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Summary

Conventional building methods are still based on the reinforced concrete industry. In the
last decades, timber has become more popular because it could be a more sustainable al-
ternative. However, pure timber is not always an option, especially when slender design is
required by the client. Because of its low elastic modulus, deflections often require an in-
creased deck height. Therefore, this research focuses on the strengthening of timber bridge
decks with reinforcement and prestress in order to increase their slenderness (= the ratio of
the span to the height of the cross-section). This might make timber decks more competi-
tive to reinforced concrete designs regarding slenderness. The problem is that prestressing
timber decks will lead to creep deformations that induce losses of prestress force. This re-
search is focused on modelling the creep deformations and the resulting resistance losses of
prestressed timber decks.

First, a cross-sectional model is developed to be able to find the initial resistance of a reinforced-
and prestressed timber deck. This model is based on an incrementally increasing curvature
so that the deck behaviour can be quantified from zero load to the failure load. Second, a
time dependent model is developed to find the displacements and resistance through time.
The timber bridge deck is modelled with ODE systems. The ODE’s are used to find the (1) dis-
placements and (2) strains of the deck. To obtain the time dependent behaviour of the deck,
a viscoelastic E-modulus is substituted into the displacement- and strain equations. This
viscoelastic E-modulus decreases with time, which causes an increase in displacements (=
creep displacement). In the same way, the strains are modelled over time. The time depen-
dent creep stains are implemented in the cross-sectional model to find the reduced resis-
tance of the timber deck.

The outcomes of the model suggest that large prestress forces lead to negative creep deflec-
tions (= creep in upwards direction). Meaning that for the right value of the prestress force,
also zero creep deflections can be obtained. Besides creep, the instantaneous deflections are
a large part of the total deflections. According to the results of the model, the instantaneous
deflections can be decreased by up to 70%. Regarding the resistance, the final increase of
bending moment resistance can reach up to 30% by incorporating prestress (at t = 50 years,
including losses due to creep). Due to creep, prestress force is lost over time, resulting in
a decreased deck resistance. This research shows that the creep losses result in a bending
moment resistance decrease of up to 12%. Taking this into account, a bridge deck with a
slenderness of 31 to 33 will be able fulfil its requirements after 50 years of service life. De-
pending on the client requirements, a slenderness of over 34 can be reached.

Using Eurocode, creep deformations are calculated with a simplistic and conservative method.
The model that is built in this research gives a more advanced way of determining the creep
deformations of a timber deck. This leads to more realistic quantification of creep behaviour.
However, Several factors still cause uncertainty in the model. Therefore, experiments with
timber decks should be done to obtain more accurate data for the creep behaviour. The
model from this research can be calibrated according to data from experiments, which will
increase the reliability of the results.
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1. Introduction

Before the invention of concrete and iron, bridges have primarily been constructed of wood.
The main reason for this is its widespread availability in most areas of the world. Besides,
little skill is required for basic woodworking. Also without tools, simple bridges of logs or
trunks were built. Since then, timber remained the most important building material until
the end of the 18th century, when the first manufacturing of structural iron developed. This
lead to advances in the metal industry. Together with concrete, the first reinforced concrete
bridges were designed around the beginning of the 20th century. As a consequence of the
development of concrete and steel, timber had lost its presence in bridge design. As a result,
the current construction sector is dominated by concrete and steel.

1.1 Problem context

The construction sector is a large consumer of energy and natural resources and therefore
accounts for significant emissions of greenhouse gasses [2], [3]. The main materials causing
this are concrete and steel, being the greatest producers of the total greenhouse gas emis-
sions in the building sector [4]. Now that the effects of climate change have made sustain-
ability a necessity, there exists a great challenge towards a more sustainable construction sec-
tor. This is why timber is increasingly becoming more popular. In contradiction to concrete
and steel, timber is a sustainable alternative that could help mitigating climate change [5].
Also, wood is a renewable material. Sustainable forestry can provide an unlimited amount
of structural timber while concrete and steel are prone to depletion of resources [6].

However, the total market share of structural timber is still small in comparison to that of
steel and concrete [7]. Mechanical properties, durability and costs are often important rea-
sons to prefer traditional materials over timber. When the spans of traffic bridges become
larger, the confidence of building with timber decreases. It is easier to choose alternatives
of reinforced concrete because knowledge on these materials is much more comprehensive
than on timber. Lots of experience with concrete makes it a reliable option. Generally, use
of timber is limited to pedestrian- and bicycle bridges. Many contractors in the Netherlands
are not familiar with designing timber structures yet. Therefore, project costs of timber alter-
natives are often estimated higher than necessary. Also Eurocode provides more in depth in-
formation about reinforced concrete constructions than on timber constructions. For these
reasons, companies tendency to use timber in traffic bridges is still small.
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In traffic bridge design, client requirements impose strict limitations on construction height.
Meaning that there is no space for arches and trusses in these cases. Consequently, these
bridges are composed with slender girder like deck types. Most of them are made with re-
inforced concrete because of its relatively high strength that comes with inexpensiveness of
these designs.

Over the past decades, several studies suggest that timber is a more sustainable building
material. It would be an alternative to build these bridges with timber. The basic concept
of designing with timber is creating high beam systems. This structural height is inherently
connected to timber because normalized beam systems have a limited lamellae width. This
requires an increased thickness of the cross-section, making it difficult to compete to the
slender reinforced concrete variants. Secondly, timber has low stiffness and strength prop-
erties compared to reinforced concrete. This results in large deformations, especially for
horizontal members. Last, there is a lack of knowledge on the long-term behaviour of tim-
ber. Eurocode 5 offers a creep factor approach to incorporate the long-term deformations.
In many cases, these creep factors are conservative. Resulting in increased cross-section
dimensions. Which is a problem in highway bridge projects, where slender design is an im-
portant requirement. Not only because of aesthetic considerations, but a thicker deck will
also induce extra project costs because the on-ramps require more groundwork and space,
see Figure 1.1. A reinforced concrete alternative is often preferred over a timber alternative.

Figure 1.1: More ground work for increased deck thickness

Previous discussed problems ask for new solutions in order to make timber a suitable mate-
rial for highway bridges. An analysis of different solutions is done in Appendix A, from which
is concluded that longitudinally prestressed timber bridge decks are the most promising op-
tion. FRP is used as tendon material. Calculations for a prestressed timber deck can be found
in Appendix B. Prestressing timber will again introduce its own problems. The instantaneous
deflection and initial resistance of a prestressed timber beam can be calculated accurately.
However, as mentioned before, uncertainty exists regarding the long-term behaviour of a
prestressed system, particularly concerning the losses of prestress due to creep. The prob-
lem context is also summarized in a flow chart in Figure 1.2

1.2 Problem statement

Timber as a structural material could help in decreasing environmental impacts. Bridge de-
sign with timber results in decks with increased cross-sectional height. This makes it diffi-
cult to comply with client requirements regarding slenderness. Timber induces additional
project costs, making it even more difficult to compete with traditional alternatives. Inno-

2



Figure 1.2: Flow chart of problem context

vative solutions like prestressed timber systems sound promising, but will also introduce
problems, especially due to its unknown behaviour in the long-term. Problem statement:

Timber bridge decks require an increased cross-section height and therefore they are not
able to compete to standard deck solutions. Prestressed timber decks are subject to long-
term processes like creep that increase deformations over time and induce prestress losses.

1.3 Objective

Timber bridge decks require cross-sections with increased height, which lead to costly projects.
Prestressing these decks introduces other problems regarding the long-term behaviour. The
goal of this research is to find the maximum slenderness for a prestressed timber bridge
deck by quantifying the initial behaviour[1] and secondly, modelling the influence of creep
on the deflection and prestress losses. This will result in a conclusion and a set of recom-
mendations about whether prestressed timber bridge decks may be an alternative for rein-
forced concrete.

[1]Initial behaviour is defined as the behaviour of the deck without taking into account the
time-dependent behaviour of timber. It includes the instantaneous deflection and the initial
bending moment resistance (both based on the material parameters at t = 0).

1.4 Scope

1.4.1 Deck configuration

Many standard viaducts are made of reinforced concrete having a continuous deck on mul-
tiple supports. Some examples representative for the Netherlands can be found in Appendix

3



C. In this research, a continuous deck over one mid-support with two spans of length L is
considered, see Figure 1.3. In this research, the span L is varied within a range of 25 to 35
meters. Using this layout, the end result will be applicable to most of the current viaduct
cases.

Figure 1.3: Longitudinal view of the bridge deck

The cross-section of the deck is presented in Figure 1.4. It exists of a timber slab. The
structural height is ht i mber , which also includes the reinforcement. The total deck height
is ht i mber +hasphal t . If there is spoken of the deck height in this research, the structural
deck height is meant (unless stated differently). The total slab is composed of smaller parts,
indicated with the vertical dotted lines. The ducts for the prestress cables are milled from
the parts. Then the parts are glued together and the prestress ducts are injected with glue.
At x = 0 and x = 2L (see Figures 1.5 and 1.6) the prestress tendons are also attached to the
deck ends by plates. It is assumed that the strain of the prestress tendons is the same as the
strain of the timber at that location, so strain compatibility is assumed in this research. The
reinforcement layers, if present, are glued to the top- and bottom surfaces and anchored at
the beam ends. It is important to note that in this research, prestress and reinforcement are
different:

• With prestress is meant: the FRP prestress tendons that have a straight- or parabolic
profile (so the cross-sectional location can be variable over the longitudinal direction)

• With reinforcement is meant: FRP reinforcement layers that are non-prestressed. Con-
stant cross-sectional location over the longitudinal direction

Figure 1.4: Cross-section A (see Figure 1.3) of the timber deck
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The model is based on variable tendon layouts. In case of straight tendons, the vertical loca-
tion z of the tendons has a constant value, see Figure 1.5. For parabolic tendons, the vertical
location z of the tendons depends on the longitudinal coordinate x, see Figure 1.6

Figure 1.5: Deck with straight tendons

Figure 1.6: Deck with parabolic tendons

1.4.2 Deck height

For concrete bridges, spans of around 30 meters give a beam cross-section height of around
1000-1200 mm according to suppliers Haitsma [8] and Romein [9]. This corresponds to a
slenderness of up to 30.0, the slenderness is defined as the span over the deck height. The
continuous bridge project of the A4 Delft-Schiedam with two spans of 24 and 25.5 meter
has a total deck height of 900 mm [10], which corresponds to a slenderness of 28. It should
be noted that this design exists of a massive concrete slab. As described in the problem
statement, the timber bridge deck should be able to compete with these concrete variants.
Therefore, it should have the same total deck height of around 1000 mm and a slenderness
of around 30.0.

1.4.3 Materials

Timber has a very low embodied energy content when local certified wood is used [11].
Meaning that it is best to use abundantly available woods in Europe. Using solid timber is
not an option for spans with an order of magnitude of 20-30 meters. Solid timber is directly
cut from a tree stem. Glued Laminated Timber (glulam) or Laminated Veneer Lumber (LVL)
offer much more possibilities regarding span length (explained in Sections 2.2.3 and 2.2.4).
Glulam and LVL are both products that are fabricated from tree species available in Europe,
also making them good options in terms of sustainability. Therefore, this thesis is limited to
bridge design using glulam and LVL.

1.4.4 Durability

According to Table 1.1, a bridge is designed for up to 100 years. This corresponds to category
4 or 5.
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Table 1.1: Design working life category according to EN 1990 clause 2.3

According to EN 1995-2 section 4, design measures should be taken to guarantee durability.
In the design of this bridge, the timber is protected against weathering by constructional
preservation measures:

• Protection of the timber deck by the watertight seal layer.

• No precipitation or solar radiation can reach the timber deck.

• The load bearing components are sufficiently ventilated since they are in direct contact
with fresh air.

• No risk of increased moisture contents near the ground since the bridge deck is at ele-
vated height.

Taking into account these measures, the timber is sufficiently protected and falls within Eu-
rocode Service Class 2.

1.5 Research questions

Traffic bridges made out of timber may be more sustainable than reinforced concrete bridges.
Following from the problem context however, timber requires too thick bridge decks that are
not able to compete with the slenderness of reinforced concrete decks. A Prestressed tim-
ber deck is mentioned as the most promising solution for increasing the slenderness. To
investigate these subjects, following research questions are composed.

Main research question:

What is the maximum slenderness that can be obtained by prestressing a timber bridge
deck?

The objective (Section 1.3) will be reached by answering the main research question. Follow-
ing sub-questions are composed to work towards an answer to the main research question:

Sub-questions:

1. What are the loads and resulting forces on a timber traffic bridge?

6



2. What reinforcing/prestressing layouts are most efficient for the initial resistance[1]?

3. What are the time-dependent deformations?

4. What are the long-term prestress losses and how do they influence the deck resistance?

5. What slenderness can be reached with prestressed timber bridge decks?

[1]The initial resistance is defined as the resistance at the moment where creep has not yet oc-
curred (at time instant t = 0)

1.6 Methodology

This section gives a stepwise overview of the tasks that are to be done to answer the main
research question. A flowchart of all successive tasks is presented in Figure 1.7

The first task is determining the initial resistance of the deck cross-section. This will be done
using a cross-sectional model of the timber deck. Python is used for this task. The cross-
sectional model will be based on an incremental increase of curvature. The curvature is
increased up to failure of the cross-section. Using this approach, the strains and stresses
are quantified at every loading instant of the cross-section. This will give insights about the
initial behaviour of the cross-section.

After this, the time-dependent behaviour of the timber will be modelled. This will be done
using Maple since this is the most powerful software to work with Ordinary Differential Equa-
tions (ODE’s). ODE’s will be used to quantify the displacements of the timber bridge deck.
The bridge deck will be modelled with ODE’s for two cases:

• Bending - The external loads (like traffic and selfweight) will cause the slender bridge
deck to be loaded in bending. Also the forces from prestressing the deck will result in
bending deformations.

• Axial deformation - The prestress cables are attached to both ends of the timber deck.
Therefore, the deck will also be loaded in axial compression.

The ODE’s for bending and axial deformation will be used to obtain the deformation func-
tions of the bridge deck. These deformation functions depent on the longitudinal coordinate
x along the deck and the vertical coordinate z over the height of the deck cross-section. Fur-
thermore, the system parameters will govern the behaviour of the deformation of the timber
deck. The system parameters are the span L, the loads qi (due to external forces and pre-
stress), the prestress force P , the eccentricities of the prestress force ei , the bending stiffness
E I and the axial stiffness E A. When these ODE’s are solved for the boundary conditions
corresponding to the bridge scope, the initial deformation functions are obtained.

The next step is finding an approach to model the time-dependent behaviour of the bridge
deck. This will be done using the initial deformation functions, which are dependent on
the stiffnesses E I and E A. In order to include time in the deformation functions, the initial
E-modulus will be replaced by a viscoelastic E-modulus that is dependent on time: Ev (t ),
this approach is based on Findley’s power law for creep behaviour of viscoelastic materials
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[12]. The actual formula for Ev (t ) depends on parameters regarding the creep behaviour of
the material. These parameters will be determined based on creep curves obtained from ex-
periments in literature. By substituting Ev (t ) in the deformation functions, the deformation
functions become time-dependent. This means that the creep behaviour of the timber can
be modelled. By assuming a constant prestress force P , the time-dependent deformations
can be formulated in analytical expressions. However, the prestress material will deform due
to the creep of timber, meaning that the prestress force will change within every time step.
Therefore, a numerical approach will be used to model the time-dependent deformations.
Using the ODE relations, the strains in the timber deck can be modelled for every x and z
location, at every time instant t . The prestress tendons are assumed to be glued within the
timber cross-section. It is assumed that at the location of the tendon, the strains of the ten-
don and the timber are compatible. By filling in the tendon profile for z, the creep strains are
found within the prestress tendons.

These creep strains will lead to a change in strain in the prestress material, meaning that the
stresses will change, resulting in a change in prestress force and ultimately a change in deck
resistance. At the governing locations, the prestress force will decrease. This results in pre-
stress losses and a decrease in resistance. The creep strains from the Maple model will be im-
plemented in the Python model to be able to quantify the decrease in deck resistance. These
final resistances can be compared to the actions on the timber deck. By iterating through the
flow chart in Figure 1.7, the optimal bridge deck slenderness can be found.
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Figure 1.7: Flow chart thesis
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2. Literature review

2.1 Contemporary timber bridges

Several examples of timber bridges for heavy traffic exist, showing that it is possible to reach
considerable spans with structural timber. These examples do not have the slenderness that
should be reached for this research (see the objective in section 1.3), however they serve
as an example of the durability and economic benefit that can be reached with timber as a
structural material. These timber bridges are characterized by high aesthetic value and low
environmental impact.

Mistissini Bridge

This bridge in Québec, Canada opened in 2014. It is 160 metres long and consists of four
spans of 37, 43, 43 and 37 meters (Figure 2.1a). Glulam is used for the main beams and
arches. The total equivalent manufacturing emissions of this bridge are negative, meaning
that the bridge consumes CO2, rather than releasing it. The bridge costs less than an equiv-
alent steel-concrete bridge and has an expected lifespan of at least 100 years [1].

Mjøsa Bridge

Two bridge designs over lake Mjøsa in Norway are proposed, a timber and a concrete alter-
native (Figure 2.1b). If the timber alternative is chosen, it will be the longest timber bridge in
the world (1650 metres). Maximum spans are up to 69 metres. These big spans are possible
because of the huge two timber trusses that are stabilized using timber diagonals. Results of
sustainability studies show that the timber alternative has lower emissions across all envi-
ronmental impact categories. It only has a slightly higher estimated price than the concrete
design [13].

Kjøllsæter Bridge

The bridge opened in 2005 and is designed for heavy military vehicles, therefore the bridge
is considered to be the strongest timber bridge in the world. Glulam GL36c is used for the
trusses. The length is 158 meters with a largest span of 45 metres (Figure 2.1c). The bridge is
designed for a service life of 100 years. It should be noted that this service life is achieved by
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(a) Mistissini Bridge (b) Mjøsa Bridge

(c) Kjøllsæter Bridge (d) Sneek Bridge

Figure 2.1: Contemporary timber bridges

treating the wood with creosote, which can be harmful if it leaks into the environment. The
price of the timber bridge is slightly higher than the costs of an equivalent steel bridge [14].

Sneek Bridge

The first timber traffic bridge of Accoya has been built in Sneek in 2009, it spans 32 metres
(Figure 2.1d). The life span of the bridge was required to be 80 years. In bridge design, this
is often achieved by a toxic chemical preservation. However, this was not considered an
acceptable option in the Sneek project. Instead, a new alternative of acetylated radiata pine
was launched, also called Accoya [15]. Accoya is shown to have lower environmental impact
than other sustainably processed woods [16].

2.1.1 Timber bridge decks

Stress-Laminated Timber bridge decks

This particular deck type has become popular over the past several years, especially in Scan-
dinavian countries. The concept of a Stress-Laminated Timber (SLT) deck is shown in Figure
2.2. An SLT deck is composed of timber laminations which are stressed together by pre-
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stressing rods. The ends of the laminations are simple butt joints which are longitudinally
displaced from each other. This allows for a deck plate with a length according to every de-
sign requirement. Friction between the laminations will result in redistribution of forces over
the total width of the beam. This results in a deck that behaves like an orthotropic plate, see
Figure 2.3. An example of a complete SLT deck is shown in Figure 2.4. It can be seen that this
design also incorporates a water-tight layer that protects the timber deck. A protective layer
like this is used together with an asphalt pavement.

