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ABSTRACT

We use the recent theory of spectral submanifolds (SSMs) for model reduction of nonlinear mechanical systems subject to parametric exci-
tations. Specifically, we develop expressions for higher-order nonautonomous terms in the parameterization of SSMs and their reduced
dynamics. We provide these results for both general first-order and second-order mechanical systems under periodic and quasiperiodic exci-
tation using a multi-index based approach, thereby optimizing memory requirements and the computational procedure. We further provide
theoretical results that simplify the SSM parametrization for general second-order dynamical systems. More practically, we show how the
reduced dynamics on the SSM can be used to extract the resonance tongues and the forced response around the principal resonances in para-
metrically excited systems. In the case of two-dimensional SSMs, we formulate explicit expressions for computing the steady-state response
as the zero-level set of a two-dimensional function for systems that are subject to external as well as parametric excitation. This allows us to
parallelize the computation of the forced response over the range of excitation frequencies. We demonstrate our results on several examples of
varying complexity, including finite-element-type examples of mechanical systems. Furthermore, we provide an open-source implementation
of all these results in the software package SSMTool.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0168431

As the complexity of engineering systems, such as MEMS devices,
is growing, accurate reduced-order models (ROMs) are in high
demand. Not only do such models promise quick routines for
system design and analysis, but they can also deliver specifically
desired information that might be inaccessible from a full-system
simulation. Reduction of the full system to spectral submani-
folds (SSMs) offers a rigorous mathematical procedure to derive
such ROMs for nonlinear systems. In this paper, we develop a
methodology for computing nonautonomous approximations to
these SSMs up to arbitrary order, generalizing, improving, and
expanding available results in the literature. Using the exact ROM
provided by the SSM-reduced dynamics, we analyze instabilities
that arise due to parametric resonance and obtain the result-
ing steady states for a number of examples. Our results are also
implemented in an open-source software library.

I. INTRODUCTION

Parametric excitation refers to forcing on a mechanical sys-
tem that arises from the time dependence of its parameters, rather
than from an external effect. This time dependence may be due to
modulation of physical parameters or due to inherent nonlinear
couplings.1 Perhaps, the simplest example is the periodic modula-
tion of the length of a pendulum that may even destabilize its stable
fixed point. This phenomenon is known as parametric resonance
and occurs if the modulation frequency and the eigenfrequency of
the pendulum assume a rational relationship.

Due to its destabilizing effect, parametric resonance is often
avoided in the operational regime of engineering systems.2,3 How-
ever, it is also possible to take advantage of the resulting instability,
which leads to exponential growth of energy and oscillation ampli-
tudes. In rotor dynamics, for instance, parametric resonance may
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be used to virtually increase damping.4 Nonlinear energy harvesters
show increased performance when driven in the regime of paramet-
ric resonance compared to systems using conventional resonance.5

Micro-electromechanical systems (MEMS) also frequently make use
of parametric resonance. Examples include low-noise parametric
amplifiers,6 mass-sensing devices,7 signal amplifiers,8 gyroscopes,9,10

picoprojectors, and microscanners.11 Parametric resonance in com-
bination with nonlinearities can also enable operation in a wider
frequency range.12

Among various types of parametric resonances, the principal
parametric resonance, where the external excitation frequency �
and a system’s modal frequency ωi obey a relation of the form
� = 2ωi, is of pronounced practical interest. Indeed, due to the
presence of damping, higher-order parametric resonances become
effectively inaccessible in most engineering structures.1,11,13,14

Nonetheless, high-order parametric resonances have been observed
in specially engineered systems.15,16

A. Forced response curves

Forced response curves (FRCs) visualize the relationship
between a system’s response amplitude and its excitation frequency.
FRCs provide insights into the nonlinear characteristics of a sys-
tem when compared to the linear frequency response, especially
near resonance. Various techniques have been used to analyze para-
metrically excited systems. For instance, the Poincaré–Lindstedt
method assumes the dependence of the period of the solution on
a small excitation amplitude and expresses the periodic solution
as an asymptotic series for weakly excited systems.17 The method
of multiple scales introduces different temporal variables for dif-
ferent timescales. These are then used in perturbation expansions
and can be applied to parametrically excited systems as well.18

Other common methods found in the parametric excitation liter-
ature are averaging6,9,19–21 and the analytical construction of approx-
imate solutions, for instance, using a harmonic series22–25 or direct
numerical simulation.26

For a systematic computation of FRCs, numerical continua-
tion packages, such as AUTO,27 COCO,28 MATCONT,29 LOCA30 or
the harmonic balance-based manlab,31 and NLvib,32 may be used.
These methods are based on collocation or spectral discretization
and enable a global approximation of the nonlinear periodic solu-
tion. However, when applied to the full system for computing FRCs
in high-dimensional finite-element models, these methods have
been reported to carry prohibitively high computational costs in the
available literature.33–36

B. Stability diagrams

Establishing the stability type of trivial fixed points is the first
important step in the study of parametrically excited systems. The
regions of instability and stability of these fixed points are plot-
ted in an excitation amplitude vs frequency diagram, often referred
to as Strutt or Ince Strutt diagram. In these stability diagrams, the
regions of instability are often called Floquet tongues that extend
in the direction of decreasing forcing amplitude as the system’s
damping decreases. The simplest technique for constructing stability
diagrams is numerical time integration over a grid of amplitude and

frequency parameters.8 More sophisticated approaches employ Flo-
quet theory and range from the method of infinite determinants in
the conservative case37 to spectral methods for obtaining the eigen-
values of the monodromy matrix.8,37,38 In the extended phase space,
a bifurcation of the trivial periodic orbits occurs along the stabil-
ity boundary, which enables its computation using continuation
techniques.1

C. Model reduction

The methods discussed above are well suited for computing
FRCs and stability diagrams in low-dimensional examples under
parametric excitation. For the analysis of realistic high-dimensional
systems, however, reduced-order models (ROMs) are necessary.
While projection onto modal subspaces is a powerful ROM tech-
nique for linear systems, in nonlinear systems, those subspaces lose
their invariance. The dynamics and the trajectories projected on
them, thus, no longer correspond to those of the full dynamical
system.

In contrast, nonlinear normal modes (NNMs)39 are invariant
manifolds that perturb from linear modal subspaces and serve as the
nonlinear analogs of those subspaces. Using projections to NNMs,
Warminski et al.40 analyzed parametrically and externally excited
mechanical systems. Sinha et al.41,42 employed Lyapunov–Floquet
transformations to parametrically forced systems to obtain systems
with autonomous linear part before computing NNMs. However,
this method41,42 is feasible only for low-dimensional systems because
of its reliance on the initial transformation.

Furthermore, the existence and uniqueness of such NNMs is a
priori unclear. Indeed, NNMs are an important subclass of invariant
manifolds that were formally computed using Taylor expansions in
the seminal work of Shaw and Pierre.39,43 It should be noted, how-
ever, that several classes of invariant manifolds relevant for model
reduction may be disjoint from NNMs, e.g., fractionally smooth
invariant manifolds, which cannot be captured by Taylor expan-
sions and are nonunique.44 The fact that the smoothest NNMs can
be captured uniquely via Taylor expansions was established due
to the important theoretical contributions of De la Llave and co-
workers.45–48 This unique smoothest NNM is also called the primary
spectral submanifold (SSM).44,49 As we only focus on the computa-
tion of primary SSMs in this work, we will refer to primary SSMs
simply as SSMs for brevity.

Specifically, an SSM is the unique smoothest invariant man-
ifold that perturbs from a modal subspace under the addition of
nonlinearities and small-amplitude parametric or external forcing.
The existence and uniqueness of an SSM are guaranteed under
appropriate non-resonance conditions.49 SSMs associated with slow
eigenspaces (slow SSMs) attract nearby trajectories of the full sys-
tem. Hence, the reduced dynamics on an SSM serves as a locally
exact, nonlinear reduced-order model for the full system.50,51

In recent years, significant advances have been made toward
the automated computation of SSMs. In a first implementation,
Ponsioen et al.52 proposed a routine for the automated computation
of two-dimensional SSMs in modal coordinates. More recent efforts
have focused on multidimensional SSM computation in physical
coordinates, using only the eigenvectors associated with the mas-
ter modal subspace.34,53 This alleviated the computational burden
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imposed by a modal transformation and enabled SSM computations
for high-dimensional finite-element models.

In particular, for systems without internal resonances, the
reduced dynamics on two-dimensional SSMs have been used to
compute the forced response of periodically excited nonlinear sys-
tems without any numerical simulation, simply by finding the
zero-level set of a function.54 Coupled with the automated SSM com-
putation procedure, this makes the extraction of FRCs very fast for
high-dimensional finite-element problems as well.34 If internal reso-
nances are present, SSMs of higher dimension need to be computed
over the linear modes involved in the resonance.35,53,55 More recently,
SSMs have also been constructed directly from individual trajec-
tory data,56 used in control theory57,58 and for systems with algebraic
constraints.59 All these developments, however, used only a leading-
order approximation for the nonautonomous terms in the SSM and
its reduced dynamics.

To capture parametric effects, a high-order approximation of
non-autonomous SSMs and their reduced dynamics is necessary.
Ponsioen et al.60 have already presented such higher-order computa-
tions of the non-autonomous SSM, albeit in modal coordinates. For
efficient memory management and for avoiding redundant com-
putations, they employ a multi-index notation in their numerical
algorithm. More recently, Opreni et al.61 have developed expres-
sions for the computation of nonautonomous SSMs in physical
coordinates for systems with proportional damping and geometric
nonlinearities up to cubic order. Their expressions enable the anal-
ysis of various mechanical systems subject to an external periodic
excitation, but without any explicit parametric forcing.

D. Our contributions

In this work, we consider mechanical systems with general
damping and geometric/material nonlinearities of arbitrary poly-
nomial order subject to external as well as parametric excitation
(see Sec. II). Extending prior developments34,35,53,55,61 to enable the
treatment of parametric excitations, we develop here expressions
for automated computation of non-autonomous SSMs and their
reduced dynamics in physical coordinates (see Secs. III and IV).
We also develop similar expressions for general first-order dynam-
ical systems in Appendix A 3. Although our applications focus on
periodically excited systems, our expressions and their numerical
implementations are developed for the general quasiperiodic case
and are openly available in the software package SSMTool 2.4.62

For the case of two-dimensional periodic SSMs, we develop the
following results.

1. Stability diagrams of parametrically excited systems: We demon-
strate how SSM theory can be used to obtain stability diagrams
for the principal parametric resonance of finite-element exam-
ples directly from the ROM. Additionally, we analyze the forced
response arising from these instabilities using the reduced
dynamics on the SSM. We provide an automated routine for
the extraction of these stability diagrams in Sec. V along with
numerical examples.

2. Forced response under parametric resonance: We show how the
FRCs of mechanical systems subject to external as well as para-
metric periodic excitation can be obtained using an analytic
transformation of the reduced dynamics on the SSM, without

the need for any numerical continuation (see Lemma 5). This
result allows for parallelization of the FRC computation over
any desired frequency range, as we demonstrate in Sec. VI.

In addition to the primary contributions mentioned above, we
present the following secondary insights in this work.

(a) Computational benefits for general second-order systems: In
prior work,53,61 a special structure in the invariance equations
was exploited to reduce the number of equations in SSM com-
putation for second-order mechanical systems containing up to
cubic-order geometric nonlinearity and proportional damping.
We show how these advantages carry over to SSM computations
for general second-order dynamical systems (see Lemmas 1–4
and Remark 3).

(b) Multi-index notation: We use the classic multi-index notation
(see, e.g., Haro et al.48) for developing our expressions instead of
the tensor or the indicial notation commonly used in mechanics
computations.34,53,61 We discuss how the multi-index notation
minimizes the memory requirements and the number of equa-
tions that need to be solved at each polynomial degree (see
Appendix A 1 b).

II. SETUP

We consider a quasiperiodically forced nonlinear mechanical
system of dimension n.

Mÿ + Cẏ + Ky + f(y, ẏ) = εg(�t, y, ẏ), 0 ≤ ε � 1, (1)

with y ∈ R
n being the generalized displacement and M, C, K ∈ R

n×n

denoting the mass, damping, and stiffness matrices, respectively.
The function f(y, ẏ) is a nonlinear function that is r times contin-
uously differentiable with r ≥ 1. We allow two types of forces to
be included in the general excitation function g(�t, y, ẏ) with the
frequency vector � ∈ R

K for some K ≥ 0, i.e.,

g(�t, y, ẏ) = fext(�t)+ fparam(�t, y, ẏ), (2)

where g will be autonomous for K = 0, periodic in t for K = 1, and
quasiperiodic in t for K > 1 with K rationally incommensurate fre-
quencies. We note that parametric forcing involves time variation of
system parameters, which manifests in the equations of motion as
terms with combined state and time dependence. Accordingly, we
allow for parametric excitation via fparam(�t, y, ẏ) and possibly also

external forcing via fext(�t). Here, fparam is a general function of y

and ẏ and is taken to be Cr in these variables.
The second-order system (1) can be transformed to the first-

order form

Bż = Az + F(z) + εG(�t, z), (3)

where

z =
[

y
ẏ

]

, A =
[

−K 0
0 M

]

, B =
[

C M
M 0

]

, (4)

F(z) =
[

−f(y, ẏ)
0

]

, G(�t, z) =
[

g(�t, y, ẏ)
0

]

, (5)

with z ∈ R
N, N = 2n. This choice for the first-order form is not

unique34 but all such forms can be used for the computation of SSMs.
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The autonomous linear part of system (3),

Bż = Az, (6)

has a fixed point at z = 0, which we assume to be hyperbolic and
stable. We focus on an even subset of M � N eigenvalues and eigen-
vectors of system (6), the choice of which is discussed below. Note
that the task of finding specific subsets of eigenvalues and eigen-
vectors can be carried out efficiently with iterative algorithms, as
presented, for instance, by Golub and Van Loan.63

The reduced left and right eigenvalue problems are given by

(A − λjB)vj = 0, u∗
j (A − λjB) = 0, (7)

(A − λjB)vj = 0, u∗
j (A − λjB) = 0, (8)

for j = 1, . . . , M/2. We arrange these eigenvectors in the increasing
order of magnitudes of the real parts of the associated eigenvalues,
i.e.,

Re(λM/2) ≤ Re(λM/2−1) ≤ · · · ≤ Re(λ1) < 0. (9)

The choice of A and B in Eq. (4) results in displacement and velocity
variables that are inherently related, such that

vj =
[

φj

φjλj

]

, uj =
[

θ j

θ jλj

]

, (10)

vj =
[

φj

φjλj

]

, uj =
[

θ j

θ jλj

]

, (11)

where the vectors φj, θ j ∈ C
n are the right and left eigenvectors

associated with the quadratic eigenvalue problem

(λ2
j M + λjC + K)φj = 0, θ∗

j (λ
2
j M + λjC + K) = 0, (12)

(λ2
j M + λjC + K)φj = 0, θ∗

j (λ
2
j M + λjC + K) = 0, (13)

for j = 1, . . . , M/2.
Note that the above procedure is valid for any general damping

matrix C and reduces to the computation of conservative eigen-
modes when C is simultaneously diagonalizable with the mass and
stiffness matrices, e.g., in the case of proportional damping.

