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Analysis of Stochasticity and
Heterogeneity of Car-Following Behavior
Based on Data-Driven Modeling

Yasuhiro Shiomi1 , Guopeng Li2 , and Victor L. Knoop2

Abstract
Traffic dynamics on freeways are stochastic in nature because of errors in perception and operation of drivers as well as the
heterogeneity between and within drivers. This stochasticity is often represented in car-following models by a stochastic
term, which is assumed to follow a normal distribution for the convenience of mathematical processing. However, the validity
of this assumption has not been studied yet. In this study, we focused on the shape of the distribution of a stochastic term in
the car-following model that predicts an acceleration after a time step. Based on vehicle trajectory data on a freeway in Japan,
a car-following model is first developed by using data-driven methodology in which long short-term memory (LSTM) network
is applied. In this LSTM network, the acceleration value is discretized and the model parameters are trained with the focal
loss function. The relationship between the predicted distributions’ modality, standard deviation (SD), and IA with respect to
traffic states is then examined. The findings demonstrate that: 1) the developed model can accurately predict the accelera-
tions; 2) a probabilistic distribution tends to have a large SD and multimodality around a merging point and at the beginning
of and along stop-and-go waves; and 3) driving behavior can be classed in one of four clusters based on the variation of the
percentile value that a driver takes within the probability distribution. The proposed model and the insights are helpful for
improving microscopic simulation models when considering new traffic management measures.
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To develop a workable traffic management and control
strategy, it is imperative to comprehend the nature of
traffic flow dynamics. Traffic dynamics are stochastic in
nature. Since the beginning of traffic flow analysis, a
great deal of research attention has been given to the sto-
chasticity of traffic flow (e.g., Haight) (1). Initially,
numerous studies were conducted to ascertain the shape
of the distribution of indices representing the state of a
single vehicle, such as headway and free speed, and also
their connection with the macroscopic traffic indices,
such as platoon size and delay, was analyzed (2, 3). In
this context, the stochasticity was mainly considered to
be the same as the heterogeneity among drivers. In other
words, it was assumed that the desired speed and head-
way distance of each vehicle is given by ‘‘rolling a dice’’
according to a predefined probability distribution, as is
commonly employed in conventional traffic flow simula-
tions. As a result of ‘‘rolling a dice,’’ the traffic flow

represented in the simulations can yield a variety of
results with some probability.

In the last decades, stochasticity has been examined in
conjunction with traffic dynamics, in which stochastic
characteristics are often introduced into a model as addi-
tional variables following a specific form of a probability
distribution. For instance, Laval et al. showed that the
formation and propagation of traffic oscillation can be
explained by adding a white noise to drivers’ desired
acceleration in free-flow (4). Treiber and Kesting exam-
ined an external acceleration noise on the car-following
models (5). While these studies indicate that the
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stochasticity plays an important role in representing traf-
fic dynamics, given the conjecture raised by Chen et al.,
Tian et al., and Xu and Laval that car-following beha-
vior of a driver consists of several regimes, it is not suffi-
cient to assume a uniform distribution form for the noise
term regardless of traffic state (6–8). In line with this con-
jecture, Yuan et al. show that the standard deviation
(SD) of a driver’s desired acceleration linearly decreases
as their speed increases and, based on this, they proposed
an extended parsimonious car-following model which
can represent capacity drop (9). The Cox-Ingersoll-Ross
process was used by Ngoduy et al. to develop a stochastic
car-following model that describes the time-varying ran-
dom acceleration and theoretically deduces the impact of
the random parameter on traffic instabilities (10). The
same approach is applied to higher order continuum traf-
fic models (11). Xu and Laval generalize the Brownian
and geometric Brownian acceleration processes in two-
regime car-following models (4, 8, 9). They reveal that
the estimated parameters are consistent within the same
dataset but different across datasets, according to the
results of parameter calibration using experimental data.
Additionally, they find that the acceleration error process
is close to a Brownian motion.

These studies are successful in capturing the stochasti-
city and heterogeneity of acceleration behaviors, but they
do still assume that the stochastic terms follow a
Gaussian distribution for the sake of mathematical tract-
ability and pay less attention to the shape of the stochas-
tic terms and, instead, assume a Gaussian distribution.
Furthermore, stochasticity is composed of the random
error of driving behavior caused by lack of perception,
error of operations, and so on, as well as the heterogene-
ity, but the randomness and the heterogeneity are not
explicitly distinguished in the previous studies. When sig-
nificant acceleration or deceleration is required, the distri-
bution’s shape can be asymmetric because the
performance of vehicles limits the maximum acceleration
and deceleration. In addition, the distribution shape is
not necessarily unimodal but can be multimodal, given
that the stochastic term in acceleration takes into account
heterogeneity in driving behavior (12–14). This is easily
imagined by thinking about the differences between a
timid and an aggressive driver. In a separate line of
research on heterogeneity, Fadhloun et al. developed a
vehicle-dynamics-based acceleration model that explicitly
incorporates differences in the gas-pedal operation by
drivers (15). Makridis et al. proposed a free-flow accelera-
tion model that incorporates various gear-shifting strate-
gies and driving styles with vehicle dynamics. However,
they are limited to free driving conditions (16).

The difficulty in assuming non-Gaussian distribution
for the random term is that it cannot be observed. In
recent years, however, large amounts of vehicle

trajectory data on freeways (e.g., Krajewski et al. and
Seo et al.) have been publicly available (17, 18). These
data make it possible to create a model that predicts
driving behaviors using a data-driven methodology. For
instance, Gilles et al. propose a framework for addres-
sing the motion forecasting problem that outputs an
image that depicts the probability distribution of the
agent’s future location (19). The data-driven approaches
using trajectory datasets also have drawn much research
attention for modeling driving behaviors. Zhou et al.
proposed a microscopic car-following model based on
recurrent neural network to detect and predict traffic
oscillation (20). Fan et al. and Wang et al. applied a long
short-term memory (LSTM) neural network to a car-
following model, demonstrating the significance of the
long memory (21, 22). Lee et al. integrate the stochastic
car-following model and neural-network-based lane-
changing model and find that the proposed model can
tackle the unpredictable fluctuations in the velocity of
the vehicles in the acceleration/deceleration zone (23).
Using LSTM, Zhang et al. develop a unified model of
car-following and lane-changing and demonstrate that
the model can successfully predict the occurrence of
lane-changes (24).

To the best of the authors’ knowledge, these models
are deterministic and fail to take into account the sto-
chastic nature of traffic flow, although data-driven mod-
eling of driving behavior is promising with regard to its
capability to capture driving behavior and represent traf-
fic dynamics. To fill this gap, we develop an LSTM-based
car-following model that predicts the probabilistic distri-
bution of the acceleration. The acceleration values to be
trained are discretized into bins, and the model predicts
the probability that the acceleration for the next time step
will be in a bin. This enables the model to produce a non-
parametric acceleration distribution. After assessing the
accuracy of the proposed model using data on vehicle
trajectory collected on a freeway in Japan, the statistics
of mean, SD, asymmetricity, and distribution modality
are looked at in relation to traffic conditions. We also
showed that heterogeneity in driving behavior can be
expressed as the time-series variation of percentiles of the
realized values relative to the distribution.