Figure 2.2: Concept of an SLT deck [17]
composed of several laminations

Figure 2.3: Redistribution of forces in
an SLT deck [17]

Figure 2.4: Example of an SLT deck with finishing [18]

Dahl et al [19] did research on a 222 mm-thick SLT deck. They did experiments with the
same SLT deck as used in the Tynset Bridge. This is a bridge in Norway built for highway
traffic loads. Also research is done to bigger thicknesses. Ekholm et al [20] did experiments
to full scale SLT decks with a thickness of 270 mm. They found a maximum failure load of
900 kN. Which is much larger than the local wheel loads of 200 kN that should be taken into
account according to Eurocode.
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2.2 Structural timber

2.2.1 Benefits of structural timber

The main advantage of timber is that it results in less emission of greenhouse gases. It should
be noted that this is not something that can be taken for granted when designing with timber.
Sustainable timber construction comprises all processes of the manufacturing chain. This
means that growing, harvesting, processing and building should all be done eco-friendly.
Secondly, timber is a renewable resource, well-managed forestry can provide an unlimited
amount of structural timber without depletion of forests. These forests are carbon sinks,
which means that they absorb carbon dioxide. Consequently, carbon dioxide from the air is
converted into the wood that we use to build, resulting in a negative carbon dioxide footprint
[11]. By assessing the sustainability of a timber structure, it is important that also the end of
life is taken into account. Because sometimes the timber is burned, resulting in emissions
that still end up in the air.

Timber has an excellent strength-over-weight ratio. This results in lightweight timber struc-
tures, which is beneficial for the foundations and the construction speed. It also enables
prefabrication of large elements, these can be transported to the building site relatively easy.
The downside of lightweight structures is that vibration issues may occur as a result of alter-
nating wind or traffic loads. However, these issues are not part of the scope of this research.

Timber components can be prefabricated and transported to the building site. Glulam or
LVL are important materials for prefabrication. These materials enable prefabrication of
large and slender spans. These bridge components are relatively easy to handle and can
be assembled on site in short time spans. Reducing the hinderance on the surrounding of
the timber bridge projects.

Wood is a biodegradable material, which mainly means that it is of good use in indoor cli-
mates. However, technological knowledge is increasing, making timber a more and more
weather resistant material. In general, bridges with Concequences Class 3 should be de-
signed for a lifespan of 100 years. Accoya wood already has a guaranteed service life of 80
years in outdoor climates, making it a good alternative [15]. This is made possible by acety-
lating wood, which is a sustainable way of modifying the wood structure. However, currently
this is only done for the wood species pinus radiate from New Zealand. A good and more
sustainable alternative would be to modify local woods. Important to note is that, in some
countries, structural timber sometimes is conserved with creosote. This is a chemical that is
harmful when it leaches into the environment [21].

2.2.2 Wood anatomy

Wood is an organic material made of cells. It grows naturally and therefore it tends to be
an anisotropic material. This means that it has different properties when stress is applied
in different directions. Properties also depend on location since a stem cross-section com-
prises different wood types, see Figure 2.5. Therefore, natural wood is a highly variable and
unpredictable material. In Engineered Wood Products (EWP), predictability of behaviour is
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increased by disassembling and reassembling parts of wood.

Figure 2.5: Principal directions and
different types of wood in cross-
section of a stem

Figure 2.6: Sawn timber beam
with pith, knots and drying cracks

Solid or sawn timber is produced from logs in sawmills. Solid timber beams still contain
knots, fibre direction variation and other natural defects like in Figure 2.6. This causes very
scattered mechanical properties of beams with identical dimensions, which makes it impos-
sible to exploit the high strength of the majority of the wood. Therefore, these solid timber
beams are graded and assigned to a strength class. This enables more efficient and eco-
nomical use of timber. Dimensions of solid timber beams are limited by the size of the logs.
Heights of these beams go up to around 300 mm. This limits the maximum spans to approx-
imately five to seven meters.

2.2.3 Glued laminated timber

Glued laminated timber (glulam) is composed of stacked timber ’lamellae’ bonded together
by adhesives. The lamellae in glulam are arranged parallel to the grain as can be seen in
Figure 2.7. In contradiction, lamellae of cross laminated timber are arranged orthogonally.
The idea behind glulam is reducing the variance in mechanical properties and a more ho-
mogeneous material. By smart placement of the lamellae, knots and other weak links are
less significant. In addition, large knots and defects are removed and the laminate is finger
jointed together, Figure 2.8

The great advantage of glulam over solid timber is that its maximum span is not limited
by the dimensions of the tree stem. The lamellae can be finger jointed together to form
the desired length. These laminated timbers can be manufactured in almost any straight or
curved configuration. This makes glulam very suitable for long span components required
for bridge design.
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Figure 2.7: Glued laminated
timber beam

Figure 2.8: Removal of defects within an indi-
vidual lamellae

2.2.4 Laminated Veneer Lumber

The production process of Laminated Veneer Lumber (LVL) is comparable to that of glulam.
Instead of sawn wood lamellas (glulam), LVL is produced from wooden veneer sheets that are
peeled of a log, see Figure 2.9 and 2.10. The LVL planks can be fabricated with all its sheets
in the same grain direction or a cross layered set-up. Same grain direction gives a high axial
strength. This can be suitable for beams or columns. The cross-wise lay-up gives a high in
plane strength and stiffness, which is suitable for shear walls of floors.

Figure 2.9: Veneer sheet peeling Figure 2.10: LVL plank

2.3 Failure mechanisms

Timber beams (unreinforced and non-prestressed) tend to have a brittle failure in bending.
Displacements are proportional until tensile failure on the lower side of the beam, see Figure
2.11. Usually this failure is initiated by the presence of a knot. Compression failure is less
susceptible to natural defects and is mostly not governing. Failure under compression can
be characterized as a ductile failure [22]. In general, a ductile failure is more desirable than
the typical brittle failure of a pure timber beam.
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(a) Sketch of typical bending failure of timber (b) Tension failure for beam in bending

Figure 2.11: Bending failure of timber

2.3.1 Effect of reinforcement

Reinforcement enhances the mechanical properties of glulam beams. Increased strength
and stiffness properties are obtained by incorporating reinforcement. Also the ductility of a
beam in bending can be increased due to the shift of tension failure to compression failure at
the upper side of a beam in bending. Tensile reinforcement causes the neutral axis to move
towards the bottom of the beam. As a result the compressive strain in the timber increases
relative to the tensile strain. Then compressive yielding may occur before the timber fails in
tension [22].

2.3.2 Effect of prestress

Prestress may increase the strength and stiffness of a timber beam even further. SLS is often
governing for high span timber beams. Prestress may lead to an SLS assessment that is less
restrictive than the ULS. This is due to the negative bending moment that is exerted on the
beam, resulting in negative deflections due to prestressing [23]. Besides, prestressing intro-
duces stresses in the beam that are opposite to the stresses due to actions. This means that
prestress results in a negative bending moment that compensates the positive bending mo-
ment from the action on the beam. For elastic calculations, following equations can be used
to calculate stresses in top and bottom of the beam [24]:

σtop = P

At
− P ·e

w
+ M · y

I
(2.1a)

σbot tom = P

At
+ P ·e

w
− M · y

I
(2.1b)

where P [kN]: prestress force; At [mm2]: area of timber; e [mm]: eccentricity of tendon place-
ment; w [mm3]: section modulus; M [kNm]: applied moment; y [mm]: distance to neutral
axis; I [mm4]: second moment of area.

16



2.4 Reinforced timber

Kliger, Johansson and Crocetti [25] studied the behaviour of glulam beams reinforced with
steel plates and carbon fibre (CFRP) laminates. Modern technologies minimize the prob-
lem of delamination of the adhesives. This report does not state that the experiments show
adhesive failure. Which means that strains of the glulam and reinforcement are compatible.

Glulam beams without reinforcement were tested to find a reference value of strength and
stiffness. Also different configurations of glulam reinforced sections were tested, see Figure
2.12. With respect to the non-reinforced beam, results show that for 5% reinforcement the
stiffness increases up to 100% and the ultimate moment capacity increases up to 90%. An-
other advantage of reinforcement is that the variability of the stiffness is much smaller than
the non-reinforced beams, which means more predictable beams.

Figure 2.12: Experimental beam configurations from Kliger et al [25]

Figure 2.13: Stress distribution adopted by Kliger et al [25]

The cross-sectional model used by this research comprises a linear strain distribution (as-
sumed that planar cross-section remain planar according to Bernoulli), see Figure 2.13. The
stress-strain diagram is linear up to compressive failure, then the yield stress remains con-
stant up to strain failure. Therefore, the cross-sectional stress distribution is linear in elastic
phase and perfectly plastic when the glulam fails in compression, see Figure 2.13. The model
uses five failure modes. First and second are tension failure in elastic phase or elastic-plastic
phase in compression. Third mode is compression failure due to too large compression
strains. Fourth when the reinforcement starts to yield. Fifth mode is rupture of the rein-
forcement. They found that the experimental results agreed well with the ultimate moment
and deflection results of the calculation model.
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Gentile, Svecova and Rizkalla [26] carried out a study to sawn timber beams strengthened
with glass fibre reinforced polymers (GFRP). No glulam was used in the experiments. 22
half-scale (Figure 2.14a) and 4 full-scale (Figure 2.14b) beams were tested to failure.

(a) Half-scale specimens (b) Full-scale specimens

Figure 2.14: Experimental beam configurations from Gentile et al [26]

In contradiction to the reinforced glulam beams from [25] and [27], the results of the half-
scale and full-scale beams all show very scattered results. A result of the fact that wood is
a highly variable material. The E-modulus and ultimate loads of the reinforced beams are
all higher than the unreinforced beams. However, some of the beams with smaller rein-
forcement ratios show higher E-modulus and ultimate load. This implies that no predictable
correlation exists for sawn timber.

Also an analytical model was proposed. The stress distribution was based on a slightly dif-
ferent stress-strain relation than presented by Kliger et al [25] (see Figure 2.15a). When the
timber starts to yield, the stresses are not constant. A factor m is used to decrease the stresses
after the yielding point (see Figure 2.15b).

(a) Stress-strain relationship (b) Stress distribution

Figure 2.15: Analytical model of Gentile et al

Blaß and Romani [27] carried out a research project to glulam reinforced with glass fibres,
aramid fibres and carbon fibres. They state that the disadvantage of steel is its lower yield
strength. This may lead to plastic deformation of the steel before the timber fails.
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The model uses six possible failure modes, see Figure 2.16. Assumed is a constant MOE,
constant tensile and compression strength and a linear-elastic-ideal-plastic stress strain re-
lationship. The corresponding failure modes can occur at different locations of the cross-
section, as explained in the figure.

Figure 2.16: Failure modes of a reinforced glulam beam by Blaß and Romani

30 beams with tensile reinforcement were tested. A reinforcing plate was applied between
the two bottom timber laminations. Using only tensile reinforcement, the neutral axis shifts
downwards and therefore a plastic compression deformation is more likely to occur. The
test results were compared to simulations of unreinforced beams. In all cases, the reinforced
beams had a significantly higher failure load (reaching from 30% to 100%).

Hoseinpour, Valluzzi, Garbin and Panizza [28] tested glulam beams with a height and width
of 135 mm and 115 mm respectively. Various configurations and materials were used in the
experiments. Flax (a natural product) and carbon fibers were used as reinforcement materi-
als.

Figure 2.17: Stress distribution adopted by Hoseinpour et al

They analysed several models similar to the ones presented before. Their final model has
an elastic behaviour in tension and elastic-perfectly-plastic in compression. In addition, an
extra β factor is used for the perfectly plastic stress distribution to calibrate the model, see
Figure 2.17. The value for β depends linearly on the height of the plastic zone hc y .
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The desirable compressive failure of timber was only reached with carbon fibers as rein-
forcement materials. The flax fiber reinforced beams failed in tension. This implies that only
relatively strong reinforcements enable the shift from a brittle to a ductile failure.

2.5 Prestressed timber

In contradiction to reinforced glulam, prestressed glulam is a rather new concept. Not much
research is yet done to prestressed timber. An overview is given by Kliger, Haghani, Brun-
ner, Harte and Schober [29]. They state that the best way to improve behaviour of reinforced
beams in SLS is by prestressing. Eccentric prestress cables on the tension side induces a
negative bending moment, which counteract the bending moment from external loads. The
negative bending moment causes a deflection in the upward direction. This counteracts the
deflection from external loads. Besides, more efficient use of the material is realized. In pas-
sively reinforced timber, the full strength of the reinforcement is often not used because the
timber generally fails first. Main advantages of prestressing timber with FRP over passively
reinforced systems:

• Less strengthening material is required

• Load bearing capacity increases

• Improvements of design in SLS

In research done before, prestress laminations were often glued to the timber beams. The
problem is that delamination of the prestressing material might occur. In case of gluing an
FRP laminate to the bottom of a timber beam, high shear stresses occur at the ends of the FRP
laminate. However, modern technologies on adhesives make them increasingly stronger.
Examples exists on beam experiments where debonding of the prestress materials did not
occur [30]. Research has also been done to gradiented anchoring techniques [31]. This tech-
nique causes a more evenly distributed shear stress between the timber and the prestress
material, resulting in a smaller delamination risk.

Another main challenge is the long-term behaviour of prestressed timber beams. Timber is a
material where relatively large creep deflections may occur. Therefore, prestress force is lost
over time due to axial shortening of the beam [32], [33]. This is described in Section 2.6

De Luca and Marano [34] carried out a research to glulam beams prestressed with steel bars.
Their model can be used to calculate the internal forces and the resulting resisting moment,
see Figure 2.18. This model is comparable to the previous stated models used for reinforced
timber. Only the forces that are imposed by the prestress tendons are now also incorporated.
In this case, the model is subjected to a glulam beam with two steel tendons in longitudinal
slots at the top and bottom faces, where the bottom tendon is prestressed by a force Np . In-
ternal forces (R i) and lever arms (d i) are defined as in Equations 2.2a - 2.2e. These equations
are only applicable for ULS, since plastic strains occur at the compression side of the beam.
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Figure 2.18: Internal forces of a timber beam with steel bars within the top and bottom

R1 = As1 · fr ei n f ; d1 = ds1 (2.2a)

R2 = p ·b · ft i mber ; d2 = 1/2 ·p (2.2b)

R3 = ((yn −p) ·b ·1/2) · ft i mber ; d3 = (yn −p) ·2/3 (2.2c)

R4 = ((h − yn) ·b ·1/2) · ft i mber ; d4 = yn + (h − yn) ·2/3 (2.2d)

R5 = As2 · fpr estr ess ; d5 = h −ds2 (2.2e)

The curvature (χ) is defined as:

χ= | ε |
y

(2.3)

As can be seen in Figure 2.18, assumption is made that sections remain planar. The strains
(εi) can be calculated as:

εi =χ · yi (2.4)

Where y i is the distance of the centroid of the areas away from the neutral axis:

y1 =−(yn −ds1) (2.5a)

y2 =−yn (2.5b)

y3 =−(yn −p) (2.5c)

y4 = (h − yn) (2.5d)

y5 = ds2 − yn (2.5e)

Equilibrium of internal forces:

5∑
i

Ri +Np = 0 (2.6)
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Where N p is the prestressing force acting on the steel bar on the bottom of the beam. The
resulting bending moment resistance can be computed as:

5∑
i

Ri ·di +Np ·d5 = 0 (2.7)

Brady and Harte [33] did research to glulam beams prestressed with FRP laminates bonded
to the lower side of the beam. By applying a prestress force, the FRP material may be used
more efficiently because a bigger part of its tensile strength is engaged. The material model
in this research is based on a bi-linear stress-strain relationship (like presented before in
Figure 2.15a).

(a) Cross-section (b) Induced stresses (c) Resulting stresses

Figure 2.19: Stress distribution resulting from prestressed FRP

By prestressing the FRP laminate, the stress distribution as in Figure 2.19 is created. The ec-
centric force in the FRP is equivalent to applying an axial compressive force and a negative
moment, see Figure 2.19b. The sum of these forces is presented in Figure 2.19c. The experi-
mental prestressed beams gave 98% and 143% higher moment capacities with respect to the
unreinforced beam.

2.5.1 Main problem with prestressed timber

All articles about prestressed timber describe the short-term behaviour of prestressed sys-
tems. Generally this gives good results of increased capacities and stiffnesses. However, in a
large part of the articles, it is mentioned that creep might cause prestress losses, decreasing
the bending moment resistance over time.

2.6 Creep and prestress losses

The forces exerted by prestress cause an axial shortening of a timber member. Because of
creep, the shortening becomes bigger over time. This decreases the strains and stresses in
the prestress tendons, causes a loss of prestress force over time.
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Palermo et al did a study to the potential of longitudinal post-tensioning for timber bridges
[35]. They conclude that the application of post-tensioning and engineered timber like LVL
and glulam increases the competitiveness of timber for bridges. The long-term behaviour is
quantified with proposed analytical expressions: They are expressed using geometrical and
mechanical features of the section in one parameter named Θp . Using Θp , the elastic losses
in a simply supported beam with one tensioning tendon can be calculated as follows:

∆Pp0 = Pp0(1−Θp )

The next equation shows the time-dependent formula approximated using an age-adjusted
effective modulus method, where φ(t , t0) is the creep coefficient and χ(t , t0) is the ageing
coefficient:

∆P (t ) = Pp0

(
1− Θp [1− (1−Θp ) ·φ(t , t0)(1−χ(t , t0))]

1+χ(t , t0) ·φ(t , t0) · (1−Θp )

)
Using these equations, they present two graphs for the prestress losses dependent on the
parameter Θp , see Figure 2.20. The instantaneous losses due to elastic shortening of the
timber deck can reach up to 20% of the total prestress force. Depending on the service class,
the time-dependent losses can also be calculated. In this research, service class 2 can be
used and this will lead to a maximum time-dependent prestress loss of 11%. Which is not a
huge decrease of prestress due to the long-term losses.

Figure 2.20: Prestress losses in a simply supported beam: (a) elastic losses, (b) time-
dependent losses at infinite time [35]

Willebrands [36] proposed a creep curve based on experiments from Gowda [37]. Gowda
experimented with beams of sawn timber and glulam subject to four point bending tests.
Willebrands fitted its own creep curve to the results of the experiment of Gowda:

φ(t ) = 0.125 · ln(0.2t +1) (2.8)

O’Ceallaigh et al [38] [39] studied the effect of flexural reinforcement on the long-term be-
haviour of glulam beams. Creep tests were performed under variable Relative Humidity be-
tween 60% and 90%, which corresponds to Service Class 3 conditions. It is concluded that
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the reinforced beams had a lower average deflection after 75 weeks than the non-reinforced
beams. The tests confirmed that reinforcing timber with FRP material have a beneficial ef-
fect on the creep behaviour of timber.