III. NON-AUTONOMOUS SSMs AND MODEL

REDUCTION

Spectral submanifolds (SSMs) are the unique, smoothest con-
tinuations of non-resonant spectral subspaces, as defined in Ref. 49.
These SSMs are as smooth as the original dynamical system.
Infinitely many additional invariant manifolds of the same dimen-
sion but of strictly lower smoothness class co-exist with SSMs and
are also tangent to the same spectral subspace as the SSMs are (see
Ref. 44). An optimal upper bound on the smoothness of these sec-
ondary (or fractional) submanifolds is given by the spectral quotient
(introduced by Ref. 49), which is computable from the linearized
spectrum. However, the determination of the spectral quotient is not
necessary for approximating the unique (primary) SSMs up to any
desired order. Indeed, by Ref. 49, primary SSMs are known to be of

class C∞ for C∞ finite-element problems, such as those considered
here.

We now introduce the methodology for computing the SSMs
on which the ROM of the parametrically excited system (1) is con-
structed. The complex–conjugate pairs of right eigenvectors span
the spectral subspaces Ej = span{vj, vj}, which are invariant under
the linear flow of system (6). To analyze the linear system response
via a ROM, we select a M-dimensional spectral subspace E = E1 ⊕
E2 ⊕ · · · ⊕ EM/2, the master spectral subspace. The modes Ej are
chosen such that the corresponding spectrum

Spec(E) = {λ1, λ1 · · · , λM/2, λM/2} (14)

contains pairs of eigenvalues that potentially assume near-resonance
relationships with either the forcing frequencies or among each
other. In the absence of any (near) resonances, the subspace E typ-
ically contains the slowest modes of the system. The corresponding
eigenvectors are normalized such that

(ui)
∗Bvj = δij, (15)

which implies θ∗
i Cφj + λiθ

∗
i Mφj + λjθ

∗
j Mφi = δij. Note that this

normalization choice is different from the commonly adopted mass
normalization for proportionally damped systems, i.e., φ∗

i Mφj = δij.
Under the addition of nonlinearities to system (6), the sub-

space E does not remain invariant. Model reduction onto E then
loses its justification as the trajectories projected onto E no longer
correspond to the trajectories of the full dynamical system. A math-
ematically rigorous alternative is to construct an invariant manifold
that acts as a nonlinear continuation of E . Spectral submanifolds
(SSMs)49 are such continuations with their existence conditioned on
a set of resonance conditions.60 Specifically, an autonomous SSM,
W (E ), is the unique smoothest invariant manifold that perturbs
smoothly from the spectral subspace E under the addition of the
nonlinear autonomous terms f(x, ẋ) to the linearized dynamical
system (6). The dynamics of such an SSM are called its reduced
dynamics and serve as an exact ROM of the full dynamical system
(1) for ε = 0.

Under the addition of quasiperiodic excitation (i.e., for ε > 0,
small), this autonomous manifold starts to oscillate and deform,
becoming a non-autonomous SSM, Wγ ε

(E ). Instead of being
anchored to the trivial fixed point z = 0, the quasiperiodic SSM is
now attached to O(ε) Cr-close invariant torus γ ε into which this
fixed point perturbs.64 The tangency of the autonomous SSM to E

implies that the nonautonomous SSM perturbs from the spectral
subbundle γ ε × E . Now, we will use

φ = �t ∈ T
K

to denote the phase of the quasiperiodic excitation term. For com-
puting Wγ ε

(E ) and its reduced dynamics, the following results are
useful.49

1. Wγ ε
(E ) can be described by a time dependent parametrization

Wε(p, φ) : U = U × T
K 7→ R

N, U ∈ C
M, (16)

from an open set U onto the phase space of the full system (3).
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2. The reduced vector field Rε(p, φ) : U × T
K 7→ U on Wγ ε

(E )

satisfies the invariance equation

B((∂pWε)Rε + (∂φWε)�) = AWε + F ◦ Wε + εG(φ, Wε)

(17)
and generates the reduced dynamics on Wγ ε

(E ) via the ordinary
differential equation (ODE),

ṗ = Rε(p, φ), φ̇ = �. (18)

If for a given dynamical system we wish to obtain a mathematically
exact ROM, it is therefore our task to try and construct representa-
tions of the SSM parametrization Wε and the reduced vector field Rε .
Once this has been achieved, the low-dimensional reduced dynamics
can be analyzed in detail. Due to the invariance of the SSM Wγ ε

(E ),
any periodic orbit, invariant torus, and bifurcation that is observed
in Eq. (18) also exists in the full system and can be mapped back
using the SSM parametrization Wε to the full system (1).

IV. SSM COMPUTATION

In this section, we address how the SSM parametrization Wε

and the reduced vector field Rε can be efficiently computed up to
arbitrary orders of accuracy for general mechanical systems. We
will merely require knowledge of the eigenvectors and eigenval-
ues of the underlying master modal subspace over which the SSM
is constructed. All computations will be carried out in physical
coordinates, without the need of a modal transformation. This will
enable the treatment of large dynamical systems arising, e.g., from
finite-element models.

A. SSM parametrization

For a second-order system, the phase space variables z
= (y, ẏ)T are inherently connected as the velocity components are
simply the time derivative of the displacement variables. Naturally,
this relationship carries over to the SSM parametrization Wε(p, φ),
which maps to the phase space. This allows us to express the SSM
parametrization as

Wε(p, φ) =
[

wε(p, φ)
ẇε(p, φ)

]

, (19)

where wε and ẇε denote the parametrizations for the displacement
and the velocity variables. The smooth dependence of the SSM
Wγ ε

(E ) on ε allows us to further expand these parametrizations in ε
as

Wε(p, φ) = W(p)+ εX(p, φ)+ · · · (20)

=
[

w(p)
ẇ(p)

]

+ ε

[

x(p, φ)
ẋ(p, φ)

]

+ . . . . (21)

Similarly, we expand the reduced dynamics parametrization as

Rε(p, φ) = R(p)+ εS(p, φ)+ O(ε2). (22)

We will show that, in order to compute the SSM for second-
order systems, it suffices to solve the invariance equation for the
displacement parametrization wε only. Subsequently, the velocity
parametrization ẇε can be analytically reconstructed by differenti-
ating wε with respect to time.

B. Autonomous SSM (ε = 0)

In order to compute autonomous SSMs, the autonomous
invariance equation

B(DW(p))R(p) = AW(p)+ F(W(p)) (23)

must be solved. This equation is obtained by substituting the expan-
sions (21) and (22) into the invariance equation (17) and collect-
ing terms at O(ε0). As we have noted, expansions of the SSM
parametrization and the reduced dynamics will be written using
multi-indices. A multi-index m is a vector m ∈ N

M for which addi-
tion, subtraction, and other operations are defined elementwise.
With the help of multi-indices, multivariate monomials can be
written as pm = p

m1
1 . . . p

mM
M .

The autonomous parametrizations of the SSM are expanded
using these multi-indices

w(p) =
∑

m∈NM

wmpm, (24)

ẇ(p) =
∑

m∈NM

ẇmpm, (25)

where wm, ẇm ∈ C
n. As we elaborate in Appendix A 1 b, when

compared to tensor-based approaches,34,53,61 this notation results
in a drastic reduction in the number of systems of equations that
need to be solved, depending on the SSM dimension and the order
of approximation. For instance, in the case of two-dimensional
SSMs, we observe an exponentially lower number of equations for
multi-index notation relative to the tensor notation as the order of
approximation increases.

The autonomous reduced vector field R(p) is also expanded
using multi-index notation as

R(p) =
∑

m∈NM

Rmpm, Rm =






R1
m

...
RM

m




 . (26)

Substituting the expansions (24)–(26) into the autonomous invari-
ance equation (23) results in a linear system of equations that can be
solved recursively at each order for the unknown coefficients Wm

and Rm. These equations are decoupled for distinct multi-indices
at each order. Furthermore, the splitting (24) of the parametriza-
tion yields a single n-dimensional system of linear equations that
can be solved for the displacement coefficients wm according to the
following statement.

Lemma 1. The cohomological equation associated with the
autonomous invariance equation (23) for a multi-index m can be
written as

(

K +3mC +32
mM

)

︸ ︷︷ ︸

:=Lm

wm = DmRm + Cm, (27)

where Cm ∈ C
n, Dm ∈ C

n×M are defined in Appendix A 2, and 3m

= 3 · m with 3 = (λ1, . . . , λM/2).
Proof. See Appendix A 2. �
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In system (27), the matrix Dm is computed solely based on
the eigenvalues and eigenvectors associated with the master sub-
space, whereas Cm contains contributions from the lower-order
terms in the expansion of the SSM and its reduced dynamics. Based
on Lemma 1, the system (27) can be solved recursively up to any
arbitrary order for the autonomous coefficients wm, Rm of the SSM
parametrization and the reduced dynamics. At any order m, we have
zm =

(
m+M−1

M−1

)

distinct multi-indices in the expansions (24) and (26).
Thus, at each order, we need to solve zm systems of n-dimensional
linear equations. Indeed, for real dynamical systems, symmetries
allow for further reduction in the number of equations.

Remark 1. In case of near-resonances of the form

λi ≈ 3m, (28)

the coefficient matrix Lm will be nearly singular (see, e.g., Ref. 34).
If the resonance condition (28) is fulfilled for any eigenvalue
λi ∈ Spec(E ) then a nonzero choice for Rm is necessary to solve the
linear system (27), where different choices lead to different styles of
parametrization.34,48

To understand the resonance condition (28), consider a two-
dimensional SSM tangent to a modal subspace spanned by lightly
damped (complex–conjugate) modes with associated eigenvalues λ
and λ satisfying

λ ≈ lλ+ (l − 1)λ, (29)

for all small enough l ∈ N
+. This relationship holds for the pair

(λ, λ) if its real part is small, i.e., the underlying physical system
is lightly damped. In this case, for any multi-index of the form
m = [l, l − 1], the coefficient matrix Lm in system (27) turns out to
be nearly singular.

Finally, once we have computed the coefficients wm for the
displacement parametrization w(p), the coefficients for the veloc-
ity parametrization can be directly obtained using the following
statement.

Lemma 2. The coefficients of the velocity parametrization cor-
responding to a multi-index m can be obtained directly from the
displacement parametrization as

ẇm = [Dw(p)R(p)]m. (30)

Proof. See Appendix A 2. �

C. Non-autonomous SSM (ε > 0)

In the non-autonomous setting, inserting the expansions (21)
and (22) into the invariance equation (17), and collecting terms of
O(ε) leads to the non-autonomous invariance equation

B

(

(DW(p))S(p, φ)+ [∂pX(p, φ)]R(p)+ [∂φX(p, φ)]�

)

= AX(p, φ)+
[

DF(W(p))
]

X(p, φ)+ G(W(p, φ), φ), (31)

which needs to be solved for the non-autonomous terms X and
S in the parametrizations for the SSM and its reduced dynam-
ics. As in the autonomous case, we now expand the nonlinear
functions in Taylor series using multi-indices. The coefficients of
these series, however, depend quasiperiodically on time. Hence, we

further expand these coefficients in temporal Fourier series to obtain

x(p, φ) =
∑

m∈NM

∑

κ∈ZK

xm,κei〈κ ,φ〉pm, (32)

ẋ(p, φ) =
∑

m∈NM

∑

κ∈ZK

ẋm,κei〈κ ,φ〉pm. (33)

The reduced dynamics are similarly expanded in a Taylor–Fourier
Series as

S(p, φ) =
∑

m∈NM

∑

κ∈ZK

Sm,κei〈κ ,φ〉pm, Sm,κ =






S1
m,κ

...
SM

m,κ




 . (34)

The procedure of determining these coefficients recursively is simi-
lar to that of the autonomous case. The contributions to distinct har-
monics and to different multi-indices can be considered indepen-
dently as the corresponding equations decouple. For second-order
systems, the computation of these coefficients can again be carried
out by first obtaining the displacement parametrization x(p, φ) via a
cohomological equation of dimension n, followed by computing the
velocity parametrization ẋ(p, φ) directly from the time derivative of
the displacement terms, as we detail below.