The remainder of this paper is organized as follows.
The modeling framework is described in the following
section. The data used in the study are presented in the
section that follows that, after which the results of the
training and assessment of the prediction accuracy are
discussed. The statistical characteristics of the stochastic
terms and the traffic conditions are then compared, and
the heterogeneity of driving behaviors based on realized
acceleration values is also examined. Finally, the results
obtained are summarized and suggestions for future
research are made.
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Model Specification

The acceleration of vehicles is the result of each driver’s
sequential operation of the accelerator pedal in response
to the surrounding environment, their own state, and the
current traffic conditions. It is necessary to take spatio-
temporal factors into account when modeling the acceler-
ating and decelerating behavior of vehicles. Furthermore,
since the driver’s perception and operation involve some
degree of error, the model should depict the stochasticity
of the behavior of the vehicle. In this section, we describe
the details of a model using LSTM.

Architecture of LSTM

This study adopts the principle formulation of Ngoduy
et al. to predict the target vehicle’s acceleration and decel-
eration in relation to the environment, including the traf-
fic state and road geometry shown by Equation 1 (10):

dvi(t)= f (Qi(t))dt+ g(Qi(t))dt ð1Þ

where
vi(t) = the speed of vehicle i at time t,
Qi(t) = the state variables of vehicle i until time t,
f ( � ) = a function returning a deterministic accelera-

tion value, and
g( � ) = a function returning a stochastic source

depending on Qi(t).
Equation 1 is distinct from Ngoduy et al. in the point
that the stochastic term, g( � ), is assumed to be deter-
mined by the state variable Qi(t), which can include any
factors affecting vehicle behaviors such as the driving
state of a target vehicle, the interactions with surround-
ing vehicles, road geometric features, attributes of a tar-
get vehicle, and so on (10). In this study, instead of
defining an explicit formulation for f ( � ) and g( � ), they
are expressed by a data-driven model. More specifically,
the model makes use of LSTM, the ability of which to
reproduce car-following behaviors has been demon-
strated in earlier studies (21, 22).

The LSTM approach has a long-term memory in which
unimportant information in the training data can be dis-
carded. To address the vanishing gradient issue in recurrent
neural networks, a hidden layer of LSTM incorporates for-
get gates, input gates, memory cells, and output gates. For
the details of LSTM, we refer to Hochreiter and
Schmidhuber (25). Figure 1 depicts the schematic represen-
tation of an LSTM structure. In this figure, §, t, and s
denote activation functions. h(t), c(t), y(t), f(t), i(t), a(t),
and o(t) denote the vector of a hidden layer, the vector of a
memory cell, the vector returned from the forget gate, the
vector returned from the input gate, the vector of the cur-
rent hidden state values activated by § and t, and the vec-
tor returned from the output gate, respectively. Each
vector is written as Equations 2 to 8:

f(t)= § Q(t) �Uf + h(t � 1) �Wf
� �

ð2Þ

i(t)= § Q(t) �Ui + h(t � 1) �Wi
� �

ð3Þ

a(t)= t Q(t) �Ua + h(t � 1) �Wað Þ ð4Þ

o(t)= § Q(t) �Uo + h(t � 1) �Woð Þ ð5Þ

c(t)= f(t)� c(t � 1)+ i(t)� a(t) ð6Þ

h(t)= o(t) � t(c(t)) ð7Þ

y(t)=s(h(t) � V+ j) ð8Þ

where
U = coefficient vector,
W = coefficient vector,
V = coefficient vector,
j = the biases, and
�= the Hadamard product.

The sigmoid function and the hyperbolic tangent func-
tion applied to the activation functions, § and t.

Although the observed value of acceleration is initially
continuous, the entire range of acceleration is divided
into N bins to predict the non-parametric probability dis-
tribution of the acceleration. Then, the model is set up to

Figure 1. A schematic of long short-term memory (LSTM)
network: (a) whole structure of LSTM network and (b) structure
of LSTM block.
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output the probability that an observation value, yobs
i (t),

falls into each bin. Thus, the softmax function is applied
to s( � ) which is written by Equations 9 and 10:

s(z)= (s1(z), :::,sN (z)) ð9Þ

si(z)=
exp (zi)PN
j exp (zj)

, i 2 f1, :::,Ng ð10Þ

Loss Function

It is critical to predict strong acceleration/deceleration
behavior when modeling traffic dynamics, but these
behaviors are rarely observed when compared with stable
conditions. As a result, we need to pay relatively more
attention to these rare cases in training. In this study, we
use focal loss (FL) as a loss function to be minimized,
which allows us to handle the class imbalance naturally
without undersampling (26). FL is an extension of the
cross entropy (CE) loss. It down-weights the dominant
classes with a high probability of classification, allowing
training to be focused on rare classes. To accomplish
this, a modulating term is added to the CE loss, which
reduces the loss value relatively if its probability is high.

Suppose pi denotes the estimated probability of class i

and y denotes the ground-truth class, and define pt
i as:

pt
i =

pi (i= y)
1� pi (otherwise)

�
ð11Þ

the CE can be written as Equation 12:

CE(pt
i)= �

XN

i= 1

ln (pt
i) ð12Þ

In FL, a modulating factor (1� pt
i)

g is added to CE with
an adjustable parameter g ø 0. FL is defined by
Equation 13:

FL(pt
i)= �

XN

i= 1

at(1� pt
i)

g ln (pt
i), ð13Þ

where
at = a weighting factor and defined with a parameter

a 2 ½0, 1� as follows:

at =
a (i= y)
1� a (otherwise):

�
ð14Þ

Figure 2 shows the relationship between the probability
and the loss values given by Equation 13, in which at is
fixed to 1. It is intuitively obvious that, as the probability
near 1.0 and g increases, the modulating term becomes 0
and the loss values for the well-classified class can be
down-weighted.

Input and Output Variables

Although the use of LSTM allows us to consider the time-
series effects of car-following behavior, more input vari-
ables are required to capture the spatial characteristics of
traffic dynamics. As a result, we consider the anticipation
effect as well as the spatial propagation of stop-and-go
waves using the speed, acceleration, headway distance, and
relative speed with multiple leading vehicles as input vari-
ables (27). The headway distance of i th vehicle to n vehi-
cles ahead, Dxn

i (t), is defined as xi+ n(t)� xi(t) where xi(t)
shows the position (m) of vehicle i at time instant t, and the
relative speed of i th vehicle with n vehicles ahead, Dvn

i (t),
is defined as vi+ n(t)� vi(t) where vi(t) shows the speed of
vehicle i at time instant t. In addition to the effect of lead-
ing vehicles, the effect of following vehicles is taken into
account as an input variable to capture the influence of
being tailgated (28). This is represented by setting n to a
negative integer.