Fragiacomo and Davies did research to prestressed radiata pine LVL members [40], [41]. The
main issue of a prestressed timber system is its behaviour in the long-term. The beam speci-
mens where tested in bending with straight prestressing tendons through the centroid of the
beams, which means that no prestressing moment is applied to the beam cross-section. In
their experiments they determined a creep curve for the bending beams with and without
prestressing tendons, see Figure 2.21. For the prestressed beams they fitted the following
power equation to the experimental results:

φ(t ) = 0.033 · t 0.305 (2.9)

Figure 2.21: Experimental creep curves [40]

They used the model in Figure 2.22 for the time-dependent stress-strain relation of timber.
Where the quantities ε and σ = total strain and stress at the instant t; αu , αT , and T (τ) =
moisture expansion coefficient, thermal expansion coefficient, and temperature of timber
at the instant τ , respectively; and J (t ,τ,u) = “pure” creep function of timber, given by the
function in Figure 2.23. With some manipulations, these complex formulas are rewritten
and simplified to the time-dependent equation in Equation 2.10.

Figure 2.22: Model from Toratti [42] used by Fragiacomo [41]
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Figure 2.23: Pure creep function as used by Toratti [42]

ε(t )−εi n(t ) = σ0

E
[1+φc (t )+φms(t ,U )] (2.10)

In Equation 2.10, φc (t ) is the pure creep coefficient. The pure creep coefficient can be given
by Equation 2.11

φc (t ) = a · t d (2.11)

Bank and Mosallam did a study to the creep behaviour of a Fibre Reinforced Polymer (FRP)
frame. They used Findley’s power law to model the creep behaviour. The creep expressions
in this model have the same form as the expressions for modelling the creep of timber. The
general form of Findley’s creep expression is given as:

ε(t ) = ε0 +m(t/t0)n (2.12)

This equation has the same form as the pure creep function as in Equation 2.11, which is
used for creep of timber. According to Findley’s model, Equation 2.12 can be rewritten to
determine a viscoelastic modulus which is dependend on time. So instead of an increasing
creep factor (as in Equation 2.11), following E-modulus depending on time is used to deter-
mine the creep behaviour:

Ev = E0Et

Et +E0 · t n
(2.13)

In this research, Findley’s viscoelastic modulus will be used for the creep behaviour of a tim-
ber bridge deck.
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3. Material Properties

Material properties are calculated from Eurocode. Timber sorts considered are glulam and
Laminated Veneer Lumber (LVL). The design value Xd of a strength property should be cal-
culated according to (EN 1995-1-1):

Xd = kmod
Xk

γm
(3.1)

The design member stiffness property Ed should be calculated accoring to (EN 1995-1-1):

Ed = Emean

γm
(3.2)

Values for γM are given in Table 3.1. It can be seen that the γM value for LVL is slightly more
beneficial.

Table 3.1: γM values (EN 1995-1-1)

In the bridge design, the timber parts are protected against direct influences from precipita-
tion (also see section 1.4.4). Therefore, service class 2 is assigned. This gives values for kmod

and kde f as in Table 3.2 and 3.3. Both the values are the same for glulam and LVL.

Table 3.2: kmod values (EN 1995-1-1)
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Table 3.3: kde f values (EN 1995-1-1)

3.1 Glulam

Properties of glulam are given in Table 3.4. For glulam depths in bending up to 600 mm
the characteristic value for fm,k may be increased with the factor kh (EN 1995-1-1 clause
3.3). However, depths of the beams for this project will be around 1000 mm, so kh is not
applicable.

For lamination thickness of less than 40 mm, the bending strength may be multiplied by a
factor k (EN 14080 clause 5.1.3):

k = mi n

((
40

t

)0.1

;1.05

)
(3.3)

For glulam members made of at least ten laminations the product (E0,g ,kGg ,k ) may be in-
creased by a factor k = 1,40 (EN 14080 clause 5.1.3).

Table 3.4: Characteristic properties of glulam (EN 14080 clause 5.1.4)
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3.2 Laminated Veneer Lumber

Properties of Laminated Veneer Lumber (LVL) are given in Table 3.5. To keep the overview
simple, only the properties of loads flatwise and parallel to the grain are given (described in
draft version of EN 14374).

For depths in bending not equal to 300 mm the characteristic bending strength should be
multiplied by the factor kh (EN 1995-1-1 clause 3.4):

kh = mi n

((
300

h

)s

;1.2

)
(3.4)

Where the size exponent s = 0.15 (Table 3.5).

Table 3.5: Characteristic properties of LVL (EN 14374 clause B.2)
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4. Loads

4.1 Global loads

This section presents which loads are exerted on the deck for different limit states and com-
binations. All loads are calculated for a reference width of 1 meter.

4.1.1 Permanent actions (Gk)

Permanent actions are composed of selfweight. The bridge super structure exists of the tim-
ber deck, the asphalt layer and further finishing like curbs and railings. Estimation of the
total dead load per m2 is presented in Table 4.1. The volume of the timber is assumed to be
equal to a surface of 1 m2 with a thickness of t .

Density (ρ) [kN/m3] Thickness (t ) [mm] Weight (ρ · t ) [kN/m2]

Timber 5 h 5h
Asphalt 22 140 3.1

Finishing 1.0 (assumption)

Gk 5h +4.1

Table 4.1: Selfweight of the deck

4.1.2 Leading variable actions (Qk,1)

The leading variable action is the traffic load on the bridge. Traffic loads are defined in NEN-
EN 1991-2, they are composed of Several Load Models (LM). LM1 comprises most of the
general traffic loads. For simplicity, only LM1 is used for verification. LM1 exists of Tandem
Systems (TS) and Uniformly Distributed Loads (UDL). Values are given in Table 4.2. This
results in a bridge cross-section that is loaded like in Figure 4.1.
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Table 4.2: Characteristic values for Load Model 1 (NEN-EN 1991-2 table 4.2)

Figure 4.1: Load model 1. (a) side view. (b) top view. [43]

4.2 Ultimate limit state

In ULS, the characteristic actions must be multiplied with partial factors γ to take into ac-
count uncertainties. NEN-EN 1990 equation 6.10 is used for ULS load combination, see
Equation 4.1. Corresponding γ values are taken from NEN-EN 1990 table A1.2(B).

(4.1)

γG , j = 1.35 where unfavourable (1.00 where favourable)
γQ,i = 1.5 where unfavourable (0.0 where favourable)
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Equation 4.2 gives the resulting design actions:

Ed ,U LS =
sel f wei g ht︷ ︸︸ ︷
γG ·Gk +

tr a f f i c−U DL︷ ︸︸ ︷
γQ,1 ·qk,1 +

tr a f f i c−T S︷ ︸︸ ︷
γQ,1 ·Qk,1 (4.2)

Where:
Gk is the selfweight of the bridge deck
qk,1 is the UDL from LM1
Qk,1 is the TS from LM1

4.2.1 ULS load configuration

Global bending moments are calculated with the loads that are presented on previous pages.
The bridge deck is continuous over the mid support and can freely rotate. A continuous deck
will have a maximum hogging bending moment at the mid support and a maximum sagging
bending moment somewhere at the midspan of span 1. Both the governing hogging- and
sagging bending moments are calculated below. Afterwards, a load envelope can be created.

hogging bending moment

Loads on span 1 and span 2 will both increase the hogging bending moment. Therefore, all
loads are unfavourable: γG = 1.35 and γQ,1 = 1.5. The total q-load over both spans consists of
the selfweight and the traffic load: γGGk+γQ,1qk,1. The TS consists ofγQ,1Qk,1. For simplicity,
the two point loads Qk,1 are taken together. According to influence line theory, maximum
hogging bending moment is obtained when the TS is located at 0.58L from the left support.
Governing load configuration for maximum hogging bending moment at the middle support
is sketched in Figure 4.2. Where:

γGGk +γQ,1qk,1 = 1.35(5h +4.1)+1.5 ·9

γQ,1Qk,1 = 1.5 ·200 = 300 kN

Figure 4.2: ULS loads for max hogging moment at middle support
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sagging bending moment

The maximum sagging moment is obtained when the q-load on span 1 is highest and the
q-load on span 2 is lowest. Therefore, q-load on span 1 is unfavourable: γG = 1.35 and γQ,1

= 1.5, and q-load on span 2 is favourable: γG = 1.0 and and γQ,1 = 0.0. The TS consists of
γQ,1Qk , where γQ,1 = 1.5. According to influence line theory, maximum sagging moment is
obtained when the TS is located 0.43L from the left support. Governing load configuration
for maximum sagging moment at midspan is sketched in Figure 4.3, Where:

Span 1:
γGGk +γQ,1qk,1 = 1.35(5h +4.1)+1.5 ·9

γQ,1Qk,1 = 1.5 ·200 = 300 kN

Span 2:
γGGk = 1.0(5h +4.1)

Figure 4.3: ULS loads for max sagging moment at midspan

4.2.2 ULS bending moments

The load configurations from previous sections are taken into account to find the governing
moments on the bridge deck. The moment on 1 meter width of the highest loaded lane is
calculated, see Figure 4.4. It should be noted that this is a conservative approach. In reality,
the loads are distributed over a larger part of the deck width.

Figure 4.4: Surface of 1 meter width (in yellow) taken into account for bending moment
calculation

This gives load values as presented in Table 4.3. It should be noted that using these load
values is a conservative approximation because there is no distribution over the width of the
bridge deck.
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Gk = (5 h + 4.1)
qk = 9 kN/m
Qk = 200 kN[1]

Table 4.3: Governing load values

[1]1/3 of the 2x300kN that is exerted on the lane

Using the load configurations (section 4.2.1), the maximum ULS hogging and sagging bend-
ing moments are be calculated for 1 meter width. This is done using MatrixFrame. The load
envelope is dependent on the spans of the bridge. The final ULS envelopes with maximum
bending moments is presented for spans of 25, 30 and 35 meters in Figures 4.5.

(a) Load envelope for L = 25 m

(b) Load envelope for L = 30 m

(c) Load envelope for L = 35 m

Figure 4.5: ULS load envelopes, bending moments are displayed in kNm per meter width of
the deck
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4.3 Serviceability limit state

For SLS, no partial factors need to be taken into account. Equation 4.3 gives the resulting
design actions.

Ed ,SLS =Gk +qk,1 +Qk,1 (4.3)

As said in previous section, these load values are conservative. The SLS load model is also
used for the deflection. Using conservative loads for the SLS load model will represent a
situation of small occurrence. Besides, Eurocode does not give mandatory deflection limits.
Which means that it would not matter that the deflection becomes large. This is discussed
later in the report.

hogging bending moment

Governing hogging load configuration is the same as presented for ULS (without γ factors).
For maximum hogging moment at the middle support, distributed load is Gk +qk,1 on both
spans and point load is Qk,1:

Gk +qk,1 = (5h +4.1)+9

Qk,1 = 200 kN

sagging bending moment

For maximum sagging bending moment, loads on the left span should be high and loads on
right span should be low. Loads on the left span are Gk +qk,1 and Qk,1. Loads on right span
exist of only Gk :

Span 1:
Gk +qk,1 = (5h +4.1)+9

Qk,1 = 200 kN

Span 2:
Gk = (5h +4.1)

SLS bending moment envelopes are presented in Figure 4.6 for spans of 25, 30 and 35 meters
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(a) Load envelope for L = 25 m

(b) Load envelope for L = 30 m

(c) Load envelope for L = 35 m

Figure 4.6: SLS load envelopes, bending moments are displayed in kNm per meter width of
the deck

4.4 Loads for creep

It is assumed that short-term loads do not influence the creep behaviour of the bridge deck.
The selfweight of the bridge is always present and will induce creep. However, only tak-
ing into account the selfweight for creep deflections might be too optimistic because some
lighter traffic loads are present for large fractions of the time. For a conservative approxima-
tion, also the smaller UDL traffic load is taken into account for the creep calculations, see
Equation 4.4.

Ed ,cr eep =Gk +qk,1 (4.4)

The load configuration for creep is presented in Figure 4.7, where:

Gk = (5h +4.1)

qk,1 = 2.5 kN/m
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Figure 4.7: Creep load configuration

4.5 Guidelines for deflection

For timber design, often the deflections are governing for the cross-sectional dimensions due
to its low modulus of elasticity. Eurocode gives several values for the maximum deflection
of timber beams and deck systems. It is important to note it is not required to meet these
values. The values for beams on two supports from EN 1995-1-1 section 7.2 are given in
Equation 4.5. It should be noted that these values are given for beams, which have in general
much smaller spans than the 30 meters used in this research.

w f i n = L/300−L/150 = 100−200mm (4.5)

EN 1995-2 gives deflection values specifically for timber bridges. These values are much
more strict than the limits from EN 1995-1-1. The deflection values for beams, plates and
trusses in timber bridges are given in Equation 4.6.

w f i n = L/500−L/400 = 60−75mm (4.6)

It should be noted that the deflections in Equation 4.6 are not mandatory for bridge design.
They are just used as a guideline for this research.
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5. Cross-sectional Model

Two models are developed in Python to analyse the Initial behaviour of reinforced- and pre-
stressed cross-sections. The first model focuses on a reinforced cross-section (where the re-
inforcement material is not prestressed). The second model focuses on a prestressed cross-
section (where also prestressed material is added to the timber cross-section). The models
are used to find the final moment resistance of the timber deck. To quantify the long-term
behaviour, the prestress losses calculated with the model in Chapter 7 will be substituted in
the Python model to find the decrease in moment resistance over time.

5.1 Model description

The reinforcement model was developed first. Afterwards, the reinforcement model was
extended to also make is suitable to a prestressed cross-section. In the models, the curva-
ture of the cross-section starts at 0 and is increased incrementally. Using this approach, the
deck behaviour can be quantified during the entire loading path (i.e. from zero load up to
elastic limit, up to plastification, up to ultimate failure). Corresponding strains within the
cross-section can be computed for every curvature increment. Then, stresses in the glulam
and reinforcement/prestress material can be calculated using the constitutive relations. The
stress-strain relationship for timber that is used in the model is presented in Figure 5.1. This
stress-strain relation is based on the elastic-perfectly-plastic concept, as used by Kliger et
al [25] and Blaß and Romani [27]. In tension, the stress increases linearly up to the tension
strength ft ,y,g l , after which brittle failure happens. In compression, the stress increases lin-
early up to the yield strength fc,y,g l . After this point, plastic deformation happens and the
stresses remain constant. This means that ductility is included, since the material still has
strength after yielding. No ultimate plastic strain is built into the model yet.

5.2 Model for reinforced cross-section

The reinforced model is based on the cross-section as sketched in Figure 5.2. The curvature
χ is increased incrementally. For every small step, the strains in the cross-section can be
calculated from the curvature:
εt ,g l =χ · y2

εc,g l =−χ · y1
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Figure 5.1: Timber stress-strain relationship used for the models

Figure 5.2: Load application on a reinforced cross-section

5.2.1 Cross-sectional properties

The Elastic Neutral Axis (ENA) is calculated as the distance y1 from the upper side of the
deck. Following equations are used to find y1 and y2:

y1 =
∑

Ai yi∑
Ai

(5.1a)

y2 = hg l − y1 (5.1b)

Where Ai is the area of each material (timber or reinforcement), and yi is the distance from
the top of the deck to the centroid of the material.
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5.2.2 Elastic equations

Based on εt ,g l , the rest of the strains on the cross-section can be calculated using similar
triangles:

εt ,r n f =
εt ,g l

y2
(dt − y1)

εc,g l =−εt ,g l

y2
y1

εc,r n f =−εt ,g l

y2
(y1 −dc )

The corresponding forces and moment are determined as follows (it should be noted that
these equations are a function of the curvature χ):
Ft ,g l = 1

2εt ,g l ·Eg l ·bg l · y2

Ft ,r n f = εt ,r n f ·Er n f · At ,r n f

Fc,g l = 1
2εc,g l ·Eg l ·bg l · y1

Fc,r n f = εc,r n f ·Er n f · Ac,r n f

Mel =−Fc,r n f · (y1 −dc )−Fc,g l · 2
3 y1 +Ft ,g l · 2

3 y2 +Ft ,r n f · (dt − y1)

The elastic limit strains in Figure 5.2 are calculated as follows:

εt ,y,g l =
ft ,y,g l

Eg l

εc,y,g l =
fc,y,g l

Eg l

Elastic tension failure

If on the strains εt ,g l or εc,g l reaches the limit strains, a failure mode occurs. If the tension
strain εt ,g l reaches the limit first, a brittle failure occurs. In this case, an elastic limit moment
is calculated based on εt ,y,g l :

εt ,r n f =
εt ,y,g l

y2
(dt − y1)

εc,g l =−εt ,y,g l

y2
y1

εc,r n f =−εt ,y,g l

y2
(y1 −dc )

Ft ,g l = 1
2εt ,y,g l ·Eg l ·bg l · y2

Ft ,r n f = εt ,r n f ·Er n f · At ,r n f

Fc,g l = 1
2εc,g l ·Eg l ·bg l · y1

Fc,r n f = εc,r n f ·Er n f · Ac,r n f

Mt ,el ,l i m =−Fc,r n f · (y1 −dc )−Fc,g l · 2
3 y1 +Ft ,r n f · (y2 − (hg l −dt ))+Ft ,g l · 2

3 y2
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Elastic compression limit

If the compression strain reaches the limit strain before the tension strain reaches the limit,
the elastic limit moment is calculated based on εc,y,g l :

εc,r n f =
εc,y,g l

y1
(y1 −dc )

εt ,g l =−εc,y,g l

y1
y2

εt ,r n f =−εc,y,g l

y1
(dt − y1)

Fc,g l = 1
2εc,y,g l ·Eg l ·bg l · y1

Fc,r n f = εc,r n f ·Er n f · Ac,r n f

Ft ,g l = 1
2εt ,g l ·Eg l ·bg l · y2

Ft ,r n f = εt ,r n f ·Er n f · At ,r n f

Mc,el ,l i m = Ft ,r n f · (y2 − (hg l −dt ))+Ft ,g l · 2
3 y2 −Fc,r n f · (y1 −dc )−Fc,g l · 2

3 y1

5.2.3 Plastic equations

Further increasing the curvature χ after εc,y,g l is reached, will lead to a ductile failure mode.
In that case, plastification of the compression side occurs (Figure 5.3). Because of plastic
stresses, the ENA shifts downwards to a Plastic Neutral Axis (PNA) for every increment of
χ. The location of the PNA can be calculated based on equilibrium of forces in the cross-
section. Following equations are used to find a new y1 from equilibrium:

εt ,g l =χ(hg l − y1)
εt ,r n f =χ(dt − y1)
εc,r n f =−χ(y1 −dc )

Fc,g l ,pl = fc,y,g l ·bg l ·hpl , where hpl = (y1 − yc,y,g l )
Fc,g l ,el = 1

2 Eg l · fc,y,g l ·bg l · yc,y,g l

Fc,r n f = Er n f ·εc,r n f · At ,r n f

Ft ,g l = 1
2 Eg l ·εt ,g l ·bg l · (hg l − y1)

Ft ,r n f = Er n f ·εt ,r n f · At ,r n f

y1 can be calculated from force equilibrium:
Ft ,g l +Ft ,r n f +Fc,g l ,el +Fc,g l ,pl +Fc,r n f = 0

Then, y2 = hg l − y1

The corresponding moment is calculated as follows:
Mpl =−Fc,g l ,pl · (y1 − 1

2 hpl )−Fc,g l ,el · 2
3 yc,y,g l −Fc,r n f · (y1 −dc )+Ft ,g l · 2

3 y2 +Ft ,r n f · (dt − y1)

Tension failure when plastic compression already occured

The curvature is increased further up to the point where the tension strain εt ,g l reaches the
elastic limit strain εt ,y,g l , this point is modelled as the plastic limit of the cross-section. The
final curvature χpl ,l i m at plastic failure is calculated based on equilibrium of forces:
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Figure 5.3: Plastic stresses on a reinforced cross-section

The tension limit strain εt ,y,g l is known, y1 and y2 as a function of χpl ,l i m :

y2 =
εt ,y,g l

χpl ,l i m
y1 = hg l − y2

εt ,r n f =
εt ,y,g l

y2
(dt − y1)

εc,r n f =−εt ,y,g l

y2
(y1 −dc )

yc,y,g l =− εc,y,g l

χpl ,l i m
hpl = y1 − yc,y,g l

Fc,g l ,pl = fc,y,g l ·bg l ·hpl

Fc,g l ,el = 1
2 fc,y,g l ·bg l · yc,y,g l

Fc,r n f = Er n f ·εc,r n f · At ,r n f

Ft ,r n f = Er n f ·εt ,r n f · At ,r n f

Ft ,g l = 1
2 Eg l ·εt ,y,g l ·bg l · y2

χpl ,l i m can be calculated from force equilibrium:
Ft ,g l +Ft ,r n f +Fc,r n f +Fc,el ,g l +Fc,pl ,g l = 0

Then, the ultimate limit moment is calculated as follows:
Mpl ,l i m =−Fc,g l ,pl ·(y1− 1

2 hpl )−Fc,g l ,el · 2
3 yc,y,g l −Fc,r n f ·(y1−dc )+Ft ,g l · 2

3 y2+Ft ,r n f ·(dt − y1)
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5.3 Model for prestressed cross-section

The model for a reinforced cross-section (Section 5.2) is extended to also be able to analyse a
prestressed cross-section. Besides tension reinforcement, also prestress material is present
in the bottom. The prestress material with surface Ap is subjected to an initial prestress
force. So in the first stage, only the forces from prestress are exerted on the cross-section
of the deck. Corresponding strains are displayed in Figure 5.4. It should be noted that the
ENAp is calculated based on only Ac,r n f , At ,r n f and Ag l and their stiffnesses, so basically the
same as in Figure 5.2. Ap is not taken into account yet because the prestressed material only
exerts a force on the cross-section, it does not contribute to the stiffness properties yet. From
the point of applying action loads on the cross-section, Ap will also be taken into account to
determine a new ENA.

