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This paper proposes a controller design for the electric pump of a deep-throttling rocket engine. The 
nonlinearity of the system is taken into consideration by analyzing the gap metric. Then, proportional-
integral-derivative controller and gain-scheduling linear quadratic regulator are designed. Analyzing the 
amplitude- and phase-frequency characteristics as well as the pole-zero distribution of the system, the 
results show that the designed controllers can stabilize the linearized equations in incremental form 
at different operating points. This indicates that these two controllers are available for the original 
system in the whole range of working conditions and this is verified in the simulation. Meanwhile, 
the comparison between proportional-integral-derivative controller and gain-scheduling linear quadratic 
regulator is presented. It demonstrates that the proportional-integral-derivative controller is better at 
tracking both step and ramp signals but with worse control signals. It means that the proportional-
integral-derivative controller seems less suitable for real use due to severe oscillations. Meanwhile, the 
parameter tuning of a proportional-integral-derivative controller depends on more extensive manual 
tuning. Therefore, the gain-scheduling linear quadratic regulator is preferred.

© 2021 Elsevier Masson SAS. All rights reserved.
1. Introduction

Liquid-propellant rocket engines (LREs) are the main power 
equipment used for space transportation systems and spacecraft 
propulsion and maneuver [1,2]. Liquid-propellant rocket engine 
with thrust that can be varied in a wide range has gained much 
importance in recent years. Its diversified developments have 
put forward many novel requirements in the aerospace field [3]. 
Variable-thrust rocket engine makes a good candidate for space 
exploration and transport, such as manned lunar landing and Mars 
exploration [3,4], as it can change thrust on-demand. In order to 
meet the requirement of soft landing, variable thrust technology 
with a wide range in descent phase is necessary. Throttleable LREs 
undoubtedly play a significant role in this kind of mission, espe-
cially for lunar descent. On the one hand, there is no air or the 
air is extremely rarefied. On the other hand, the engine needs to 
balance the gravity of the vehicle with decreasing mass and the 
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acceleration of gravity over a wide range of variations. Therefore, 
the LREs must have the ability of deep throttling.

The propellant types or compositions, the propellant mass flow 
rates, the nozzle exit area, and the nozzle throat area contribute 
to throttle a single engine. However, it is difficult to change the 
propellants, the nozzle exit area, and the nozzle throat area due 
to physical restrictions or heat flux. As we know, the thrust of the 
rocket engine is mainly calculated as the sum of the momentum 
thrust and the differential-pressure thrust in the steady state. The 
momentum thrust is the product of the propellant mass flow rate 
and the exhaust velocity. While the differential-pressure thrust is 
the product of the nozzle exit area and the pressure difference 
between the outlet pressure of the exhaust and the atmospheric 
pressure. Therefore, the rocket engine thrust varies with the pro-
pellant mass flow rate approximately in a linear relation. Conse-
quently, regulating the propellant mass flow rates is the simplest 
way to regulate engine thrust [5].

There are mainly eight throttling approaches [5], which are 
high-pressure-drop injectors, dual-manifold injectors, gas injec-
tion, multiple chambers, pulse modulation, variable area injectors, 
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Nomenclature

PID proportional, integral and derivative
LQR linear quadratic regulation
UAV unmanned air vehicle
LREs liquid-propellant rocket engines
EPPS electric propellant pump system
LOX liquid oxygen
DC direct current
Um supply voltage of the motor
Rm resistance of the circuit
im current
Lm inductance
t time
em back electromotive force
Ce back electromotive coefficient of the motor
ω rotational angular velocity of the motor
M output torque of the motor
Cm torque coefficient of the motor
Jm equivalent rotational inertia of the motor
fm equivalent viscous friction coefficient of the motor
Mc load torque of the motor
n rotational speed
ṁ mass flow rate
ṁr reference mass flow rate

nr reference rotational speed
Ni, Mi right normalized coprime fractions
Ñi, M̃i left normalized coprime fractions
kp proportional coefficient
ki integral coefficient
kd derivative coefficient
N filter coefficient
x state variables of the system
u input of the system
ẋ derivatives of the state variables
y output of the system
e error between the real output and desired one
K gain matrix of the controller
Q weighting matrix for state increment
R weighting matrix for control signal increment
MSE mean square error
ITAE integrated time and absolute error
ITSE integral time square error
GA genetic algorithm
PSO particle swarm optimization
AMS aerial manipulation systems
RMSE root mean square error
hydro-dynamically dissipative injectors, and also the combined 
methods mentioned above. All of these methods have both mer-
its and shortage.

