed differs per study. The original Molecular
Transformer tokenizes every character of a reac-
tion SMILES string individually, including punc-
tuation characters such as ’.’ and ’>’, repre-
senting a separation between two molecules and

4https://ibm.ent.box.com/v/MolecularTransformerModels
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Figure 5: An example of round-trip prediction evaluating the accuracy of our model’s prediction.
First, the language model predicts the missing molecule for an incomplete reaction. In this example,
our model predicts the single aromatic compound as a missing byproduct. This balanced reaction is
then deliberately made incomplete again by removing a different set of molecules from the predicted
reaction. If the second prediction returns the same reaction as the original prediction, we consider our
prediction round-trip accurate.

the separation between reactants/solvents or sol-
vents/products respectively [6]. A more recent re-
action completion study experiments with byte-
pair encoding (BPE) [5]. BPE uses an algorithm
to identify the most commonly occurring sub-
strings, and groups characters together when they
are frequently appearing. For example, the se-
quence ’ccc’ describes three carbon atoms linked
to each other in an aromatic ring, which are then
condensed into a single token. Considering the
NLP background of the transformer, the context
of commonly occurring atoms can be telling for
a molecule’s structure. It has been argued that
this type of tokenization also helps the model un-
derstand molecular disconnection strategies better
[5]. However, thus far no study has been con-
ducted that analyzes the effectiveness of differ-
ent tokenization schemes on the performance of
sequence-to-sequence models. In this study, we
adopted the single-character tokenization scheme
of the Molecular Transformer.
Data format. In order to shift the fine-tuned

Molecular Transformer’s task from reaction out-
come prediction towards missing molecules pre-
diction, the LM needs to train on a different data
format. Reactions that were successfully curated
by the rule-based method and naturally balanced

reactions were stored in a separate curated data
file. These reactions were then ’partialized’, mean-
ing a number of molecules were deliberately re-
moved from the reaction and placed in a target
file. The number of molecules removed - the de-
gree of partialization - was restrained in such a
way that partial reactions could not have fewer
than half the atoms found in the original reac-
tion, as that would be an unfair prediction task.
Each reaction was split into up to 10 unique par-
tial reactions. Less than 10 partial reactions were
generated in the case of reactions with very few
molecules, and thus very few possible combina-
tions of missing molecules. This includes the par-
tial reaction which is equal to the original reaction,
in order to teach the model that when faced with
already-balanced reactions, no change needs to be
made. See box 3 in Figure 2 for an illustration of
this process, and box 4 to see how these partial
reactions are used to train our model.

The partialized dataset was split into
train/test/validation sets on a 90/5/5 split.
Due to the multiplication of data during partial-
ization, the size of the dataset was large enough
to warrant a smaller validation and test set while
maintaining a diverse enough set of reactions in
either set. The large amount of data also let us
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partialize reactions belonging to the test set only
once. On some occasions, two different reactions
can produce a similar partialized reaction. When
this happens, both correct ’answers’ are recorded
for each partial reaction using a tab-separated
format. During testing, outputting either one of
those answers is considered correct.

Evaluation Metrics

It is difficult to verify the correctness of proposed,
balanced reactions. As seen in Figure 4, two so-
lutions are viable and indistinguishable in likeli-
ness unless judged by an expert in organic chem-
istry. In the ideal scenario, every proposed reac-
tion is experimentally verified. However, that is
both unfeasible and contrary to the motivation
of this study, namely to automate the reaction
completion task. Previous reaction-completion
studies mention the issue of correctness, but do
not present viable methods beyond an atom- and
charge-balance check [5, 14, 17].
We propose utilizing a metric previously intro-

duced in a different field of predictive chemistry,
the round-tip accuracy [19]. Retrosynthesis, the
prediction task of suggesting possible precursor
molecules for a product, suffers from a similar lack
of ground-truth for data-driven models. In order
to increase the confidence that a suggestion is cor-
rect, the output precursors are used as input for
a separate forward prediction model. If the re-
sult of this ’reverse’ prediction equals the original
product, the prediction is considered round-trip
accurate. In order to translate this metric to our
problem, the set of missing output molecules can-
not be used as the sole input for a second predic-
tion, as they are almost always too few to create
a meaningful, partial reaction. To solve this prob-
lem, a new partial reaction is created which always
includes all the molecules from the suggested out-
put, as well as some other molecules. If the output
of the second prediction equals the molecules that
were left out of the second input, the prediction is
considered round-trip accurate. An illustration of
this method is shown in Figure 5.