Figure 5.4: Strains due to prestress force only

ep = dp − y1,a

Mp =−P ·ep

Where the prestress force P is applied to the bottom reinforcement.

σp,i ni = P

At ,r n f

εp,i ni =
σp,i ni

Er n f

Compression due to P :

εpn = −P

E Ae f f ,p

σpn,g l = εpn ·Eg l
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Where E Ae f f ,p is calculated according to Equation 5.2a. E Ae f f ,p is based on the location of
ENAp. So on Ac,r n f , At ,r n f and Ag l , the prestress material is not taken into account.

E Ae f f =
∑

Ei Ai (5.2a)

E Ie f f =
∑

Ei

(
1

12
bi h3

i + Ai y2
i

)
(5.2b)

Moment due to P :

εt pm = Mp ·−y1,a

E Ie f f ,p

σt pm,g l = εt pm ·Eg l

εcpm = Mp · y2,a

E Ie f f ,p

σcpm,g l = εcpm ·Eg l

Where E Ie f f ,p is calculated according to Equation 5.2b. Not taking into account the prestress
material, same as for E Ae f f ,p .

Total strains and stresses due to P :
εt p = εpn +εt pm

σt p,g l = εt p ·Eg l

εcp = εpn +εcpm

σcp,g l = εcp ·Eg l

εt p,r n f =
εt pm

y1,a
(y1,a −dc )+εpn

εcp,r n f =−εt pm

y1,a
(dt − y1,a)+εpn

Neutral axis after prestress transfer:

y1,p = hg l ·εt p

εt p −εcp

y2,p = hg l ·−εcp

εt p −εcp
= hg l − y1,p

Initial curvature due to P :
χP =− εt p

y1,p
= εcp

y2,p
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5.3.1 Zero tension at bottom fibre

After prestress application, the curvature is incrementally increased (same concept as in the
reinforced model). Meaning that for every increment, the action moment is increased by a
small step. From this moment on, the prestressed material also contributes to the stiffness
of the cross-section. Meaning that a new neutral axis should be calculated. It shifts from the
initial one (ENAp) based on only the prestress force, to the ENA that also takes into account
the prestress material: Ac,r n f , Ag l , At ,r n f and also Ap and their stiffnesses. In the model, the
curvature is incrementally increasing up to the moment where the total strain in the bottom
is zero again. This requires the bottom strain εt ,g l to be opposite of the bottom strain due to
prestress (Figure 5.5):
εt ,g l =−εcp

χ is the running curvature corresponding to the action moment. χt is the total curvature i.e.
the curvature due to the action moment and the prestress load together. Which is calculated
as follows:
χt =χP +χ

Figure 5.5: Sum of prestress and action moment to obtain zero strain at tension fibre

Based on εt ,g l , the rest of the strains on the cross-section can be calculated. These strains are
based on the action moment only:

εt ,r n f =
εt ,g l

y2
(dt − y1)

εc,g l =−εt ,g l

y2
y1
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εc,r n f =−εt ,g l

y2
(y1 −dc )

εp = εt ,g l

y2
(dp − y1)

Now, the zero tension situation can be quantified:
εtb,g l = εcp +εt ,g l = 0
εtb,r n f = εcp,r n f +εt ,r n f

εcb,r n f = εt p,r n f +εc,r n f

εcb,g l = εt p +εc,g l

εpb = εp,i ni +εp

5.3.2 Up to elastic limit

From the zero tension situation, the curvature is incrementally increased up to the moment
where the strain reaches the elastic limit strain εc,y,g l . The elastic limit is shown in Figure 5.6,
where the elastic limit for compression is reached. It is important to note that the quantities
εcb,g l , εcb,r n f , εtb,r n f , εtb,g l and εpb denote the actual strain on the cross-section, which is a
result of the prestress load and the load due to actions. And that the quantities εc,g l , εc,r n f ,
εt ,r n f , εt ,g l and εp are the result of only the actions.

Figure 5.6: increasing action load up to reaching elastic limit strain for compression

Taking this into account, the action moment can be calculated for every increment up to
the point where εcb,g l reaches the elastic limit εc,y,g l . This is where the prestress is able to
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resist a higher action moment than with only reinforcement. With reinforcement only, the
elastic limit strain is reached when εc,g l = εc,y,g l . With prestress, the elastic limit is reached
when εcb,g l = εc,y,g l , where εcb,g l = εt p +εc,g l with εt p < 0. So it takes longer for a prestressed
beam to reach the elastic limit. Taking this into account, the final elastic resistant moment is
calculated as follows:

Fc,g l = 1
2εc,y,g l ·Eg l ·bg l · y1

Fc,r n f = εc,r n f ·Er n f · Ac,r n f

Ft ,g l = 1
2εt ,g l ·Eg l ·bg l · y2

Ft ,r n f = εt ,r n f ·Er n f · At ,r n f

Fp = εp ·Ep · Ap

Mp,el ,l i m = Fp ·(y2−(hg l −dp ))+Ft ,r n f ·(y2−(hg l −dt ))+Ft ,g l · 2
3 y2−Fc,r n f ·(y1−dc )−Fc,g l · 2

3 y1
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6. Initial behaviour results

6.1 Reinforced cross-section

The model for a reinforced cross-section (Section 5.2) is used to quantify the behaviour of a
reinforced cross-section. This is elaborated for a reinforced beam in this section.

6.1.1 Effect of tension reinforcement

Unstrengthened timber beams in bending generally have a brittle tensile failure. Introducing
reinforcement in the tension region will prevent this. A typical failure of a tensile reinforced
beam is shown in Figure 6.1a. It can be seen that the compression side of the beam has plas-
tified to a great extend. Almost half of the beam height has reached its compression strength
before the tension side reached its tensile strength. This experiment is a good example of
greatly improved ductility for reinforced glulam. The numerical model is used to quantify
this beam behaviour.

(a) Ductile beam failure [44] (b) Strains and stresses of a reinforced section 1000x1000 mm

Figure 6.1: experimental- and model beam failure

Figure 6.1b displays a strain- and stress diagram resulting from the model. This cross-section
is reinforced only at the tension side of the beam. It can be seen that the neutral axis is shifted
from half the beam height towards the tension side of the beam. This causes the compres-
sion side to reach its yield strength ( fc,y,g l ) before the tension side reaches its yield strength
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( ft ,y,g l ). After this, the curvature is increased further, causing the compressive plastification
zone (hpl ) to increase. In order to keep equilibrium of forces, the model calculates a new
plastic neutral axis. This can be seen by looking closely at the failure strain, which has a PNA
slightly below the ENA. Curvature is increased until the timber fails in tension, this point is
modelled as the ultimate failure of the beam.

Figure 6.2 presents this behaviour in terms of moment capacity. A linear moment-curvature
relationship exists up to the elastic limit (Mel ,l i mi t ). After this point, plastification of the
cross-section happens. Because of this, the cross-section shows ductile behaviour to a small
extend, which is not found for the beam without reinforcement. The increase in slope of
the graph means that the reinforced beam also has a significantly higher stiffness than the
non-reinforced beam. This results in a smaller deflection of the beam, which will also be
beneficial for the long-term behaviour of the beam (also see Chapter 8).

Figure 6.2: Moment-curvature graph of a cross-section 1000 x 1000 mm

6.1.2 Effect of reinforcement allocation

A reinforced beam always shows a larger stiffness than a non-reinforced beam. This en-
hancement is a result of the larger stiffness of the reinforcement material. However, more
important is the allocation of the reinforcement. If the reinforcement is placed at a larger
distance from the neutral axis, the stiffness increase will be larger. A beam with 100% of the
reinforcement at the tension side shows high ductility. However, the effective stiffness of the
beam does not increase as much as when the reinforcement would be allocated 50%/50%.
Explanation for this is that the neutral axis of a beam shifts towards the reinforcement. So for
a 100% tensile reinforced beam, the lever arm of the reinforcement is smaller. Leading to a
smaller stiffness. Figure 6.3 presents this behaviour. The stiffness of the beam is at its largest
when the reinforcement is allocated 50/50.

Figure 6.4 shows the moment-curvature graphs for varying reinforcement allocations. Also
a reference curve is shown for the same cross-section without reinforcement. Compared to
this cross-section, all reinforced cross-sections have significantly higher stiffness and mo-
ment capacity. The blue and red dots denote the elastic- and plastic moment resistances.
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Figure 6.3: Beam flexural stiffness against reinforcement allocation for a beam 1000 x 1000
mm

Figure 6.4: Moment-curvature diagrams for varying reinforcement allocations

Lowest black line: 100% tensile reinforcement. This configuration will give the highest duc-
tility. After reaching the elastic limit, the cross-section has high deformation capacity. How-
ever, the elastic moment resistance is relatively small because the neutral axis is located to-
wards the tensile side (see Figure 6.5a). The final result of this is that the compressive stresses
reach the yield stresses relatively early. Also the effective stiffness is relatively small because
of a smaller internal lever arm of the reinforcement

Highest black line: 50%/50% reinforcement. This configuration gives high stiffness, which
will increase the SLS verification of the beam. However, no ductile behaviour is obtained be-
cause failure tensile stresses are reached at the same moment as yield compression stresses.
This is a result of the evenly distribution reinforcement, see Figure 6.5b.

50%/50% up to 100% compressive reinforcement. After reaching the elastic moment limit,
cross-sections with most of the reinforcement in the compression side will not show any
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plastification. Therefore, no increase of ultimate moment will happen after the elastic limit.
These cross-section fail in a brittle manner.

(a) 100% tensile reinforcement

(b) 50%/50% reinforcement

Figure 6.5: strain- and stress diagrams for different reinforcement allocation

This is explained further with Figure 6.6, where the ultimate moment is plotted against the
reinforcement allocation. The ultimate resisting moment is smallest when all reinforcement
is placed in the compression side. In this case, the timber will simply fail in tension without
further plastification of the cross-section. The ultimate moment is largest when approxi-
mately 80% - 90% of the reinforcement is allocated at the tension side. In this case, the op-
timum balance is found between compressive plastification and lever arm of the reinforcing
material. In case of all reinforcement on the tension side, maximum plastification is reached.
However, the lever arm of the reinforcement gets smaller and therefore the produced resist-
ing moment is smaller.

It can be seen that the stresses in the compression reinforcement σc,r n f go up when a higher
reinforcement percentage is located in the tension side. This is caused by the increase of
compressive strains εc,r n f when the neutral axis moves towards the tension side. On the
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other side, the stresses in the tension reinforcement σt ,r n f are about the same. This is be-
cause failure of the beam is modelled when the tensile stresses in the glulam σt ,g l reach the
glulam tensile strength ft ,y,g l .

Figure 6.6: Ultimate moment capacity for varying reinforcement allocation

6.2 Prestressed cross-section

The model for a prestressed beam is comparable to the previous described model for a re-
inforced beam. The biggest difference is that the prestressing leads to an initial negative
loading of the beam. This is displayed in Figure 6.7 below. Where: (A) constant compres-
sion strain εpn . (B) linear strain εpm due to eccentricity of the prestress load. (C) sum of (A)
and (B): total strains due to prestressing εp . Initial tension strain in the prestressed material
shown in blue. (D) total stresses due to prestressing σp .

Figure 6.7: Initial loads due to prestressing
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A comparison can be seen in Figure 6.8. Both graphs are based on a reinforcement alloca-
tion 50%/50% at top and bottom, and also prestress material is added. The right graph is
based on zero prestress force, while the left graph is based on a prestress force of 3000 kN.
As stated before, a reinforced beam with reinforcement allocation 50%/50% is stiff, but will
more likely fail in a brittle manner. The same reinforced beam, with added prestress cables
at the bottom side, will fail in compression because of two reasons: (1) the neutral axis shifts
towards the lower side of the beam and (2) the compression from prestressing (see Figure 6.7
(A)) causes the compression failure te be reached earlier than the tension failure. This can
also be seen in Figure 6.8. The right graph has already reached the limiting elastic strain at
the compression side and almost at the tension side. At this loading moment, the prestressed
beam almost reached its compression limit, while in tension the strain is much smaller than
the limit strain. The prestressed section will be able to plastify to a much greater extend than
the non-prestressed section because the curvature can be increased much more until the
tension limit is reached.

Figure 6.8: strain distribution for a prestressed (left) and only reinforced (right) cross-section

Moment-curvature graphs are presented in Figure 6.9 up to elastic limit. The pure timber
deck, without reinforcement, has the lowest stiffness and moment capacity. The reinforced
section, without prestress material, has a higher stiffness and moment capacity. For these
results, the reinforcement is attached to the bottom and top of the timber deck. By adding
prestress material to the already reinforced cross-section, the stiffness and moment capac-
ity will increase further. The prestress cables are assumed to be allocated at 0.1hg l from
the bottom of the beam. From Figure 6.9, all plots including prestress have the same stiff-
ness. According to this, the stiffness does not increase with higher prestress forces. However,
higher prestress forces will result in negative initial curvatures. Meaning that the prestress
forces counteract the actions loads. This will help to reduce the final deflection.
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Figure 6.9: Moment-curvature graphs for timber, reinforced and prestressed sections
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7. Long-term behaviour

The previous parts of the numerical model are only focused on the instantaneous loading
of the cross-section. No creep is taken into account. However, creep deflections may play a
decisive role in timber design. Creep of timber beams can lead to prestress losses that will
decrease the cross-section resistance. In literature, the creep behaviour of timber is often
modelled with a formula in the following form:

φ= at b (7.1)

Where a and b are material parameters,φ is the creep factor, and t is the time from the initial
point of loading.

The benefit of this form is that it can be rewritten into a viscoelastic E-modulus dependent
on time. Combining this time-dependent E-modulus with Ordinary Differential Equations
(ODE’s) enables the quantification of creep deflections over time at every longitudinal point
of the bridge deck. In this research, this is done using Maple. This chapter explains how the
long-term behaviour is quantified in the model.

7.1 Governing ODE’s

A bridge deck can be analysed using Ordinary Differential Equations (ODE’s). Using this
approach, the cross-sectional forces, rotations and deformations can be quantified at every
point of the deck. Because of the prestress forces at the beam ends, the timber deck is sub-
jected to axial forces. Forces and deformations due to this effect can be quantified using
the ODE for axial deformations. For a slender bridge deck, the deflections are governed by
bending. The Euler-Bernoulli ODE system is used for this. Besides bending- and axial defor-
mations, the deck is also subject to shear deformations. The combined effect of bending and
shear deformation can be taken into account by using the Timoshenko ODE system. Calcu-
lations with the Timoshenko system are done and they show that the difference is about 1%
with the Euler-Bernoulli system, these are presented in Appendix D. Because of these results,
the shear deformations are neglected. Only the Euler-Bernoulli ODE system is used for the
deflections.
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7.1.1 Axial deformation

The prestress forces exerted on both ends of the bridge deck will cause a shortening. This
effect can be covered by the ODE for axial deformation. As a result of an applied load, the
deck will shorten. This can be formulated by the axial degree of freedom u(x), see Figure 7.1a.
The cross-section at longitudinal coordinate x will displace by u(x) and the displacement at
x+d x will be u(x+d x) = u+du. The infinitesimal element d x undergoes a change in length
equal to du. This deformation is given by the kinematic relation for axial strain:

ε= du

d x
(7.2)

(a) Element under axial load
(b) Free body diagram

Figure 7.1

The deformations (strain ε) can be related to the stress by Hooke’s law:

σ= Eε (7.3)

The stress distribution over the total cross-section gives the resulting internal force:

N =
∫
σd A =

∫
Eεd A = du

d x

∫
E d A (7.4)

For homogeneous cross-sections, the constitutive relation for the normal force can be for-
mulated:

N = E Aε (7.5)

Figure 7.1b gives the free body diagram of a small segment of the deck with internal forces.
The total distributed load is replaced by its resultant qd x. For equilibrium in horizontal
direction, following equilibrium equation is derived:

d N

d x
=−q (7.6)
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Substituting the constitutive relations into the equilibrium equation gives the final ODE for
axial deformations:

E A
d 2u

d x2
=−q (7.7)

Where:
E A = the axial stiffness of the beam
q = the external load function exerted parallel to the beam
u = the displacement in longitudinal direction depending on the coordinate x
x = the longitudinal coordinate going from the beginning to the end of the beam

This system can be solved for u(x) by applying the boundary conditions for the specified
case.