Stable and efficient combustion process in a rocket engine is 
the key factor for the safety and reliability of space programs [6]. 
In order to have a better atomization to get a satisfying combus-
tion efficiency and adequate resistance for system performance, it 
is important to keep the injector with a constant injection pres-
sure drop during the whole throttling process [7]. One effective 
method to solve the problem is to regulate the propellant mass 
flow rate and change the injection area simultaneously [8]. In view 
of this point, turbopump feed system is often applied to modulat-
ing propellant mass flow rate as it ensures a light weight design 
for a liquid rocket engine. However, it is also with the drawbacks 
of mechanical complexity and the ensuing limited reliability (e.g., 
a large fraction of launch failures is due to malfunctioning turbop-
ump systems) [9]. Therefore, in this paper, the assembled motor 
and pump was adopted to regulate the propellant mass flow rate.

Small centrifugal pumps have been designed, manufactured and 
performance tested in the 1980s [10] in the frame of a develop-
ment program for an Electric Propellant Pump System (EPPS) for 
storable propellants. Compared with a pressure-fed system, EPPS 
used on a communication satellite makes the weight and vol-
ume of the propellant system reduced. Beyond its application to 
aircraft and satellites, several studies in the early 2000s used elec-
trically driven pump-fed cycle engines for launch vehicles [11]. 
Besides, the propellant electric pump designed for delivering liq-
uid hydrogen or methane to the rocket engine was one of the core 
project topics [12]. In reference [11], performance assessment, in-
cluding combustion chamber pressure, burning time, thrust level, 
mass as well as payload capability, of electrically driven pump-
fed LOX/kerosene cycle rocket engine was presented. Compared 
with pressure-fed and turbopump-fed systems, the specific mass of 
the electric-pump system can be reduced. This makes the system 
competitive, at least for some applications such as small launch-
ers and upper stage rockets [13]. Meanwhile, advanced batter cells 
currently under development could make the system lighter than 
2

the turbopump one, even for applications involving short burning 
times, i.e., booster stages [13].

The rest of the paper is organized as follows. In section 2, the 
model of the electric pump is mentioned. Section 3 analyzes the 
nonlinearity of the system and section 4 details the controller de-
sign process. Next section presents the simulation results. Finally, 
conclusions are drawn in section 6.

2. Dynamics modeling

The electric pump studied in this paper consists of two parts, 
i.e., direct current (DC) motor and the centrifugal pump.

DC motor transfers the electrical energy into mechanical en-
ergy. By inducing electromagnetic torque through the interaction 
between current and coil, it drives the load, i.e. pump, to rotate. 
The dynamics equations of DC motor mainly comprise three parts, 
i.e., the voltage balance equation, the electromagnetic torque equa-
tion, and the torque equilibrium equation.

The voltage balance equation of the motor in the armature cir-
cuit can be expressed as

Um = Lm
dim

dt
+ im Rm + em (1)

where Um is the supply voltage of the motor, Rm is the resistance 
of the circuit, im is the current, Lm is the inductance, t is the time, 
and em is the back electromotive force, which can be calculated by

em = Ceω (2)

where Ce is the back electromotive coefficient of the motor and ω
is the rotational angular velocity of the motor.

The electromagnetic torque equation of the motor is

M = imCM (3)

where M is the output torque of the motor and CM is the torque 
coefficient of the motor.

The torque equilibrium equation of the motor is

Jm
dω + fmω = M − Mc (4)

dt
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where Jm is the equivalent rotational inertia of the motor, fm is 
equivalent viscous friction coefficient of the motor, and Mc is the 
load torque of the motor by which the pump is driven to work. In 
this case, the load torque Mc can be written as

Mc = kn2 (5)

where k is a constant and n is the rotational speed.
As we know, the rotational speed and rotational angular speed 

hold a relationship as follows

n = 30ω

π
(6)

Here we assume that the mass flow rate of the pump is pro-
portional to the rotational speed, thus the mass flow rate provided 
by the pump can be calculated by

ṁ = ṁr
n

nr
(7)

where ṁr and nr are the reference mass flow rate and rotational 
speed, respectively. In this paper, ṁr is 1.35 kg/s and nr is 40000 
rpm.

3. System nonlinearity analysis

The motor characterized by Eq. (1) and (4) is a typical second-
order linear system and can be easily controlled by a proportional-
integral (PI) or proportional-integral-derivative (PID) controller. The 
controller can be designed according to the state-space form equa-
tion to obtain a satisfactory control effect.

However, the quadratic load torque (Eq. (5)) is added to Eq. (4)
in our study. Considering Eq. (1)-(6), we could obtain

dim

dt
= −im

Rm

Lm
− ω

Ce

Lm
+ Um

Lm
(8)

dω

dt
= im

Cm

Jm
− ω

fm

Jm
− ω2 k

4π2 Jm
(9)

The quadratic term, ω2, representing the load torque driving 
the pump to work, brings nonlinearity to the system.