Lemma 3. The cohomological equation associated with the
non-autonomous invariance equation (31) for the multi-index m and
the harmonic κ is given by

(

K +3m,κC +32
m,κM

)

︸ ︷︷ ︸

Lm,κ

xm,κ = Dm,κSm,κ + Cm,κ , (35)

Cm,κ ∈ C
n, Dm,κ ∈ C

n×M are defined in Appendix A 2, and
3m,κ := 3 · m + i� · κ .

Proof. See Appendix A 2. �

In system (35), the matrix Dm,κ depends on the eigenvalues and
eigenvectors of the master subspace as well as on the forcing fre-
quency �. The vector Cm,κ contains contributions from lower-order
terms in the parametrization of the SSM and its reduced dynam-
ics. The system (35) contains decoupled equations for each pair of
multi-indices and harmonics (m, κ). Thus, for zm distinct multi-
indices and zK distinct harmonics, we must solve zmzK systems of
n-dimensional linear equations.

Remark 2. In case of near-resonances of the form

λi ≈ 3 · m + i� · κ , (36)

the coefficient matrix Lm,κ will be nearly singular (see, e.g., Refs. 34
and 60). If the resonance condition (28) is fulfilled for any eigenvalue
λi ∈ Spec(E ), then a nonzero choice for Sm,κ is necessary to solve the
linear system (27), where different choices lead to different styles of
parametrization.34,48

As an example of the resonance condition (36), consider a
two-dimensional periodic SSM. At the leading order, the resonance
condition then reduces to λ ≈ i�, which is a simple resonance cre-
ated by the external periodic excitation. Higher-order terms lead to
more complicated resonances, which are able to capture the effects
of parametric resonance. For instance, the principal parametric res-
onance of the form � ≈ 2Im(λ) results from the near-resonance
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relationship

λ ≈ λ+ i� (37)

in terms of Eq. (36) (see also Ref. 61). Finally, once we have
computed the coefficients xm,κ for the displacement parametriza-
tion x(p, φ), the coefficients for the nonautonomous velocity
parametrization can be obtained directly using the following state-
ment (cf. Lemma 2).

Lemma 4. The coefficients of the nonautonomous velocity
parametrization ẋm,κ for a multi-index m and harmonic κ can be
computed directly from the displacement parametrization as

ẋm,κ = [Dw(p) · S + ∂px · R + ∂φx · �]
m,κ

. (38)

Proof. See Appendix A 2. �

Remark 3. For mechanical systems with proportional damp-
ing and geometric nonlinearities up to cubic-order, prior works53,61

exploited the second-order nature of the equations of motion to
reduce the number of cohomological equations by a factor of half
relative to their first-order counterpart. Indeed, such a reduction in
the number of equations arises from the underlying structure (19) of
the phase-space variables in any second-order system. Hence, Lem-
mas 1–4 allow explicit extension of these computational advantages
to general second-order systems with nonlinearities of arbitrary
polynomial order, including nonlinear damping.

We note that once the autonomous part of the SSM is com-
puted up to a chosen order of approximation o, the order of approx-
imation o1 of the non-autonomous part of the SSM may be chosen
independent of o as long as o1 < o. Consequently, given an order
of approximation o for the autonomous part, the maximal accu-
racy for the non-autonomous computation will be obtained when
o1 = o − 1. In specific cases, choosing o1 < o − 1 may also pro-
vide satisfactory accuracy at lower computational costs (see, e.g.,
Ref. 61 for the effect of choices of o1 in systems with direct external
excitation).

V. STABILITY DIAGRAMS AND SSM

A. Mathematical foundation

In this section, we consider mechanical systems subject to peri-
odic parametric excitation, which means that fext = 0 in Eq. (2).
For such systems, z = 0 remains a fixed point for system (3) even
for ε > 0. This fixed point may, however, be destabilized by reso-
nances between the eigenfrequencies of the linear system and the
parametric excitation frequency.

In order to study the stability of this fixed point for ε > 0,
the dynamical system (3) can be extended to an autonomous sys-
tem of variables (z, τ) ∈ R

N × S1 such that the trivial fixed point
can be interpreted as the zero-amplitude periodic orbit (z, τ)
= (0, t mod 2π).1 Changes in the stability of this periodic orbit result
in bifurcations with respect to parameters. Numerical continuation
of periodic orbits is needed to locate an initial bifurcation with
respect to the forcing frequency or the forcing amplitude, as shown
in Fig. 1. Once this bifurcation is detected, it must be continued
in the parameter space to obtain a family of such bifurcations that
define the stability boundary. Tools such as the po toolbox of the
continuation package COCO28 employed in this work can detect and
continue families of such bifurcations using Floquet theory (we refer

FIG. 1. Sketch of a stability diagram at the principal resonance. The thin dashed
line corresponds to the boundary of stable and unstable regions in the conser-
vative limit. When damping is added, the tongue starts to lift up, bounded by the
thick black line. The numerical continuation in the variables ε (blue arrow) and�
(red arrow), respectively, leads to the detection of a bifurcation indicated by the
blue and red dots. Choosing these bifurcations as a starting point, the family of
bifurcations on the boundary can then be found via further continuation.

to Dankowicz and Schilder28 for a detailed account). We employ
SSM computation in order to efficiently obtain the resonance tongue
of the principal resonance, which marks the stability boundary in
Fig. 1. The SSM is constructed over the spectral subspace cor-
responding to the resonant eigenfrequency ωi. Consequently, the
M-dimensional ROM

ṗ = Rε(p,�t) (39)

=
∑

m∈NM

Rmpm + ε
∑

m∈N
M

m≥1

∑

κ∈Z

Sm,κe
iκ�tpm (40)

needs to be analyzed for bifurcations. Details on the correspond-
ing continuation problems are recounted in Appendix C. As the
forcing frequency changes, the ROM has to be updated, which high-
lights the need for a fast computational algorithm to calculate the
SSM. The reduced dynamics are of low dimension, so continuation
is a suitable method, as it is fast on small systems and provides key
insights into the bifurcation behavior. The proposed approach, thus,
combines the advantages of reduced-order modeling and numerical
continuation.

B. Computational complexity

Here, we briefly discuss the computational complexity of
approximating the periodic response via two-dimensional SSMs and
compare it to that of the collocation method applied to the full
system.
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1. Master subspace: This step involves the solution of the eigen-
value problem (7) to obtain the two eigenvalues and eigenvec-
tors associated with the two-dimensional master subspace.

2. Autonomous SSM: For computing the order-i approximation to
an autonomous, two-dimensional SSM, the coefficient vectors,
wm ∈ R

n, for (i + 1) monomials, m ∈ N
2
0, need to be obtained.

Thus, to compute the autonomous SSM and its reduced dynam-
ics up to order 0, we need to solve the n-dimensional linear
system (27) a total of

60 :=
0
∑

i=2

(i + 1) =
1

2
(0 + 1)(0 + 2)− 3 (41)

times. These computations are independent of the forcing and
can be parallelized over each monomial m in a given order.

3. Non-autonomous SSM: At each forcing harmonic, κ ∈ Z,

we have
∑0−1

i=0 i + 1 monomials that determine the non-
autonomous SSM coefficients wm,κ ∈ R

n at order 0. Thus, for
a system with h harmonics, we need to solve the n-dimensional
linear system (35), a total of

60,h := h

0−1
∑

i=0

(i + 1) =
h

2
0(0 + 1) (42)

times. These computations need to be performed for each forc-
ing frequency but can be parallelized over each harmonic κ and
monomial m in a given order.

4. Reduced periodic response computation via collocation-based
numerical continuation: Once the SSM and its two-dimensional
reduced dynamics are computed, we approximate a periodic
solution of the reduced system via the collocation method.
Approximating the nonlinear periodic response via c collocation
points in a d-dimensional dynamical system requires the solu-
tion of cd-dimensional system of coupled nonlinear algebraic
equations.28,65 Typically, this is achieved iteratively by solving
a cd-dimensional linearized system i times (iterations) until
a solution is found via an iterative solver, such as the New-
ton–Raphson method. This periodic solution is then numeri-
cally continued in the parameter space to obtain the FRC or sta-
bility diagrams. Note that we have d = 2 for a two-dimensional
SSM-based ROM. We have d = 2n when the same method is
applied to the full system but steps 1–3 are not required in that
case.

For the direct solution of an n-dimensional linear system
and the associated eigenvalue problem in step 1, we conservatively
assume a cubic computational complexity O(n3).63 We summarize
the above steps and their associated computational complexity to
obtain stability diagrams/FRCs via the SSM-based ROM and via
full-system collocation in Table VI (see Appendix C 3).

As the system size n increases, the main computational bot-
tleneck for numerical solutions will be the assembly and inversion
of the system matrix. We note from Table VI that the maximal
dimension of the system matrix in SSM-based ROM computations
is n, but it is 2nc for full-system collocation. For sufficient accuracy,
one often employs a number of collocation points in the range of
c ∈ [10, 100], which increases the dimension of the system matrix

by several orders of magnitude. This results in significantly higher
requirements of computational resources for full-system collocation
relative to SSM-based ROMs, as n becomes large.

Apart from the distinctions in computational complexity, the
local nature of SSM-based computations is worth emphasizing, since
the Taylor–Fourier approximations of the SSMs generally have only
a limited radius of convergence. Numerical continuation of the full
system, on the other hand, seeks globally accurate approximations
by stitching together local solution patches. Consequently, isolated
solution branches (or isolas) would generally be missed by numeri-
cal continuation in the absence of an initial solution on the isolated
branch, as we show in the examples of Sec. VI.

C. Examples

We now compare the SSM-based ROM predictions to full-
system simulations in terms of accuracy and computational perfor-
mance. To this end, we implemented the procedure for computing
nonautonomous SSMs and the related numerical examples in the
MATLAB-based package SSMTool 2.4.62 The numerical contin-
uation of the nonlinear response of the full system as well as of the
SSM-based ROM are performed using the MATLAB-based numeri-
cal continuation package COCO.28 When reporting the computation
times for SSM-based ROMs, we also include any time spent on ROM
construction, such as computation of the non-autonomous SSMs
and their reduced dynamics for different forcing frequencies, map-
ping the reduced results onto the full phase space. All computations
in this section are performed using MATLAB 2023a on a Apple M2-
CPU @3.49 GHz with 24 GB of RAM. We remark that we report
the computational times only for completeness and not to establish
computational benchmarks. The speed and convergence of numeri-
cal continuation is dependent on several numerical parameters, and
the available implementations in COCO28 may lead to sub-optimal
performance. Furthermore, the dimension of the full system in the
examples we consider may not be high enough to truly appreciate
the computational savings associated with SSM-based ROMs.

1. Mathieu equation

The most frequently discussed system in the parametric excita-
tion literature is the Mathieu equation

mÿ + cẏ + ω2
0(1 + ε cos�t)y = 0, 0 � ε � 1, (43)

whose stability is well understood. Various studies have appeared
for the damped and undamped cases,14 some with additional non-
linearities to system6 and others in higher dimensions.37 Here, we
extend the system (43) to a set of damped oscillators coupled via
springs with parametrically varying stiffness. Adding stiffness non-
linearities then results in the mechanical system displayed in Fig. 2.
The resulting generalized Mathieu equation is given by

Mÿ + Cẏ +
(

K + εQ cos(�t)

)

y + f(y) = 0. (44)
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FIG. 2. Schematic model of two oscillators described by two coupled Mathieu
equations. The coupling springs have time-varying stiffness coefficients k(t) =
k(1 + ε cos(�t)). The induced parametric excitation may destabilize the trivial
fixed point if chosen in subharmonic resonance with an eigenfrequency of the
linearized dynamical system.

In the case considered here, these matrices and the nonlinearity are
explicitly given as

M =
[

m1 0
0 m2

]

, C =
[

2c −c
−c 2c

]

, K =
[

2k −k
−k 2k

]

,

(45)

Q =
[

k −k
−k k

]

, f(y1, y2) = κ

[

−y3
1 − (y1 − y2)

3

−y3
2 + (y1 − y2)

3

]

. (46)

We choose non-dimensional parameters mi = 1, k = 1, c = 0.05,
and κ = 0.1, for which we obtain the eigenvalues of the ε = 0 sys-
tem in the form λ1, λ1 ≈ −0.0250 ± 0.9997i and λ2, λ2 ≈ −0.0500
± 1.7304i. Both these modes exhibit parametric instabilities at res-
onance. For each mode, this instability can be analyzed by comput-
ing the corresponding SSM and its reduced dynamics. We choose
to analyze the nonlinear response under the principal paramet-
ric resonance � ≈ 2ω2 by constructing the non-autonomous SSM
corresponding to the spectral subspace E = span(v2, v2). Using
numerical continuation in the reduced dynamics, we will detect the
corresponding resonance tongue.

First, we choose an initial parameter set (εi,�i), then either
of the two parameters is released, and the trivial 2π/�i-periodic
response is continued in search of period-doubling bifurcations.
The detected bifurcation point is then continued in the parameter
space, yielding the stability diagram in Fig. 3(a). The entire pro-
cedure is automated, constantly updating the coefficients of the
nonautonomous reduced dynamics when the excitation frequency
gets changed.

To obtain a more complete picture of how these regions of sta-
bility influence the system’s dynamics, we consider the non-trivial
forced response of system (44), which emanates from the instabil-
ity. The orbits with period T = 4π

�
≈ 2π

ω2
bifurcate out of the trivial

response at the stability boundary. The amplitude of these response
curves increases smoothly with increasing excitation amplitude ε.
The reduced dynamics on the SSM serves as a ROM to explore peri-
odic orbit families via numerical continuation. The resulting forced
response and the stability diagram are shown in Fig. 3. The res-
onance tongue and the forced response are accurately reproduced
using the ROM, as we verify using the po-toolbox of COCO on the
full dynamical system. The parameters used for continuation of the
full and reduced models are noted in Appendix C.