7.1.2 Bending

For slender cases, beams loaded by vertical loads are governed by bending theory. Due to
vertical action loads, bending deflection will occur which can be formulated by the vertical
degree of freedom w(x). Under the assumption of small displacements, the deflection can
be related to the rotation according to Figure 7.2. This gives the first kinematic relation:

φ=−d w

d x
(7.8)

Figure 7.2: Deflection-rotation relation

Then, the curvature can be related to the rotation according to Figure 7.3. This gives the
second kinematic relation:

κ= dφ

d x
(7.9)

The constitutive relation for bending is formulated as follows:

M = E Iκ (7.10)
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Figure 7.3: Rotation-curvature relation

Substituting Equation 7.8 into Equation 7.9 and substituting the result into Equation 7.10,
following relation for the moment is obtained:

M =−E I
d 2w

d x2
(7.11)

The equilibrium equations below can be derived from the free body diagram in Figure 7.4:

Vertical equilibrium:
dV

d x
=−q

Moment equilibrium:
d M

d x
=V

Combining both equilibrium equations gives:

d 2M

d x2
=−q (7.12)

Figure 7.4: Free body diagram for bending ODE

Then the final step to obtain the ODE for bending is substituting Equation 7.11 into Equation
7.12. This gives following ODE that governs the bending deflections:

E I
d 4w

d x4
= q (7.13)
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Where:
E I = the bending stiffness of the beam
q = the external load function in vertical direction
w = the deflection equation depending on the coordinate x
x = the longitudinal coordinate going from the beginning to the end of the beam

This system can be solved for w(x) by applying the boundary conditions for the specified
case.

7.2 Deformation functions

To find the deformation functions for the bridge deck, multiple ODE’s and boundary condi-
tions must be taken into account, see Figure 7.5. The bridge deck is supported by two side
supports and one middle support, therefore it is divided into two deformation fields: span 1
and span 2. Per field, two ODE’s for bending are solved and one ODE for axial deformation
is solved.

Figure 7.5: Bridge system as input for the ODE’s

7.2.1 Axial shortening

As stated before, the ODE for axial deformation (Equation 7.14) can be used to model the ef-
fect of the prestress forces on the beam ends. In this case, the q-load in longitudinal direction
is zero and the axial ODE becomes:

E A
d 2ui

d x2
= 0 (7.14)

Where i = 1, 2

Span 1 is governed by u1(x) and span 2 is governed by u2(x). Following boundary conditions
apply:

at x = 0: P +N1 = 0
at x = L: u1 = u2 = 0
at x = 2L: −N2 −P = 0

The ODE is solved with use of the software Maple. Using the previous boundary conditions,
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following deformation functions for the axial displacement fields are obtained:

u1(x) =−P x

E A
+ LP

E A
(7.15)

u2(x) =−P x

E A
+ LP

E A
(7.16)

7.2.2 Bending deflection

The bending ODE from Equation 7.13 governs the bending deflections due to the action
loads and the prestress loads. Both cases are solved separately with an own ODE for bending.
The corresponding functions w1 and w2 can be determined by solving the ODE’s for the
boundary conditions:

ODE for action loads

The bending ODE from Equation 7.13 is used for deflection due to the action loads. In this
case, the load qi ,q is the load per field due to the actions on the deck. The ODE for actions
loads becomes:

E I
d 4wi ,q

d x4
= qi ,q (7.17)

Where i = 1, 2

Span 1 is governed by w1,q (x) and span 2 is governed by w2,q (x). Following boundary condi-
tions apply:

at x = 0: w1,q = 0
at x = 0: M1,q = 0
at x = L: w1,q = w2,q = 0
at x = L: φ1,q =φ2,q

at x = L: M1,q = M2,q

at x = 2L: w2,q = 0
at x = 2L: M2,q = 0

This gives following deformation functions due to the loads:

w1,q (x) = q1,q x4

24E I
− L(7q1,q −q2,q )x3

96E I
+ L3(3q1,q −q2,q )x

96E I
(7.18)

w2,q (x) = q2,q x4

24E I
− L(q1,q +25q2,q )x3

96E I
+ L2(q1,q +9q2,q )x2

16E I

−L3(11q1,q +47q2,q )x

96E I
+ L4(3q1,q +7q2,q )

48E I

(7.19)
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ODE for prestress loads

The prestress force will cause shortening shortening of the bridge deck (covered with the
ODE in Equation 7.14). Besides shortening, prestress will also induce bending moments on
the deck. The bending ODE from Equation 7.13 can also be used to determine the deflections
due to the prestress loads. Two cases are analyzed: a straight tendon and a parabolic tendon.
A straight tendon is easier to analyze. A straight tendon will have a constant moment resis-
tance over the length of the beam because the height of the tendon does not change. The
height of the tendon will change for a parabolic tendon and therefore also the moment resis-
tance will vary over the length of the beam. qp is the load exerted by the prestress tendons.
Following ODE for bending due to prestress is obtained:

E I
d 4wi ,p

d x4
= qp (7.20)

Where:
i = 1, 2 for span 1 or 2.

qp = P · d 2zi

d x2
[1], depends on the prestress force P and the tendon profile zi .

[1] qp = P

R
[24], where

1

R
= κ= d 2z

d x2

Straight tendon

Figure 7.6: Layout straight tendon

For a straight tendon, the load qp = 0. Following boundary conditions apply:

at x = 0: w1,p = 0
at x = 0: M1,p = Mp

at x = L: w1,p = w2,p = 0
at x = L: φ1,p =φ2,p

at x = L: M1,p = M2,p

at x = 2L: w2,p = 0
at x = 2L: M2,p = Mp

Where Mp =−P ·eend , and eend is the eccentricity of the tendon at the beam ends.

Following deformation functions due to prestressed straight tendons are obtained:

w1,p (x) =−eend P x3

4E I L
+ eend P x2

2E I
− Leend P x

4E I
(7.21)
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w2,p (x) = eend P x3

4E I L
− eend P x2

E I
+ 5Leend P x

4E I
− eend PL2

2E I
(7.22)

Parabolic tendon

Figure 7.7: Layout parabolic tendon

For a parabolic tendon, the load qp = P · d 2zi

d x2
. Following boundary conditions apply:

at x = 0: w1,p = 0
at x = 0: M1,p = Mp

at x = L: w1,p = w2,p = 0
at x = L: φ1,p =φ2,p

at x = L: M1,p = M2,p

at x = 2L: w2,p = 0
at x = 2L: M2,p = Mp

Where Mp = P ·eend , and eend is the eccentricity of the tendon at the beam ends.

Following deformation functions due to prestressed parabolic tendons are obtained:

w1,p (x) = qp x4

24E I
− (qp L2 −4eend P )x3

16E I L
− eend P x2

2E I
+ L(qp L2 +12eend P )x

48E I
(7.23)

w2,p (x) = qp x4

24E I
− (13qp L2 +12eend P )x3

48E I L
+ (5qp L2 +8eend P )x2

8E I
− L(29qp L2 +60eend P )x

48E I

+L2(5qp L2 +12eend P )

24E I
(7.24)

Total deflection

The total bending deflections can be determined by the sum of the deflections due to the
loads wi ,q and the prestress wi ,p . It should be noted that the deflection due to the prestress
is negative and that of the action loads is positive. Then, following equations apply for the
total bending deflections:

w1,b(x) = w1,q (x)+w1,p (x) (7.25)
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w2,b(x) = w2,q (x)+w2,p (x) (7.26)

7.2.3 Instantaneous displacements

Up to now, the axial shortening and bending deflections represent the instantaneous dis-
placements of the bridge deck. This means that using the equations for u1(x), u2(x), w1,b(x)
and w2,b(x) will only give the instantaneous displacements because they are based on the
initial E-modulus of the timber deck. In Section 7.4 is explained how the time-dependence
is incorporated in the equations through a viscoelastic E-modulus.

7.3 Strains

The strains over the cross-section of the timber deck can be determined using the ODE re-
lations. This is done for the axial shortening and the bending deflections. Later on, the vis-
coelastic E-modulus is substituted into these strain functions to obtain the time-dependent
strains.

7.3.1 Axial strains

From Equation 7.2, it holds that the strains are equal to the derivative of the displacement
fields, this gives the strain functions below. It can be seen that the strains due to the compres-
sive prestress forces are constant over the length of the deck. Also they are not dependent on
the height coordinate z. The axial strains are constant at every point and are not dependent
on the longitudinal and vertical coordinates x and z.

ε1,n = du1

d x
=− P

E A
(7.27)

ε2,n = du2

d x
=− P

E A
(7.28)

7.3.2 Bending strains

In contradiction to the axial strains, the bending strains are dependent on both coordinates
x and z. The bending strains can be derived from the total bending deflections in Equations
7.25 and 7.26. Following relation is used to determine the bending strains:

εi ,b = κi ,b · zi =−d 2wi ,b

d x2
· zi (7.29)

Where i = 1, 2

Using Equation 7.29, the strains due to bending for fields 1 and 2 become:
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Straight tendon

ε1,b(x) =
(

3eend P x

2E I L
− eend P

E I
− q1,q x2

2E I
+ L(7q1,q −q2,q )x

16E I

)
z1 (7.30)

ε2,b(x) =
(
−3eend P x

2E I L
+ 2eend P

E I
− q2,q x2

2E I
+ L(q1,q +25q2,q )x

16E I

−L2(q1,q +9q2,q )

8E I

)
z2

(7.31)

Parabolic tendon

ε1,b(x) =
(
−qp x2

2E I
+ 3(qp L2 −4eend P )x

8E I L
+ eend P

E I
− q1,q x2

2E I
+ L(7q1,q −q2,q )x

16E I

)
z1 (7.32)

ε2,b(x) =
(
−qp x2

2E I
+ 13(qp L2 +12eend P )x

8E I L
− 5qp L2 +8eend P

4E I
− q2,q x2

2E I
+ L(q1,q +25q2,q )x

16E I

−L2(q1,q +9q2,q )

8E I

)
z2

(7.33)

7.3.3 z1 and z2 for tendon layouts

To find the losses in the prestress material, the strains in the prestress material must be cal-
culated. Therefore, z1 and z2 in Equations 7.30 to 7.33 are based on the prestress tendon
profile.

For straight tendons, the values for z1 and z2 are constant over the length of the deck.

For parabolic tendons, the values for z1 and z2 are dependent on the longitudinal coordinate
x. The layout for a parabolic tendon profile is presented in Figure 7.8. If reinforced is present,
it is attached to the top and bottom of the deck. At the beam ends, the prestress tendons are
attached at half of the beam height so that no negative prestress moment is exerted at that
location. The tendons are allocated 0.1hg l from the bottom at their lowest position. This is
assumed to prevent the timber below the cable to be too thin. The same is applied to the
cable at the highest position at x = L.
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Figure 7.8: Deck configuration

The tendon location z1 can be written as a function of the x-coordinate. First a local coor-
dinate system is applied to the lowest point of the tendons, presented with red in Figure 7.8.
The tendon is of the form y = ax2.

At the left beam end:

y1 = ax2
1 (7.34a)

eend = ax2
1 (7.34b)

a = eend

x2
1

(7.34c)

Where eend is equal to 0.5hg l −0.1hg l = 0.4hg l

At the middle support:

y2 = ax2
2 (7.35a)

Where x2 = L+x1 and y2 = eend +emi d span = eend +0.5hg l −0.1hg l

eend +emi d span = a(L+x1)2 (7.35b)

Equation 7.34c and 7.35b can be solved for a and x1. With this, a parabolic equation for the
vertical tendon location z1 is found. In the same way, a parabolic equation for the tendons
at span 2 is found for z2. z1 and z2 are substituted in the deformation and strains equations
from Section 7.3.2. Now, the creep deformations and creep strains of the prestress tendons
can be calculated.
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7.4 Time-dependent E-modulus

The bridge deck will be subject to time-dependent deformations due to creep phenomena.
This section explains how the time-dependence is incorporated in the Maple model.

7.4.1 Findley’s power law

Findley’s power law [12] is used to be able to model the creep deformations of the bridge
deck. This law assumes a viscoelastic E-modulus that decreases over time according to Equa-
tion 7.36. Because of this decreasing E-modulus, the deformation will increase over time.
Ev (t ) can be substituted into the deformation functions and strain functions from previous
section to obtain time-dependent deformation functions.

Ev (t ) = E0Et

Et +E0t n
(7.36)

Where:
E0 = the initial elastic modulus of the material, independent of time

Et = σ0

m
= a modulus which characterizes the time-dependent behaviour

n = material constant
σ0 = E0ε0 = the stress due to instantaneous loading for the creep load model
m = stress-dependent coefficient
t = time after loading

The material constants m and n govern Equation 7.36. They depend on the long-term mate-
rial behaviour. They can be determined from creep strain curves. The creep strain function
is given by Equation 7.37. In this research, the values for m and n are determined based on
experiments from literature.

ε(t ) = ε0 +m · t n (7.37)

Where:
ε(t ) = total time-dependent strain
ε0 = stress-dependent initial elastic strain

7.4.2 Material parameters m and n

Literature studies are used to quantify the material parameters m and n from Equation 7.37.
Then, rewriting this into Equation 7.36 will give the viscoelastic E-modulus that is dependent
on time: Ev (t ). This modulus can be substituted for E in the ODE’s so that they become
dependent on time.
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O’Ceallaigh’s experiments

O’Ceallaigh et al [38] [39] did experiments to glulam beams reinforced with Basalt FRP in
a Relative Humidity of 65% - 90%. According to Eurocode 5, this corresponds to CC3. All
experimental conditions can be found in Table 7.1. They measured the total strains over a
time period of 525 days, which corresponds to 12600 hours. This is done using strain gauges
at the tension- and compression faces of the glulam beams. For this research, the red curve is
fitted to these creep strains, see Figure 7.9. The blue and grey curves are the observed creep
strains for the bottom- and top side of the beam. To be safe, the curve is fitted slightly above
the largest creep strains. The formula for this curve is given in Equation 7.38.

Figure 7.9: Creep strain curve fitted to the experimental results of O’Ceallaigh

ε(t ) = 0.00009 · t 0.13 (7.38)

This is the creep curve for the strains applicable to the experiments of O’Ceallaigh et al. To
make it generally applicable, the factor 0.00009 should be divided by the instantaneous strain
from O’Ceallaighs experiment (εi nst ,oc = 0.00064):

εoc (t ) = ε0 +ε0
0.00009

εi nst ,oc
· t 0.13 = ε0 +

m︷ ︸︸ ︷
ε0 ·0.14 t

n︷︸︸︷
0.13 (7.39)

Duration 525 days
Climate Relative Humidity 65% to 90% (CC3)

Temperature Constant at 20 +- 2°C
Cross-section 98 x 125 mm

Span 2300 mm
Reinforment Basalt FRP at tension side (non-prestressed)

Loading configuration Four point bending

Table 7.1: Experimental program O’Ceallaigh [38] [39]
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Willebrands’ literature studie

Willebrands [36] did a literature study to attain a quantitative approximation of creep be-
haviour of timber elements. Several curves were fitted on experiments of Gowda et al [37]
and Abdul-Wahab et al [45]. The experiment of Gowda is the most representative for the
case of the timber deck. Both sawn and glulam spruce beams where tested in a Relative Hu-
midity of 60% to over 85% for more than a few weeks per year, which is between CC2 and
CC3. All experimental conditions can be found in Table 7.2. In contradiction to the strain
curve of O’Ceallaigh, Gowda presents its results in terms of a creep factor φ(t ). Willebrands
fitted the curve in Figure 7.10 and Equation 7.40 to these experiments.

φ(t ) = 0.125ln(0.2t +1) (7.40)

Figure 7.10: Willebrands’ fit to Gowda’s experiments

The curve of Willebrands in Equation 7.40 cannot be rewritten into the viscoelastic modulus
because it is not of the form a · t b . Therefore, Willebrands equation is approximated with a
function of this form. Which gives following creep function:

φwi (t ) = 0.34 · t 0.11 (7.41)

To make this creep function applicable for Findley’s model, it should be rewritten into a
strain function. This can be done easily by multiplying the creep function with the instanta-
neous strain. Doing this, the creep strains in the form of Findley’s law for Willebrands creep
function can then be written as:

εwi (t ) = ε0(1+φwi (t )) = ε0 +
m︷ ︸︸ ︷

ε0 ·0.34 t

n︷︸︸︷
0.11) (7.42)
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Duration 4 years
Climate CC2-CC3

Temperature -5 to 20°C
Cross-section (1): 50 x 150 mm, (2): 90 x 180 mm

Span (1): 5000 mm, (2): 6500 mm
Reinforment No reinforcement

Loading configuration Four point bending

Table 7.2: Experimental program Gowda [37]

Creep curves

Both creep curves are displayed in Figure 7.11 up to t = 43800 hours, which is equal to 50
years. The model is not executed for time spans bigger than 50 years because those time
spans take too much calculation time. The increase of the creep curves is only 7% from 50
to 100 years. To check the effect of increased creep curves, also a sensitivity analysis is done
with increased creep curves (Section 8.1.2). The creep curves can be rewritten into the creep
strain equations in Equations 7.39 and 7.42. Then they can be implemented in the Findley
model. From Figure 7.11 can be seen that curves from O’Ceallaigh and Willebrands differ
by a factor of approximately 2. Multiple reasons could be of influence on these different
creep curves. First, the fact that the tests of O’Ceallaigh were on reinforced beams while the
tests of Gowda where on unreinforced beams. The Difference in experimental conditions
might also have an influence. Besides, the experiments were carried out over a time span
of 1.5 and 4 years for O’Ceallaigh and Gowda respectively. After these time spans the results
were extrapolated, as shown in Figure 7.11. All these factors have an influence on the final
creep curves of Figure 7.11, meaning that they are subject to uncertainty. Therefore, also
a sensitivity analysis is made to check how this influences the final creep behaviour of the
bridge deck. This is done in Section 8.1.2.

Figure 7.11: Creep curves

68



7.4.3 Equation for Ev(t)

In Section 7.4.2, the creep behaviour of O’Ceallaigh and Willebrands researches are written
in the form of Findley’s creep strain function:

εoc (t ) = ε0 +
moc︷ ︸︸ ︷

ε0 ·0.14 t

noc︷︸︸︷
0.13 (7.43)

εwi (t ) = ε0 +
mwi︷ ︸︸ ︷

ε0 ·0.34 t

nwi︷︸︸︷
0.11 (7.44)

In these creep strain functions, the material parameter m is dependent on the instantaneous
strain ε0. If the m and n values are substituted into Equation 7.36 for the viscoelastic strains,
following viscoelastic E-modulus is obtained:

Et = E0ε0

m
(7.45)

If the factors moc or mwi are substituted in this formula, the instantaneous strain ε0 disap-
pears from the formula for Et . Filling in moc , noc and mwi , nwi gives following equations for
the viscoelastic E-moduli according to Findley:

Ev,oc (t ) = 7.143E 2
0

7.143E0 +E0t 0.13
(7.46)

Ev,wi (t ) = 2.941E 2
0

2.941E0 +E0t 0.11
(7.47)

Ev,wi (t ) will be used to model the time-dependent strains due to the axial loads of the pre-
stress force. Ev,wi (t ) can be substituted into the axial strain Equations 7.27 and 7.28 to obtain
the strains as a function of time, this is presented in Equation 7.48 The axial deformation of
the prestressed timber deck can be schematized as a pure timber deck (no prestress cables)
with external compressive forces on the beam ends. Therefore, the viscoelastic E-modules
based on Willebrands (Equation 7.47) is used, which is also based on creep behaviour of
non-reinforced and non-prestressed timber beams.

ε1,n(t ) =− P

Ev,wi (t )A
(7.48a)

ε2,n(t ) =− P

Ev,wi (t )A
(7.48b)

Ev,oc (t ) will be substituted in the bending strain Equations 7.49 and 7.49b for a straight ten-
don and Equations 7.32 and 7.33 for a parabolic tendon, this is presented in Equation 7.49
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and 7.50. Unlike the behaviour in axial compression, in bending the prestress cables will
also take part in resisting the exerted bending moment. The creep strains in bending are
modelled with Ev,oc (t ) because the research of O’Ceallaigh is based on reinforced timber
members. In the case that it would be prestressed, the final strains would be lower because
of the counteracting prestress moment. Meaning that it is conservative to use the strain
measurements from O’Ceallaigh for bending.