Combined with Eq. (6) and (7), Eq. (8) and (9) can be written 
as

dim

dt
= −im

Rm

Lm
− ṁ

πnr Ce

30ṁr Lm
+ Um

Lm
(10)

dṁ

dt
= im

30ṁr Cm

πnr Jm
− ṁ

fm

Jm
− ṁ2 30knr

πṁr Jm
(11)

Selecting ṁ as the output, the following output equation is ob-
tained.

y = ṁ (12)

As the electric pump is a nonlinear system, the nonlinearity 
of the system needs to be analyzed, such that a suitable control 
scheme can be designed. Here, the gap metric is adopted to weigh 
the nonlinearity of the system and it will be discussed in the fol-
lowing.

The gap metric was introduced into control field as it was an 
effective way to study the uncertainty in feedback systems [14,
15]. The gap metric can characterize the difference between two 
linear systems. If the gap metric is close to 0, this means these two 
systems have similar dynamic responses. While if the gap metric is 
close to 1, the two systems’ dynamic responses are apart. For two 
linear systems, P1 and P2, the gap metric between them is defined 
as
3

δ (P1, P2) = max
(�δ (P1, P2) , �δ (P2, P1)

)
(13)

where

�δ (P1, P2) = inf
Q ∈H∞

∥∥∥∥
[

N1
M1

]
−

[
N2
M2

]
Q

∥∥∥∥∞
(14)

where Q belongs to R H∞ , and Ni and Mi are the right or left 
normalized coprime fractions as follows (if Ni and Mi have no 
common factors or common roots, they are coprime):

Pi = Ni M
−1
i = M̃−1

i Ñi (15)

For a nonlinear system,

ẋ = f (x, u) (16)

y = h (x, u) , (17)

the linearized system in incremental form at x = x0, u = u0 can be 
expressed as follows

�ẋ = ∂ f (x, u)

∂x
| f (x0,u0)�x + ∂ f (x, u)

∂u
| f (x0,u0)�u (18)

�y = ∂h (x, u)

∂x
|h(x0,u0)�x + ∂h (x, u)

∂u
|h(x0,u0)�u (19)

According to Eq. (10)-(12), the linearized system can be derived 
as[
�ẋ1
�ẋ2

]
=

[ − Rm
Lm

− πnr Ce
30ṁr Lm

30ṁr Cm
πnr Jm

− fm
Jm

− 60knr
πṁr Jm

x2|x2=x2,0

][
�x1
�x2

]

+
[ 1

Lm

0

]
�u (20)

�y = [
0 1

][
�x1
�x2

]
(21)

In order to measure the nonlinearity of the electric pump sys-
tem, several operating points were selected and the system was 
linearized at given operating points. Then the gap metrics between 
two linearized systems was obtained.

The variable range of mass flow rate is ṁ ∈ [0, 1.35] kg/s. 
First, we gridded the operating space by using N = 136 operat-
ing points: the gap metrics thus calculated are illustrated in Fig. 1
(the Y-axis is the same as X-axis and they both denote the mass 
flow rate). The maximum gap metric is 0.3997. Then we gridded 
the operating space by N = 135 operating points and ṁ changing 
from 0.01 kg/s to 1.35 kg/s. Gap metrics calculated for ṁ ∈ [0.01, 
1.35], instead, are illustrated in Fig. 2. Finally we gridded the op-
erating space by N = 101 operating points and ṁ varying from 0 
kg/s to 0.01 kg/s: gap metrics calculated are illustrated in Fig. 3.

Fig. 1-3 demonstrated that when ṁ changes from 0 kg/s to 0.01 
kg/s, the gap metrics have a substantial increase. Except the con-
ditions near the operating point where the mass flow rate equals 
to 0, the gap metrics are rather small. When the mass flow rate 
equals to 0, it is the start or the end of the operation and we 
have no demand to maintain this condition. Therefore, the oper-
ating points near ṁ = 0 play less important roles compared with 
other conditions which need to work for a long period. We can 
tolerant larger tracking errors at these instants as they last a negli-
gible amount of time and their effect on the trajectory are null. In 
general, the gap metric between any two linearized systems in in-
cremental form is small and the closed-loop behaviors can be quite 
close. This demonstrates the nonlinearity of the whole system is 
not strong and the nonlinearities between two different operating 
points are continuous. Therefore, it is a good choice to adopt either 
linear approximation or gain-scheduling controllers.
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Fig. 1. Gap metric surface of the system (ṁ ∈[0, 1.35]). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Fig. 2. Gap metric surface of the system (ṁ ∈[0.01, 1.35]).

