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ORIGINAL ARTICLE Open Access

Stabilization and visual analysis of video-
recorded sailing sessions
Gijs M. W. Reichert1, Marcos Pieras1* , Ricardo Marroquim1 and Anna Vilanova1,2

Abstract

One common way to aid coaching and seek to improve athletes’ performance is by recording training sessions for
posterior analysis. In the case of sailing, coaches record videos from another boat, but usually rely on handheld
devices, which may lead to issues with the footage and missing important moments. On the other hand, by
autonomously recording the entire session with a fixed camera, the analysis becomes challenging owing to the
length of the video and possible stabilization issues. In this work, we aim to facilitate the analysis of such full-
session videos by automatically extracting maneuvers and providing a visualization framework to readily locate
interesting moments. Moreover, we address issues related to image stability. Finally, an evaluation of the framework
points to the benefits of video stabilization in this scenario and an appropriate accuracy of the maneuver detection
method.

Keywords: Visualization, Sports, Visual-analytics

Introduction
To assess athletes’ performance during training sessions,
in many sports, technology and data analysis are assum-
ing an increasingly larger role. Nevertheless, for sailing,
and more specifically, the Olympic dinghy class, such
strategies are still not a common practice during train-
ing. This is mainly due to the lack of clear strategies for
analyzing data obtained from sensors attached to the
boats. Therefore, coaches rely mainly on videos to re-
view athletes’ performance. Training sessions usually last
2–3 h, where the coach follows the training boat in a
rigid inflatable boat (RIB).
Two maneuvers, known as tacking and jibing, are the

core of the sailors’ strategy to reach the finish line as
quickly as possible. The maneuvers allow the boat to ad-
vance in a zig-zag manner because it cannot sail straight
into the wind. Tacking occurs when a boat turns its bow
(front part) against the wind and then keeps turning
“through the wind” to catch the wind on the other side
of the sail, whereas jibing occurs in the opposite

direction. When performing such maneuvers, sailors
usually move from one side of the boat to the other
(they switch sides).
When and how maneuvers are performed is critical in

a race, as every second counts. Hence, they are an im-
portant skill to improve and master during training ses-
sions. Coaches therefore record short video clips of the
maneuvers, on the order of 1 min, to further discuss
them during a debriefing session with the sailors.
However, there is no structured or standard way to

register these moments, and most coaches rely on hand-
held devices for recording, such as their personal smart-
phones. Because of this, many maneuvers that could be
valuable for better analysis of the sailor’s performance
are missed.
To avoid the burden of manual capture, coaches have

recently switched to cameras that are mounted on their
boats and record an entire training session. Despite the
clear advantages of relieving the coaches from the re-
cording task and capturing important moments, the task
of going through the entire video after a training session
(or multiple training sessions) is too costly in terms of
time. In addition, with handheld devices, the person reg-
istering the footage naturally applies manual stabilization
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by compensating for the boat’s movement while keeping
the subject of interest in focus. On the other hand, this
stabilizing effect is lost when the camera is mounted to
the trailing boat.
In this work, we address the above-mentioned issues

associated with a mounted camera for recording sailing
training sessions. Our main contribution is the provision
of a pipeline that allows a less time-consuming visual
analysis of recorded videos from entire training sessions.
It includes stabilization based on the horizon line, ex-
traction of maneuvers from recorded footage, and
highlighting potentially interesting segments in time,
which can in turn be explored and annotated using a
visual interface developed in support of this study. This
article is an invited extension of a formerly published
conference paper [1] with special focus on various as-
pects. We have extended the conference paper by adding
the stabilization process and its evaluation.