Straight tendon

ε1,b(x) =
(

3eend P x

2Ev,oc (t )I L
− eend P

Ev,oc (t )I
− q1,q x2

2Ev,oc (t )I
+ L(7q1,q −q2,q )x

16Ev,oc (t )I

)
z1 (7.49a)

ε2,b(x) =
(
− 3eend P x

2Ev,oc (t )I L
+ 2eend P

Ev,oc (t )I
− q2,q x2

2Ev,oc (t )I
+ L(q1,q +25q2,q )x

16Ev,oc (t )I

−L2(q1,q +9q2,q )

8Ev,oc (t )I

)
z2

(7.49b)

Parabolic tendon

ε1,b(x, t ) =
(
− qp x2

2Ev,oc (t )I
+ 3(qp L2 −4eend P )x

8Ev,oc (t )I L
+ eend P

Ev,oc (t )I
− q1,q x2

2Ev,oc (t )I

+L(7q1,q −q2,q )x

16Ev,oc (t )I

)
z1

(7.50a)

ε2,b(x, t ) =
(
− qp x2

2Ev,oc (t )I
+ 13(qp L2 +12eend P )x

8Ev,oc (t )I L
− 5qp L2 +8eend P

4Ev,oc (t )I

− q2,q x2

2Ev,oc (t )I
+ L(q1,q +25q2,q )x

16Ev,oc (t )I
− L2(q1,q +9q2,q )

8Ev,oc (t )I

)
z2

(7.50b)

Ev,oc (t ) will also be substituted in the deflection Equations 7.25 and 7.26. For the parabolic
tendons, this gives Equations 7.51a and 7.51b. These equations will be used to model the
creep deflections of the bridge deck.

w1,b(x, t ) = q1,q x4

24Ev,oc (t )I
− L(7q1,q −q2,q )x3

96Ev,oc (t )I
+ L3(3q1,q −q2,q )x

96Ev,oc (t )I
+ qp x4

24Ev,oc (t )I

− (qp L2 −4eend P )x3

16Ev,oc (t )I L
− eend P x2

2Ev,oc (t )I
+ L(qp L2 +12eend P )x

48Ev,oc (t )I

(7.51a)
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w2,b(x, t ) = q2,q x4

24Ev,oc (t )I
− L(q1,q +25q2,q )x3

96Ev,oc (t )I
+ L2(q1,q +9q2,q )x2

16Ev,oc (t )I
− L3(11q1,q +47q2,q )x

96Ev,oc (t )I

+L4(3q1,q +7q2,q )

48Ev,oc (t )I
+ qp x4

24Ev,oc (t )I
− (13qp L2 +12eend P )x3

48Ev,oc (t )I L
+ (5qp L2 +8eend P )x2

8Ev,oc (t )I

−L(29qp L2 +60eend P )x

48Ev,oc (t )I
+ L2(5qp L2 +12eend P )

24Ev,oc (t )I
(7.51b)

7.4.4 Viscoelastic stiffnesses EvI and EvA

For a non-reinforced prestressed beam, the stiffness of the timber is used. In this case, the
stiffnesses can simply be calculated as Ev (t )I and Ev (t )A. However, for a prestressed beam
that is also reinforced on the upper and lower sides, the stiffnesses should be recalculatd for
every timestep. This is done using the transformed section method [46]. First, the section is
transformed into a section with one reference material.

α= Er n f /Ev (t ) (7.52)

At ,r n f ,tr ans =αAt ,r n f (7.53a)

Ac,r n f ,tr ans =αAc,r n f (7.53b)

The Elastic Neutral Axis (ENA) should be calculated according to:

y =
∑

Ai ,tr ans yi∑
Ai ,tr ans

(7.54)

Where Ai ,tr ans is the transformed surface of every material, yi is the distance between the
centroid of every material and the top of the total section, and y is the distance of the top of
the section and the neutral axis of the total section. Then, the bending- and axial stiffnesses
can be calculated according to:

Ev,oc (t )I =∑
Ev (t )

(
1

12
bi ,tr ansh3

i + Ai y2
i

)
(7.55a)

Ev,wi (t )A =∑
Ev (t )bi ,tr anshi (7.55b)

Where Ev ,oc(t ) and Ev , wi (t ) are the viscoelastic moduli at a certain point in time, bi ,tr ans is
the transformed width of every material, hi is the height of the material, and Ai ,tr ans is the
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transformed surface of every material. As explained in section 7.5, the bending deflections is
based on the research from O’Ceallaigh, and the axial deformation is based on the research
from Willebrands. Therefore E I = Ev,oc (t )I and E A = Ev,wi (t )A

7.5 time-dependent P

By inserting the viscoelastic E-moduli in previous section, the strain and deflection Equa-
tions 7.48, 7.50 and 7.51 become dependent on time. Because of these changing strains over
time, the prestress force P will also be dependent on time. When the strains in the prestress
material decrease, the prestress force will decrease and also the other way around. This
time-dependent prestress force is calculated numerically because both the strains and the
prestress force are dependent on each other. This is done using a loop over the x-coordinate
within a loop over the time. For every time step, the corresponding creep strains and pre-
stress force are calculated based on a convergence criterion as explained in this section.

7.5.1 Starting principle

At the initial moment (t = t0 = 0), the prestress force is P0 and the initial strains are divided
into axial and bending strains (as explained in Section 7.2) εi ,n(t = t0) and εi ,b(x, t = t0), with
i = 1,2. These strains are calculated based on the creep load model from Section 4.4. This
part calculates the initial strains (t = t0) for every x-value.

7.5.2 First time step

With t going from t = t0 to t = t1, the viscoelastic E-moduli decrease and as a result the
strains increase. To find the difference in strains, the strains at the starting criterium (t = t0)
are stored as εa , for bending (b) and axial (n), see Equation 7.56. These strains are based on
the initial prestress force and the initial bending- and axial stiffnesses.

εa,b = εi ,b(x, t = t0) (7.56a)

εa,n = εi ,n(x, t = t0) (7.56b)

And the strains for the first time step (t = t1) are stored as in Equation 7.57. For this timestep,
the stiffnesses have decreased according to the relations in section 7.4.4.

εb,b = εi ,b(x, t = t1) (7.57a)

εb,n = εi ,n(x, t = t1) (7.57b)
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To find the corresponding prestress losses due to the increased strains, first the change in
strains is calculated:

δεb = εb,b −εa,b (7.58a)

δεn = εb,n −εa,n (7.58b)

Corresponding change in prestress losses:

δPb = δεbEp Ap (7.59a)

δPn = δεnEp Ap (7.59b)

And resulting prestress force due to bending and axial creep:

P1,tot = P0 +δPb +δPn (7.60)

7.5.3 Convergence criterion

The calculated prestress force at time t = t1 in Equation 7.60 is different from the initial pre-
stress force P0, therefore new iterations should be done to obtain new strains. This is done
within a loop until convergence is reached. First the new εa and εb are calculated. εa is equal
to the εb from the previous iteration and εb is calculated with εi ,b(x, t = t1) and εi ,n(x, t = t1)
based on the prestress force P1,tot calculated from the previous iteration:

εa,b = εb,b (7.61a)

εa,n = εb,n (7.61b)

P = P1,tot (7.62)

εb,b = εi ,b(x, t = t1) (7.63a)

εb,n = εi ,n(x, t = t1) (7.63b)

Then, the new prestress force is calculated according to following equations:

δεb = abs(εa,b)−abs(εb,b) (7.64a)
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δεn = abs(εa,n)−abs(εb,n) (7.64b)

δPb = δεbEp Ap (7.65a)

δPn = δεnEp Ap (7.65b)

P1,tot = P +δPb +δPn (7.66)

The model loops through these equations until the convergence criterion is reached. The
convergence criterion is reached when δPn +δPb < 1 Newton. When this point is reached,
the right prestress force and strains at time t = t1 are known. With this prestress force as
input, also the right deflection of the deck at the actual x-coordinate can be determined with
the formulas for wi ,b(x, t ) from Equations 7.51a and 7.51b.

7.5.4 General principle

For time steps bigger than t1, same approach as from Equations 7.61 to 7.66 is used. This is
generalized in next equations. First, values for εa are calculated based on the prestress force
P1,tot calculated for previous time step t = tn−1.

εa,b = εb,b(x, t = tn−1) (7.67a)

εa,n = εb,n(x, t = tn−1) (7.67b)

P = P1,tot (7.67c)

Then, values for εb are calculated based on the new prestress force P and decreased stiff-
nesses based on the time:

εb,b = εi ,b(x, t = tn) (7.67d)

εb,n = εi ,n(x, t = tn) (7.67e)

δεb = abs(εa,b)−abs(εb,b) (7.67f)

δεn = abs(εa,n)−abs(εb,n) (7.67g)
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δPb = δεbEp Ap (7.67h)

δPn = δεnEp Ap (7.67i)

P1,tot = P +δPb +δPn (7.67j)

Then, according to the convergence principle, there is iterated towards a solution at time
t = tn which has a prestress force and strains that correspond to each other. Using the equa-
tions presented in this section, the creep strains and corresponding prestress losses can be
calculated for every time instant.
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8. Long-term results

This chapter presents the results from the long-term model that is described in Chapter 7.
For all results, FRP is used for the input values of the reinforcement and the prestress ten-
dons:

Elastic modulus: E = 250 000 N/mm2

Maximum strength: f = 1500 N/mm2

8.1 Deflection

The final deflection is the sum of the instantaneous SLS deflections and the creep deflec-
tions. Both quantities are analysed in this section.

8.1.1 SLS deflection

For the maximum instantaneous deflections of the deck, the SLS load model from section
4.3 is used. With the ODE system from section 7.2, the instantaneous deflections can be
determined. These are presented in Figure 8.1 for the location with the highest deflection. It
can be seen that the total instantaneous deflection linearly depends on the initial prestress
force. All graphs are calculated with parabolic tendons, except for graph (D).

Figure 8.1: Instantaneous deflections bases on SLS load model

For the instantaneous deflection: t = 0. An initial E-modulus of 13500 N /mm2 is used, so
no time-dependent decrease is present. The structural height of the timber deck has a large
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influence on the instantaneous deflection. Increasing the structural height from 860 (B) to
1000 mm (A) results in a decrease in deflection of 35-48%, depending on the initial prestress
force. By adding 1% (0.5% top, 0.5% bottom) reinforcement (C) to an unreinforced deck (B),
the deflections decreases by 35%. The span also has a large influence on the initial deflec-
tions. Decreasing the span from 30000 to 25000 mm will decrease the deflection by 47-71%
(depending on the initial prestress force), both for a reinforced and non-reinforced section.
Further analysis of the effect of the span on the output is given in Section 8.3

The SLS deflections of the straight tendons (D) are up to 79% higher than the SLS deflec-
tions of the parabolic tendons (C). This is further explained by Figures 8.2 and 8.3. These
graphs present the instantaneous SLS moment- and deflection graphs for a prestress force
of 3000 kN. Straight prestress tendons are less efficient in decreasing the final deflection of
the deck. This can be seen by the moment lines of both tendon profiles. The parabolic ten-
dons counteract the moments from the actions loads, while the straight tendons do not exert
a maximum counteracting moment at the location where the action moments are highest.

Figure 8.2: Moment- and deflections plots for parabolic tendons (P = 3000 kN)

Figure 8.3: Moment- and deflections plots for straight tendons (P = 3000 kN)

Besides the deflections, parabolic tendons are more beneficial for the moment resistance of
the deck. To resist the negative hogging moment at the midspan of the deck, a tendon at the
upper side of the cross-section is desired. This is not the case with straight tendons. While

77



parabolic tendons are located at the lower side where the action moment is positive, and at
the upper side where the action moment is negative.

8.1.2 Creep deflection

The time-dependent creep deflection is calculated according to the model as described in
Chapter 7. For every timestep and x-value, the creep deflections are calculated based on
the creep load model. The load model for creep loads is the same for span 1 and 2, see
Section 4.4. Therefore, the model is only used to produce results for span 1, since results for
span 2 will be the same but mirrored. To explain the behaviour according to the model, the
creep deflection is visualized for prestress forces from 0 to 6000 kN in Figure 8.4. The time
t is given in hours, where 438000 hours corresponds to 50 years. The behaviour is based
on an unreinforced cross-section with parabolic prestress tendons. It should be noted that
positive deflections are in the downward direction. From Figure 8.4 can be concluded that
up to an initial prestress force of around 2200 kN, both the instantaneous deflection and
the deflection after 50 years are positive (in downward direction). This means that creep
results in an increasing deflection over time. At P = 2600 kN, the prestress causes a negative
instantaneous deflection because the loads exerted by the prestress force are larger than the
loads of the creep load model. However, due to creep of the prestress material, prestress
force is lost and therefore the deck creeps in positive direction. This means that creep still
causes a deflection in positive direction (downwards). This effect disappears from an initial
prestress force of 4000 kN. From that moment, the prestress force is large enough to cause a
creep deflection in negative direction (upwards). This can be seen at an initial prestress force
of 6000 kN, where the prestress loads are so large that the bridge deck will creep in upward
direction.
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(a) P = 0 kN (b) P = 2200 kN

(c) P = 2600 kN (d) P = 3000 kN

(e) P = 4000 kN (f) P = 6000 kN

Figure 8.4: Creep deflections for varying initial prestress forces

As mentioned in Section 7.4.2, the creep curves used as input for the model are subject to
uncertainty. Therefore, the sensitivity of the creep deflection to changes in the creep curves
are analyzed. First for a non-reinforced prestressed deck with parabolic tendons, second
for a reinforced prestressed deck with parabolic tendons and third for a reinforced straight
tendon prestressed deck that is reinforced. The creep deflection is calculated for varying
creep curves. This is done for three creep curves (see Figure 8.5):

• The original creep curves as determined in Section 7.4.2. Where moc = 0.14, noc = 0.13,
mwi = 0.34 and nwi = 0.11.

• Conservative creep curves, where the curve of O’Ceallaigh is increased with +100% and
the curve of Willebrands with +50%. The curve of Willebrands was already far above
the curve of O’Ceallaigh, therefore the curve of O’Ceallaigh is increased with a larger
amount.
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• Optimistic creep curves, where the curves of O’Ceallaigh and Willebrands are decreased
with -50%.

Figure 8.5: Varying creep curves as input for sensitivity analysis

The creep deflection is calculated as follows:

wcr eep = wt50 −wt0 (8.1)

Non-reinforced deck, no prestress tendons

A reference value of creep deflection is calculated based on a deck without reinforcement
and without prestress tendons (a pure timber deck). This is done in Figure 8.6 for the differ-
ent creep curves. The corresponding deflection values can be found in Table 8.1

(a) Optimistic (b) Original (c) Conservative

Figure 8.6: Instantaneous- and creep deflections of a pure timber deck

From the table can be seen that the creep will increase the deflection by a very large percent-
age: 76% for the original creep curve and 149% for the conservative creep curve. The creep
deflections are also presented based on Eurocode for Climate Class 2 and Climate Class 3.
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optimistic original conservative Eurocode CC2 Eurocode CC3
wt0 67 67 67 67 67
wt50 103 118 167 121 201

wcr eep 36 (+53%) 51 (+76%) 100 (+149%) 54 (+81%) 134 (+200%)

Table 8.1: Deflection values for a pure timber deck [mm]

Non-reinforced deck, parabolic tendons

The different creep curves from Figure 8.5 are implemented in the model. The final creep
deflections (at the location where they are largest) for a non-reinforced deck are presented
in Figure 8.7 for varying initial prestress forces. A large decrease in creep deflection is ob-
tained with respect to the pure timber beam. For a prestress force up to 2000 kN, the creep
deflection decreases to around 27 mm. This is almost half of the creep of the pure timber
beam. For very large prestress forces, the creep deflection becomes negative. Meaning that
the deck will creep in upward direction.

Figure 8.7: Creep deflections for unreinforced deck (L = 30 m)

For initial prestress forces of 0 and 6000 kN, following changes in creep deflection are calcu-
lated with respect to the original creep deflection of (B):

oc+100%, wi+50% oc-50%, wi-50%
P = 0 kN +12.9 mm (+45%) -7.0 mm (-25%)

P = 6000 kN -14.2 mm (+89 %) +2.8 mm (-18%)

Table 8.2: Non-reinforced: creep deflection results with different creep curve input

Reinforced deck, parabolic tendons

The same as previous section is done, now with a 1% reinforced deck. Where 0.5% is allo-
cated at the top, and 0.5% is allocated at the bottom. The results are presented in Figure
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8.8. It can be seen that the creep deflections significantly decrease with respect to the unre-
inforced deck (B). It should be noted that for a prestress force of slightly below 6000 kN, the
creep deflection is zero. Meaning that the creep due to the prestress load exactly compensate
the creep due to the creep load model.

Figure 8.8: Creep deflections for reinforced deck (L = 30 m)

For initial prestress forces of 0 and 6000 kN, following changes in creep deflection are calcu-
lated with respect to the creep deflection of (C):

oc+100%, wi+50% oc-50%, wi-50%
P = 0 kN +7.9 mm (+61%) -3.1 mm (-24%)

P = 6000 kN -0.5 mm (+94 %) -0.7 mm (+144%)

Table 8.3: Non-reinforced: creep deflection results with different creep curve input

The absolute changes at P = 6000 kN are small. The percentage changes are large because of
the small creep deflection of (C) at P = 6000 kN, which are all close to 0.

Reinforced deck, straight tendons

The creep deflection are calculated for a 1% reinforced deck with straight prestress tendons.
The results are presented in Figure 8.9. It can be seen that the creep deflections slightly
increase with respect to the reinforced deck with parabolic tendons (D).

Figure 8.9: Creep deflections for reinforced deck with straight tendons (L = 30 m)
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For initial prestress forces of 0 and 6000 kN, following changes in creep deflection are calcu-
lated with respect to the creep deflection of (D):

oc+100%, wi+50% oc-50%, wi-50%
P = 0 kN +9.3 mm (+63%) -3.5 mm (-24%)

P = 6000 kN +3.1 mm (+93 %) -1.2 mm (-36%)

Table 8.4: Non-reinforced: creep deflection results with different creep curve input

8.1.3 Total deflection

The total final deflection is the sum of the instantaneous deflection (Section 8.1.1) and the
creep deflection wcr eep (Section 8.1.2), this is displayed in Figure 8.10. Also the total deflec-
tions based on the conservative and optimistic creep curves are displayed. According to the
outcomes of the model, the creep deflections are small with respect to the instantaneous SLS
deflections. The conservative creep deflections (based on oc+100% and wi+50%) are small
with respect to the instantaneous deflections. For the unreinforced deck (B), the increase
from SLS deflection to the total deflection (for oc+100% and wi+50%) is 16.0% at maximum.
For the reinforced deck (C) this percentage is 12.6%, and for the deck with straight tendons
(D) this percentage is 14.5%

Figure 8.10: Deflections at t = 50 years including uncertainty of creep curves

8.2 Moment decrease

Because of the long-term creep of the timber deck, losses will occur in the prestress mate-
rial. This will change the bending moment resistance over time. The model as explained in
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Chapter 7 is used to analyze this behaviour. The model is executed for timesteps up to 50
years (= 438000 hours) and for 50 x-values over span 1.