FIG. 3. Stability diagram and forced response of the two coupled Mathieu oscil-
lators shown in Fig. 2. (a) Stability diagram of the second mode obtained using an
SSM-based ROM, which locally approximates the resonance tongue in a region
around the principal resonance where� ≈ 2ω2. (b) The ||z1||∞ = 0 plane cor-
responds to the trivial response of the full system. On this plane, the resonance
tongue is displayed in gray shades. From its boundary, orbits with period 4π/�
emerge that show hardening behavior due to the nonlinearity.

The computation time for the stability diagram using the full
system was 5 s. The same computation using the ROM, including
the continual update of the SSM parametrization, takes 33 s. Sim-
ilarly, for the FRCs displayed in Fig. 3(b), the full-system analysis
took 22 s, while using the O(7) ROM amounted to 3 min and 38 s.
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TABLE I. Physical parameters used for the model of the Bernoulli beam.

Symbol Meaning Value

L Length of beam 2700 (mm)
h Thickness of beam 10 (mm)
b Width of beam 10 (mm)
E Young’s modulus 45 ×106 (kPa)
I Area moment of inertia 833.3 (mm4)
α Structural damping parameter 1.25 × 10−4 (s−1)
β Structural damping parameter 2.5 × 10−4 (s)
κ Cubic stiffness coefficient 50 (mN/mm3)
γ Cubic damping coefficient −0.01 (mNs/mm3)

Therefore, because the full dynamical system is low-dimensional,
the advantage of using a ROM is outweighed by the computational
cost of constructing the reduced dynamics and the time-dependent
SSM for each forcing frequency.

2. Bernoulli beam

We now consider the nonlinear Bernoulli beam shown in
Fig. 4(a) and treated in Ref. 54. It is clamped on one side and sub-
jected to a cubic spring, a cubic damper, and parametric excitation at
its free end and moves in the x − z plane. A similar example has been
experimentally studied by Chen and Yeh,66 who implemented para-
metric excitation through a pair of coils fixed to the beam. Nearby
magnets mounted on a support were then used to exert a force on
these coils when a current is applied.

We discretize the beam, resulting in n degrees of free-
dom. Damping is assumed to be proportional and of the form
C = σ(αM + βK). Here, the cubic nonlinearity f(y, ẏ) includes the
nonlinear damping coefficient γ and the nonlinear stiffness κ .
The parameters and beam properties are set according to Table I.
Compared to the original parameter value κ = 6 mN/mm3 used in
Ref. 54, we consider a stronger cubic nonlinearity in the spring with
κ = 50 mN/mm3. Furthermore, we add parametric excitation to the
system given by

fparam(�t, y) = ε cos�tQy, (47)

where Q ∈ R
n×n is a Boolean matrix that performs projection onto

the z−DOF at the tip of the beam. This system is driven in the regime
of parametric resonance by targeting the principal resonance of the
mode associated with the leading pair of eigenvalues

λ1, λ1 ≈ −0.1238 ± 6.9995i. (48)

The principal resonance is, thus, obtained for forcing frequency
values � ≈ 13.999 rad/s. We use the reduced dynamics on the cor-
responding SSM to construct the stability diagram of the principal
resonance of the selected mode. The resulting resonance tongue is
shown in Fig. 5(a) for various values of the damping coefficient
σ . The forced response based on SSM computations for a set of
parametric excitation amplitudes is shown in Fig. 5(b). Due to the
strongly nonlinear nature of this example, we observe nonlinear
phenomena at lower response amplitudes compared to the thick-
ness of the beam (see also Ref. 54, where the merger of an isola with

FIG. 4. (a) Model of a linear Bernoulli beam of length L and thickness h as treated
by Ponsioen et al.54 The beam is aligned with the x axis and parametrically excited
on the free end, as indicated by the red arrow. A nonlinear (cubic) damper and a
cubic spring are attached to the free end of the beam. (b) Schematic depiction of a
possible experimental setup for parametrically exciting the beam, reproduced with
permission from Chen and Yeh, J. Sound Vib. 240, 747–764 (2001).66 Copyright
2001, Elsevier. Two coils are used as tunable magnets via the induced current I.
Depending on its magnitude and direction, the effective attraction and repulsion
between the beam and the adjacent magnets can be controlled. This results in a
time varying stiffness.

the main branch of the response is observed near the displacement
amplitude of 0.05 mm).

We compare the SSM-reduced results with the corresponding
full system’s results computed using the collocation method imple-
mented in COCO,28 for which the relevant simulation parameters can
be found in Appendix C. In Fig. 5(b), we observe that for smaller
values of the excitation amplitude ε, the SSM-reduced results con-
verge to the full-system solution as the order of SSM approximation
increases from 3 to 7. For higher excitation amplitudes, however,
we observe that the SSM-reduced results start deviating from the
full system’s response. Indeed, this observation agrees with SSM
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FIG. 5. (a) Stability diagram for the principal resonance of the first mode of the Bernoulli beam for 10 elements with n = 20 degrees of freedom. The solid line denotes
the border of the resonance tongues as obtained using the dynamics of the full system and has been obtained via the collocation method. The reduced dynamics provided
by a cubic truncation of the SSM accurately locates the position and shape of the tongue for different values of the damping parameter σ . (b) Forced response along the
transverse DOF, z19, located at the tip of the beam. Nontrivial periodic response branches of period T = 4π/� emanating from the stability boundary via period-doubling
bifurcations. The amplitude of the response curve increases with growing parametric excitation amplitude ε. The results for different orders of approximation of the manifold
and reduced dynamics are plotted to visualize the convergence of the reduced response to the full solution.

theory,49 which is applicable for limited forcing amplitudes (see also
Ref. 35).

The computation times for the stability diagram and forced
responses are reported in Tables II and III, which show that the
computational savings arising from the use of SSM-based ROM in
this higher-dimensional example are significant, unlike in our first
example.

3. Prismatic beam

Next, we analyze the dynamics of a hinged-clamped prismatic
beam. Extending the initial treatment of external excitation by
Nayfeh et al.,67 Li et al.35 have recently applied SSM theory to the
case of a 1:3 internal resonance between the first two bending modes
of this beam model. Their implementation serves as the basis of this
example but we choose the nondimensionalized length in terms of

TABLE II. Computation time for the stability diagrams in Fig. 5(a) with n= 20 DOFs

in the format hh:mm:ss.

Damping (σ ) SSM O(3) Full system

10 00:00:15 00:02:13
20 00:00:10 00:01:52
30 00:00:08 00:01:36
40 00:00:07 00:01:27

the characteristic length here as l = 1.7 to avoid internal resonances.
Introducing nondimensional parameters and coordinates, Nayfeh et
al.67 derive nonlinear partial equations for the transverse displace-
ment w(y, t) of the beam. Under axial loading at the hinged tip, these
equations must be modified to68

∂4w

∂y4
+
∂2w

∂t2
= δ

(

H
∂2w

∂y2
− pa(t)

∂2w

∂y2
−2c

∂w

∂t

)

, (49)

where pa(t) describes the axial loading, δ is the slenderness ratio of
the beam, H accounts for the axial stretching forces that depend on
w [see Eq. (D5) in Appendix D for the explicit expression], and c
is the distributed damping parameter. We refer to Appendix D for
the mathematical expressions of various dimensionless parameters
in Eq. (49). The axial excitation effectively leads to a parametric exci-
tation on the transverse displacements of the beam, as is evident in
Eq. (49). The beam is clamped at y = l and hinged at y = 0, resulting

TABLE III. Computation time for the sweep of FRCs in Fig. 5(b) with n= 20 DOFs in

format hh:mm:ss. The damping parameter is chosen as σ = 10.

Algorithm Computation time

Full-system collocation 00:52:30
SSM O(3) 00:01:16
SSM O(5) 00:02:28
SSM O(7) 00:05:50
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FIG. 6. Stability diagram for the principal resonance of the first mode of the
prismatic beam for a truncation with n = 10 modal coordinates. The full-system
response has been obtained with the use of collocation. The reduced model of
these full dynamics given by the dynamics on the SSM can accurately predict the
stability behavior of the full system.

in the boundary conditions

w(0) = w(l) = 0, w′(l) = 0, w′′(0) = 0. (50)

After writing the displacement w(y, t) as a modal expansion, we
obtain a system of second-order ODEs for the evolution of the
modal amplitudes zj(t),

z̈j + 2δcżj + ω2
j zj =

∑

i,k,s

δαjikszizkzs + δ
∑

i

pa(t)ziaji, (51)

with i, j, k, s ∈ {1, . . . , n}. A detailed derivation of these equations
using Galerkin projection along with the definition of the coeffi-
cients αjiks and aji is given in Appendix D. We take the axial forcing
to be harmonic and of the form

pa(t) = µ cos(�t). (52)

Furthermore, we set δ = 1 × 10−4. The modal expansion is trun-
cated at n modes, which gives rise to a phase space dimensionality
of N = 2n.

We wish to analyze the stability of the beam when axially
excited at the principal resonance of its fundamental frequency. We
construct the SSM over the first pair of modes with eigenvalues

λ1, λ1 ≈ −0.0200 ± 5.3361i. (53)

The instability of the trivial fixed point induced by the para-
metric resonance occurs near the excitation frequency values � ≈
10.6672[rad/s]. Figure 6 shows the corresponding stability diagram
and Fig. 7 shows the steady-state response computed using the
SSM-based ROM. The full system’s stability is again verified using

(b)

FIG. 7. Forced response of the prismatic beam along the parametrically excited modal coordinate z1 [see Eq. (51)]. (a) Nontrivial periodic response branch of period
T = 4π/� emerging out of the stability boundary (see Fig. 6) via a period-doubling bifurcation for εµ = 0.13, c = 200, and n = 10. (b) Forced response for various
excitation amplitudes.
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TABLE IV. Computation time for the stability diagrams of the prismatic beam example

with n= 10 DOFs in Fig. 6, given in hh:mm:ss.

Damping (c) SSM O(3) Full system

100 00:00:17 00:00:42
200 00:00:10 00:00:36
300 00:00:09 00:00:34
400 00:00:08 00:00:32

the po-toolbox of COCO. The parameters chosen for numerical
continuation of the full and reduced system are documented in
Appendix C.

Table IV shows the computation times for obtaining the sta-
bility diagram in Fig. 6 for different damping parameters and
Table V shows the total computation times for obtaining the FRCs
in Fig. 7(b) at different excitation amplitudes. Again, the use of an
SSM-based ROM brings a significant computational advantage over
the full model.

VI. FORCED RESPONSE AND SPECTRAL

SUBMANIFOLDS

A. Mathematical foundation

For externally excited systems, SSMs have proven highly effec-
tive in capturing the forced response accurately at a low compu-
tational cost.34,52,54,60 Next, we extend these results to obtain FRCs
of systems subject to both external and parametric excitation. Our
algorithm is completely parallelizable and can be carried out for each
forcing frequency independently. We consider periodic external and
parametric excitation and assume that their harmonic κ0 is in 1:1
resonance with the master mode, i.e.,

iκ0� ≈ λj, (54)

for some j. We further assume that no (near) internal resonances
are present in the spectrum of the dynamical system. The periodic
forced response and its stability can then be explicitly computed
from the SSM-based ROM according to the following statement.

Lemma 5. Assume that the near-resonance condition (54)
holds for a mechanical system subject to periodic external and para-
metric excitation. We then obtain the following results for the dynam-
ics on the two-dimensional SSM that serves as the non-autonomous,
nonlinear continuation of the jth linear mode:

TABLE V. Total computation time for the five sweeps of FRCs in Fig. 7(b) for the

prismatic beam example with n= 10 DOFs, given in hh:mim:ss.

Algorithm Computation time

Full-system collocation 02:51:52
SSM O(3) 00:02:42
SSM O(5) 00:10:44
SSM O(7) 00:36:14

(i) Polar dynamics: The reduced dynamics in polar coordinates
(ρ, θ) is given by

[

ρ̇

ρψ̇

]

= r(ρ,ψ ,�), (55)

φ̇ = �, (56)

where

ψ = θ − κ0φ, (57)

r(ρ,ψ ,�) =
[

a(ρ)
b(ρ)

]

+ ε

(

N(ψ)

[

Re (S1
0,κ0
)

Im (S1
0,κ0
)

]

+
∑

m∈N
2

κ∈Z
∗

ρ |m|N((κ/κ0)ψ)

[

Re (S1
m,κ)

Im (S1
m,κ)

])

, (58)

a(ρ) = Re

(

∑

m

R1
mρ

|m|

)

, (59)

b(ρ,�) = Im

(

∑

m

R1
mρ

|m|

)

− κ0ρ�, (60)

N(•) :=
[

cos (•) sin (•)

− sin (•) cos (•)

]

, (61)

and the sum over κ and m includes the harmonics and spa-
tial multi-indices associated with nonzero reduced dynamics
coefficients in a normal-form style of parametrization.