Related work
Video visualization may assist users in their analysis by
removing mechanical tasks, such as viewing the entire
footage [2]. Note that the goal is not to provide fully
automatic decision-making solutions from video data.
Visual tasks related to video visualization are as follows
[3]: video annotation, browsing, editing, navigation, rec-
ommendation, retrieval, and summarization. In our
method, we focus on three of these tasks: annotation,
navigation, and summarization. The main goal is to ex-
plore interesting events captured on video.
Higuchi et al. [4] proposed a visual analysis tool de-

signed to analyze long sequences with multiple events;
however, sailing sessions differ in composition and con-
tent from other event-driven activities. We focus on only
one complex activity that requires a deeper analysis. A
survey by Barris and Button [5] indicated that there is
already extensive literature on vision-based analysis re-
lated to sports. One common goal is to provide feedback
to athletes, as described in ref. [6]. This is also an im-
portant aspect with respect to sailing, as videos are used
to debrief sailors by reviewing their training session(s)
and providing feedback on possible improvements.
Moreover, videos in sports visual analytics may be

used passively or actively. In the first case, the video is
used to complement other types of data. For instance,
Polk et al. [7] used video to reinforce learning outcomes
after analyzing tabular data, as one coach noted during
their evaluation, “seeing is believing.” In the second case,
the video is actively used and is considered as the main
data input. For example, Legg et al. [8] developed a vis-
ual analytics tool for multiple keyframes annotation
using glyph techniques.
In this study, we examined the importance of video

stabilization during the analysis of sailing videos. Video

stabilization is a mature area of research, and numerous
video stabilization approaches are currently available [9].
Without using other external information, such as iner-
tial sensors, one way to stabilize the video is by using
visual cues. In nautical environments, the horizon line is
commonly used as a reference for video stabilization
[10–12]. These approaches aim to detect the horizon
line in the video and transform the video frame to align
it horizontally. Other approaches intended to accomplish
the same purpose involve separating the image into two
regions using machine learning methods [13] or applying
pixel-wise segmentation with a fully convolutional net-
work [14]. Another class of methods uses the detection
of features around the horizon [15], corner points using
an adaptive Harris algorithm [16], or hybrid approaches
using feature- and dense- network methods [17]. Our
approach focuses on the detection of the horizon line
using image-processing techniques.

Methods
To be able to find, extract, and visualize sailing maneu-
vers, there are a number of necessary steps to follow,
hereinafter referred to as the sailing maneuvers analysis
pipeline, as illustrated in Fig. 1. These steps are video
stabilization, detection and tracking, maneuver detec-
tion, and visual analysis.
As mentioned previously, sailors switch sides on the

boat during a maneuver. This action can serve as an im-
portant visual cue to detect maneuvers from video im-
ages. We assume that the video is registered from
behind the training boat with the camera facing forward
on the chase boat (the RIB). The first step in our pipe-
line is to stabilize the video in order to compensate for
the RIB’s motion on the water. Then, the position of the
boat and sailors are tracked, and this information is used
to detect maneuvers. Finally, we provide a visualization
screen to facilitate the inspection of any detected ma-
neuvers. The goal is to facilitate efficient navigation for
the after-training session and allow annotating the most
relevant maneuvers.

Stabilization
For coaching purposes, we consider that it is easier to
analyze a stabilized video than its non-stabilized coun-
terpart. In addition, the subsequent stage in the work-
flow, detecting and tracking the sailors and sailing boat,
should benefit from the stabilization as well. Minimizing
the motion of a camera capturing the target objects
should allow more stable tracking.
Because we only have video data available as input, we

must rely on the frames to compute the necessary trans-
formations to compensate for the motion of the camera.
The motion of the camera is mainly induced by waves
and steering changes. A promising visual cue for
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deriving induced motion is the horizon line. We assume
that the horizon line is always distinguishable in a mari-
time environment. In addition, we suppose that the hori-
zon line is a long straight line that is not affected by the
camera’s lens deformation. After locating the horizon
line and using the angle formed by that line with a
straight horizontal line, the frame is transformed and
therefore stabilized.
The first steps of the stabilization process consist of

denoising the frames using a median blur filter, followed
by edge detection using the Canny edge detector method
[18]. The main purpose of denoising is to eliminate
spurious edges caused by waves and, consequently, fa-
cilitate horizon detection. The differences between not
applying and applying denoising are depicted in Fig. 2.
Detecting the horizon line from the edge image is per-