8.2.1 Creep strains

Executing the model results in a matrix for the bending strains εb over time, and a matrix
for the axial strains εn over time. As explaind in Section 7.3, the strains are calculated at
the location of the prestress tendons, denoted with zi . To find the change in strains ∆εtot

(= creep strains) with respect to the initial strains, the initial strains are subtracted from the
strains calculated at every time instant:

Axi al cr eep str ai ns : ∆εn,t = εn,t −εn,t0 (8.2a)

Bendi ng cr eep str ai ns : ∆εb,t = εb,t −εb,t0 (8.2b)

Cr eep str ai ns : ∆εtot =∆εn,t +∆εb,t (8.2c)

In Section 8.2.2, these creep strains are used to determine the moment resistance decrease
due to creep of the prestress tendons. The creep strains are calculated for varying values for
the initial prestress force. To sketch the behaviour, this is presented in Figure 8.11 - 8.13 for
a prestressed deck with parabolic tendons, no reinforcement. Where t is the time in hours,
t = 438000 hours corresponds to 50 years. The horizontal axis is the longitudinal coordinate
x. What can be seen from the increasing initial prestress force, is that at a certain point the
moments due to prestress become larger than the moments due to the creep load moment.
This implies that the initial deflection will be negative, which means a deflection in upward
direction. Therefore, the bending creep strains in Figure 8.13 become negative. Also, with
increasing initial prestress force, the strains due to axial shortening become relatively larger
while the bending strains become smaller. For an initial prestress force of 1000 kN, the axial
strains are relatively small. Increasing the prestress force to 3000 kN and 5000 kN will give
much larger strains due to axial shortening.

(a) Axial and bending strain differences (b) Total strain differences

Figure 8.11: Strain differences for P = 1000 kN
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(a) Axial and bending strain differences (b) Total strain differences

Figure 8.12: Strain differences for P = 3000 kN

(a) Axial and bending strain differences (b) Total strain differences

Figure 8.13: Strain differences for P = 5000 kN

8.2.2 Moment decrease

The creep strains are calculated for the governing location, where the action moment is
largest. With these creep strains, the decrease in moment resistance can be calculated. The
creep strains are presented for varying initial prestress forces in Figure 8.14 . The models
are executed for prestress forces up to 6000 kN. For prestress forces bigger than 6000 kN,
the models give initial bending stresses (σcp ) of in between 15 to 18 N/mm2, which already
comes close the maximum bending strength of timber. So higher prestress forces could lead
to failure of the deck. The graphs in Figure 8.14 are not linear. This is most clear in the
graphs for the unreinforced variants (A) and (B) between an initial prestress force of 2000
- 3000 kN. It can also be seen from the unreinforced variant with smaller span (E), where
the non-linearity occurs between 1000 and 2000 kN. Also the reinforced variants show this
non-linearity. In these cases the non-linearity is smaller because of their increased stiffness.
Only the variant with the straight prestress tendons (D) seems to have a graph without non-
linearities. The non-linearity is explained by the total moment that changes sign. At lower
initial prestress forces, the total moment (creep load model + prestress loads) is still posi-
tive. In this case the creep load model causes bigger moments than the prestress loads. By
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increasing the initial prestress force, the prestress moments become higher than the creep
load model, leading to a negative deflection. According to the model, this non-linearity due
to change of moment sign is bigger for the unreinforced variants. It also stands out that de-
creasing the span from L = 30000 to 25000 mm, increases the strain losses: graph (E) is below
(B) and graph (F) is below graph (C).

Figure 8.14: Change in strains of the prestress material due to creep

The creep strains are also calculated based on the conservative creep curves from Figure 8.5.
These are presented in Figure 8.15. The creep strains increase up to 37% and 39% for an
unreinforced (B) and reinforced (C) deck respectively. For the reinforced deck with straight
tendons (D), the creep strains increase up to 31%. The creep strains for the deck with the
straight tendons are smaller than those of the deck with parabolic tendons. The reason for
this is that the bending creep strains become relatively larger than the axial creep strains
because the deflections for the straight tendons are larger than the parabolic tendons.

Figure 8.15: Change in strains (solid line), change in strains for conservative creep curves
(dotted line)
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The Python model is used to calculate the decreased bending moment resistance due to the
creep strains. The creep strains∆εtot are substituted into the Python model for a prestressed
cross-section. At the initial elastic bending moment resistance, the strain in the prestress
material is εtb,r n f (see Section 5.3.2). By taking into account the creep strains in the prestress
material, the change in strains should be summed up with this initial strain. Then, the final
strain will be:

εtb,r n f ,t = εtb,r n f +∆εtot (8.3)

By substituting Equation 8.3 into the Python model, the decreased elastic bending moment
resistance of the cross-section at t = 50 years (= 438000 hours) can be calculated. The result-
ing final resistance is presented in Figure 8.16. Only the reinforced- (B) and non-reinforced
(C) decks with parabolic tendons are shown. The deck with straight tendons (D) has the
same initial resistance as the reinforced deck (C). For clarity of the figure, (D) is not shown.
The percentual bending resistance decrease is shown in Figure 8.17, also for the deck with
straight tendons. The percentage is the decrease of the bending resistance at 50 years with
respect to the initial bending resistance.

Figure 8.16: Final elastic resistances due to creep strains in prestress material

Figure 8.17: Change bending moment resistance at t = 50 years
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According to the model, the straight tendons have an elastic bending moment decrease of
4.0% based on the original creep curve. With the conservative creep curve, this percent-
age decrease becomes 5.6%. The reinforced section with parabolic tendons has a slightly
larger bending moment decrease of 4.8% (original creep curve) and 6.6% (conservative creep
curve). For a non-reinforced section, the bending moment decrease is much larger than the
reinforced sections: 7.1% and 9.8%.

It can be seen that for initial prestress forces up to approximately 2000 kN, the graphs in both
figures show a linear behaviour along the increasing prestress force. After 2000 kN, a non-
linear behaviour occurs because at that point, the strain changes from Figure 8.14 also show
a non-linear behaviour. The reason for the non-linear behaviour is that around a prestress
force of 2000 kN, the moment due to prestress becomes bigger than the moment due to
the creep loads. From that point, the strains due to bending creep also become negative,
resulting in higher total strain changes according to Equation 8.2.

8.3 Span variation

The span length L is varied to analyze the effect of the slenderness of the bridge deck. For the
previous results, the span was kept constant at 30 meters (unless stated otherwise). In this
section, spans of 25 and 35 will be analyzed. Resistance and deflections graphs are produced
based on a reinforced deck with parabolic prestress tendons. Interpretation of these results
regarding the slenderness is presented in the conclusion in Chapter 10.

8.3.1 L = 25 meters

The deflection is presented in Figure 8.18 for structural deck heights of 860, 760 and 700 mm.
If also the asphalt layer of 140 mm is taken into account, these deck heights correspond to a
slenderness of 25.0, 27.8 and 29.8 respectively. The total deflection is based on the original
creep curve. For the deck with a height of 700 mm, also the total deflection based on the
conservative creep curve is displayed. The total deflection decreases due to prestressing are
79%, 73% and 68% for deck heights of 860, 760 and 700 mm.

The elastic bending moment resistance is presented in Figure 8.19. The resistance including
losses is based on the original creep curve. For the deck with a height of 700 mm also the
resistance based on the conservative creep curve is displayed. For a span of 25 meters, the
maximum ULS bending moment is 2848 kNm, see Figure 4.5a. From the graph can be seen
that all resistances are above the ULS bending moment. The increase of bending moment
resistance (including losses) for P = 6000 kN with respect to zero prestress force is 13.9%,
15.8% and 17.1% for deck heights of 860, 760 and 700 mm.
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Figure 8.18: Deflections for varying initial prestress force based on a span of 25 meters

Figure 8.19: Elastic bending moment resistances for varying initial prestress forces based on
a span of 25 meters

8.3.2 L = 35 meters

The deflection is presented in Figure 8.20 for structural deck heights of 900, 1000 and 1100
mm. The total height of the deck also includes an asphalt layer of 140 mm. The total deck
heights are larger than the initial objective (see Section 1.4.2) of 1000 mm. However, also
concrete solution have larger deck height for spans of over 35 meters. The slenderness of
these total deck heights including asphalt layer is 33.7, 30.7 and 28.2. It can be seen that the
deflection of the slender deck of 900 mm high deck becomes very large. The total deflection
decreases due to prestressing are 51%, 56% and 61% for deck heights of 900, 1000 and 1100
mm.

The elastic bending moment resistance is displayed in Figure 8.21. For a span of 35 meters,
the maximum action moment in ULS is 4854 kNm, see Figure 4.5c. It can be seen that the
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Figure 8.20: Deflections for varying initial prestress force based on a span of 35 meters

bending moment resistance is still larger than the action moment. The increase of bending
moment resistance (including losses) for P = 6000 kN with respect to zero prestress force is
13.0%, 12.2% and 11.1% for deck heights of 900, 1000 and 1100 mm.

Figure 8.21: Elastic bending moment resistances for varying initial prestress forces based on
a span of 35 meters
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9. Discussion

In practice, the creep deflections should be calculated according to the kde f factor from Eu-
rocode 5. According to Eurocode, the deflections should be based on SLS loads. To obtain
the creep deflections, the SLS deflections should be multiplied by kde f . This is a very conser-
vative assumption because in reality, the actual loads are much smaller than the SLS loads
for a large part of the time. For more realistic results, the creep model in this research is
based on a conservative approximation of ’normal’ traffic loads. According to Eurocode, a
service class 2 already gives a kde f factor of 1.8. Going to a service class 3, kde f even increases
this factor to 3. These factors give much more conservative creep deflections than the creep
deflections calculated from the long-term model in this research.

The creep model in this research gives a more realistic calculation for creep deformations of
a timber deck. The conservative approach of Eurocode would give much larger deflections,
resulting in increased deck height. Meaning that it would be more difficult to compete to the
slenderness of reinforced concrete variants. However, some factors still cause uncertainty in
the creep model of this research. Creep of the timber deck is based on two models from liter-
ature: the one of Gowda [37] for axial behaviour, and the one from O’Ceallaigh [38] for bend-
ing behaviour. The boundary conditions of both literature studies are different from those of
the bridge deck in this research. The duration of Gowda was 4 years and of O’Ceallaigh was
1.5 year. The creep curves where then extrapolated, see Figure 7.11. Meaning that there is a
significant uncertainty of creep behaviour up to 50 years, which is used for this research. Be-
sides, both literature studies experimented with beams that had much smaller dimensions
than the timber deck for this research. Also the climate conditions of O’Ceallaigh were kept
constant at 20°C, with a regulated humidity. This is very different from an outdoor climate.
All these factors incorporate uncertainty in the creep curves. To check whether the results are
accurate, experiments with reinforced- and prestressed timber decks should be done. These
experiments should be done based on longer periods of time. Then, less uncertainty will be
caused by extrapolation of the creep curves. Also, the dimensions of the beams from Gowda
and O’Ceallaigh are not represetative for the dimensions of the bridge deck. It is unknown
whether larger dimensions might induce more creep deflections. The long-term model can
be calibrated based on more representative experiments with timber decks, increasing the
final reliability of the outputs.

In this research, only the elastic bending moment resistance is taken into account for a pre-
stressed deck. No increase of plastic moment resistance is taken into account. According
to Section 6.1.1 and 6.1.2, the elastic bending moment resistance for a reinforced deck can
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be increased by 30 to 40% before reaching the plastic resistance. It is expected that approx-
imately the same bending moment increase can be obtained by a prestressed deck. There-
fore, the elastic bending moment resistances can be increased to a plastic bending moment
resistance. However, according to the results, the deflection is the governing factor for the
maximum slenderness of the deck. Therefore, no plastic moment resistance for a prestressed
deck is taken into account. For further optimization steps, implementation of a plastic mo-
ment resistance for a prestressed deck can be done in future work.
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10. Conclusion

Reinforcement- and prestressing layouts

The results of the cross-sectional model show that there exists a trade-off between stiff-
ness and the ability to plastify. A timber deck with reinforcement in the tension side will
be able to reach a higher bending moment resistance because of plastification of the cross-
section. A timber deck with evenly distributed reinforcement over tension and compression
side (50%/50%) will have the highest stiffness. However, a 50%/50% reinforced deck will
also show a brittle failure. Adding prestress to a 50%/50% reinforced deck introduces a con-
stant compression stress and a counteracting moment. The compression stress causes the
tension in the bottom to be smaller and the compression in the top to be larger, which will
trigger plastification instead of brittle failure. Therefore, prestressing a 50%/50% reinforced
deck will, besides large stiffness, also incorporate ductily. After reaching the elastic bending
moment resistance, the resistance will increase due to plastification of the deck. Therefore,
more safety is taken into account

Time-dependent deformations

The time-dependent deformations are calculated using the long-term model that is based on
ODE relations combined with the viscoelastic E-modulus. Based on the long-term model,
creep deformations are calculated for deck sections with or without additional reinforce-
ment, straight or parabolic prestress tendons, different deck heights and different spans.

With respect to a pure timber deck (non-reinforced, non-prestressed), the long-term model
gives large decreases in creep deflections. The pure timber deck had a creep deflection of
51 mm based on the original creep curve. According to the model, this creep deflection is
reached after 50 years. By adding prestress tendons and/or reinforcement, decreased creep
deflections were obtained. Following cases were investigated:

1. Non-reinforced, parabolic tendons

2. Reinforced deck, parabolic tendons

3. Reinforced deck, straight tendons

For these cases, decreased creep deflections were obtained (based on the original creep
curves). Based on the original creep curve, the creep deflection of a pure timber deck was 51
mm. The decreased creep deflections for cases 1, 2, and 3 are displayed as wcr eep in Table
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10.1. A range of wcr eep is given since it depends on the prestress force. The values correspond
to a prestress force from 0 to 6000 kN. The creep deflection based on the conservative creep
curve (oc+100%, wi+50%) is 100 mm for the pure timber deck. For cases 1, 2 and 3, creep
deflections based on the conservative curve are displayed as wcr eep (oc +100%, wi +50%) in
Table 10.1. For the creep deflections based on the original and conservative creep curves,
cases 1 and 2 will creep in upward direction for higher prestress forces. So: by choosing the
right prestress force, the creep deflection can be decreased to 0. In this case, the creep due
to the action loads is exactly compensated by the creep due to the prestress loads.

According to Section 8.1.2, deck with prestress forces up to 2000 kN result in the largest creep
deflections. Even in these cases, the creep deflections are only a relatively small percentage
of the total deflection. These percentages are displayed in Table 10.1 for the conservative
creep curves. Even based on these conservative creep curves, the percentages are 16% at
max. The other part of the total deflection exists of the instantaneous deflection based on
the SLS load model

wcr eep (for
P = 0 to 6000 kN)

wcr eep

(oc+100%, wi+50%)
Part of creep deflection to total deflection

(oc+100%, wi+50%)

1 28 to -15 mm 41 to -30 mm 16%
2 13 to 0 mm 21 to -1 mm 13%
3 15 to 4 mm 24 to 6 mm 15%

Table 10.1: Creep deflection decrease for different deck cases, L = 30 m and h = 860 mm

According to the results from the long-term model, it can be concluded that the creep de-
flection can be decreased to zero by choosing the right prestress force. It should be noted
however, that the instantaneous deflections based on the SLS loads play a much bigger role
in the total deflection. From the graphs in Sections 8.1.1 and 8.3 can be seen that a large
decrease in instantaneous deflection is obtained by incorporating prestress. This is summa-
rized in Table 10.2 for different cases. The percentage in Table 10.2 is the decrease in deflec-
tion with respect to a deck section with 0 prestress force. Depending on the height of the
deck, the decrease in instantaneous deflection may vary. It can also be seen that the straight
tendons are less efficient in decreasing the deflection than the parabolic tendons. Based on
the results of the model, it can be concluded that prestressing decreases the instantaneous
deflection by a great amount.

unreinf, parabolic tendon, L = 25 m -79% for h = 860
unreinf, parabolic tendon, L = 30 m -58 to -71% for h = 800 to 1000 mm

reinf, parabolic tendon, L = 25 m -68 to -80% for h = 700 to 860 mm
reinf, parabolic tendon, L = 30 m -60 to -62% for h = 800 to 860 mm
reinf, parabolic tendon, L = 35 m -51 to -61% for h = 900 to 1100 mm
reinf, straight tendon, L = 30 m -32% for h = 860

Table 10.2: Instantaneous deflection decrease by incorporating a prestress force of 6000 kN
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Long-term prestress losses and final deck resistance

Because of creep, prestress losses will occur due to shortening of the prestress tendons. This
is modelled with the long-term model. The creep strains become larger with increasing
prestress force. Therefore, the decrease in bending moment resistance becomes larger for
increased prestress forces. Because of uncertainty in the original creep curves, the creep
strains were also calculated for the conservative creep curves (oc+100%, wi+50%). This re-
sulted in significant increase of creep strains: up to 31 - 39% with respect to the original
creep curves (depending on the deck configuration). By implementing these creep strains
into the cross-sectional model, the decreased elastic bending moment resistances due to the
prestress losses were found. From the graphs in Section 8.2.2 and 8.3 can be seen that the
decrease in bending moment resistances is relatively small. The percentual decrease of the
elastic bending moment resistance is presented in Table 10.3. These bending moment de-
creases are based on an initial prestress force of 6000 kN. For smaller initial prestress forces,
the bending moment decrease will be smaller because a smaller initial prestress force will
induce less prestress losses.

original creep
curve

conservative creep curve
(oc+100%, wi+50%)

unreinf, parabolic tendon (L = 25 m, h = 860 mm) -7.8 % -11.2%
unreinf, parabolic tendon (L = 30 m, h = 860 mm) -7.1% -9.8%

reinf, parabolic tendon (L = 25 m, h = 700 mm) -5.6% -7.2%
reinf, parabolic tendon (L = 30 m, h = 860 mm) -4.8% -6.6%

reinf, parabolic tendon (L = 35 m, h = 1000 mm) -4.1% -6.0%
reinf, straight tendon (L = 30 m, h = 860 mm) -4.0% -5.6%

Table 10.3: Decrease of elastic bending moment resistance at t = 50 years for an initial pre-
stress force of 6000 kN

Taking into account the decrease of elastic bending moment over time, the total moment
increase due to prestressing is presented in Table 10.4. The bending moment increase is cal-
culated with respect to a prestress force of 0 kN. It stands out that a larger unreinforced span
will increase the percentual increase of bending moment resistance, while a larger reinforced
span will decrease the percentual increase of bending moment resistance.

original creep
curve

conservative creep curve
(oc+100%, wi+50%)

unreinf, parabolic tendon (L = 25 m, h = 860 mm) 28.6% 23.4%
unreinf, parabolic tendon (L = 25 m, h = 860 mm) 31.6% 25.6%

reinf, parabolic tendon (L = 25 m, h = 700 mm) 17.1% 14.4%
reinf, parabolic tendon (L = 30 m, h = 860 mm) 15.2% 11.9%

reinf, parabolic tendon (L = 35 m, h = 1000 mm) 11.1% 9.3%
reinf, straight tendon (L = 30 m, h = 860 mm) 14.8% 13.0%

Table 10.4: Increase of elastic bending moment resistance at t = 50 years for Pi ni = 6000 kN
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Slenderness

All deck configurations are subdivided into following groups:

• Pure timber decks: no reinforcement and prestress tendons are present

• Reinforced deck: 1% reinforcement is present in a 50% top, 50% bottom configuration.
No prestress is added.