(ii) Forced response curve: The fixed points of the SSM-reduced
dynamics lie on the forced response curve that satisfies

r(ρ,ψ ,�) = 0. (62)

(iii) Stability of the forced response: For any hyperbolic fixed point

(ρ,ψ) of (55), the eigenvalues of the Jacobian,

J =
[

∂ρa(ρ) 0

∂ρ(b(ρ)/ρ) 0

]

+ ε







[

0 d0,κ0 (ψ)

− d0,κ0
(ψ)

ρ2 − c0,κ0
(ψ)

ρ

]

+
∑

m∈N2

κ∈Z∗

[

cm,κ (ψ)|m|ρ |m|−1 (κ/κ0)dm,κ(ψ)ρ
|m|

dm,κ(ψ)(|m| − 1)ρ |m|−2 −(κ/κ0)cm,κ(ψ)ρ
|m|−1

]







,

(63)

determine the stability of the fixed point, where

cm,κ(ψ) := Re (S1
m,κ) cos((κ/κ0)ψ)

+ Im (S1
m,κ) sin((κ/κ0)ψ), (64)

dm,κ(ψ) := − Re (S1
m,κ) sin((κ/κ0)ψ)

+ Im (S1
m,κ) cos((κ/κ0)ψ). (65)

Proof. See Appendix B. �
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Fixed points of the reduced dynamics in polar coordinates
correspond to periodic orbits of the full system as the SSM is a
time-periodic invariant manifold, i.e., z(t) = Wε(p(t),φ). As state-
ment (ii) of Lemma 5 only requires the computation of zero level
sets, the forced response can be computed independently for each
forcing frequency {�1, . . . �z} in the interval of interest. Another
consequence is that isolated regions of forced response, the so-called
isolas, can be computed at the same time. This is in stark contrast to
continuation-based methods, which will only find such branches of
response from initial conditions that are specified close to isolas.

B. Computational complexity

We already discussed the basic steps and their associated com-
putational complexity for computing FRCs via the SSM-based ROM
and via full-system collocation in Sec. V B. There, we noted that
steps 2–3 in SSM computation were fully parallelizable. However,
step 4 employed numerical continuation of the reduced dynamics
via collocation and, hence, was not parallelizable. Thanks to Lemma
5, the periodic response computation is now reduced to a fixed-point
calculation that can be parallelized over the frequency domain of
interest. This makes the proposed SSM routine fully parallelizable.
We update step 4 and the associated computational complexity due
to Lemma 5 in Table VII (see Appendix C 3).

C. Examples

We make use of Lemma 5 to analyze the forced response of
dynamical systems that are subject to direct and parametric excita-
tion simultaneously. In our examples, we will consider systems of
the form

Mÿ + Cẏ +
(

K + εµQ cos(2�t)

)

y + f(y, ẏ) = εg(y, ẏ,�t), (66)

with the function g including nonlinear parametric excitation and
external excitation. Solving the invariance equation (17) up to O(ε)

provides a parametrization of the nonautonomous SSM. The com-
putation of these parametrizations and the extraction of the FRCs
will be performed with SSMTool 2.4. For a given dynamical sys-
tem of first or second order, the algorithm automatically solves the
invariance equations (23) and (31) up to any desired order and
computes the steady states using Lemma 5.

1. Self-excited parametric oscillator

Self-excitation of mechanical systems is caused by negative lin-
ear damping that leads to a destabilization of the trivial fixed point
of the linearized system. In contrast, nonlinear positive damping
stabilizes the system for large oscillation amplitudes and forms a
limit cycle, resulting in behavior described by a Hopf-type nor-
mal form.69 Such self-excitations may arise, for instance, from dry
friction, vibrations during machine cutting, or nonlinear feedback
control in MEMS devices.70–72

The example we study here represents a 2-DOF oscillator with
nonlinear elasticity and damping, as shown in Fig. 8. This system is
subject to external excitation along one DOF, which is coupled to the
second DOF via a spring with periodically varying stiffness (see, e.g.,
Szabelski and Warminski23,73). The three types of excitation seen in

FIG. 8. Model of a self-excited oscillator system with external and paramet-
ric excitation. The stiffness of the coupling spring varies periodically as k(t) =
4k(1 + µ cos(2�t)). External excitation is introduced via the term P cos(�t).
The negative linear damping coefficient c introduces self-excitation that is stabi-
lized by the nonlinear damping with coefficient γ . The left spring is characterized
by linear and nonlinear stiffness coefficients k and κ .

this example (external, parametric, and self-excitation) are present
in a number of engineered structures, including coupled vibrations
of unbalanced shafts with time-varying rigidity, whirling in slide
bearings, and metal machine cutting. To study the system dynam-
ics, the cited references construct approximate analytical solutions
by assuming a steady state in the form of a sum of trigonometric
functions. Assuming that the oscillation amplitudes vary slowly in
time and, therefore, dropping higher-order derivatives, the authors
arrive at an expression for the amplitudes, which they solve numer-
ically. The equations of motion can be written in the dimensionless
form23

ÿ1 + k̃(1 − µ̃ cos 2�t)(y1 − y2)+ y1 + κ̃y3
1 = P̃ cos�t, (67)

ÿ2 − (c̃ − γ̃ ẏ2
2)ẏ2 − k̃M(1 − µ̃ cos 2�t)(y1 − y2) = 0. (68)

The parameters values are chosen as k̃ = 4, µ̃ = 0.2, κ̃ = 0.1, c̃
= 0.01, γ̃ = 0.05, M = 0.5, P̃ = 0.2, and ε = 1, where (•̃) repre-
sents a dimensionless variant of the corresponding physical quantity
(•) shown in Fig. 8. Using SSM theory to obtain the FRC of this
dynamical system involves the following steps.

1. System setup: Using the standardized form (1), systems (67) and
(68) can be rewritten as

M =
(

1 0
0 1

)

, K =
(

k̃ + 1 −k̃

−k̃M k̃M

)

, (69)

Q = k̃

(

−1 1
M −M

)

, C =
(

0 0
0 −c̃

)

, (70)

f(y, ẏ) =
(

κ̃y3
1

γ̃ ẏ3
2

)

, g(�t) = P̃

(

cos�t
0

)

. (71)

To solve the invariance equations, we expand the nonlinearity
and forcing in Taylor and Taylor–Fourier series. Details on this
procedure can be found in Appendix A 1.

2. Choose master subspace: Linear analysis of the correspond-
ing first-order ODE (6) provides the eigenvalue pairs λ1, λ1 ≈
0.0013 ± 2.5887i and λ2, λ2 ≈ 0.0037 ± 0.5463i. We choose to
analyze the resonant excitation of the first mode with excitation
frequency values� ≈ Im λ1 and construct a time-periodic SSM
over the spectral subspace E = {v1, v1} .
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FIG. 9. (a) Forced response curve of the self-excited oscillator for a parametric
excitation amplitude of µ = 0.2. The forced response obtained from a fifth-order
approximation of the dynamics on the non-autonomous SSM accurately describes
the full-system response. Results are verified using po-toolbox of COCO. (b) Vari-
ation in the forced response for different amplitudes of parametric excitation while
keeping the external excitation amplitude constant.

3. Autonomous SSM and reduced dynamics: The leading-order
autonomous cohomological equation is solved by choosing

We1 = v1, We2 = v1, (72)

Re1 =
(

λ1

0

)

, Re2 =
(

0

λ1

)

. (73)

Subsequently, the autonomous cohomological equation (27)
can be solved recursively to the desired order. Near-resonances
between the master modes of the type (28) are detected automat-
ically and the autonomous reduced dynamics are transformed
to their normal form accordingly.

4. Assemble non-autonomous cohomological equations: The
autonomous SSM and reduced dynamics coefficients do not
depend on the external excitation frequency. As this is not
the case for non-autonomous coefficients, the nonautonomous
cohomological equation has to be solved for every forcing fre-
quency �. Given a set of forcing frequencies {�1, . . . ,�z},
the nonautonomous cohomological equation is solved up to
the desired order independently for each frequency. Near-
resonances in the master subspace of the form (36) are automat-
ically detected at each order of computation, which determines
the nontrivial coefficients of the reduced vector field according
to a normal form style of parametrization. The coefficients of the
reduced dynamics are used to construct the function r(ρ,ψ ,�)
defined in Eq. (55), whose zero level set provides us the forced
response according to Lemma 5. The resulting reduced dynam-
ics up to cubic order at frequency � = 2.6 rad/s can be written
as

ṗ = (1328.6 + 25 887.3i)p + (−35.9 + 63.2i)p2p̄

+ (7.4 + 1152.5i)e2iφ p̄ + (0.2 − 0.8i)e−iφp2

+ (−0.4 + 1.6i)eiφpp̄ + (1 − 1.4i)e−2iφp3, (74)

where we have used a rescaled time variable s = 10−4t and
defined the phase variable φ = �t. The dynamics along the
second reduced coordinate is simply given by the complex
conjugate of (74).

Figure 9(a) shows the FRC obtained from this procedure, where
we observe a self-intersecting loop in the FRC. Once again, we veri-
fied the SSM-based reduced results against the full system using the
po-toolbox of COCO, where the relevant continuation parameters
were set according to Table X in Appendix C. The computation time
for this self-excited oscillator using a sequential implementation of
the non-autonomous SSM computation is 58 s. Meanwhile, the ver-
ification via continuation on the full system takes 66 s. We observe
that in this sequential implementation on a low-dimensional exam-
ple, the ROM does not bring any significant computational sav-
ings relative to the full system in this low-dimensional example.
In Fig. 9(b), we investigate the relative effects of the paramet-
ric and excitation on the system’s response. We observe that, as
the amplitude of the parametric excitation is decreased for a fixed
external excitation amplitude, the size of the self-intersecting loop
attached to the main branch of the FRC also decreases. We refer
to Szabelski and Warminski22,23 for an extensive discussion of this
phenomenon.

Similar oscillator systems featuring self-excitation or paramet-
ric amplification have been shown to exhibit complicated forced
response curves, including isolated branches of response.20,73 To
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demonstrate the effectiveness of SSM-based ROMs in reproduc-
ing such complicated forced response curves, we have implemented
further examples of self-excited oscillators with isolas73 and para-
metric amplifiers with nonlinear damping.20 These examples are
openly available in SSMTool.62 Next, we discuss finite-element-type
examples under parametric and external excitation.

2. Bernoulli beam with parametric and external

excitation

We now return to the nonlinear Bernoulli beam example with
the parameters listed in Table I. In addition to the parametric exci-
tation, however, the free end is now forced externally as well. The
resulting equations of motion for the discretized variables are now
given by

Mÿ + Cẏ + Ky + εµ cos 2�tQy + f(y, ẏ) = εf 0
ext cos(�t). (75)

Here, f(y, ẏ) again includes the nonlinear damping coefficient γ of
the damper, as well as the nonlinear stiffness κ of the spring attached
to the tip of the beam. Once again, Q ∈ R

n×n is a Boolean matrix
that performs projection onto the transverse degree of freedom at
the tip of the beam. The harmonic external excitation vector f 0

ext acts
on the tip of the beam, with a unit magnitude in the transverse direc-
tion. The damping coefficient is set to σ = 1. The external excitation
amplitude and the relative parametric excitation amplitude are taken
to be ε = 2 × 10−3 and µ = 45 (mN/mm), respectively. The system
is forced in resonance with the first mode with the eigenvalue pair

λ1, λ1 ≈ −0.1238 ± 6.9995i. (76)

The excitation frequencies for parametric and external excita-
tion are assumed to have a 2:1 relationship. Therefore, the direct
forcing is resonant with the first eigenmode of the beam, whereas the
parametric term is operated in the regime of principal parametric
resonance. Figure 10(a) shows the forced response for a 20 element
model with n = 40 DOFs, where we observe an isolated branch of
forced response under the main branch for the chosen parameter
values. The emergence of such an isola with an increasing parametric
excitation amplitude µ has been studied in systems where paramet-
ric resonance and external excitation interact. Indeed, this isola is
associated with the coexistence of the two resonances, i.e., the para-
metric 2:1 resonance and the direct 1:1 resonance of the external
excitation with the eigenvalues of the first mode.12,25

We verify the FRC obtained from the SSM-based ROM against
the full-system collocation implemented using the po toolbox of
COCO with parameters set according to Table X. The isolated
branch of the forced response, which appears inside the main
branch of the FRC, is not detected by the continuation run. We
use an initial solution on the isola provided by the SSM-based
ROM as an input for COCO to independently verify the isolated
branch for the full system. The verification of the main branch
took a total of 4 h and 40 min, while the isolated response needed
15 h and 17 min. At the same time, using Lemma 5, the SSM-
based ROM takes only 48 s for FRC extraction with a sequential
implementation.

Next, we repeat our analysis for larger system sizes resulting
from higher-order discretizations of the beam. The corresponding
computation times are depicted in Fig. 11. All computations for this

FIG. 10. (a) Forced response obtained for the externally excited Bernoulli beam
with periodically varying stiffness actuation at the tip, reported at the transverse
DOF, z39, located at the tip of the beam (n = 40). The nonlinear spring attached
to the beam leads to a hardening-type response. Due to the interplay of external
and parametric excitation, an isola arises for sufficiently large values of the para-
metric excitation amplitude µ [µ = 45 (mN/mm) for this simulation]. The isola is
independently verified using an initial condition provided by the results of the SSM
computation. (b) Close-up view of the isolated response branch verified against
the full system in a separate continuation run.

example were performed on the Euler Cluster of ETH Zürich due to
the long runtimes of the collocation routine. We increased the sys-
tem size up to 25 000 elements, resulting in up to n = 50 000 DOFs.
The sequential computation of the FRC, including the repeated
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FIG. 11. Computation times for the FRC of the externally excited Bernoulli beam
example. Results from the SSM-based ROMs were verified against the full system
using the po-toolbox of COCO (see Fig. 10). Computation for isolas in the forced
response is reported separately as they were verified in independent continuation
runs.

computation of the non-autonomous SSM and its reduced dynamics
for each forcing frequency {�1, . . . ,�z}, now takes 1 h and 19 min.