Concerning the attribution of each vehicle, a vehicle
length (m) and a type of vehicle (0: passenger car and 1:
truck) are included both for a target vehicle and its sur-
rounding vehicles. The holiday dummy (1: the data is
observed on holiday, 1: otherwise) and morning dummy
(1: the data is observed in the morning peak, 0: other-
wise) are also used as the input variables. This is because,
as suggested by Lenné et al., Yeon et al., and others, driv-
ers’ driving characteristics may differ depending on the
time of day (29, 30).

Both gradient and turning radius are considered as
factors of road geometric features which influence vehi-
cle behavior. More specifically, the average of gradient
from xi(t)� 50m to xi(t)+ 50m is used for smoothing
the gradient effect, and the curvature radius at 50m
ahead is used as an input variable, since drivers would
adjust their speed before reaching the location of the

Figure 2. Focal loss (FL) function (26).
Note: CE = cross entropy.
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minimum curvature radius to keep their safety and com-
fort. It should be noted that, because this study focuses
on longitudinal driving behavior, the impact of adjacent
lanes (e.g., discussed by Ponnu and Coifman) is ignored
(31). Although this is a subject for future work, this pro-
posed modeling framework can naturally take account
of the influence of adjacent lanes by including features of
traffic states on the adjacent lanes, and the model can
even be easily extended to represent the integration of
car-following and lane-changing.

The acceleration of the target vehicle after a one-time
step is set as an output variable. Because LSTM can
account for time-series variation including the influence
of the reaction delay, the model does not explicitly con-
sider reaction delay time as a parameter.

Data

In this study, we use vehicle trajectory data for model
training and validation. This section provides an over-
view of the data to be used and its preprocessing method.

Trajectory Dataset

To develop a robust model using a data-driven approach,
it is necessary to use data that cover the vehicle maneu-
vers in various traffic states including free-flow state, as
well as the generation and propagation of stop-and-go

waves. We use Zen Traffic Data (ZTD) provided by
Hanshin Expressway Co. Ltd. in Japan (18). ZTD utilizes
an image sensing technology to create data on the posi-
tion and speed of each vehicle driving in the target sec-
tion in 0.1 s increments. The overview of the subject
section is shown in Figure 3. It is located approximately
5 km from the center of Osaka City on Route 11 Ikeda
Line and is a two-lane section bounding for the center of
Osaka City consisting of an up-and-down gradient sec-
tion, a sharp curve section, a merge section from an on-
ramp, and a lane change banned (LC ban) section.
Because this paper focuses on car-following behavior, the
data from the median lane is only used for this analysis.

The data collection was done on different 5 days for
each 1h. As a result, we have 5 h data in total. The sam-
ple sizes of the dataset are shown in Table 1. The precise
date of the data collection is concealed. Figure 4 depicts
the time-space diagram of dataset No. 4 as an example to
see the traffic flow characteristics in the target section. It
is clear that the stop-and-go waves are generated within
the LC ban section and propagate upstream.

Preprocessing

The original data in ZTD was collected by video cam-
eras. Because of the limited distance that one camera can
cover, the trajectories collected by each camera must be
combined to generate the trajectories in the 2 km stretch

Figure 3. Overview of the subject section.
Note: LC ban = lane change banned.

Table 1. Sample Size of Datasets

No. Time and day No. of unique vehicle ID No. of records

1 7:00–8:00 on weekday 2,164 3,169,367
2 15:00–16:00 on weekday 2,121 2,258,147
3 10:00–11:00 on holiday 1,898 2,515,658
4 7:00–8:00 on weekday 2,225 3,188,724
5 15:00–16:00 on weekday 1,998 2,329,178

608 Transportation Research Record 2677(12)



section. As a result, it may contain some systematic
errors. To eliminate these errors, the sequence of the
speed for each trajectory is smoothed by taking a moving
average of 1 s before and after, which corresponds to 20
data points. A moving average ensures that the speed
integration after smoothing is consistent with regard to
the actual distance to travel. Subsequently, the accelera-
tion value a(t) to be predicted with the input variables at
time t is defined as:

a(t)=
dv(t)

dt
:¼ v(t+Dt)� v(t)

Dt
ð15Þ

where
Dt = the incremental size of time and set to 0.1 s in

this study.
However, some outliers remain, so extreme cases where
the absolute value of the acceleration is greater than
10km/h/s, which corresponds to less than 0.01% of the
total data, are discarded.

Model Performance

Settings

To apply the proposed model, according to the results of
the sensitivity analysis we did before the training, the num-
ber of vehicles considered as input variables representing
the spatial and anticipation effect is set as three vehicles
ahead and one vehicle back, that is, n= f�1, 1, 2, 3g.
Then, all variables are normalized to ½0, 1� by min-max
feature scaling denoted by Equation 16.

~x=
x� xmin

xmax � xmin

, ð16Þ

The size of bins in the output layer is set as 1,000, mean-
ing that the acceleration value to be predicted is discri-
tized to each 0.02 km/h/s, since the acceleration range is

limited from � 10km/h/s to 10 km/h/s. This is also nor-
malized by min-max feature scaling.

In the case of LSTM, the lookback period is set to 50,
indicating that the data from 5 s ago to now is used for
the prediction. The other hyperparameters and the set-
tings of LSTM are defined based on the preliminary sur-
vey as follows: the input dimension is 28; batch size is
512; the number of hidden layers of LSTM is 32; optimi-
zer is Adam; learning rate is scheduled with initial learn-
ing rate, 0.01, decay rate, 0.9, and decay steps, 10,000; g

and a of FL (Equation 13) are 2.0 and 0.25, respectively.
In total, the number of parameters to be trained is 41,225.

All trajectories are randomly divided into 80% for
training and validation and 20% for testing. The former
is further subdivided into 80% for training and 20% for
validation. To avoid overfitting, a non-overlapping slid-
ing window is used for training and validation. As a
result, 175,958 samples are used for training and valida-
tion, and 43,603 samples are used for testing. The model
was developed with the Keras deep learning library and
the TensorFlow backend.

A Benchmark Model

Besides the LSTM-based model we proposed, we cali-
brate an extended Helly model as a benchmark (27). The
model formulation is denoted by Equation 17:

a(t)=
Xm1

j= 1

ajDvj(t � t)+
Xm2

j= 1

bj(Dxj(t � t)� Sj) ð17Þ

where
m1 and m2 = the number of leaders to which a driver

responds,
t = the reaction delay,
Dvj = relative speed with j th vehicle ahead,
Dxj = gross distance between both vehicles,

Figure 4. Time-space diagram in dataset No. 4.
Note: (i) = prediction result at (time, distance) (7.6492, 0.7190); (ii) = at (7.7833, 0.7753); (iii) = at (7.2536, 0.9200); (iv) = at (7.1006, 0.6733); (v) = at

(7.6413, 0.8780), and (vi) = at (7.6450, 0.9115); LC ban = lane change banned.
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Sj = desired distance to j th vehicle ahead, and
aj and bj = sensitivity parameters.