formed in three steps: dilation, detection, and selection.
The detected edges are dilated to increase the probabil-
ity of detecting the horizon. We empirically found that
using a 7 × 7 kernel resulted in stable detection. Dilation
helps to generate more prominent continuous lines that
are easier to select by the voting system used in the
horizon-line detection algorithm.
After applying this transformation, the next step con-

sists of detecting and extracting candidate line segments
in the dilated image using the Hough transform algo-
rithm. To avoid the high computational cost of the ori-
ginal Hough transform, we use the progressive
probabilistic Hough transform (PPHT) algorithm [19],
which is a computationally less expensive variant (Fig. 3).
The settings used for this algorithm were those from the

original paper: θ = 0.01 and ρ = 1. The minimum line
segment length limit was 100 pixels, and a voting limit
of 150 votes was used during the experiments to avoid
selecting small lines caused by water reflections. This
parameter is resolution-dependent, and changes linearly
with the resolution.
The line detector algorithm detects a set of line candi-

dates in a frame. The longest horizontal line segment de-
tected is considered to be the visible horizon. That is,
the candidate line segment with the largest absolute
horizontal difference (in pixels) between endpoints is se-
lected as the horizon line. The transformations for every
frame are then calculated using a previously detected
horizon line. The translations and rotations that trans-
form the selected segment to the target destination —
the horizon as a horizontal straight line — are computed
and stacked in a data structure. This data structure is
then filtered using a moving average filter to reduce jit-
ter caused by small differences in rotation and transla-
tion per frame, and the transformations are then applied
to the corresponding original frames. An example of a
source and a transformed video frame using the pre-
sented stabilization method is shown in Fig. 4.

Detecting and tracking the boat and sailors
A maneuver is detected by analyzing the location of the
sailor(s) with respect to the boat. To detect boats and
sailors, we use a pre-trained neural network for object
detection. More specifically, MobileNet [20] was se-
lected, given its low computational cost. The pre-
training was executed on the Microsoft Common

Fig. 1 Implemented sailing maneuvers analysis pipeline used to locate maneuvers in a stabilized video and visualize these intervals

Fig. 2 Denoising a video frame using median blur. a: Result of Canny edge detection without denoising the frame; b: Result after denoising
followed by the edge detection algorithm
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Objects in Context dataset [21], which already contains
images for the classes Person and Boat.
For each video frame, we expect the network to pro-

vide bounding boxes for the located boat and sailors.
Notwithstanding, we noted that it fails to detect them in
many frames, especially the sailors. We therefore com-
bined the detection network with a tracking method.
We used the discriminative correlation filter with chan-
nel and spatial reliability as the tracking method [22].
The tracking algorithm is initialized with a bounding
box found in one of the frames by the detection net-
work. However, the tracking algorithm is also not per-
fect and tends to result in drift over time due to
accumulated errors. To overcome this issue, the bound-
ing boxes between both methods are compared, and
when the difference is above a given threshold, the
tracker is re-initialized. In our experiments, we used a
threshold of 25 pixels for 1280 × 720 footage images.
If the network fails to detect the boat or sailor, we

must rely on the tracker estimation for these frames. Fi-
nally, if both methods fail, we assume that any objects
are either too far away or are outside the frame. During
the experiments, we disabled the tracker whenever the
network did not detect a boat or person for more than
60 sequential frames, which empirically avoided most

cases of unreliable location data. The combined network
and tracking method increased detection accuracy in
stabilized videos by 10%–15%.