VII. CONCLUSION

We have developed an algorithm for computing non-
autonomous primary SSMs and their reduced dynamics up to any
desired order of accuracy in externally and parametrically forced
systems. In doing so, we have taken into account prior developments
and extended them to the case of parametrically excited mechan-
ical systems with nonlinearities of arbitrary order and magnitude,
including nonlinear damping. We have put forward automated rou-
tines for computing primary SSMs for second-order mechanical
systems, in particular, and first-order dynamical systems, in general.
In our derivations and computations, we have made use of the multi-
index notation for the expansions and carried out computations in
physical coordinates using minimal eigenvectors of the full system.
All this optimizes memory requirements and avoids modal trans-
formations that are computationally infeasible for high-dimensional
systems.

Using the SSM-reduced models as the basis for parameter con-
tinuation, we have shown how to compute the stability diagrams for
the principal resonance of periodic, parametrically excited systems.
Furthermore, we have shown that in systems under additional exter-
nal excitation, the forced response can be obtained by simply locat-
ing the zeros of a two-dimensional function, i.e., without numerical
continuation. As a result, it is now possible to parallelize the com-
putation of the periodic responses attached to two-dimensional,
nonautonomous SSMs for systems subject to periodic external and
parametric excitation over any desired range of forcing frequen-
cies. All these algorithms and their applications to our examples are
available in the open-source package SSMTool 2.4.62

With examples treating coupled Mathieu equations, a para-
metrically excited Bernoulli beam, and an axially forced prismatic
beam, we have illustrated how SSM-based model reduction can be

used to obtain accurate stability diagrams and FRCs in parametri-
cally excited systems at a significantly reduced computational cost.
Indeed, we analyzed a number of typical low-dimensional mod-
els studied previously in the literature and showed that SSM-based
ROMs provide accurate predictions even if they do not necessar-
ily yield computational savings. In contrast, SSM-reduced models
also provide major computational advantages over the full system
in more complex examples such as a Bernoulli beam attached to
a nonlinear damper and spring and subject to external and para-
metric excitation. In that example, we have uncovered an internal
isola, which is an effect that has been observed for one-dimensional
models subject to parametric resonance and external excitation.12,25

Ours appears to be the first demonstration of this phenomenon in
finite-element models. We showcased the power of this mathemat-
ically grounded SSM reduction by increasing system sizes beyond
the capabilities of collocation-based continuation methods when
applied to the full system. We also demonstrated how paralleliza-
tion can be used to reduce the computation time by an order of
magnitude in SSM-based FRC calculations.

Future work may target systems with even higher dimension-
ality, where the beneficial effects of model reduction should weigh
in even more stunningly. Areas of related applications include var-
ious types of parametrically driven MEMS devices, such as comb-
driven micromirrors, among others.8,9,11 Additionally, the develop-
ments presented here open the door for an in-depth analysis of the
interaction of more complex time-dependent phenomena, such as
parametric resonance in MEMS systems with internal resonances.74
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APPENDIX A: SSM COMPUTATION IN MULTI-INDEX

FORMAT

In this section of the appendix, we provide the mathematical
details for SSM computations in physical coordinates with the use
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of multi-indices, including the proofs for Lemmas 1–4. We begin by
reviewing the multi-index formalism and its advantages. We then
give an in-depth derivation of the expressions that determine the
SSM and its reduced dynamics parametrizations. We present these
results for second- and first-order ODEs.

1. Multi-index calculus

A multi-index of order m ∈ N is a vector m ∈ N
M such that

||m||1 = m. The unit multi-indices with a single nonzero entry in the
jth position are denoted by ej. The addition and subtraction of multi-
indices are defined element-wise. Using multi-indices, multivariate
monomials can be conveniently expressed as

pm = p
m1
1 · · · p

mM
M . (A1)

Likewise, a time derivative of such monomials is conveniently
expressed as

dpm

dt
=

M
∑

j=1

∂pj
pmṗj =

M
∑

j=1

mjp
m−ej ṗj. (A2)

a. Composition coefficients

In SSM computations, composition of nonlinear forces with the
nonlinear SSM parametrization has to be performed. For this, we
need to compute scalar powers s of power series written in multi-
index notation, i.e., (

∑

m Wi
mpm)

s
. A convenient method, which

offers a recursive definition of the resulting coefficients, uses the
concept of radial derivative discussed by Haro et al.48 Ponsioen
et al.60 use this method to express the coefficients Hs,h in the
expansion

(

∑

m

Wi
mpm

)s

=
∑

h

Hi
s,hph (A3)

using the recursive definition

Hi
s,h =

s

hj

∑

m≤h

mjW
i
mHi

s−1,h−m, (A4)

where j is the index of the smallest nonzero element in h. To sim-
plify the calculation of this recursion, it is useful to look at some
special cases under the assumption that the coefficients Wi

m are the
autonomous coefficients of the ith coordinate of the SSM expansion.
The SSM parametrization does not contain constant terms, which
means that all composition coefficients are zero for |m| = 0. The
properties of Hi

s,h are then

• Hi
1,0 = 0,

• Hi
1,h = Wi

h,

• Hi
0,h = 0 for all h 6= 0,

• Hi
0,0 = 1.

We generalize this concept to vector-valued power series by collect-
ing all terms corresponding to the same multi-index h ∈ N

M and

defining a new composition coefficient Hn,h such that




∑

m∈NM

Wmpm





n

=
N
∏

i=1





∑

m∈NM

Wi
mpm





ni

(A5)

=
N
∏

i=1





∑

u∈NM

Hi
ni ,u

pu



 (A6)

=
∑

h∈NM

Hn,hph. (A7)

In more detail,

Hn,h :=
∑

u1∈NM

· · ·
∑

u2n∈NM

H1
n1 ,u1

· · · H2n
n2n ,u2n

∣
∣
∣
∣∑

ui=h

. (A8)

Although a vectorization of this computation provides a very effi-
cient routine for the composition of power series, it also poses a
major bottleneck in terms of memory and time requirements in the
SSM computation proposed here.

b. Redundancy in tensor notation

We now discuss the computational disadvantages of a tensor-
based notation compared to the use of multi-indices. Let p ∈ C

2 and
consider the Taylor expansion of a nonlinear function W(p) in the
tensor notation as

W(p) =
∑

i∈N

Wip
⊗i. (A9)

Specifically, the second term in the expansion (A9) can be repre-
sented by a 2 × 4 matrix W2 acting on the Kronecker product p ⊗ p
as

W2p ⊗ p =
[

W11 W12 W13 W14

W21 W22 W23 W24

]






p1p1

p1p2

p2p1

p2p2




 (A10)

=
[

W11p
2
1 + (W12 + W13)p1p2 + W14p

2
2

W21p
2
1 + (W22 + W23)p1p2 + W24p

2
2

]

. (A11)

Examining Eq. (A11), we note that only six of the eight coefficients
contained in the matrix W2 are needed to uniquely represent W2p ⊗
p. Indeed, the same term in multi-index notation,

W(p) =
∑

m∈NM

Wmpm, (A12)

is characterized by six unique multi-index coefficients given as

W(
2
0

) =
[

W11

W21

]

, W(
1
1

) =
[

W12 + W13

W22 + W23

]

, W(
0
2

) =
[

W13

W23

]

.

(A13)

This redundancy in the number of coefficients utilized by the tensor
notation relative to the multi-index notations grows with the order
of expansion. Consider, for instance, the case of a two-dimensional
SSM, where, at any order 0, the expansion is characterized by a ten-
sor with N20+1 coefficients. However, we have only 0 + 1 unique
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monomials associated with these coefficients. Hence, while the
number of unique monomials grows linearly with the order 0, the
corresponding number of tensor coefficients grows exponentially
in 0.

We remark, however, that the tensors can be specially con-
structed to contain only a minimal number of nonzero coefficients
equal to that in the multi-index notation. This is possible by exploit-
ing the inherent symmetries in monomials associated with the
expansion, e.g., by using a sparse or symmetric definition of tensor
arrays. In practice, the SSM coefficients that are determined numer-
ically by solving invariance equations may still lead to densely pop-
ulated or asymmetric tensor arrays. At each order of computation,
the computed coefficients would, therefore, require recasting to this
minimal form, resulting in unnecessary computational overhead.

Furthermore, it turns out that the cohomological equations (27)
and (35) that need to be solved for SSM expansion coefficients
are decoupled for individual multi-indices. For computing a two-
dimensional autonomous SSM at order 0 in a vectorized tensor-
based notation adopted in Ref. 34, a linear system of dimension
N20+1 needs to be solved. Using multi-indices instead, only 0 + 1
linear systems of dimension n each need to be solved. One can also
solve the linear systems associated with each tensor index indepen-
dently, as remarked in Ref. 34 and as done for second-order systems
in Refs. 53 and 61. In that case, a total of 20+1 systems of linear equa-
tions of dimension n must be solved in the tensor-index notation.
Hence, for two-dimensional SSMs, the use of multi-indices leads to
an exponential decrease in the number of linear systems that needs
to be solved relative to the tensor notation as the expansion order
increases.

Thus, we have shown the tensor notation results in redundant
computational costs relative to the multi-index notation.

c. Examples of nonlinear force expansion

We expand the excitation and nonlinearity in the multi-index
notation as

f(y, ẏ) =
∑

a,b∈Nn

fa,by
aẏb, (A14)

g(y, ẏ, φ) =
∑

a,b∈Nn

∑

κ∈ZK

ga,b,κei〈κ ,φ〉yaẏb, (A15)

where the coefficients fa,b, ga,b,κ ∈ C
n. Note that these coefficients

can be recast in a first-order form simply by associating a multi-
index n ∈ N

N to each pair a, b such that in the phase space, zn

= yaẏb. The first-order version of the two expansions (A14) and
(A15) can then be written as

F(z) =
∑

n∈NN

Fnzn, F(a
b

) =
[

fa,b

0n

]

, (A16)

G(z, φ) =
∑

n∈NN

∑

κ∈Zk

Gn,κei〈κ ,φ〉zn, G(a
b

)

,κ
=
[

ga,b,κ

0n

]

. (A17)

As an example of the above notation, we consider the forcing in
the self-excited oscillator system (67) and (68). The forcing term

contains external and linear parametric excitation given by

g(�t, y) = cos�t

(

q
0

)

+ λ cos 2�t

(

y1 − y2

−M(y1 − y2)

)

(A18)

= (ei�t + e−i�t)

(

q/2
0

)

+ (ei2�t + e−i2�t)
λ

2

×
(

y1 − y2

−M(y1 − y2)

)

. (A19)

Here, the set of harmonics is given as K = {1, −1, 2, −2}. As the
system contains only two DOFs, the spatial multi-indices are two
dimensional and the vectors gn,κ that characterize the expansion
(A15) are given as

g0,1 = g0,−1 =
(

q/2
0

)

, (A20)

ge1 ,2 = ge1 ,−2 =
(

λ/2
−Mλ/2

)

, (A21)

ge2 ,2 = ge2 ,−2 =
(

−λ/2
Mλ/2

)

. (A22)

2. Second-order computation

a. Autonomous SSM computation

In order to compute the SSMs and their reduced dynamics
parametrizations for second-order mechanical systems, we express
them as Taylor series (24)–(26). Substituting these expansions into
the autonomous invariance equation (23) and collecting unique
monomial terms, we obtain the system (27) of the linear equations
for each multi-index m as we detail below. At the leading order, i.e,
for monomial multi-index pei , we obtain

[

C M
M 0

] M
∑

j=1

[
wej

ẇej

]

Rj
ei

=
[

−K 0
0 M

] [

wei

ẇei

]

. (A23)

Eliminating the velocity variables ẇei
from system (A25), we obtain

M

M
∑

j=1

M
∑

k=1

wek
Rk

ej
Rj

ei
+ C

M
∑

j=1

wej
Rj

ei
+ Kwei

= 0. (A24)

From the eigenvalue problem (12), we note that the choice wej

= φj and R
j
ej = δijλi solves Eq. (A24). Together with Eq. (A23),

this solution choice for the leading-order displacement parametriza-
tion implies that ẇei

= φiλi. Higher-order terms of the invariance
equation (23) for a multi-index m are given as

([

−K 0
0 M

]

−3m

[

C M
M 0

])[

wm

ẇm

]

=
M
∑

j=1

[

C M
M 0

] [

φj

φjλj

]

Rj
m +

[

1 0
0 M

] [

Ym

Vm

]

, (A25)

where we define

3m := 3 · m, (A26)
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Ym :=
M
∑

j=1

∑

u,k∈N
M

1<u<m
u+k−ej=m

(

Mẇu

)

ujR
j

k + CVm −
∑

n∈NN

fnHn,m, (A27)

Vm :=
M
∑

j=1

∑

u,k∈N
M

1<u<m
u+k−ej=m

wuujR
j

k. (A28)

We rewrite the second set of equations in system (A25) to obtain an
explicit expression for the velocity parametrization as

ẇm = 3mwm +
M
∑

j=1

φjR
j
m + Vm. (A29)

The velocity parametrization depends purely on multiplicative
terms of the displacement parametrization and the reduced dynam-
ics. Indeed, the expression (A29) is identical to the general result of
Lemma 2, which we prove later. Now we utilize relation (A29) to
rewrite Ym in terms of the displacement parametrization and substi-
tute the resulting expression into the first set of equations in system
(A25) to obtain

=:Lm
︷ ︸︸ ︷
(

K +3mC + (3m)
2M

)

wm = DmRm + Cm, (A30)

where Cm := −3mMVm − Ym and Dm ∈ C
n×M is a matrix whose

jth column is given by (Dm)j := −((3m + λj)M + C)φj for every
j = 1, . . . , M. This concludes the proof of Lemma 1.