We set m1 =m2 2 f1, 2, 3g and 0:5 ł t ł 3:0. Then, such
m1, m2, and t that provide the highest adjusted coefficient
of determination (R2

adj) are estimated trajectory by trajec-
tory. 80% of data in a trajectory is randomly chosen for
estimating the parameters and the other 20% is used for
testing the prediction accuracy. If R2

adj is less than 0.60, its
driving behavior is considered to be inconsistent with the
assumptions of the Helly model and not used for the fur-
ther evaluation.

Results

The results of training, validation, and testing are sum-
marized in Figure 5. Figure 5a depicts the loss values
sequence at each epoch during the training process. The
model is well converged and the difference between train-
ing loss and validation loss is small, implying that the
model can avoid over-fitting. Figure 5, b to d, compares
the relationship between the ground truth and the predic-
tion for test dataset among three methods—Figure 5b:
acceleration values at one time step (0.1 s) before; Figure
5c: the Helly model described above; and Figure 5d: the

Figure 5. Comparison between ground truth and prediction: (a) loss plot, (b) one time step before, (c) Helly model, and (d) long short-
term memory (LSTM) model.
Note: RMSE = root mean square error.
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LSTM model proposed in this study. In this case, the
arithmetic mean of the predicted distribution is used
because the LSTM model predicts the distribution of the
acceleration. Figure 5b demonstrates that the serial cor-
relation of the acceleration sequence is not visible. The
extended Helly model cannot predict the acceleration
well, especially when strong acceleration and deceleration
are needed, according to Figure 5c. On the other hand,
the LSTM model can offer extremely accurate predic-
tions across the entire acceleration range. Trajectory by
trajectory, the Helly model’s parameters are calibrated.
Nevertheless, the prediction’s precision is modest. This is
because the Helly model assumes a linear relationship
between the stimuli a driver receives and the driver’s
acceleration behavior and does not capture the time-
series effect. High-quality predictions are made possible
by the LSTM’s relaxation of these presumptions and
accounting for time-series variations.

Then, using the trained LSTM model, we simulated
the trajectory of a few particular vehicles. Figure 6
depicts the mean of predicted acceleration, the observed
acceleration values, and a 95% confidence interval for a
particular vehicle (upper bound is 97.5th percentile value
and lower bound is 2.5th percentile value). Figure 6a is
an example of a trajectory in the free-flow state and

Figure 6b is in the congestion state. As can be seen, the
prediction closely matches the observation, and, in the
majority of cases, the observation falls within the confi-
dence interval regardless of the traffic conditions or even
circumstances requiring significant deceleration and
acceleration. It is also remarkable that the width of the
confidence interval varies depending on the situation. In
a free-flow situation, the interval is mostly within 6

1.0 km/h/s, while in the congested case it becomes larger
than 6 2.5 km/h/s when the time is 7.896 in Figure 6b,
for example. This suggests that driving behavior’s sto-
chastic traits alter in response to traffic conditions. Also,
take note that the range of the confidence intervals’
range is much smaller than what Ngoduy et al. presented
(10). This might be because the model can capture the
characteristics of acceleration and deceleration behavior
and, as a result, the accuracy of the deterministic term
becomes higher.

Analysis of Stochasticity

When the estimated probability distribution follows a
normal distribution, it is assumed that randomness is pri-
marily to blame for the acceleration variation. On the
other hand, if the probability distribution is multimodal,

Figure 6. Model prediction versus observation with 95% confidence interval: (a) in free-flow and (b) in congestion.
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then several different acceleration and deceleration
behaviors are expected, which may diverge in the sub-
sequent traffic conditions. It would be beneficial to
comprehend the nature of traffic dynamics if there were
any relationship between multimodality and traffic
state. This section focuses on the shape of the accelera-
tion distribution. Before analyzing the relationship
between the shape of the acceleration distribution and
traffic state, we first introduce the metrics related to
the distribution’s shape, namely the SD, modality, and
degree of asymmetry (IA).

Metrics of Stochasticity

SD, modality, and IA are used as metrics to assess the
shape of the predicted acceleration distribution. To iden-
tify multimodality in this study, we apply the dip test
among several methods, since it is a non-parametric
method and does not require a specific kernel function
(32). The dip test measures multimodality (or non-unim-
odality) in each sample over all sample points by the
maximum difference between the observed distribution
function and the unimodal distribution function that
minimizes that maximum difference. The procedure of
the dip test is as follows. First, randomly generate n vari-
ables that follow the estimated probability distribution to
be tested, and denote them as x= fx1, :::, xng in ascend-
ing order, and its empirical cumulative frequency distri-
bution is denoted by Fn. Choose any pair of (xi, xj)i\j

and compute the greatest convex minorant of Fn in the
interval (� ‘, xi) and the least concave majorant of Fn in
the interval (xj,‘). dij denotes the maximum distance
between these two curves and Fn. Then, twice the mini-
mum value of dij for the possible combination of (i, j) is
defined as a ‘‘dip’’ statistic. The probability distribution’s
unimodality is statistically rejected if this dip statistic
exceeds a predetermined threshold value, as shown in

Hartigan and Hartigan (32). For more details on the
computational algorithm, we refer to Hartigan (33).

Concerning IA, we evaluate it by Equation 18 instead
of the skewness, since the distribution can be
multimodal:

IA =(qub � qmed)� (qmed � qlb) ð18Þ

where
qub = 97.5 percentile value,
qmed = the median, and
qlb = 2.5 percentile value.

Figure 7 shows examples of the shape of distribution and
its corresponding IA to help comprehend this index of
asymmetry. As shown in Figure 7, if IA\0, the tail of the
large acceleration is long, and vice versa.

Traffic State and Stochasticity

We examine the relationship between traffic state and the
shape of acceleration distribution. Its shape is evaluated
by unimodality, SD, and IA.

Visualization of SD and Multimodality. The proposed model
is applied to the dataset No. 4 shown in Table 1. Every
1 s, the entire trajectory and its acceleration distributions
are predicted. In Figure 8, where the bandwidth of kernel
density estimation is set as 15, six examples of the shape
of the kernel density distribution of predicted accelera-
tion are displayed. In the figure, the distribution (i) cor-
responds to a prediction result at (time, distance) =
(7.6492, 0.7190) of Figure 4. Likewise, the distribution
(ii) is at (7.7833, 0.7753), the distribution (iii) is at
(7.2536, 0.9200), the distribution (iv) is at (7.1006,
0.6733), the distribution (v) is at (7.6413, 0.8780), and
the distribution (vi) is at (7.6450, 0.9115). Each distribu-
tion’s variance and asymmetry differ depending on how

Figure 7. Examples of the degree of asymmetry ( IA): (a) IA\0, (b) IA = 0, and (c) IA.0.
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strongly an object accelerates or decelerates. It should be
also noted that distribution (iii) has a tri-modal shape,
implying that driver’s reaction at this time and place is
likely to diverge.