Maneuver detection
As mentioned above, we use the action of sailors switch-
ing sides to detect maneuvers. We rely on the bounding
boxes of the boat and sailors to identify this action.
Hence, a signed distance d between the center of the
boat’s and the sailors’ bounding boxes is computed. Note
that only the horizontal difference is considered because
we assume that the video is registered from behind the
boat. Even if the boat is tilted to one side, the sailors
should still be far enough away from the middle of the
boat in the video. For dinghy class, this is especially true
because sailors lean out over the side of the boat (hike)
to keep the boat as vertical as possible.
Even though the signed distance d contains noise

present in the frames, the crossing moment is usually
clear under visual inspection, as illustrated in Fig. 5(a).
Because we assume that the video is registered from be-
hind the boat, and the boat’s bounding box encloses the
whole boat instance, the middle of the bounding box
represents the middle of the boat. We define the middle

Fig. 3 Output of the PPHT and the line used as the horizon. a: Lines detected after applying the line detection algorithm; b: Example of horizon
line obtained from (a)

Fig. 4 Example transformation of a video frame. a: Raw frame extracted from the video; b: Result after applying stabilization
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of the boat as a vertical line in the middle of the bound-
ing box. A maneuver is detected whenever the sailor
crosses this line and remains on the other side. There
are three important moments, as shown in Fig. 5(a).
First, we look for the moment when the sailors start to
move to the other side. This is followed by the actual
crossing. Finally, the maneuver is concluded when the
sailors remain on the other side for a sufficient amount
of time.
In some cases, noise can nevertheless prevent the

stable detection of these moments. A possible approach
to remove noise is the use of a sliding smoothing win-
dow. In this case, the window size and smoothing par-
ameter σ must be defined. Figure 5(b) illustrates this
method when σ = 140. Even though the noise is re-
moved, the actual crossing moment is offset by more
than 50 frames from the real crossing moment. More-
over, to avoid manually defining σ, we resort to an

adaptation of a scale space method called edge focusing
[23]. This allows for more robust location of the crossing
moment, as shown in Fig. 5(c).
In our adaptation, we first compute a Laplacian of

Gaussian (LoG) filter with σ in the range [ea, eb], a = 5,
b = 0, using a step size of 0.005, as suggested by Haar
Romeny [24]. Using the LoG filter for all σ values in this
range, the zero-crossing frames are stored as the ‘signa-
tures,’ as depicted in Fig. 5(c). The small step size guar-
antees that negative and positive edges do not last
longer than one frame. The positive edge can then be
tracked in a coarse-to-fine manner to determine the pre-
cise crossing moment, as indicated by the orange arrows
in Fig. 5(c).
Finally, we need to determine if the sailors remain long

enough on the other side to consider it as an actual
maneuver. For this purpose, we compute a regression
line [25] on the location data to remove noise from the

Fig. 5 Tracking plots involved in maneuver detection. a: Segments of a sailing maneuver. (1) Sailors stable on left side, (2) crossing the middle of
the boat, and (3) stable on the right side; b: Regression line before zero crossing. Orange line is the output of the (too) coarsely filtered calculated
difference; c: Adaptation to frames using edge focusing signature graph at different values of σ, allowing tracking from coarse to fine
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detection. More specifically, we fit the line to a window
that represents the average time to perform half a man-
euver. For 30 Hz videos, this implies approximately 90
sequential frames. When the slope of the regressed line
is below 0.15 rad, we judge the location of the sailors to
be stable. Likewise, when the slope of the line increases,
we assume that the sailors are starting a maneuver. The
slope of the line gradually decreases once they have
crossed to the other side, marking the end of the maneu-
ver. We consider the last stable frame before and the
first stable frame after the crossing as the maneuver
interval.

Visual analysis interface
The last stage of our pipeline is a visual analysis inter-
face that enables exploration of a registered session con-
taining detected maneuvers, as illustrated in Fig. 6. The
user has the option to watch the original or stabilized
video, depending on his/her preference. The timeline at
the bottom highlights the detected maneuvers time in-
tervals in blue and the currently selected maneuver in
orange. Alternatively, it is also possible to browse ma-
neuvers using the thumbnails on the right side, where
each one is labeled with timestamps marking the begin-
ning and end of the interval. Both navigation options are
linked; hence, selecting the interval in the timeline high-
lights the thumbnail and vice-versa.
We also provide a few tools that may aid a debriefing

session. Users can include and remove intervals, mark
intervals as important, and annotate selected intervals
using the text-box on the left-hand side of the screen.
While the timeline with contrasting colors gives a good
overview of the potentially interesting events during the
session, the thumbnails give an indication of what is oc-
curring during a particular time interval. This facilitates

the selection of interesting intervals and the removal of
false positives generated by the automatic detection
method.