Now we prove Lemma 2 by applying the chain rule to compute
the velocity parametrization and using the fact that the autonomous
reduced dynamics trajectories satisfy ṗ = R(p). Finally, we collect
the terms that sum up to the same multi-index m as

ẇm =
dw

dt

∣
∣
∣
∣
m

= [Dw(p)ṗ]m = [Dw(p)R(p)]m (A31)

=
M
∑

j=1

∑

u,k∈N
M

u+k−ej=m

wuujR
j

k. (A32)

Indeed, Eq. (A32) can be verified against the results from the
standard invariance equation given in Eq. (A29).

a. Reduced dynamics. The linear system (27) contains n equa-
tions for each multi-index m with n unknowns associated with the
displacement parametrization wm and additional M unknowns asso-
ciated with the reduced dynamics parametrization Rm. This under-
determinacy of system (27) allows different solution choices for the
reduced dynamics parametrization. Specifically, a normal-form style
parametrization is appealing when (near)-resonances are present
among the master subspace eigenvalues. Indeed, for an eigenvalue

λi associated with the master subspace, a near-resonance of the form

λi ≈ 3m (A33)

results in the coefficient matrix Lm being nearly singular. To ensure
(robust) solvability of system (27), the coefficients Rm must be cho-
sen such that the right-hand side of system (27) is orthogonal to
the (near) kernel of Lm. In particular, we require (see, e.g., Refs. 34
and 48)

θ∗
i

(

K +3mC + (3m)
2M

)

wm = 0, (A34)

which directly provides us the essentially nonzero reduced dynamics
coefficients Ri

m in the normal-form parametrization style as

θ∗
i ((3m + λi)M + C)φiR

i
m = −θ∗

i (3mMVm + Ym). (A35)

b. Non-autonomous SSM

Collecting terms at O(ε) in the invariance equation (17) corre-
sponding to a given monomial multi-index m and Fourier harmonic
κ , we obtain

([

−K 0
0 M

]

−3m,κ

[

C M
M 0

])[

xm,κ

ẋm,κ

]

=
M
∑

j=1

[

C M
M 0

] [

φj

φjλj

]

Sj
m,κ +

[

1 0
0 M

] [

Ym,κ

Vm,κ

]

, (A36)

where we define

3m,κ := 3m + i〈�, κ〉, (A37)

Ym,κ := M

M
∑

j=1

∑

u,k∈N
M

u+k−ej=m

|k|<m

(

ẇuujS
j

k,κ + ẋk,κkjR
j
u

)

+ CVm,κ

−
∑

n∈NN

fn

2n
∑

j=1

nj

(
∑

u,h∈N
M

u+h=m

Hn−ej ,hXj
u,κ

)

−
∑

n∈NN

gn,κHn,m,

(A38)

Vm,κ :=
M
∑

j=1

∑

u,k∈N
M

u+k−ej=m

|k|<m

wuujS
j

k,κ + xk,κkjR
j
u. (A39)

Analogous to the autonomous case [see Eq. (A29)], an explicit
relation between displacement and velocity parametrization can be
established from the invariance equation (A36) as

ẋm,κ = 3m,κxm,κ +
M
∑

j=1

φjS
j
m,κ + Vm,κ , (A40)

which is identical to the general result of Lemma 4, as we show later.
We utilize relation (A40) to rewrite Ym,κ in terms of the displace-
ment parametrization and substitute the resulting expression into
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the first set of equations in system (A36) to obtain

Lm,κ
︷ ︸︸ ︷
(

K +3m,κC + (3m,κ )
2M
)

xm,κ = Dm,κSm,κ + Cm,κ , (A41)

where Cm,κ = −3m,κMVm,κ − Ym,κ and Dm,κ ∈ C
n×M is a matrix

whose jth column is given by (Dm,κ )j := −(C + M(λj +3m,κ ))φj

for every j = 1, . . . , M. This concludes the proof of Lemma 3.
For proving Lemma 4, we use the chain rule using the fact

that the non-autonomous reduced dynamics trajectories satisfy ṗ
= Rε(p,φ). To obtain an expression for ẋ, we collect O(ε) terms in
the time derivative of the displacement parametrization of the SSM
as

ẋ(p, φ) =
dwε

dt

∣
∣
∣
∣
ε

= Dw(p) · S + Dpx · R + Dφx · �. (A42)

Finally, we restrict this expression to the multi-index m and har-
monic κ to obtain

ẋm,κ =
M
∑

j=1

∑

u,k∈N
M

u+k−ej=m

(

wuujS
j

k,κ + xk,κkjR
j
u

)

+ i〈�, κ〉xm,κ . (A43)

Indeed, the expression in Eq. (A43) is identical to the one based on
invariance equation computation given in (A40).

a. Nonautonomous reduced dynamics. Similar to the
autonomous case, the underdeterminacy of the linear system (A41)
allows for different solution choices for the reduced dynamics
parametrization. Specifically, a normal-form style parametrization
is appealing when (near)-resonances are present among the master
subspace eigenvalues and a given harmonic of the forcing frequency.
Indeed, for an eigenvalue λi associated with the master subspace, a
near-resonance of the form

λi ≈ 3m,κ (A44)

results in the coefficient matrix Lm,κ being nearly singular. To ensure
(robust) solvability of system (A41), the coefficients Sm,κ must be
chosen such that the right-hand side of system (A41) is orthogonal
to the (near) kernel of Lm,κ . In particular, we require (cf. Jain and
Haller34)

(θ i)
∗(K +3m,κC + (3m,κ )

2M
)

xm,κ = 0, (A45)

which directly provides the essentially non-zero reduced dynamics
coefficients Si

m,κ in the normal-form parametrization style as

(θ i)
∗(C + M(λi +3m,κ ))φiS

i
m,κ

= −(θ i)
∗(3m,κMVm,κ + Ym,κ ). (A46)

3. First-order computation

For general first-order dynamical systems, the equations do not
exhibit the internal structure (19) seen for second-order mechanical
systems (Lemmas 2 and 4). Hence, we develop general expressions
for SSM computation in the first-order system (3). Once again, we
operate in physical coordinates using the multi-index notation.

a. Autonomous SSM

We substitute the autonomous first-order SSM expansion

W(p) =
∑

m∈NM

Wmpm, (A47)

where Wm ∈ C
N, and its reduced dynamics expansion (26) into the

autonomous invariance equation (23) to obtain

B(Dp

∑

u∈NM

Wupu)
∑

k∈NM

Rkp
k

= A
∑

m∈NM

Wmpm +
∑

n∈NN

Fn





∑

u∈NM

Wupu





n

, (A48)

where Fn ∈ R
N are the coefficients in the nonlinearity expansion

(A16) in the first-order form. Collecting coefficients of every unique
monomial in system (A48), we obtain a linear system for each mono-
mial multi-index m, as we detail below. At the leading order, i.e, for
monomial multi-index pei , we obtain

B





M
∑

j=1

Wej



Rei
= AWei

. (A49)

From the eigenvalue problem (7), we see that the choice Wei
= vi

and R
j
ej = δijλi solves Eq. (A49). It is noteworthy that due to this

diagonal choice of the leading-order autonomous reduced dynam-
ics, Eq. (A48) get decoupled between distinct multi-indices at each
order. Hence, collecting the coefficients of higher-order terms in
system (A48) for a multi-index m, we obtain

(

A −3mB

)

︸ ︷︷ ︸

:=Lm

Wm =
M
∑

j=1

BvjR
j
m + Cm, (A50)

where we define

Cm :=
M
∑

j=1

∑

u,k∈N
M

u+k−ej=m

1<|u|<m

BWuujR
j

k −
∑

n∈NN

FnHn,m. (A51)

a. Autonomous reduced dynamics. Analogous to the dis-
cussion for second-order systems, we observe that linear system
(A50) is underdetermined, which allows for choices of parametriza-
tions for the reduced dynamics. Indeed, for an eigenvalue λi asso-
ciated with the master subspace, a near-resonance of the form
(A33) results in the coefficient matrix Lm being nearly singular. To
ensure the solvability of the system (A50), we require (cf. Jain and
Haller34)

(ui)
∗
LmWm = 0, (A52)

which provides the nonzero reduced dynamics coefficients Ri
m in the

normal-form parametrization style as

Ri
m = −(ui)

∗
Cm, (A53)
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where we have chosen a normalization for the eigenvectors that
satisfies (ui)

∗Bvj = δij for every i, j = 1, . . . , M.

b. Non-autonomous SSM

To derive the non-autonomous invariance equation in first-
order form, we expand the O(ε)-terms in the non-autonomous SSM

parametrization (20) as

X(p, φ) =
∑

m∈NM

∑

κ∈Zk

Xm,κei〈κ ,φ〉pm, (A54)

where Xm,κ ∈ C
N. Substituting the expansions (A54) and (34) into

the nonautonomous invariance equation (31), and collecting terms
corresponding to any given Fourier-harmonic κ , we obtain

B



Dp





∑

u∈NM

Wupu





∑

k∈NM

Sk,κpk +



∂p

∑

u∈NM

Xu,κpu





∑

k∈NM

Rkp
k + i〈κ , �〉

∑

m∈NM

Xm,κpm





= A
∑

m∈NM

Xm,κpm +



DzFn





∑

u∈NM

Wupu





n



∑

m∈NM

Xm,κpm +
∑

n∈NN

∑

m∈NM

Gn,κHn,m, (A55)

where Gn,κ ∈ C
N are the coefficients in the forcing expansion (A17)

in the first-order form. Finally, collecting the coefficients corre-
sponding to any given monomial multi-index m in system (A55),
we obtain (cf. Ponsioen et al.60)

(

A − (3m + i〈κ , �〉)B
)

︸ ︷︷ ︸

:=Lm,κ

Xm,κ =
M
∑

j=1

BvjS
j
m,κ + Cm,κ , (A56)

where

Cm,κ := B










M
∑

j=1

∑

u,k∈N
M

u+k−ej=m

|k|<m

WuujS
j

k,κ

M
∑

j=1

∑

u,k∈N
M

u+k−ej=m

|u|<m

Xu,κujR
j

k










−
∑

n∈NN

Gn,κHn,m −
∑

n∈NN

Fn

2n
∑

j=1

nj







∑

u,h∈N
M

u+h=m

Hn−ej ,hXj
u,κ







.

(A57)

Recursively solving the linear system (A56) provides us the coeffi-
cients Xm,κ , Sm,κ defining the O(ε)-terms in the parametrizations for
the nonautonomous SSM and its reduced dynamics. At the leading
order, system (A56) simplifies as (cf. Jain and Haller34)

(

A − i〈κ , �〉B
)

X0,κ =
M
∑

j=1

BvjS
j
0,κ + G0,κ . (A58)

At any higher order m = |m| > 1, we have zm =
(

m+M−1

M−1

)

distinct
multi-indices. An important consequence of choosing the linear
autonomous reduced dynamics to be diagonal, i.e., Ri

ej
= δijλj, is that

the system (A56) gets decoupled between distinct multi-indices at
any given order m and for any given harmonic κ . Thus, instead of

solving zm × N coupled linear equations in general, we need to solve
only zm linear systems of dimension N each.

a. Reduced dynamics. Analogous to the discussion for
second-order nonautonomous setting, we observe that the lin-
ear system (A56) is underdetermined, which allows for choices of
parametrizations for the reduced dynamics. Indeed, for an eigen-
value λi associated with the master subspace, a near-resonance of
the form (36) results in the coefficient matrix L m,κ being nearly
singular.

To ensure (robust) solvability of system (A56), the coeffi-
cients Sm,κ must be chosen such that the right-hand side of system
(A41) is orthogonal to the (near) kernel of L m,κ . In particular, we
require

(ui)
∗
Lm,κXm,κ = 0, (A59)

which directly provides us the essentially non-zero reduced
dynamics coefficients Si

m,κ in the normal-form parametrization
style as

Si
m,κ = (ui)

∗
Cm,κ . (A60)

Specifically, at the leading order, we have Si
0,κ = (ui)

∗G0,κ (cf. Jain
and Haller34).

APPENDIX B: PROOF OF LEMMA 5

In this section, we provide the proofs for the statements in
Lemma 5. We use a polar transformation of the parametriza-
tion coordinates p = [p, p] = [ρeiθ , ρe−iθ ]. Thus, ṗ = (ρ̇ + ρiθ̇ )eiθ .
Specifically, the reduced dynamics (40) over the two-dimensional
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nonautonomous SSM (M = 2) transforms as

(ρ̇ + ρiθ̇ ) =
∑

m∈Nl

R1
m(ρeiθ )

m1
(ρe−iθ )

m2e−iθ

+ ε
∑

m∈N
l

κ∈Z

S1
m,κe

iκφ(ρeiθ )
m1
(ρe−iθ )

m2e−iθ (B1)

=
∑

m∈Nl

R1
mρ

|m|eiθ(m1−m2−1)

+ ε
∑

m∈N
l

κ∈Z
∗

S1
m,κρ

|m|eiκφeiθ(m1−m2−1). (B2)

Choosing a normal-form style of parametrization (A35) for the
autonomous reduced dynamics, we obtain nonzero coefficients R1

m

only for multi-indices that satisfy the near resonance condition (28).
Hence, we have m1 − m2 − 1 = 0 for every nonzero R1

m. Thus, the
angular part vanishes for all autonomous terms in Eq. (B2).