Figure 9a displays the measured trajectories colored
according to the predicted SD of the acceleration, and
Figure 9, b and c, displays magnified views of particular
time-space regions to help understand the overall ten-
dency. Each dot in Figure Figure 9, a to c, depicts the
moments where the unimodality of the estimated distri-
bution is rejected at a significance level of 5% by the dip
test.

We can see in Figure 9a that the SDs just the down-
stream of the LC ban (indicated as a box [a] in the figure)
section are higher than the other section. This tendency
is clear, particularly in the free-flow state before the time
is 7.25. This is because of the likelihood of lane changes
from the outside lane to the median lane to avoid
conflicts with the merging vehicles, which may cause a
vehicle on the median lane to decide to accept the lane-
changers or not. Additionally, it can be seen that the SDs
tend to be high at the upstream and downstream edge of
the stop-and-go wave. This suggests that situations
requiring rapid acceleration and deceleration tend to
have higher levels of driving behavior variability.

Concerning the modality, 426 cases in 261,540 are
found to be multimodal, and they are mainly distributed
along with the stop-and-go waves. This tendency is
clearly confirmed in the magnified views shown in the
figures. Figure 9b is a magnified view of the region where
the first stop-and-go wave is generated. This figure
demonstrates that the SDs tend to be higher before the
speed reduction occurs and that multimodality is present
near the origin of the stop-and-go wave. Figure 9c is the
case that the stop-and-go wave was propagated from the
the downstream section. It demonstrates a nearly

identical trend to Figure 9b, namely that the SDs
increase before and after the speed reduction. It makes
sense that drivers do not have a wide range of options
when forced to follow a leading vehicle at a low speed,
but during the phase of deceleration and acceleration,
they can adjust the amount of deceleration and accelera-
tion and may also have the opportunity to change lanes,
causing reaction behavior to diverge and fluctuate. It
may affect the traffic dynamics such as capacity drop
and oscillation.

Aggregation Analysis. Each metric of the predicted distribu-
tion is examined collectively to see the characteristics of
the distribution’s shape. Figure 10a depicts the relation-
ship between the speed and the SD of acceleration distri-
bution and between the speed and the asymmetricity of
acceleration distribution in 5 km/h speed bins. Note that
it is limited to the cases where the acceleration is larger
than 0. As speed increases, it can be seen that the SD of
acceleration decreases, indicating that, after a significant
speed reduction, the accelerating behavior tends to
diverge and fluctuate. This finding supports the assertion
of Yuan et al. that the decreasing trend of SD as the
speed increases is an essential factor to represent traffic
dynamics (9). Regardless of the speed level, asymmetri-
city has a positive mean. The positive IA means that the
distribution has a long tail toward the higher accelera-
tion. This figure is depicted using the data when vehicles
need to accelerate, and the probability that the accelera-
tion value becomes negative in such a situation is
extremely low, therefore, the distribution would be cen-
sored in the negative direction. On the other hand, the
drivers can take their own desired acceleration unless the
vehicle catches up with the vehicle in front. The distribu-
tion has a long tail in a positive direction because of this.
When the vehicle is moving at a speed slower than
10km/h, this tendency becomes more obvious.

Figure 10b summarizes the relationship between the
mean of acceleration and the mean of SD and between
the mean of acceleration and the mean of the IA in
2.5 km/h acceleration bins. As can be seen, the SD is the
lowest when the mean acceleration is almost zero, but it
rises as the absolute value of the mean increases. This
result is in line with the above findings that the SDs
become higher at the generation of stop-and-go waves
where speed disturbances occur and before and after the
stop-and-go waves where strong deceleration and accel-
eration are required. Concerning asymmetry, the shape
of acceleration distribution is nearly symmetric when the
mean of acceleration is close to zero. As the mean accel-
eration increases (decreases) the IA becomes increases
(decreases) until 5.0 km/h/s (� 5.0 km/h/s), then
decreases (increases). When the acceleration is lower
than 5.0 km/h/s, the tail of higher acceleration becomes

Figure 8. Examples of the distributions (i) to (vi) of the
predicted acceleration.
Note: (i) = prediction result at (time, distance) (7.6492, 0.7190); (ii) = at

(7.7833, 0.7753); (iii) = at (7.2536, 0.9200); (iv) = at (7.1006, 0.6733); (v) =

at (7.6413, 0.8780), and (vi) = at (7.6450, 0.9115).
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Figure 9. Standard deviation (SD) and multimodality of acceleration distribution: (a) measured trajectories colored according to the
predicted SD of the acceleration, (b) time-space region (b), and (c) time-space region (c).
Note: KP = kilopost; LC ban = lane change banned.

Figure 10. Relationship among metrics of acceleration distribution: (a) speed, standard deviation (SD) and asymmetricity and (b) mean,
SD, and asymmetricity.
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long because of the same reason mentioned about Figure
10a. However, when the acceleration is higher than
5.0 km/h/s, the highest acceleration is bounded because
of the performance of vehicles. Because of this, the IA

becomes negative. In the case of deceleration, the distri-
bution shape is long-tailed in the negative direction when
the mean acceleration is greater than 25.0 km/h/s.
However, in traffic situations where strong deceleration
is necessary, the maximum deceleration is constrained by
the vehicle performance, so the distribution shape
approaches symmetry. These findings imply that the
shape of the stochastic term in Equation 1 does not
always conform to the normal distribution but can
instead change depending on the traffic situation.

Analysis of Heterogeneity

The previous section revealed that the shape of the distri-
bution of acceleration which is predicted by the proposed
data-driven car-following model varies depending on its
driving speed and acceleration. However, it is considered
that the stochasticity of the acceleration consists of both
intra-vehicle heterogeneity and inter-vehicle variations in
driving behavior, which are not explicitly separated. This
section focuses on time-series variations in the relation-
ship between the predicted acceleration distribution and
the drivers’ actual acceleration and demonstrates how
this model can account for driver heterogeneity.

Methodology

Suppose drivers can be classified into several patterns
according to their driving characteristics. In the accelera-
tion phase, drivers can be classified into timid and

aggressive (34). The former may often carry out lower
acceleration, while the latter may often carry out higher
acceleration. In the deceleration phase, they can be clas-
sified into under-react and over-react (35). The former
may often carry out weak deceleration, while the later
may often carry out strong deceleration. As a result, one
measure of the heterogeneity of driving behavior is the
sequence pattern of the percentiles of the acceleration
that the driver carries out relative to the predicted
distribution.