Results and Discussion

Dataset

The choice of dataset for our research was influ-
enced by a few factors. It needed to be freely ac-
cessible, it needed to be large enough to properly
train a language model on, and the quality of re-
actions should not be too low. A large corpus
of reaction data was made publicly available us-

ing data-mining in 2012, known as the USPTO
dataset [2]. This database is freely accessible and
large (>3M reactions), but suffers from many bo-
gus or erroneous reactions. Over the years, other
studies filtered this database, causing various sub-
sets to be available. The specific subset we used,
named USPTO STEREO, is a filtered version of
the originally noisy dataset, but underwent less
filtering than other datasets and kept stereochem-
ical information, totalling 1002970 reactions [6].
The USPTO STEREO dataset was analyzed on
how complete the dataset was, which can be seen
in Figure 6. Only less than 40k (< 4%) reactions
were naturally balanced, while the majority of re-
actions appeared to have atoms missing on the
RHS of the equation (i.e, missing byproducts).
The three largest red bars correspond to imbal-
anced reactions where the byproducts HCl, H2O
and HBr are missing. Early analysis on reaction
datasets influenced the choice of most promising
helper species.

Rule-based curation

The rule-based curation algorithm balanced a to-
tal of 557379 reactions (55.6%) when using the
lenient helper set (see Figure 3) and 495197 re-
actions (49.4%) when using the strict helper set.
It is clear that using a wider range of possible
helper species molecules curates a greater number
of reactions. The vast majority of curated reac-
tions were curated using the helper species mod-
ule, while around 3.5% of the original dataset was
pre-balanced, and a marginal number of reactions
were balanced by identifying erroneous reactants
(< 0.5%).
Previous papers have reported a variety of cu-

ration rates. Arun et al. show a remarkably high
rate of curation, but this is placed in the context
of a long pipeline with previous operations already
filtering out a large number of reactions [14]. De-
spite that, the number of reactions drop from 55%
to 53% of the original size after their 6th step -
the step which balances incomplete reactions. The
many steps occurring previously are likely reason
for the high curation rates, though this warrants
further investigation. Zhang et al.’s paper on rule-
based curation report a rate of 17.6% [5]. This is
in stark contrast to our results, as well as other pa-
per’s results. We verified these curation levels by
testing their curation algorithm on a similar set of
reactions as ours, and found that their algorithm
curates 564 of the 1000 example reactions, while
the rule-based algorithm presented in this paper
curated 590 reactions. We suspect the stark dif-
ference might be related to the different way rule-
based curation is interpreted by either study. Our
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Figure 6: The 50 most common combinations of missing atoms in chemical reactions for the
USPTO STEREO dataset. Red bars illustrate combinations where atoms are missing on the RHS,
blue bars for those missing atoms on the LHS, yellow bars for a combination of both, and the green
bar illustrates the frequency of complete reactions. X-axis labels can be read as always starting with
a $G, proceeded by atom types and amounts for atoms missing on the RHS, then a space and a $L
for atom types and amounts missing on the LHS.

hybrid approach sees rule-based curation happen
independently, while their rule-based curation is
interwoven with its model-based curation.

Model-based curation

When limiting the scope of the reaction incom-
pleteness problem to partial reactions with ex-
actly one molecule missing, our LM achieved a
top-1 accuracy of 96.3%. We trained a separate
model on exactly the same partial reaction data,
but including context molecules like solvents, and
found that its accuracy dropped slightly to 96.0%.
The model trained on data that includes solvent
information contains additional chemical context,
while the model trained without this information
is of shorter input length. The difference in per-
formance is marginal, but due to the reduced com-
plexity of input data, all further experiments were
done using the solvent-excluded model.
Degree of partialization. Figure 7 illus-

trates the high rates of success that our language
model returns on reactions previously curated by
the rule-based method. Accuracy rates range be-
tween 88% and 95% when considering the top 5
results. Logically, as we increase the beam size
of our model, it can explore multiple paths down
its decision tree and pick the output sequence
with the highest probability. We also analyzed
the frequency of how often predictions are valid
SMILES strings. That is, how often does the lan-