Results and discussion
In this section, we explain the evaluation process and its
outcomes. To evaluate the developed framework, a user
study was conducted with seven Olympic-level sailing
coaches. We divided the evaluation into several modules:
video stabilization, maneuver detection, and general
application.

Stabilization evaluation
To evaluate stabilization, we used both qualitative and
quantitative measures based on defined metrics. To ob-
jectively quantify the difference between the original
video and the result of our stabilization method, we used
the peak signal-to-noise ratio (PSNR). The assumption
behind this metric is that if the transitions between con-
secutive frames are smooth, the similarity between con-
secutive frames is higher. This measurement is defined
in decibels between consecutive frames as

PSNR ¼ 10 log10
MAXI

2

MSE

� �
ð1Þ

where MAXI is the maximum intensity that a pixel can
have in image I. The mean-squared error (MSE) for con-
secutive frames with dimensions N ×M is defined as

MSE nð Þ ¼ 1
MN

XM
j¼0

XN
i¼0

In i; jð Þ−Inþ1 i; jð Þ½ �2 ð2Þ

Figure 7(a) indicates that there is little difference be-
tween the source and its stabilized counterpart.

Fig. 6 The implemented sailing maneuver analysis pipeline to locate maneuvers in a video and visualize these intervals. The timeline (bottom
part) shows in blue the detected maneuvers and in orange the current selected instant in the main window
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However, this is mostly caused by the black patches that
are used to fill the frame after applying the transforma-
tions to a frame in the stabilization method. If the same
video is cropped to remove the black patches, as shown
in Fig. 7(b), it is clearly apparent that the PSNR of the
stabilized video is higher than that of its non-stabilized
counterpart. These PSNR graphs can be summarized
into a single value by averaging the PSNR for consecu-
tive frames; the result is called the interframe transform-
ation fidelity (ITF). Some experimental results using ITF
on four videos taken under different conditions are
shown in Table 1.
The results from the quality measures suggest that the

stabilized videos are slightly better, and we assume that
these should be easier to analyze by a coach. To evaluate
this assumption, seven coaches were shown three pairs
of videos, each pair consisting of the original video and
the stabilized version. Each example was recorded under
different weather conditions: cloudy and medium waves,
overcast conditions and large waves, and sunny weather
under relatively calm seas. Later, for each pair of videos,

we asked the following question, where video A was the
original video and video B was the stabilized video:
“Which video (A or B) is easier to analyze?

(1) Strong preference for video A;
(2) Maybe video A;
(3) Both videos are equally easy/difficult;
(4) Maybe video B;
(5) Strong preference for video B

Each coach was then asked to vote on the three pairs of
videos using a 5-point Likert scale. The results are shown
in Fig. 8. Based on these results, we can conclude that the
stabilized version was preferred, as 10 out of 21 votes
(blue background) were in favor of the stabilized videos
and the non-stabilized version was preferred only six
times (yellow background). Motivations given for these
choices in favor of the stabilized versions are that it makes
looking at the details easier and that “the movements of
the video are caused by the RIB, which are totally irrele-
vant.” The coaches who were strongly against the stabi-
lized videos stated that the moving edges were too
distracting. This problem could be addressed by cropping
the video so that no black patches can be seen, or by using
in-painting methods to fill in the missing regions.