4. Controller design

4.1. Proportional-integral-derivative controller

The Proportional-integral-derivative (PID) controller is shown 
to be the simplest and most efficient way to cope with many 
industrial-implementation-oriented control problems. Because its 
proportional coefficient can decrease the rising time of response, 
integral coefficient can reduce the steady-state errors, and deriva-
tive coefficient can improve the transient response like overshoot 
[16]. In reference [17], a PID controller was utilized in order to 
4

Fig. 3. Gap metric surface of the system (ṁ ∈[0, 0.01]).

make a stable flow of fluid in the pipelines by controlling the vi-
bration in an electric pump. PID controller can cope with not only 
linear control problems, but also problems with moderate nonlin-
earities, especially for the PID controller with auto-tuning gains. A 
conventional PID was applied to generate control inputs for a non-
linear unsteady aerodynamics model [18]. This model is coupled 
with a three degree of freedom quadplane to control the forward 
and backward transition between hover and steady level flight. In 
reference [19], an anti-skid PID braking control system was used 
on a nonlinear dynamic landing gear model to capture gear walk. 
Based on a novel PID controller with a Nussbaum-type function, a 
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Fig. 4. Step responses of the linearized system at full working condition.

Fig. 5. Bode plots of the linearized system at full working condition.
robust adaptive and fault-tolerant control scheme was developed 
for wind turbines [20]. By utilizing the Nussbaum-type function 
and the matrix decomposition technique to adaptively tune gains, 
the PID control could be made robust, adaptive, and fault-tolerant, 
and applicable to nonlinear systems with uncertainties and un-
expected actuation faults [21]. As the nonlinearity of the electric 
pump system is not strong, a traditional PID controller can be used 
here.

According to the linearized system at full working condition 
(ṁ = 1.35 kg/s), a PID controller is designed as follows

u = kp + ki
1

s
+ kd

N

1 + N 1
s

(22)

where kp is the proportional coefficient, ki is the integral coeffi-
cient, kd is the derivative coefficient, and N is the filter coefficient, 
which equal to 1e5, 2e4, 0.5, and 100, respectively. Parameters 
in the PID controller are tuned following industrial tuning rules, 
which are based on the adjust time and overshoot. For example, in 
order to reduce the rise time of system response, we can mainly 
increase the value of kp . If we want to have a small steady-state 
error, we can increase the value of ki . While when we want to 
reduce the overshoot of the response, we can increase the value 
of kd . As a matter of fact, optimization-based PID tuning is also 
conducted during our controller design. Mean square error (MSE), 
integrated time and absolute error (ITAE) and integral time square 
5

error (ITSE) were used as the cost function by which the PID pa-
rameters were optimized using genetic algorithm (GA) or particle 
swarm optimization (PSO) algorithm. However, it was shown that 
the optimization results were unacceptable. Usually, optimization-
based PID tuning can be adopted to determine the PID parameters. 
However, special characteristic of the studied object in this paper 
makes it difficult. Due to its nonlinearity, the optimum PID pa-
rameters at different operating conditions are not the same. Single 
objective optimization can result in a long rising time or a long 
time to reach steady state for one or more operating conditions. In 
fact, multi-objective optimization based PID tuning might be help-
ful. This may need further study. Due to the listed reasons, in this 
work, the industrial tuning procedure is used and a sub-optimal 
but satisfactory solution is achieved. After tuning, the close-loop 
system with the PID controller is shown to have a good tracking 
ability as required while maintaining the responses under con-
straints.

At the full working condition, the state-space matrices of the 
linearized system are listed below, and the step responses as well 
as Bode plots are shown in Fig. 4 and 5. The settling time of the 
step response with the PID controller, which is in the order of 
tens of microseconds, is far less than that without the controller, 
on the order of tens of milliseconds, as plotted in Fig. 4(a) and 
(b). From Fig. 4, we can also find that the steady-state value with 
the PID controller is 1 while the steady-state value without the 
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Fig. 6. Phase and magnitude margin of the linearized system with the PID controller 
at full working condition.

PID controller is 3.5e-3. The steady-state error with the PID con-
troller is much smaller. It is found in Fig. 5(a), the open-loop Bode 
plot, that the magnitude with the PID controller is much larger. 
In this plot, the magnitude is defined as twenty times as many 
as denary logarithm of amplitude. This means the amplitude with 
the PID controller is larger. Larger amplitude makes it have a bet-
ter capability to follow the input command in low frequency band 
while have a poorer suppression on noise in high frequency band. 
Fig. 5(b) is the close-loop Bode plot and it contains two key points. 
Firstly, the magnitude in low frequency is closer to 0 with PID con-
troller, which means the amplitude in low frequency is closer to 1 
and the steady-state error is smaller. Then, the cut-off frequency is 
higher under the effect of the controller, which results in a wider 
bandwidth and a faster response. However, wider bandwidth leads 
to worse robustness. Calculated phase margin demonstrates that 
the system with the PID controller is stable as shown in Fig. 6.

A0 =
[−205.8824 −2.1902e4

1.7495e4 −1.2568e7

]
, B0 =

[
588.2353

0

]
,

C0 = [
0 1

]
, D0 = 0

In the following part, verification will be carried out to prove 
that the designed controller can guarantee the stability and ro-
bustness of the linearized systems at other operating points.