guage model actually output something in ’coher-
ent’ chemical language. The logarithmic scale of
the top right bar graph shows that there is quite a
discrepancy between the first and the second-best
consideration. We suspect that this might have to
do with the model being very sure about a specific
answer (top-1), so much so that its second answer
is a near-copy of it, except for minor token devi-
ation. In the SMILES language, a minor token
deviation can easily invalidate the molecule. Dif-
ferent degrees of partialization are experimented
on in the heatmap in the bottom left of the figure.
A gradual decrease in accuracy can be seen as we
move towards the right side of the heatmap. This
translates to harder tasks for our language model,
since the model needs to predict a longer sequence,
i.e., a more molecules. Interestingly, an unex-
pected blue square is observed in the bottom-left.
We suspect that this group of partial reactions is
particularly difficult to decipher due to these re-
actions being stereoisomerization reactions: one
molecule changes its three-dimensional spatial ar-
rangement without losing or gaining atoms. This
specific combination occurs 285 times, with an av-
erage accuracy of 55.4%, much lower than aver-
age. The heat map in the bottom right of the
figure helps illustrate how common certain com-
binations of partial reactions appear. The major-
ity of chemical reactions are around two to four
molecules long, with one to two molecules miss-
ing.
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Figure 7: Top left. Bar graph showing the accuracy of the language model on partial reactions from
the curated subset. The blue bar shows the top-1 accuracy of the model when limiting the beam size
to 1. The red bars show the cumulative top-n accuracy as the first n options are considered on a
beam size of 5. Top right. Bar graph showing the rate of valid SMILES strings, per nth prediction.
Bottom left. Heatmap showing prediction accuracy on the test set for partial reactions for different
combinations of degree of partialization. Notably, the model correctly identifies complete reactions
due to the consistent yellow hue on the left column. Bottom right. Heatmap showing how frequent
specific combinations of degree of partialization are. Note the logarithmic scale. A majority of partial
reactions belong to the 2-to-3 group on either axis.

Model type ’Short’ accuracy ’Medium’ accuracy ’Long’ accuracy
ChemBalancer 99.9% 78.3% 16.4%

Our LM-based method 99.9% 91.8% 82.8%

Table 1: Table showing different accuracy rates
of different LM’s across different lengths of out-
puts. Both models see accuracy degrade as the
length of the solution increases, though our LM-
based method degrades significantly less fast.

Compared to the previous paper which fine-
tuned the Molecular Transformer, which saw an
accuracy of 30.4%, there is a large difference. A
couple of factors could be attributed to this [17].
The largest difference is that the other paper
considers solvent predictions part of the problem.
We decided not to include solvents, as they are
not an active part of the reaction.

Length-based performance. A previous
study categorized the performance of their lan-
guage model based on the number of output to-
kens required in the solution [5]. Zhang et al.’s
language model uses a slightly different tokeniza-
tion scheme, as discussed previously, so in order to
make a fair comparison, this needs to be taken into
account. In their paper, ’short’ solutions are those
of token length 1, ’medium’ from 1 up until 10,
and ’long’ greater than 10. As their tokenization
scheme sometimes groups up to three or four char-
acters together, the average length of the token is
assumed to be 2 characters long. We attempted to
find an exact, ’average’ length of their tokens, but
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Figure 8: Four different cut-off points for round-trip accuracy. A round-trip minimum of 50% means
at least 50% of the atoms in the complete reaction need to appear in the modified, partial reaction.
Higher levels of round-trip minimum logically return higher levels of accuracy. Similarly, a higher
top-n also directly correlates to a higher round-trip accuracy.

found that the tokenization file was private. Fur-
thermore, because our output scheme is always in
the format of ’> >’ (to separate reactants from
products), the predictions belonging to ’short’ so-
lutions are at most 7 characters long. This takes
the three characters of the mentioned default into
account, as well as two more character with two
spaces to separate the tokens. 10 token are trans-
lated to 20 characters in our case, with an addi-
tional 20 space characters. As a result, ’medium’
predictions are up until 43 in length, while ’long’
predictions are 44 and longer. The results of this
analysis are shown in Table 1. The reasoning be-
hind our model’s stronger performance on longer
outputs likely lies in the very different architec-
ture of the LM used in the other study. Their
LM severely limited its flexibility with longer out-
puts. Meanwhile, our transformer-based architec-
ture degrades much less when the length of the
output increases. A similar trend was found when
measuring its accuracy against predictions of dif-
ferent total molecular weight. The greater the
weight of missing molecules, the further the ac-
curacy degrades.