Therefore, we calculate the percentile values of the
observed acceleration relative to the predicted distribu-
tion for the cases both the acceleration phase (a(t)ø 1:0
km/h/s) and the deceleration phase (a(t)ł � 1:0km/h/s).
By dividing the vehicle’s percentile values into five bins,
each separated by a 20 percentile for each trajectory, for
both phases, a frequency distribution is created. Based on
the pattern of the frequency distribution for both the
acceleration and deceleration phases in each of the five
bins, all trajectories are classified using the k-means
method into various clusters.

Results of K-Means Clustering

The acceleration and deceleration phases of the trajec-
tories are divided into two clusters, denoted as Cluster 0
and Cluster 1, respectively, as a result of the k-means
clustering. The relative frequency of each bin for each
cluster is depicted in a box plot in Figure 11. The box
plot displays the outliers by dots, 0th percentile except
for the outliers, 25th percentile, 50th percentile, 75th per-
centile, and 100th percentile except for the outliers by
horizontal lines. In the acceleration phase, the ‘‘40% to
60%’’ bin corresponds to almost the median of the

Figure 11. Box plots of each cluster: (a) acceleration phase and (b) deceleration phase.
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acceleration distribution, the ‘‘0% to 20%’’ and ‘‘20% to
40%’’ bins correspond to weak acceleration, and the
‘‘60% to 80%’’ and ‘‘80% to 100%’’ bins correspond to
strong acceleration. Similarly, in the deceleration phase,
the ‘‘40% to 60%’’ bin is about the median of the accel-
eration distribution, the ‘‘0% to 20%’’ and ‘‘20% to
40%’’ bins correspond to strong deceleration, and the
‘‘60% to 80%’’ and ‘‘80% to 100%’’ bins correspond to
weak deceleration. The percent of the observed percentile
of the acceleration that falls in each bin is shown on the
vertical axis.

Focusing on the differences in the box plots between
clusters in each bin, we can find in the acceleration phase
(Figure 11a) that in the ‘‘40% to 60%’’ bin the propor-
tion of Cluster 1 is significantly higher than Cluster 0,
while in the ‘‘80% to 100%’’ bin Cluster 0 has the much
higher proportion. Cluster 1 drivers are more likely to
take an acceleration value near the median of the distri-
bution, suggesting that they are rather more timid than
the drivers in Cluster 0. The significantly higher percent-
age of Cluster 0 drivers in the ‘‘80% to 100%’’ bin
demonstrates that these drivers have a propensity to
accept relatively strong acceleration. As a result, Cluster
1 can be interpreted as timid drivers, and Cluster 0 as
aggressive drivers.

In the same manner, focusing on the deceleration
phase shown in Figure 11b, it can be seen that Cluster 1
is remarkably higher in ‘‘0% to 20%’’ bin than Cluster 0,
while Cluster 0 is higher than cluster 1 in the ‘‘20% to
40%’’ and ‘‘40% to 60%’’ bins. Since ‘‘0% to 20%’’
denotes a sharp deceleration, Cluster 1 is regarded as the
over-reacting drivers, whereas Cluster 0 is regarded as
the under-reacting drivers.

Categorization of Vehicles

From the above analysis, it is revealed that the time-
series variation of percentile values can represent the
characteristics of driving behavior. Then, to categorize
the driving characteristics into timid and aggressive in
the acceleration phase and under-reacting and over-
reacting in the deceleration phase, we perform the
cross-tabulation. The results are shown in Table 2. In
the acceleration phase, the numbers of timid drivers
and aggressive drivers are 723 and 465, respectively. In
the deceleration phase, the numbers of under-reacting
and over-reacting drivers are 575 and 513, respectively.
Drivers who are under-reacting when decelerating and
timid when accelerating may keep a long distance from
the car ahead, while drivers who are over-reacting
when decelerating and aggressive when accelerating
may keep a shorter distance. According to Table 2, the
timid and overreacting drivers are the second most pre-
valent among the four categories, while the aggressive

and under-reacting drivers, who may help stabilize traf-
fic flow, are the least prevalent. The proportion of driv-
ers in each of the four categories may influence traffic
dynamics, such as capacity drop and oscillation, which
should be investigated in a future work (34).

Time-Series Variations of Percentile Values

The analysis above suggests that the heterogeneity of
driving behavior can be characterized by the percentile
values within the predicted acceleration distribution, but
to compute a vehicle acceleration behavior by using the
proposed model, the sequential patterns of the percentile
values need to be understood. Figure 12 demonstrates an
example of an autocorrelogram of the percentile values of
every 0.1 s of a vehicle entering the target section on the
time 7.79 (see Figure 4) every 0.1 s during acceleration
(a(t)ł � 1:0 km/h/s), deceleration (a(t)ø 1:0 km/h/s),
and constant speed (21.0 km/h/s \ a(t) \ 1.0 km/h/s).
In the figure, the shaded area represents the 95% confi-
dence interval. It can be seen that the autocorrelations
are not significant with the 95% confidence level regard-
less of driving state, except for the case where a time lag
is 0.1 s. This trend can also be observed for most other
vehicles. Therefore, correlations at every 0.1 s time step
should be primarily considered in the simulation of driv-
ing behavior, but further analysis is needed because the
characteristics of autocorrelations may also affect the
traffic dynamics, such as the occurrence of stop-and-go
wave.

Discussions and Conclusions

In recent years, it has been pointed out that stochastic
fluctuations in car-following behavior caused by driver
cognitive and operation errors in driving behavior have
an essential effect on the traffic dynamics such as capac-
ity drop and oscillation. For the convenience of mathe-
matical processing, this stochasticity is typically
represented by adding a random term that follows a nor-
mal distribution to the deterministic car-following
model. However, the validity of the assumption that the
stochastic term follows the normal distribution has not
been investigated. In this study, the stochastic car-

Table 2. Categorizing Each Trajectory

Deceleration phase

Under-reacting Over-reacting

Acceleration
phase

Timid 362 261

Aggressive 213 252
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following behavior was modeled using a data-driven
approach without these presumptions. The proposed
model predicts the probability distribution of accelera-
tion by discretizing the observed acceleration. By using
data on vehicle trajectories that were gathered on a free-
way to train the model, we were able to accurately match
the observed acceleration with the mean of the predicted
probability distribution. Additionally, by the rolling hor-
izon method using the developed model, we simulated
the time-series variation of the acceleration for particular
vehicles in free-flow state and congestion state. The
results suggested that the model was able to reproduce
the observed accelerations in both free and congested
flows, and the observed values fell within the 95% confi-
dence interval of the predicted distribution.

The relationship between the model’s predicted prob-
ability distribution of acceleration and traffic conditions
was then examined. The results demonstrated that the
SD of the probability distribution tends to be large and
multimodal at the generation of the stop-and-go wave as
well as at the moments where vehicles go into and get out
from stop-and-go waves. Additionally, it was established
that, when moving at low speeds and needing significant
acceleration and deceleration, the SD of the acceleration
distribution is higher.