Fig. 7. Step responses of the linearized system at the working condition of ṁ = 0.57 kg/s.

Fig. 1 and Fig. 2 demonstrate that the maximum gap metric 
appears between the lowest operating point and full working con-
dition. This can also be deduced by looking at the matrices A, B, 
C, and D of the linearized systems. All of them have the same ma-
trices B, C, and D. The only difference appears in matrix A. The 
expression of A22 in matrix A is A22 = − fm

Jm
− 60knr

πṁr Jm
x2|x2=x2,0 . As 

x2 actually denotes ṁ, A22 is a monotonic function of the mass 
flow rate. The greater the difference is in the mass flow rate, the 
bigger the gap metric is. Therefore, four operating points are cho-
sen and the amplitude- and phase-frequency characteristics are 
analyzed in the following. At each operating point, the state-space 
matrices of the linearized system are listed below, and the step 
response as well as Bode plot are shown in Fig. 7-10. Subscrip-
tion 1, 2, 3, and 4 denote the working conditions of ṁ = 0.57 kg/s, 
ṁ = 0.12 kg/s, ṁ = 0.03 kg/s, and ṁ = 0, respectively.

A1 =
[−205.8824 −2.1902e4

1.7495e4 −5.3070e6

]
, B1 =

[
588.2353

0

]
,

C1 = [
0 1

]
, D1 = 0

A2 =
[−205.8824 −2.1902e4

1.7495e4 −1.1181e6

]
, B2 =

[
588.2353

0

]
,

C2 = [
0 1

]
, D2 = 0

A3 =
[−205.8824 −2.1902e4

1.7495e4 −2.8026e5

]
, B3 =

[
588.2353

0

]
,

C3 = [
0 1

]
, D4 = 0

A4 =
[−205.8824 −2.1902e4

1.7495e4 −1000

]
, B4 =

[
588.2353

0

]
,

C4 = [
0 1

]
, D4 = 0

From the data listed in Table 1, we can find that the PID con-
troller designed according to full working condition can stabilize 
the linearized systems at other operating points as the phase mar-
gins are greater than 0, though the step responses began to oscil-
late with the decrease of the mass flow rate as the gap metrics 
between two linearized systems are getting bigger and the differ-
ences are more obvious as plotted in Fig. 7-10. It has mentioned 
that when ṁ changes from 0 kg/s to 0.03 kg/s, the gap metrics 
have a substantial increase. Therefore, the step response of the lin-
earized system at ṁ = 0 has significant oscillation. The oscillation 
occurred can also be explained by close loop Bode plots presented 
in Fig. 11-14, especially when the mass flow rate is relatively small. 
As shown in Fig. 13(b), there is a resonance peak appearing in the 
6
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Fig. 8. Step responses of the linearized system at the working condition of ṁ = 0.12 kg/s.

Fig. 9. Step responses of the linearized system at the working condition of ṁ = 0.03 kg/s.

Fig. 10. Step responses of the linearized system at the working condition of ṁ = 0.
curve in red dash line which represents the system with the PID 
controller while the curve plotted in blue solid line has no peak. In 
spite of reducing settling time by increasing bandwidth, the system 
tends to be unstable with designed PID controller at the condition 
of low mass flow rate. In Fig. 14(b), both two curves have reso-
nance peaks while the peak in the curve plotted in red dash line 
7

is more obvious than that in blue solid line, which results in a 
more severe oscillation in the step response as plotted in Fig. 10.

The poles and zeros of the systems can be obtained, which are 
listed in Table 2. Except for the linearized system at ṁ = 0, systems 
without the PID controller have a dominant pole on the order of 
1e2 or 1e3. When the PID controller is applied, two more poles are 
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Table 1
Magnitude and phase margins at different operating points.

ṁ, kg·s−1 Magnitude margin, dB Phase margin, deg

0.57 Inf 88
0.12 Inf 55.8
0.03 Inf 15.7
0 Inf 0.0681

added as well as two zeros. Pole-zero cancellation happens in such 
a situation and the amount of the poles in fact is two. The PID 
controller makes the poles to be assigned. As the dominant pole of 
the system with the PID controller is farther from the imaginary 
axis, which is on the order of 1e4 or 1e5, than that of the sys-
tem without the PID controller, the system with the PID controller 
has a faster response. As the poles of the linearized systems with 
the PID controller at ṁ = 0.03 kg/s and ṁ = 0.12 kg/s are conju-
gate complex roots, the step responses have oscillation to varying 
degrees.