Application on uncurated reactions

Applying the language model on the set of un-
curated reactions shows lesser results. Out

of the total of 507773 reactions unsuccessfully
curated when using the strict set of helper
species, only 27238 partial, unknown-ground-
truth-reactions (5.4%) produced an output both
atom- and charge-balanced. This is quite a stark
contrast to the results obtained in previous sec-
tions. We suspect that the difficulty of complet-
ing the remaining reactions is much higher. Many
of these reactions are missing important compo-
nents to reasonably predict the missing molecules.
At the same time, there is room for improve-
ment. Our LM-based method has been trained
on a very specific type of incomplete reaction: re-
actions which are curated by our rule-based ap-
proach. Our rule-based approach is very effective
at fixing synthesis reactions, but has little suc-
cess for decomposition reactions or substitution
reactions. Decomposition reactions are reactions
where a larger molecule reacts to split into multi-
ple smaller molecules. Substitution reactions see
molecules react to swap functional groups with
each other. If our LM-based method was more
exposed to different types of reactions, this might
cause it to generalize better to different types of
reactions. Nevertheless, we do note that an addi-
tional 5.4% of the remaining subset of incomplete
chemical reactions are potentially curated.
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Measuring correctness

Amodified version of the round-trip accuracy met-
ric was used in an attempt to assess the correct-
ness of the model’s predictions. Since the level
of partialization in this situation is arbitrary, we
experimented the round-trip accuracy across four
different values: 50%, 60%, 70% and 80%. This
can be seen in Figure 8. As we expected, the more
lenient we are with round-trip predictions (i.e., a
higher round-trip minimum, so there are less miss-
ing molecules), the higher our model predicts the
exact same reaction again, using a different par-
tial reaction equation. Similarly, if we allow the
model to make multiple predictions for the same
partial reaction, we are more likely to find the ex-
act same complete reaction. The largest increase
in round-trip accuracy was seen when increasing
the value from 50% to 60%, indicating that the
former percentage might be too harsh. We con-
sider our model relatively reliable, as we observe
round-trip accuracy levels of around 80%. This in-
dicates that the model is more sure about a very
specific complete reaction being the one to go to.
While this correctness metric gives us an insight

in how reliable our language model is, it is still not
a golden solution. Balanced reactions do not nec-
essarily equate with correct reactions. Currently,
the only way to truly measure the correctness of
a chemical reaction, is to have a chemist look at
a subset of predictions. Unfortunately for this re-
search, this is out of our scope.

Discussion & outlook

In this work, we present a hybrid approach to com-
pleting incomplete reactions. Inspired by previous
developments in the field of predictive chemistry,
we made use of the promising results found when
using language models to solve problems in the
chemical domain. By using the Molecular Trans-
former, a deep-learning transformer-based lan-
guage model, we developed a model-based method
which is capable of understanding the language of
chemistry, and identify what kind, and how many
of that molecule is missing in a reaction. Simul-
taneously, we used a rule-based method to curate
the bulk of incomplete reactions by applying log-
ical rules based on atom and charge balances, as
well as some limited chemical knowledge. By us-
ing the output of the rule-based method to feed
and train our model-based method, we present a
hybrid approach that managed to curate over half
of a commonly used chemical reaction dataset.
We found that our language model performs ex-

ceptionally well on our test set, with rates above

95% accuracy. Further analysis showed that this
strong performance persists even with more diffi-
cult prediction tasks. However, we also found that
this performance is in stark contrast to its perfor-
mance on the uncurated reaction subset, which
was only 5.4%. The rule-based method initially
failed to curate these reactions, and subsequently
did not include these reactions in the training of
the model. An experiment on how well our model
performs based on different reaction classes could
possibly elucidate the reasons for the stark dif-
ference in performance. It is likely that certain
classes of reactions were difficult to curate using
the rule-based method, and were thus underrepre-
sented in the training data.

We went further than other studies in measur-
ing the correctness of our predictions by using a
round-trip accuracy metric. using this correctness
measure, we found that the model is likely to pro-
duce a similar complete reaction output when the
question is posed in a slightly different manner.
This is promising, but also not definitive for its
correctness. We acknowledge that the best way to
assess correctness of completing incomplete reac-
tions is by manually checking predictions, which
is both cumbersome and out of scope for this re-
search.

For future work, we propose exposing the lan-
guage model to a wider variety of complete chem-
ical reactions. This can be achieved by employ-
ing a more thorough rule-based method. Having
an expert chemist design and encode important
chemical knowledge can help broaden the types of
reactions curated, which indirectly improves the
model’s performance.

In conclusion, this paper presents a hybrid ap-
proach to the reaction incompleteness problem.
We find that a significant portion of reaction
databases can be curated using our method. How-
ever, some types of reactions are likely underrep-
resented in the curation effort, which leaves room
for future improvement.
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