Maneuver detection evaluation
For the evaluation, we selected three videos where our
assumptions were mostly satisfied (the sailing boat was

Fig. 7 Graphs of non-cropped and cropped PSNR values from a test video. a: PSNR graph for the source and stabilized video; b: PSNR graph for
source and stabilized video with cropped frames

Table 1 Values of ITF for videos under different conditions

Settings ITF source (dB) ITF stabilized (dB)

Sunny & Calm 26.58 28.00

Large Waves &Rain 30.05 30.62

Medium Waves &Cloudy 23.23 24.88

Large Waves &Cloudy 30.78 30.98
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followed from behind and was in full view of the cam-
era). We removed situations in which these assumptions
did not hold. Moreover, we selected videos in which sail-
ing occurred under normal weather conditions. We
manually tagged 27 maneuvers to assess our automatic
method. The average sensitivity (rate of true positives
over total positives) was 72.72%, and three maneuvers
were not detected.
On the other hand, by not removing the moments

when the assumptions did not hold, the number of false
positives increased considerably (from 4 to 22). These
false positives can be manually discarded via the visual
interface.
The adapted edge-focusing method predicted the exact

crossing frame for 20 out of 27 maneuvers. The median
offset was 26 frames, with an average of 45 frames. In
practice, considering a 30 Hz video, the crossing mo-
ment would be off by 1 s, which is negligible in our ap-
plication. Although more tests need to be conducted
using larger amounts of data, this evaluation indicates
the potential practical utility of our method.

Visual analysis framework evaluation
We conducted a user study involving seven coaches to
evaluate the visual analysis framework developed for this
study. The purpose of the study was to determine
whether this tool is considered useful for coaching. The
questionnaire consisted of the questions listed in
Table 2.
In response to Q1 in Table 2, three coaches pointed

out that all aspects of the framework are potentially use-
ful. Others noted that the annotation and marking fea-
tures were particularly interesting. In response to Q2,
two coaches noted that they would like an easy way to
share and store the clips. Furthermore, being able to
draw annotations on videos and to label the clips were
also considered as desirable future features. One coach
specifically asked for a zoom feature because “for the
relatively fast sailing boats, it is difficult to stay close
during training.” Although these functionalities were
outside the scope of this study, they can be easily added
in the future.
The responses to Q3 made us realize that the

thumbnails did not give a clear indication of the con-
tent. As stated by one coach, “everything looks the
same in the thumbnails and therefore it is not useful.”
Another coach noted that “you need a way to label/
name the thumbnails to be able to distinguish be-
tween them.”
The answers from Q4 lead us to conclude that most

coaches would likely use our framework in coaching, as
shown in Fig. 9. Coaches who gave low scores chose low
scores because of features not covered in this study, such
as a zoom feature. On average, 7.43 out of 10 coaches
felt that the timeline is a useful feature, based on their
responses to Q5.

Fig. 8 Outcome of the survey question. The results show the 5-point Likert scale results (blue: favored the stabilized version; yellow: favored the
original version; gray: neutral opinion)

Table 2 Questions on the user study

Question Answer
type

Q1: What aspects of this framework, if any,
would be useful for coaching?

Open

Q2: What features are you missing in this framework? Open

Q3: What features are not useful? Open

Q4: How likely is it that you would use this in coaching? Likert scale

Q5: How useful, in your opinion, is the timeline with
marked intervals/maneuvers in the framework?

1–10 scale
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Conclusions and future work
We presented a framework to detect maneuvers in a re-
corded sailing training session and an interface to aid in
debriefing. Evaluation of the proposed stabilization
method indicates that it increases the visual quality of
the video. An immediate future step would be to remove
distracting moving edges reported by the coaches par-
ticipating in our survey.
When our assumptions hold, most maneuvers are

automatically detected with high precision of the cross-
ing moment as sailors move from one side of the boat to
the other. However, increasing the detection accuracy of
the boat and the sailors is still desired. An option is to
include sensor data that are sometimes used in training
sessions.
The visual interface developed to support debriefing

allows coaches to locate interesting moments in the vid-
eos, thus avoiding having to search through the entire
session manually. The evaluation indicates that our pro-
posed framework provides a promising platform for coa-
ches to analyze training sessions. In the future, we
intend to perform further evaluations using more data in
the form of training videos.

Abbreviations
ITF: Interframe transformation fidelity; LoG: Laplacian of Gaussian; MSE: Mean-
squared error; PPHT: Progressive probabilistic Hough transform; PSNR: Peak
signal-to-noise ratio; RIB: Rigid inflatable boat
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