4.2. Gain-scheduling linear quadratic regulation controller

The gain-scheduling linear quadratic regulation (LQR) controller 
is considered as a good controller because of its great performance 
and robustness against plant uncertainties [22]. Therefore, many 
researches focus on LQR control. Gain-scheduling LQR controllers 
Fig. 11. Bode plots of the linearized system at

Fig. 12. Bode plots of the linearized system at

8

were designed aiming at reducing the possibility of the occur-
rence of a type of accident [23]. This type of accident is known 
as rollover which is possibly due to the large lateral acceleration 
by excessive steering at high speed. As the vehicle speed varies, 
the controller gains changed with the speed of the vehicle. Simi-
lar to this situation, the mass flow rate during throttling process 
is changing thus it is possible to apply an gain-scheduling LQR 
controller to our study. The polynomial regression model-based 
gain-scheduling approach was proposed [24]. This approach im-
proved performance and addressed computational drawbacks of 
conventional gain-scheduling methods. Meanwhile, the LQR con-
troller provided good performance guarantees under slow and fast 
varying loads in cloud computing systems [25] and control of a 
floating offshore wind turbine above rated wind speed [26]. In 
reference [27], the LQR controller was designed for a novel con-
cept of a co-axial bi-rotor UAV for planar motion control. Besides, 
LQR controllers were adopted to achieve simultaneous control of 
the quadcopter as well as its manipulator [28] and overcome chal-
lenges in controlling a Aerial Manipulation Systems (AMS) [29].

Eq. (20) can be written as follows,

�ẋ1 = A11�x1 + A12�x2 + B11�u (23)

�ẋ2 = A21�x1 + A22�x2 (24)

where A11 = − Rm
Lm

, A12 = − πnr Ce
30ṁr Lm

, A21 = 30ṁr Cm
πnr Jm

, A22 = − fm
Jm

−
60knr

πṁ J x2, and B11 = 1
L . Define
r m m

the working condition of ṁ = 0.57 kg/s.

the working condition of ṁ = 0.12 kg/s.
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Fig. 13. Bode plots of the linearized system at the working condition of ṁ = 0.03 kg/s.

Fig. 14. Bode plots of the linearized system at the working condition of ṁ = 0.

Table 2
Zeros and poles of systems.

Linearized system at Without PID controller With PID controller

Zeros Poles Zeros Poles

ṁ = 1.35 kg·s−1 None -1.2568e7; -99.9499; -1.2486e7;
-236.3712 -0.2 -8.2704e4;

-99.95;
-0.1994

ṁ = .057 kg·s−1 None -5.3069e6; -99.9499; -5.1052e6;
-278.0881 -0.2 -2.0197e5;

-99.95;
-0.1997

ṁ = 0.12 kg·s−1 None -1.1178e6; -99.9499; -5.5915e5+8.4711e5i;
-548.7530 -0.2 -5.5915e5-8.4711e5i;

-99.9499;
-0.1999

ṁ = 0.03 kg·s−1 None -2.7889e5; -99.9499; -1.4023e5+1.0052e6i;
-1.5809e3 -0.2 -1.4023e5-1.0052e6i;

-99.9499;
-0.1999

ṁ = 0 None -6.0294e2+1.9571e4i; -99.9499; -6.0287e2+1.0149e6;
-6.0294e2-1.9571e4i -0.2 -6.0287e2-1.0149e6i;

-99.9499;
-0.1999
9
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e = x2d − x2 (25)

where x2d is the desired output, i.e., the mass flow rate reference, 
and e is the error between the real output and desired one. The 
increment of the error and its derivation can be expressed as fol-
lows,

�e = −�x2 (26)

�ė = −�ẋ2 (27)

Substitute with Eq. (26) and (27), Eq. (23) and (24) can be written 
as

�ẋ1 = A11�x1 − A12�e + B11�u (28)

�ė = −A21�x1 + A22�e (29)

LQR controllers take the form,

�u = −K�x = − [
k1 k2

][
�x1
�e

]
= −k1�x1 − k2�e

= −k1�x1 + k2�x2 (30)

The gain matrix K needs to be found that minimizes the value of 
the quadratic cost function [30]

J =
∞∫
0

(
�xT Q�x + �uT R�u

)
dt (31)

where matrices Q and R are weighting matrices for state incre-
ment (�x) and control signal increment (�u), respectively. In 
order to determine K, the following Riccati equation should be 
solved

PA + AT P − PBR−1BT P + Q = 0 (32)

Finally, the controller gain matrix K is computed by

K = R−1BT P (33)

By solving Riccati equation, the gain matrix obtained to min-
imize the linear quadratic cost function, i.e., lowest cumulative 
error and input energy, makes the LQR controller to be optimal. 
In this paper, matrices Q and R are given as follows,

Q =
[

100 0
0 1000

]
R = 0.01

As the mass flow rate is changing during throttling process, 
the controller gains should be determined by considering the mass 
flow rate provided by the pump. Gain-scheduling adaptive system 
is adopted here. In this way, K in Eq. (30) could actually be de-
scribed by K = K(ṁ). For every desired mass flow rate, the LQR 
equation should be applied to determine all controller gains. For 
each input voltage, there is a corresponding mass flow rate which 
contributes to a K accordingly. Several working conditions are se-
lected and the K matrices are listed in Table 3. Other K matrices 
can be obtained by means of a looking up table and interpolation.