Furthermore, choosing a normal-form style of parametriza-
tion (A46) for the nonautonomous reduced dynamics, we obtain
nonzero coefficients S1

m,κ only for the pairs (m, κ) that satisfy
the near-resonance condition (36). But under the external near-
resonance condition (54), for any pair (m,κ) that fulfills the near-
resonance conditions (36), we have κ = (1 − m1 + m2)κ0. This
allows us to rewrite eiκφeiθ(m1−m2−1) = ei(κ/κ0)(κ0φ−θ) in Eq. (B2). Now,
introducing the phase shift ψ = θ − κ0φ in Eq. (B2) and using the
fact that φ̇ = �, we obtain

(ρ̇ + ρi(ψ̇ + κ0�)) =
∑

m∈Nl

R1
mρ

|m|

+ εS1
0,κ0

e−iψ + ε
∑

m∈N
l

κ∈Z
∗

S1
m,κe

−i(κ/κ0)ψ . (B3)

Finally, separating the real and imaginary parts of Eq. (B3) results in
Eq. (55), which concludes the proof of statement (i). The zeros of the
function

r(ρ,ψ ,�) = 0 (B4)

correspond to fixed points of the polar dynamics (55). For the orig-
inal non-autonomous reduced dynamics (40), such a fixed point
represents a trajectory with a constant phase shift ψ relative to the
forcing as well as a constant polar amplitude ρ. Hence, this fixed
point describes a periodic orbit of the reduced dynamics. As the
SSM parametrization maps the orbits of the reduced system onto the
orbits of the full system, we obtain a periodic steady state for the full
system, which concludes the proof of statement (ii). For computing
the stability of these fixed points, we rewrite the polar dynamics (B3)
in the form

[

ρ̇

ψ̇

]

=
[

a(ρ)
b(ρ)/ρ

]

+ ε

(
N(ψ)

ρ

[

Re (S1
0,κ0
)

Im (S1
0,κ0
)

]

+
∑

m∈N
2

κ∈Z

ρ |m|−1N((κ/κ0)ψ)

[

Re (S1
m,κ)

Im (S1
m,κ)

]




 . (B5)

Evaluating the Jacobian of the right-hand side of Eq. (B5) at a hyper-
bolic fixed point (ρ,ψ) concludes its stability via linearization. This
proves statement (iii).

APPENDIX C: DETAILS ON THE CONTINUATION

ROUTINE

Within SSMTool 2.4 as well as for the full-system analy-
sis, we make use of the po toolbox provided by the continuation
toolbox COCO.28 In this section, we give details on performing
parameter continuation over the SSM-based ROMs. We also list the
continuation parameters used for each example in this paper.

1. Sensitivity coefficients

For an efficient numerical continuation of periodic orbits in
COCO, the Jacobian of the reduced vector field with respect to
the continuation parameters ε and � and with respect to the
parametrization coordinates p should be provided. The Jacobian
with respect to the parametrization coordinates is straightforward,
as the vector field is polynomial in p. For the derivative with
respect to the forcing amplitude ε, only the O(ε) terms need to be
considered, which yields

∂εRε(p,φ) = S(p,φ). (C1)

As the nonautonomous coefficients are obtained by solving sys-
tem (35), they implicitly depend on the forcing frequency, i.e., Sm,κ

= Sm,κ(�). Accounting for this frequency dependence of the
reduced dynamics coefficients, we write the derivative with respect
to� as

∂�Rε(p, φ) = ε
∑

m∈NM

∑

κ∈Z

(∂�Sm,κe
iκ�t + iκtSm,κe

iκ�t)pm, (C2)

The sensitivity coefficients ∂�Sm,κ can be computed by taking the
derivative of Eq. (A60) with respect to �. Alternatively, one may
choose to ignore these coefficients in Eq. (C2). This second choice
may lead to an inaccurate computation of the Jacobian, which
may reduce the rate of convergence to the solution during numer-
ical continuation. However, it does not compromise the solution
accuracy, which is controlled by separate numerical tolerances (see
Table VIII). These tolerances are related to the solution of the invari-
ance equations and to the residual in the Newton iteration, which we
evaluate up to machine precision. Opreni et al.61 extend this choice
to the SSM and its reduced dynamics parametrizations by assuming
the coefficients Xm,κ , Sm,κ to be independent of the forcing frequency
� and computing them only once across the entire frequency range.
Such an assumption cannot guarantee solution accuracy, but offers
additional computational advantages. Hence, in contrast to Opreni
et al.,61 we choose to solve the nonautonomous invariance equations
for each value of the forcing frequency here.

2. Period-doubling bifurcations and stability

boundary

The po-toolbox of COCO, which is used for periodic-orbit con-
tinuation in our SSM-based ROMs as well as in the full system,
uses Floquet multipliers to determine the stability of a periodic orbit
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and detect bifurcations (if any). Specifically, a change in the sta-
bility of a periodic orbit occurs when a Floquet multiplier crosses
the unit circle in the complex plane, resulting in a period-doubling
bifurcation.28,55 In a system subject to periodic, parametric excita-
tion, switching to a branch of period-doubling bifurcations and per-
forming continuation along this branch using COCO then provides
us the stability boundary for the trivial periodic response.

3. Details on computational complexity

In Tables VI and VII, we enlist the basic steps and
associated computational complexity associated with SSM-ROM

and full-system collocation (see Secs. V B and VI B for
details).

4. Parameters for collocation

The parameters for the continuation of the SSM-based ROMs
are presented in Table IX. Table X lists the collocation and
continuation parameters used for various simulations of the full sys-
tem. Note that since the level set method of SSMTool 2.4 does not
require continuation and relies solely on the evaluation of the zero
level set of a function, there are no continuation parameters listed

TABLE VI. Basic steps and the associated computational complexity to obtain a stability diagram/FRC via SSM-based ROM and via full-system collocation (see Sec. V B). The

general symbols i, nc, and c denote the number of linear system solves required for an iterative solution of a nonlinear algebraic system, the number of continuation steps, and

the number of collocation points used to approximate a periodic solution.

Steps SSM-ROM
Full-system
collocation

1. Master subspace
i Complexity of solving eigenvalue problem O(n3) . . .
2. Autonomous SSM
ii Linear system dimension n . . .
iii Number of linear system solves 60 . . .
iv Computational complexity 60 · O(n3) . . .
v Parallelizability over monomials (m) Yes . . .
vi Parallelized complexity 0 · O(n3) . . .
3. Nonautonomous SSM
vii Linear system dimension n . . .
viii Number of linear system solves 60,h . . .
ix Computational complexity 60,h · O(n3) . . .
x Parallelizability over monomials (m) Yes . . .
xi Parallelizability over harmonics (κ) Yes . . .
xii Parallelized complexity 0h · O(n3) . . .
4. Collocation-based numerical continuation
xiii Nonlinear algebraic system dimension 2c 2nc
xiv Number of iterations (linear system solves per continuation step) i i
xv Computational complexity i · O(c3) i · O((nc)3)
xvi Number of continuation steps nc nc

Overall computational complexity (i + iv +xvi [ix + xv]) O(n3)+60 · O(n3)+ nc

[

60,h · O(n3)+ i · O(c3)
]

nci · O((nc)3)
Overall parallelized complexity (i + vi +xvi [xii + xv]) O(n3)+ 0 · O(n3)+ nc

[

0h · O(n3)+ i · O(c3)
]

. . .

TABLE VII. Basic steps and the associated computational complexity to obtain an FRC via Lemma 5 (SSM) and via full-system collocation (see Sec. VI B). The preceding steps

for SSM reduction are the same as steps 1-3 given in Table VI. For the SSM routine, the frequencies at which the periodic orbits are computed can be set explicitly, and the total

number of solutions is denoted by n�. For the continuation routine, in contrast, a frequency interval is provided, along which a family of solutions is computed using nc steps.

Steps SSM-ROM Full-system collocation

4. FRC computation
xiii Nonlinear algebraic system dimension 2 2nc
xiv Number of iterations per (continuation/frequency) step − i
xv Computational complexity O(1) i · O(n3c3)

xvi Number of steps n� nc

xvii Parallelizability over� Yes No
Overall computational complexity (i + iv +xvi [ix + xv]) O(n3)+60 · O(n3)+ n�

[

(60,h · O(n3)
]

nci · O((nc)3)
Overall parallelized complexity (i + vi +xii + xv) O(n3)+ 0 · O(n3)+ 0h · O(n3) . . .
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TABLE VIII. Parameters for continuation with po.28

Parameter Default Description

NAdapt 0 Period for refinement of coll. mesh
h_0 0.1 Initial continuation stepsize
h_max 0.5 Max. continuation stepsize
h_min 0.01 Min. continuation stepsize
h_fac_max 2 Max. factor for adapting stepsize
h_fac_min 0.5 Min. factor for adapting stepsize
MaxRes 0.1 Maximal residual norm
bi_direct 1 Bidirectional continuation (boolean)
PtMX 100 Max. number of continuation steps
al_max 7 Max. angle btw. consecutive tangents
ItMX 10 Iterations before adapting stepsize
TOL 1 × 10−6 Tolerance for Newton Iteration
NTST 10 Sub-intervals in coll. discretization
NCOL 4 Number of collocation points

for the examples in Sec. VI C. Table VIII gives a short description of
each parameter along with its default value in COCO.

APPENDIX D: MODAL EQUATIONS FOR THE

PRISMATIC BEAM

In this section, we derive the ODEs governing the evolution
of the modal coordinates of a clamped-hinged prismatic beam as a
function of the physical parameters, i.e., elastic modulus E, density
ρ, radius of gyration r, area A, and moment of inertia of the cross
section I, and a characteristic length L. The characteristic length
may be the length of the beam or a typical wavelength for oscilla-
tory modes of the beam. We generally assume that the beam length
is obtained by multiplying the characteristic length L by a dimen-
sionless constant l as lL. At the hinged end, the beam is subject to an
axial load pa(t). The PDE governing the behavior of the transverse
displacement w of the beam in a nondimensional form is given as67,68

∂4w

∂y4
+
∂2w

∂t2
= δ

(

H
∂2w

∂y2
− 2c

∂w

∂t
− pa(t)

∂2w

∂y2

)

, (D1)

w(0) = w′′(0) = w(l) = w′(l) = 0, (D2)

TABLE IX. Collocation and continuation parameters set in the po-toolbox of coco for

the SSM-based ROMs in different examples.

Figure 3(a)
Parameter Value 3(b) 5(a) 5(b) 6 7

NAdapt 0 0 0 0 0 1
h_0 0.1 1 × 10−4 0.1 1 × 10−4 0.1 1 × 10−4

h_max 0.5 0.5 0.5 0.5 0.5 50
h_min 0.01 1 × 10−4 0.01 1 × 10−4 0.01 1 × 10−4

bi_direct 1 0 1 0 1 0
PtMX 50 35 50 40 50 60

where the following dimensionless quantities are used:67

y =
y′

L
, t =

√

Er2

ρL4
t′, (D3)

w =
L

r2
w′, c =

L4

2r3
√
ρE

r2

L2
c′, (D4)

with (•)′ denoting the corresponding quantities in physical units.
Specifically, c′ is the distributed damping coefficient; y′, t′, w′ repre-
sent the axial coordinate, the time, and the transverse displacement.
The axial stretching forces due to the nonlinear bending-stretching
coupling are accounted by the term H defined as

H =
1

2l

∫ l

0

(
∂w

∂y

)2

dy. (D5)

In this example, we choose the slenderness ratio δ := r2

L2 to be 10−4

in line with the original treatment of Nayfeh et al.,67 who analyze
the prismatic beam under weak nonlinearities. A modal expansion
of the displacement field w yields

w(y, t) =
∑

i

ψi(y)zi(t), (D6)

whereψi(y) denotes the ith eigenfunction associated with the eigen-
frequency ωi of the linearized version of the PDE (D1) around the
trivial solution. These eigenfunctions are solutions of the eigenvalue

TABLE X. Collocation and continuation parameters set in the po-toolbox of coco for the full system in different examples.

Figure 3(a)
Parameter Value 3(b) 5(a) 5(b) 6 7 9 10 10 Isola

NAdapt 0 0 0 1 0 1 1 1 1
h_0 0.1 1 × 10−4 0.1 0.1 0.1 1 × 10−4 0.1 0.1 0.1
h_max 0.5 0.5 0.5 0.5 0.5 50 0.5 0.5 0.5
MaxRes 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
bi_direct 1 0 1 0 1 0 1 1 0
PtMX 10 60 100 60 100 500 350 200 90
ItMX 10 15 10 15 10 15 10 10 10
NTST 10 30 10 10 10 70 70 20 80
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problem,

∂4ψi

∂y4
= ω2

i ψi, (D7)

ψ(0) = ψ ′′(0) = ψ(l) = ψ ′(l) = 0, (D8)

where we choose an orthonormal representation for these eigen-
functions, i.e.,

∫ l

0

ψi(y)ψj(y)dy = δij. (D9)

Nayfeh et al.67 have computed explicit expressions for these eigen-
functions in terms of trigonometric and hyperbolic functions. Sub-
stituting the modal expansion (D6) into system (D1), and perform-
ing a Galerkin projection, we obtain the set of ODEs governing the
evolution of the modal coordinates zj(t) as

ω2
j zj + z̈j + 2cδżj =

∑

i,k,s

δαjikszizkzs + δ
∑

i

pa(t)ziaji, (D10)

where

aji =
∫ l

0

ψj ψ
′′
i dy, (D11)

αjiks =
(
∫ l

0

ψ ′
sψ

′
kdy

)(
∫ l

0

ψjψ
′′
i dy

)

. (D12)

We have assumed the external load to be applied at the hinged tip of
the beam and set the transversal excitation to zero. Hence, the axial
forcing effectively leads to a parametric excitation of the transverse
modal coordinates in system (D10).
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