These findings imply that, in the aforementioned sce-
narios, driver perception and decision-making are subject
to uncertainty. Such uncertainty may affect the macro-
scopic traffic properties such as oscillation and capacity
drops, as previous research has shown. It implies that
improving the stability of traffic flow can be achieved by
controlling driving behavior to reduce these uncertain-
ties. It can be achieved, for example, by providing some
warnings and information calling drivers’ attention. It
has been noted that installing light emission devices on
the hard shoulder at regular intervals and controlling

them to move slightly faster than the traffic flow has been
successful in reducing traffic breakdowns and preventing
capacity drops (36). It is believed to have the impact of
lessening driver uncertainty and helping stabilize traffic
flow.

Finally, the heterogeneity of driving behavior was
analyzed based on the trend of variation in the percentile
values of acceleration actually performed relative to the
predicted probability distribution. As a result, the vehi-
cles were found to fall into four categories: timid accel-
eration and under-reacting deceleration, timid
acceleration and over-reacting deceleration, aggressive
acceleration and under-reacting deceleration, and aggres-
sive acceleration and over-reacting deceleration. In addi-
tion, we revealed that the autocorrelation with one-time
step lag of percentile values within the predicted distribu-
tion is significant, implying that its correlation between a
time step needs to be considered in calculating the accel-
eration behaviors in a simulation model.

In this paper, we focused on the analysis of the sto-
chasticity and heterogineity in the traffic dynamics based
on the proposed model. As a future work, the computa-
tional method considering the autocorrelation should be
developed for the microscopic traffic simulation by using
this proposed car-following model, and the logical check
whether it can work without any fatal error. Then, it
should be verified that the proposed model can appropri-
ately reproduce capacity drop and oscillation by conduct-
ing simulation experiments. It is also necessary to test the
sensitivity of the vehicle category composition ratio to
traffic dynamics to take measures to reduce traffic con-
gestion and improve traffic safety on freeways. The pro-
posed modeling approach discretizing vehicle behavior
can be naturally extended to other driving behaviors such
as merging and lane changing behaviors. This extension
is one of the future directions.

Figure 12. Autocorrelogram of time-series variations of percentile values: (a) acceleration, (b) deceleration, and (c) constant speed.
Note: Shaded area = the 95% confidence interval.
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This model is based on the data collected in a specific
section, and it is not assured that the model is applicable
to locations with different lane compositions and geo-
metric features. Thus, the validation of the transferability
of the model is required. In addition, the application of
fine-tuning and transfer learning should be considered
for extending the model to data from other locations.

Acknowledgments

The trajectory dataset is provided by Hanshin Expressway Co.
Ltd. The authors would like to thank Enago (www.enago.jp)
for the English language review.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: Y. Shiomi, G. Li, V. Knoop; data col-
lection: Y. Shiomi; analysis and interpretation of results: Y.
Shiomi, G. Li, V. Knoop; draft manuscript preparation: Y.
Shiomi. All authors reviewed the results and approved the final
version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by JSPS KAKENHI, grant
numbers 19H02268 and 20KK0334.

ORCID iDs

Yasuhiro Shiomi https://orcid.org/0000-0002-7810-0971
Guopeng Li https://orcid.org/0000-0003-4405-6332
Victor L. Knoop https://orcid.org/0000-0001-7423-3841

Data Accessibility Statement

The data used to support the findings of this study are available
from the corresponding author on request.

References

1. Haight, F. A. Mathematical Theories of Traffic Flow. Else-

vier Science, 1963. https://books.google.nl/books?id=U-

Aj1nvo3sgC.
2. Wardrop, J. G. Some Theoretical Aspects of Road Traffic

Research. Proceedings of the Institution of Civil Engineers,

Vol. 1, No. 5, 1952, pp. 767–768. https://doi.org/10.1680/

ipeds.1952.11362; https://www.icevirtuallibrary.com/doi/

10.1680/ipeds.1952.11362.
3. Branston, D. A Method of Estimating the Free Speed Dis-

tribution for a Road. Transportation Science, Vol. 13, No.

2, 1979, pp. 130–145. http://www.jstor.org/stable/25767943.

4. Laval, J. A., C. S. Toth, and Y. Zhou. A Parsimonious

Model for the Formation of Oscillations in Car-Following

Models. Transportation Research Part B: Methodological,

Vol. 70, 2014, pp. 228–238. https://doi.org/10.1016/j.trb.

2014.09.004.
5. Treiber, M., and A. Kesting. The Intelligent Driver Model

with stochasticity – New insights into Traffic Flow Oscilla-

tions. Transportation Research Part B: Methodological,

Vol. 117, 2018, pp. 613–623. https://doi.org/10.1016/j.trb.

2017.08.012.
6. Chen, D., J. Laval, Z. Zheng, and S. Ahn. A Behavioral

Car-Following Model That Captures Traffic Oscillations.

Transportation Research Part B: Methodological, Vol. 46,

No. 6, 2012, pp. 744–761. http://doi.org/10.1016/j.trb.2012.

01.009.
7. Tian, J., H. M. Zhang, M. Treiber, R. Jiang, Z. Y. Gao,

and B. Jia. On the Role of Speed Adaptation and Spacing

Indifference in Traffic Instability: Evidence from Car-Fol-

lowing Experiments and its Stochastic Model. Transporta-

tion Research Part B: Methodological, Vol. 129, 2019,

pp. 334–350. https://doi.org/10.1016/j.trb.2019.09.014.
8. Xu, T., and J. Laval. Statistical Inference for Two-Regime

Stochastic Car-Following Models. Transportation Research

Part B: Methodological, Vol. 134, 2020, pp. 210–228.

https://doi.org/10.1016/j.trb.2020.02.003.
9. Yuan, K., J. Laval, V. L. Knoop, R. Jiang, and S. P. Hoo-

gendoorn. A Geometric Brownian Motion Car-Following

Model: Towards a Better Understanding of Capacity Drop.

Transportmetrica B, Vol. 7, No. 1, 2019, pp. 915–927.

https://doi.org/10.1080/21680566.2018.1518169.
10. Ngoduy, D., S. Lee, M. Treiber, M. Keyvan-Ekbatani, and

H. Vu. Langevin Method for a Continuous Stochastic Car-

Following Model and its Stability Conditions. Transporta-

tion Research Part C: Emerging Technologies, Vol. 105,

2019, pp. 599–610. https://doi.org/10.1016/j.trc.2019.06.