With a LQR controller, the eigenvalues, i.e., pole locations, 
change significantly. In the following, the conditions listed in Ta-
ble 4 are divided into two regimes. One is overdamped and the 
eigenvalues distribute on the negative real axis. The other is under-
damped, in which the eigenvalues are conjugate roots in left-half 
complex plane.

When the system is overdamped, there are two negative real 
roots. The root closer to imaginary axis is the dominant pole and 
determines the response of the system. Under the effect of the LQR 
10
Table 3
K matrices at typical working conditions.

U,V ṁ, kg·s−1 K

0 0 [257.3978, -948.7436]
1 0.0252 [116.8259, -62.7086]
10 0.1839 [99.7879, -0.4619]
50 0.5595 [99.5832, 0.2265]
100 0.8553 [99.5937, 0.1914]
150 1.0848 [99.6016, 0.1646]
220 1.35 [99.6089, 0.1404]

Table 4
Eigenvalues at typical working conditions.

ṁ, kg·s−1 Without LQR controller With LQR controller

Eigenvalues Eigenvalues

0 -6.0294e2±1.9571e4i -7.6308e4±6.6899e4i
0.0252 -1.8452e3; -2.3394e5 -7.5346e4; -2.2916e5
0.1839 -429.6405; -1.7127e6 -5.9139e4; -1.7217e6
0.5595 -279.4429; -5.2092e6 -5.8858e4; -5.2092e6
0.8553 -254.0046; -7.9628e6 -5.8839e4; -7.9628e6
1.0848 -243.8246; -1.0099e7 -5.8833e4; -1.0099e7
1.35 -236.3715; -1.2568e7 -5.8830e4; -1.2568e7

Fig. 15. Root locus for an overdamped system.

controller, the dominant pole moves away from the imaginary axis, 
which is illustrated in Fig. 15. It makes the system respond more 
quickly and maintain robustness against the disturbance. Instead, 
the controller has little influence on the other pole.

As shown in Fig. 16, when the LQR controller is applied, the 
damping ratio increases from 0.03 to 0.752 in the underdamped 
condition, which increases the ability to suppress the disturbance. 
Meanwhile, the conjugate poles moving away from the imaginary 
axis in left-half complex plane improve the dynamic response of 
the system.

5. Results and discussions

The electric pump model is implemented in Matlab/Simulink. 
The simulation results are presented in the following sections in-
cluding validation of the controllers and simulation on throttling 
process. It is worth mentioning that during the throttling pe-
riod, the change process can be done instantly while the differ-
ent operating conditions are required to be maintained for a long 
time. In order to save computing resources and time, the duration 
on steady state of throttling process for simulation is shortened, 
which simply intends to show the control effect on the dynamic 
process.
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Fig. 16. Root locus for an underdamped system.

Fig. 17. Disturbance in validation.

5.1. Controller validation

A sequence of step signals is used as the validation input. In 
validation, two group simulations are conducted. One is the step 
signal set, the other is step signal set with disturbance. The dis-
turbance sequence is shown in Fig. 17. In each simulation group, 
the PID controller and LQR gain-scheduling controllers are tested 
on the original nonlinear system. Comparison between simulation 
results and the desired value are presented in Fig. 18.

Fig. 18(a) shows that both the PID and LQR gain-scheduling 
controllers improve the dynamic response and reduce the rise 
time. Meanwhile the controllers guarantee the steady state value. 
When the disturbance in Fig. 17, which the variance is 100 V2, is 
injected, as illustrated in Fig. 18(b), it is obvious that the electric 
pump system without a controller behaves abnormally and suffers 
a deviation from the designed value. While the systems with con-
trollers still have good performance on both the dynamic response 
and steady state value. The changes of the system response under 
the effect of controllers are relatively small, which can be seen in 
Fig. 19. Except for the sudden change of the signal, the errors be-
tween the system with and without disturbance are limited in 2%. 
The root mean square errors (RMSEs) of the two controllers are 
calculated and the results are listed in Table 5. The RMSEs show 
that the PID and LQR gain-scheduling controllers have the same 
control effect in total.

In practical applications, a controller not only needs to stabi-
lize the system, the control signal may also need to satisfy the 
operating requirements of the controlled objects. The control sig-
nals exerted to obtain the results shown in Fig. 18 are presented in 
11
Fig. 18. Influence of controllers on fuel mass flow rate in validation.