• Prestressed deck: prestressed tendons with parabolic profile, prestress force is 6000
kN. Contains no reinforcement.

• Prestressed- and reinforced deck: prestress tendons with parabolic layout, prestress
force is 6000 kN. In combination with 1% reinforcement in a 50% top, 50% bottom
configuration.

• Straight tendons and reinforcement: prestressed deck with straight tendons, pre-
stress force is 6000 kN. In combination with 1% reinforcement in a 50% top, 50% bot-
tom configuration.

Slenderness for deflection

The total deflections at t = 50 years are plotted against the slenderness for all deck configura-
tions in Figure 10.1. As a reference, the deflection values from Section 4.5 are also presented
in the figure. The plots show a clear distinction between the different deck configuration
groups, shown in blue, grey, green, and yellow. The pure timber group shows the largest de-
flections. A clear decrease of deflection for the same slenderness is found for the reinforced
group. According to the plots, a larger slenderness can be obtained by prestress (green group)
than by reinforcement (grey group). The average line of the prestressed-reinforced decks
(yellow group) lies slightly below the only prestressed decks (green group). So a little slen-
derness increase can be obtained by reinforcing an already prestressed deck. The reinforced-
and prestressed deck with straight tendons show larger total deflections.

Eurocode gives guidelines of deflections for timber bridges: L/500 to L/400, see Section 4.5.
These deflection values can be reached with a prestressed- and reinforced deck according to
the results. Taken into account a deflection limit of L/400, a slenderness of around 31 can
be reached. The guidelines for deflections of beams give limits of L/300 to L/150. For L/300,
a slenderness of up to 33 can be reached. No results are produced for higher slendernesses.
If the results would be extrapolated, a slenderness of over 35 could probably be reached ac-
cording to the model for the limit L/150.

Slenderness for strength

The relative bending moment resistance at 50 years is plotted against the slenderness in Fig-
ure 10.2. The relative bending moment is calculated by the elastic bending moment resis-
tance at t = 50 years divided by the ULS moment from Section 4.2.2. Meaning that for all
points above a relative bending moment resistance of 1.0, following applies: elastic resis-
tance > ULS action.
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Figure 10.1: Slenderness and corresponding deflection for all investigated deck configura-
tions (values in the legend are structural deck height ht i mber and span L)

Figure 10.2: Slenderness and corresponding relative bending moment resistance for all in-
vestigated deck configurations (values in the legend are structural deck height ht i mber and
span L)

It can be seen that, on average, the group of prestressed- and reinforced decks (yellow) have
the largest relative bending moment resistance. The prestressed group (green) has smaller
relative bending moment resistance than the reinforced group (grey). This is because the
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reinforcement allocation is 50% top, 50% bottom. This results in a larger elastic bending
moment resistance than a prestress tendon in the bottom of the deck section. According to
Section 6.2, the deck sections of the prestressed group will be able to plastify (= increased
plastic moment resistance) after reaching the elastic bending moment resistance due to the
fact that the tendons are located at the lower side of the beam. The reinforced deck will fail
at the elastic limit because with a 50%-50% configuration, the maximum tension stress is
reached at the same moment as the maximum compression stress. Meaning that the beam
will fail on tension before plastification will happen.

Based on the results, a slenderness of at least 34 can be reached with a prestressed- and
reinforced deck. It should be noted that the results are based on an elastic bending moment
resistance. The prestressed- and reinforced deck will be able to reach an increased plastic
bending moment resistance after reaching the elastic limit. Therefore, it is expected that a
slenderness of over 36 can be reached for the bending moment resistance.

Final slenderness

The goal for this research was a timber deck with a slenderness of around 30. With this slen-
derness, timber bridge variants are able to compete to reinforced concrete variants. Accord-
ing to the outcomes of the models, a slenderness of 31 can be reached based on the deflec-
tion guidelines of Eurocode. Depending on the strictness of the deflection limits required by
the client, the slenderness might be increased to 33. If there are no requirements regarding
deflections, the maximum slenderness should be based on strength. In this case a slender-
ness of at least 34 can be reached. If also the plastic bending moment resistance would be
taken into account, the slenderness could reach 36 according to the results.
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A. Design options

First, a logical cross-section design of the deck must be chosen. This is a difficult task regard-
ing the endless options that are possible. Regarding the scope of this research, the final goal
is a timber deck system with a restricted height of +/- 1000 mm. Therefore, truss systems and
arch solutions can already be dropped. Looking at existing concrete bridge designs, it can be
seen that several structural forms are often used. Most simple form is a design with longitu-
dinal beams that carry the load from the deck to the supports. More optimal solutions that
are often used are box girder type decks. Which have several mechanical advantages over
beam systems. Also concrete slab decks are used. They are less efficient in terms of material
use, but increase the slenderness of the deck. These structural options are checked in terms
of timber design.

Properties of timber decks can further be increased by applying high grade lamellaes on the
outsides of the deck, this can increase the moment resistance to a great extend. An other
option of increasing the capacity of a timber deck is by reinforcing it. From concrete mem-
bers we know that this reinforcement can also be prestressed to obtain even better member
properties.

A.1 Multi Criteria Analysis

Previous concepts are all analysed in terms of timber design using a Multi Criteria Analysis
(MCA). Every criteria is given a certain weight factor up to 10 to include its relative impor-
tance. The criteria that are taken into account are explained below. The MCA and outcomes
are presented in Figure A.1. It can be seen that the box type and slab type score high. With
a sensitivity analysis is checked how weight factors and input influence the MCA outcome.
This also results in a low score for the beam type, so this option is not considered further.
The sensitivity analysis gives a small score increase of the box type. The final conclusion is
that the slab type is the best option for a slender deck design. The box type is the best option
for an optimal balance between the slenderness and the rest of the criteria. Therefore, both
these types will be analysed further.

Cross-section height of the deck is the most important criteria (also see the problem state-
ment in section 1.2) according to client demands. A big focus lies on the slender design of
the bridge deck. Therefore this criteria is given weight factor 10.

Transverse force distribution will help to spread the loads over the total width of the deck.
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Figure A.1: MCA of the three proposed bridge deck solutions

Low transverse force distribution induces high local loads. Therefore, only a small part of
the total cross-section is used, requiring increased dimensions. So, good transverse force
distribution is important for slender designs.

Ease of fabrication also considers the transportation possibilities and on site assembling of
the structural parts. Fabrication difficulties can increase the total project costs. However, it
is considered of less importance than previous criteria.

Material efficiency is obtained by allocating material further from the neutral axis, which
will decrease the total required amount of material. However, this is at the expense of the
slenderness. Which is in this case much more important than an efficient material use.

Ease of prestress application will ultimately decrease costs. Prestress cables can easily be
located in slots where some small timber lamellaes are left out. The difficult part is the con-
nection between the ends of the cables and the deck. More deck material makes is easier to
connect high prestress forces to the deck ends because changes of timber crushing is smaller.

A.2 Cross-section analysis

First simple cross-section resistance calculations are made to be able to compare the slab
deck and box deck for several strengthening options (see Figure A.2). For these options, only
the moment resistance is considered because in general, this is the governing factor for hor-
izontal slender members. This moment resistance is calculated per unity width. So the total
slab bridge cross-section is composed of multiple times alternative (1). And the total box
girder cross-section is composed of multiple I-profiles as in (2) to (7).

105



Figure A.2: Deck options

The governing equations to calculated the resistance for the different design options can be
found in Appendix B.

A.2.1 Calculations

A first estimation of the resistance of the previous deck options is done by inserting some
first values as input parameters. The options (1), (2), (3) and (4) are compared to each other.
Options (5), (6) and (7) are not yet calculated because these are combinations of the other
options. Calculations of (5), (6) and (7) are done in later stage of this research.

Input parameters:
h = 800 [mm]
b = 1000 [mm]
hw = 400 [mm]
bw = 400 [mm]
t f l = 200 [mm]
tr n f = 20 [mm]

fm = 25 [N/mm2]
fm, f l = 40 [N/mm2]
fm,w = 25 [N/mm2]

Eg l = 12000 [MPa]
E f l = 16000 [MPa]
Ew = 12000 [MPa]
Er n f = 200000 [MPa]
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Following resistance moments are obtained for the different options:

MR,el MR,pl

(1) 2667 - [kNm]
(2) 2467 - [kNm]
(3) 3893 - [kNm]
(4) 3243 4174 [kNm]

Table A.1: Resistance moments for different cross-sections

A.3 Design choice

From the comparison between option (1) and (2) follows that the full timber slab has a
slightly higher capacity. However, the box section requires much less material and is there-
fore more efficient. Which is the basic idea of an I-beam. Then, two methods of further
increasing the capacity of a box section are applied. These methods result in much higher
resistant moments and could therefore reach higher slenderness. Conclusions about the ul-
timate moment resistance of option (3) and (4) can not really be drawn since the input values
are still chosen from possible ranges. For these input values, option (4) has a slightly higher
ultimate moment resistance than option (3). However, the biggest advantage of the rein-
forced section (4) is that it shows plastic behaviour. This happens because the high stiffness
of the reinforcement allows for a great downward shift of the neutral axis of the cross-section.
This causes the ductile compression failure to happen earlier than the brittle tensile failure.
This leads to an overall ductile failure mode in bending. Meaning that after reaching the
elastic limit, plastic deformations allow for further increased capacity. This way, elastic be-
haviour only has to go up to the serviceability limit state. After this point, the ultimate limit
states can be reached by plastic behaviour. This makes the cross-section more efficient since
a bigger part of the material reaches its capacity. The problem of option (3) is that it is likely
to fail in a brittle manner. No plastic deformations will occur before the maximum capacity
is reached. This means that only elastic material behaviour can be used, also in the ultimate
limit states. This makes option (3) a less optimal solution than option (4). Another possi-
bility of further increasing the capacity of (4) is by prestressing the reinforcement material
(5). This prestressing exerts an initial moment that compensates the moment from loading,
meaning that a higher action moment can be applied. Also an initial compression force is
exerted on the cross-section by prestress, which will trigger the ductile compression failure
in the top of the beam.

For previous stated reasons, a bridge deck option with prestressed reinforcement (5) is re-
garded as the most promising design for a slender timber deck. This option is further in-
vestigated in this research. In a prestressed timber cross-section, the compression failure
may be present too dominantly. Therefore, also options (6) and (7) might be analysed for a
stronger compression side of the beam.
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B. Governing equations

This Appendix gives the governing equations for the deck sections (1) to (4) in Figure B.1. For
simplicity, deck sections (5) to (7) are not calculated.

Figure B.1: Deck options

B.1 Timber slab (1)

The timber slab resistance can be calculated with following simple formulas. A timber cross-
section is very likely to have a brittle failure at the elastic limit. Therefore, only an elastic
resistant moment can be taken into account.

Isl ab = 1
12 ·b ·h3

MR = fm · Isl ab

h/2
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B.2 Timber box section (2)

The moment resistance of a part of a multibox girder can be calculated with the same for-
mulas as for the slab type (1).

Ibox = 1
12 ·b ·h3 − 1

12 · (b −bw ) · (h −2t f )3

MR = fm · Ibox

h/2

B.3 Hybrid timber box section (3)

The resistant moment of a hybrid timber section can be calculated based on the strain and
stress diagram. Again, only an elastic moment resistance is taken into account.

Maximum elastic strains (after these limits, the timber yields):

ε f l ,y =
fm, f l

E f l

εw,y =
fm,w

Ew

Strain at the web when top of the flange reaches maximum elastic strain:

εw = ε f l ,y

h/2
· hw

2

Corresponding Forces:
F f l = E f l ·0.5(ε f l ,y +εw ) ·b · t f l

Fw = Ew ·0.5εw ·bw · hw

2

Lever arms of the forces:

zw = 2

3

hw

2

z f l = z + hw

2

where z is the centroid of a rectangle with one skewed side:
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z =
1
2 (ε f l ,y −εw ) · t f l · 2

3 t f l +εw · t f l · 1
2 t f l

1
2 (ε f l ,y −εw ) · t f l +εw · t f l

Moment resistance:
MR = 2 ·F f l · z f l +2 ·Fw · zw

B.4 Reinforced timber box section (4)

Elastic equations

For the reinforced section, an elastic and plastic resistance can be calculated. Putting rein-
forcement in the lower side of the box flange will trigger the ductile compression failure in
bending. Therefore, an elastic- and a plastic resistant moment is calculated.

Calculating the elastic neutral axis:
A f l ,t = b · t f l

Aw = bw ·hw

A f l ,b = b · (t f l − tr n f )
Ar n f = b · tr n f

Distance from top of the section to centre of gravity of the specific part:

y f l ,t = t f l

2

yw = (t f l + hw
2 )

y f l ,b = t f l +hw + t f l−tr n f

2

yr n f = h − tr n f

2

yel =
Eg l · A f l ,t · y f l ,t +Eg l · Aw · yw +Eg l · A f l ,b · y f l ,b +Er n f · Ar n f · yr n f

Eg l · (A f l ,t + Aw + A f l ,b)+Er n f · Ar n f

Strain values (based on similar triangles):

ε f l ,t =
fm

Eg l

εw,t =
ε f l ,t

yel
· (yel − t f l )
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εw,b = ε f l ,t

yel
· (t f l +hw − yel )

ε f l ,b = ε f l ,t

yel
· (h − yel − tr n f )

ε f l ,r n f =
ε f l ,t

yel
· (h − yel )

Corresponding forces:
F f l ,t = Eg l · 1

2 (ε f l ,t +εw,t ) · t f l ·b

Fw,t = Eg l · 1
2εw,t · (yel − t f l ) ·bw

Fw,b = Eg l · 1
2εw,b · (t f l +hw − yel ) ·bw

F f l ,b = Eg l · 1
2 (εw,b +ε f l ,b) · (t f l − tr n f ) ·b

F f l ,r n f = Er n f · 1
2 (ε f l ,b +ε f l ,r n f ) · tr n f ·b

Leverarms of the forces:

z f l ,t =
1
2 (ε f l ,t −εw,t ) · t f l · 2

3 t f l +εw,t · t f l · 1
2 t f l

1
2 (ε f l ,t −εw,t ) · t f l +εw,t · t f l

+ (yel − t f l )

zw,t = 2
3 (yel − t f l )

zw,b = 2
3 (t f l +hw − yel )

z f l ,b =
1
2 (ε f l ,b −εw,b)(t f l − tr n f ) · 2

3 (t f l − tr n f )+εw,b(t f l − tr n f ) · 1
2 (t f l − tr n f )

1
2 (ε f l ,b −εw,b) · (t f l − tr n f )+εw,b · (t f l − tr n f )

+ (t f l +hw − yel )

z f l ,r n f =
1
2 (ε f l ,r n f −ε f l ,b)tr n f · 2

3 tr n f +ε f l ,b · tr n f · 1
2 tr n f

1
2 (ε f l ,r n f −ε f l ,b) · tr n f +ε f l ,b · tr n f

+ (h − yel − tr n f )

Elastic moment resistance:
MR,el = z f l ,t ·F f l ,t + zw,t ·Fw,t + zw,b ·Fw,b + z f l ,b ·F f l ,b + z f l ,r n f ·F f l ,r n f

Plastic equations

For the plastic moment resistance, the assumption is made that the timber in compression
has failed over the height of the top flange.

Maximum elastic strain is reached at the top of the web:

εw,t = fm

Eg l

Plastification is taken into account by non-linear behaviour. Because of plastic deforma-
tions, the neutral axis of the cross-section shifts downwards. This is taken into account by
the variable x in followings equations.

Strains based on εw,t :

ε f l ,t =
εw,t

x
· (x + t f l )

εw,b = εw,t

x
· (hw −x)
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ε f l ,b = εw,t

x
· (hw −x + t f l − tr n f )

ε f l ,r n f =
εw,t

x
· (hw −x + t f l )

Corresponding forces:
F f l ,t = fm · t f l ·b

Fw,t = Eg l · 1
2 epsw,t · x ·bw

Fw,b = Eg l · 1
2 epsw,b · (hw −x) ·bw

F f l ,b = Eg l · 1
2 (εw,b +ε f l ,b) · (t f l − tr n f ) ·b

F f l ,r n f = Er n f · 1
2 (ε f l ,b +ε f l ,r n f ) · tr n f ·b

The total sum of forces should be set equal to zero to obtain equilibrium:
F f l ,t +Fw,t +Fw,b −F f l ,b −F f l ,r n f = 0

x is the only unknown in this equation. Sum of forces can be solved for x.

Leverarms of the forces:
z f l ,t = x + 1

2 t f l

zw,t = 2
3 x

zw,b = 2
3 (hw −x)

z f l ,b =
1
2 (ε f l ,b −εw,b)(t f l − tr n f ) · 2

3 (t f l − tr n f )+εw,b(t f l − tr n f ) · 1
2 (t f l − tr n f )

1
2 (ε f l ,b −εw,b)(t f l − tr n f )+εw,b(t f l − tr n f )

+ (hw −x)

z f l ,r n f =
1
2 (ε f l ,r n f −ε f l ,b)tr n f · 2

3 tr n f +ε f l ,b tr n f · 1
2 tr n f

1
2 (ε f l ,r n f −ε f l ,b)tr n f +ε f l ,b tr n f

+ (hw −x + t f l − tr n f )

Plastic moment resistance:
MR,pl = z f l ,t ·F f l ,t + zw,t ·Fw,t + zw,b ·Fw,b + z f l ,b ·F f l ,b + z f l ,r n f ·F f l ,r n f
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C. Standard viaducts

Figures below display continuous two span concrete viaducts that are common in the Nether-
lands. Spans are displayed in meters.
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D. Timoshenko ODE system

This Appendix shows that the shear deformations of the bridge deck can be neglected. The
Euler-Bernoulli deflection is calculated according to the ODE relations in Section 7.1.2. The
Timoshenko deflection is calculated using the relations below which also incorporate the
shear stiffness of the bridge deck.

D.1 Timoshenko equations

Coupled Differential Equations for the Timoshenko system:

E I
d 2φ

d x2
−G Ae f f

(
d w

d x
+φ

)
= 0 (D.1a)

G Ae f f

(
d 2w

d x2
+ dφ

d x

)
=−q (D.1b)

Kinematic relations:

γ= d w

d x
+φ (D.2a)

κ= dφ

d x
(D.2b)

Constitutive relations:

V =G Ae f f γ (D.3a)

M = E Iκ (D.3b)

Equilibrium equations:

q =−dV

d x
(D.4a)
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V = d M

d x
(D.4b)

D.2 Results

Both the Bernoulli-Euler and Timoshenko systems are solved for the boundary conditions
based on a simply supported beam with a span of 30000 mm and a cross-section of 1000
x 1000 mm. Values for the stiffnesses of timber are assumed at E = 13500N /mm2 and G =
850N /mm2 and the load is q = 20kN /m. The results are plotted in Figure D.1. The Tim-
oshenko deflection is only 2 mm higher than the Euler-Bernoulli deflection, which comes
down to approximately 1%.

Figure D.1: Euler-Bernoulli and Timoshenko deflection
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