005; https://www.sciencedirect.com/science/article/pii/S096

8090X1831773X.
11. Ngoduy, D. Noise-Induced Instability of a Class of Sto-

chastic Higher Order Continuum Traffic Models. Trans-

portation Research Part B: Methodological, Vol. 150, 2021,

pp. 260–278. https://doi.org/10.1016/j.trb.2021.06.013.
12. Ossen, S., S. P. Hoogendoorn, and B. G. Gorte. Interdriver

Differences in Car-Following a Vehicle Trajectory-Based

Study. Transportation Research Record: Journal of the

Transportation Research Board, 2006. 1965: 121–129.
13. Hong, D., N. Uno, and F. Kurauchi. Heterogeneity in

Multi-Anticipative Car-Following Behavior by Video

Image Data. International Journal of ITS Research, Vol. 7,

No.1, 2009, pp. 39–48.
14. Berthaume, A. L., R. M. James, B. E. Hammit, C. Fore-

man, and C. L. Melson. Variations in Driver Behavior: An

Analysis of Car-Following Behavior Heterogeneity as a

Function of Road Type and Traffic Condition. Transporta-

tion Research Record: Journal of the Transportation

Research Board, 2018. 2672: 31–44.
15. Fadhloun, K., H. Rakha, A. Loulizi, and A. Abdelkefi.

Vehicle Dynamics Model for Estimating Typical Vehicle

Accelerations. Transportation Research Record: Journal of

the Transportation Research Board, 2015. 2491: 61–71.

618 Transportation Research Record 2677(12)

http://www.enago.jp
https://orcid.org/0000-0002-7810-0971
https://orcid.org/0000-0003-4405-6332
https://orcid.org/0000-0001-7423-3841
https://books.google.nl/books?id=U-Aj1nvo3sgC
https://books.google.nl/books?id=U-Aj1nvo3sgC
https://doi.org/10.1680/ipeds.1952.11362
https://doi.org/10.1680/ipeds.1952.11362
https://www.icevirtuallibrary.com/doi/10.1680/ipeds.1952.11362
https://www.icevirtuallibrary.com/doi/10.1680/ipeds.1952.11362
http://www.jstor.org/stable/25767943
https://doi.org/10.1016/j.trb.2014.09.004
https://doi.org/10.1016/j.trb.2014.09.004
https://doi.org/10.1016/j.trb.2017.08.012
https://doi.org/10.1016/j.trb.2017.08.012
http://doi.org/10.1016/j.trb.2012.01.009
http://doi.org/10.1016/j.trb.2012.01.009
https://doi.org/10.1016/j.trb.2019.09.014
https://doi.org/10.1016/j.trb.2020.02.003
https://doi.org/10.1080/21680566.2018.1518169
https://doi.org/10.1016/j.trc.2019.06.005
https://doi.org/10.1016/j.trc.2019.06.005
https://www.sciencedirect.com/science/article/pii/S0968090X1831773X
https://www.sciencedirect.com/science/article/pii/S0968090X1831773X
https://doi.org/10.1016/j.trb.2021.06.013


16. Makridis, M., G. Fontaras, B. Ciuffo, and K. Mattas.
MFC Free-Flow Model: Introducing Vehicle Dynamics in
Microsimulation. Transportation Research Record: Journal

of the Transportation Research Board, 2019. 2673: 762–777.
17. Krajewski, R., J. Bock, L. Kloeker, and L. Eckstein. The

highD Dataset: A Drone Dataset of Naturalistic Vehicle
Trajectories on German Highways for Validation of Highly
Automated Driving Systems. Proc., 21st International Con-
ference on Intelligent Transportation Systems (ITSC),
Maui, HI, IEEE, New York, 2018, pp. 2118–2125. https://
doi.org/10.1109/ITSC.2018.8569552.

18. Seo, T., Y. Tago, N. Shinkai, M. Nakanishi, J. Tanabe, D.
Ushirogochi, S. Kanamori, A. Abe, T. Kodama, S. Yoshi-
mura, M. Ishihara, and W. Nakanishi. Evaluation of
Large-Scale Complete Vehicle Trajectories Dataset on Two
Kilometers Highway Segment for One Hour Duration: Zen
Traffic Data. Proc., International Symposium on Transportation

Data and Modelling (ISTDM2021), Ann Arbor, MI, 2021.
19. Gilles, T., S. Sabatini, D. Tsishkou, B. Stanciulescu, and F.

Moutarde. HOME: Heatmap Output for Future Motion
Estimation. Proc., IEEE Conference on Intelligent Trans-

portation Systems, Proceedings, ITSC, Indianapolis, IN,
September 19–22, 2021, IEEE, New York, pp. 500–507.
https://doi.org/10.1109/ITSC48978.2021.9564944.

20. Zhou, M., X. Qu, and X. Li. A Recurrent Neural Network
Based Microscopic Car Following Model to Predict Traffic
Oscillation. Transportation Research Part C: Emerging

Technologies, Vol. 84, 2017, pp. 245–264. http://doi.org/10.
1016/j.trc.2017.08.027.

21. Fan, P., J. Guo, H. Zhao, J. S. Wijnands, and Y. Wang.
Car-Following Modeling Incorporating Driving Memory
Based on Autoencoder and Long Short-Term Memory
Neural Networks. Sustainability (Switzerland), Vol. 11,
No. 23, p. 6755. https://doi.org/10.3390/su11236755.

22. Wang, X., R. Jiang, L. Li, Y. L. Lin, and F. Y. Wang.
Long Memory is Important: A Test Study on Deep-Learn-
ing Based Car-Following Model. Physica A: Statistical

Mechanics and its Applications, Vol. 514, 2019,
pp. 786–795. https://doi.org/10.1016/j.physa.2018.09.136.

23. Lee, S., D. Ngoduy, and M. Keyvan-Ekbatani. Integrated
Deep Learning and Stochastic Car-Following Model for
Traffic Dynamics on Multi-Lane Freeways. Transportation
Research Part C: Emerging Technologies, Vol. 106, 2019,
pp. 360–377. https://doi.org/10.1016/j.trc.2019.07.023.

24. Zhang, X., J. Sun, X. Qi, and J. Sun. Simultaneous Model-
ing of Car-Following and Lane-Changing Behaviors Using
Deep Learning. Transportation Research Part C: Emerging

Technologies, Vol. 104, 2019, pp. 287–304. https://doi.org/
10.1016/j.trc.2019.05.021.

25. Hochreiter, S., and J. Schmidhuber. Long Short-Term
Memory. Neural Computation, Vol. 9, No. 8, 1997,
pp. 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.

26. Lin, T. Y., P. Goyal, R. Girshick, K. He, and P. Dollar.
Focal Loss for Dense Object Detection. IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 42, No.
2, 2020, pp. 318–327. https://doi.org/10.1109/TPAMI.2018.
2858826.

27. Hoogendoorn, S. P., S. Ossen, and M. Schreuder. Empirics
of Multianticipative Car-Following Behavior. Transporta-
tion Research Record: Journal of the Transportation

Research Board, Vol. 1, No. 1965, 2006, pp. 112–120.
https://doi.org/10.3141/1965-12.

28. Xu, Y., S. Bao, and A. K. Pradhan. Modeling Drivers’
Reaction When Being Tailgated: A Random Forests
Method. Journal of Safety Research, Vol. 78, 2021,
pp. 28–35. https://doi.org/10.1016/j.jsr.2021.05.004.
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