Fig. 19. Errors between the system with and without disturbance under the effect 
of controllers in validation.

Table 5
RMSEs of controllers in validation (kg·s−1).

Without disturbance With disturbance

No controller 8.34e-2 9.77e-2
PID 6.68e-2 6.66e-2
LQR 6.68e-2 6.66e-2

Fig. 20. Oscillations can be found in the figure which illustrate in 
red dash dot line, especially when there is disturbance during the 
operation. It means that although the PID controller has the same 
control effect as the LQR gain-scheduling controller, it needs vio-
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Fig. 20. Control signal behavior in validation.

lent oscillations in the input signal to compensate the error with 
respect to the reference value. However, this kind of oscillations is 
detrimental to the lifespan of the electric pump. On the contrary, 
the signal produced by the LQR gain-scheduling controller seems 
much smoother and it is better for mitigation and life extension of 
the electric pump.

5.2. Simulation considering throttling process

Last section proves that the controllers can track the target 
curve, which only has step signals, even if there is disturbance. 
However, there are periods that the mass flow rate needs to change 
continuously and gradually in throttling process, which means the 
controllers need be able to track ramp signals. In the following, a 
mixed signal set considering the throttling process is applied in the 
simulation. The signal sequence lasts 0.3 second, which includes 
full working condition, other working conditions, and the continu-
ous regulating process.

Same as the validation, two group simulations are conducted. 
One is the mixed signal set, the other is the mixed signal set with 
disturbance. The disturbance sequence is shown in Fig. 21.

Similar to simulation results shown in validation section, no 
matter whether there is disturbance or not, controllers improve the 
dynamic response and reduce the rise time in throttling process as 
shown in Fig. 22. Meanwhile the controllers make the system work 
at desired steady state. The notable deficiency is that during the 
ramp signal process, i.e., the mass flow rate continuous reducing 
period, the controllers have errors when tracking the target curve. 
In contrast, the PID controller has a better performance on track-
ing ramp signal. This can be explained from Fig. 22(b). The PID 
12
Fig. 21. Disturbance in throttling process.

Fig. 22. Influence of controllers on fuel mass flow rate in throttling process.

controller changed the control signal frequently to try to compen-
sate the discrepancy with the desired value. On the other hand, the 
PID controller has less errors during the whole throttling process, 
which is more obvious than that in validation section, especially 
at the beginning of the simulation as shown in Fig. 23. The RMSEs 
(Root Mean Square Errors) of the two controllers are calculated 
and the results are listed in Table 6. The RMSEs show that the PID 
controller has better control effect in total on throttling process.

However, Fig. 24(b) demonstrated the control signal generated 
by the PID controller on throttling process has severer oscillation 
compared with signals generated by the LQR controller as well as 
signals produced by the PID controller in validation section.
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Fig. 23. Errors between the system with and without disturbance under the effect 
of controllers in throttling process.

Table 6
RMSEs of controllers in simulation on throttling process (kg·s−1).

Without disturbance With disturbance

No controller 8.84e-2 1.13e-1
PID 7.12e-2 7.00e-2
LQR 7.14e-2 7.02e-2

Fig. 24. Control signal behavior in throttling process.

6. Conclusions

System analysis and controller design of the electric pump 
considering the application on deep throttling rocket engine is 
13
described in this paper. The proportional-integral-derivative con-
troller and gain-scheduling linear quadratic regulator are adopted 
to stabilize the system and track the target curves. The main con-
clusions are drawn as follows:

(1) Though it demonstrates that the electric pump system behaves 
nonlinearly due to a quadratic term in the dynamics equation, 
the analysis of the gap metric shows that the system control 
problem can be solved by a linear controller.

(2) By analyzing the amplitude- and phase-frequency characteris-
tics as well as the pole-zero distribution of the system with 
and without controllers, it theoretically proves the designed 
proportional-integral-derivative controller and gain-scheduling 
linear quadratic regulator can stabilize the linearized equations 
in incremental form at different operating points. This indi-
cates that these two controllers are available for the original 
system in the whole range of working conditions.

(3) Simulations conducted to test the effect of the controllers 
show that designed proportional-integral-derivative controller 
has a better control effect on the system especially when 
to track ramp signals. However, the control signal produced 
by the proportional-integral-derivative controller seems hard 
to be implemented as there are severe oscillations during 
the tracking process. Meanwhile, the parameter tuning of the 
proportional-integral-derivative controller depends on quite 
rich engineering experience. Considering the above two rea-
sons, the gain-scheduling linear quadratic regulator seems bet-
ter.

Further investigation may consider the linear or nonlinear 
model predictive control method, as when tracking the ramp 
signal, there are relative errors with a gain-scheduling linear 
quadratic regulator and severe oscillations with a proportional-
integral-derivative controller which may be due to the nonlinearity 
of the system.
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